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Abstract

The inexorable miniaturization of technologies stimulated the study of quantum ther-

modynamics. Quantum thermodynamics aims to explain the emergence of thermo-

dynamic laws from quantum mechanics. The open quantum system is a benchmark

to understand the non-equilibrium quantum system. Our main interest of this thesis

is to understand the finite time thermodynamics study of the quantum thermal ma-

chine. Quantum thermodynamics provides a consistent explanation of quantum heat

engines and refrigerators up to a single few-level system coupled to the environment.

Once the environment is split into three (a hot, cold, and work bath), a heat engine

can operate. The device converts the positive gain into power, with the gain obtained

from population inversion between the components of the device. Reversing the op-

eration transforms the device into a quantum refrigerator. We are devoted to find

out the performance of the thermal machine at the high-temperature limit and find

out the resemblance in the performance quantum thermal machine with finite time

irreversible thermal device. Study of optimized performance helped us to understand

the role of different parameters on the performance of the thermal machine.

In this work of optimal performance of three-level quantum refrigerator, we study

a three-level quantum refrigerator operating at maximum χ criterion and cooling

power. We study analytic expressions for the coefficient of performance (COP) under

the assumptions of strong matter-field coupling and high bath temperatures. We also

discuss the optimization of the χ criterion cannot be carried out for general due to

Casus Irreducibilis of the cubic equation. The role of tight coupling assumption

has been discussed in the context of two parameter optimization of χ criterion. In

this model, we study the optimization of cooling power, and we describe why two

parameter optimization of cooling power is not possible.
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Chapter 1

Introduction

1.1 Prologue

In the last couple of decades, enormous progress has been done in miniaturization,

nanotechnologies, and in general in the manufacturing and control of extremely small

physical systems, some of which are composed of just a few atoms. We are now faced

with the tormenting possibility of designing, implementing and using nano-machines,

but because of their small size and quantum nature, their functioning and efficiency

cannot be described by classical thermodynamics. Hence the need for developing

quantum thermodynamics.

The general questions strike to mind: How do the laws of thermodynamics emerge

from microscopic quantum mechanics? What are the requirements of a theory to de-

scribe quantum mechanics and thermodynamics within the same framework? What

are the fundamental reasons for a trade-off between power and efficiency? What

would be thermodynamics rules for quantum devices operating far from equilibrium?

Can quantum phenomena like coherence, decoherence etc affect the performance of

heat engines and refrigerators? What is then the effect of this counter-intuitive noise-

induced quantum coherence on the performance quantum thermal machines? How is

entropy production affected by it? Similarly, how would be quantum thermodynamic

machine affected by entanglement? Can we use it as a resource for improving perfor-

mances?
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Quantum thermodynamics is devoted to unravel the connection between the laws

of thermodynamics and their quantum origin. For many decades, the two theories

developed separately. The work on the way to quantum thermodynamics has been

stimulated after the seminal work of Scovil et al.[1] in which they showed the equiv-

alence of the Carnot engine with three level Maser engine. With the development of

quantum theory, the emergence of thermodynamics from quantum mechanics becomes

a main issue. The two theories try to explain the same subject from different direc-

tions. To understand quantum thermodynamics better one has to deal with quantum

dynamical behavior of the system. One needs to understand the theory of open quan-

tum systems to study this kind of system. The Markovian master equation initiated

by Lindblad and Gorini-Kossakowski-Sudarshan [2, 3] is one of the key resources of

the theory of quantum thermodynamics. This formalism allows one to re-explain and

justify the theory of finite time thermodynamics [4], which deals with thermodynamic

processes taking place in finite time. So, an open quantum system is the generalized

theoretical tool to understand the finite time quantum thermal machines.

Thermodynamics is one of the most successful and beautiful theories ever formulated.

Though it was initially developed to deal with a macroscopic systems like steam en-

gines, auto engines, etc. The seminal work of Carnot led Clausius [5] to formulate

the second law of thermodynamics which introduced the concept of entropy. The

Carnot engine has no practical importance as its output power is zero. A quantum

mechanical model of heat engine or refrigerator allows us to incorporate dynamics into

thermodynamics. In this thesis, we are mainly interested in an autonomous quantum

heat engine and a quantum refrigerator. The autonomous quantum thermal machine

is simultaneously connected with a hot and cold bath. This is different from Otto

and Carnot cycles. Generally, a reciprocating cycle consists of four segments, two

adiabats, where the working system is isolated from the environment, and two heat

transfer segments, either isotherms for the Carnot cycle or isochores for the Otto cy-

cle. The same cycles are then used as models for refrigerators.

In quantum thermodynamics, we generally address adiabats by time-dependent Hamil-

2



tonians. Typically, the external control Hamiltonian does not commute with the in-

ternal Hamiltonian. Infinitely slow operation is the necessary and sufficient condition

for the quantum and thermodynamic adiabatic conditions. This condition is unable

to generate finite output power. So we need to study quantum thermal machine at

finite rates, and quantum dissipation comes into picture.

In quantum thermodynamics, an open quantum system is used to model the system-

bath interaction. The LGKS generator is very useful to study the finite time quantum

thermal machines. For finite power operation, the thermal transfer process is never al-

lowed to equilibrate with the heat bath, which would take an infinite amount of time.

Finally, maximum power output is obtained by optimizing over the time allocation on

each of the segments of the cycle. The efficiency of the engine at maximum power can

then be compared to the well-known results of finite-time thermodynamics. Although

the mechanism of quantum thermal machine and classical thermal machine are very

different, in the limit of high temperature limit, the quantum model harmonized with

the results [6] with classical thermal machine which is the main focus of this thesis.

The main example of a continuous quantum engine is a three-level laser, whose ef-

ficiency is bounded by Carnot efficiency [1]. Many models of the quantum machine

have been introduced for different types of continuous quantum engines, all consistent

with the laws of thermodynamics [7, 8, 9]. The main example of a continuous refrig-

erator is laser cooling. In this context, it is obtained by reversing the operation of a

three-level laser. In the journey of equivalence search of quantum and classical ther-

mal machine, we also use semi-classical stochastic master equation which is based on

probabilistic statistical mechanics, and end up with the same expression of efficiency

at maximum power at the high temperature.

The thesis is divided in the following way: at first, we discuss about the open quan-

tum system which is an important tool to study quantum thermal machine. Next,

we explain a little bit about how to define heat and power for this kind of thermal

machine. It is noted that the bath we consider in our work is a thermal bath and

large bath (which means the degree of freedom of bath is very large). The state of

3



the bath will not change through the thermodynamical protocol. In general, one can

have micro bath then the above-mentioned assumption would no longer valid. The

state of a bath will change even if the initial state is a thermal state. In scenario,

one should seriously think about how to define heat and work. The definition that

we have discussed here only valid for a large bath. In the next chapter, we introduce

a three-level autonomous QHE model and studied finite time thermodynamics effi-

ciency at maximum power. We also discuss some well known results of EMP in the

context of linear irreversible thermodynamics. Then we are curious enough to study

the three-level quantum refrigerator, and we have studied the optimal performance of

the quantum refrigerator.
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Chapter 2

Three-Level System As A Thermal

Machine

2.0.1 Introduction

Thermodynamical study of quantum-optical systems has fascinated a lot of attraction

after the experimental realization of masers and lasers. In the work of Scovil–Schulz-

DuBois, they assumed the population of atomic level as Boltzmann distribution and

they showed by a simple calculation that the engine’s efficiency is limited by the

Carnot efficiency. Alicki partitioned the total energy into two parts (heat and work)

using time dependencies of the density operator and Hamiltonian operator. Later

Geva and Koslof proved that the second law of thermodynamics is generally satisfied

by careful consideration of the effect of the external field on the dissipative term [?].

In this chapter, we introduce three-level quantum System and how it can be used as

a thermal machine (engine and refrigerator).

2.0.2 Quantum Three-Level as heat engine

A Three-level system can be used as a heat engine, and its efficiency is bounded by

Carnot’s efficiency. Let us introduce a three-level system as a contemporary example

of a Carnot engine which is an amplifier as it amplifies input field. The principle of

operation is to convert population inversion into output power in the form of light.

5



The hot bath which is at temperature Th induces a transition between from the state

|g〉 to excited state |1〉. When equilibrium is reached we can write P1
Pg

= exp
[
−( ~ωh

kBTh
)
]
.

Figure 2.1: Three level quantum heat engine

Similarly for the cold bath which is at temperature Tc one can write similar expression
P0
Pg

= exp
[
−( ~ωc

kBTc
)
]
. The necessary and sufficient condition for amplification is positive

gain or population inversion, defined by Pg−P1 > 0, which leads to following condition

ωc
ωh
≥ Tc
Th

(2.1)

The efficiency of the heat engine is defined by

η = 1− ωc
ωh

(2.2)

Using the equation 2.1 one can prove that η ≤ ηc

The above description of the three-level amplifier is based on a quasi-static process.

Real engines that produce power operate far from equilibrium conditions. Typically,

their performance is restricted by different factors of dissipation like friction, heat

transport, and heat leaks. One needs to understand the open quantum system for-

malism to study the real-life thermal quantum machine.

6



2.0.3 Quantum Three-Level as refrigerator

In a nutshell, refrigerators are engines operating in a regime where the heat flow is

reversed. The three essential ingredients of a continuous three level refrigerator are

a hot reservoir, a cold reservoir, and a working reservoir and it is simultaneously

connected to the system as shown in the figure. In the refrigerator, heat is extracted

from the cold reservoir and dumped into the hot reservoir. As in the heat engine, first

and second law restricts the COP of a refrigerator. This induces transitions between

level |0〉 and level |1〉. The population in level |1〉 then relaxes to level |g〉 by rejecting

heat to the hot bath. The system then makes transitions from level |g〉 to level |1〉

by absorbing energy from a cold bath. There are dissipations corresponding to the

hot and cold reservoir/bath respectively. Since this is a continuous thermal machine

operating in the steady state condition, so the second law of thermodynamics has to

be satisfied. By examining the heat engine model of Figure 1, one finds that if the

❥✶✐

❥✵✐

❥❣✐

✕

✦❤

✦❝ ❚❝

❚❤

Figure 2.2: Three level quantum refrigerator

power direction is reversed, a refrigerator is generated, provided the gain is negative

that is Pg−P1 < 0. Assuming near equilibrium model one can get following condition

ωc
ωh
≤ Tc
Th

(2.3)

The coefficient of performance of refrigerator is given by

ε = ωc
ωh − ωc

(2.4)

The coefficient of performance (COP) is always less than COP of Carnot’s refrigerator

(εc) i.e. ε ≤ εc.

7



2.0.4 Conclusion:

Quantum heat engine is called the quantum amplifier as it amplifies the input field

and quantum refrigerator called quantum attenuator as it reduces the input field.

The key elements in a refrigerator are entropy extraction and ejection. This entropy

ejection problem is enhanced at low temperatures. In the case of refrigerators, one

has to take care of third law of thermodynamics. People have shown by adding one

more level coherently with the third level one can enhance the efficiency of the heat

engine. One can be interested in studying the noised induced performance in quantum

thermal machine. It is nice to know that people of these days are realizing quantum

thermal machine in the lab and observe the quantum effects on the thermal machine.
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Chapter 3

Dynamics Of Open Quantum

Systems

3.0.1 Introduction

An open quantum system is a system which interacts with another large quantum

(the system having a large number of degrees of freedom) system environment/bath.

As it interacts with the environment/bath, there is dissipation in the system. It is

true indeed we can not prepare a quantum system which is isolated from the envi-

ronment. Dynamics of a closed system can be represented by unitary time evolution,

but in contrary, the dynamical evolution of an open system can not be represented

by unitary time evolution. The tools of an open quantum system are extensively

used in the field of quantum optics, quantum information, quantum thermodynamics,

quantum statistics, etc.

Quantum Markov processes are the simplest dynamics of open systems. They are a

direct generalization of the classical probabilistic concept of a dynamical semi-group

to quantum process. In a simple man language, Markov process means the memory-

less process that means the future is independent of the past, given the present.

In classical probability theory there exist Chapman-Kolmogorov equation to study

Markov process. Similarly, in quantum dynamical semigroup gives rise to a first order

linear differential equation for the reduced density matrix, which is known as quan-

9



tum Markovian master equation in Lindblad form. Most general quantum evolution

should respect positively, hermiticity and trace-preserving conditions.

3.0.2 Dynamics of closed quantum systems

In non-relativistic quantum mechanics, state of a quantum system is represented by

a state ket |ψ〉 in the Hilbert space H. The time evolution of the closed quantum

system is described by the Schrodinger equation:

− i

~
H(t) |ψ(t)〉 = d |ψ(t)〉

dt
, (3.1)

where H(t) is the Hamiltonian of the system and which is in general time-dependent.

The formal solution of Schrodinger equation is given by

|ψ(t)〉 = U(t, t0) |ψ(to)〉 , (3.2)

where U(t, t0) is unitary time evolution operator satisfying the relation U(t, t0)†U(t, t0) =

U(t, t0)U(t, t0)† = I, and |ψ(to)〉 is state of the system at some initial time t0.

Substitution of Eq. (3.2) in Eq. (3.1) leads to an operator equation for U(t, t0):

− i

~
H(t)U(t, t0) = ∂U(t, t0)

∂t
, (3.3)

subjected to the initial condition U(t0, t0) = I. For a closed and isolated quantum

system, Hamiltonian is time independent and Eq. (3.3) is integrated to yield the

following solution:

U(t, t0) = e−iH(t−t0)/~. (3.4)

Nevertheless, in many physical cases, the system under consideration is driven by

external time dependent forces such as time dependent electromagnetic fields. In

such cases, the dynamics of the system is formulated in terms of a time dependent

Hamiltonian H(t), and the solution of Eq. (3.3) is represented by a time-ordered

exponential,

U(t, t0) = T←e
− i

~

∫ t

t0
dsH(s) (3.5)

10



More generally, for a mixed state, state of the system is characterized by a density

matrix ρ. Suppose at some initial time t0, the state of the system is represented by

the density matrix

ρ(t0) =
∑
k

pk |ψk(t0)〉 〈ψk(t0)| , (3.6)

where pk are positive weights and |ψk(t0)〉 are state kets, evolving in time according

to Schrodinger equation (3.1). Therefore, at time t, the state of the system is given

by

ρ(t) =
∑
k

pkU(t, t0) |ψk(t0)〉 〈ψk(t0)|U(t, t0)†, (3.7)

which can be written as

ρ(t) = U(t, t0)ρ(t0)U(t, t0)†. (3.8)

Differentiating this equation with respect to time and simplifying a bit, we get the

following equation of motion for the density matrix,

dρ(t)
dt

= −i~[H(t), ρ(t)]. (3.9)

Eq. (3.9) is known as Liouville-von Neumann equation and often written in a form

analogous to classical Liouville equation

dρ(t)
dt

= L(t)ρ(t), (3.10)

where L is the Liouville super-operator, defined through the condition

L(t)ρ(t) = −i~[H(t), ρ(t)]. (3.11)

In close analogy with Eq. (3.5), the formal solution of Eq. (3.10) is given by

ρ(t) = T←e
∫ t

t0
dsL(s)

ρ(t0). (3.12)

For a time independent Hamiltonian, L(t) is also time independent and thus we have

ρ(t) = eL(t−t0)ρ(t0). (3.13)

11



3.0.3 Dynamics of open quantum systems

An open quantum system is a system S coupled to another quantum system B, usually

very large as compared to system S, called environment. Thus it is a subsystem of the

total system S + B, which is assumed to be closed and evolves according to unitary

Hamiltonian dynamics. However, the dynamics of subsystem S cannot be represented

in terms of unitary Hamiltonian dynamics due to its interaction with the environment.

Denoting Hilbert space of the system S and Hilbert space of the environment B by

HS and HB respectively, the Hilbert space of the total system is given by the tensor

product space H = HS ⊗HB. The total system+environment Hamiltonian H(t) may

be written as

H(t) = HS ⊗ IB + IS ⊗HB +HI(t), (3.14)

where HS is bare-Hamiltonian of the system S, HB is the free-Hamiltonian of the

Figure 3.1: System-bath and Interaction

environment B. and HI(t) is the Hamiltonian of system-environment interaction,

IB,S is the identity matrices of the bath and system respectively. Often in many

physical situations, we need to solve the dynamics of the system S only. This can be

done by tracing out the degrees of freedom of the environment by employing various

analytical as well as numerical methods. If ρ(t) represents the state of the combined

total system, reduced density matrix ρS of the open quantum system is given by

ρS = trB[ρ], (3.15)

12



where trB represents the partial trace over the degrees of freedom of the environment.

At time t, the reduce density matrix ρS(t) of the open quantum system is obtained

from the density matrix ρ(t) of the total system by partially tracing out the degrees

of freedom of the environment. Since ρ(t) evolves unitarily, we have

ρS(t) = trB[U(t, t0)ρ(t0)U(t, t0)†], (3.16)

where ρ(t0) is density operator of the total system at some initial time t0 and U(t, t0
is the time-evolution operator of the total system. Similarly, by taking the partial

trace over the environmental degrees of freedom on both sides of the Liouville-von

Neumann equation for the total system, we may obtain equation of motion for the

reduce density matrix ρS,

dρS(t)
dt

= −i~[H(t), ρ(t)]. (3.17)

3.0.4 Quantum dynamical semigroups

In general, it is challenging to solve the dynamics of the reduced system described by

Eq. (3.17). However, when environmental correlation times are short, we may apply

Markovian approximation to neglect memory effects and formulate the dynamics of

the reduced system in terms of a quantum dynamical semigroup.

We are interested in the case when the the environment is in the equilibrium state and

it is indeed a plausible assumption as environment is a quantum system having large

number of degrees of freedom. Suppose that at initial time t = 0, state of the total

system S +B is prepared in an uncorrelated product state ρ(0) = ρS(0)⊗ ρB, where

ρS and ρB represent initial state of the reduced system S and equilibrium state of the

bath B, respectively. Then, there exists a quantum dynamical map Λ(t), describing

the evolution of reduced system S from the initial time t = 0 to some other time

t > 0, such that

ρS(t) = Λ(t)ρS(0) ≡ TrB
[
U(t, 0)(ρS(0)⊗ ρB)U(t, 0)†

]
. (3.18)

13



It can be shown that Λ(t) is a convex-linear, completely positive and trace-preserving

quantum operation.

As mentioned already, when the reservoir correlation times are much shorter as com-

pared to the characteristic time scale of the system evolution, we may neglect the

memory effects (Markovian approximation) in the reduced system dynamics. Under

the condition of Markovian approximation, the quantum dynamical map Λ(t) satisfy

the following semigroup property:

Λ(t1)Λ(t2) = Λ(t1 + t2), t1, t2 ≥ 0. (3.19)

A quantum dynamical semigroup is a continuous, one-parameter family {Λ(t) | t > 0}

of dynamical maps (Λ(0) = I), satisfying the relation given in Eq. (3.19).

Given a quantum dynamical semigroup, there exists a time independent linear map

L, the generator of the semigroup, which allows up to represent the semigroup in

exponential form:

Λ(t) = eLt. (3.20)

This representation allows us to yield a first-order differential equation [see Eq. (3.18)]

for the reduced density matrix ρS(t),

dρS(t)
dt

= LρS(t). (3.21)

This equation is known as Markovian quantum master equation. The generator L

represents a super-operator, and may be considered as the generalization of the Li-

oouville super-operator introduced in section 3.1.

3.0.5 Lindblad quantum master equation

We will concentrate on the special form of the master equation which is local in time.

This form preserves the trace and positivity of the reduced density matrix ρS(t). The

main assumptions to derive quantum master equation are

• Born approximation: This approximation assumes that the coupling between
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the system and the reservoir is weak. ρ(t) ≈ ρS(t) ⊗ ρB(0)

• Markov approximation: This approximation assumes that the reservoir cor-

relation time τB is much smaller than the relaxation time τR of the open system.

• Rotating wave approximation: This involves an averaging over the rapidly

oscillating terms in the master equation. This approximation is valid when

intrinsic time scale τS of the system is small compared to the relaxation time

τR of the open system.

Lindblad and separately Gorini, Kossakowski and Sudarshan proved that the most

general form of the generator L of the quantum dynamical semigroup is given by

dρS(t)
dt

= LρS = −i~ [H, ρS] +
∑
k

γk

(
AkρSA

†
k −

1
2A
†
kAkρS −

1
2ρSA

†
kAk

)
,(3.22)

≡ −i~ [H, ρS] + LdisρS. (3.23)

The above quantum master equation is known as the LGKS equation or Lindblad

equation. Here, Ak are known as Lindblad operators, H is effective Hamiltonian of

the system. The first term of the generator represents the unitary part of the dynamics

generated by the Hamiltonian H. Ldis is known as the dissipator and represents the

effect of the environment on dynamics of the reduced system. Generally, it induces

non-unitary, dissipative dynamics.

3.0.6 Conclusion:

We will use the Lindblad quantum master equation in our work. This open quantum

formalism is very useful to study the quantum dynamics of Quantum Heat Engine

and Quantum Refrigerator. We mainly focused on the steady-state operation of the

Quantum Machine. This would be very interesting to ask if we take a non-markovian

thermal bath or if we take a different thermal bath like Fermionic Thermal bath,

Squeezed Thermal Bath. We have studied Fermionic Thermal bath, and we will

discuss in the next few chapters.
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Chapter 4

Thermodynamics Of Bipartite

System

4.0.1 Introduction

Since the early stages of the development of quantum physics, thermodynamics of

quantum system has fascinated many physicists. According to the first law of ther-

modynamics, energy can be partitioned into heat and work. Differentiating between

heat and work is a little tricky in quantum thermodynamics. In this section, we will

discuss what is heat and how to define work in weak system-bath coupling scenario.

In statistical mechanics, the entropy function which is based on density matrix and

it is known as von Neuman entropy. Born also distinguished between heat and work

in different quantum statistical systems. Spohn also defined a new entropy function

called Sphon entropy and proved that it is always positive.Soon after Sphon’s work,

Alicki used Sphon’s formalism to define work and heat for time-dependent Hamilto-

nian systems.

The main goal of this chapter is to establish the definition of heat and work for

time-independent field and which we will be using in our three-level Quantum Heat

Engine model(QHE) and Quantum Refrigerator model (QR). One think should be

kept in mind that the definition of heat and work by Alicki is true for time-dependent

external field. We will define at first the heat and work in quantum thermodynamics
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and after that we will define the heat and the work for a bipartite system which is

very useful for our work.

4.0.2 Heat and work for a unipartite system

The master equation of the system coupled to the thermal reservoir is given by the

following equation

ρ̇ = L[ρ] = Lh[ρ] + Ld[ρ] (4.1)

,Where the first part represents unitary evolution of the system and second part rep-

resents dissipative part which is in-general not unitary.

The average energy of the system is given by

< E >= Tr[ρ(τ)H(τ)] (4.2)

Alicki has partitioned between the heat and work as follows

Q =
∫ t

0
Tr[dρ(τ)

dτ
H(τ)]dτ (4.3)

W =
∫ t

0
Tr[dH(τ)

dτ
ρ(τ)]dτ (4.4)

The definitions mentioned above are classically motivated as the definition of work

in classical thermodynamics is dW = Fdq, where F is the generalized force, and dq

is generalized displacement. The quantum-mechanical definition also suggests that

Hamiltonian of the system is changing which is a tuning parameter of the system like

dq and that is why we have the first derivative of Hamiltonian, and ρ remains fixed in

the definition of work. Once we can identify the work and the remaining one trivially

becomes heat.

17



4.0.3 The definitions of heat and work for time dependent

external field

The Schrödinger picture:

The definition of heat and work as follows

Q̇ = Tr[Ld[ρS]HS] (4.5)

P = Ẇ = Tr[ρS ∂H
S

∂t
] (4.6)

Note that in this case of Hamiltonian dynamics there is no heat involved, and if for

the time-independent Hamiltonian, there is no work done by the system.

The Heisenberg picture:

The definition of heat and work in this picture is given by

Q̇ = Tr[Ld[ρS]HS] (4.7)

P = Ẇ = Tr

[
ρS

∂H
∂t

)S]
(4.8)

The Interaction picture:

Assume the following Hamiltonian of the system:

H(t) = Ho + V (t) (4.9)

Where, Ho is the bare Hamiltonian of the system and V(t) is the coupling to some

external degree of freedom.

The heat and work should be redefined to avoid consistency problem when one goes

from Schrödinger picture to Heisenberg picture. We define heat and work as follows:

Q =
∫ t

0
Tr[∂ρ(τ)

∂τ
H(τ)]dτ (4.10)

W =
∫ t

0
Tr[∂H(τ)

∂τ
ρ(τ)]dτ (4.11)
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The above two definition is the same as the R. Alicki’s definition[10] , here total

derivative changed into partial derivative.

4.0.4 Power and heat for a bipartite system

The Hamiltonian of the bipartite system is given as:

H = HA ⊗ IB + IA ⊗HB + VAB (4.12)

Where, IA and IB are the identity matrix of the subsystem A and B respectively. The

definition of heat and power of the bipartite system as follows.

PA = − i
~
Tr[ρAB[HA, VAB]] (4.13)

Q̇A = Tr[Ld[ρAB]HA] (4.14)

The above definitions of power and heat are very useful in the calculation of different

quantities of the autonomous thermal machine. In this section, we have defined power

and heat in quantum thermodynamics without going into more details as it is a very

involved calculations. These definitions are very useful to study QHE and Quantum

Refrigerator.

4.0.5 Conclusion

It is a really little bit tricky to identify work and heat accurately in quantum thermo-

dynamics. One thing we should understand that work is fully deterministic quantity,

but heat is not. There is randomness associated with heat. So there is entropy flow

associated with heat, but in work, it is not. It should be noted that the definition of
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heat and work which we discussed in this section is valid only for weak system-bath

coupling. Here bath which we consider is a large bath. These definitions of heat and

work are very challenging for the case of micro-bath (like a bath containing two spins

which are at a specific temperature T)

20



Chapter 5

Linear Irreversible Heat Engine

5.0.1 Introduction

Non-equilibrium thermodynamics deals with the phenomena that is not in thermal

equilibrium. The non-equilibrium process deals with mainly transport phenomenon,

chemical reaction, etc. It is extensively used to describe the different biological phe-

nomenon, macroscopic process, etc. The study of non-equilibrium thermodynamics is

significant as the systems we find in the practical world operate far from equilibrium.

So, it is essential to understand the physics of the non-equilibrium process.

In this chapter, we will discuss the basic results of non-equilibrium heat engine. In

our work, we deal with QHE model, and after taking the high-temperature limit, we

got some well-known form of efficiencies expression which is well-established in the

literature of finite time thermodynamics (FTT).

5.0.2 Irreversible Heat Engine Model

We know that the Carnot engine puts a theoretical upper bound on efficiency, but

it is of no use as it requires infinite time to complete one cycle. The power output

of the Carnot engine is zero. But in reality heat engines have a different kind of

irreversibilities. For now, we will model the irreversible heat engine. Irreversibility

can be either external or internal.
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• Endoreversible model: For simplicity, we assume that there are no internal

irreversibilities, like friction, dissipation are present in the system, and all the

irreversibilities are external. That is for heat exchange between reservoir and

engine and there must be some temperature difference as shown in the figure.

To take into account external irreversibility, we use FTT. This could be under-

stood well using CA model [?].

Under the CA model, the heat engine operates between two intermediate tem-

perature as shown in figure 5.1(a). It takes Q̇h heat from a hot reservoir and

dumps Q̇l heat to cold reservoir per second. We assume that the engine simul-

taneously connected with hot and cold bath and heat transfer follows Newton’s

law of cooling.Then,

Figure 5.1: (a) Schematic of a heat engine with irreversibility at both ends of the reservoir
and no internal irreversibility. (b) Schematic of heat engine with irreversibility only at the
hotter end of the reservoir

Q̇h = Kh(TH − Th) (5.1)

Q̇l = Kc(Tl − TL) (5.2)

where Kh and Kc is the heat conductance of the system. Now power extracted

from the engine is P,

P = Q̇l − Q̇h ⇒ Ẇ = Kh(TH − Th)−Kc(Tl − TL) (5.3)

where, t is the total cycle time. hence we see work is a function of intermediate

temperature and it could be optimized according to them, but we need to take

in consideration that these temperatures are not independent. As the engine is a
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endoreversible engine, so it must follows that entropy production rate internally

is 0, therefore using equation (5.1) and (5.2),

Ṡ = 0⇒ Ql/Tl = Qh/Th ⇒ Tl/Th = Kh(TH − Th)
Kc(Tl − TL) . (5.4)

Now using equation (5.3), power could be maximized and efficiency at maximum

power(EMP) could be found.

Doing so we get that

EMP = (1−
√
Tc/Th) = 1−

√
1− ηc = ηCA

Where, ηc is the Carnot-efficiency. The above result is very important and we

found this result in many quantum heat engine model. In Ref [18] the authors

proved that we get this ηCA for the case of left-right symmetry. We will show

different QHE model leads to ηCA efficiency which is particularly interesting.

where ηc is Carnot efficiency, expanding it around ηc = 0 we get,

E.M.P = ηc/2 + η2
c/8 +O(η3

c ) (5.5)

The second term of the expansion is universal as proved in [18] and it is conse-

quence of left-right symmetry.

• Exoreversible model: On the other hand of an endoreversible model, here we

assume that all irreversibilities present in the system are internal, in the form of

heat leaks or joule’s heating, etc. and heat conductance to be infinite. Similar

calculation as former case one could be do for exoreversible heat engine based

on a particular model.

It can be shown in some Irreversible Heat Engine Model, the highest achievable effi-

ciency at maximum power is η = ηc

2−ηc
[11]
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5.0.3 Conclusion

In this section, we have discussed some standard results of EMP. This will be needed

in the next few chapters. We have studied the three-level QHE model in the context

of an open quantum system. Interestingly the result of EMP concurs with those

results of EMP that we discussed in this chapter at the limit of high temperature.

It is exciting to think about why these particular expressions appear in different

models. This is the fantasy of thermodynamics. In Ref [19] author showed that the

different expressions of EMP could be derived by using the concept Arithmetic Mean,

Geometric Mean, and Pythagorean Mean.
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Chapter 6

Applications

6.1 Three-Level Quantum Heat Engine

6.1.1 Introduction:

The study of the efficient conversion of various forms of energy to mechanical energy

has been a topic of interest for more than a century. In this conversion process, a

part of heat sucked from the hot bath is converted into work and the remaining heat

dumped into cold bath and Carnot-efficiency puts a limit on the efficiency. A heat

engine drives the natural current from a hot to a cold bath to generate power. Carnot

engine is an idealized model of such kind, but it has no practical importance as it

produces vanishing output power due to its reversible nature.

An autonomous heat engine is connected with hot, cold baths and power lead simul-

taneously. A continuous engine operates in an autonomous fashion attaining steady

state mode of operation. The famous example of this kind of engine is the three-level

quantum heat engine model that was introduced by Scovil and DuBois [1]. Later,

Boukobza and Tannor showed in their seminal work [21], that three-level heat engine

can be used as an amplifier or attenuator by controlling the population of different

levels.
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6.1.2 QHE Model:

The model consists of a three-level system continuously coupled to two thermal reser-

voirs and a single mode classical field. A hot reservoir at temperature Th drives the

transition between the ground level |g〉 and top level |1〉, whereas the transition be-

tween the intermediate level |0〉 and ground level |g〉 is constantly de-excited by a cold

reservoir at temperature Tc. The power output mechanism is modeled by coupling

the levels |0〉 and |1〉 to a classical single mode field. The Hamiltonian of the system

Figure 6.1: Three level Quantum Heat Engine Model.

is given by: H0 = ~∑ωk|k〉〈k|, where the summation runs over all three states and

ωk represents the relevant atomic frequency. The interaction with the single mode

lasing field of frequency ω, under the rotating wave approximation, is described by

the semiclassical hamiltonian: V (t) = ~λ(eiωt|1〉〈0|+e−iωt|0〉〈1|); λ is the field-matter

coupling constant. The time evolution of the system is described by the following

master equation:

ρ̇ = − i
~

[H0 + V (t), ρ] + Lh[ρ] + Lc[ρ], (6.1)

where Lh(c) represents the dissipative Lindblad superoperator describing the system-

bath interaction with the hot (cold) reservoir and the commutator part represents the

unitary evolution of the system:

Lh[ρ] = Γh(nh + 1)(2|g〉〈g|ρ11 − |1〉〈1|ρ− ρ|1〉〈1|)

+Γhnh(2|1〉〈1|ρgg − |g〉〈g|ρ− ρ|g〉〈g|), (6.2)
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Lc[ρ] = Γc(nc + 1)(2|g〉〈g|ρ00 − |0〉〈0|ρ− ρ|0〉〈0|)

+Γcnc(2|0〉〈0|ρgg − |g〉〈g|ρ− ρ|g〉〈g|). (6.3)

Here Γh and Γc are the coupling constants with the hot and cold reservoirs respectively,

and nh(c) = 1/(exp
[
~ωh(c)/kBTh(c)

]
− 1) is average occupation number of photons in

hot (cold) reservoir satisfying the relations ωc = ω0 − ωg, ωh = ω1 − ωg.

In our model, it is possible to find a rotating frame in which the steady-state density

matrix ρR is time independent. Defining H̄ = ~(ωg|g〉〈g| + ω
2 |1〉〈1| −

ω
2 |0〉〈0|), an

arbitrary operator A in the rotating frame is given by AR = eiH̄t/~Ae−iH̄t/~. It can

be shown that Lh[ρ] and Lc[ρ] remain unchanged under this transformation. Time

evolution of the system density matrix in the rotating frame can be written as

ρ̇R = − i
~

[H0 − H̄ + VR, ρR] + Lh[ρR] + Lc[ρR] (6.4)

Where, VR = ~λ(|1〉〈0|+ |0〉〈1|).

For a weak system-bath coupling, the output power, heat flux and efficiency of the

engine can be defined, using the formalism of Ref [2-3], as follows:

P = − i
~

Tr([H0, VR]ρR), (6.5)

Q̇h = Tr(Lh[ρR]H0), (6.6)

η = − P

Q̇h

. (6.7)

Time evolution of the density matrix elements reads as following:

˙ρ11 = i λ (ρ10 − ρ01)− 2 Γh[ (nh + 1) ρ11 − nh ρgg ] (6.8)

˙ρ00 = −i λ (ρ10 − ρ01)− 2 Γc[ (nc + 1) ρ00 − nc ρgg ] (6.9)

ρgg = 1− ρ11 − ρ00 (6.10)

˙ρ10 = −[ i∆ + Γh(nh + 1) + Γc(nc + 1) ] + i λ (ρ11 − ρ00) (6.11)

In this mode of operation, we are assuming that resonance mode of operation of laser,

so one can safely put ∆=0. Putting the values of H0, VR and Lh[ρR], and calculating
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the traces appearing in right hand side of the Eqs. (6.5) and (6.6), the power and

heat flux can be written as:

P = i~λ(ω1 − ω0)(ρ01 − ρ10) = i~λ(ωh − ωc)(ρ01 − ρ10), (6.12)

Q̇h = i~λωh(ρ01 − ρ10), (6.13)

where ρ01 = 〈0|ρR|1〉 and ρ10 = 〈1|ρR|0〉. Then, the efficiency is given by

η = 1− ωc
ωh
. (6.14)

The positive power production condition implies that ωc/ωh ≥ Tc/Th. Hence η ≤ ηc.

6.1.3 Maximizing Power:

Expression of power of the heat engine model is :

P = 2 ~(nc − nh)(ωc − ωh) Γc Γh
(Γh + Γc + 3nh Γh + 3nc Γc)

(6.15)

Let’s introduce some new parameters γ = Γh/Γc, τ = Tc/Th and c=ωc/ωh, At high

temperatures, nh,c = kBTh,c/~ωh,c , the expression of power in high temperature limit

is given by:

P = 2(1− c)(1− cτ)γ~Γcωh
3c(γ + cτ) (6.16)

Doing ∂P/∂c=0, and fixing the ωh, we get the following expression of efficiency:

ηωh
SSD = γ−1[τ + γ −

√
(τ(1 + γ)(τ + γ)] (6.17)

The expression of power can also be written as follow:

P = 2(1− c)(1− cτ)γ~Γcωc
3(γ + +cτ) (6.18)

Similarly by doing ∂P/∂c=0, and fixing the ωc, we get the following expression of
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efficiency:

ηωc
SSD = 1− τ√

(1 + γ)(τ + γ)− γ
(6.19)

6.1.4 Thermodynamics Bounds On efficiency:

In Ref[20], the authors obtained lower and upper bound of efficiency in limit γ → 0

and γ →∞.
1− τ

2 ≤ ηωh ≤ 1−
√
τ (6.20)

1−
√
τ ≤ ηωc ≤ 1− τ

1 + τ
(6.21)

ηc  (2-ηc )

ηcA
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Figure 6.2: Plot of efficiency vs Carnot efficiency

6.1.5 Conclusion:

So, it is interesting to note that in the high temperature limit, our model of QHE

leads to same form EMP as derived for any models of classical heat engine [29]. In the

limit of extremely asymmetric dissipation, lower and upper bounds on the efficiency

are obtained. ηCA serves as the upper bound in the former case and lower bound in

the later case, thus separating the entire parameter regime of η into two parts.
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6.2 Optimal Performance Of Three-Level Quan-

tum Refrigerator

6.2.1 Introduction:

The thermal devices based on the principle of quantum thermodynamics are quan-

tum heat engine, quantum refrigerator etc. In a nutshell, refrigerators are engines

operating in a regime where the heat flow is reversed. In a series of papers [21, 22],

Boukobza and Tannor formulated a new way of quantifying heat and work when the

system-bath coupling is weak. They applied their analysis to a three-level atom con-

tinuously coupled to two baths and it is driven by coherent radiation. This induces

transitions between level |0 > and level |1 >. The population in level |1 > then relaxes

to level |g > by rejecting heat to the hot bath. The system then transitions from level

|g > to level |0 > by absorbing energy from a cold bath. There are dissipations cor-

responding to hot and cold reservoir respectively. Since this is a continuous thermal

machine operating in the steady state condition, so second law of thermodynamics

has to be satisfied. It has been shown in their paper that the maximum coefficient of

performance (COP) is bounded by Carnot COP.

Back in 1989, the expression analogous to CA efficiency for refrigerators was first

obtained by Yan and Chen by maximizing another optimization criterion, χ = εQ̇c,

which represents a trade-off between the the COP ε and CP Q̇c of the refrigerator. The

optimal form of the COP is given by εCA =
√

1 + εC − 1, which also holds for many

models of classical and quantum refrigerators . Recently, de Tomas and coauthors

proved that χ figure of merit for refrigerators is true counterpart to the maximum

power criterion for heat engines.

In this work, we study the optimal performance of a three-level quantum refrigerator.

The choice of the model is motivated by the observation that it can be optimized

for both CP and χ-criterion and yields model-independent expressions for lower and

upper bounds on the COP in each case. Besides, the study of three level systems

started the field of quantum thermodynamics. They have been employed to study
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Figure 6.3: (Color online) Model of three-level laser refrigerator

quantum heat engines (refrigerators) and quantum absorption refrigerators

6.2.2 Three Level Quantum Refrigerator Model

The three basic ingredients of a continuous three level refrigerator are a hot reservoir, a

cold reservoir and a work reservoir and it is simultaneously connected to the system as

shown in the figure. In refrigerator, heat is extracted form cold reservoir and dumped

into hot reservoir. As in the heat engine, first and second law impose restriction on the

COP of a refrigerator. In a series of papers [21, 22], Boukobza and Tannor formulated

a new way of quantifying heat and work when the system-bath coupling is weak. They

applied their analysis to a three-level atom continuously coupled to two baths and it

is driven by coherent radiation [22]. This induces transitions between level |0〉 and

level |1〉. The population in level |1〉 then relaxes to level |g〉 by rejecting heat to the

hot bath. The system then transitions from level |g〉 to level |1〉 by absorbing energy

from a cold bath. There are dissipations corresponding to hot and cold reservoir

respectively. Since this is a continuous thermal machine operating in the steady state

condition, so the second law of thermodynamics has to be satisfied [23]. It has been

shown in their paper that the maximum coefficient of performance (COP) is bounded

by Carnot COP. The Hamiltonian of the system is given by: H0 = ~∑ωk|k〉〈k|

where the summation runs over all three states and ωk represents the relevant atomic

frequency. The interaction with the single mode lasing field of frequency ω, under the

rotating wave approximation, is described by the semiclassical hamiltonian: V (t) =

~λ(eiωt|1〉〈0|+ e−iωt|0〉〈1|); λ is the field-matter coupling constant. The most general

time-independent dissipator generating a completely positive, trace-preserving and

linear evolution was derived by Gorini, Kossakowski, Sudarshan and Lindblad [2, 3].
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In the case of multiple, independent thermal environments, one can simply add their

individuals contribution as

L[ρ] = Lh[ρ] + Lc[ρ] (6.22)

. Although, even the assumption of additivity (6.49) does not hold in general due to

indirect interaction between the bath via the open system.The time evolution of the

system is described by the following master equation:

ρ̇ = − i
~

[H0 + V (t), ρ] + Lh[ρ] + Lc[ρ], (6.23)

where Lh(c)[ρ] represents the dissipative Lindblad superoperator describing the system-

bath interaction with the hot (cold) reservoir:

Lh[ρ] = Γh(nh + 1)(2|g〉〈g|ρ11 − |1〉〈1|ρ− ρ|1〉〈1|)

+Γhnh(2|1〉〈1|ρgg − |g〉〈g|ρ− ρ|g〉〈g|), (6.24)

Lc[ρ] = Γc(nc + 1)(2|g〉〈g|ρ00 − |0〉〈0|ρ− ρ|0〉〈0|)

+Γcnc(2|0〉〈0|ρgg − |g〉〈g|ρ− ρ|g〉〈g|). (6.25)

Here Γh and Γc are theWeisskopf-Wigner decay constants, and nh(c) = 1/(exp
[
~ωh(c)/kBTh(c)

]
−

1) is the average occupation number of photons in hot (cold) reservoir satisfying the

relations ωc = ω0 − ωg, ωh = ω1 − ωg.

In our model, it is possible to find a rotating frame in which the steady-state

density matrix ρR is time independent. Defining H̄ = ~(ωg|g〉〈g|+ ω
2 |1〉〈1| −

ω
2 |0〉〈0|),

an arbitrary operator A in the rotating frame is given by AR = eiH̄t/~Ae−iH̄t/~. It

can be seen that Lh[ρ] and Lc[ρ] remain unchanged under this transformation. Time

evolution of the system density matrix in the rotating frame can be written as

ρ̇R = − i
~

[H0 − H̄ + VR, ρR] + Lh[ρR] + Lc[ρR] (6.26)

where VR = ~λ(|1〉〈0|+ |0〉〈1|).

For a weak system-bath coupling, the input power, heat flux and coefficient of
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performance of the refrigerator can be defined, using the formalism of [22], as follows:

P = i

~
Tr([H0, VR]ρR), (6.27)

Q̇c = Tr(Lc[ρR]H0), (6.28)

ε = Q̇c

P
. (6.29)

Plugging the values of H0, VR and Lh[ρR], and calculating the traces appearing in

right hand side of the Eqs. (6.27) and (6.28), the power and heat flux can be written

as:

P = i~λ(ω1 − ω0)(ρ01 − ρ10) = i~λ(ωh − ωc)(ρ01 − ρ10), (6.30)

Q̇c = i~λωc(ρ10 − ρ01), (6.31)

where ρ01 = 〈0|ρR|1〉 and ρ10 = 〈1|ρR|0〉. Then, the coefficient of performance is given

by

ε = ωc
ωh − ωc

. (6.32)

The coefficient of performance (COP) is always less than COP of Carnot’s refrigerator

(εc) i.e. ε ≤ εc. For Carnot’s refrigerator the cooling power vanishes and it also

corresponds to zero entropy production.

6.2.3 Optimization Of χ Criterion

χ criterion is defined as the product of the the COP and CP of an refrigerator [24]. It

has already been shown in many papers that it is a suitable figure of merit to study

the optimal performance of classical as well as quantum refrigerators. We begin with

plotting the 3D-graph of general expression for χ function as given in Eq. (6.53) (see

Fig. 6.4). It is clear from Fig. 6.4 that global maximum exists in this case. But again

it is not possible to obtain obtain the analytic expression for the the COP. Therefore,

once again, we optimize the χ-criterion in the presence of strong matter-field coupling

assuming high temperature limit, and obtain closed form expressions for the lower

and upper bounds on the the COP. In the above-said regime, the expression for χ

comes out to be

χ = εQ̇c = ω2
c (τωh − ωc)

(τωh + γωc)(ωh − ωc)
. (6.33)
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Figure 6.4: (Color online) 3D-plot of CP [Eq. (6.53)] in terms of control frequencies ωc
and ωh for ~ = 1, kB = 1,Γh = Γc = 1, λ = 1, Th = 10, Tc = 2.

First we try a two parameter optimization of the χ-criterion by setting ∂χ/∂ωc = 0

and ∂χ/∂ωh = 0. This gives the trivial solution, ωh = ωc = 0. Although in Fig. 3,

we have shown the existence of global maximum of χ under general conditions, no

such global maximum exists under the assumptions of strong-matter coupling and

high temperatures. It can be reasoned as follows. While deriving Eq. (6.33), we have

completely ignored the terms containing Γc and Γh as compared to λ. Mathematically,

it can be viewed as λ→∞. Hence in this regime, the system has the affinity to couple

to arbitrary high values of frequencies ωc and ωh, and as we go on increasing ωc and

ωh, χ-criterion goes on increasing and optimal value of χ is never achieved.

Since two parameter optimization fails, we perform optimization of χ function

alternatively with respect to ωc (ωh fixed) and ωh (ωc fixed). For fixed ωc, setting

∂χ/∂ωh = 0, we have

ωc =
τωh

(
1−

√
(1 + γ)(1− τ)

)
γ − τ(1 + γ) . (6.34)

Substituting Eq. (6.32) in Eq. (6.34), and writing in terms of Carnot the COP εC ,

we get following form of the COP at maximum χ-criterion

ε∗ = εC

1 +
√

(1 + γ)(1 + εC)
. (6.35)

Again ε∗ is monotonic decreasing function of γ. Therefore we can obtain lower and
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upper bounds on the COP by putting γ →∞ and γ → 0, respectively:

ε− ≡ 0 ≤ ε∗ ≤
√

1 + εC − 1 ≡ εCA. (6.36)

Lower bound, ε− = 0, obtained here concurs with the lower bound of low-dissipation

and minimally non-linear irreversible models of refrigerators. As mentioned earlier,

upper bound, εCA =
√

1 + εC − 1, obtained here was first derived for a classical

endoreversible refrigerator. Under the conditions of tight-coupling and symmetric

dissipation, εCA can also be obtained for the low-dissipation and minimally non-linear

irreversible refrigerators. For a quantum Otto refrigerator, the COP emerges out to

be equal to εCA in the classical limit (high temperature limit).

Next, we optimize χ with respect to ωc while keeping ωh constant at a fixed value

(say k). In this case, optimization condition, ∂χ/∂ωc=0, yields the following equation

ωc
[
γω3

c + 2ωh(τ − γ)ω2
c − τω2

h(3 + τ − γ)ωc + 2τ 2ω3
h

]
(ωc − ωh)2(γωc + τωh)

= 0. (6.37)

Due to Casus irreducibilies (see Casus irreducibilies section), the roots of the above

equation can only be expressed in complex radicals, although the roots are real actu-

ally. We can still obtain lower and upper bounds on the COP by solving Eq. (6.37)

for the limiting cases γ → ∞ and γ → 0, respectively. For γ → ∞, the the COP is

evaluated at CA value, εCA =
√

1 + εC − 1. For γ → 0, we obtain the upper bound

on the COP as ε+ = (
√

9 + 8εC − 3)/2. Thus the COP lies in the range:

εCA ≤ ε∗ ≤ 1
2(
√

9 + 8εC − 3). (6.38)

Interestingly, εCA also appears as the lower bound for the optimization of a quantum

model of refrigerator consisting of two n-level systems interacting via a pulsed external

field [31]. However, the result reported in Ref. [31] was obtained in the linear response

regime where Tc ≈ Th. In the same model, imposing the condition of equidistant

spectra, εCA can be obtained as an upper bound in the classical regime for n → ∞.

The upper bound ε+ = (
√

9 + 8εC − 3)/2 obtained here also serves as the upper limit

on the efficiency for low-dissipation [25, 26] and minimally non-linear irreversible

models [27]. Further, for a two-level quantum system working as a refrigerator, the
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Figure 6.5: (Color online) Plot of the COP versus εC . εCA divides the parametric region
of the the COP into two parts. For the optimization over ωh, it serves as an upper bound
whereas it is lower bound on the the COP for optimization over ωc.

same upper bound can be derived in the high temperature regime.

6.2.4 Optimization Of Cooling Power

In this section, we optimize the CP Q̇c of the refrigerator and obtain corresponding

expression for the the COP. First, we start with the general case. The general ex-

pression for cooling the CP Q̇c is derived in appendix A and is given by Eq. (6.52).

We show the 3D-plot of CP with respect to ωc and ωh in Fig. 6.6. It is clear from

the figure that a well defined local maxima on ωc exists whereas there is no such

local maxima on ωh. In other words, CP is optimizable with respect to ωc only. We

have also tried plotting the same graph with a wide range of different values of the

concerned parameters (Γc,h, T c, h, λ); the trend of the graph remains same and it does

not change the main result. However in this case, the analytic expression for the the

COP cannot be derived due to complicated equations.

In this section, we optimize the CP Q̇c of the refrigerator and obtain correspond-

ing expression for the the COP. First, we start with the general case. The general

expression for cooling the CP Q̇c is derived in section of steady state solution and is

given by Eq. (6.52). We show the 3D-plot of CP with respect to ωc and ωh in Fig. 6.6.

It is clear from the figure that a well defined local maxima on ωc exists whereas there

is no such local maxima on ωh. In other words, CP is optimizable with respect to ωc
only. We have also tried plotting the same graph with a wide range of different values

of the concerned parameters (Γc,h, T c, h, λ); the trend of the graph remains same and
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Figure 6.6: (Color online) 3D-plot of CP [Eq. (6.52)] in terms of control frequencies ωc
and ωh for ~ = 1, kB = 1,Γh = 3.4,Γc = 3.2, λ = 3, Th = 60, Tc = 40.

it does not change the main result. However in this case, the analytic expression for

the the COP cannot be derived due to complicated equations.

In order to derive analytic expressions in closed form for the the COP, we will

work in the high temperature regime and assume that matter-field coupling is very

strong as compared to system-bath coupling (λ� Γh,c) [20]. While studying quantum

heat engines or refrigerators, it is very common to work in high temperature regime

as in this regime, quantum engines operate at CA efficiency and different models

of quantum absorption refrigerators achieve their maximal performance. Moreover,

in this regime, it is possible to obtain model-independent performance benchmarks

for both quantum engines and refrigerators. In the high temperature limit, we set

nh ' kBTh/~ωh and nc ' kBTc/~ωc and expression for CP is evaluated to be (see

Steady state solution of density matrix equations)

Q̇c = ωc(τωh − ωc)
(τωh + γωc)

, (6.39)

where γ = Γh/Γc and τ = Tc/Th = εC/(1 + εC). One can optimize Q̇c in Eq. (6.39)

in a local region at fixed ωh by setting ∂Q̇c/∂ωc = 0, leading to the following form of

the COP at maximum cooling power

ε∗ = εC

1 + (1 + εC)
√

(1 + γ)
. (6.40)
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We note that ε∗ is monotonic decreasing function of γ. Therefore we can obtain lower

and upper bounds on the the COP at maximum CP by putting γ →∞ and γ → 0,

respectively. Further, writing in terms of Carnot the COP εC , we have

0 ≤ ε∗ ≤ εC
2 + εC

. (6.41)

These are the same bounds as obtained for the optimization of an minimally non-linear

irreversible model [29] of refrigerator and an exoreversible thermoelectric refrigerator

both operating in tight-coupling regime. Further ε∗ = εC/(2+εC) can also be obtained

for an endoreversible quantum refrigerator (see Eq. (14) in Ref.[15] for dc = 1)

operating at maximum CP.

6.2.5 Steady state solution of density matrix equations

Here, we solve the equations for density matrix in the steady state. Substituting the

expressions for H0, H̄, V0, and using Eqs. (6.24) and (6.25) in Eq. (6.26), the time

evolution of the elements of the density matrix are given by following equations:

ρ̇11 = iλ(ρ10 − ρ01)− 2Γh[(nh + 1)ρ11 − nhρgg], (6.42)

ρ̇00 = −iλ(ρ10 − ρ01)− 2Γc[(nc + 1)ρ00 − ncρgg], (6.43)

ρ̇10 = −[Γh(nh + 1) + Γc(nc + 1)]ρ10 + iλ(ρ11 − ρ00),

(6.44)

ρ11 = 1− ρ00 − ρgg, (6.45)

ρ̇01 = ρ̇∗10. (6.46)

Solving Eqs. (6.42) - (6.46) in the steady state by setting ρ̇mn = 0 (m,n = 0, 1), we

obtain

ρ10 = iλ(nh − nc)ΓcΓh
λ2[(1 + 3nh)Γh + (1 + 3nc)Γc] + ΓcΓh[1 + 2nh + nc(2 + 3nh)][(1 + nc)Γc + (1 + nh)Γh]

,

(6.47)

and

ρ01 = ρ∗10. (6.48)
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Calculating the trace in Eq. (6.27), the input power is given by

P = i~λ(ωh − ωc)(ρ10 − ρ01), (6.49)

Similarly evaluating the trace in Eq. (6.28), heat flux Q̇c can be written as

Q̇c = ~ωc(2Γc[ncρgg − (nc + 1)ρ00]). (6.50)

Using the steady state condition ρ̇00 = 0 (see Eq. (6.42)), Eq. (6.50) becomes

Q̇c = i~λωc(ρ10 − ρ01). (6.51)

Substituting Eqs. (6.47) and (6.48) in Eq. (6.51), we have

Q̇c = 2~λ2ΓcΓh(nc − nh)ωc
λ2[(1 + 3nh)Γh + (1 + 3nc)Γc] + ΓcΓh[1 + 2nh + nc(2 + 3nh)][(1 + nc)Γc + (1 + nh)Γh]

.

(6.52)

Expression for χ-criterion, χ = εQ̇c, is given by

χ = 2~λ2ΓcΓh(nc − nh)ω2
c

λ2(ωh − ωc)[(1 + 3nh)Γh + (1 + 3nc)Γc] + ΓcΓh[1 + 2nh + nc(2 + 3nh)][(1 + nc)Γc + (1 + nh)Γh]
.

(6.53)

As for refrigerators, nc > nh, Q̇c, χ > 0.

6.2.6 Casus Irreducibilis

In algebra, casus irreducibilis arises while solving a cubic equation. The formal state-

ment of the casus irreducibilis is that if a cubic polynomial is irreducible with rational

coefficients and has three real roots, then the roots of the cubic equation are not

expressible using real radicals and thus, one must introduce expressions with complex

radicals, even though the resulting expressions are actually real-valued. It was proven

by P. Wantzel in 1843. Using the discriminant D of the irreducible cubic equation, one

can decide whether the given equation is in casus irreducibilies or not, via Cardano’s
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formula. The most general form of Cubic equation is given by

ax3 + bx2 + cx+ d = 0 (6.54)

where a, b, c, d are real.

The discriminant D is given by: D = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2.

Depending upon the sigh of D, following three cases arise:

(a) D < 0, the cubic equation has two complex roots, so casus irresucibilies does not

apply.

(b) D = 0, all three roots are real and expressible by real radicals.

(c) D > 0, three are three distinct real roots. In this case, a rational root exists and

can be found using the rational root test. Otherwise, the given polynomial is casus

irreducibilis and we need complex valued expressions to express the roots in radicals.

In our case, in order to solve Eq. (6.37), we have to solve the following cubic

equation

γω3
c + 2ωh(τ − γ)ω2

c − τω2
h(3 + τ − γ)ωc + 2τ 2ω3

h = 0. (6.55)

The discriminant D of the above equation is given by

D = 4ω6
h(1 + γ)(1 + τ)[3γ2(3− τ) + γ3 + 9γτ + 3γτ 2 + 9τ 2(1− τ)]. (6.56)

Since the parameters ωh, γ, τ are positive and τ < 1; D > 0. So polynomial in Eq.

(6.55) presents the case of casus irreducibilies.

6.2.7 Conclusion

In this work, we have studied the optimal performance of a three-level atomic system

working as a refrigerator. To optimize its performance, we have chosen two differ-

ent target functions: CP and χ-criterion. Although, in many classical and quantum

models of refrigerator, CP is not a good figure of merit to optimize; in our model,

it is well behaved function and we have obtained analytic expressions for lower and

upper bounds on the COP already derived for some models of classical and quantum

refrigerators. However, we notice that the CP is optimizable only with respect to

40



the control frequency ωc and thus, we can perform optimization in local region only.

In contrast to the behavior of CP, χ-criterion shows global maximum which makes it

more well behaved and more suitable figure of merit to study the optimal performance

of refrigerators. In high temperature and strong-coupling regime, we have alterna-

tively performed maximization of χ-criterion with respect to ωh (ωc fixed) and ωc (ωh
fixed). In both the cases, we were able able to obtain the lower and upper limits

on the the COP, already well known in the optimization literature of refrigerators.

As Fig. 4 indicates, εCA separates the entire parameter region of ε∗ into two parts.

Refrigeration experiments with three level masers have already been carried out [1].

With the current status of technological advancements, three-level refrigerator can be

tuned experimentally to achieve its optimal performance.
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Chapter 7

Epilogue

In this thesis, we have mainly discussed the QHE model in the context of the master

equation. In the first part, we have discussed the QHE with the bosonic type of reser-

voir, and we have analyzed the optimal performance of the QHE mainly in the regime

of high temperature. The quantum master equation respects the completely positive

dynamics which is the main ingredient to derive the quantum master equation and

all the system operators can be written in terms of kraus Operator representation.

In the limit of high-temperature, we checked the form of efficiency leads to some well-

known form of efficiency’s that are very well-known in the literature of finite time

thermodynamics. In the second part we have played with bath spectral density, and

we have also shown that for asymmetric spectral bath density case, we found the

famous CA efficiency. After that, we have analyzed the same QHE model in the

presence of the fermionic reservoir. Unfortunately, this is not solvable for the general

case. We derived efficiency for some special cases. This also showed some important,

interesting results, like it gives Carnot efficiency at symmetric dissipation case. In the

last section, we have used stochastic master equation formalism in the model that has

been introduced in the first section. We observed that we have the same bound on

efficiency as derived from quantum master equation formalism although the general

expressions of power are different in two formalisms. We then described the optimal

performance of the three-level quantum refrigerator.

We are now dealing with the tantalizing possibility of enhancing both the perfor-
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mance and power of heat engines and quantum refrigerators. It has been shown that

the squeezed-thermal, and other types of engineered non-equilibrium environments

are capable of increasing the performance of heat engine and quantum refrigerator.

One can study the performance of the same three-level quantum thermal machine in a

different environment like the fermionic environment, squeezed-thermal environment.

The main challenge lies in the implementation of this device for practical applica-

tions to quantum technologies. Recently various experimental setups have been im-

plemented to realize the quantum heat engine and quantum refrigerator in different

systems, including superconducting circuit, nanomechanical oscillator, quantum dots,

atom-cavity system, trapped ions and optomechanics.
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