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Notation

e electron

µ muon

⌧ tau

⌫e electron neutrino

⌫µ muon neutino

m mass of neutino

E energy of neutino

p momentum of neutrino

L length

� width of wave-packet

vg group velocity

G gravitational constant
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Abstract

In this project, the main idea is to study the phenomenon of neutrino oscillations

in flat & curved space-times and to reach to a common standard way to explain the

flavour-oscillation probability. Here, calculation of the oscillation probability in plane-

wave and wave-packet with assumptions like “same energy” & “same momentum” is

done. Also the S-matrix formalism, importance of quantum-mechanical uncertainty

relations, dependence of the sizes of production & detection regions, coherence and

kinetic entanglement are discussed regarding neutrino oscillations.
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Chapter 1

Theory

1.1 Introduction

In recent years, Neutrino Physics has emerged as one of the most active fields of

research. Standard Model in particle physics describes neutrinos as massless and

chargeless elementary particles that come in three di↵erent flavours ⌫e, ⌫µ & ⌫⌧ . But

many recent experiments indicate that neutrinos not only have mass but also have

multiple mass eigenstates which are not identical to their flavour states. The existence

of mass eigenstates indicates mixing, due to which neutrinos change flavour during

their propagation. This phenomenon of changing flavour of neutrino during propaga-

tion is called neutrino oscillation.

The phenomenon of neutrino oscillation was first proposed by Bruno Pontecorvo in

1969 as an analogy with K0 and antiK0 oscillation. After that many neutrino experi-

ments were performed and finally in 2004 the Super-Kamiokande experiment showed

the first compelling evidence of neutrino oscillations[1.]. Also the values of the pa-

rameters a↵ecting the probabilities of neutrino oscillation have been experimentally

determined in most of the cases.

In this project, I have studied the phenomenon of neutrinos flavour change and derived

the probabilities for the same in vacuum in flat space-time and in curved space-times.
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1.2 Properties of Neutrinos

Neutrinos are elementary particles belonging to the Lepton-family of Standard Model

and have following properties:-

• Exist in three di↵erent flavors ⌫e, ⌫µ & ⌫⌧ , where each flavour corresponds to a

lepton.

• Electrically neutral.

• Carry half-integer spin.

• Almost massless, i.e., they have very small masses compared to the other fermions.

• Interact only via the weak and gravitational interactions.

• Most abundant particles in the Universe.

• Each type of neutrino has antiparticle known as anti-neutrino.

• They are supposed to have three di↵erent mass eigen-states.

1.3 Sources of Neutrinos

Neutrinos are very abundant particles having sources of origin as:-

• Radioactive decays like beta decay of atomic nuclei or hadron.

• Nuclear reactions in the core of stars, artificial nuclear reactors, nuclear bombs

and particle accelerators.

• Spin-down state of a neutron star.

• Collision of Cosmic rays with atoms in the our atmosphere.

• Nuclear reactions in the sun (a major source of solar neutrinos in the vicinity of

earth i.e. about 65 billion solar neutrinos per second pass through every square

centimeter perpendicular to the direction of sun).
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1.4 Lepton-Mixing

• Neutrino flavour eigenstates di↵er from it’s mass eigenstates and a specific neu-

trino flavour eigenstate is quantum superposition of the three neutrino mass

eigenstates. This is possible due to the uncertainty principle because the three

masses di↵er so little that they can not be experimentally distinguished within

any practical flight path.

The proportion of each mass eigenstate in the produced pure flavour state has been

found to depend strongly on that flavour. It is not known which one out of the three

neutrinos (⌫e, ⌫µ & ⌫⌧ ) is the heaviest.

The relationship between the flavour and mass eigenstates is encoded in the PMNS

(Pontecorvo–Maki–

Nakagawa–Sakata) matrix or we can say:-

| ⌫↵
↵
=

3X

i=1

U↵i | ⌫i
↵

(1.1)

where,

| ⌫i
↵
=ith mass eigenstate of neutrino.

| ⌫↵
↵
=↵th flavour eigenstate of neutrino where, ↵ = e, µ, ⌧

U↵i : Unitary lepton mixing matrix (also known as Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix &

U =

8
>>><

>>>:

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

9
>>>=

>>>;

where, UU † = U †U = I & each U↵i denotes the composition of ith mass eigenstate

in ↵th flavour eigenstate.

It is because of this mixing that neutrinos can change their flavours after travelling

some distance.
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Chapter 2

Analysis

2.1 Neutrino Oscillations in vacuum (flat space-

time)

Plane-wave approach

We assume that neutrinos have mass. Thus there is a spectrum of neutrino mass

eigenstates, ⌫i, i = 1, 2 & 3, each with mass mi and we define three flavour states,

⌫↵, ↵ = e, µ, ⌧ as known today. To understand this leptonic-mixing, let us consider

the a leptonic decay as follows[8.]:-

Figure 2.1: Neutrino Oscillation

Here, W+! l↵ + ⌫↵
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where l↵ is a charged lepton of flavour ↵. Mixing suggests that every time the above

decay produces a particular anti l↵, the neutrino flavour eigenstate ⌫↵ is accompanied

a mass eigenstate same ⌫i which may or may not be the same for each decay even if the

lepton has a fixed flavour. Thus, we assume that each ⌫↵ is actually a superposition of

several mass eigenstates ⌫i’s out of which only one state can be distinguished during

a single decay. So, we can write a flavour state ⌫↵ as

| ⌫↵
↵
=

3X

i=1

U↵i | ⌫i
↵

(2.1)

where ,

| ⌫i
↵
: ith mass eigen-state of neutrino.

| ⌫↵
↵
: ↵ flavour eigenstate of neutrino with ↵ = e, µ, ⌧

U↵i : Unitary lepton mixing matrix, also known as PMNS (Pontecorvo-Maki-Nakagawa-

Sakata) matrix and for ↵ = e, µ, ⌧ and i = 1, 2, 3 matrix U↵i has form

U =

8
>>><

>>>:

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

9
>>>=

>>>;

where, UU † = U †U = I

As inverse of eq.(2.1), we can write each mass eigenstate as a superposition of flavours

as

| ⌫i
↵
=

3X

i=1

U⇤
↵i | ⌫↵

↵
(2.2)

(Here, for the mass eigenstates the mixing matrix is U †.)

In neutrino oscillations, neutrinos change flavour during travelling due to time evo-

lution, so let us assume that neutrino is detected with flavour ⌫� (where, � = e, µ

& ⌧) at the end of a path of length L. If ↵ 6=�, then the neutrino has changed it’s

flavour in its journey. This neutrino flavour change, ⌫↵ to ⌫� is a quantum mechanical

phenomenon and we want to find out the probability, P(⌫↵!⌫�) of this oscillation.
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2.1.1 Oscillation Probability

We are assuming that each ⌫↵ is described by a plane wave with a certain energy

and momentum which is a superposition of ⌫i’s, so we have to add all the individual

contribution coming from each one of the travelling ⌫i while calculating oscillation

probability, P(⌫↵!⌫�). The amplitude of oscillation probability will depend on all

the factors on which contribution of each ⌫i depends on and all such factors are:-

• The amplitude for ⌫i when a l↵ is produced at their source of origin or by decay

is given by U↵i.

• The amplitude for ⌫i to propagate from source to detector, say denoted as A(⌫i).

• The amplitude for ⌫i when l↵ is detected at the detector given by U⇤
�i.

Then, the amplitude of flavour change from ⌫↵!⌫� is,

A(⌫↵ ! ⌫�) =
3X

i=1

U↵iA(⌫i)U
⇤
�i (2.3)

To find out the value of A(⌫i), we consider the state vector of neutrino at time, t0 in

it’s rest frame following the time dependent Schrödinger equation given by:-

i
@

@t0
| ⌫i(t0)

↵
= mi | ⌫i(t0)

↵
(2.4)

having solution

| ⌫i(t0)
↵
= e�mit0 | ⌫i(0)

↵
(2.5)

Then the probability amplitude for ⌫i to travel from it’s source to the detector in

proper time ti(in its rest frame) is:-

A(⌫i) =
⌦
⌫i(0) | ⌫i(t0)

↵
= e�mit0 (2.6)

Now, we need A(⌫i) in the lab frame and for that we need to use a Lorentz transform

to find the corresponding expression in the lab frame, where the lab frame variables

are:

• distance between source and detector, L.
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• laboratory-frame time, t.

• energy of mass eigenstate ⌫i, Ei.

• momentum of mass eigenstate ⌫i, pi.

• By Lorentz invariance,

mit0 = Eit� piL (2.7)

Approximation:- Every neutrino described by a plane wave has same energy for each

mass eigenstate ⌫i i.e. Ei = E.

Then for m2
i⌧E2, we can write

pi =
q

E2 �m2
i ⇡ E � m2

i

2E
(2.8)

hence

mit0 ⇡ Et� EL+
m2

i

2E
(2.9)

Here, the E(t � L) term is common to every interfering mass eigenstate so we will

consider only the i-dependent part

then using eq.(2.9) in eq.(2.6), we get:-

A(⌫i) =
⌦
⌫i(0) | ⌫i(t0)

↵
= e�mit0 = e�i

m2
i

2E L (2.10)

and now we can write eq.(2.3) as:-

A(⌫↵ ! ⌫�) =
3X

i=1

U↵ie
�i

m2
i

2E LU⇤
�i (2.11)
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So, Oscillation Probability,

P (⌫↵ ! ⌫�) =| A(⌫↵ ! ⌫�) |2

=

 
3X

i=1

U↵ie
�i

m2
i

2E LU⇤
�i

!⇤ 3X

j=1

U↵je
�i

m2
j

2E LU⇤
�j

!

=
3X

i=1

3X

j=1

U⇤
↵iU�iU↵jU

⇤
�je

�i L
2E (m2

i�m2
j )

=
3X

i=j

U⇤
↵iU�iU↵jU

⇤
�j +

X

i 6=j

U⇤
↵iU�iU↵jU

⇤
�je

�i L
2E (�mj

2
i )

where,

�mj
2
i = (m2

i �m2
j) (2.12)

Now, using the identity

ei✓ = cos ✓ + sin ✓ = 1� 2 sin2 ✓

2
+ i sin ✓ (2.13)

and after solving, we get:-

P (⌫↵ ! ⌫�) = �↵��4
3X

i>j

R(U⇤
↵iU�iU↵jU�j) sin

2

✓
�mj

2
i

L

4E

◆
+2

3X

i>j

I(U⇤
↵iU�iU↵jU�j) sin

✓
�mj

2
i

L

2E

◆

(2.14)

2.1.2 2-Flavour Limit

Let us consider only two flavour states of neutrino ⌫e and ⌫µ each having two mass

eigenstates ⌫1 and ⌫2. Then for mixing we have a 2 × 2 mixing matrix U which is

unitary. We know that a 2 × 2 unitary matrix has 1 rotation angle and 3 phase

factors. As the phase factors have no e↵ect on neutrino oscillation so we can exclude

them. Then, the possible unitary matrix with one angle parameter is:-

U =

8
<

:
Ue1 Ue2

Uµ1 Uµ2

9
=

;

8



=

8
<

:
cos ✓ sin ✓

� sin ✓ cos ✓

9
=

;

U†=

8
<

:
cos ✓ � sin ✓

sin ✓ cos ✓

9
=

;

where, UU † = U †U = I

then, eq.(2.14) for ↵ 6=� becomes as:-

P (⌫↵ ! ⌫�) = �↵� �
�
� sin2 2✓

�
sin2

✓
�mj

2
i

L

4E

◆
+0 = sin2 2✓ sin2

✓
�mj

2
i

L

4E

◆
(2.15)

i.e. for a fix value of L, the probability will vary with E.

Variation of Oscillation Probability, P↵!�(L) with L

Here, L =
10lgl

0.197⇥ 10�12

If we consider the values of the fixed parameters in eq.(2.15) as:-

• E, energy of each neutrino

• p, momentum of each ⌫ & E⇡p⇡ 1MeV

m1, mass of mass 1st eigenstate of ⌫ =0.001eV

•• m2, mass of mass 1st eigenstate of ⌫=0.005eV

• ✓, angle of mixing of flavours of ⌫ = ⇡
4

• L, distance between the source & detector region of neutrinos

9



L

P
↵
!

�
(L

)

Figure 2.2: Variation of oscillation probability, P↵!�(L) with L (Plane-wave approach)

This graph shows that as far as the neutrino-source is disturbed, fluctuations in their

flavour-oscillation process goes on. Hence a proper choice for the range of E ensures

proper sensitivity (Smaller values of E will cause very rapid fluctuations, while larger

values will be monotonous).

2.1.3 Discussion

a.) In the above calculation we have considered neutrinos travelling in vacuum, so

it is clear that the phenomenon of flavour change arises from the time evolution of a

neutrino itself not from it’s interactions with matter.

b.) As the probability of neutrino flavour change is a sum of sinusoidal and sine-

squared functions oscillating with the value of L
E , so it justifies the term “Neutrino

Oscillation”.

c.) If there was no leptonic mixing then all the o↵-diagonal terms in U↵i would

10



be zeroes. Then atleast one U⇤
↵i or U↵j out of U⇤

↵iU�iU↵jU�j is zero for i>j, Which

again reduces eq.(2.14) to

P (⌫↵ ! ⌫�) = �↵� (2.16)

which implies that if the neutrinos are changing flavour then that indicates the exis-

tence of leptonic mixing.

d.) If all neutrinos are massless, then �mj
2
i = (m2

i � m2
j)=0 resulting eq.(2.14)

into

P (⌫↵ ! ⌫�) = �↵� = 0 (2.17)

where, ⌫↵ ! ⌫� and ↵ 6= �.

This means that the observation of flavour change of neutrino in vacuum implies that

they are not massless and their mass eigenstates are not degenerate.

e.) Equation (2.14) and (2.15) contain the term �mi
2
j , but do not contain the mass

of each mass eigenstate explicitly. Hence, although we can find out the squared-mass

splitting from neutrino oscillation experiments, we cannot find out the mass of each

eigenstate.

f .) Length scale for neutrino oscillations, also known as oscillation length, Losc is

given by:-

Losc =
4E

�mj
2
i

(2.18)

But, generally neutrinos have neither equal energy nor equal momentum. Also in

the plane wave approach neutrinos have well defined momentum and thus loses their

locality and the source of plane waves should be undisturbed for infinite period of

time.

2.1.4 Drawbacks of Plane-Wave Approach

In the above calculation, we assumed that each neutrino is a superposition of it’s dif-

ferent mass eigenstate described by a stationary plane wave of certain energy Ei and

11



momentum pi but this assumption is somewhat contradictory with the phenomenon

of neutrino oscillations because each neutrino travels in space and time but plane

waves picturizing them are stationary.

Also to detect flavour oscillation of neutrinos, there should be some finite distance

between the source and the detector, but plane waves describing them have infinite

extents so we can’t di↵erentiate between the source and detection regions which makes

flavour oscillation detection di�cult to observe. Moreover, it is practically impossible

that all the neutrinos produced by a single source will have the same energy.

Hence, although we got an analytical idea for flavour oscillation but it’s not correct

and is not applicable for every source of neutrino production and detection.

2.2 Quantum field theory & Neutrino Oscillations

(Wave-Packet Approach)

In the previous section[2.1], we saw that it’s not the standard and correct approach

to calculate the general expression of neutrino oscillations probability, so now we will

try to explain this phenomenon by quantum field theory.

As we know that, in particle physics, any physical process like scattering of particles,

particle decays, etc.. , can be described using quantum field theory & the S-matrix

formalism just by making use of appropriate initial conditions. Similarly, we can have

the S-matrix formalism of the phenomenon of neutrino oscillations in the regime of

quantum field theory[3.].

2.2.1 S-matrix formalism of Neutrino Oscillations

Like any other process in quantum field theory, the S-matrix formalism of Neutrino

Oscillations is

• Neutrinos are produced in a certain confined space-time region known as source.

12



• After production, neutrinos propagate and are detected in another confined

space-time region known as detector.

• Detector and source have finite sizes and are separated by a finite distance L

which is much larger than the sizes of the production and detection regions.

• Neutrino oscillation process contains two distinct interaction regions.

• Integration over the 4-coordinate of the two interaction points is performed over

two finite & di↵erent space-time interval.

• Initial and final states of neutrinos are described by wave-packets.

• Pictorial representation of neutrino oscillation in S-matrix formalism is:-

Figure 2.3: S-matrix representation of neutrino oscillation

2.2.2 Contradiction between Law of Energy-momentum con-

servation & Neutrino Oscillations

In case of Neutrino Oscillations, if we apply the exact energy and momentum conserva-

tion to the incoming and outgoing particles in the neutrino production and detection

processes then that would make this phenomenon impossible, because

• If we know the exact energy and momentum of all the incoming particles taking

part in the production process of the neutrino, then by exact energy-momentum

conservation we can calculate the energy E⌫ and momentum p⌫ of neutrino from

these incoming particles. Since neutrinos propagate macroscopic distances and

are therefore on the mass shell, so we can calculate the mass of exact energy

13



and momentum from the relation E2
⌫ = p2⌫ + m2. This would imply that the

neutrino state is a specific mass eigenstate and not a coherent superposition of

di↵erent mass eigenstates.

• Moreover according to exact energy-momentum conservation all the involved

particles have sharp energies and momenta which means that they are described

by plane waves. This makes localization of the neutrino source and detector

impossible leading to the non-observability of the neutrino oscillations.

2.2.3 QFT and energy-momentum conservation

Now, we will discuss the flavour oscillation phenomenon quantum field theoretically

and will check if this approach leads to some explanation which can resolve the incon-

sistency of oscillation and the energy-momentum conservation law. For that we will

consider a process of neutrino production, propagation and detection in space-time

given by:-

⇡ ! µ+ vµ (2.19)

and the electron neutrinos that appear as a result of the oscillations are detected via

the process

ve + n ! p+ e (2.20)

as shown in the image:-

where,

• (TS, XS), 4-coordinates of the central point of the neutrino production region.

• (TD, XD), 4-coordinates of the central point of the detection regions.

• TS, time when the overlap of the wave packets of particles participating in

neutrino production is maximal.

• XS, position of the central point of the overlap region at time TS.

• TD, time when the overlap of the wave packets of particles participating in

neutrino detection is maximal.
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Figure 2.4: Space-time diagram illustrating Neutrino Oscillation.

Schematic representation of neutrino production in pion decay, propagation and ob-
servation of the oscillated neutrino due to its charged-current interaction with a target
nucleon or nucleus. For more details see reference[3].

• XD, position of the central point of the overlap region at time TD.

• L = XD - XS, mean distance between the neutrino production and detection.

• T = TD - TS, mean time elapsed between the neutrino production and detection.

• colored bands correspond to space-time localization of the participating particles

described by wave packets and the rectangular regions show the overlap domains

of the wave packets at the neutrino production and detection regions.

Now, as per S-matrix formalism, the transition amplitude is

Ai =

Z

,

d4x1

Z

,

d4x2

Y

j

 j(x1, XS, TS)
Y

l

 l(x2, XD, TD)Mi(x1, x2) (2.21)

where,

• j(l) denotes the no. of the external particles interacting at the production point

x1.
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•  j(x1, XS, TS) and  l(x2, XD, TD) are the wave packets of the external particles

in the source and detector regions.

• The quantity Mi(x1, x2) is the transition matrix element.

Then the probability amplitude of the complete process of production & propagation

of ⌫↵ and detection of ⌫� is given as

A↵� =
X

i

U⇤
↵iU�iAi (2.22)

Here, we are describing all the incoming and outgoing particles at the source and the

detector location respectively by employing them as wave packets where the complete

process is integrated out over finite time intervals tSi  t1  tSf and tDi  t2  tDf .

Because if we describe each of them by plane waves then we can not localize the neu-

trino source and detector due to which neutrino oscillations would be non-observable.

Then, using quantum field theory, we can calculate eq.(2.22) in the following two

methods:-

• a.) In this method, We will treat all the particles involved in both the processes

described in eq.(2.19) and eq.(2.20) as wave packets (localized parts of the wave

functions in configuration-space). The transition matrix element, Mi(x1, x2) is

proportional to the propagator of ⌫i and is invariant under space-time transla-

tions i.e. Mi(x1, x2)=Mi(x2 � x1) represented by the Fourier integral as:-

Mi(x2 � x1) =

Z

,

d4q

2⇡
Mi(q)e

�iq(x1�x2) (2.23)

. Similarly, the Fourier transforms of the incoming and outgoing wave functions

are:-

 j(x1, XS, TS) =

Z

,

dp

(2⇡)3
fj(p, p̄0)e

�i✏jEj(p)(t�TS)+i✏j(x�XS) (2.24)

and

 l(x2, XD, TD) =

Z

,

dp

(2⇡)3
fl(p, q̄0)e

�i✏lEl(p)(t�TD)+i✏l(x�XD) (2.25)
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where,

✏j= ✏l= +1 for initial state of the particles & ✏j= ✏l= -1 for final state particles.

fj(p, p̄0) & fl(p, q̄0) are the momentum distribution functions of the jth and

lth particles taking part in neutrino production and detection processes respec-

tively.

�xj, spatial length of the wave packet  j(x1, XS, TS).

�xl, spatial length of the wave packet  l(x2, XD, TD).

fj(p, p̄0) is peaked at p = p̄0 and has width �pj ⇡ ��1
xj .

fl(p, q̄0) is peaked at p = q̄0 and has width �pl ⇡ ��1
xl .

Now, using the fact that

Fj(p, p̄0;TS, XS) = fj(p, p̄0)e
i✏j [Ej(p)TS�pXS ] (2.26)

&

Fl(p, q̄0;TD, XD) = fl(p, q̄0)e
i✏j [El(p)TD�pXD] (2.27)

we can write eq.(2.21) as:-

Ai =

Z

,

d4x1

Z

,

d4x2

Y

j

Z

,

dpj
(2⇡)3

Fj(p, p̄0;TS, XS)
Y

l

Z

,

dpl
(2⇡)3

Fl(p, q̄0;TD, XD)Mi(x2�x1)e
�i✏jpjx1�i✏lplx2

(2.28)

this equation will lead to the exact energy-momentum conservation only when

Fj(p, p̄0;TS, XS) & Fl(p, q̄0;TD, XD) are �-functions having peak values at p̄0

and q̄0. But in actual practice instead of having these momentum distribution

functions as �-functions we have some peak width, �p peaked at some value p̄

(�p ⌧| p̄ |). This signifies that we cannot determine the exact energy and mo-

mentum of all particles involved in neutrino production and detection process

which leads to the uncertainty in the energy and momentum of the neutrino
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as well. This uncertainty in energy and momentum of the neutrino implies the

idea of neutrino state as a superposition of the mass eigenstates proving the the

validity of neutrino oscillations.

• b.) Let us all the particles as plane waves and then transition amplitude is:-

Ap
i
w(pj, pl) =

Z

,

d4x1

Z

,

d4x2Mi(x2 � x1)e
�i(

P
j ✏jpj)x1�i(

P
l ✏lpl)x2 (2.29)

Now, using eq.(2.23) in the above equation we get:-

Ap
i
w(pj, pl) / �(4)

✓X

j

✏jpj +
X

l

✏lpl

◆
(2.30)

But the above equation does not support the phenomenon of neutrino oscillation

as all the particles are having form of plane waves which are not localized in

space and time. To solve this problem of localization of particles we convolute

eq.(2.29) with the actual momentum distribution functions of all the particles

as follows:-

Ai =
Y

j

Z

,

dpj
(2⇡)3

Fj(p, p̄0;TS, XS)
Y

l

Z

,

dpl
(2⇡)3

Fl(p, q̄0;TD, XD)A
p
i
w(pj, pl)

(2.31)

This convolution localizes all the particles by integrating their respective delo-

calized plane waves over small intervals of width ⇡�p of momenta leading to

the constructive interference of plane waves only in certain space-time intervals

having width �x ⇡ 1
�p
. This makes the oscillation of neutrino-flavours possible

along with the emphasization that conservation of energy and momentum are

very fundamental and exact laws of nature.

2.2.4 Standard Oscillation Probability

Let a flavour eigenstate ⌫a be produced during a time interval �tS centered at t = 0

in a source centered at x = 0. The wave packet describing the evolved neutrino state

18



at a point with the coordinates (t, x) is then

| ⌫a(x, t)
↵
=
X

i

U⇤
ai i(x, t) | ⌫i

↵
(2.32)

Here,  i(x, t) is the wave packet describing a free propagating neutrino of mass mi

produced in the source:-

 i(x, t) =

Z

,

dp

(2⇡)
3
2

fS
i (p� p0)e

ipx�iEi(p)t (2.33)

where,

• fS
i (p� p0), is the momentum distribution function with mean momentum pi.

•

Ei(p) =
q
p2 +m2

i (2.34)

Expanding Ei(p) around the mean momentum p0, we get:-

Ei(p) = Ei(p0) +
@Ei(p)

@pj
|p0 (p� p0)

j +
1

2

@2Ei(p)

@pj@pk
|p0 (p� p0)

j(p� p0)
k + .... (2.35)

Now, using eq.(2.35) into eq.(2.33) and after solving, we get:-

 i(x, t) ⇡ eip0x�iEi(p0)tgSi (x� vgit) (2.36)

where,

gSi (x� vgit) =

Z

,

dp

(2⇡)
3
2

fS
i (p)e

ip(x�vgit) (2.37)

is the known as shape-factor and

vgi =
@Ei(p)

@p
|p0=

p

Ei
|p0 (2.38)

is called the group velocity of the wave packet.

Note that the wave packets corresponding to di↵erent neutrino mass eigenstates ⌫i

are in general described by di↵erent momentum distribution functions fS
i (p� pi) and

therefore by di↵erent shape factors gSi (x � vgit). Also the shape factor i.e. eq.(2.37)

depends on time and coordinate only through the combination (x� vgit) this means
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that the wave packet propagates with the velocity vgi without changing its shape.

Let us now turn to the detected flavour-eigenstate neutrino ⌫b. We describe its state

by a wave packet peaked at the coordinate L of the detecting particle:-

| ⌫a(x� L)
↵
=
X

i

U⇤
bi 

D
i (x� L) | ⌫i

↵
(2.39)

This state has no time dependence because the detection process is essentially time

independent on the time scale of the inverse energy resolution of the detector. The

wave function  D
i (x� L) can be written as:-

 D
i (x� L) =

Z

,

dp

(2⇡)
3
2

fS
i (p� q)eipx�iEi(p)t (2.40)

where, fS
i (p � q) is the momentum distribution function of the wave packet char-

acterizing the detection state, with q being the mean momentum.

We can also write eq.(2.40) as:-

 D
i (x� L) = eiq(x�L)gDi (x� L) (2.41)

with

gDi (x� L) =

Z

,

dp

(2⇡)
3
2

fD
i (p)eip(x�L) (2.42)

The transition amplitude A describing neutrino oscillations is obtained by projecting

the evolved state given by eq.(2.32) onto eq.(2.30):-

Aab(L, t) =

Z

,

d3x
⌦
⌫b(x� L) | ⌫a(x, t)

↵
=
X

i

U⇤
aiUbi

Z

,

d3x D⇤
i (x� L) i(x, t) (2.43)

Now, putting eqs.(2.36) & eq.(2.40) in the above equation, we get:-

Aab(L, t) =
X

i

U⇤
aiUbiGi(L� vgit)e

�i(Ei(pi)t�ipiL) (2.44)
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where

Gi(L� vgit) =

Z

,

d3xgD⇤
i (x� L)gSi (x� vgit)e

i(p0�q)(x�L) (2.45)

Then, the probability of finding a ⌫b at the detector site provided that a ⌫a was emitted

by the source at the distance L from the detector is then:-

Pab(L) =

Z 1

�1
dt | Aab(L, t) |2=

X

i,k

U⇤
aiUbiUakU

⇤
bkIik(L) (2.46)

where,

Iik(L) =

Z 1

�1
dtG⇤

i (L� vgit)Gi(L� vgit)e
�i��ik(L,t) (2.47)

The quantity ��ik(L, t) is the phase di↵erences between the ith and kth mass eigen-

states and

��ik(L, t) = (Ei � Ek)t� (pi � pk)L = �Eikt��pikL (2.48)

Now, let us assume that

� = p0 � q (2.49)

using it in eq.(2.45) and then putting that result into eq.(2.47); we get:-

Iik(L) =
2⇡

vk
e
i(�pik�

�Eik
vk

)L
Z 1

�1
dpfS

i (p)f
D⇤
i (p)f

S
k (p̄)f

D⇤
i (p̄)e

ip(1�r)L (2.50)

where

• r = vi
vk

⇡ 1

• p̄ = rp

Using E =
p

p2 +m2⇡E=p2 + m2

2E up to the first order, we get

e
i(�pik�

�Eik
vk

)L
= e�i

�mi
2
k

2E L (2.51)

21



and then eq.(2.50) becomes as:-

Iik(L) =
2⇡

vk
e�i

�mi
2
k

2E L

Z 1

�1
dpfS

i (p)f
D⇤
i (p)f

S
k (p̄)f

D⇤
i (p̄)e

ip(1�r)L (2.52)

using

Iik(L) =
2⇡

vk
e�i

�mi
2
k

2E L

Z 1

�1
dpfS

i (p)f
D⇤
i (p)f

S
k (p̄)f

D⇤
i (p̄)e

ip
�mi

2
k

2E2 L (2.53)

then, the standard expression for probability of neutrino oscillation is:-

Pab(L) =
X

i,k

U⇤
aiUbiUakU

⇤
bk

2⇡

vk
e�i

�mi
2
k

2E L

Z 1

�1
dpfS

i (p)f
D⇤
i (p)f

S
k (p̄)f

D⇤
i (p̄)e

ip
�mi

2
k

2E2 L

(2.54)

2.2.5 Gaussian Wave Packet treatment in 2-Flavour Limit

Now, we will consider that the two flavoured neutrinos are described by gaussian wave

packets[5.]. A neutrino with flavour ↵ is created by a source S and is decomposed

into massive neutrino states described by the wave packet  s
i (x, t) is:-

| ⌫↵(x, t) =
3X

i=1

U⇤
↵i 

s
i (x, t) | ⌫i

↵
(2.55)

where,

 s
i (x, t) =

Z
d3p

(2⇡)
3
2

f s
i (p� psi )e

i(p.x�Eit) (2.56)

&

f s
i (p� psi ) =

1
p
2⇡�2

s

e
�(p�psi )

2

2�2
s (2.57)

mean momentum = psi

width of wave packet= �s

vgi=
psi

Ei(psi )
(group velocity of wave packet)
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The neutrinos with flavour � detected at x = L are described by the state:-

| ⌫�(x� L)
↵
=

3X

i=1

U⇤
�i 

d
i (x� L) | ⌫i

↵
(2.58)

where,

 d
i (x� L) =

Z
d3p

(2⇡)
3
2

f s
i (p� pdi )e

i(p.x�Eit) (2.59)

&

fd
i (p� pdi ) =

1
p

2⇡�2
d

e
�(p�pdi )

2

2�2
d (2.60)

mean momentum = pdi

width of wave packet= �d

r = vgi
vgj

then Oscillation Amplitude is:-

A↵!�(L, t) =

Z
d3p
⌦
⌫�(x� L) | ⌫↵(x, t)i (2.61)

and Oscillation Probability is,

P↵!�(L) =

Z 1

�1
dt | A↵!�(L, t) |2 (2.62)

=
3X

i,j=1

U�iU
⇤
↵iU↵jU

⇤
�jIij (2.63)

where

Iij =
1p

2⇡vj(1+r2)(�s+�d)�3
s�

3
d

e
�i�mi

2
jL

2E e
��mi

4
jL

2�s�d

8E4(1+r2)(�s+�d)

�mi
2
j = (m2

i �m2
j)

Now, as we know that in 2-flavour limit possible mixing unitary matrix is:-

23



U =

2

4 cos ✓ sin ✓

� sin ✓ cos ✓

3

5

and if �s = �d = � & vgi = vgj = v ! r = 1, then

oscillation probability after normalization:-

P↵!�(L) =
1

2
sin2(2✓)(1� Re[I12]) (2.64)

Again if we take the values of the fixed parameters in the above equation as:-

• E, energy of each neutrino

• p, momentum of each ⌫ & E⇡p⇡ 1MeV

m1, mass of mass 1st eigenstate of ⌫ =0.001eV

•• m2, mass of mass 1st eigenstate of ⌫=0.005eV

• ✓, angle of mixing of flavours of ⌫ = ⇡
4

• �, width of wave-packets describing ⌫ = 0.001p

• L, distance between the source & detector region of neutrinos

then variation of oscillation probability, P↵!�(L) with L where, L =
10lgl

0.197⇥ 10�12

is shown below:-

Here, from graph we see that in the wave-packet treatment oscillation process becomes

constant after some time depending on the width of the wave-packets and for flavour

oscillations to be feasible, this width should always be smaller than the distance

between the source and detection regions of neutrinos.

2.2.6 Kinetic Entanglement

Let us consider a decay process:-

⇡ ! ⌫µ + µ (2.65)
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Figure 2.5: Variation of oscillation

probability, P↵!�(L) with L (Gaus-

sian wave-packet approach)

Now, suppose that the 4-momentum of the pion p⇡ is well defined[3.]. Then, by exact

energy-momentum conservation we will have the condition:-

p⌫ i + pµi = p⇡ (2.66)

where,

• i = 1 & 2.

• p⌫ i : 4-momentum of each emitted neutrino mass eigenstate ⌫i.

• pµi : 4-momentum of the muon.

Here, if there is any uncertainty in 4-momentum of either of ⌫µ or µ then the state of

the other particle will also have correlated uncertainty in the value of 4-momentum.

The combined state of ⌫µ and µ can be written as:-

| µ⌫
↵
=

2X

i=1

U⇤
µi | ⌫(pµi)

↵
| ⌫i(p⌫ i)

↵
(2.67)

We also call this state as an entangled state in the sense that we can not factorize

the full quantum state of the products,⌫µ and µ as a product of their individual and
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independent states. In this case, if we know the exact 4-momentum of muon then due

to their entanglement (or correlation) we can measure the exact 4-momentum of the

neutrino too which will signify no flavour oscillation process for them.

But by all experimental evidences we know very well that the 4-momentum of parent

pion can not be measured exactly. Whenever pion is localized in space and time then

it’s energy and momentum are always going to have uncertainties and we describe

it by a wave packet characterized by a momentum distribution function of a width

�⇡p. This means that there is no strict correlation between the 4-momentas of the

neutrino and muon produced in the pion decay i.e. for a given value of pµi, we can

not precisely determine the value of p⌫ i for ith neutrino mass eigenstate because it

can take any value within a width of �⇡p. Or we can write it as:-

p⇡i = pµi + p⌫ i (2.68)

for i = 1 & 2.

Now, consider the case when only the 4-momentum of muon is precisely known then

we have:-

p⇡1 = pµ + p⌫1 (2.69)

and

p⇡2 = pµ + p⌫2 (2.70)

then as far as we have

| p⇡1 � p⇡2 | �⇡p (2.71)

eq.(2.68), eq.(2.69) & eq.(2.70) all of them are valid concluding that both neutrino

mass eigenstates ⌫1 and ⌫2 can be produced with muon having the same momentum

pµ. This means that there is no kinetic entanglement or correlation between the 4-

momenta of the neutrino and the muon and phenomenon of neutrino oscillation is

possible as far as the pion decay region or the neutrino production region is small

compared to the oscillation length of neutrino.
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Chapter 3

curved spacetime

3.1 Neutrino Oscillations in Curved Space-time

3.1.1 Neutrino propagation in the Schwarzschild metric

In Schwarzschild Metric, line element in the coordinate frame xµ = (t, r, ✓,�) is:-

ds2 = B(r)dt2 � dr2

B(r)
� r2d✓2 � r2 sin2 ✓d�2 (3.1)

where,

• B(r) =
⇣
1� 2GM

r

⌘

• M, mass of the source of the gravitational field

Then, for isotropic gravitational field, we have the mass-shell condition satisfied by

the canonical momenta is:-

m2
k =

1

B(r)
(pkt )

2 � B(r)(pkr)
2 � (pk✓)

2

r2
(3.2)

where,

• pkt = Ek & pk� = �Jk are constants of motion.
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Now expression of quantum mechanical phase as mentioned in eq.(1) becomes:-

�L
k =

Z rB

rA

h
Ek(

dt

dr
)� pk(r)� Jk(

d�

dr
)
i
dr (3.3)

Radial propagation

For relativistic neutrinos propagating in the radial direction in a weak field (i.e.

GM << r) with energy Ek as a reference such that mk << Ek, d� = 0, then:-

�L
k =

Z rB

rA

�
Ek �

q
E2

k � B(r)m2
k

� dr

B(r)
(3.4)

and phase shift of flavour oscillations is:-

��L
k j ⇡

�mk
2
jLp(A,B)

2Eloc
0(rB)

h
1�GM

⇣ 1

Lp(A,B)
ln
rB
rA

� 1

rB

⌘i
(3.5)

where,

Lp(A,B) ⇡ rB � rA +GMln(
rA
rB

) (3.6)

is the proper distance.

So, We see that in above calculated phase shift, first term is analogous to the flat

space–time oscillation phase and the second second term represents the correction

due to the gravitational e↵ects[6.]&[7.]. Also the proper oscillation length Losc, given

by eq.(3.6), is increased because of the gravitational field which implies decrease in

the oscillation probability in the gravitational field.
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Chapter 4

Summary & Conclusions

4.1 Concluding Remarks

1. We saw that the stationary source approximation is valid when the time-dependent

features of the neutrino emission and absorption processes are either absent or

irrelevant i.e. when we essentially deals with steady neutrinos.

2. In the wave-packet approach, the oscillation probability is independent of the

production and detection processes provided the following conditions are satisfied:-

• neutrino emission and absorption are coherent, and decoherence e↵ects

due to the wave packet separation are negligible.

• the energy of neutrinos in the production and detection reactions is large

compared to the neutrino mass (or compared to the mass di↵erences).

3. Quantum-mechanical uncertainty relations are at the heart of the neutrino os-

cillations i.e. the energy and momentum uncertainties inherent in this processes

must be large enough to prevent the determination of mass of neutrinos.

4. In radial propagation of neutrinos in the Schwarzschild metric, the proper oscil-

lation length is increased due to the gravitational field leading to lesser flavour

oscillations than flat space-time.
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4.2 Future Outlook

4.2.1 Problems still Unresolved

• We saw that assumption of the existence of non-degenerate mass eigenstates

of neutrinos gives us a probability-based model that accomodates the experi-

mentally observed phenomenon of neutrino oscillations. The existence of this

phenomenon itself denies the assumption of neutrinos being massless and forces

us to look beyond the Standard Model.

• We also encounter one open question that whether more than three mass eigen-

states exist or not and the presence of sterile neutrinos is true or not.

• One more important aspect to focus is that what are the explicit values of the

mass eigenstates of neutrinos. Because by all assumptions made here, neutrino

oscillation experiments can only give the relative squared-splittings of these

values not the precise values.

• Also, we are not clear about the di↵erences or similarities between neutrinos

and anti-neutrinos yet i.e. whether neutrinos are Majorana particles (particle

identical to its antiparticle) or Dirac particles (particles and antiparticles are

distinct).

Thus, though the phenomenon of neutrino oscillation helped us to solve many prob-

lems regarding Standard Model in particle physics but still there are a lot of problems

and challenges to be resolved yet which we can expect to become clear gradually with

the new discoveries in this field.
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