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Abstract

A doodle is a collection of piecewise-linear closed curves without triple intersections
on a closed oriented surface. Two doodles are equivalent if there exists a homotopy
from collection of curves representing one to the collection of curves representing
other without creating triple points. Theory of doodles resembles theory of classical
links. There is a group called the fundamental group of doodle associated with a
doodle on a closed oriented surface. The fundamental group of a doodle resembles
the fundamental group of a link complement. There is an associated group called
twin group which plays the role that the braid group plays for classical links.

This MS thesis is an exposition of the paper of Mikhail Khovanov on Doodle
Groups. We compute fundamental groups of some doodles and find some abelian
subgroups of doodle groups. We construct examples of doodles on the 2-sphere
whose fundamental groups have non-trivial center. Also, for some special types of
doodles, we prove that their fundamental groups are automatic.

v



Chapter 1

TWIN GROUPS

1.1 Configuration of n-arcs

Consider two parallel lines y = 0 and y = 1 on the Euclidean plane R2 = {(x, y)|x, y ∈
R}. Pick n points on y = 0, say (1, 0), (2, 0), ...., (n, 0) and corresponding n points
on y = 1 with the same x-coordinate. We define a topological interval to be a space
homeomorphic to I = [0, 1].

Definition. A configuration on n arcs is a set C ⊂ R × I formed by n disjoint
topological intervals (called arcs or strings of C) such that

C ∩ (R× {0}) = {(1, 0), (2, 0), . . . , (n, 0)}

and
C ∩ (R× {1}) = {(1, 1), (2, 1), . . . , (n, 1)}.

Consider configuration of n arcs connecting points (1, 1), (2, 1), . . . , (n, 1) with
points (1, 0), (2, 0), . . . , (n, 0) in some order, such that

(i) The projection R× I → I maps each arc homeomorphically onto I,

(ii) No three arcs have a common point.

It is straightforward to check that each string of C satisfying (i) and (ii) meets each
plane R× {t} at atmost two points.

Definition. Two configurations C1 and C2 satisfying (i) and (ii) are said to be
equivalent if one can be deformed into the other by homotopy of arcs in R × [0, 1]
such that throughout the homotopy, conditions (i) and (ii) are satisfied and end-
points of the arcs are fixed.
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Figure 1.1: Examples of configurations satisfying (i) and (ii).

More explicitly, configurations C1 and C2 satisfying (i) and (ii) are equivalent if
there exists a continuous map F : C1 × I → R× I such that for each s ∈ I,

Fs : C1 → R× I

x→ Fs(x) := F (x, s)

is an embedding whose image is a configuration on n-strings satisfying (i) and (ii)
and

F0 = IdC1 : C1 → C1,

F1(C1) = C2.

It is easy to see that, the relation defined previously is an equivalence relation on
the set of all configurations satisfying (i) and (ii).

Definition. An equivalence class of configurations satisfying (i) and (ii) is defined
as a twin.

The set of all twins on the same number of arcs forms a group under the operation
defined as follows:
Let C1 and C2 be two twins on the same number of arcs. The product C1.C2 of
twins C1 and C2 is defined as twin C which we get by putting C1 on top of C2 and
then shrinking the interval [0, 2] to [0, 1].

More precisely, we define C1.C2 to be the set of points (x, t) ∈ R× I such that

(x, 2t) ∈ C2, 0 ≤ t ≤ 1

2

and

(x, 2t− 1) ∈ C1,
1

2
≤ t ≤ 1.
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With this operation, the set of all twins on the same number of arcs is turned
into a group with identity element to be the twin given by a configuration in which
arcs do not intersect (Figure 1.1(c)).

This operation is associative and it follows from the definition of equivalence.
The only thing remains to be checked is the existence of inverse. To find that, we
need to observe a few things.

Figure 1.2: The twin pi.

Let pi be the twin given in Figure 1.2, that is, twin with only one double point.
Observe that p2i is equal to the unit twin, as the corresponding configuration can
be homotoped to a configuration without intersection satisfying (i) and (ii) (Figure
1.3). Therefore every pi is its own inverse.

Figure 1.3
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Also every twin can be written as finite product of these pi’s. It follows from
the fact that every twin can be represented by a configuration such that it has finite
layers with each layer containing exactly one crossing. Conditions (i) and (ii) and
the compactness of strand implies that it has finite layers. Since each pi is invertible,
we get that every twin is invertible.

Therefore, the set of all twins with n arcs forms a group. It is called the twin
group on n arcs. We denote it by Tn.

1.2 Twin and pure twin groups

In this section, we study the group of twins on n arcs Tn and the kernel of natural
surjection from Tn to Sn, the group of permutations on n symbols.
Let Gn be an arbitrary group generated by ρi, i = 1, 2, . . . , n− 1, with relations

ρ2i = 1, i = 1, 2, . . . , n− 1, (1.1)

ρiρj = ρjρi, |i− j| > 1, i, j = 1, 2, . . . , n− 1. (1.2)

Lemma 1.2.1. If s1, s2, . . . , sn−1 are elements of a group G satisfying the above
relations, then there exists a unique group homomorphism f : Gn → G such that
si = f(ρi) for all i = 1, 2, . . . , n− 1.

Proof. Let Fn be a free group generated by the set S = {ρ1, ρ2, . . . , ρn−1}. Let f̄
be a set theoretic map from S to G, that maps ρi to si for each i.
Then by definition of free group, for the function f̄ , there exists a unique group
homomorphism f : Fn → G such that f(ρi) = si for all i = 1, 2, . . . , n− 1.

The group homomorphism from free group Fn to G, induces a homomorphism
from Gn to G (where Gn is a group obtain from Fn by adding some relations).

In our case, the homomorphism f : Fn → G induces a homomorphism from Gn

to G if f(r) = f(r′) for all relations r = r′ in Gn. It is straightforward to check for
the relations (1.1).
For relation (1.2) we have

f(ρi.ρj) = f(ρi).f(ρj) = si.sj = sj.si = f(ρj).f(ρi) = f(ρj.ρi).

This concludes our lemma.

The following result gives us the presentation of Tn.
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Proposition 1.2.2. Tn is generated by pi, i = 1, 2, . . . , n−1, with defining relations

p2i = 1, i = 1, 2, . . . , n− 1,

pipj = pjpi, |i− j| > 1, i, j = 1, 2, . . . , n− 1.

Proof. Since the generators of twin group Tn satisfing the defining relations of Gn,
the previous lemma implies that we have homomorphism f : Gn → Tn. We are only
left to show that it is indeed an isomorphism.
Surjectivity of f implies from the fact that p1, p2, p3, . . . , pn−1 generates Tn and
belongs to image of f .
Now we construct a set theoretic map g : Tn → Gn such that g ◦ f = IdGn . That
will imply that f is injective.
Let

g : Tn → Gn

be defined by sending pi → si. For this g, we have g ◦ f = IdGn .

Note that T2 is the group generated by {p1} such that p21 = 1. Therefore,
T2 ∼= Z/2Z. Similarly, T3 is the group generated by {p1, p2} such that p21 = p22 = 1 .
Therefore, T3 ∼= Z/2Z ∗ Z/2Z, which is the infinite dihedral group.

Definition. The pure twin group on n arcs, is a subgroup of the twin group Tn
consisting of twins with arcs connecting pairs of points (i, 0) and (i, 1), 1 ≤ i ≤ n.
It is denoted by PTn.

Figure 1.4: Example of a non-trivial element of PT3.

Consider the natural homomorphism from the twin group Tn to Sn, the group
of permutations of the set {1, 2, 3, . . . , n}, that sends twin pi to the transposition
(i, i+ 1). The pure twin group PTn is actually the kernel of this homomorphism.
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Chapter 2

SURFACES

In this chapter, we recall basic notions of surfaces which will need in later chapters.

2.1 Surfaces

Definition. An n-dimensional manifold is a second countable Hausdorff space X
such that each x ∈ X has an open neighbourhood Ux which is homeomorphic to Rn.

Definition. An n-dimensional manifold with boundary is a second countable, Haus-
dorff space in which every point has a neighbourhood homeomorphic to an open sub-
set of the closed n-dimensional upper half space {(x1, . . . , xn) ∈ Rn : xi ≥ 0,∀ 1 ≤
i ≤ n}.

Definition. A surface is a 2-dimensional manifold.

Example. 1. R2 is a non-compact surface without boundary.

2. S2 is a compact surface without boundary.

3. S1×[0, 1] is a compact surface with boundary. It has two boundary components
S1 × {0} and S1 × {1} .

Definition. Any surface is said to be closed if it is compact and does not have a
boundary.

Definition. A subset A = {a0, a1, . . . , ak, k ≥ 1} of Rn is said to be geometrically
independent if the set S = {a1− a0, a2− a0, . . . , ak− a0} of vectors of Rn is linearly
independent.
We assume a set having only one point to be geometrically independent.
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So by previous definition we see that

• {a0, a1} is geometrically independent iff a0 6= a1.

• {a0, a1, a2} is geometrically independent iff these three points are not collinear.

• {a0, a1, a2, a3} is geometrically independent iff these points do not lie on a
plane.

2.2 Simplicial Complexes

Definition. Let A = {a0, a1, . . . , ak, k ≥ 1} be a geometrically independent set of
points in Rn, n ≥ k. Then a k-dimensional geometric simplex or k-simplex spanned
by the set A is the set of all those points x ∈ Rn such that

x =
k∑
i=1

αiai, where
k∑
i=1

αi = 1, αi ≥ 0,

for each i = 0, 1, 2, . . . , k.

We write σk = < a0, a1, . . . , ak > to indicate that σk is the k-simplex with vertices
a0, a1, . . . , ak.

Note that

(i) 0-simplex in Rn is simply a singleton set or a point.

(ii) If a0, a1 be any two distinct points of Rn, then 1-simplex determined by {a0, a1}
is a straight line segment joining a0 and a1.

(iii) If a0, a1, a2 be any three distinct points of Rn not all lying on a line, then the
2-simplex determined by {a0, a1, a2} is a triangle spanned by these points.

(iv) If a0, a1, a2, a3 be any four distinct points of Rn not all lying on a plane, then
3-simplex determined by {a0, a1, a2, a3} is a tetrahedron spanned by these
points.

Note that if A = {a0, a1, . . . , ak} is a geometrically independent set of points in
Rn, n ≥ k,then the simplex σk = < a0, a1, . . . , ak > is the convex hull of the set A.

Definition. Let σr, σs be two simplexes in Rn such that r ≤ s ≤ n . We say that
σr is a r-dimensional face of σs or a r-simplex of σs if each vertex of σr is also a
vertex of σs. If σr is a face of σs and r < s, then σr is a proper face of σs.
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Example. Consider σ3 = < a0, a1, a2, a3 >.
It has four 0-faces, six 1-faces (or edges), four 2-faces and one 3-face (σ3 itself).

Definition. A simplicial complex or a geometric complex K is a finite collection of
simplexes of Rn, where n is sufficiently large and satisfies the following conditions:

1. If σ ∈ K, then all the faces of σ are also in K.

2. If σ and τ are in K, then either σ ∩ τ = φ or σ ∩ τ is a common face of both
σ and τ .

Definition. The dimension of simplicial complex K(denoted by dimK) is defined
to be {

−1 if K = Q,
n ≥ 0 if n is the largest integer s.t. K has an n-simplex

2.3 PL-manifolds

Definition. Let K be a simplicial complex. Let |K| =
⋃
σ∈K

σ be the union of all

simplexes of K. Then |K| ⊆ Rn for some n, is a topological space with the topology
induced from Rn. This space |K| is called the geometric carrier of K. A subspace
of Rn, which is a geometric carrier of some simplicial complex, is called a rectilinear
polyhedron.

Definition. A topological space X is said to be a polyhedron if there exists a sim-
plicial complex K such that |K| is homeomorphic to X. In this case, the space X
is said to be triangulable and K is called a triangulation of X.

Cube, cuboid and tetrahedron are a few examples of polyhedron.

Definition. A map g : Rn → Rm is said to be affine if g(x) = λf(x) + y, where f :
Rn → Rm is a linear map, x ∈ Rn, y ∈ Rm and λ ∈ R.

Example. (i) The map
L : R3 → R3

defined by (x1, x2, x3) 7→ (x1 + 3x2−2x3 + 9, 2x1 + 3x2−5, x2 +x3) is an affine
map.

(ii) The map
P : R2 → R3

defined by (x1, x2) 7→ (x1 − x2 + 1, x2 + 2, x1 + x2 + 3) is an affine map.
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Definition. Let K ⊆ Rn and L ⊆ Rm be polyhedra.

(1) We will say that a map f : K → Rm is linear if it is the restriction of an affine
map from Rn to Rm. We say that f is piecewise-linear (PL) if there exists a
triangulation {σi ⊂ K} such that restriction of f to each σi is linear.

(2) We say that a map f : K → L is piecewise-linear (PL) if the underlying map
f : K → Rm is piecewise-linear.

Let f : K → L be a piecewise-linear homeomorphism between polyhedra. Then
the inverse map f−1 : L → K is again piecewise-linear. To see this, choose any
triangulation of K such that the restriction of f to each simplex of the triangulation
is linear. Taking the image under f , we obtain a triangulation of L such that the
restriction of f−1 to each simplex is linear.

Definition. Let M be a polyhedron. We say that M is a piecewise-linear manifold
of dimension n or PL-manifold if for every point x ∈ M , there exists an open
neighbourhood U ⊂M containing x and a piecewise linear homeomorphism from U
to Rn.

Example. S2 and torus (space homeomorphic to S1×S1) are piecewise-linear man-
ifolds.

If M is a PL-manifold of dimension n, then the underlying topological space
of M is an n-manifold. We can think of a PL-manifold as a topological manifold
equipped with some additional structure.

Definition. An orientation of closed surface X with some triangulation is an order-
ing of it’s vertices (upto cyclic permutation) such that any two face glued along an
edge receive same local orientation. X is called orientable if it has an orientation.

Example. S2 and torus are examples of oriented surfaces. Möbius band and Klein
bottle are examples of non-oriented surface.
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Chapter 3

DOODLES ON SURFACES

Hereafter, we assume that all manifolds and maps between them are piecewise-linear.
We begin this chapter with the definition of a doodle.

3.1 Doodles

Definition. A doodle ∆ is a collection of piecewise-linear closed curves C1, . . . , Cn
without triple points on a closed oriented surface.

Here by triple point we mean a point at which three curves intersect, or triple
self-intersection point of a curve, or a self-intersection point of a curve which lies on
another curve.

Definition. Two doodles ∆ and ∆′ on a surface M are called equivalent if there
exists a homotopy in M from the collection of curves representing ∆ to the collection
of curves representing ∆′ such that there are no triple intersection points throughout
the homotopy.

Another way to see whether two doodles are equivalent is through local moves.
These local moves are given by elementary transformations in Figure 3.1. Two
doodles are equivalent if and only if one can be obtained from the other by a finite
sequence of these moves.

Definition. If each component of a doodle has an orientation then it is called an
orientable doodle.
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Figure 3.1: Two elementary transformations of doodles.

3.2 Doodles on 2-sphere

We know that 2-sphere is a closed orientable surface, so we can talk about doodles
on a 2-sphere. Before going further, we define the closure operation on a twin. It is
illustrated in Figure 3.2.

Figure 3.2: Closure of a twin.

Clearly, the closure of a twin on a 2-sphere is a doodle. But the following theorem
proves that the converse holds for oriented doodles.

Theorem 3.2.1. Every oriented doodle on a 2-sphere is the closure of a twin.

Proof. View S2 as R2 ∪ {∞}. Let ∆ be an oriented doodle on S2 and a ∈ R2. We
will deform ∆ so that it will lie in R2 \ {a} and each segment is oriented clockwise
around a. If we show that such a deformation exists, then cutting R2 \ {a} along
a ray emanating from a would be a twin whose closure is ∆. We choose a diagram
∆1 of ∆ such that

11



1. ∆1 ∈ R2\ {a}.

2. No double point or angle point of ∆1 is collinear with a or another angle point
or double point.

A point of ∆1 is an angle point if it is a vertex of an arc of ∆1 when we view it
as a polygon. Figure 3.3 shows an angle point of ∆1.

Figure 3.3: An angle point of ∆1.

Let I be any straight line segment of ∆1. If I is oriented clockwise with respect
to a, no need to do anything. But if it is oriented counter-clockwise, we will change
the segment into a configuration of clockwise segments in the following manner.

We consider the triangle formed by the segment I and the point a. We denote
this triangle by T (I, a).

(a) If there are no double points of ∆1 inside T (I, a), we change I into two clock-
wise segments as shown in Figure 3.4.

Figure 3.4: Changing a counter-clockwise segment into two clockwise segments when
there is no double point in the triangle.
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(b) Suppose T (I, a) contains k double point d1, d2, . . . , dk. We cut I into 2k + 1
segments I1, . . . , I2k+1 such that

(i) The triangles T (I2i+1, a) formed by odd numbered segments do not con-
tain any double point.

(ii) There is only one double point di lying in T (I2i, a).

(See Figure 3.5, case k = 2).

Figure 3.5: Subdividion of I when there are double points in the triangle.

Such a subdivision of I is possible because of condition (2) on the diagram ∆1,
otherwise we might have a situation where two double point and a are collinear,
then we won’t be able to put these two double points in two different triangles.

Deform I2i+1 into two segments going clockwise around a as in Figure 3.4 such
that no double points appear in any of the k − i triangles bounded by a and I2j+1,
i < j ≤ k while varying i from 0 to k.

Figure 3.6: Deformation of I2i.
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In case of I2i whose triangle T (I2i, a) contains a double point, move one of its
point through ∞. It will change its configuration to the one shown in Figure 3.6
where each segment is oriented clockwise relative to a.

Thus, we have deformed I into union of segments such that each segment is
oriented clockwise relative to a. After this deformation a new double point may
appear and the new diagram might not satisfy conditions (1) and (2). But that
problem can be easily solved by making a slight change in the diagram. The number
of counter-clockwise segments in this new diagram is one less than in the diagram
∆1. After repeating this process several times we get a diagram in which every
segment is oriented clockwise around a.This concludes our theorem.

3.3 Minimal diagram of a doodle

Definition. A doodle ∆ is rigid if it does not have a diagram such that one of
the components is a simple curve which does not intersect other components and
bounds an open disk in S2.

Figure 3.7 shows a local diagram for a non-rigid doodle.

Figure 3.7: A transformation for non-rigid doodle.

Theorem 3.3.1. A doodle has a unique (up to the transformation in Figure 3.7)
diagram with a minimal number of intersection points (called vertices). This diagram
can be constructed from any other doodle diagram by applying only the local moves
as in Figure 3.1 that reduces the number of intersection points.

Proof. Denote the local moves in Figure 3.1 by ±1,±2 depending on the number of
double points that it is creating or annihilating. Thus, by our convention, +1,+2

14



moves are those which creates one and two double points, respectively while −1,−2
moves annihilates one and two double points, respectively.

Let ∆′ and ∆′′ be two diagrams of the same doodle. Then there is a sequence
of diagrams ∆′ = ∆1, ∆2, . . . ,∆k = ∆′′ such that any two consecutive diagrams are
connected by one of ±1, ±2 moves.

The following lemma will help us to establish the theorem.

Lemma 3.3.2. Let ∆ be a rigid doodle. Let ∆′ and ∆′′ be any two diagrams rep-
resenting ∆. Then there exists a sequence of diagrams ∆′ = ∆1, ∆2, . . . ,∆k = ∆′′

connected by ±1 ,±2 moves and with no + move preceding a − move. That is, for
some j with 1 ≤ j ≤ k,

|∆1| > |∆2| · · · > |∆j| < |∆j+1| < · · · < |∆k|, (3.1)

where |∆s| denotes the number of double points of the diagram ∆s for some s.

Proof. Let ∆′ = ∆1,∆2, . . . ,∆k = ∆′′ be any sequence of diagram connecting ∆′

to ∆′′. Suppose that the ith move mi from ∆i to ∆i+1 is a + move and the i+ 1th

move mi+1 from ∆i+1 to ∆i+2 is a – move. Then the move mi will either create one
double point or two double points. Now if mi+1 does not destroy at least one double
point created by mi, we can change their order and can apply mi+1 first and then
mi. But if mi+1 has destroyed point created by mi, then we have following cases:

1. If mi is a +1 move and mi+1 is a −1 move then there is only one possibility
since the doodle ∆ is rigid (see Figure 3.8). So mi+1 cancels mi.

Figure 3.8: mi+1 ◦mi when mi is a +1 move and mi+1 is a −1 move.

2. If mi is a +1 move and mi+1 is a −2 move, then the composition mi+1 ◦mi is
a −1 move.

3. If mi is a +2 move and mi+1 is a −1 move, then the composition mi+1 ◦mi is
a +1 move.
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4. If mi is a +2 move and mi+1 is a −2 move, then these two moves cancel each
other.

Thus, in every case these two moves either cancel each other or they can be replaced
by another single move. Applying induction on n concludes the lemma.

Lemma 3.3.2 tells that for a rigid doodle there exists a diagram with a minimal
number of double points and any other diagram can be obtained from that diagram
by applying only + moves. Thus minimal diagram will be unique because if there
are two minimal diagrams, then on applying lemma we will get an intermediate
diagram ∆j for both the diagrams which will contradict the minimality of these two
diagrams. Therefore, minimal diagram is unique.

Lemma 3.3.2 is not applicable on non-rigid doodles. Consider doodle diagrams
∆′, ∆′′ of a doodle ∆ as shown in Figure 3.9.

Figure 3.9: Example.

In order to bring the circle out, we have to apply a +2 move before a −2 move.
So we a can not get a sequence where no positive move proceeds negative moves
unless we permit transformation given in Figure 3.7.

So for non-rigid doodles lemma holds upto the transformation in Figure 3.7.
We can bring all the circles out from both the diagrams then apply lemma to the
remaining rigid parts. This concludes the theorem.
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Chapter 4

DOODLES AND 2-COMPLEXES

4.1 2-Complex of a doodle

A 2-dimensional complex or a 2-complex is a topological space homeomorphic to a
two-dimensional finite CW -complex.

Let M be a closed oriented surface and ∆ be a doodle on it. To any diagram
∆1 of doodle ∆ we associate a 2-dimensional complex R(∆1). We are not calling
it a 2-dimensional CW -complex even though it is homeomorphic to a CW -complex
because cell decompositions in it are not the canonical cell decompositions (where
0, 1 and 2 dimensional cell is point, line segment and disk, respectively).

Consider any diagram ∆1 of ∆. Suppose there are d double points of ∆1 de-
noted by pt1, . . . , ptd, q edges denoted by edg1, . . . , edgq and s regions (connected
components of M\(edg1 ∪ · · · ∪ edgq) ) denoted by reg1, . . . , regs. The 2-complex
R(∆1) consists of a surface PL-homeomorphic to M with 1-dimensional cells and
2-dimensional compact surfaces with boundary attached to it.

Construction of R(∆1) :
Take d 1-cells (one 1-cell for every double point of ∆1) and denote them by p1,

p2, . . . , pd and take s surfaces r1, . . . , rs, where surface rj is homeomorphic to the
region regj, for 1 ≤ j ≤ s.

We glue the 1-cells to M in following way:
Glue both the ends of the 1-cell pi to the double point pti ∈ M , for every

i = 1, 2, . . . , d (see Figure 4.1). We denote this complex by PR(∆1). Denote image
of pi in PR(∆1) by the same symbol pi. Now fix an orientation of pi for every i.
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Figure 4.1: Gluing pi to the double point pti.

Now we glue the surfaces rj, j = 1, 2, . . . , s to PR(∆1) in following way:
Case(1): When rj is a disk.
If we move along the boundary of the 2-cell regj ∈M in the clockwise direction, we
will meet some double point and edges of ∆1. Denote them in a unique order (up
to permutation) by pt1, edg1, pt2, edg2, . . . , ptk, edgk. See Figure 4.2.

Figure 4.2: case k = 3.
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Figure 4.3: Separating boundary of rj

Separate the boundary of the 2-cell rj into 2k segments, denote them I1, I2, . . . , I2k
while moving clockwise along the boundary. Orient the segments I1, I3, . . . , I2k−1
clockwise (see Figure 4.3). Now identify oriented segments I1 and p1, I3 and
p2, . . . , I2k−1 and pk. Then identify I2 and edg1, I4 and edg2, . . . , I2k and edgk.
These operations are illustrated in Figure 4.4. Dashed arrows shows how rj is glued
to PR(∆1).

Figure 4.4: Gluing rj to PR(∆1).
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Case (2): When rj is not a disk.
If rj is not a disk, then it has more than one boundary component (see Figure

4.5). Glue rj to PR(∆1) in a similar way along each boundary components.

Figure 4.5: Example of rj having more than one boundary components.

If diagram ∆1 has a component C with no double points, then none of the 1-cells
gets attach to C. In this case, glue part of the boundary of the corresponding rj
homeomorphically to C (see Figure 4.6).

Figure 4.6: Gluing when ∆1 has a component C with no double points.

After gluing ri, . . . , rs to PR(∆1) in the way described above, we obtain a com-
plex. Denote it by R(∆1). Observe that R(∆1) contains the surface M as a sub-
complex.

We define an equivalence relation on R(∆1) given by:
For x1, x2 ∈ R(∆1), x1 ∼ x2 iff x1 = x2 or x1, x2 ∈ M . We define R̄(∆1) ∼=

R(∆1)/ ∼. Notice that R̄(∆1) is actually R(∆1) with M contracted to a point. The
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topology on R̄(∆1) is the quotient topology induced from R(∆1) by the equivalence
relation.

We call R(∆1) the geometric realization of the diagram ∆1 and R̄(∆1) the reduced
geometric realization of ∆1.

4.2 Invariants of doodles

Definition. Let K1, K2 be finite CW -complexes. Then there is an elementary ex-
pansion from K1 to K2 if K2 is obtained by gluing an n-disk Dn to K1 through its
boundary i.e., K2= K1 ∪f Dn where f : Sn−1 → K1 is a map from boundary of Dn

to K1. K2 is said to be an expansion of K1 and K1 is said to be contraction of K2.

Definition. Two CW -complexes are said to be simple homotopy equivalent if they
are related by a sequence of expansions and contractions.

Theorem 4.2.1. If ∆1 and ∆2 are two diagrams of a doodle ∆, then the 2-complex
R(∆1) is simple homotopy equivalent to R(∆2) and the 2-complex R̄(∆1) is simple
homotopy equivalent to R̄(∆2).

Proof. It is sufficient to check simple homotopy invariance of R(∆1) and R(∆2)
under the two elementary transformations of doodles given in Figure 3.1. Let ∆1

and ∆2 be two diagrams of doodle ∆ where ∆2 be obtained from ∆1 by adding a
curl. Let p be 1-cell of R(∆2) corresponding to the new double point. Denote the
region of M bounded by the curl by reg and by r the corresponding disk of R(∆2)
glued to p and to the boundary of reg (See Figure 4.7).

Figure 4.7: Part of the diagram ∆2 where dashed line are showing parts of the disk
r.
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Note that r ∪ reg is a subcomplex of R(∆2) which is homeomorphic to a disk.
If we contract r ∪ reg to a point, then we get a complex which is homeomorphic to
R(∆1). So R(∆1) is a contraction of R(∆2). Therefore, R(∆1) and R(∆2) are simple
homotopy equivalent under move (b). Similarly, move (a) can be verified.

We now define fundamental group of doodles.

Definition. The fundamental group of the 2-complex R(∆1) is called the fundamen-
tal group of the doodle ∆ represented by the diagram ∆1 and is denoted by π1(∆

1).
The fundamental group of the 2-complex R̄(∆1) is called the reduced fundamental
group of the doodle ∆ and is denoted by π̄1(∆

1).

By theorem 4.2.1, fundamental group and reduced fundamental group are invari-
ants of doodle. Observe that if ∆ is a doodle on a 2-sphere, then the groups π1(∆)
and π̄1(∆) are isomorphic.
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Chapter 5

FUNDAMENTAL GROUP OF A
DOODLE

We have seen construction of 2-complex R(∆) in last chapter. This construction
translates to an algorithm that describes π1(∆) in terms of generators and relations.
We are restricting ourselves to the case of a doodle on the 2-sphere.

The algorithm goes as follows:
Fix an orientation of S2. Let ∆ be a doodle on S2.

Definition. A disk diagram ∆1 of doodle ∆ is a diagram such that union of curves
C1, C2, . . . , Cn which represent ∆1 cuts the 2-sphere into a union of disks.

Let ∆1 be any disk diagram of doodle ∆. Suppose it has k vertices. We de-
note them by a1,a2, . . . , ak. By abuse of notation, we denote generators of doodle
group π1(∆) by same notation a1, a2, . . . , ak. Denote regions separated by ∆1 by
reg1, reg2, . . . , regp. To each region we associate a relation among a1, a2, . . . , ak such
that the vertices of regi taken in the counter-clockwise order be ai1,ai2, . . . , ais (up
to a cyclic permutation). Then the relation associated to regi is

ai1ai2 · · · ais = 1.

The fundamental group π1(∆) of ∆ is a group with generators a1,a2, . . . , ak with
defining relations

ai1ai2 · · · ais = 1,

for all regions regi, i = 1, 2 . . . , p, of ∆1.
Theorem 4.2.1 implies that π1(∆) ∼= π1(R(∆)) is independent of the choice of

disk diagram ∆1 of ∆.
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Figure 5.1: A diagram of trivial n-component doodle on the 2-sphere .

Example. Let ∆ be a trivial (that is, without self-intersections and bounding a
disc) n-component doodle on the 2-sphere. Consider the diagram of ∆ given in
Figure 5.1. There are 2n− 2 intersection points of this diagram. Therefore we have
2n−2 generators of fundamental group π1(∆), denote them by a1, b1, . . . , an−1, bn−1.
Also there are 2n regions which gives 2n relations among a1, b1, . . . , an−1, bn−1 that
reduces to n − 1 relations given by a1b1 = 1, a2b2 = 1, an−lbn−1 = 1. As bi is the
inverse of ai for all i = 1, 2, . . . , n−1 and there are no relations among ai’s so π1(∆)
is a free group of rank n− 1.

More generally,

Proposition 5.0.1. Suppose that a doodle ∆1 is obtained from a doodle ∆ by adding
a trivial component. Then π1(∆1) is the free product of π1(∆) and Z.

Proof. Take diagram of ∆1 in which trivial component intersects only one arc of ∆
say at b and b′. Region bounded between this arc and trivial component gives us
relation b.b′ = 1. So b′ is inverse of b and there is no relation between generators
of π1(∆) an b. So adding a trivial component only adds a new generator which has
no relation with other generators. This implies π1(∆

1) is the free product of π1(∆)
and Z.

Remark. For a trivial one component doodle ∆ on a closed oriented surface M , we
have:

(a) The reduced fundamental group of ∆ is isomorphic to the fundamental group
of the surface M .

(b) The fundamental group of ∆ is isomorphic to π1(M) ∗ π1(M).

This observation follows directly from the definitions.

24



Figure 5.2: A doodle with three components.

Example. Consider the doodle ∆ on 2-sphere as shown in Figure 5.2. If we take
generators a, b for π1(∆), we get the following defining relations

〈a, b | a2b = ba2, ab2 = b2a, abab = baba〉.

Proof. Denote the vertices by a, b, c, d, e, f and regions by reg1, reg2, . . . , reg8.

Figure 5.3: A doodle with three components.

Relations associated to the regions are:
For reg1

acb = 1⇒ c = a−1b−1.

For reg2
adc = 1⇒ d = a−1ba−1.
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For reg3
abf = 1⇒ f = b−1a−1.

For reg4
efb = 1⇒ e = b−1f−1 = b−1ab.

Putting these values in rest of the four relations, we get
For reg5

ebc = 1.

This implies b−1ab.b.a−1b−1 = 1, and hence ab2 = b2a.
For reg6

ecd = 1.

This implies b−1ab.a−1b−1.a−1ba = 1, i.e., abab = baba.
For reg7

edf = 1.

We have b−1ab.a−1ba.b−1a−1 = 1, which implies abab = baba.
For reg8

afd = 1,

which gives a.b−1a−1.a−1ba = 1. Equivalently, a2b = ba2.

Proposition 5.0.2. Let M be an oriented closed surface and let ∆ be a doodle on M .
Then the first homology groups H1(π1(∆),Z) and H1(π̄1(∆),Z) of the fundamental
group of ∆ and of the reduced fundamental group of ∆ depends only on the conjugacy
classes of the components of ∆ in the fundamental group of the surface M .

Proof. It follows from the invariance of H1(π1(∆),Z) and H1(π̄1(∆),Z) under the
move (called triple point move) depicted in Figure 5.4.

Figure 5.4: Triple point move.
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Chapter 6

DOODLE GROUPS WITH
ABELIAN SUBGROUPS

In this chapter we will see some examples of doodles and some of their free abelian
groups. We will see doodles with infinite center.

Consider a doodle ∆. Let ∆min be the diagram of ∆ with the minimal possible
number of double points. By Theorem 3.3.1 such a diagram is unique up to the
move in Figure 3.7.

Figure 6.1: Subdiagram of ∆min.

Proposition 6.0.1. Let ∆ be a doodle on the 2-sphere. Suppose that ∆min contains
a subdiagram depicted in Figure 6.1, such that the segments s1, s2 belong to different
components of ∆. Then π1(∆) contains a free abelian subgroup of rank two.
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Proof. Let a, b, c, d, e be the elements of π1(∆) associated to double points in the
Figure 6.1 part of ∆min. Relations associated to the four regions given in Figure 6.1
are:

eba = 1, ecb = 1, edc = 1, ead = 1. (6.1)

Expressing e and c in terms of other generators, we get e = a−1b−1 and c = e−1b−1 =
bab−1.
Putting values of e and c in the remaining two relations, we get

edc = 1 ⇒ a−1b−1dbab−1 = 1 ⇒ d = baba−1b−1,

ead = 1 ⇒ a−1b−1ad = 1 ⇒ d = a−1ba.

Equating values of d, we get

baba−1b−1 = a−1ba,

⇒ abab = baba. (6.2)

Note that (6.2) is equivalent to any of the two relations

[abab, a] = 1, (6.3)

[abab, b] = 1. (6.4)

Let G be a subgroup of π1(∆) generated by (ab)2 and a. Then the relation (6.3)
implies that G is abelian, as

[abab, a] = 1,

⇒ (abab)a(abab)−1a−1 = 1,

⇒ (ab)2a(ab)−2a−1 = 1,

(ab)2a = a(ab)2.

Since generators of G commutes, therefore all elements commute.
Note that the segments s1 and s2 belongs to different components of doodle ∆.

This implies that the image of G in H1(π1(∆),Z) has rank 2. Therefore, G is a rank
2 abelian subgroup of π1(∆).

Our next goal is to construct doodles on 2-sphere whose fundamental groups
have non-trivial center. With the help of relations (6.3) and (6.4) we can do that.

Let ∆(2n) be the doodle with 2n + 2 components as shown in Figure 6.2. Let
∆(2n− 1) be the doodle with 2n+ 1 components as in Figure 6.3.
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Figure 6.2: ∆(2n).

Figure 6.3: ∆(2n− 1).

Proposition 6.0.2. The fundamental groups of the doodles ∆(2n) and ∆(2n − 1)
have infinite center, for n ≥ 1.

Proof. Denote by a1, b1, c1, d1, . . . , a2n, b2n, c2n, d2n the elements of π1(∆(2n)) associ-
ated with double points as shown in Figure 6.2.

Claim: The element (b1a1)
2 is in the center of the fundamental group of ∆(2n).

Element (biai)
2 commutes with each of the four elements ai, bi, ci, di for i = 1, . . . , 2n

(by (6.3) and (6.4) and the fact that ci and di are product of ai, bi and their inverses).
Observe that

(bici)
2 = (aibi)

2. (6.5)

(As (bici)
2 = bibiaib

−1
i bibiaib

−1
i = bibiaibiaib

−1
i = biaibiaibib

−1
i = biaibiai = aibiaibi =

(aibi)
2).

Also, we have c2b2b1a1 = 1.
This implies that,

(b1a1)
2 = (c2b2)

−2. (6.6)
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By using (6.5) for i = 2, we get

(c2b2)
2 = (b2c2)

2 = (a2b2)
2 = (b2a2)

2. (6.7)

Now (6.5) and (6.6) gives,

(b1a1)
2 = (b2a2)

−2. (6.8)

Similarly,
(biai)

2 = (bi+1ai+1)
−2, i = 1, 2, . . . , 2n− 1. (6.9)

By using (6.8) and recursive use of (6.9), we get

(b1a1)
2 = (biai)

±2, i = 1, 2, . . . , 2n− 1. (6.10)

Now (6.10) and the fact that (biai)
2 commutes with each of the four elements

ai, bi, ci, di for i = 1, . . . , 2n. It implies that (b1a1)
2 commutes with ai, bi, ci, di for

i = 1, . . . , 2n. Therefore, (b1a1)
2 is in the center of the fundamental group of ∆(2n).

This means that the center is non-trivial. This concludes our claim.
Now, since the image of (b1a1)

2 in the first homology group of π1(∆(2n)) is non-
trivial. Therefore, space (b1a1)

2 has infinite order in π1(∆(2n)). This proves the
proposition for ∆(2n). The case of ∆(2n− 1) has similar proof.

Remark. Another example of doodle whose fundamental group has infinite center
is given in Figure 6.4. Our method is applicable to this infinite family of doodles as
well.

Figure 6.4: A doodle with infinite center.

30



Chapter 7

CURVATURE OF DOODLE
GROUPS

In this chapter we will talk about doodles whose fundamental groups are automatic.
An automatic group was first introduced in 1986 by Thurston, motivated by results
of Jim Cannon on hyperbolic groups. Major work related to this important class of
groups was done by David Epstein in recent years.

We will use some definitions and results from [E], [GS1] and [GS2] for this chap-
ter.

Definition. An A2 complex is a 2-dimensional CW -complex equipped with a metric
with all 2-cells isometric to equilateral triangles.

Definition. An A2 complex X has non-positive curvature if every cycle without
backtracking in the link of the vertex has length greater than or equal to 6.

We will use the following theorem proved by Gersten and Short ([GS1] and [GS2])
to show that the fundamental group of some doodles are automatic.

Theorem 7.0.1. The fundamental group of a finite A2 complex of non-positive
curvature is automatic.

We restrict ourselves to the case of doodles on 2-sphere for simplicity.

Definition. A doodle ∆ on 2-sphere is said to be reducible if it can be represented
as the disjoint union of two doodles. Otherwise it is irreducible.

Doodle shown in Figure 7.1 is a reducible doodle since it is a disjoint union of
two doodles.

31



Figure 7.1: A reducible doodle on a 2-sphere.

Observe that every irreducible doodle is rigid as it can’t have a free component.
By Theorem 3.3.1, an irreducible doodle ∆ has a unique minimal diagram. Let us
denote it by ∆min.

Definition. A doodle ∆ on the 2-sphere is called thick if it is irreducible and each
cycle of even length of ∆min, without backtracking, has length greater than or equal
to 6.

Theorem 7.0.2. The fundamental group of any thick doodle ∆ can be realized as
the fundamental group of a finite A2 complex of non-negative curvature and is au-
tomatic.

Proof. Let ∆ be an irreducible doodle on 2-sphere. Let ∆min be the minimal dia-
gram of ∆. Recall that for doodles on 2-sphere, the fundamental group is isomor-
phic to the reduced fundamental group. Consider the reduced geometric realization
R̄(∆min) of the minimal diagram of ∆. Observe that the minimal diagram of an
irreducible doodle is a disk diagram. The reduced geometric realization R̄(∆min)
is a 2-dimensional complex with only one 0-cell since 2-sphere can be shrunk to a
point(by the definition of reduced geometric realization). Its 1-cells are in bijection
with the double points of ∆min and the 2-cells are in bijection with the regions of
∆min. Observe that since ∆min is the minimal diagram, each of the regions of ∆min

is bounded by at least 3 edges otherwise we can apply one of −1,−2 moves to it
and get another diagram which will contradict the fact that ∆min is minimal.

We want to make A2 complex out of R̄(∆min). For this, we triangulate each of
the 2-cells of R̄(∆min) and then make all triangles equilateral. Also we triangulate
it in such a way that it will not introduce new 0-cells. For example, if the region of
∆min (2-cell of R̄(∆min))) is an n-gon (n > 3), then the triangulation is a partition
of this n-gon into n− 2 triangles. Triangulate all of the 2-cells of R̄(∆min) like that
and then make all triangles equilateral.
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Now we fix an arbitrary such triangulation of the 2-cells of R̄(∆min). We de-
note this A2 complex with this fix triangulation by X(∆min). Observe that in this
notation we suppress the dependence on triangulations of the 2-cell.

X(∆min) has only one vertex. The link of the vertex is described as:
It is a 1-dimensional CW -complex such that for each double point v of ∆min we
have two 0-cells v+ and v− and if there is an arc connecting two double points v1
and v2 in ∆min, then there are two 1-cells connecting v+1 with v−2 and v+2 with v−1 .

If we consider ∆min as a 4-valent plane graph, then from above description cycles
of even length without backtracking of the diagram ∆min are in one-to-one corre-
spondence with the cycles without backtracking in the link of the only vertex of
X(∆min). Therefore, X(∆min) has non-negative curvature.

Therefore, if ∆ is a thick doodle on a 2-sphere then for any triangulation of
the 2-cells of R̄(∆min) as described above, the complex X(∆min). As π1(∆) ∼=
π(X(∆min)), Theorem 7.0.1 implies that the fundamental group of a thick doodle is
automatic.

Figure 7.2: .

We can construct thick doodles on 2-sphere from trivalent graphs without loops,
where loop is an edge that connects a vertex to itself. Let G be a trivalent graph
without loops on 2-sphere. To any such graph we can attach a doodle in the following
way:
On each edge of G, pick a point. If the two edges of G share a common point then
connect their corresponding chosen points by an arc . If two edges of G have two
points in common, connect the points corresponding to the edges by two arcs (See
Figure 7.2) This gives a 4-valent graph on the sphere which also represents a doodle.
We denote this doodle by D(G).
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Proposition 7.0.3. If G is a trivalent graph on the 2-sphere such that it doesn’t
have cycles of length less than 5, then the associated doodle D(G) is thick.

Proof. By construction of D(G), if G doesn’t have cycles of length less than 5 then
D(G) doesn’t have cycles of length less than 6. Therefore, the associated doodle
D(G) is thick.

So by constructing example of trivalent graphs on the 2-sphere without cycles of
length less than 5, we can create thick doodle D(G). Therefore, from proposition
7.0.3 we get an automatic group corresponding to every such example.
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