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Abstract

According to big-bang theory, at the earliest of its expansion, the universe existed as Quark-

Gluon-Plasma (QGP). As it cooled down, the deconfinement-confinement phase transition

occurred, and hadrons were formed. A study of this phase transition can lead us to under-

stand the early stages of universe formation. The transformation of matter at high enough

energies, from nucleons to constituent quarks and gluons had been very fascinating and

equally very challenging.

In this thesis, we intend to study ultra-relativistic heavy-ion collisions by using fluctuations

of charged particle multiplicity and temperature. The study of event-by-event fluctuations

of temperature and charged particle multiplicity will give an approximation of the specific

heat and isothermal compressibility of the system respectively. A novel method has also

been proposed for the specific heat calculation based on the lattice QCD (Quantum Chromo-

dynamics) simulation results on the initial energy density in heavy-ion collisions. Together

these two observables can predict something about the critical point in the QCD phase di-

agram. The temperature parameter is obtained from the transverse momentum distribution

of the outgoing particles. Several models are studied for obtaining the best approximation

to the experimental data on transverse momentum of identified particles from Pb + Pb

collisions at
√
sNN = 2.76 TeV. Charged particle multiplicity distributions are studied for

Au+ Au collisions at
√
sNN = 200 GeV and the variation of isothermal compressibility is

shown over a temperature range of 150 MeV to 250 MeV.

xi





Chapter 1

Introduction

1.1 Building blocks of elementary particles

The current answer to the question, what the world is made of, is shown in Table 1.1.

For many decades, protons, neutrons, and electrons were thought to be as the fundamen-

tal building blocks of matter until inelastic electron-proton scattering experiments were

performed which showed that protons have a substructure comprising of particles called

quarks [HM08]. Further experiments demonstrated that neutrons too have a substructure

also comprising of quarks. Proton is made up of two up (u) and one down (d) quark whereas

a neutron is comprised of two down and one up quark. The interactions among the quarks

occur via the exchange of gluons. The force existing between the quarks is called color

force. Quarks and gluons are collectively known as partons. Since quarks make up pro-

tons and neutrons (collectively called nucleons) and we also know that a strong nuclear

force exists between the nucleons which hold them together within the nucleus, we can say

that the color force is the origin of strong nuclear force.

However, there is a very crucial distinction between these two forces. Strong nuclear force

is a short range force i.e. the strength of the force falls very rapidly with increasing distance

between the nucleons. On the other hand, the strength of color force increases with the dis-

tance between the quarks. This behaviour of color force, known as asymptotic freedom,

is discussed in the next section.

There are six quark flavors: u (up), d (down), s (strange), c (charm), t (top), b (bottom)

and each quark may exist in three equivalent states differing in values of the new quantum

number, termed as color.

1



Table 1.1: Building blocks of elementary particles and their electric charges

Name Electric Charge

Quarks
u (up) 2/3

d (down) -1/3

Leptons
electron -1

neutrino 0

Gauge

Bosons

γ (photon) 0

W±, Z (weak bosons) ±1,0

gi ( i =1,2,...8 gluons) 0

What is color quantum number?
Pauli exclusion principle forbids two identical fermions to occupy the same quantum state.

However, making up hadrons from quarks, possessing spin 1/2, will lead to a contradiction

to the exclusion principle, for example, a proton contains two up quarks and Ω− particle is

made of three strange quarks. The existence of such particles indicates that there must exist

some another quantum number (in addition to spin) and since a maximum of three quark

bound states exist in nature (baryons); this new quantum number must have three values.

In 1965 three physicists Bogolubov, Struminsky and Tavkhelidze introduced the concept of

color quantum number with colored quarks existing in three states, green (G), red (R) and

blue (B).

Since quarks are electrically charged, they will also interact by photon exchange, i.e., via

electromagnetic interactions. However, we are familiar with the fact that electromagnetic

interactions bind positronium, the bound state of an electron and its antiparticle positron,

it is clear that electromagnetic interactions cannot bind quarks into hadrons. Considering

the example of ∆++ particle, containing three u quarks, there must exist a ”strong” force

that will overrule the electromagnetic repulsion between u quarks and bind these quarks

together to form ∆++ particle. In fact, a color charge endows the quarks with a new color

field making this strong binding possible. As indicated earlier, gluons are the quanta of

this color field. Gluon itself is a colored object: in fact, it is a bicolored object ( color +

2



anticolor). Since there are three color states; R, G, B, and corresponding three anticolor

states; antigreen (Ḡ), antired (R̄), antiblue (B̄), we can have nine bicolored states: RḠ, RR̄,

RB̄, GR̄, GB̄, GḠ, BR̄, BB̄, BḠ. One of these nine combinations RR̄+GḠ+BB̄ is a color

singlet state which does not have any net color charge and thus cannot assume the job of a

gluon carrying color from one quark to another.

The theory of strong interactions between quarks and gluons is known as Quantum Chro-

modynamics (QCD). It is a theory like electromagnetism but with eight gluons instead of a

single photon. There are other important distinctions between the two theories:

• Photons are neutral particles, they do not carry any electric charge, but gluons are

colored objects.

• The coulomb interactions between electric charges vary inversely as the distance be-

tween the charges whereas, as pointed out earlier, the color force strength increases

with the distance between quarks.

1.2 Asymptotic Freedom

At short distances, the color force between the quarks is feeble. However, as the distance

between the quarks increases, the force grows stronger. This is because of the ability of

the gluons to create more gluons. Thus, if a quark starts to move apart from another quark

after being hit by an energetic particle, the gluons will utilize this energy to produce more

gluons. More the number of gluons exchanged between quarks, stronger will be the force.

At some point, the force will become so strong that an additional quark-antiquark pair pro-

duction energy will be reached before the quarks can be separated. This is why quarks can

never be isolated and this is known as color confinement.

This behaviour of color force is taken into account in the QCD theory by defining a ”run-

ning” coupling constant.

αs(Q
2) =

12π

(33− 2nf )log
Q2

Λ2

(1.1)

where nf is the number of quarks active in pair production (upto 6), the quantity Λ is known

as the QCD scale and is nearly equal to 0.2 GeV, Q is the momentum transfer between the

quarks or the momentum carried by the gluons. Figure 1.1 shows the variation of αs as a

function of Q2.

3



Figure 1.1: The running coupling constant, αs, as a function of Q2 (Image Source: Nobel-

prize.org)
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Chapter 2

Quark-Gluon-Plasma and The Early

Universe

For a few millionths of a second after the big-bang, the universe was filled with an extremely

hot and dense soup of quarks and gluons known as the QGP. At such high temperatures, due

to asymptotic freedom, even the strongly interacting particles, quarks and gluons, would in-

teract very weakly. As the universe cooled down, the quarks and gluons hadronize resulting

in the formation of baryonic matter that we see today.

The Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and

Large Hadron Collider (LHC) at CERN are designed to recreate conditions similar to those

of the microsecond old universe.

2.1 Conceptual Basis of the formation of Quark-Gluon-

Plasma

[Cha14] At extremely high densities or temperatures, the notion of hadronic matter seems

to lose its meaning. An increase in the energy density/temperature of the system (nucleus)

leads to the production of an ever increasing number of low mass hadrons (mostly pions)

which further results in a system of mutually interpenetrating hadrons.

Such a system of mutually interpenetrating hadrons is best considered as Quark matter

rather than made of hadrons. Thus, at low energy densities/temperatures, the quarks are

confined within the hadrons whereas at extreme conditions of energy densities/temperatures

5



Figure 2.1: The figure on the left shows a nucleus at low energy density/temperature and

the figure on the right shows the same system at extreme conditions of energy density/tem-

perature (Image Source: [Cha14])

the quarks are in the deconfined state, as depicted in Figure 2.1. Hence, we can think of

a confinement-deconfinement phase transition. An important point to note here is that it is

not a phase transition in the thermodynamic sense ( i.e., the derivatives of Gibbs free energy

do not possess any discontinuity at the transition temperature), instead it is a gradual cross

over from deconfinement to confinement or vice-versa.

In the deconfined state, the quarks are free to move over the nuclear volume rather than over

the nucleonic volume. The deconfinement mechanism can be explained by the screening of

color charge which is similar to Mott transition in atomic physics.

In matter, that is dense enough, the long-range coulomb potential which binds electrons

and ions together in an electrically neutral atom, effectively becomes short range due to

screening from other charges. Because of this screening, the ions can no longer bind the

electrons and thus the insulating matter becomes conducting matter. Similarly in quark

matter, quarks cannot be bound into a hadron due to the screening of color potential.

Note: There is an important difference between the QCD and the QED potentials.

VQED = −e2/r

VQED = −α/r + σr
(2.1)

However, we are concerned with the behaviour of these potentials at very high density or

at very short distances. The difference between these potentials at large distances is of no

significance then. Moreover, as a result of asymptotic freedom, at very short distances the

coupling strength between the quarks is very weak which further enhances the deconfine-

ment.

6



2.2 Heavy-Ion collisions

As mentioned above, with the advent of RHIC and LHC, it has become possible to study the

QGP. These powerful particle accelerators make head-on collisions between massive ions,

such as gold and lead nuclei, for this purpose. In these heavy-ion collisions, the hundreds of

protons and neutrons in two such nuclei smash into one another at ultra-relativistic energies

leading to the formation of a fireball in which everything melts into a quark-gluon-plasma.

A relativistic nucleus-nucleus collision passes through different stages which are described

below:

• Pre-equilibrium Stage: There is a pre-equilibrium stage before the formation of

QGP. A successful picture of this initial stage was proposed by Bjorken. According

to this picture, the production of particles in heavy-ion collisions is due to the exci-

tation of vacuum caused by the collision of two beams of partons with subsequent

production of virtual quanta. It takes a certain proper time T for these quanta to be

de-excited to real quarks and gluons. The state of matter for 0 < t < T is said to be

in the pre-equilibrium stage.

• Expansion stage and Hadronization: The collisions among the constituents of the

fireball (QGP) establish a local thermal equilibrium state. In this state, the system has

a thermal pressure against the outside vacuum. Because of this pressure gradient, the

system evolves. As the system expands, the energy density/temperature decreases.

Below a critical energy density εcr ≈ 1GeV/fm3 or critical temperature Tcr ≈ 200

MeV the QCD phase transition will occur and partons will transform to hadrons. This

stage is known as hadronization stage.

• Freeze-out: Finally all the partons will be transformed into hadrons. The collisions

among the hadrons will maintain a local equilibrium and the system will further ex-

pand and cool down. A stage will arrive when the inelastic collisions among the

hadrons, in which the hadrons change identity, will become very infrequent. This

stage is known as chemical freeze-out. The abundances of various hadron species

will remain fixed after this stage. But hadrons can still collide elastically, that can still

maintain a local equilibrium. The elastic collisions among the hadrons can change

the final momentum distribution of the particles. But with further expansion, even

the elastic collisions will become very infrequent and a local equilibrium could no

7



longer be maintained. The hadrons decouple or freeze-out. It is known as kinetic

freeze-out.

Figure 2.2: Schematic view of the space-time evolution of a nuclear collision (Image

Source: [Cha14])

2.3 QCD Phase Diagram: Motivation for this study

Without going into the details of this phase diagram, shown in Figure 2.3, let us consider

some of its important aspects:

• The y-axis is the temperature T in GeV and the x-axis represents the baryon chemical

potential µB. The quantity µB is related to matter-antimatter asymmetry. A value

of µB = 0 corresponds to a perfect matter-antimatter balance as it is expected in the

microsecond old universe.

• Several models and lattice QCD simulations predict that at low T and high µB, First

order phase transition occurs between the hadronic phase and the QGP phase and by

increasing temperature and decreasing µB, a certain point is reached where the first

order phase transition ends (blue line followed by the red point in the diagram). At

high T and very low µB, the transition is just a cross over.

• The phase transition at the critical point is expected to be of the second-order.

• For a second-order phase transition, the second order derivatives of Gibbs function

possesses a singularity at the transition temperature. The second order derivatives

of Gibbs function with respect to pressure and temperature are directly related to

specific heat and isothermal compressibility of the system respectively. Thus a deter-

mination of these two quantities in heavy-ion collisions would affirm the existence of

8



the predicted critical point and would also tell us something about its location on the

phase diagram.

Figure 2.3: Schematic illustration of the QCD phase diagram in the T-µB plane (Image

Source: [Ste06])

2.4 Signatures of QGP

In the final stage of heavy-ion collisions, the detector detects some thousands of particles

produced in the collision. The deconfined medium of quarks and gluons exist for an ex-

tremely short duration. It is extremely difficult to directly detect QGP in this short lifetime.

However, the various particles produced in the collision might prove to be useful as signa-

tures of QGP. There may be no unique signal which will lead to the identification of QGP.

Instead, a number of different signals come out from the medium which may be treated as

QGP signatures. An account of some of these signatures is given below:

2.4.1 Elliptic Flow

In the case of non-zero impact parameter collisions, the overlap region of two nuclei is

called the reaction zone. The initial reaction zone possesses azimuthal anisotropy. Multiple

collisions between the constituent particles turn this spatial asymmetry into the momentum

anisotropy of the produced particles. Mathematically, the observed momentum anisotropy
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is defined as the Fourier expansion of Lorentz invariant differential yield in the angle φ

given by:

E
d3N

d3p
=

1

2π

dN

pTdpTdy

[
1 +

∞∑
n=1

2vncosnφ

]
(2.2)

where φ is the azimuthal angle of the detected particle and vn are called the flow coeffi-

cients. v1 represents directed flow, v2 is called elliptic flow, v3 signifies triangular flow and

so on. The second flow coefficient, elliptic flow, has been extensively studied in LHC and

RHIC energy collisions and is considered as a direct signal of the formation of QGP. El-

liptic flow measures the momentum anisotropy. As pointed out earlier, in non-zero impact

parameter collisions, the initial participant zone is spatially anisotropic. If a thermalized

medium is produced in the collision of nuclei, then this system will expand against the out-

side vacuum due to the pressure gradient. It is easy to see that the pressure gradient along

the minor axis will be more than that along the major axis. Consequently, the rate of expan-

sion will be more along the minor axis. As a result, particles tend to have a large collective

flow in the direction of minor axis resulting in anisotropy in the momentum distribution of

the partons. The more frequent the rescattering of the partons more is the resultant momen-

tum anisotropy.

With subsequent expansion, the momentum anisotropy will cease to grow and will saturate

when the reaction zone acquires azimuthal symmetry. Thus, it is easy to see that elliptic

flow is a self-quenching phenomenon.

2.4.2 Jet Quenching

In ultra-relativistic heavy-ion collisions, the partons involved in the collisions are violently

accelerated. The accelerated color charges emit QCD radiation in the form of gluons just

like accelerated electric charges emit electromagnetic radiation in the form of photons.

Photons are not electrically charged but gluons are color charged. Hence gluons can further

emit more gluons or a gluon can decay into a quark-antiquark pair, thus leading to parton

showers.

Jets are formed when a parton from a nucleus or nucleon scatters off of a parton from an-

other nucleus or nucleon. After the scattering, the partons form parton showers which then

hadronizes leading to a collimated spray of hadrons.
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Now, if a hot and dense QGP medium is produced in nucleus-nucleus (AA) collision, then

a jet created in early collision will propagate through this medium. Due to interaction with

the medium, the jet particles will dissipate some energy while propagating through the

medium. Usually, in experiments, the transverse momentum distribution of the particles

produced in heavy-ion collisions is studied. The energy loss by the jet particles will result

in a suppression of the high-pt particles and is commonly known as jet quenching. Math-

ematically, jet quenching is measured through a quantity defined as Nuclear Modification

Factor (RAA), given by

RAA =

dNAA

d2pT dy

TAA
dσAA

d2pT dy

(2.3)

The numerator is the single particle transverse momentum distribution of a jet parton pro-

duced in AA collision and travelling through the hot and dense QGP medium. The denom-

inator shows single particle distribution of the same species of jet parton produced in pp

collision multiplied by nuclear thickness function TAA which is a proton to nucleus scaling

factor ( if AA collision is an incoherent superposition of pp collision) and is a function of

impact parameter b. A value of RAA equals to 1 indicates that no jet quenching has taken

place. However if the ratio tends to be less than 1, it would mean that jet suppression has

taken place in the medium and this would serve as a signature for QGP.

2.4.3 Net Charge Fluctuations

In the grand canonical ensemble formalism, for a system of classical ideal gas, net charge

fluctuations are proportional to the square of electric charge which takes up distinct values

for the QGP and hadronic phases. While the unit of charge in the hadronic phase is 1, in

the QGP phase, it is 1/3. This may result in the fluctuation in net charge to vary with the

change of phase, with the net charge remaining unaffected.

We can write the fluctuations in net charge as

〈δQ2〉 = q2〈(δN+ − δN−)2〉 (2.4)

where q is the charge of the particles in the system, N+ is the number of positively charged

particles and N− is the number of negatively charged particles in the system.

Using thermal distributions and disregarding correlations, we get

〈δQ2〉 = q2(〈δN2
+〉+ 〈δN2

−〉) (2.5)
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In the limit of very high temperature, both Fermi-Dirac and Bose-Einstein statistics reduce

to the classical Maxwell-Boltzmann statistics. Moreover, at extremely high temperatures /

energy densities, due to asymptotic freedom, quark interactions are very weak and we can

approximate the hot and dense medium produced in heavy-ion collisions as a classical ideal

gas.

For the case of a classical ideal gas in grand canonical ensemble, we have [Appendix A]

〈N2〉 − 〈N〉2 = 〈N〉 (2.6)

Using this result and equation (2.5)

〈δQ2〉 = q2(〈N+〉+ 〈N−〉) (2.7)

〈δQ2〉 = q2〈N〉 (2.8)

where N = N+ +N− is the total number of charged particles.

Using this relation and the principle outlined above, the measurement of net charge fluctu-

ations can serve as a definite measure for the formation of QGP in heavy-ion collisions.

2.5 Kinematic Quantities

In dealing with the experimental data on high-energy collisions, one frequently encounters

some kinematic variables. These include collision centrality, rapidity and pseudorapidity,

described below:

2.5.1 Collision Centrality

The large accelerators like LHC and RHIC collide bunch of particles (nuclei) coming in

from opposite directions. When one such particle from one beam scatters off of another

particle in the other beam, this is what we define as one event.

A significant quantity characterizing any type of collision is the impact parameter (b). Small

b collisions are called central whereas large impact parameter collisions are called periph-

eral. The impact parameter of each event varies during the collision. This variation of

impact parameter is called centrality. For example, 0-5% centrality covers the impact pa-

rameter range from 0 to 3.50 fm (for Pb + Pb collisions at
√
sNN = 2.76 TeV) [A+13b].

The collection of all possible impact parameters is called a minimum bias sample.
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However, the impact parameter is not the only way of characterizing the collision centrality.

Centrality can also be defined in terms of the number of participating nucleons (Npart), a

nucleon that has undergone at least one inelastic collision, or in terms of the binary nucleon

collision number. These two parameters, however, have one to one correspondence with

the impact parameter which can be estimated using a Glauber Model [A+13b].

2.5.2 Rapidity

The rapidity of a particle is defined as

y =
1

2
ln
E + pzc

E − pzc
(2.9)

where E is the total energy of the particle and pz is it’s longitudinal momentum. Conven-

tionally the z-direction is taken as the beam axis.

How is rapidity useful?

Suppose a particle, in a collision, is predominantly produced along the beam direction say

the +z direction. In that case E ' pzc, so that y → ∞. If the particle moved along the

-z direction, then y → −∞. Consider now the particle being produced in a direction per-

pendicular to the beam axis, so that pz = 0 and y → 0. Thus we see that the rapidity of a

particle is somehow related to the angle at which the particle is produced with respect to

the beam direction.

There are also some other ways of writing the rapidity which are described below:

y =
1

2
ln
E + pzc

E − pzc
= ln

√
E + pzc

E − pzc
(2.10)

y = ln

√
E + pzc

E − pzc
= ln

E + pzc√
E + pzc

√
E − pzc

= ln
( E + pzc√

E2 − p2
zc

2

) (2.11)

Using the definition of transverse mass, M2
T c

4 = p2
xc

2 + p2
yc

2 + M2c4, where M is the rest

mass, we get

y = ln
(E + pzc

MT c2

)
(2.12)

For yet another expression, we will use the identity tanhθ = eθ − e−θ/eθ + e−θ

y = tanh−1
(
tanh

(
ln
(E + pzc

MT c2

)))
(2.13)
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y = tanh−1

(
exp
(
ln
(
E+pzc
MT c2

))
− exp

(
− ln

(
E+pzc
MT c2

))
exp
(
ln
(
E+pzc
MT c2

))
+ exp

(
− ln

(
E+pzc
MT c2

))) (2.14)

y = tanh−1

(
E+pzc
MT c2

− MT c
2

E+pzc

E+pzc
MT c2

+ MT c2

E+pzc

)
(2.15)

Using simple algebra we finally get

y = tanh−1

(
pzc(E + pzc)

E(E + pzc)

)
(2.16)

y = tanh−1
(pzc
E

)
(2.17)

Rapidity transformation under Lorentz Boosts parallel to the beam direction:

For this we first need to see how the components of 4-momentum transforms with respect

to boosts along the z direction

E ′/c = γ(E/c− βpz)

p′x = px

p′y = py

p′z = γ(pz − βE/c)

(2.18)

so that we get from equation (1.1)

y′ =
1

2
ln

(
γE/c− βγpz + γpz − βγE/c
γE/c− βγpz − γpz + βγE/c

)
(2.19)

y′ =
1

2
ln

(
(E/c+ pz)(γ(1− β))

(E/c+ pz)(γ(1 + β))

)
(2.20)

y′ =
1

2
ln
E + pzc

E − pzc
+ ln

√
1− β
1 + β

(2.21)

y′ = y + ln

√
1− β
1 + β

(2.22)

This expression can further be simplified

ln

√
1− β
1 + β

= tanh−1
(
tanh

(
ln

√
1− β
1 + β

))

= tanh−1

(√1−β
1+β
−
√

1+β
1−β√

1−β
1+β

+
√

1+β
1−β

)

= −tanh−1β

(2.23)
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Thus we finally get from above equations

y′ = y − tanh−1β (2.24)

Suppose there are two particles flying out of the collision region. Some observer measures

their rapidities to be y1 and y2. Now if some other observer measures these rapidities from

a different reference frame and get y′1 and y′2, then,

y′1 − y′2 =
(
y1 − tanh−1β − y2 + tanh−1β

)
= y1 − y2 (2.25)

Thus the rapidity difference between two particles is invariant with respect to boosts along

the beam direction. This is why rapidity is so important in experimental high-energy

physics.

2.5.3 Pseudo-rapidity

For outgoing particles with very high pz values, it can be challenging to measure the pz

value precisely because the beam pipe can be in the way of estimating it and hence the

rapidity can be hard to measure for such particles. However, we can define a quantity that

is nearly the same as rapidity but can be determined much easily than rapidity for highly

relativistic particles. The quantity is called pseudo-rapidity (η).

Starting with the definition of rapidity

y =
1

2
ln
E + pzc

E − pzc
(2.26)

y =
1

2
ln

(
(p2c2 +m2c4)1/2 + pzc

(p2c2 +m2c4)1/2 − pzc

)
(2.27)

For a highly relativistic particle pc << mc2

y =
1

2
ln

(
pc(1 + m2c4

p2c2
) + pzc

pc(1 + m2c4

p2c2
)− pzc

)
(2.28)

y ' 1

2
ln

(
pc+ pzc+ m2c4

2pc
+ · · ·

pc− pzc+ m2c4

2pc
+ · · ·

)
(2.29)

y ' 1

2
ln

(
1 + pz

p
+ m2c4

2p2c2
+ · · ·

1− pz
p

+ m2c4

2p2c2
+ · · ·

)
(2.30)
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Now pz/p = cosθ, where θ is the angle made by the particle trajectory with the beam pipe.

1 +
pz
p

= 1 + cosθ = 2cos2 θ

2
(2.31)

1− pz
p

= 1− cosθ = 2sin2 θ

2
(2.32)

Substituting these back into equation (2.30) and neglecting the higher order terms we get

y ' −ln(tan
(θ

2

)
) (2.33)

Thus we define pseudo-rapidity as

η = −ln(tan
(θ

2

)
) (2.34)

Thus we see that the quantity η is directly related to the angle at which the particle is emitted

with respect to the beam direction and hence is much easier to calculate.
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Chapter 3

Charged Particle Multiplicity

Distribution and Isothermal

Compressibility

3.1 Introduction

The isothermal compressibility (kT ) describes the relative change in the volume of a system

due to a change in the pressure at a constant temperature and is defined as

kT = -
1

V

δV

δP

∣∣
T (3.1)

where V is the volume, T is the temperature, and P is the pressure of the system.

In the present work, the isothermal compressibility of hadronic matter formed in heavy-

ion collisions is determined from the event-by-event fluctuations of charged particle multi-

plicities in the midrapidity region. The experimental data on charged particle multiplicity

distributions at the RHIC have been used in combination with the HIJING event generator

[WG91] studies, for volume calculation, to extract the values of kT .

To obtain a relation between kT and charged particle multiplicity fluctuations, we assume

that heavy-ion collisions at ultra-relativistic energies can be considered as a thermal system

in the grand canonical ensemble (GCE). In the GCE formalism, we can write the average

number of particles as :

〈N〉 =
1

Z

∑
states

Ne−β(E−µN) (3.2)
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from which we can obtain(
∂〈N〉
∂µ

)
V,T

=
1

Z

∑
states

βN2e−β(E−µN) − 1

Z2

(
∂Z

∂µ

)∑
states

Ne−β(E−µN) (3.3)

where (
∂Z

∂µ

)
=
∑

states
βNe−β(E−µN) = βZ〈N〉 (3.4)

Using the above two equations we get the following equation(
∂〈N〉
∂µ

)
V,T

= β(〈N2〉 − 〈N〉2) (3.5)

(
∂〈N〉
∂µ

)
V,T

=

(
∂〈N〉
∂P

)
V,T

(
∂P

∂µ

)
V,T

(3.6)

We can define a quantity called specific volume which is the volume per particle as

v =
V

〈N〉
(3.7)

Using this definition of specific volume we can further write(
∂〈N〉
∂P

)
V,T

=

(
∂V/v

∂P

)
V,T

= −V
v2

(
∂v

∂P

)
V,T

(3.8)

The Helmotz free energy (F) is defined as

F = E − TS − µN (3.9)

where E is the internal energy, T is the temperature, S is the entropy, µ is the chemical

potential of the system and N is the number of particles in the system. The differential of

Helmotz free energy can be written as

dF = −pdV − SdT −Ndµ (3.10)

From this equation we get (
∂P

∂µ

)
V,T

=
N

V
(3.11)

Thus the final equation looks like(
∂〈N〉
∂µ

)
V,T

= −N〈N
2〉

V 2

(
∂v

∂P

)
V,T

(3.12)

〈N2〉 − 〈N〉2 =
kBT 〈N〉2

V
kT (3.13)

18



The charged particle multiplicity fluctuations, designated ωch , can generally be defined as:

ωch =
〈N2

ch〉 − 〈Nch〉2

〈Nch〉
=
σ2
ch

µch
(3.14)

where Nch is the charged particle multiplicity. The quantity ωch is also known as the scaled

variance.

From equations (3.13) and (3.14) we obtain

ωch =
kBT 〈Nch〉

V
kT (3.15)

It has been well established that the Negative Binomial Distribution (NBD) approximates

well the experimental data on multiplicity distributions in heavy-ion collisions [B+93],

[Aea95]. So we will first discuss in detail about the negative binomial distribution.

3.2 Negative Binomial distribution

We begin with the definition of a Bernoulli trial. A Bernoulli trial is the one that can have

only two outcomes, success or failure. A negative binomial distribution has the following

properties:

• The Bernoulli trials are independent of each other.

• The probability for success, p, remains the same for all trials.

• The number of trials n should be finite.

• The events should be discrete.

There are two versions of a NBD.

In the first version, we count the number of the trials at which the rth success occurs. With

this version,

P (X1 = x) =

(
x− 1

r − 1

)
pr(1− p)x−r (3.16)

for integer x ≥ r. Here 0 < p < 1 and r ≥ 0.

The second version, the number of failures before the rth success is counted. In this version,

P (X1 = x) =

(
x+ r − 1

x

)
pr(1− p)x (3.17)

for integer x ≥ 0.
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Let us standardize on this second version for realizing two fundamental properties of a

negative binomial distribution. The mean (µ) and variance (σ2) of this distribution is given

by

µ =
r(1− p)

p
(3.18)

σ2 =
r(1− p)2

p2
= µ+

µ2

r
(3.19)

• A negative binomial distribution reduces to a geometric distribution in the limit of r

→ 1. Just as there are two versions of NBD, the geometric distribution also has two

versions.

In the first version, we determine the probability distribution of the number of trials,

X, needed to get one success, so that

P (X = k) = (1− p)k−1p (3.20)

In the second version, we determine the probability distribution of the number Y = X

- 1 of failures before the Ist success, so that

P (Y = k) = (1− p)kp (3.21)

It can easily be seen from the two definitions of NBD that for the particular case of r

= 1, the NBD reduces to geometric distribution.

• In the limit of p → 1 and r → ∞ as µ stays constant, P (X = x) reduces to eµµ(x)
x!

,

the probability distribution for a poisson distribution. This can easily be seen from

equation (3.19). The poisson distribution requires the mean and variance to be equal

which is true in this limit.

3.2.1 What’s negative about a Negative Binomial Distribution?

This question will be automatically answered if we get to know the distinction between

binomial and negative binomial distribution.

In the case of a Binomial distribution, the number of trials n is kept fixed and we determine

the probability distribution of the number of successes in n trials. However, in the case of

NBD, not the number of trials but the number of successes is kept fixed and we determine

the probability distribution of the number of failures before the rth success. Hence the
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name, negative binomial distribution.

In the present analysis, we are using the following form of the Negative Binomial Distribu-

tion

P (n) =
Γ(n+ kNBD)

Γ(n+ 1)Γ(kNBD)

(µch/kNBD)n

(1 + µch/kNBD)n+kNBD
(3.22)

where P(n) is normalized to 1 over 0 ≤ n ≤ ∞ , µch = 〈Nch〉 = 〈n〉 and kNBD is an

additional parameter.

3.2.2 Mean and Variance of NBD

For the above NBD of an integer n, we have

〈n〉 = µch =
∞∑
n=0

nP (n) (3.23)

〈n2〉 =
∞∑
n=0

n2P (n) (3.24)

〈n2〉 =
∞∑
n=0

n2 Γ(n+ kNBD)

Γ(n+ 1)Γ(kNBD)

(µch/kNBD)n

(1 + µch/kNBD)n+kNBD
(3.25)

〈n2〉 =
∞∑
n=1

n2 Γ(n+ kNBD)

Γ(n+ 1)Γ(kNBD)

(µch/kNBD)n

(1 + µch/kNBD)n+kNBD
(3.26)

〈n2〉 =
∞∑
n=0

(n+ 1)2 Γ(n+ kNBD + 1)

Γ(n+ 2)Γ(kNBD)

(µch/kNBD)n+1

(1 + µch/kNBD)1+n+kNBD
(3.27)

〈n2〉 =
(µch/kNBD)

1 + µch/kNBD

∞∑
n=0

(n+ 1)2 Γ(n+ kNBD + 1)

Γ(n+ 2)Γ(kNBD)

(µch/kNBD)n

(1 + µch/kNBD)n+kNBD
(3.28)

〈n2〉 =
(µch/kNBD)

1 + µch/kNBD

∞∑
n=0

(n+ 1)(n+ kNBD)P (n) (3.29)

〈n2〉 =
(µch/kNBD)

1 + µch/kNBD

∞∑
n=0

n2P (n) + kNBDnP (n) + nP (n) + kNBDP (n) (3.30)

〈n2〉 =
1

1 + kNBD/µch

∞∑
n=0

n2P (n) + kNBDnP (n) + nP (n) + kNBDP (n) (3.31)

Using this expression together with the definitions of µch and ωch we get
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〈n2〉 = µ2
ch + µch +

µ2
ch

kNBD
(3.32)

from which follows

ωch = 1 +
µch
kNBD

(3.33)

From equation (3.33) we can see that the NBD converges to Poisson Distribution in the

limit kNBD →∞ and to Geometric distribution in the limit of kNBD → 1.

In the present work, charged particle multiplicity distribution data for Au + Au collisions

at
√
sNN = 200 GeV is being fitted with a NBD for various centralities. Using the fit

parameters, the scaled variance or the multiplicity fluctuations are determined.

3.3 Charged Particle Multiplicity Distributions for Au +

Au collisions at√sNN = 200 GeV

Figure 3.1 shows the raw or uncorrected charged hadron multiplicity distributions in the

range 0.2 < pt < 2.0 GeV for all centralities superimposed with fits to NBD (solid red

lines) [A+08].

As can be seen, the NBD describe the experimental data really well. The mean and variance

of the distributions, as extracted from the NBD fits, are compiled in Table 3.1.
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35 ­ 40%

40 ­ 45%

Figure 3.1: Uncorrected charged hadron multiplicity distributions over the range 0.2 < pt

< 2.0 GeV/c for 200 GeV Au + Au collisions. The solid lines represents the NBD fits to

the data.

22



100 150 200 250 300 350

partN

1.2

1.25

1.3

1.35

1.4

1.45

1.5c
h
,r

a
w

ω

Figure 3.2: Raw or uncorrected multiplicity fluctuations, ωch,raw, expressed as the scaled

variance as a function of centrality for 200 GeV Au + Au collisions in the range 0.2 < pt

< 2.0 GeV/c.
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Figure 3.3: Variation of mean, extracted from the NBD fits, as a function of Npart for

Au+ Au collisions over the range 0.2 < pt < 2.0 GeV/c.

The non-zero width of various centrality bins indicate that each centrality bin essentially se-

lects a range of impact parameters. Because of this, a non-dynamical fluctuation component

is introduced to the measured multiplicity fluctuations. Therefore, it becomes necessary to
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Table 3.1: Tabulation of charged particle multiplicity data over the range 0.2 < pt < 2.0

GeV/c. The first five columns list the centrality, minimum and maximum values of impact

parameter, number of participants and geometric correction factor fgeo respectively. µch

and kNBD are extracted from the NBD fits. ωch,dyn represents the dynamical contribution

to the multiplicity fluctuations.

Centrality bmin bmax Npart fgeo µch kNBD ωch,dyn

0-5 0 3.31 351 0.575 61.92 ±0.0113 286.5 ±3.291 1.124 ±0.008

5-10 3.31 4.68 298.1 0.715 53.95 ±0.011 163.4 ±1.314 1.236 ±0.007

10-15 4.68 5.73 252.7 0.785 46.53 ±0.010 114.3 ±0.756 1.320 ±0.007

15-20 5.73 6.61 213.8 0.848 39.74 ±0.0095 87.15 ±0.516 1.387 ±0.007

20-25 6.61 7.39 180.1 0.852 33.57 ±0.0085 68.76 ±0.378 1.415 ±0.007

25-30 7.39 8.1 150.8 0.898 29.01 ±0.0080 66.86 ±0.42 1.390 ±0.008

30-35 8.1 8.75 125.1 0.888 23.02 ±0.0072 48.01 ±0.267 1.426 ±0.007

35-40 8.75 9.35 102.8 0.918 18.64 ±0.0064 41.11 ±0.236 1.416 ±0.008

40-45 9.35 9.92 83.36 0.869 14.84 ±0.0056 34.48 ±0.2018 1.374 ±0.007
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Figure 3.4: The parameter kNBD extracted from the NBD fits as a function of the number of

participating nucleons for Au+Au (upper) collisions over the range 0.2 < pt < 2.0 GeV/c.
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Figure 3.5: The factor fgeo calculated for various centralities using the HIJING event gen-

erator

calculate the extent of the geometry fluctuation component so that only the interesting dy-

namical fluctuations are left behind. In the present work, the HIJING event generator is

employed for this estimate, because it reproduces well the mean multiplicity in heavy-ion

collisions. The calculation is performed for each centrality class using the following pro-

cedure. First, HIJING is run with an impact parameter range corresponding to a given cen-

trality class (which is known from the an improved Monte Carlo Glauber Model [LKd18]).

Second, HIJING is run at a fixed impact parameter with a value equal to the mean of the

impact parameter range in the first run. 10,000 HIJING events are processed for each cen-

trality bin. The scaled variances for each centrality bin selection, ωGlauber and ωfixed , are

calculated and the measured scaled variance is corrected as the fractional deviation from a

scaled variance of 1.0 of a Poisson distribution as follows:

ωch,dyn − 1 =
ωfixed − 1

ωglauber − 1
(ωch,raw − 1) = fgeo(ωch,raw − 1) (3.34)

Using the procedure defined above we get the results shown in Figures 3.5 and 3.6. Figure

3.5 shows the fgeo calculated for various centralities of Au+Au collisions at
√
sNN = 200

GeV using the HIJING event generator. Figure 3.6 shows the ωch,dynamical calculated using

the fgeo factors.

A look at equation (3.15) tells us that in order to calculate kT , we need information on vol-

ume as well as temperature of the system. For the purpose of volume calculation, we turn
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Figure 3.6: ωch,dynamical calculated using the fgeo factor for Au+Au collisions at 200 GeV

centre of mass energy

our attention to [BMKRS15].

Assuming a thermal medium of strongly interacting particles at temperature T and occu-

pying a volume V, where, on an average, the strangeness S, electric charge Q and baryon

number B is conserved, the fluctuations of the net charge N can be written as

χ̂N =
χN
T 2

=
1

V T 3

|q|∑
n=1

n2(〈Nn〉+ 〈N−n〉) (3.35)

where |q| = (1,2,3) and |q| = (1,2) for strangeness and electric charge respectively.

The above expression, for the correlation among different charges, gives

ˆχNM =
χNM
T 2

=
1

V T 3

qN∑
n=−qN

qM∑
n=−qM

nm〈Nn,m〉 (3.36)

Using equations (3.35) and (3.36), the strangeness, net baryon number and charge-strangeness

correlation susceptibilities can be expressed in terms of various particle yields as
χS
T 2

=
1

V T 3
[(〈K+〉+K0〉+ 〈Λ〉+ 〈Σ0〉+ 〈Σ+〉+ 〈Σ−〉+ 4〈Ξ0〉+ 4〈Ξ−〉

+9〈Ω−〉) − (Γφ→K+ + Γφ→K− + Γφ→K0 + Γφ→K̄0)φ〉]
(3.37)

χB
T 2

=
1

V T 3
[〈p〉+ 〈N〉+ 〈Λ〉+ 〈Σ0〉+ 〈Σ+〉+ 〈Σ−〉+ 〈Ξ0〉+ 〈Ξ−〉

+〈Ω−〉+ antiparticles]

(3.38)

χQS
T 2

=
1

V T 3
[(〈K+〉+ 2〈Ξ−〉+ 3〈Ω−〉)− (Γφ→K+ + Γφ→K−)〈φ〉

−(ΓK∗
0→K+ + ΓK∗

0→K−)〈K∗0〉]
(3.39)
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〈〉 denotes the mean particle yield. The branching ratios, Γφ→K0 = 0.342 ± 0.004, Γφ→K =

0.489 ± 0.005 and ΓK∗
0→K+ = 0.666 are from [O+14]. Table 3.2 shows the results obtained

for the three susceptibilities using HIJING event generator for Au+Au collisions at
√
sNN

= 200 GeV for various centrality classes. For each centrality, 10,000 HIJING events are

used for the determination of the susceptibilities.

3.3.1 Volume Calculation from susceptibilities

The quantities χB
T 2 , χS

T 2 , χQS
T 2 have recently been calculated, at µB = 0, for a range of temper-

atures using lattice QCD simulations [B+12]. The results are extrapolated to the continuum

limit, thus can be directly compared to heavy-ion data for obtaining information on volume.

For instance, for the particular case of most centralAu+Au collisions at
√
sNN = 200 GeV,

the volume of the system can be calculated using the following equations:

VχB =
144.57± 13.21

T 3(χB/T 2)LQCD
(3.40)

VχS =
200.195± 17.96

T 3(χS/T 2)LQCD
(3.41)

VχQS =
87.02± 11.13

T 3(χQS/T 2)LQCD
(3.42)

The quantities (χB,S,QS/T
2)LQCD represent the susceptibilities as obtained from lattice

QCD simulations. Similar equations can be used for other centrality bins. Figures 3.7,

3.8(left) shows the variation of volume as a function of temperature determined from equa-

tions (3.37), (3.38), (3.39).

To summarize, we have calculated ωch,dyn & 〈Nch〉 using NBD fits and the variation of vol-

ume with temperature using HIJING event generator and LQCD simulation results. Using

equation (3.15) we can now determine the variation of isothermal compressibility (kT ) with

temperature over the range 150 ≤ T ≤ 250 MeV for various centrality bins of Au + Au

collisions at
√
sNN = 200 GeV. Figure 3.8 (right) shows the variation of kT with T for

most central Au + Au collisions at
√
sNN = 200 GeV using VvsT results from the three

susceptibilities.
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Table 3.2: Tabulation of the net baryon number, strangeness and strangeness-charge sus-

ceptibilities for Au + Au collisions at
√
sNN = 200 GeV using HIJING event generator

at midrapidity, -0.5 < y < 0.5 and over the transverse momentum range 0.2 < pT < 2.0

GeV/c

Centrality V T 3
(
χB
T 2

)
V T 3

(
χS
T 2

)
VT3

(χQS
T 2

)
0-5 144.57 ±13.21 200.195 ±17.96 87.02 ±11.13

5-10 115.094 ±11.82 167.95 ±16.11 70.292 ±10.05

10-15 92.82 ±10.59 135.704 ±14.50 57.10 ±9.05

15-20 74.94 ±9.52 109.94 ±13.14 46.32 ±8.21

20-25 60.76 ±8.60 89.2 ±11.77 37.83 ±7.43

25-30 48.65 ±7.67 71.83 ±10.48 30.48 ±6.54

30-35 49.89 ±7.75 73.53 ±10.66 31.14 ±6.69

35-40 30.72 ±6.07 45.77 ±8.40 19.35 ±5.24

40-45 24.25 ±5.39 36.33 ±7.51 15.32 ±4.66
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Figure 3.7: Volume as a function of temperature for various centralities of Au + Au col-

lisions at
√
sNN = 200 GeV calculated (Left) using equation (3.37) (Right) using equation

(3.38)
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Figure 3.8: (Left) Volume as a function of temperature calculated from equation (3.39) for

various centralities of Au+Au collisions at
√
sNN = 200 GeV (Right) Variation of kT with

T for most central Au + Au collisions at
√
sNN = 200 GeV using VvsT results from the

three susceptibilities.
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Chapter 4

Transverse Momentum Distribution

4.1 Introduction

The main objective of heavy-ion collisions is to analyse the properties of the hot and dense

matter (QGP) produced in these collisions. QGP, however, is a transient state, existing

for a very short time, thus making it extremely difficult to use external probes to study its

properties which must rather be inferred from the impact left by the plasma on the particles

flying out of the collision region. The study of transverse momentum (pt) distribution of

the identified particles has been proved to be a promising tool for this purpose.

In the present work, we have employed several models to obtain the best approximation

to the experimental data on transverse momentum distribution (pt) of identified particles

from Pb + Pb collisions at
√
sNN = 2.76 TeV for various centrality classes. The terms

longitudinal and transverse are defined with respect to the beam direction.

Before discussing these models in detail, let’s try to answer a very fundamental question:

why is the transverse momentum distribution so important?

Inside the RHIC and LHC, two high-energy particle beams are accelerated to very high

speeds before they are made to collide head-on. Before collision the beams have only a

longitudinal momentum. However, after the collision the particles can be seen flying out

of the collision region with a non-zero transverse momenta. Thus a study of pt-distribution

of the outgoing particles in the collision can give an insight into the physics involved in the

collision process. In addition, the fact that the transverse momentum is Lorentz invariant

for boosts along the beam direction is another mathematical advantage. Also, as pointed out

in section 2.5.3, sometimes it is difficult to measure the longitudinal momenta of particles,

31



especially for high pz particles, since the beam pipe can be in the way of estimating it.

4.2 Experimental result on pt-distribution of negative pi-

ons produced in Pb+ Pb collision at√sNN = 2.76 TeV
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Figure 4.1: Transverse momentum distribution of negative pions produced in Pb + Pb

collisions at
√
sNN = 2.76 TeV for three centrality classes. (Data Source: [A+13a])

Figure 4.1 shows the transverse momentum distribution of the π− particles produced in

Pb + Pb collisions at
√
sNN = 2.76 TeV for three centrality classes. The x-axis is simply

pt in GeV/c. The y-axis represents the Lorentz Invariant Differential yield, Ed
3N
d3p

.

To show that the quantity Ed
3N
d3p

represents the Lorentz Invariant Differential yield, we first

need to prove that d3p/E is lorentz invariant. Here we are talking about lorentz invariance

for boosts along the beam direction. For Lorentz boost in longitudinal direction, we have

p∗z = γ(pz − βE) (4.1)

Its differential is given by

dp∗z = γ(dpz − βdE) = γ(dpz − β
pzdpz

E
)

=
dpz
E
γ(E − βpz) =

dpz
E
E∗

(4.2)

where we have used E2 = m2 +p2
t +p2

z. From this we get EdE = pzdpz. Thus the quantity

dpz/E is Lorentz invariant. Since pt is Lorentz invariant, d3p/E is also Lorentz invariant.
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Now

E
d3N

d3p
= E

d3N

d2ptdpz
=

d3N

d2ptdy
=

d3N

2πptdptdy
(4.3)

where the relation dpz/E = dy is used. The data on the vertical axis has been normalized

by the total number of events (N) considered.

Given below is a brief account of the models used for fitting the pt-distribution shown in

Figure 4.1 and their fitting results.

4.2.1 Boltzmann Distribution

In this model, we consider the production of particles in heavy-ion collisions as due to a

thermal source at temperature T and thus we can describe the source of particle emission

by a Boltzmann Distribution.

fBG = Ae
−pT
T (4.4)

where A is some normalization factor. In the present case, the following form of Boltzmann

distribution is used,

fBG =
V

(2π)3
mT e

−mT
T (4.5)

where mT =
√
m2 + p2

t is the transverse mass and m is the rest mass of π− particles.

Figure 4.2 shows the result of Boltzmann fitting to the pt-distribution shown in Figure 4.1.

The fitting parameters for the Boltzmann fitting along with the χ2

NDF
values are listed in

Table 4.1.
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Figure 4.2: Transverse momentum distribution of π− particles produced in Pb + Pb colli-

sions at
√
sNN = 2.76 TeV. The red lines shows the Boltzmann fitting.
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Table 4.1: Result of Boltzmann fitting to the pt-distribution shown in Figure 4.1

Centrality Temperature (GeV) χ2

NDF

0-5 0.246 ±0.0016 954.983/39

40-50 0.241 ±0.0018 1425/39

80-90 0.220 ±0.0021 1807/39

As can be seen, the fitting is not at all good. It also tells us that merely considering the

particle production in these collisions as due to a thermal source does not serve our purpose

and that there are many other underlying physics phenomena that need to be considered.

Two such phenomena are the flow effect and contribution of resonance decays. These are

being taken into account in Boltzmann-Gibbs Blast Wave (BGBW) Model, as explained

below.

4.2.2 Boltzmann-Gibbs Blast Wave Model

As we studied in the case of elliptic flow (section 2.4.1), the QGP produced in high en-

ergy heavy-ion collisions will expand against the outside vacuum due to thermodynamic

pressure gradient. During the expansion, the multiple collisions among the constituent par-

ticles will translate the initial azimuthal anisotropy of the reaction zone into the momentum

anisotropy of the produced particles. Thus evidently, the effect of flow needs to be taken

into account while studying the momentum distribution of the particles produced in the

collision.

Resonance Decays Contribution: In addition to thermally emitted pions, there are also

pions which are produced from the decays of resonances, for e.g.,

ρ0 → π+π−, ω → π+π0π−,∆→ Nπ− (4.6)

In experiments, these resonances are produced in abundant amounts. It has been found that

the resonance decays contribution result in very sharply falling pion spectra and raise sig-

nificantly the total pion production at low mT/pt [SSH93].
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Boltzmann-Gibbs Blast Wave Model takes both the above mentioned contributions into ac-

count. Since we are dealing with the transverse momentum distribution, we only need to

take into account the transverse flow of the thermalized medium (QGP) produced in heavy-

ion collisions.

The Boltzmann-Gibbs Blast Wave function is given by [SSH93] :

fBGBW =
V mT

(2π)3

∫ R

0

rdrK1

(mT coshρ

T

)
I0
(ptsinhρ

T

)
(4.7)

where ρ = tanh−1(βr) and βr describes the velocity distribution, along the transverse

direction, in the region 0 ≤ r ≤ R.

βr(r) = βs
( r
R

)n
(4.8)

In the present analysis, n has been customarily put equal to 2. βs is the surface velocity.

Figure 4.3 shows the result of BGBW fitting to the pt-distribution shown in Figure 4.1. The

fitting parameters for this fitting along with the χ2

NDF
values are listed in Table 4.2.
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Figure 4.3: pt-distribution of π− particles produced in Pb + Pb collisions at
√
sNN = 2.76

TeV. The red lines represent Boltzmann-Gibbs Blast Wave fitting.

As can be seen, the BGBW model describes the experimental data really well. Before

turning our attention to the heat capacity calculation, we will consider one more model

which has recently gained importance in high-energy physics with very good quality fits of

pt-distributions.
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Table 4.2: Result of BGBW fitting to the pt-distribution shown in Figure 4.1

Centrality Temperature (GeV) βs
χ2

NDF

0-5 0.0745 ±0.0279 0.947 ±0.038 5.74/37

40-50 0.0827 ±0.0469 0.945 ±0.057 12.79/37

80-90 0.104 ±0.0061 0.923 ±0.0065 25.7/37

4.2.3 Tsallis-Boltzmann Model

In this model, the formalism of nonextensive statistical mechanics [Tsa09] has been used in

characterizing the system produced in heavy-ion collisions. It is based on the extremization

of the Tsallis entropies

Sq =
k

q − 1

(
1−

∑
i
pqi
)

(4.9)

The above equation is a generalization of the Boltzmann-Gibbs (BG) entropy. k is the

Boltzmann constant. There is, however, no direct procedure for generalizing the BG theory.

In literature, a metaphor has been used for for this purpose.

Consider the following differential equation

dy

dx
= yq (4.10)

with the initial condition y(0)=1. It’s solution is

y =
(
1 + (1− q)x) 1

1−q (4.11)

In the limit q→ 1 the above equation reduces to the ordinary exponential function, ex. Thus

equation (4.11) can be seen as a generalization of the ordinary exponential function.

y =
(
1 + (1− q)x) 1

1−q = exq (4.12)

where exq is called the q-exponential. Figure 4.4 shows the variation of q-exponential with

x for various values of q.

Similarly we can define q-logarithm as

y =
x(1−q) − 1

1− q
= lnqx (4.13)
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Figure 4.4: exq as a function of x for various values of q

where lnqx = lnx in the limit of q→ 1. It is easy to show that lnqx satisfies the following

property

lnq(xAxB) = lnq(xA) + lnq(xA) + (1− q)lnq(xA)lnq(xA) (4.14)

The Boltzmann-Gibbs entropy is given by

SBG = −k
W∑
i=1

pilnpi (4.15)

with the property
W∑
i=1

pi = 1 (4.16)

where W represents the total number of microstates and pi is the probability of finding the

system in the ith microstate. Using equation (4.13) we can define the q-generalization of

the BG entropy as

Sq = −k
W∑
i=1

pilnqpi = k

W∑
i=1

pilnq(1/pi)

= k

W∑
i=1

pi
(1/pi)

(1− q)− 1

1− q

=
k

q − 1

W∑
i=1

pi

(
1−

( 1

pi

)1−q
)

=
k

q − 1

( W∑
i=1

pi −
W∑
i=1

pqi

)
(4.17)

Finally using equation (4.16) we obtain

Sq =
k

q − 1

(
1−

∑
i
pqi
)

(4.18)
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An important property of this q-entropy is it’s non-additive nature.

Sq(A+B)

k
=
Sq(A)

k
+
Sq(B)

k
+ (1− q)Sq(A)

k

Sq(B)

k
(4.19)

with A and B being two independent subsystems, i.e. the joint probability satisfies pA+B
ij =

pAi p
B
j for all i and j, of one whole system. Thus Tsallis entropies are nonextensive in nature.

In the present work the ordinary exponential in equation (4.5) is replaced with q-exp.

V

(2π)3
mT e

−mT
T → V

(2π)3
mT e

−mT
T

q (4.20)

so that the Tsallis-Boltzmann function is given by [CW12]

fTB =
V

(2π)3
mT

(
1 +

(1− q)mT

T

) 1
1−q

(4.21)

Figure 4.5 shows the result of fitting the transverse momentum distribution of negative pi-

ons produced in Pb + Pb collisions by equation (4.21) for two different pt ranges. The

fitting parameters for Tsallis-Boltzmann fitting along with the χ2

NDF
values are listed in Ta-

ble 4.3.

As can be seen the Tsallis-Boltzmann model gives a good approximation to the experimen-

tal data. The fitting is relatively good over 0.2 < pt < 3.0 GeV/c.
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Figure 4.5: Transverse momentum distribution of π− particles produced in Pb + Pb colli-

sions at
√
sNN = 2.76 TeV fitted with Tsallis-Boltzmann function for 0 < pt < 3.0 GeV/c

(Left) and 0.2 < pt < 3.0 GeV/c (Right)
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Table 4.3: Result of Tsallis-Boltzmann fitting to the pt-distribution shown in Figure 4.1

Centrality Temperature (GeV) q χ2

NDF
for Fig. 4.5 Left χ2

NDF
for Fig. 4.5 Right

0-5 0.1296 ±0.0037 1.11 ±0.0033 86.65/38 45.55/33

40-50 0.1072 ±0.0031 1.13 ±0.030 70.04/38 31.12/33

80-90 0.0803 ±0.0029 1.15 ±0.0028 32.82/38 14.94/33

A comparison of the three models has been given in the next section. But before moving to

that, there are two important questions that need to be answered.

• What is the physical significance of the Tsallis parameter q?

• Why the nonextensive statistical mechanics approximates well the experimental data,

i.e. what is the source of nonextensivity in our system?

It has been shown that the non-extensivity parameter q is related to the fluctuations of

temperature in the system [Bec02].

For the distribution function given by

f(x) =
[
1 + (q − 1)

x

λ

] q
q−1 (4.22)

It can be shown that

ω =
〈( 1λ)2〉 − 〈 1λ〉2
〈 1λ〉2

= q − 1 (4.23)

In case of pt distribution, the quantity λ is Temperature T. Thus the Tsallis parameter q is

related to the fluctuations of temperature in the system. The existence of temperature fluc-

tuations is an experimentally observed fact. For instance, Figure 4.6 shows the temperature

distribution of 10,000 HIJING events for most central Pb + Pb collisions at
√
sNN = 2.76

TeV.

The laws of Statistical Mechanics are generally applicable to a system comprising of a

huge number of particles, of the order of Avogadro’s number. However, in the present

case of high-energy heavy-ion collisions, there are only some thousands of particles being

produced in the final state and yet Tsallis statistics gives a very good approximation to the

experimental results. It seems that the additional parameter q is taking care of that. And
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Figure 4.6: Temperature distribution for 10,000 HIJING events of most central Pb + Pb

collisions at
√
sNN = 2.76 TeV

this is why the nonextensivity is coming into picture i.e. we are applying a statistical model

to a system comprised of a very small number of particles.

4.3 Comparison of the three models

From the fitting results, shown in Tables 4.1, 4.2 and 4.3, we can conclude that Boltzmann

Model alone cannot describe well the experimental data unless some other contributions

are taken into account which leads us to the Boltzmann-Gibbs Blast Wave Model. A very

important thing to note here is, whether a model provides a good approximation to the

experimental data or not depends not only on the χ2/NDF value but also on the physics

involved. Although the BGBW model fits the experimental data with very low χ2/NDF

values but it does not take into account a very important property of nonextensivity. This

is the reason why Tsallis model is regarded as the best approximation to the experimental

results till date. We can still go further and define Tsallis Blast Wave Model [TXR+09].

However, the model is too complex and outside the scope of this thesis.
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Chapter 5

Determination of Heat Capacity

5.1 Introduction and Methodology

The heat capacity, Cv, is the quantity of heat needed to raise the temperature of a system by

one unit of temperature at a constant volume.

Cv =
dE

dT
(5.1)

where the symbols have their usual meanings. The specific heat, cv, is obtained by dividing

the heat capacity by the total number of particles in the system.

The heat capacity of a system can be related to the fluctuations of temperature in the system

as [LL]

1

Cv
=
〈T 2〉 − 〈T 〉2

〈T 〉2
(5.2)

Thus the heat capacity of the hadronic matter formed in heavy-ion collisions can be deter-

mined by considering the event-by-event fluctuations of temperature.

The temperature parameter can be obtained by fitting the pt-distribution of the identified

particles in the collision. In the present analysis, we have made use of the fact that at low

pt, the transverse momentum distribution is described well by the Boltzmann distribution.

The following procedure is used for heat capacity determination: First, 1,00,000 HIJING

events are generated for most central Pb + Pb collisions at
√
sNN = 2.76 TeV. For each

event, the multiplicity weighted pt-distribution for charged pions,

P (pt) =
Mπ+

Mπ+ +Mπ−
P (pt)π+ +

Mπ−

Mπ+ +Mπ−
P (pt)π− (5.3)
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is fitted to an exponential distribution

P (pt) = Ae
−pt
T (5.4)

over the pt range, 0.2 < pt < 0.8 GeV/c, to extract the temperature parameter. A is some

normalization factor. Once the heat capacity is calculated, the specific heat can be deter-

mined by dividing the heat capacity with the factor 〈M〉 defined as

〈M〉 =
〈Mπ+〉

〈Mπ+〉+ 〈Mπ−〉
〈Mπ+〉+

〈Mπ−〉
〈Mπ+〉+ 〈Mπ−〉

〈Mπ−〉 (5.5)

where M represents multiplicity and 〈..〉 defines average over events.

5.2 Simulation Results

Figure 5.1: pt-distribution for a single HIJING event of most central Pb + Pb collision

fitted to an exponential function over the range 0.2 < pt < 0.8 GeV/c.

Figure 5.1 shows the pt-distribution for a single HIJING event of most central Pb + Pb

collision fitted to an exponential function over the range 0.2 < pt < 0.8 GeV/c. Our cal-

culation yields the value for heat capacity and < M > to be 1326.73 ± 70.97 and 1202.7

± 116.673 respectively so that the value of specific heat per pion turns out to be 1.103 ±

0.122.
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5.3 Another Method

The method outlined above is from [SLH+07]. In this section a novel method has been

proposed for the specific heat calculation.

The proposed method is based on using the transverse momentum distribution data for

two different centralities of Pb + Pb collisions at
√
sNN = 2.76 TeV. Fitting these data to

Tsallis-Boltzmann model will yield two different temperature values. Now if somehow, we

can obtain information on the initial energy of the system at these two different tempera-

tures, then the direct application of equation (5.1) will lead us to the heat capacity of the

system.

There is, however, no direct approach of finding the total energy of the system in a given

centrality class. An indirect approach has been used which is based on some representative

results of lattice QCD simulations. Several groups around the world are involved in such

simulations. In the following, the lattice QCD simulation results on ε
T 4 (ε is the energy den-

sity) as a function of temperature (T in MeV) are from Wuppertal-Budapest Collaboration

[BEF+10].

Figure 5.2: Lattice QCD simulations for ε
T 4 as a function of T (in MeV) (Image source:

[BEF+10])

Once we know the energy density of the system at a given temperature, we only need

information on the volume of the system corresponding to that temperature and the method
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for calculating the volume has already been discussed in section 3.3.1.

0 1 2 3 4
pt(GeV/c)

1−10

1

10

210

310

­2
 (

G
e

V
/c

)
d

y
T

d
p

T
p

N
2

d
 N

π
2

1

 10­20% 

 20­30% 

 30­40%

 40­50%

Figure 5.3: pt-distribution of primary charged particles in the η range -0.8 < η < 0.8 for

various centrality classes of Pb+Pb collisions at
√
sNN = 2.76 TeV . The red lines are the

Tsallis-Boltzmann fits over the range 0.2 < pt < 2.0 GeV/c. (Data source: [A+18])

Table 5.1: Data extracted from Figure (5.2) for ε
T 4 as a function of T (in MeV)

Temperature (MeV) ε
T 4

98.957 0.926

115.190 1.316

128.727 1.885

139.025 2.551

147.162 3.250

152.601 4.046

158.582 4.908

Temperature (MeV) ε
T 4

166.727 5.785

175.955 6.728

227.978 9.864

200.365 8.775

250.161 10.368

299.933 11.391

366.439 11.863
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Table 5.2: Tabulation of the various quantities required for the calculation of heat capac-

ity. The first column lists the temperature values obtained from the Tsallis-Boltzmann fits

shown in Fig. (5.3). The quantities in the remaining columns are obtained from the cubic

spline interpolation method.

Centrality Temperature (MeV) ε
T 4

(
χB
T 2

)
LQCD

(
χS
T 2

)
LQCD

(χQS
T 2

)
LQCD

10-20 236.214 10.061 0.27926 0.77809 0.26332

20-30 232.853 10.007 0.27690 0.77234 0.26190

30-40 227.194 9.8437 0.27289 0.76143 0.25903

40-50 219.714 9.6337 0.26738 0.74297 0.25344

Figure 5.3 shows the pt-distribution of the primary charged particles in the η range -0.8 < η

< 0.8 for various centrality classes of Pb+Pb collisions at
√
sNN = 2.76 TeV overlaid with

fits to Tsallis-Boltzmann distribution. The temperature parameters listed in Table 5.2 are

the results of these fits. Using Table V from [B+12] for the continuum extrapolated values

of
(χB,S,QS

T 2

)
LQCD

and the cubic spline interpolation method, we obtain the values listed in

columns 4, 5 and 6 of Table 5.2 for the net baryon number, strangeness and strangeness-

charge correlation susceptibilities. Similarly, Table 5.1 have been used together with cubic

spline interpolation method to extract the values listed in column 3 of Table 5.2 for energy

density.

Using the information presented in Tables 5.2 and 5.3, we can calculate the energy available

to a single particle (E) for a particular centrality class, Table 5.4. Note that in all the

calculations only the central values of all the quantities involved are used. We have data

corresponding to four centrality classes and thus we can have six combinations. Table 5.5

shows the values of specific heat as obtained from the values of EB, ES and EQS shown in

Table 5.4. Figure 5.4 is a graphical depiction of Table 5.5.

It can be seen that the values of specific heat listed in columns 3 and 4 (cs and cQS) of Table

5.5 are quite consistent with each other. However, the specific heat estimates obtained using

volume information from net baryon number susceptibility (cB) are very different from the

other two estimates (cs and cQS).
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Table 5.3: Tabulation of the strangeness, net baryon number and strangeness-charge sus-

ceptibilities for various centrality classes of Pb+ Pb collisions at
√
sNN = 2.76 TeV using

HIJING event generator for -0.8 < η < 0.8 and over the range 0.2 < pt <2.0 GeV/c in

four centrality classes. Ncharged represents the total charged particle number in the given

pseudorapidity and pt range.

Centrality V T 3
(
χS
T 2

)
V T 3

(
χB
T 2

)
V T 3

(χQS
T 2

)
Ncharged

10-20 598.101 ±50.067 342.483 ±29.008 259.035 ±34.351 2635

20-30 387.482 ±38.306 219.667 ±23.331 168.138 ±25.666 1709

30-40 245.213 ±30.546 137.259 ±17.730 107.062 ±20.792 1075

40-50 145.663 ±22.806 81.744 ±13.378 63.480 ±15.507 641

Table 5.4: Tabulation of energy available per particle corresponding to each centrality class

using the information presented in the Tables (5.1 - 5.3) . EB,S,QS represents the values of

energy per particle using VB,S,QS respectively.

Centrality Temperature (MeV) EB (MeV) ES (MeV) EQS (MeV)

10-20 236.214 1106.105 693.283 887.239

20-30 232.853 1081.647 684.048 875.335

30-40 227.194 1046.405 669.978 859.869

40-50 219.714 1009.531 647.397 827.093
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Table 5.5: Shown are the values of specific heat. CB,S,QS represents the values of specific

heat calculated using EB,S,QS respectively.

S. No. Combination cB cS cQS

1 10-20 and 20-30 7.28 2.75 3.54

2 10-20 and 30-40 6.62 2.58 3.03

3 10-20 and 40-50 5.85 2.78 3.65

4 20-30 and 30-40 6.23 2.49 2.73

5 20-30 and 40-50 5.49 2.79 3.67

6 30-40 and 40-50 4.93 3.02 4.38

1 2 3 4 5 6
Centrality Combination
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Figure 5.4: Graphical representation of the specific heat values listed in Table 5.5
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Chapter 6

Summary

We have studied the isothermal compressibility and specific heat of the system formed in

Au+Au collisions at
√
sNN = 0.2 TeV and Pb+Pb collisions at

√
sNN = 2.76 TeV respec-

tively. We have shown the variation of kT over a temperature range of 150≤ T≤ 250 MeV

using the volume information from net baryon number, strangeness and strangeness-charge

correlation susceptibilities. However, it is not yet clear as to why the volume estimate cal-

culated from net baryon number susceptibility is twice of that obtained from the other two

susceptibilities, which is to be explored further. Multiplicity fluctuations have been ob-

tained from available experimental data and HIJING event generator. We have seen that

kT decreases with increasing temperature. The estimation of kT presented in this analysis

depends on several assumptions, most importantly on the estimation of dynamical fluctua-

tions. We have also calculated the specific heat using two different methods. The value of

specific heat obtained from the proposed method is an order of magnitude different from

that obtained in section 5.2. This is due to the fact that in one case pion spectra has been

used to extract the temperature parameter from fitting the spectra to Boltzmann distribution

whereas in the other case Tsallis-B model is being used to fit the pt-distribution of primary

charged particles to extract the temperature i.e. the basic starting points in the two cases

are different. Thus it would be meaningless to talk of any comparison between these two

values. The inspiration for this analysis is to search for the presence of an anticipated criti-

cal point in the QCD phase diagram. At the centre of mass energies considered, there is no

proof of a critical behaviour with respect to the compressibility and specific heat observ-

ables. Although our study does not provide any indication of such behaviour, it does not

mean that there is no critical point. We can calculate these quantities for different centre of
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mass energies i.e. we can run a beam energy scan to look for any singularities. However,

it has been shown in [A+08] that there is no such evidence of a critical behaviour with re-

spect to the isothermal compressibility over centre of mass energies from 22.5 to 200 GeV.

Further measurements with the High Luminosity Large Hadron Collider will be possible

during the coming years, allowing a more comprehensive search for critical behaviour.
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Appendix A

Classical Ideal gas in a Grand Canonical

Ensemble

For a classical ideal gas in 3D, the partition function for a single particle is given by

Z =
1

(2π~)3

∫
d3q

∫
d3pe−βH (A.1)

where (q,p) are the coordinates of the particle in phase space. The hamiltonian H is given

by

H =
∑
i

p2
i

2m
(A.2)

Z =
1

(2π~)3

∫
d3q

∫
d3pe−βp

2/2m (A.3)

Z =
1

(2π~)3

∫
d3q

∫
d3pe−βp

2/2m =
V

(2π~)3

∫ ∞
0

4πp2e−βp
2/2mdp (A.4)

Solving this integral and simplifying the expression, we get

Z = V

(
mkBT

2π~2

)3/2

(A.5)

The N particle partition function is

q =
1

N !
ZN (A.6)

The factor of 1
N !

accounts for the indistinguishability of the particles.

The corresponding grand canonical partition function is defined as

Q =
∑
N

eβµNq (A.7)
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where µ is the chemical potential of the system.

Q =
∑
N

eβµN
1

N !
ZN (A.8)

This can be further simplified as

Q =
∑
N

eβµN
1

N !
ZN = exp(Zeβµ) (A.9)

Once we have the partition function, we can define the average number of particles as

〈N〉 =
1

βQ

∂Q

∂µ
=

1

βQ
(QβZeβµ) = Zeβµ (A.10)

Now, using equation (3.13) and (A.10)

〈N2〉 − 〈N〉2 = kBT
(∂〈N〉
∂µ

)
= Zeβµ = 〈N〉 (A.11)
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