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Abstract

The main aim of this thesis is to study the Alexander’s Polynomial and it’s con-

struction. This polynomial is a knot invariant, that means, if we pick isotopic

knots, they will have the same value. We will look at two methods of construction

of the infinite cyclic cover of a knot group and in the process come up with an

invariant - The Alexander’s Polynomial as well as deduce a lower bound for the un-

knotting number of a knot. The subsequent chapters deal with applications of the

Alexander Polynomial and alternate procedures through which we can construct

the Alexander Polynomial.



Chapter 0

Introduction

The main theme of this thesis is the study of the Alexander Polynomial, which

is an invariant for knots. In Chapter 1, we begin with the problem of trying to

determine if a knot has unknotting number. This leads us to the construction

of the cyclic cover of the knot exterior, for which, we are going to describe two

methods. The Alexander Polynomial arises during this process and as it turns

out is a very useful tool for distinguishing knots. We introduce slice knots at the

end of Chapter 1 and try characterising the Alexander Polynomials of slice knots.

This will show that Alexander polynomials are also useful in ascertaining which

knots cannot be slice.

Chapter 2 deals with more invariants of knots, namely colourings. One of this

colourings turns out to be the Alexander Colouring. While, in Chapter 1, the

method of arriving at the Alexander’s Polynomial was topological in nature, the

method of calculating the Alexander’s polynomial in chapter 2 is combinatorial

and can be calculated using any diagram of the knot.

We introduce Braid groups in Chapter 3 and define homological representations

on the braid groups. One such representation, the Burau representation leads to

the Alexander Polynomial. We study the Burau representation in detail.

Chapter 4 provides yet another method of construction of the Alexander’s poly-

nomial, this time using only a presentation of the knot group. This method of

computation of the Alexander’s Polynomial uses the techniques of Fox Differential

Calculus or Free Differential Calculus devised by RH Fox. Using Free Differential

Calculus, the computations are eased largely for certain classes of knots.

1



Chapter 1

Cyclic coverings of the knot

complement

1.1 Unknotting a knot

This section is primarily taken from [Rob15]. Given any knot K in S2 (or R2),

we can obtain a knot diagram in S2 (or R2 ), which is simply the projection of

the knot along some plane (with some constraints of course). The information

regarding over and under arcs can be suitably provided with the aid of broken

arcs, i.e., when an arc goes under another arc, we represent the under arc as two

broken arcs on either side of the over arc. The simplest non-trivial knots that we

might think of would probably be the trefoil or perhaps the figure-8 knot.

An observation to be made here is that the knot diagram would be rendered totally

useless if the over and under crossing information were to be absent. In fact, given

any knot diagram of a non trivial knot, it is possible for us to construct a knot

diagram of the unknot that would emulate it except at the crossings. A way to

see this has been described in [Rob15]. We describe the method in brief.

Without loss in generality, we can consider that the knot has been projected along

the x− y plane, since the knot is a 1 dimensional manifold, we can parametrize it

by some variable t. Say (x (t) , y (t) , 0) denotes the equation of the knot diagram,

then we pick some point from this set (not a crossing point), say (x (t0) , y (t0) , 0),

we consider the curve (x (t) , y (t) , t) that starts at (x (t0) , y (t0) , 0) and ends at

(x (t0) , y (t0) , t0), we join these to points by a segment perpendicular to the x− y

2



Cyclic coverings of the knot complement 3

plane. Projecting along the y − z plane, we have the equation (y (t) , t) for the

curve. This doesn’t have any common points as the last co-ordinate is always

different. Its easy to see that this closed curve is in fact the unknot.

Remark 1.1.1. A diagram of a knot, can be unknotted using c/2 or less crossing

changes.

The reasoning behind this is as follows, if the curve (x (t) , y (t) , t) flips more than

c/2 crossings of the knot, then look at the curve (x (t) , y (t) ,−t) instead. In this

case, the number of crossing changes would be less than c/2, thus proving our

claim. Intuitively the first curve traverses strictly upwards while the second curve

traverses downwards.

A natural question now would be how many crossings do we need to switch to

give us the unknot. The previous argument tells us that given a knot diagram

with c crossings, the maximum number of crossing changes needed to perform this

would be c/2. Which of these knots can we turn into the unknot by performing

just one crossing change? As it turns out, there are no easy answers to this

seemingly simple question. Initial topological attempts to answer this question

might include the perusal of the knot complement which would consequently lead

us to the fundamental group and first homology of the knot complement, both of

which are redundant to our cause, albeit for contrasting reasons. The Wirtinger’s

Presentation for knot complements gives us a presentation for the fundamental

group of the knot complement (or the knot group). This presentation also makes

it clear that the abelianization of the knot group would be infinite cyclic. While

the Wirtinger’s presentation does provide a presentation for the knot group, it is

in general hard to tell if two presentations represent the same group. Thus, the

former would almost always be too complicated and the latter just oversimplifies

things.

We briefly state the Wirtinger’s presentation here. Let D be a diagram for a knot

K, let the arcs in D be labelled as αi. Fig 2.3 shows a crossing in the knot. The

Wirtinger’s Presentation says that the knot group is generated by loops ai, where

each ai is a loop from a point P taken perpendicular to the plane, can be viewed

as the eye of the reader. The loop ai goes under the arc αi at the crossing, as

shown in Fig 2.3. The relation between these loops is given by ajaia
−1
i = ai+1.

Thus π1 (S3 −K) = (a1, a2 . . . , an; r1, r2, . . . , rn), where ri is the relation at each
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crossing. It is easy to see that each relation becomes ai = ai+1 if the knot group

is abelianzed.

Thus, the homology and fundamental groups are not very useful apparently in

helping find the ’unknotting number’ of a knot. At this point, let us formally

define the unknotting number.

Figure 1.1: A crossing in D

Definition 1.1.2 (Unknotting number). Given a knot K, the unknotting number

of K is the minimum number of crossing changes needed to turn K into the unknot;

this minimum is taken over all knot diagrams.

What we could instead do, is take a look at a covering space of the S3 −K. The

classification of covering spaces tells us that for each subgroup B of π1 (S3 −K),

there exists a covering space E (with a covering map p), such that p∗ (π1 (E)) = B.

If we were to take the commutator subgroup of π1 (S3 −K), then the group of

deck transformations would be the abelianization of π1 (S3 −K) , i.e., Z. Also,

since the commutator group is unique, this infinite cyclic cover, too, is unique. We

shall look at two methods of construction of the cyclic cover. The first approach is

a standard method of creating a cyclic cover for any space whereas in the second

approach we will proceed to create multiple candidates for the cyclic cover by

removing the solid tori from the knot complement (and glue them back, albeit, in

a different manner). The uniqueness of the infinite cyclic cover the ensures, both

of these are the same object (upto homeomorphism).

1.2 The First Approach

This section is primarily taken from [Rob15] and [LL97].
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Definition 1.2.1 (Seifert Surface). A Seifert Surface F of a link L is a surface

with boundary in S3 such that ∂F = L

We will require a Seifert surface to construct a cover for the knot exterior. It is

clear that a Seifert surface for a knot is not unique as we can keep adding handles

to the surface (which do not alter the boundary of the surface) and get a different

Seifert surface.

Example 1.2.2. The simplest example of a Seifert surface is a disk bounding the

unknot.

Example 1.2.3. The Seifert surface of the trefoil is shown in Figure 1.2.3.

Figure 1.2: The Seifert surface of a trefoil

The following construction of the cyclic cover of a knot has been outlined in [LL97]

and was originally presented in [Ale28]. Let L be a link in S3. Consider a thickening

of the link, say N . N is then a union of disjoint solid tori. If F is a Seifert surface

of L, then N intersects F . Consider a regular neighbourhood F × [−1, 1] of F ,

we can identify F × {0} with F . We now look at the space X = S3 − N , i.e.,

the complement of thickened link. F ∩ X can also be identified as a copy of

F (since this is effectively just shrinking F slightly). Similarly we can identify

F × [−1, 1] ∩X as a copy of F × [−1, 1] (from here on referred to as F− and F+

respectively).

Cut X along F , call this new space Y . Cutting along F is equivalent to removing

a regular neighbourhood F × (−1, 1) around F . Hence, Y/ ∼ = X where ∼
denotes the identification of F × {−1} with F × {+1}. Take countable copies of

Y indexed by Z and call them Yi. Each Yi then has two copies of F , namely,

F−i and F+
i . There is a natural homeomorphism between F, F+, F− for all i, call

this φ. Similarly, let hi be the homeomorphism between Y and Yi. We construct
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the space X∞by taking a disjoint union of the Yi and gluing F−i to F+
i+1 by means

of the homeomorphism hi+1φh
−1
i . We will briefly state a few results of covering

space theory before proceeding. We assume p : X̃ → X is a covering map in the

following theorems. All of these can be found in [HPoM02] and [Mun18].

Theorem 1.2.4. (Existence of lifts) If p : X̃ −→ X if a covering map and

p∗ : π1

(
X̃
)
−→ π1 (X) is the induced map at the level of fundamental groups and

if Y is a path-connected, semi-locally connected space such that there exists a map

f : Y −→ X, such that f∗ (Y ) ⊆ p∗ (π1

(
X̃
)

), then there exists a lift f̃ : Y → X̃.

Theorem 1.2.5. (Unique Lifitng property of covering spaces) If we have a

covering map p : X̃ −→ X and there exist two lifts f̃1 , f̃2 of a map f : Y −→ X such

that they agree at a point p, then they agree everywhere, that is, f̃1 = f̃2.

Definition 1.2.6. Given a covering map p : X̃ → X, a deck transformation or a

covering transformation is a homeomorphism f of X̃ that preserves the covering

map, i.e., p ◦ f = p.

The set of deck transformations is a group under composition of function. We

denote this group as G (D). Since, deck transformations can be seen as lifts from

X̃ → X̃ , we immediately deduce from Theorem 1.2.5 that two deck transforma-

tions that agree at a point must agree everywhere.

Definition 1.2.7. Regular covering X̃ is said to be a regular cover for X if for

any two points a and b in a given fibre of a point x ∈ X under the covering map,

there exists a (unique) deck transformation f such that f (a) = b.

Theorem 1.2.8. The group of deck transformations of X̃ is isomorphic toN (H) /H ,

where H = p∗ (π1

(
X̃
)

) and N (H) is the normaliser of H in π1 (X)

There’s a natural self-homeomorphism t of X∞ given by t|Yi = hi+1h
−1
i , that

preserves the commutative diagram 1.2. What this homeomorphism does is it

shifts a point in Yi to the corresponding point in Yi+1, i.e., shifts the point by ’one

unit right’.

X∞

p

��

t // X∞

p
||

X
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Definition 1.2.6 tells us that t is a deck transformation. Under the projection

map, the fibre of a point x ∈ X is the corresponding element in each copy of

Yi. If there are two points xi ∈ Yi, xj ∈ Yj, then without loss of generality we

can assume i ≤ j, then Yj = Yi+k( and xj = xi+k) for some integer k. Then,

tk|Yi (xi) = hi+kh
−1
i (xi) = xi+k. This cover is ,thus ,a regular cover. Clearly, the

group < t > is infinite-cyclic, which means that the group of deck transformations

of X∞ is infinite-cyclic. We can further deduce the structure of the group H =

p∗ (π1 (X∞)) using Theorem 1.2.8. By Theorem 1.2.8, Z ∼= N (H) /H . We have

seen through the Wirtinger’s presentation that the Abelianization of the knot

group is infinite-cyclic. Since, the commutator subgroup of a group is unique,

this forces H = [π1 ()X, π1 (X)] and thus N (H) = π1 (X) . We thus, have our

infinite cyclic cover X∞. At this point we will take a detour and examine this

more closely. We will see how this gives rise to an useful knot invariant, the

Alexander polynomial, which was the first knot polynomial to be discovered. This

homeomorphism induces a group homomorphism t∗, of H1 (X∞,Z). H1 (Y,Z) is

finitely generated, this will be proved shortly, but the H1 (X∞,Z) is not finitely

generated as a group as it contains countably many of these Yi. We can, however,

use this induced action of t, to give a module structure which would make it a

finitely generated module. If [ei] denoted the generators of Y0, then any element of

H1 (X∞,Z) can be written as finite sum
∑

i,j aijt
i
∗ [ej], here

∑
i,j aijt

i
∗ is an element

of the group Z [t, t−1]. Thus there is a well defined Z [t, t−1]-module structure on

H1 (X∞,Z). Before proceeding further, it would be wise to describe the first

homology of compact connected surfaces.

1.2.1 Classification of compact surfaces

We briefly classify compact surfaces with boundary. One can refer to [Rob15] and

[Mun00] for more details about the classification of surfaces.

Definition 1.2.9. For a compact surface F and any triangulation of F , the quan-

tity χF = (number of vertices - number of edges + number of faces) is constant

and is called the Euler characteristic of F .

Theorem 1.2.10. Given a compact oriented surface F with boundary, the surface

is determined up to homeomorphism by it’s Euler characteristic and number of

boundary components and the Euler characteristic is given by χF = 2 − 2g − n,
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where g denotes the genus or the number of handles attached to the surface and

n denotes the number of boundary components.

We take a look at a few explicit examples. Figure 1.3 shows 2-discs being glued

Figure 1.3: Two 2-discs being identified along the edges to give rise to a sphere

together along the edges to form a sphere. Using this triangulization, post gluing,

there are 2 faces, 3 vertices and 3 edges. Thus the Euler characteristic of the sphere

is 2. Since the Euler characteristic is calculated using the formula 2 − 2g − n,

2 is the highest Euler characteristic of any compact oriented surface. Thus the

sphere, up to homeomorphism, is the only compact oriented surface that has Euler

characteristic 2. If we remove a disc from the sphere, then the resultant surface

has one boundary component- the boundary of the disc removed. This surface is

nothing but the 2-disc, which is homeomorphic to one of the triangles shown in

Figure 1.3. As we can see there are 3 vertices, 3 edges and one face. Therefore, it’s

Euler characteristic is 1. Observe that the Euler characteristic drops by 1 when

we remove a disc (or introduce a boundary component). If we remove 2-discs from

Figure 1.4: The annulus

the sphere, we get the annulus, which is shown in Figure 1.4, any triangulation

of the 2nd diagram would show that the Euler characteristic of the annulus is 0.

One such triangulization is shown in Figure 1.5. Here, as we can see there are 6

vertices, 6 faces and 12 edges, showing that the Euler characteristic of the annulus

is 0.

Theorem 1.2.11. IfA, andB are two compact oriented surfaces, then χ (A ∪B) =

χ (A) + χ (B)− χ (A ∩B).
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Figure 1.5: One triangulization of the annulus

Proof. Consider a triangulization of A ∩ B and extend this to a triangulization

on A ∪ B. We denote the number of vertices, edges and faces of the spaces

as v (∗) , e (∗) , f (∗) respectively. Then v (A ∪B) = v (A) + v (B) − v (A ∩B),

since we will end up counting the number of vertices of A ∩ B twice. Similarly,

e (A ∪B) = e (A) + e (B)− e (A ∩B) and f (A ∪B) = f (A) + f (B)− f (A ∩B)

Combining these three equations we get our desired proof.

Theorem 1.2.11 is a very useful tool in computing the Euler characteristic of

surfaces as it allows us to break down surfaces into simpler components. To

demonstrate this let us look at the case when we add a handle to a sphere. Figure

Figure 1.6: Sphere with one handle

1.6 displays this space. The sphere with one handle is attached by removing two

discs from the sphere and attaching a cylinder as shown in the figure. We use

Theorem 1.2.11 to calculate it’s Euler characteristic. Take A to be the sphere

with the two open discs removed and B to be the cylinder. We have seen previously

that each disc removed from the sphere drops it’s Euler characteristic by 1 and

that the Euler characteristic of an annulus (which is homeomorphic to a cylinder)

is 0. A ∩ B is just the disjoint union of two circles, whose Euler characteristic is

zero(as they can be triangulized as a 1-dimensional triangle with three vertices,

three edges and zero faces). Thus χ (A) + χ (B) − χ (A ∩B) = 0. What we

observe here is that adding a genus to the sphere, drops the Euler characteristic

by 2. The kind of surfaces we will be interested in this chapter are Seifert surfaces,

the boundary of which is a knot or a link. This means that there must exist at least

one boundary component. Since a surface is determined up to homeomorphism
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by the number of boundary components and the Euler characteristic, any two

surfaces that we construct which have the same Euler characteristic and number

of boundary components are bound to be homeomorphic. Figures 1.7 and 1.8 are

examples of surfaces with one boundary component (a disc) which are attached

with handles. Each handles drops the Euler characteristic by 2. Figure 1.9

Figure 1.7: A disc with a handle attached

Figure 1.8: A disc with n handles attached

shows another description of disc with a handle attached. Tracing the outline of

the figure on the left would show that there is only one boundary component.

On the right we have a splitting of this surface into three subspaces. We will use

Theorem 1.2.11 on these subspaces. Each of these subspaces are homeomorphic to

a disc and the pairwise intersection of these spaces are two pair of disjoint segments

(and an empty set) as shown in the diagram. Segments have Euler characteristic

one as they can be represented by an edge between two vertices. Thus the Euler

characteristic is 3 − 4 = −1, which coincides with a disc with a handle attached.

The final step is constructing an arbitrary surface (with at least one boundary

Figure 1.9: An alternative construction of a disc with a handle attached

component). To add more boundary components to the surface in 1.9, we can

just remove discs and to increase it’s genus, as we have seen, it suffices to add a

’band’ on the surface. This is displayed in Figure 1.10.
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Figure 1.10: A surface with g genus and n boundary components

1.2.2 First homology of a surface

This section is taken from [LL97].

We would to like to define a bilinear form on the first homology group of X

(with integral coefficients) and relate it with linking number(which we shall define

shortly). As it happens there’s a theorem that precisely does this job. We describe

the theorem and delineate it’s proof.

First we describe the setup, we consider an oriented surface F embedded in S3.

Let F be a 2-manifold with boundary with n boundary components and genus g.

Without loss in generality, our surface looks as displayed in Fig 1.10.

Figure 1.11: A surface with genus g and n boundary components

Theorem 1.2.12. Let F be as described above. Then, the first homology groups

of F and S3 − F are isomorphic. Furthermore there is a unique bilinear from β

β : H1 (F,Z)×H1

(
S3 − F,Z

)
−→ Z

such that β (a, b) = lk (a, b), where lk (a, b) denotes the linking number of a with

b. Here a and b are any two closed oriented simple curves.

We provide (one of) the definition of linking number in brief here.

Definition 1.2.13 (Linking Number). Let a and b be two disjoint closed simple

curves in S3. As, H1 (S3 − b,Z) ∼= Z. In H1 (S3 − b,Z), the class [a] = nγ where

γ is a generator of H1 (S3 − b,Z), for some integer n. The linking number lk (a, b)

is defined to be n.
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Proof. Consider a regular neighbourhood V of F in S3. Since V deformation

retracts to F , their homologies are the same. Now consider the closure of the

complement of V in S3, call it V ′. Applying the Mayer-Vietoris sequence to

V and V ′, we get the following long exact sequence:

· · · −→ H2

(
S3,Z

)
−→ H1 (∂V,Z) −→ H1 (V,Z)

⊕
H1 (V ′,Z) −→ H1

(
S3,Z

)
−→ . . .

Since, Hm (Sn,Z) is 0 for m 6= n, the first and last homology groups in the sequence

are 0 and consequently H1 (∂V,Z) ∼= H1 (V,Z)
⊕

H1 (V ′,Z). We now closely in-

spect H1 (∂V,Z), V is homeomorphic to a 3-sphere with (2g + n− 1) handles.

Therefore, ∂V is the boundary of such a sphere. Its first homology is isomorphic

to
⊕

2g+n−1

Z
⊕

2g+n−1

Z. Let {fi : 1 ≤ i ≤ 2g + n− 1} and {ej : 1 ≤ j ≤ 2g + n− 1}

be generators of H1 (∂V,Z). These generators can be chosen in such a way that

each fi goes around the meridian of the ith handle of the sphere (the handles of

the sphere labelled in an appropriate manner), thus being the boundary of a disc

in V . The eis are consequently chosen so that each ei goes around the ith handle

and each ei intersects each fi exactly once. Now, as these fis form the boundary

of a disc in V , the inclusion map from ∂V to V , takes it to the trivial element, as

fi would now be contractible in V . Thus there would have to be an isomorphism

between H1 (V,Z) and the subgroup generated by {fi}ni=1. Thus H1 (V ′,Z) would

be isomorphic to the subgroup generated by the {ei}ni=1, i.e.,
⊕

2g+n−1

Z. Thus giving

us our intended result that H1 (V,Z) ∼= H1 (V ′,Z).

We now define the bilinear form β. First we define β on the generators, β (ei, fj) =

δij, where δij is the Kronecker-Delta function. This can be extended linearly.

Observe that in S3, ei only links with fi. For any two curves a and b in F and

S3 − F respectively, [a] and [b] can be expressed as
2g+n−1∑
i=1

ci [ei] and
2g+n−1∑
i=1

di [fi].

Hence, β (a, b) =
∑
cidi. As, a ∈ F and b ∈ S3 − F , a ∈ S3 − {b}. Thus,

lk(a, b) = β (a, b).

To verify that {fi} indeed generates H1 (F,Z), we can take an annulus, in which

one of the band is contained, as shown in Fig 1.12 and call it U . Let V be the

closure of F − U in F , then F ∩ U is homeomorphic to a closed interval whose
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homologies are zero. The Mayer-Vietoris sequence then gives us an isomorphism

between H1 (U,Z)
⊕

H1 (V,Z) and H1 (F,Z).

Since U is an annulus which deformation retracts to a circle, it’s first homology is

a copy of Z. Repeatedly applying this argument gives us an isomorphism between⊕
2g+n−1 Z

⊕
H1 (W,Z) and H1 (F,Z) , where W is a surface as shown in Fig 1.11

with no boundaries, i.e., only the bands on the top would be present.

Figure 1.12: A description of U: the blue line being the boundary of U and
the read line being the boundary of the rest of the surface

Next we shift our focus to the bands on top, as described in Fig 1.13. Take U ′ to

be the annulus enclosed by the blue boundary and U ′′ be the annulus enclosed by

the red boundary, take V ′ = W ∩U c∪(U ′ ∩ U ′′). Then U ′∪V ′ = W . Applying the

Mayer-Vietoris sequence to this decomposition we get: · · · −→ H2 (U ′ ∪ V ′,Z) −→
H1 (U ′ ∩ V ′,Z) −→ H1 (U ′,Z)

⊕
H1 (V ′,Z) −→ H1 (U ′ ∪ V ′,Z) −→ . . . Since

U ′ ∩ V ′ is homeomorphic to 2-disc, H1 (U ′ ∩ V ′,Z) is trivial, thus we get an iso-

morphism betweenH1 (U ′,Z)
⊕

H1 (V ′,Z) andH1 (W,Z). Here, H1 (U ′,Z), owing

to the fact that it is homeomorphic to an annulus, is a copy of Z. Shifting our

focus to W ′, we notice that it has two boundaries, one of them inside the annulus

enclosed by the red boundary, by previous line of argument we find that this an-

nulus contributes one generator to H1 (F,Z). Repeatedly applying this argument

we will end up with H1 (F,Z) =
⊕

2g+n−1 Z
⊕

H1 (T,Z) where T is homeomorphic

to a 2-disc, hence, H1 (F,Z) =
⊕

2g+n−1 Z. This verifies our initial claim.

Figure 1.13: A description of U ′ and V ′

We are now ready to resume our discussion on defining a bilinear form F . Recall

the setup as described in Section Let D be a 2-disk with boundary with n marked
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points in the interior of the disk. We denote this set of n points as Q. Let i− and

i+ denote the inclusion maps from F×{0} to F×{−1} and F×{+1} respectively.

Then, define

α : H1 (F,Z)×H1 (F,Z) −→ Z

α ([a] , [b]) = β (i∗− [a] , [b]) = lk
(
f−i , fj

)
.

On picking a basis {fi} for the Seifert Surface, we are able to define the Seifert

Matrix A. The entries Aij of A are given by α ([fi] , [fj]). Using the description of

the Seifert Matrix we can find an expression for the f−i s and f+
i s in terms of the

corresponding [ej]s :

[
f−i
]

=
∑
j

aij [ej]

=⇒ lk(f−i , fj) = aij = Aij

=⇒
[
f−i
]

=
∑
j

Aij [ej]

Similarly,
[
f+
j

]
=
∑
i

Aij [ei]

1.2.3 Presentation Matrices

This is the final pit stop on our route to getting to the Alexander’s polynomial.

Let R be a ring and M be a module over R. If E and F are free modules of

finite rank over R, then a finite presentation for M is given by the following exact

sequence:

Rm α−→ Rn β−→M −→ 0

We know that every module is the quotient of a free module,hence there is a

surjective map.

Rn β−→M −→ 0

In case we are fortunate enough to a have a finitely generated kernel, we have the

following map:

Rm α−→ Kerβ
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Thus giving us our initial exact sequence:

Rm α−→ Rn β−→M −→ 0

The basis elements of E can thus be thought of as the generators for M , while

those of F can be thought of as relations between those generators.

A presentation matrix of a module, as it happens, is far from unique. In fact, any

elementary operation on the matrix A of the linear map α, would give us another

presentation. We make the following claim, any two finite presentation matrices

A and A1 for the module M differ by the following moves:

1. Switching rows or columns

2. Replacing A by

(
A 0

0 1

)

3. Replacing A by
(
A 0

)
4. Adding a scalar multiple of a row or column to another row or column

To prove this consider two presentations for M :

Rm

γ
��

α // Rn φ //

β
��

M //

Id
��

0

Rm1
α1 // Rn1

φ1 //M // 0

Take a basis {e1, e2, . . . , en} for Rn, then {φ (ei)} generates M . As φ1 is surjective,

we can pick elements e
′
i ∈ Rn1 such that φ1

(
e
′
i

)
= φ (ei) and extend this map

linearly, call this map β. Note that φ = φ1β =⇒ Kerφ = Ker (φ1β) =⇒
Kerβ ⊆ Kerφ1 Similarly, given a basis {fi} of Rm, βα ⊆ Kerφ1 as Kerφ = Im α.

Also we have Im α1 = Ker φ1. Therefore arguing as above, we get a map γ such

that α1γ = βα. If the matrix of these modules maps α, α1, γβ were A,A1, C,B

respectively, then BA = A1C. By a completely symmetric argument we would

be able to find maps β1 and γ1 from Rn1 to Rn and from Rm1 to Rm (and their

matrix B1 and C1) respectively. In this case B1A1 = AC1
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Under our 4 equivalence moves, on application of the second move, we have:

A ∼

(
A 0

0 I

)

Performing the fourth move (adding scalar rows ), we can get:

A ∼

(
A B1

0 I

)

The matrix on the right is now a (n+ n1) × (m+ n1) . We then add m + 1

columns of zeros and perform the fourth operation (addition of scalar multiple of

the columns of

(
B1

I

)
to the columns of zeros) to get:

A ∼

(
A B1 B1A1

0 I A1

)

Since AC1 = B1A1, we can use the fourth operation (column operation) to get:

A ∼

(
A B1 0

0 I A1

)
Again on addition of zero columns and addition of scalar multiple of the columns

of

(
B1

I

)
to the columns of zeros, we get:

A ∼

(
A B1 0 B1B

0 I A1 B

)

Note φβ1β = φβ = φ, Since Ker φ = Im α, β1β − IdE ⊆ Im α. As E is free, there

is map ∂ : E −→ F such that β1β − IdE = α∂, thus if D is the matrix representing

∂, we have AD = B1B − I. Now on applying property 4, we have:

A ∼

(
A B1 0 B1B

0 I A1 B

)
∼

(
A B1 0 I

0 I A1 B

)

A simple permutation of the rows and columns gives us: A ∼ A1
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Definition 1.2.14. If M is a module over a ring R , and A is an m×n presentation

matrix for M , then the ideals generated by the (m− r + 1)× (n− r + 1) minors

are called the r-th Elementary Ideals

We can observe that the four equivalent operations do not affect the minors and

hence, elementary ideals are invariant under different presentations of the same

module.

1.2.4 The Alexander’s Polynomial

We now have all the tools to obtain the Alexander’s Polynomial. Our line of

attack will be applying the Mayer-Vietoris sequence to a decomposition of X∞and

proving that we indeed get a presentation matrix for H1 (X∞,Z).

Consider the decomposition X∞=Y ′ ∪ Y ′′, where Y ′ = ∪Y2i and Y ′′ = ∪Y2i+1.

This gives rise to a short exact sequence of chain groups:

0 −→ Cn (Y ′ ∩ Y ′′) α−→ Cn (Y ′)
⊕

Cn (Y ′′)
β−→ Cn (X∞) −→ 0

To get a Long-Exact sequence of modules from this short exact sequence of groups,

we need to verify that this exact sequence of groups can be made into a exact

sequence of modules. First, we note that the action of t interchanges Y ′ and Y ′′,

thus Y ′ and Y ′′ aren’t Z [t, t−1]modules. However, each of the terms in the above

exact sequence is closed under the action of t, thus we need to only check the maps

α and β are Z [t, t−1]module maps. This is achieved if we define α (x) = (−x, x)

and β(a, b) = a+ b, then βα = 0. This enables us to get the following long exact

sequence of modules:

· · · −→ H1 (Y ′ ∩ Y ′′,Z)
α∗−→ H1 (Y ′,Z)

⊕
H1 (Y ′′,Z)

β∗−→ H1 (X∞,Z)
∂−→

∂−→ H0 (Y ′ ∩ Y ′′,Z)
α∗−→ H0 (Y ′,Z)

⊕
H0 (Y ′′,Z) −→ . . .
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Consider Y ′ ∩ Y ′′, it is the union of countable disjoint copies of F , we can,

thus, identify H0 (Y ′ ∩ Y ′′,Z) with Z [t, t−1]
⊗

ZH0 (F,Z). Since F is connected,

H1 (F,Z) is isomorphic to Z. So, 1
⊗

1 is a generator of
⊗

ZH0 (F,Z) . Similarly

H0 (Y ′,Z)
⊕

H0 (Y ′′,Z) can be written as Z [t, t−1]
⊗

ZH0 (Y,Z) as H0 (Y ′,Z) and

H0 (Y ′′,Z) are both countable direct sum of Z. Under this convention α ∗ (1
⊗

1)

maps to (−1
⊗

1)+(t
⊗

1). This is because the generator of H0 (F,Z) is included

in Y0 and Y1 under the map α and the sign on the former is negated. This tells

us that α∗ is injective, as any element
∑

(ant
n
⊗

1) would be mapped by α to∑
an ((−tn

⊗
1) + (tn+1

⊗
1)). Since α∗ is injective and the sequence is exact, β∗

is surjective, implying that we have the following exact sequence:

· · · −→ H1 (Y ′ ∩ Y ′′,Z)
α∗−→ H1 (Y ′,Z)

⊕
H1 (Y ′′,Z)

β∗−→ H1 (X∞,Z)
∂−→ 0

This is a Z [t, t−1]module presentation for H1 (X∞,Z). All we now need to do, is

compute the matrix of the presentation map α∗ between H1 (Y ′ ∩ Y ′′,Z)

and H1 (Y ′,Z)
⊕

H1 (Y ′′,Z). As done previously, we can rewrite the module

H1 (Y ′ ∩ Y ′′,Z) as Z [t, t−1]
⊗

ZH1 (F,Z). If x ∈ H1 (Y0 ∩ Y1,Z), then x can be

denoted as 1
⊗

x, this can be translated appropriately by the action of t. Let

{fi} be basis for F . Arguing in the same way H1 (Y ′,Z)
⊕

H1 (Y ′′,Z) can be

written as Z [t, t−1]
⊗

ZH1 (Y,Z). Recall that Y is the space X with a regular

neighbourhood (a thickening) of F removed, hence a basis for H1 (Y,Z) is given

by the corresponding {[ei]}s. Inclusion fi into Y results in f−i

α∗

(
1
⊗

[fi]
)

=
∑
j

(
−Aij

(
1
⊗

[ej]
)

+ Aji

(
t
⊗

[ej]
))

The presentation matrix is thus given by (A− tAtr) (upon multiplication by a

unit). Here A is the Seifert matrix. We get a bunch of link invariants from the

elementary ideals of this matrix, the most significant one being the first elementary

ideal.

Definition 1.2.15. Alexander Polynomial A generator of the smallest principal

ideal containing the first elementary ideal of (A− tAtr) is called the Alexander

Polynomial of a knot.

As we can see, the Alexander’s polynomial is unique only upto the multiplication

by a unit. We thus have gotten hold of a very computable invariant of knot.
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1.3 The Second Approach

This section is taken from [LL97] and [Rol75]. Since the commutator subgroup

is unique, the cyclic cover for a knot exterior is unique. Therefore any method

we use to arrive at a cyclic cover, should provide us with the same results (up to

homeomorphism). The next method we use to construct a cyclic cover is using

the method of surgery. It is easier to see this using an explicit example. We will

consider the knot 41.

Consider the knot 41 in the space S3 as shown in Figure 1.14. Around a crossing

of this knot, we consider a solid torus T and remove the solid torus from this space,

i.e., we consider the space S3 − T .

Figure 1.14: The Figure eight knot

A crossing of the knot 41 lies inside the cavity of the solid torus. It is then

possible to find a neighbourhood of the crossing which is homeomorphic to the

standard solid cylinder, which is bounded on the sides by the the solid tori. Now

performing, the Dehn twist on this solid cylinder, flips the strands. If the standard

solid cylinder is denoted as D2 × I, then, explicitly the Dehn twist is defined as

follows:

f : D2 × I → D2 × I

(s, t) 7→
(
sei2πt, t

)
We have identified D2 with the complex unit disc. Now this homeomorphism is

isotopic to the identity since we can now decay it to the identity outside an open

neighbourhood containing the cylinder in S3 − T . This process would extend the

homeomorphism f to a homeomorphism h of the entire space S3−T . It is easy to

see simply by drawing a diagram of the figure eight knot that if we were to switch



Cyclic coverings of the knot complement 20

a crossing, then the resulting diagram would be that of the unknot, meaning the

unknotting number of the figure eight is one. This means, in S3 − T it should

be possible to now isotope the knot into the unknot. The catch here is that the

homeomorphism h cannot be extended to all of S3 because that would imply that

the unknot is isotopic to the figure-8 knot (!).

Figure 1.15: The Figure eight knot with the torus removed around a crossing

Figure 1.16: Upon isotopy

Fig 1.15 and Fig 1.16 describe this process. We obtain the space in Fig 1.16

after an isotopy. Let us denote these composition of homeomorphisms as g, then

g (K) is unknotted in this space. This is because of the fact that the unknotting

number of the figure eight knot is 1. The homology of this space is generated by

the meridian of the torus. To construct the cyclic covering of the figure eight knot

exterior, we cut along the Seifert surface of the knot in this space, which is just a

disc and glue back the solid tori sending meridian to the curve showed in Fig . We

keep track of the meridian as we perform the isotopy. Then we attach countable

such copies along the Seifert surface.

We denote the cyclic cover of S3 − g (K) by X∞. This space is homeomorphic to

R1 ×R2, since S3 − g (K) ∼= S1 ×R2 . The covering map is simply p : R×R2 →
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S1 × R2, p (x, y) = (e2πx, y). The group of deck transformations, thus, are all

tk, k ∈ Z where tk : R×R2 ×R2, tk (x, y) = (x+ k, y).

To compute the homology of X∞, we first compute the homology of the X∞ −
∪ktkT , where T is the solid torus. This group is generated by the by the tkα.

The effect that gluing in the solid tori has on the homology is killing the class

of meridional loop which are denoted by tα − 3α + t−1α. Expressing H1 (X∞,Z)

as a module over Z [t, t−1], we see that α is a generator while tα − 3α + t−1α is

a relation and a presentation matrix for H1 (X∞,Z) is given by the 1 × 1 matrix

[t− 3 + t−1], which is also the Alexander Polynomial of the figure-eight knot.

Even though this method was performed using the figure-eight, the method used

can be generalized to all knots. The idea is to remove solid tori from around the

crossings of knot till we get back the unknot, if we use m solid tori then we will get

a presentation for H1 (X∞,Z) with m generators and m relators. This immediately

tells us that if we have a knot which can be unknotted with m crossing changes,

then the rth elementary ideals of the module for every r > m is the entire ring

Z [t, t−1]. Thus proving the following theorem.

Figure 1.17: The Cyclic cover of the figure eight knot

Theorem 1.3.1. If the rth elementary ideal of the Alexander module of a knot

isn’t Z [t, t−1], then the unknotting number of the knot, u (K) ≥ r.

The figure above shows a diagram of the Pretzel knot (3, 3,−3). The diagram

also shows a Seifert surface for the knot (the shaded area). f1 and f2 are two
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Figure 1.18: A diagram of the knot 946 or the pretzel knot P (3, 3,−3).

generators of the first homology. The Seifert matrix is given by:

A =

(
3 2

1 0

)

Then the presentation matrix for the Alexander Module is:

tA− Atr =

(
3t− 3 2t− 1

t− 2 0

)

The first elementary ideal is generated by (2t− 1) (t− 2) = −2t2 − 5t + 2, which

is also the Alexander Polynomial of the knot. The second elementary ideal is

generated by the polynomials (2t− 1) (t− 2). If the ideal generated by these

polynomials were to be the entire ring Z [t, t−1], then the evaluation map at any

integer would map the entire ring of integers. Evaluating at −1, we see that both

these polynomials map to −3, hence the image of the ideal under this evaluation

map would be 3Z which isn’t the entire ring. Hence this ideal is not the entire

ring. By Theorem 1.3.1, unknotting number of this knot must be greater than 2.

It is not difficult to see that we can undo the knotting by two crossing changes.

We have thus caught hold of a method that can help us in distinguishing which

knots have unknotting number 1.

1.4 Slice Knots

This chapter is taken from [LL97], [Tei10] and [Kau87].
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1.4.1 Introduction

This section is taken from [Tei10],[LL97] and [Kau87]. We will look at slice knots,

which ’bound a disc’ in the 4th dimension and thus can be said to be the next best

thing to the unknot in some sense. We will look at slice knots and their properties

and try to ascertain what they look like. The main result of this section will be

proving that all slice knots have Alexander Polynomials which split into factors

which are functions of the variable and it’s inverse respectively.

Definition 1.4.1. Given a manifold M of dimension m and a submanifold N of

M of dimension n, N is said to be locally flat if at every point x of N , there exists

a neighbourhood U of M such that the pair (U,U ∩N) is homeomorphic to the

pair (Rm, Rn).

A knot K in S3 is an embedding of S1. The unknot, amongst other reasons, is

distinguished in the light that it bounds a 2-disc. This disc is locally flat. Every

knot is unknotted in S4 due to the extra dimension available for movement. A

natural question now would be which knots bound a locally flat disc in B4 (or R4).

As it so happens, there’s a 2-disc bounding every knot in B4. We can simply view

B4 as the cone over S3 and subsequently we would have a cone over any knot K

lying in S3. The problem would occur at the point of coning. Let us denote this

point as P . Then any neighbourhood of B4 around this point P would have a

copy of K on its boundary. We seek to avoid these mishaps. Hence, we have the

following definition.

Definition 1.4.2. (Slice Knots) A knot K lying in S3 is said to be slice if there

is a flat disc D in B4 such that ∂D = D ∩ S3 = K.

This also means that D has a neighbourhood N that is homeomorphic to D× I2,

where I is the unit interval, meeting S3 in ∂D × I2. ∂D × I2 is just a thickening

of the knot in S3.

Intuitively, for a knot to be slice, it means we can arrange a sequence of concentric

S3 spheres such that the knot K moves through these spheres and forms either of

the following:

1. A maxima or a minima (non-singularity).
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Figure 1.19: Cone over the trefoil

Figure 1.20: Maxima

Figure 1.21: Minima

Figure 1.22: Singular Level

Figure 1.23: Saddle point, Source: https://commons.wikimedia.org/wiki/
File:Saddle_point.png

2. A saddle point (singularity).

The simplest example of a slice knot is the Stevedore 61 knot. To see this, we

construct what is called a ’movie’. Each frame shows a copy of the knot in a

concentric sphere. This is shown in Figure 1.24. In the remainder of the chapter

we will try figuring out what the Alexander Polynomials of slice knots look like.

https://commons.wikimedia.org/wiki/File:Saddle_point.png
https://commons.wikimedia.org/wiki/File:Saddle_point.png
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Figure 1.24: A Movie of the 61 knot being slice, Source: [Tei10]

Lemma 1.4.3. If D is a slicing disc of the slice knot, then the inclusion map

S3 −K ↪−→ B4 −D induces an isomorphism of the first homologies.

Proof. We use the Mayer-Vietoris sequence applied to the subspaces N and the

closure of it’s complement in B4. N is a regular neighbourhood of D, i.e., it is

homeomorphic to D × I2. Additionally, N meets S3 in K × I2. The intersection

of these two spaces is homeomorphic to D × ∂I2. This gives rise to the following

sequence.

H2

(
B4,Z

)
−→ H1

(
D × ∂I2,Z

)
−→ H1 (N,Z)

⊕
H1

(
B4 −N,Z

)
−→ H1

(
B4,Z

)
Since, Bn is contractible, we have Hn (Bm,Z) = 0. This implies that the second

map is an isomorphism. H1 (D × ∂I2,Z) ∼= H1 (D,Z)
⊕

H1 (∂I2,Z). D is in-

cluded in N , hence, H1 (D,Z) ∼= H1 (N,Z). This would imply that H1 (∂I2,Z) ∼=
H1

(
B4 −N,Z

)
. Since ∂I2 is simply a meridional loop around the knot, a gen-

erator of ∂I2 would be homologous to a generator of H1 (K,Z). Since N is just a

thickening of D, it deformation retracts to D, thus proving the statement of the

theorem.
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1.4.2 Alexander Polynomial of the slice knots

This section is primarily taken from [LL97]. Our attempt will be to find a gen-

eral form of the Seifert matrix of a slice knot. Examples of slice knots are the

61, 88, 89, 820. The Alexander Polynomial for these knots are:

• 61 = −2 + 5x− 2x2 = − (t− 2) (2t− 1)

• 88 = 2− 6x+ 9x2 − 6x3 + 2x4 = (2− 2x+ x2)(1− 2x+ 2x2)

• 89 = −1 + 3x− 5x2 + 7x3 − 5x4 + 3x5 − x6 = −((−1 + x− 2x2 + x3)(−1 +

2x− x2 + x3))

• 820 = 1− 2x+ 3x2 − 2x3 + x4 = (1− x+ x2)2

Each of the Alexander polynomials of these knots can be factorised. This provides

a hint about how the Alexander Polynomials of these slice knots might look like.

We will rely on the following two theorems to arrive at a conclusion.

Theorem 1.4.4. Given a slice knot K, if F is a Seifert surface in S3 and D is a

slicing disc for K, then there exists a 3-manifold M with boundary in B4, such

that ∂M = K ∪D.

Theorem 1.4.5. If there are two maps fi : B2 −→ B4, for i = 1, 2, such that

on ∂B2 the maps are homeomorphisms and the images of the fi are disjoint, the

linking number of the boundary of each map is zero.

For any 3-manifold M with boundary we have the following theorem. We will

need a few results of homology and cohomology to prove Theorem 1.4.9.

Theorem 1.4.6. (Poincaré Duality) If M is a closed orientable m-manifold, then

then,

Hk (M,Z) ∼= Hn−k (M,Z)

for 1 ≤ k ≤ n.

Theorem 1.4.7. (Lefschetz Duality) If M is a compact oriented n-manifold with

boundary, then

Hk (M ; ∂M,Z) ∼= Hn−k (M,Z)

for 1 ≤ k ≤ n.
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Theorem 1.4.8. (Universal Coefficient Theorem) Let X be a topological space

and A be any Abelian group and G be a module over a principal ideal domain.

• (Universal Coefficient Theorem for Homology) There is a short exact se-

quence:

0→ Hi (X,Z)⊗ A→ Hi (X,A)→ Tor1 (Hi (X,Z) , A)→ 0

• (Universal Coefficient Theorem for Cohomology) Then there is a short exact

sequence:

0→ Ext1
R (Hi−1 (X,R) , G)→ H i (X,G)→ HomR (Hi (X,R) , G)→ 0

Theorem 1.4.9. Let ∂M be a surface with genus g. If the inclusion map is

i : ∂M ↪−→ M , then the kernel of the induced homology map i∗ : H1 (∂M,Q) ↪−→
H1 (M,Q) is a subspace of dimension g.

Proof. Using Lefschetz-Duality theorem we have the following two isomorphisms:

H2 (M ; ∂M,Q) ∼= H1 (M,Q)

H1 (M,Q) ∼= H2 (M ; ∂M,Q)

and using the Poincaré Duality theorem we have the following:

H1 (∂M,Q) ∼= H1 (∂M,Q)

Now, we use the homology and cohomology exact sequences:

H2 (M ; ∂M,Q)

��

d // H1 (∂M,Q)

��

i∗ // H1 (M,Q)

��
H1 (M,Q) i∗ // H1 (∂M,Q) ∂ // H2 (M ; ∂M,Q)

All of these homologies are vector spaces as Q is a field. Therefore, the Univer-

sal coefficient theorem of Cohomology tells us that the spaces H1 (∂M,Q) and

H1 (∂M,Q) & H1 (M,Q) and H1 (M,Q) are dual vector spaces. This is true as Q
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is torsion free and the exact sequence reduces to the following.

0 // H1 (M,Q)

i∗
��

// Hom (H1 (M,Q))

��
0 // H1 (∂M,Q) // Hom (H1 (∂M,Q))

Therefore i∗ and i∗ are dual maps. The best guess would be to use Rank-Nullity

theorem in this case. We know that dual vector spaces of finite dimension have the

same dimension and the rank and nullity of the dual maps are same. We see that

rank (i∗) = rank (i∗) since H1 (M,Q) and H1 (M,Q) are dual vector spaces. Due to

the first vertical isomorphism we have rank (i∗) = rank (d) . By the isomorphism

of H1 (∂M,Q) and H1 (∂M,Q) and the exactness of both the equations we have,

N (i∗) = N (∂). We know the dimension of H1 (∂M,Q) = 2g, therefore from the

upper exact equation and the Rank-Nullity theorem, we get, rank (i∗)+rank (d) =

rank (i∗) + rank (i∗) = 2 rank (i∗) = 2g =⇒ rank (i∗) = g

Corollary 1.4.10. There exists a basis {[f1] , [f2] , . . . , [f2g]} over Z of H1 (∂M,Z)

such that [fi] for i = 1 to g map to zero in H1 (M,Q) under the inclusion map.

Proof. Using Theorem 1.4.9, we get a basis β for ker i∗. Now ker i∗ is a g

dimensional subspace of H1 (∂M,Q), which is a 2g dimensional vector space of

over Q. This means H1 (∂M,Q) ∼=
⊕2g

i=1Q. We will use the Universal Coefficient

theorem for homology. Since, Q is a field, the torsion is zero and the exact sequence

reduces to the following.

0→ H1 (X,Z)⊗Q→ H1 (X,Q)→ 0

The map H1 (X,Z) → H1 (X,Q) is thus as injection. Each element of β can be

viewed as an element of
⊕2g

i=1 Z ⊂
⊕2g

i=1Q, by multiplying with suitable integers.

Now consider the Z-span of β (viewed as a subset of
⊕2g

i=1 Z). Let us denote this

span by S, since
⊕2g

i=1 Z is a module over a principal ideal domain,
⊕2g

i=1 Z /S =

A /S
⊕

B /S , where A /S is the free summand and B /S is the torsion summand.

If there exists an element b ∈ B, then for some integer n, nb ∈ S , i.e. nb =∑
i ai [fi] ⇐⇒ b = 1

n

∑
i ai [fi] ∈

⊕2g
i=1 Q. This means a Z-base for B is a Q-base

for ker i∗. Extending this using a basis of A, we get the required basis.

Theorem 1.4.11. It is possible to find a Seifert Matrix for a slice knot K which

is of the form

(
0 A

B C

)
.
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Proof. Let F be a Seifert surface for the knot with g genus. If D is a slicing disc,

then by Theorem 1.4.4 there is a manifold M which has a regular neighbourhood

M × [−1, 1] in B4. Corollary 1.4.10 provides us with a basis {[f1] , [f2] , . . . , [f2g]}
for H1 (∂M,Z). The entries of the Seifert Matrix S would be given by the linking

numbers of fi with fj+ . For, 1 ≤ i ≤ g, Corollary 1.4.10 tells us that there exists

an integer ni such that ni [fi] = 0 when included in H1 (M,Q), hence in H1 (M,Z)

(by suitably multiplying with an integer). This fi can be so chosen so that it

bounds a surface in M , the surface that fj+ bounds can similarly be moved into

M × [−1, 1] thus these surfaces being disjoint. By Theorem 1.4.5 we get that lk(
fi, f

+
j

)
= 0 and hence the desired matrix form.

Corollary 1.4.12. The Alexander Polynomial of slice knots are of the form

f (t) f (t−1).

Proof. By Theorem 1.4.11, there’s a certain Seifert surface for a slice knot with

the associated Seifert matrix being of the form

(
0 A

B C

)
. Then det(tA− Atr) =

det

((
0 tA−Btr

tB − Atr tC − Ctr

))
= det (tB − Atr) (t−1B − Atr).



Chapter 2

Colourability

2.1 Introduction

This section is taken from [Rob15]. In this chapter we will describe the motivation

behind tricolourability and how the notion of colourability can be generalized by

the notion of Fox Colourings. In this chapter we will study the results of Louis

Kauffman and Pedro Lopes’ paper titled ’Colourings Beyond Fox’([KL17]). One

of these generalisations will be the Alexander’s colouring, which, again, leads us

to the Alexander’s polynomial.

One of the simplest invariants for a knot is tricolourability. Given a knot K and

a diagram of it, say D, being able to colour the arcs at every crossing with either

distinct colours or the same colour is called tricolourability. Of course, every knot

admits the monochrome colouring, hence at least two (hence three) colours must

be used in the knot diagram for it to be tricolourable. For any knot K, the number

of three-colourings is an invariant. To fully convinvce ourselves that this is indeed

an invariant, all we need to do is check if tricolourability is invariant under the

Reidemeister moves.

Figure 2.1: A tricoloured trefoil

30
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Figure 2.2: A monochrome unknot

At first glance, tricolourability might seem like a very random guess at obtaining

an invariant for a knot. However, as it turns out, its the outcome of a very natural

series of questioning. The knot group is the perhaps one of the first topological

properties of a knot, one would be likely to think of and it is no surprise that the

knot group is a knot invariant. Wirtinger’s presentation of knot groups further

tells us that it is also possible to obtain a finite presentation for a knot group, given

a diagram for the knot. Isomorphism of groups then ensures that the number of

group homomorphisms between the knot group, say K and a finite group, say

G, is finite (since the number of elements the finite number of generators can be

mapped to is finite). Since, the knot group is independent of the knot diagram,

then |Hom (K,G) | is a knot invariant ([Rob15]). Let us briefly recall Wirtinger’s

representation: If D is a diagram for knot K, let the arcs in D be labelled as αi.

Fig 2.3 shows a crossing in the knot. The Wirtinger’s Presentation says that the

knot group is generated by loops ai, where each ai is a loop from a point P taken

perpendicular to the plane, can be viewed as the eye of the reader. The loop ai goes

under the arc αi at the crossing, as shown in Fig 2.3. The relation between these

loops is given by ajaia
−1
j = ai+1. Thus π1 (S3 −K) = (a1, a2 . . . , an; r1, r2, . . . , rn),

where ri is the relation at each crossing. If the knot group is abelianzed, then it

is possible to commute the ai and ajs, thus aiaja
−1
j = ai = ai+1 .

Figure 2.3: A crossing in D

If we view the arcs as the generators, at every crossing, the in going arc is con-

jugated by the overcrossing arc which then equals the outgoing arc. This implies

precisely that the image of every generator of K lies in the same conjugacy class
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of G, thus giving us a refined invariant |Hom (K,G,C) |, where the all the non-

identity elements are mapped to the conjugacy class C. An obvious exclusion in

any attempt to recoup a meaningful invariant from this process would be Abelian

groups. The conjugacy classes of Abelian groups are the singleton sets contain-

ing every group element. If we had any non-trivial homomorphism f : K → G,

then f (ai) = f (ai+1) = g∀i and for some g ∈ G, which implies that there ex-

ists a unique homomorphism from K to G where a generator is sent to g. Thus,

|Hom (K,G, {g}) | = 1, for any knot. The next best guess is to consider the small-

est non-Abelian group S3, the permutation group of 3 elements (or D3, the group

of symmetries of a triangle).

S3 = {(1) , (12) , (13) , (23) , (123) , (132)}

With the conjugacy classes being as follows:

{(1)}, {(123)}, {(132)}, {(12) , (13) , (23)}

As we have seen above, if we were to have a homomorphism sending a generator of

the knot group to an element whose conjugacy class is a singleton (just the element

itself), then we do not get an invariant that can distinguish between knots. So,

in the homomorphisms we will consider, the generators in the presentation of

the knot group in consideration must not map to either {(123)} or {(132)}. To

get a non-trivial homomorphism that we hope leads us to an invariant, the only

candidate is the conjugacy class {(12) , (13) , (23)}.

Consider a crossing where the arcs ai, ai+1 and aj (as shown in Figure 2.3), without

loss in generality, consider the map where ai is sent to the transposition (12). Using

the relation ajaia
−1
j = ai+1, we deduce that one of aj and ai+1 must be mapped

to (23) and the other must be mapped to (13). This is because of the following :

(23) (12) (23) = (13) and (13) (12) (13) = (23)

Now we see that, a tricolouring of a knot K corresponds to a homomorphism

of the knot group of K sending the generators to the transpositions. It is easy

see that each transposition when thought of as a colouring on an arc coincides

with the definition of tricolourability. If C is the conjugacy class containing the
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transpositions, |Hom (π1 (S3 −K), G, C) | is the number of three colourings of the

knot. This provides us with a rich host of knot invariants.

We can also interpret this result in terms of linear algebra. If each of the arcs

were to be labelled by an element of F3, then at a crossing where the overcrossing

arc is labelled xi, ingoing arc is xj , outgoing arc is labelled xk, the condition

2xi − xj − xk = 0 mod 3 implies tricolourability. It is easy to see this, when xi is

0, one of xj or xk must be 2 and the other must be 1; When xi is 1, one of xj or xk

must be 0 and the other must be 2. The number of tricolourings, then, becomes

all possible solutions to the following system of linear equations:

2xi − xj − xk = 0

for every ordered triplet of arcs at a crossing (xi, xj, xk). If there are n crossings

then the number of such equations would be n. The set of solution of these system

forms a subspace of Fn3 . If the dimension of this subspace is k, then we have the

following result.

Theorem 2.1.1. The number of three colourings of a knot is 3k

There is no need to restrict ourselves to the case of F3, this line of reasoning can be

extended to any number of colourings. However to avoid zero-divisors, we restrict

ourselves to the case of p-colourings where p is a prime. The condition 2xi − xj −
xk = 0 mod p is also termed as Fox Colouring. Observe that we have two kinds

knot invariants now, first, the usual one, the number of permissible colourings,

according to preceding conditions. Second, the minimum number of colourings

used in such a colouring (where at least two colours are used in the diagram), this

minimum is taken over all possible diagrams of the knot. Of course, the latter is a

redundant distinction for tricolourability since minimum number of colourings for

a tricolouring with at least two distinct colours used in the diagram, is 3. In the

rest of this section we will be discussing results from Louis Kauffman’s and Pedro

Lopes’ paper titled Colourings beyond Fox where the Fox Colouring condition is

given a quandle structure which is later used to generalise these colourings. We will

also see how the Alexander matrix can be obtained in terms of these colourings.
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((a)) Positive
crossing

((b)) Negative crossing

Figure 2.4

2.2 Quandles and Fox Colouring

This section is taken from [KL17].

Definition 2.2.1. (Quandles) A quandle (Q, ∗) is a set of elements equipped

with a binary operation ∗ such that the following properties are satisfied.

• If x ∈ Q, then x ∗ x = x.

• If x, y ∈ Q, then there exists a unique element of Q, z, such that z ∗ x = y.

• If x, y, z ∈ Q (x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z.

Quandles can be interpreted in terms of Reidemeister moves. To see this let us

look at Fig 2.4 and 2.5.

Example 2.2.2. The Fundamental Quandle of a Knot is defined using these op-

erations. Every arc stands for a generator and the relations are precisely the ones

shown in Fig 2.4.

Another example of a quandle is the Alexander quandle which gives rise to the

Alexander Polynomial. The underlying set of elements is the set of Laurent Poly-

nomials.

Λ = Z
[
t, t−1

]
. The operation between two elements a, b ∈ Λ is defined as follows.

a ∗ b = Ta+ (1− T ) b
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((a)) The first Reidemeister
move

((b)) The second Reidemeister move

((c)) The third Reidemeister move

Figure 2.5

Figure 2.6: The Trefoil coloured using the Alexander Polynomial

Let us compute the trefoil’s Alexander matrix using this method.

A colouring of the trefoil using the Alexander quandle is shown in Fig 2.6. We

obtain the following sets of equations using these relations.
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(1− T ) a− b+ Tc = 0

−a+ Tb+ (1− T ) c = 0

Ta+ (1− T ) b− c = 0

The matrix of this system of equations is A =


(1− T ) −1 T

−1 T (1− T )

T (1− T ) −1

. This

is the Alexander matrix of the trefoil. It’s minor along the first entry of the matrix

is the matrix A11 =

[
T (1− T )

(1− T ) −1

]
.

It’s determinant gives us the Alexander Polynomial of the trefoil (unique upto

multiplication by T n). ∆0 (T ) = −T − (1− T )2 = −T 2 + T − 1.

What one might observe from the system of equations is that each equations has

exactly on of each -1, T and (1− T ) as coefficient. Using column operations

on the matrices, we can add up all the columns to get a column of only zeros,

effectively telling us that the determinant of the matrix would be zero. Thus

we have a lot of solutions to this system of equations however these solutions are

just the monochrome ones, that is, they are multiples of the the constant colouring

(1, 1, 1, 1, . . . , 1). It is clear that these elements would satisfy the preceding system

of equations. To prove that these are the only solutions, let v be a n-column vector

that satisfies Mv = 0, where M is the system of linear equations. Now consider

any of the entries of the column Mv, we would have an equation of the following

form.

−vi + TVJ + (1− T ) vk = (−vi + vk) + T (vj − vk) = 0

=⇒ vi = vk & vi = vk

Considering all the crossings of the knot, we’d see that all these vi must be equal.

To find a polychromatic solution, we will need to work with a quotient of Λ. This

will be proved in the following theorem.

Theorem 2.2.3. A polychromatic solution of the Alexander matrix can be ob-

tained by quotienting Λ by the ideal generated by the determinant of the first

minor of the matrix.
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Proof. Let v be a polychromatic solution of M , that is, there are at least 2 distinct

entries in n. Then Mv = 0. Observe that the sum of a polychromatic and a

monochromatic solution is still a solution of the system of solutions. To see this

let the c be a column vectors with same entries. If at a crossing we have the

equation vi ∗ vj = Tvi + (1− T ) vj = vk, then

(vi + c) ∗ (vj + c) = T (vi + c) + (1− T ) (vj + c)

= Tvi + (1− T ) vj + c

= vk + c

Now, returning to the original equation Mv = 0, we add a monochromatic solution

to v to make the ith entry 0. We can delete the ith column and any column. By

abuse of notation, we still denote this new matrix and new column as M and

v respectively. Then Mv = 0 =⇒ adj (A)A = detAInv = 0. Since v is

polychromatic detA = 0.

2.3 Linear Alexander Quandles

This section is taken from [KL17]. Tricolourability can be interpreted in terms of

quandles. First, we need the following definitions.

Definition 2.3.1. The Dihedral quandle Dn is a quandle with the underlying set

Zn and the binary operation a ∗ b = 2b− a mod n.

Definition 2.3.2. (Quandle homomorphism) Given two quandles (Q, ∗) and (Q′, ∗′),
a quandle homomorphism h : Q→ Q′ is a map such that for any elements x, y ∈ Q,

h (x ∗ y) = h (x) ∗′ h (y).

Recall the definition of the fundamental quandle of a knot given in Example 2.2.2.

The number of tricolourings of a knot K is the number of quandle homomor-

phisms between the fundamental quandle of the knot K and the dihedral quandle

D3. Clearly this is an invariant, for otherwise there wouldn’t be an isomorphism

between knot quandles.

In this section we introduce Linear Alexander quandles, of which, the Dihedral

quandle is a special case.
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Definition 2.3.3. Linear Alexander Quandles denoted as LAQ (n,m) consist of

those quandles which have Zn as their underlying set and the binary operation is

defined as a ∗ b = ma+ (1−m) b mod m such that (m,n) = 1 and m < n.

It is clear that dihedral quandles is the special case of Linear Alexander Quandles

when m = −1.

Definition 2.3.4. ((m,n)-colourings) If a knot diagram can be coloured using by

the quandle LAQ (m,n), then this colouring is called a (m,n)-colouring.

We shall only deal with prime n and positive m. This ensures that for a distinct

pair of (m,n), we have a distinct quandle. Our aim in this section is to find a

lower bound for the minimum number of colourings needed for (m,n) colourings.

The requirement (m,n) = 1 is chosen so that the operation is right invertible, i.e.,

so that the second axiom in Definition 2.2.1 is satisfied. We prove this claim.

Proof. We need to find an x such that x∗b = c. Now, x∗b = mx+(1−m) b mod m.

Since (m,n) = 1. By Euclid’s Lemma there exists integers u, v such that um +

vn = 1. Suitably multiplying by d, we have udm ≡ dmodn. Choosing x ≡
(c− (1−m) b) mod n, we have x ∗ b = c.

The convention for these colourings as similar to what was shown in Fig 2.4. For

dihedral quandles however, there is no distinction of how the diagram is oriented

for a ∗ b = c = 2b− a =⇒ 2b− c = a = c ∗ b.

We will now show the existence of a preliminary lower bound for colourings under

the present assumptions that we have made.

Remark 2.3.5. We consider only non split links, i.e., links, components of which,

cannot be separated by disjoint 3-balls.

Theorem 2.3.6. Every (p,m) colouring of a non split link uses at least three

colours.

Proof. We split the proof into cases. First we remark that this is not true in case

of split links. We can provide two distinct monochrome colourings to each portion

of the links in each distinct ball.
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Figure 2.7: The possible cases that can occur while trying to colour a crossing
with 2 colours

1. (Case I) Under-arc and the out coming arc have the same colour. Then we

have the equation

a = ma+ (1−m) b

=⇒ a (1−m) = (1−m) b

=⇒ a = b

The third line follows from the second since there are no zero divisors in Zp.

2. (Case II) The over-crossing and the out coming arc have the same colour.

Then we have the equation

a = ma+ (1−m) b

=⇒ a (1−m) = (1−m) b

=⇒ a = b

3. (Case III) When the overcrossing arc has a distinct colour from the under

arcs. Here, we have the following equation.

b = ma+ (1−m) a

=⇒ b = ma+ a−ma

=⇒ b = a

The proof is complete.

The bound that is obtained in [KL17] is 2 + blnMpc ≤ k, where k is the minimum

number of colourings needed in a (p,m) colouring and M = max {|M |, |M − 1|}.
To go about proving this, we will need the aid of the palette graph of a colouring

and its adjacency matrix.
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2.4 Palette graphs and Adjacency Matrix

This section is taken from [KL17].

Definition 2.4.1. (Palette graph) Given a (p,m) colouring of a knot, the palette

graph of the knot consists of vertices and edges. Vertices are labelled according

to the colours of the under arcs at every crossing. Two vertices s1 and s3 are

connected by and edge if there exists a colour s3 such that s1 ∗ s2 = s3, that is,

ms1 +(1−m) s2 = s3. The palette graph is a directed graph with the arrow being

from s1 to s3 in the previous case.

Definition 2.4.2. (Adjacency Matrix) The Adjacency matrix for a (p,m) palette

graph consists of the vertices as the columns and the edges as the row. The (i, j)th

entry of the matrix is given as follows:

• If the edge ei begins at vj, then the (i, j)th entry will −m

• If the edge ei ends at vj, then the (i, j)th entry will 1

• If the edge ei is coloured as vj, then the (i, j)th entry will m− 1

Theorem 2.4.3. If we have a knot K that admits a (p,m) colouring, it’s palette

graph is denoted as G and it’s adjacency matrix as A. We delete the jth column

from A and denote this matrix as Aj. Then the following conditions are satisfied:

1. det Aj is divisible by p (can be zero).

2. det Aj = ±1 mod |m− 1|

Proof. (1.) If det Aj = 0, then we are done. If not, then we have det Aj 6= 0. Since

A is the coefficient matrix of colourings, we have two linearly independent solutions

in the form of the monochromatic solution (trivial colouring) and a polychromatic

colouring (by assumption) modulo p. Thus, rank of A can be at most 2. This

implies that detAj = 0 mod p.

(2.) If we have reduce the matrix Aj mod (m− 1), then each row can have at

most 2 non-zero entries, namely, 1 and −1. Now the subgraph, generated by Aj’

(this new matrix), has exactly one vertex less than the original graph G, now

there is a unique bijection between the vertices and edges such that it maps an

edge to a vertex adjacent to it, call this bijection σ, then det(Aj) =det
(
A′j
)

=

a1,σ(1)a2,σ(2) . . . ak−1,σ(k−1) = ±1 mod m− 1.
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We have a very interesting corollary due to this theorem.

Corollary 2.4.4. The only integer root of a non-identically zero Alexander poly-

nomial of a knot is 2.

Proof. The Alexander polynomial for a knot K, ∆K (m) is the first minor of the

coefficient matrix. We are assuming that ∆K (m) = 0. Since the colouring matrix

has only entries −m,m − 1 and 1 in each row, the determinant of the matrix is

zero. Now if we look at the Smith Normal form of this matrix, the diagonal will

have two zero entries at least, owing to the fact that it doesn’t have full rank and

the first minor is zero. Thus there must exist at least one (p,m) colouring. Then

we use Theorem 2.4.3, that is, det Aj = 0 and det Aj = ±1 mod |m − 1| . For

this to be true, m must be equal to 2.

To get the lower bound on colouring let us observe more closely the class of matrices

of the colourings. These matrices have only at most 3 non-zero entries in each row.

Then, have the following lemma.

Lemma 2.4.5. Let M be a square matrix of dimension n such that each row has

at most one each of −m,m− 1 and 1 as it’s non-zero entries. Then |detM | ≤ kn

where k := max{|m|, |m− 1|}.

Proof. The statement trivially holds if the dimension of the matrix is 1. We

proceed by induction. If the statement holds for all m ≤ n and If m is positive,

then we have the following cases.

1. Case I : If there is no −m in one of the rows. In this case, expanding the

along this row, we will get that,

det (X) = (m− 1)A+ 1 ·B

where A and B are minors of dimension n-1. By induction hypothesis,

then we have that A,B ≤ kn−1. Therefore, the following holds.

detX ≤ (m− 1) kn−1 + kn−1 ≤ kn
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2. Case II : If there is only a −m as a non-zero entry in one of the rows. Then,

expanding along this row, we get that,

det (X) = (−m)A

where A is a minor of dimension n − 1. Similarly, as in first step, using

induction hypothesis we get the following.

detX ≤ mkn−1 = kn

3. Case III : Finally, when every row has one −m and atleast one of m− 1 and

−1. In this case by suitable column re-arranging we can have the (1, 1) entry

in the matrix as −m. Now using the column operation C1 →
∑n

i=1 Ci, where

Ci is the ith column. Now the entries in the first column can be 0,−m+1or1.

This leads us back to our previous cases. Hence,

detX ≤ kn

In the case of the negative m, the exact same proof goes through with m−1 taking

the role of −m.

Corollary 2.4.6. If K is a knot which permits a (p,m) colourings then,

2 + blnkpc ≤ L

when L is the lower bound for colours required for the (p,m)-colouring.

Proof. By Lemma 2.4.5 and Theorem 2.4.3, detAj ≤ kn and that detAj is

divisible by p. Since, a non-trivial colouring exists, detAj 6= 0. Therefore we have

p ≤ detAj ≤ kn. Therefore, p ≤ kn, taking natural logarithm on both sides we

have the desired inequality.



Chapter 3

Burau Representation

3.1 Introduction

The aim of this chapter is to establish a connection between braid groups and the

Alexander Polynomial for links. We will introduce braid groups. Braid groups can

also be thought of as the mapping class group of a disc. It is then possible to define

homological representations. The Burau representation is one such homological

representation. In the concluding section, it will be shown how the Alexander’s

Polynomial can be obtained from the matrices of the Burau representation. Most

of the content we refer to in this chapter can be found in chapter 3 of [KT08].

3.2 Braid groups

We first give an algebraic definition.

Definition 3.2.1 (Artin Braid Group). The Artin Braid group on n strings Bn

is a free group with n generators, σi, 1 ≤ i ≤ n, with the following relations:

σiσj = σjσi, |i− j| ≥ 2

σi+1σiσi+1 = σiσi+1σi

It can be easily seen that B1 is the trivial group and B2 is the infinite cyclic group

with the generator σ1. The Braid group on 3 strands B3 is particularly interesting

43
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Figure 3.1: An example of a geometric braid

Figure 3.2: σi

as this is isomorphic to the knot group of the trefoil knot. To verify this, we recall

a presentation of the trefoil’s knot group (obtained by means of the Wirtinger’s

presentation):

π1

(
S3 −K,

)
= {x, y |x2 = y3}

Here K denotes the trefoil. B3 has two generators σ1 and σ2. We set x = σ1σ2σ1

and y = σ1σ2. Clearly x 6= y, we further claim that x2 = y3. This would prove

that the two aforementioned groups are isomorphic.

x2 = (σ1σ2σ1) (σ1σ2σ1)

= (σ1σ2σ1) (σ2σ1σ2)

= (σ1σ2) (σ1σ2) (σ1σ2)

= y3

Definition 3.2.2 (Geometric Braids). A geometric braid b on n strings is a sub-

set of R2 × I that is homeomorphic to the disjoint union of n closed intervals.

The projection of each string onto I under the natural projection R2 × I →
I is a homeomorphism. Also each braid string has it’s endpoints in the set

{(i, 0, 0) , (j, 0, 1) | 1 ≤ i, j ≤ n} and no two strings intersect each other.

A generator σi of the braid group Bn can be represented as shown in Fig 3.2.
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Two geometric braids b and b′ are said to be isotopic if there is a continuous family

of maps {Fs}s∈I such that F0 = Id and F1 (b) = b′.

If D is a 2-disc and Q is a set of n points in the disc. A self-homeomorphism f of

the pair (D,Q) is a homeomorphism of D which is identity on the boundary of the

disc and maps the set Q to itself. The mapping class group of (D,Q), MCG(D,Q)

is the group of isotopy classes of these self-homeomorphism.

Theorem 3.2.3. Bn
∼= MCG (D,Q), where Q has n distinct points.

To understand what the generators of the mapping class group of the disc are, we

will need a few definitions.

Definition 3.2.4. A spanning arc α of the disc D is a subset of D◦ which is

homeomorphic to the closed unit interval and intersects Q only at it’s end-points.

Definition 3.2.5. Given a spanning arc α, a half-twist τα is a self-homeomorphism

of (D,Q) which switches the end points of alpha and is identity outside a ball

containing α. To see this explicitly, we consider a neighbourhood V around the

spanning arc α and identify it with the open unit disc in . Let α be identified with[
−1

2
, 1

2

]
. Then the half twist is defined as follows:

τα =

−z |z| ≤ 1
2

e(−2πi|z|)z 1
2
≤ |z| ≤ 1

We can consider the discD as a subset of R2 such thatQ = {(1, 0) , (2, 0) , . . . , (n, 0)}
are contained in the disc. Let αi = [i, i+ 1]×{0}. These are spanning arcs. Then

the generators of the mapping class group of (D,Q) MCG(D,Q) is generated by

the half-twists ταi
.

Our interest in braid groups stems primarily due to the following theorem.

Theorem 3.2.6. Alexander’s Theorem Every link can be obtained as the clo-

sure of a braid.

’Closure’ of a braid simply means identifying the end points of each strand of the

braid. More formally speaking, we can view a braid β on n strands as a subset of

a solid cylinder D2×I with each strand having it’s end points at (x, 0) and (x, 1).

Without loss of generality we can assume the braid lies in the interior of the solid
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cylinder (we can always ensure by taking a bigger cylinder or by isotopy). The

closure is then obtained by identifying D × {0} with D × {1}. One might now

wonder which braid closures give rise to isotopic knots. The following theorem

addresses this question.

Theorem 3.2.7. Braids have isotopic closures if and only if they are related by

Markov moves.

The following are the Markov Moves :

1. (M1) If β is a braid , conjugation of β by another braid γ, i.e., β 7→ γβγ−1

is the M1 move.

2. (M2) If β is a braid in n strands, then β 7→ σni (β) is the M2 move.

It’s easy to see that these moves create isotopic closure. The first move com-

poses γ−1 on γ, producing the identity. The second move only contributes to the

formation of a kink in the closed braid.

Definition 3.2.8. Markov function A collection {fn : Bn −→ A} where A is

any set, such that:

1. fn (αβ) = fn (βα)

2. fn (β) = fn+1 (σnβ) and fn (β) = fn+1 (σ−1
n β)

for all n ∈ N.

Every Markov function is a link invariant as braids that have isotopic closures will

be mapped to the same element under the Markov functions. Braids are useful

as now there’s the additional group structure. This enables us to define repre-

sentations of the braid group. In this chapter we will mainly focus on the Burau

representation, which arises as a homological representation of the Braid group

using the mapping class description of the Braid group. As it will eventually turn

out, we will be able to define a Markov function using the Burau representation

which will coincide with the Alexander Polynomial for links.
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3.3 Homological Representations of mapping class

groups of surfaces ([KT08])

We recall that a self homeomorphism h of a surface S with boundary and a set

Q is homeomorphism of S which fixes the boundary of S pointwise and per-

mutes the points of Q. Let MCG(S,Q) denote the mapping class group of self-

homeomorphisms of the pair (S,Q). If two self-homeomorphisms h and g are in

the same mapping class, then they are isotopic and in particular homotopic, hence

they induce the same automorphisms on the homologies of S. For our purposes

we consider Q to be an empty set. This leads us to the existence of a map

MCG (S,Q)→ Aut (H1 (S,Z))

Using this we can get a representation for braid groups (consider the mapping class

group depiction of braid groups). However, upon closer inspection, one notices

that this map would just be the isomorphism between the mapping class group

depiction of braid groups and the braid automorphisms. A natural guess to remedy

this would be attempting to define a map from the mapping class group to the

homology of a covering space of our surface instead.

Let S have a non empty boundary, choose a base point d ∈ ∂S (d would be

invariant under the self homeomorphisms). If there exists a surjective group ho-

momorphism φ : π1 (S, d) → G, for some group G, then covering space theory

tells us that corresponding to the kernel of this map, there is a covering space of

S, say S̃ and a covering map p such that p∗ (π1

(
S̃
)

) = Ker φ. The group of deck

transformations of this cover is given by N (Ker φ) /Ker φ. N (Ker φ) = π1

(
S̃
)

as Ker φ is normal in π1

(
S̃
)

. Thus, by first isomorphism theorem, the group of

deck transformations is isomorphic to G. If [x] ∈ H1

(
S̃;Gd̃,Z

)
, then the action

of G on [x] is defined as

g · [x] = [gx] .

Here, H1

(
S̃;Gd̃,Z

)
is the relative homology of the covering space of S with respect

to the set of pre-images of the base point under the covering map and d̃ is any

fixed lift of the base point d. Under this relative homology, the lift of any loop

representing a cycle in H1 (S,Z), is a cycle in H1

(
S̃;Gd̃,Z

)
and conversely, any
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loop representing a cycle in H1

(
S̃;Gd̃,Z

)
maps to a cycle in H1 (S,Z) under the

covering map.

Consequently, Z [G] also acts on H1

(
S̃;Gd̃,Z

)
. Let Aut(H1

(
S̃;Gd̃,Z

)
) be the

group of linear Z [G] transformations. This action imbibes H1

(
S̃;Gd̃,Z

)
with the

structure of a left Z [G] module. S deformation retracts to a join of n circles, this

is possible since it’s boundary is non-empty. Then the rank of the Z [G] module

H1

(
S̃;Gd̃,Z

)
is n.

We would ideally like to define a map between MCG (S,Q)→ Aut (H1

(
S̃;Gd̃,Z

)
).

This can be done by taking a representative of an isotopy class, let f be a homeo-

morphism that belongs to this class. The map f is defined on S and can be lifted

uniquely to a map f̃ on S̃ (the base point d is lifted to some fixed pre image d̃).

However, there is no reason for f̃ to induce a Z [G] linear map as f̃ might not

commute with the action of G. To fix this we consider a subset of MCG (S,Q),

consisting of isotopy classes of homemorphisms [f ] such that φ◦f# = φ, where f#

is the induced map on π1 (S, d).

π1 (S, d)

φ %%

f# // π1 (S, d)

φyy
G

We call this class of homeomorphisms, the homeomorphisms twisted by φ and this

collection is denoted by MCGφ (S,Q). We then have a map from MCGφ (S,Q)→
Aut (H1

(
S̃;Gd̃,Z

)
) that sends a class of homeomorphism [f ] to f̃∗, the induced

homology map on Aut (H1

(
S̃;Gd̃,Z

)
).

We will now use the tools we have developed so far and use it to construct a Braid

group representation. Let Σ be a 2-disk and Q be a set of n distinct points in it.

Then the mapping class group MCG (Σ, Q) of the pair (Σ, Q) is isomorphic to the

braid group on n strands as we have seen previously. We shall denote the punctured

disc Σ−Q as S. Our attempt to define a representation will involve defining a map

from MCG (Σ, Q) to MCGφ (S,∅) and then use the homological representation we

have defined previously. Thus, we will have the following sequence of maps:

MCG (Σ, Q) −→ MCGφ (S,∅) −→ Aut (H1

(
S̃;Gd̃,Z

)
)

.
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Figure 3.3: The generators of the fundamental group

The fundamental group of S, π1 (S, d)∼= Z ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸
n times

. The generators of π1 (S, d)

are depicted in Fig 3.3. φ : π1 (S, d)→ Z is defined on each generator as φ (xi) 7→
1, where 1 is a generator of the infinite cyclic group. φ [γ] for any loop γ, is

in fact the sum of the winding numbers of the loop around each point in Q. If

[f ] ∈ MCG (Σ, Q), then the map g from MCG (Σ, Q)→ MCGφ (S,∅) is defined as

the restriction of f to S, i.e.,
[
f|S
]
. The twisting condition remains to be checked,

i.e., if there is a homeomorphism f whose isotopy class lies in MCGφ (S,∅), then

φ ◦ f# = φ. It would suffice if we check whether or not the property holds on

the generators of MCG (Σ, Q), namely τi, where 1 ≤ i ≤ n − 1. Fig 3.4 shows

the action of a spanning arc on a transversal curve. τi# ([y]), as we have seen

previously, is defined as follows:


[xi+1] , [y] = [xi+1]

[xi+1]−1 [xi] [xi+1] , [y] = [xi]

Id, otherwise

φ ◦ τi# ([xi]) = φ ([xi+1]) = 1 = φ ([xi])

φ ◦ τi# ([xi+1]) = φ
(
[xi+1]−1 [xi] [xi+1]

)
= φ

(
[xi+1]−1)φ ([xi])φ ([xi+1])

= φ
(
[xi+1]−1)φ ([xi+1])φ ([xi])

= 1 = φ ([xi])
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Figure 3.4: A spanning arc

The third equality in the second case holds as Z is Abelian. This shows that τi# in-

deed satisfies the twisting condition. Thus the map MCG (Σ, Q)
g−→MCGφ (S,∅) is

well-defined. Composing this with the homological representation we constructed

previously, we have a representation for the braid groups.

3.4 A matrix representation

We will now attempt to obtain matrices for the representation we have constructed.

S deformation retracts to a wedge of n circles, where n is the number of holes is

the disc, which can be seen as a graph with one vertex d and n edges Yi, 1 ≤ i ≤ n.

The first homology of S̃ only depends on the 1-skeleton of S̃, which is an infinite

graph with vertices tkd̃ and edges tkx̃i, where t is a generator of a the infinite cyclic

group. An example of an infinite cyclic covering for S is shown in 3.5.

Figure 3.5: An infinite cyclic cover of S

H1

(
S̃;tk∈Ntkd̃,Z

)
is thus a free Z [t, t−1]module with rank n with generators [xi].

ThusH1

(
S̃;tk∈Ntkd̃,Z

)
= To get matrices for our presentation, it suffices to check

the generators. We pick the generators {τ−1
i }n−1

i=1 of the braid group MCG (S,Q), σi

is mapped to an element in Aut (H1

(
S̃;Gd̃,Z

)
). Aut (H1

(
S̃;Gd̃,Z

)
) = GLn (Z [t, t−1]),

thus τ−1
i is mapped to a n× n matrix with entries in Z [t, t−1]. To determine this
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matrix, let us examine the homeomorphism that g
(
τ−1
i

)
induces. If Q is the set of

points {(1, 0) , (2, 0) , . . . , (n, 0)}, then τ−1
i interchanges the points (i+ 1, 0) and (i, 0).

τ−1
i∗ ([xi+1]) = [xi]

τ−1
i∗ ([xi]) = [xi] [xi+1]

[
x−1
i

]
The lift of this map, is thus defined as follows:

τ̃−1
i∗ ([ ˜xi+1]) = [x̃i]

τ̃−1
i∗ ([x̃i]) = [x̃i] [t ˜xi+1]

[
tx̃i
−1
]

= (1− t) ([x̃i])
⊕

t ([ ˜xi+1])

All the other generators are mapped to themselves. Thus the matrix corresponding

to the generator τ̃−1
i∗ is:


Ii−1 0 0 0

0 1− t 1 0

0 t 0 0

0 0 0 In−i−1



The Burau Representation is obtained by taking the transpose of these matrices.

3.5 The Burau Representation

The Burau representation for Braid groups, as we have seen previously, is defined

on each generator, σi 7→ Ui, where

Ui =


Ii−1 0 0 0

0 1− t t 0

0 1 0 0

0 0 0 In−i−1


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As these matrices were mapped as images of generators of braid groups and these

maps were homomorphisms as seen in previous sections, these matrices Ui satisfy

the braid relations

UiUi+1Ui = Ui+1UiUi+1

UiUj = UjUi , |i− j| ≥ 2

Since these are block matrices, it is easy to see that the second condition is satisfied.

If |i− j| ≥ 2 and without loss of generality i < j (if i = j, this trivially holds)

UiUj =


Ii−1 0 0

0 B 0

0 0 In−i−2



Ij−1 0 0

0 B 0

0 0 In−j−2

 =



Ii−1 0 0 0 0

0 B 0 0 0

0 0 In−|i−j|−2 0 0

0 0 0 B 0

0 0 0 0 In−j−2


= UjUi

where B =

[
1− t t

1 0

]
. In the other case , we need to verify that UiUi+1Ui =

Ui+1UiUi+1, this boils down to proving that
1− t t 0

1 0 0

0 0 1




1 0 0

0 1− t t

0 1 0




1− t t 0

1 0 0

0 0 1

 =


1 0 0

0 1− t t

0 1 0




1− t t 0

1 0 0

0 0 1




1 0 0

0 1− t t

0 1 0



3.6 The Reduced Burau Representation

The Burau representation is reducible which means there exists a subspace such

that when the Burau representation matrices when operated on this subspace map

within this susbspace. If the basis elements are denoted by {[x1] [x2] . . . , [xn]},
consider the action of the matrices U tr

i on the set {[x1] [x2] , [x1]− [x3] , . . . , [x1]−
[xn]}.
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Uj ([x1]− [xi]) =


Ii−1 0 0 0

0 1− t 1 0

0 t 0 0

0 0 0 In−i−1





1

0

. . .

−1
(
ith position

)
. . .

0


=



1

0

. . .

−1 + t
(
ith position

)
−t
(
i+ 1th position

)
. . .

0



= ([x1]− [xi]) + t ([xi]− [xi+1])

= ([x1]− [xi]) + t ([x1]− [xi+1])− t ([x1]− [xi])

= (1− t) ([x1]− [xi]) + t ([x1]− [xi+1])

Uj ([x1]− [xi+1]) =


Ii−1 0 0 0

0 1− t 1 0

0 t 0 0

0 0 0 In−i−1





1

0

. . .

−1
(
i+ 1th position

)
. . .

0


=



1

0

. . .

−1
(
ith position

)
. . .

0



= ([x1]− [xi+1])

This shows that the subspace generated by the elements {[x1] [x2] , [x1]−[x3] , . . . , [x1]−
[xn]} is invariant under the Burau representation. Thus the Burau representation

is reducible. To see what this means geometrically , let us take the example the

infinite cyclic cover shown in Fig 3.5.
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Figure 3.6: Action of the group MCG (S,Q) on [x1]− [xi]

We will now define what is called the reduced Burau representation. Let

Cn =



1 1 · · · · · · 1

0 1 · · · · · · 1
... 0

. . . · · · 1
...

...
...

. . . 1

0 0 0 · · · 1


Then,

C−1
n UiCn =

[
Vi 0

0 1

]
= W, for 1 ≤ i ≤ n− 1

Cn
−1UiCn =

[
Vi 0

i∗ 1

]
= W,

when i = n−1 where i∗ is the row with the last entry being 1 and the rest being zero

V1 =


−t 0 0

1 1 0

0 0 In−3

Vn−1 =


In−3 0 0

0 1 t

0 0 −t

Vi =



Ii−2 0 0 0 0

0 1 t 0 0

0 0 −t 0 0

0 0 1 1 0

0 0 0 0 In−i−2


To see that these identities are indeed true, we can verify that UiCn = CnW

The mapping ψrn : Bn → GLn−1 (Z [t, t−1]) which maps σi to Vi is called the reduced

Burau representation.
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3.7 The Alexander-Conway Polynomial

The Alexander-Conway polynomial∇, is Conway’s normalization of the Alexander

polynomial, it is uniquely determined by the following three properties:

• ∇ (L), for some link L, is invariant under the three Reidemeister moves.

• ∇ (unknot) = 1

• ∇(L+)−∇ (L−) = (s− s−1)∇ (L0)

The third condition is called the skein relation. L+ and L− differ only at a crossing

and L0 is obtained by smoothening the crossing. L+, L−, L0 together a called the

Conway triple and they differ only in a small neighbourhood around the crossing.

Figure 3.7: The Conway Triple

Theorem 3.7.1. The Alexander-Conway Polynomial is uniquely determined by

the skein relation and the value on the unknot (and invariance under the Reide-

meister moves).

Proof. The idea is to proceed by induction. However, note that we cannot simply

induct on the crossing number, as both L+ and L− have the same crossing number.

We induce on the complexity κ. κ of a knot diagram is defined as κ = (c, d) where

c is the crossing number and d is the unknotting number. The ordering on the

complexity is the dictionary order, (c1, d1) < (c2, d2) if either c1 < c2 or if c1 = c2

and d1 < d2. If we take a knot diagram with minimal crossing, then the unknotting

number of L+ and L− differ by 1 since, we are just flipping a crossing, thus they

are in a definite order. Also, L0 has crossing number 1 less than both L+ and L−.

Now, in Section 1.1 we have seen, it is possible to get a projection of the unknot

that coincides with the diagram of any knot. The same line of reasoning would

show that this is true even for the unlink of n components. Thus, by reducing the

complexity of the knot diagrams, we will eventually end up with unlinks. Thus

value of the unlink is completely determined by the value on the unknot.
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Our aim here will to be define a Markov function that involves the Reduced Burau

representation and satisfies the three aforementioned properties. We claim the

following function does the job:

fn (β) = (−2)(n+1) s
〈β〉 (s− s−1)

sn − s−n
g (det (ψrn (β))− In−1)

Here, g : Z [t, t−1]→ Z [s, s−1] is defined as g (t) = s2 and ψrn is the reduced Burau

representation.

Fact: {fn} form a Markov function. The first property is thus satisfied by as iso-

topic braid closures are generated only by the two Markov moves and the function

fn is invariant under the Markov moves. The second property is satisfied too, as

if the braid closure is trivial, then it is a braid on a single strand , thus the second

property trivially holds. To check the third property we will need to pick three

braids that whose closure will form a Conway triple. Through Alexander’s The-

orem (Theorem 3.2.6) we know that given any knot, we can find a braid whose

closure is isotopic to the knot. For any braids α, β ∈ Bn, ασiβ, ασ
−1β and αβ

form a Conway triple. This can be seen from the definition itself, by keeping α

and β separated by unknotted strands. We will then need to prove the following

identity:

fn (ασiβ)− fn
(
ασ−1β

)
=
(
s− s−1

)
fn (αβ)

By property (ii) of Definition 3.2.8, we can multiply with α−1, thus it suffices to

assume α = 1. Additionally, all the generators of the braids are conjugate to each

other, meaning, we can work with σ1. Thus the equation that we need to prove

reduces to the following.

fn (σ1β)− fn
(
σ−1

1 β
)

=
(
s− s−1

)
fn (β)

Using the Markov function that we have defined above, this equation simplifies to

the following.

s−1g (D+)− sg (D−) =
(
s−1 − s

)
g (D0)

(3.7.2)
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where D± = det
(
ψrn
(
σ±1

1 β
)
− In−1

)
and D0 = det (ψrn (β)− In−1)

ψrn (β) =


a b x

c d y

p q M


Here M is a n − 3 × n − 3 matrix, a, b, c, d are elements of the ring and p, q are

columns while x, y are rows.

ψrn (σ1β) =


−t 0 0

1 1 0

0 0 In−3



a b x

c d y

p q M

 =


−ta −tb −tx
a+ c b+ d x+ y

p q M



ψrn
(
σ−1β

)
=


−t−1 0 0

t−1 1 0

0 0 In−3



a b x

c d y

p q M

 =


−t−1a −t−1b −t−1x

t−1a+ c t−1b+ d t−1x+ y

p q M



Now consider the following:

det (ψrn (β)− In−1) = det


a− 1 b x

c d− 1 y

p q M − In−3



det (ψrn (σ1β)− In−1) = −tdet


a+ t−1 b x

a+ c b+ d− 1 x+ y

p q M − In−3



= −tdet


a+ t−1 b x

c− t−1 d− 1 x+ y

p q M − In−3


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det
(
ψrn
(
σ−1

1 β
)
− In−1

)
= −t−1det


a+ t b x

t−1a+ c t−1b+ d t−1x+ y

p q M



= −t−1det


a+ t b x

c− 1 d− 1 t−1x+ y

p q M − In−3



As we can see the matrices, the determinants of which are in consideration, differ

only in the first column. If we denote these columns as C0, C+ and C− respectively,

it is easy to see that, they satisfy the following relation

−tC+ + C− = (1− t)C0

Therefore, we have

D+ − tD− = (1− t)D0

which matches with Eqn 3.7 and this completes the proof.



Chapter 4

Free Differential Calculus

This chapter is primarily taken from [BZ03], [CF08] and [LL97]. Fox Differential

Calculus or Free Differential Calculus was originally introduced by R.H. Fox in

[Fox53].

4.1 Introduction

This section is taken from [LL97]. One who attempts to compute the Alexander

polynomial of a knot via the original definition, that is, with the use of Seifert

matrices will soon realise that the computations become increasingly complicated

with the increase in genus of the Seifert surface. Every additional genus introduces

two new generators of the first homology and in turn increases the dimension of

the Seifert matrix by two. In this section we will discuss the method of Free

Differential Calculus, posited by RH Fox, to compute the Alexander Polynomial

for a knot. As we shall see later, this method eases the computation for certain

families of knots, for example, torus knots.

From covering space theory we know that if there is a covering map p : E → B,

then the induced map p∗ on fundamental groups is an injection (this happens

because if two classes of loops are homotopic to each other, then the path homo-

topy lifts to a path homotopy between the lifts of the two loops in E). Thus, if

X denotes the knot exterior of a link L and X∞ it’s infinite cyclic cover, then

π1 (X∞) is isomorphic to the commutator subgroup [π1 (X), π1 (X)] of π1 (X). We

have seen in previous sections, the group of deck transformations G of X∞ acts

59
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on H1 (X∞,Z). G is isomorphic to π1 (X)
/

[π1 (X), π1 (X)] , while H1 (X∞,Z) is

isomorphic to G /G′ where G′ is the commutator subgroup of G. π1 (X) acts on

π1 (X)
/

[π1 (X), π1 (X)] , via conjugation and this action passes on to G /G′ . Thus

all the information one needs for computing the Alexander polynomial of a link

lies within the knot group itself.

4.2 Fox’s Free Differential Calculus

This section is taken from [BZ03] and [CF08] while the original paper by RH Fox

is [Fox53]. This section will be purely algebraic in nature and will introduce the

notions of derivations and will be used in the next section to find a presentation of

the Alexander Module. Let G denote a group and ZG denote the associated group

ring, i.e., ZG = {
∑

finite nigi|g ∈ G}.

Definition 4.2.1. (Augmentation) The map ε : ZG → Z, ε (
∑
nigi) =

∑
ni, is

called the augmentation map.

Definition 4.2.2. (Derivations) A map ζ : ZG → ZG is called a derivation if it

satisfies the following properties:

1. (Linearity) ζ (α + β) = ζ (α) + ζ (β)

2. (Product rule) ζ (α · β) = ζ (α) · ε (β) + α · ζ (β)

Lemma 4.1. Additionally, every derivation also satisfies the following properties:

1. ζ (1 · e) = 0, hence ζ (n · e) = 0

2. ζ (g−1) = −g−1 · ζ (g)

3. ζ (gn) = (1 + g + · · ·+ gn−1) · ζ (g)

Proof. (Proof of 1) ζ (e) = ζ (e) + ζ (e) =⇒ ζ (e) = 2ζ (e) =⇒ ζ (e) = 0 Hence,

n · ζ (e) = 0. (Proof of 2) From the proof of 1, we know that ζ (e) = ζ (g · g−1) = 0

Therefore, we have the following:

0 = ζ (g) · ε
(
g−1
)

+ g · ζ
(
g−1
)

= ζ (g) + g · ζ
(
g−1
)

=⇒ ζ
(
g−1
)

= −g−1 · ζ (g)
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(Proof of 3) Here, we shall proceed with induction. Clearly, the statement holds

when n = 1. Assuming it were true for n = k − 1,

ζ
(
g · gk−1

)
= ζ (g) · ε

(
gk−1

)
+ g · ζ

(
gk−1

)
= ζ (g) + g · ζ

(
gk−1

)
= ζ (g) + g ·

(
1 + g + · · ·+ gk−2

)
· ζ (g)

=
(
1 + g + · · ·+ gk−1

)
· ζ (g)

A similar proof shows that ζ (g−n) = − (g−1 + g−2 + · · ·+ g−n) · ζ (g)

On free groups, a derivation is uniquely determined by the images of the basis

elements. We prove this in the following theorem.

Theorem 4.2.3. Let S be the free group generated by the elements Si, where

1 ≤ i ≤ n. Then a derivation ζ : ZS → ZS, is uniquely determined by the images

of the generators ζ (Si) = wi.

Proof. Let ζ be a derivation which maps Si to wi. Then ζ satisfies all the properties

listed in Lemma 4.1. ζ (0) = 0, where 0 is the empty word. The linearity and prod-

uct rule ensure that this derivation is unique. For if there were another derivation

ζ ′ satisfying all the aforementioned properties, then for words wi,
∑
ζ ′ (niwi) =∑

niζ
′ (wi). Observe that each word wi is an element of the form Sn1

i1
Sn2
i2
. . . Snk

ik
.

ζ ′
(
Sn1
i1
Sn2
i2
. . . Snk

ik

)
= ζ ′

(
Sn1
i1

)
+ Sn1

i1
ζ ′
(
Sn2
i2

)
+ · · · + Sn1

i1
. . . S

nk−1

ik−1
ζ ′
(
Snk
ik

)
. Clearly,

ζ and ζ ′ agree on the values of Ski for all i and k. Uniqueness is thus proved. Exis-

tence remains to shown. The proof of existence hints at how to define the function.

We define ζ
(
Sn1
i1
Sn2
i2
. . . Snk

ik

)
= ζ

(
Sn1
i1

)
+ Sn1

i1
ζ
(
Sn2
i2

)
+ · · · + Sn1

i1
. . . S

nk−1

ik−1
ζ
(
Snk
ik

)
.

All that remains to be checked is that this mapping is well-defined. It suffices if

for words u, v we show that ζ (uv) = ζ
(
uSmi S

−m
i v

)
.

ζ (uv) = ζ (u) + uζ (v) ζ
(
uSmi S

−m
i v

)
= ζ (u) + uζ (Smi ) + uSmi ζ

(
S−mi

)
+ uSmi S

−m
i ζ (v)

= ζ (u) + u
(
ζ (Smi ) + Smi ζ

(
S−mi

))
+ uζ (v)

= ζ (u) + u
(
ζ
(
Smi S

−m
i

))
+ uζ (v)

= ζ (u) + uζ (v) .

This completes the proof.
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Definition 4.2.4. (Partial Derivations) The maps ∂
∂Si

: ZS → ZS defined as
∂
∂Si

(Sj) = δij and extended linearly are called partial derivations.

We observe that,
∂(Si1

Si2
···Sik)

∂Sij
= Si1Si2 · · ·Sij−1

. We can use this observation to

conclude the following result.

Lemma 4.2.5. For any derivation ζ, ζ =
∑

i∈J
∂
∂Si
ζ (Si)

Proof.

ζ
(
Sn1
i1
Sn2
i2
. . . Snk

ik

)
=

(∑
i∈J

∂

∂Si
· ζ (Si)

)(
Sn1
i1
Sn2
i2
. . . Snk

ik

)
=

(∑
i∈J

∂
(
Sn1
i1
Sn2
i2
. . . Snk

ik

)
∂Si

ζ (Si)

)

=

(
Sn1
i1
Sn2
i2
. . . S

nj−1

ij−1

∂S
nj

ij

∂Sj
ζ
(
Sij
))

=
(
Sn1
i1
Sn2
i2
. . . S

nj−1

ij−1

(
1 + Sij + S2

ij
+ · · ·+ S

nj−1
ij

)
ζ
(
Sij
))

=
(
Sn1
i1
Sn2
i2
. . . S

nj−1

ij−1
ζ
(
S
nj

ij

))

These partial derivations will be used in finding a representation for the Alexander

Module of a link.

4.3 Regular Coverings and the Alexander Poly-

nomial

This section is taken from [BZ03] and [LL97]. Given a topological space X

with fundamental group G and a regular covering X̃ with a presentation G =

{S1, S2, . . . , Sn|R1, . . . , Rm}, where Sis are the generators and Rjs are the rela-

tions. Let p : X̃ → X be the covering map. We can construct a CW-complex

with the same fundamental group and hence the same homological properties. For

our purposes we consider a complex with one 0-cell V , n 1-cells attached to the

0-cell, one for each Si and m 2-cells that are attached according to the relations

Rj. These 1-cells and 2-cells are also denoted as Si and Rj. The complex and it’s
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regular covering, too, are denoted as X and X̃ respectively. Since, X̃ is a regular

covering, therefore p∗ (π1

(
X̃
)

) / G. Then the group of deck transformations D,

is isomorphic to G /N , where N = π1

(
X̃
)

. Let φ : G → D be the canonical

homomorphism and let X̃0 denote the 0-cell complex of X̃. If Ṽ is a fixed lift

of the V , then X̃0 is the set of points D · Ṽ ; by D here we refer to the group of

deck transformations. Our aim here is to present H1

(
X̃; X̃0,Z

)
as a ZD module.

Using this we will be able to find a presentation of the Alexander Module of a

knot.

If w is a loop in X, then let w̃ be the lift of w beginning at Ṽ . w̃ is a special

element in H1

(
X̃; X̃0,Z

)
in the sense that in the 1-skeleton of X̃, with D ·Ṽ being

vertices and D · S̃i being edges, it would represent a connected graph. Conversely

any finite connected sub-graph would represent an element of H1

(
X̃; X̃0,Z

)
that

would project under the covering map to a loop w in X. A shorthand for the map

Figure 4.1: An example of a regular covering

ψ ◦ φ : ZS → ZD is (x)ψφ.

Fig 4.1 is an example of a regular covering (in fact, a cyclic covering). Any chain

w̃ in Z
(
X̃, X̃0

)
, can be written as a linear combination of the lifts S̃i of the

generators of H1 (X,Z), Si, i.e., w̃ =
∑
aiS̃i. If w1 and w2 are two loops starting

at V , let us try and see what the lift of the concatenated loop w1w2 looks like

algebraically. The lift w̃1 of w1 beginning at V , ends at φ (w1) · V . Therefore, the

lift of w2 would begin from φ (w1) · Ṽ and end at φ (w2) ·
(
φ (w1) · Ṽ

)
. Thus the

chain w̃1w2 can be written as w̃1 +φ (w̃1) · w̃2. At this point, we have the following

sequence of maps:

ZS φ−→ ZG ψ−→ ZD

.The maps being the natural projection maps. We recall the maps used in Defini-

tion 4.2.4, ∂
∂Si

: ZS → ZS. These maps can be used to reformulate how a chain

is written. w̃ =
∑
aiS̃i, where ai ∈ ZD. To understand what these ais are let us

consider an explicit example.
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Example 4.3.1. Consider the wedge of three circles, we can denote the generators

by S1, S2, S3. Let the intersection point of the three circles be P . We consider the

loop S1S2S3S1, the lift of this loop in a cyclic cover of the space beginning at P̃ ,

is given by

= S̃1 + (ψ ◦ φ) (S1) · S̃2 + (ψ ◦ φ) (S1S2) · S̃3 + (ψ ◦ φ) (S1S2S3) · S̃1

= (1 + (ψ ◦ φ) (S1S2S3)) · S̃1 + (ψ ◦ φ) (S1) · S̃2 + (ψ ◦ φ) (S1S2) · S̃3

(
∂S1S2S3S1

∂S1

)ψφ
= (1 + (ψ ◦ φ) (S1S2S3)) ,

(
∂S1S2S3S1

∂S2

)ψφ
= (ψ ◦ φ) (S1),(

∂S1S2S3S1

∂S2

)ψφ
= (ψ ◦ φ) (S1S2)

Figure 4.2: Example 4.3.1

We have expressed H1

(
X̃; X̃0,Z

)
as a ZD module.

H1

(
X̃; X̃0,Z

)
= {S̃1, S̃2, . . . , S̃n|R̃1, R̃2, . . . , R̃m}, if w ∈ H1

(
X̃; X̃0,Z

)
then w =∑(

∂w
∂Si

)ψφ
S̃i. To find a presentation matrix for H1

(
X̃; X̃0,Z

)
, we observe the

following exact sequence:

ZR̃ ↪−→ ZS̃ −→ H1

(
X̃; X̃0,Z

)
−→ 0

Here ZR̃ denotes the group ring generated by the elements {R̃1, R̃2, . . . , R̃m}.
The first map is the natural inclusion map. The second map is the map φ :

ZS → ZG composed with the lifting map, sending a loop in π1 (X) to a cycle in

H1

(
X̃, X̃0,Z

)
. Now, i

(
R̃j

)
=
∑(

∂Rj

∂Si

)ψφ
S̃i. This provides us with the entries

of a presentation matrix. The ijth entry of the matrix is
(
∂Rj

∂Si

)ψφ
.

4.3.1 Recovering the Alexander Module

We have thus far obtained a presentation for H1

(
X̃; X̃0,Z

)
, to find the Alexan-

der Polynomial, we need a presentation matrix for the ZD module H1

(
X̃,Z

)
.
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Our problem would be simplified if the latter were a direct summand of the for-

mer. For if P were a presentation matrix of a R module M , then a presentation

matrix for M
⊕

R would be P with an additional row of zeroes, since an extra

generator would be added. The non-zero elementary ideals would remain invari-

ant. The slight wrinkle here is that the rth elementary ideals of M coincide with

the r + 1th elementary ideals of M
⊕

R. As it turns out, in case of knot groups,

H1

(
X̃; X̃0,Z

)
indeed splits with H1

(
X̃,Z

)
as a direct summand. Let t be a gen-

erator of the group of deck transformations of H1

(
X̃; X̃0,Z

)
To see this, let us

look at the the homology sequence:

H1

(
X̃0,Z

)
i∗−→ H1

(
X̃,Z

)
−→ H1

(
X̃, X̃0,Z

)
∂∗−→ H0

(
X̃0,Z

)
i∗−→ H0

(
X̃,Z

)
−→ 0

There are no 1-cycles in H1

(
X̃0,Z

)
, hence H1

(
X̃0,Z

)
= 0. H0

(
X̃0,Z

)
is the

space generated by all the translates of Ṽ . Hence H0

(
X̃0,Z

)
' Z [t, t−1]. Further-

more, since X̃ is connected thus H1

(
X̃,Z

)
' Z. The long exact sequence, thus,

reduces to the following:

0
i∗−→ H1

(
X̃,Z

)
−→ H1

(
X̃, X̃0,Z

)
∂∗−→ Z

[
t, t−1

] i∗−→ Z −→ 0

We can deduce a short exact sequence from this.

0
i∗−→ H1

(
X̃,Z

)
−→ H1

(
X̃, X̃0,Z

)
∂∗−→ Ker i∗

i∗−→ 0

If w̃ ∈ H1

(
X̃, X̃0,Z

)
, then ∂w̃ = ∂

(∑(
∂w
∂Si

)ψφ
S̃i

)
=

(∑(
∂w
∂Si

)ψφ
∂S̃i

)

=

(∑(
∂w
∂Si

)ψφ (
Sψφi − 1

)
· Ṽ
)

Ker i∗ is thus generated by
(
Sψφj − 1

)
Ṽ , 1 ≤ j ≤ n. In case of the knot group, this

becomes (t− 1)Ṽ . Ker i∗ is then the free Z [t, t−1]module generated by (t− 1)Ṽ .

To prove that H1

(
X̃, X̃0,Z

)
= H1

(
X̃,Z

)⊕
Z [t, t−1](t− 1)·Ṽ , we need to show

the existence of a splitting map. This is easy, defining a map α which maps

(t− 1)·Ṽ to any of the S̃j does the job, since, ∂α(t− 1)·Ṽ = (t− 1)·Ṽ .
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The Alexander’s Polynomial for any knot can now be obtained by deleting any

column from the presentation matrix and computing the 1st elementary ideal.

Remark 4.3.2. This proof goes through because the group of deck transformation

is infinite-cyclic, this does not necessarily hold otherwise.

4.4 Computing the Alexander Polynomial for cer-

tain knots

The examples discussed in this section can be found in [LL97] and [BZ03]. As we

had mentioned previously, this method of calculating the Alexander Polynomial

eases computations.

The Trefoil Knot The simplest knot is the trefoil knot, A Wirtinger presen-

tation of the trefoil knot is {x1, x2, x3|R1 = x1x2x
−1
3 x−1

2 , R2 = x2x3x
−1
1 x−1

3 , R3 =

x3x1x
−1
2 x−1

1 }. We now compute the Jacobian
(
∂Ri

∂xj

)
, the map ψφ maps each Si to

the generator t of the group of deck transformations. Lets compute each of the

entries:

∂R1

∂x1

= 1
∂R1

∂x2

= x1 − x1x2x
−1
3 x−1

2

∂R1

∂x3

= −x1x2x
−1
3

∂R2

∂x1

= −x2x3x
−1
1

∂R2

∂x2

= 1
∂R2

∂x3

= x2 − x2x3x
−1
1 x−1

3

∂R3

∂x1

= x3 − x1x2x
−1
3 x−1

2

∂R3

∂x2

= −x3x1x
−1
2

∂R3

∂x3

= 1

The corresponding Jacobian matrix is as follows:
1 t− 1 −t
−t 1 t− 1

t− 1 −t 1



The Alexander Polynomial ∆ (t) can be computed by checking the 2 × 2 minors,

which in this case is t2 − t+ 1, this is unique upto multiplication by a unit.



Free Differential Calculus 67

Torus Knots Torus knots comprise of the family of knots that occur as simple

closed curves on a torus. The fundamental group of a torus is isomorphic to

Z
⊕

Z. If (a, b) denotes the class of a knot in the fundamental group of the torus,

then a and b are necessarily coprime. The converse that there exists a knot which

is a representative of (a, b) , where a and b are coprime is also true. Informally

speaking, such a knot would wrap around the meridian a times and b times around

the longitude. Van-Kampen’s theorem tells us that a representation of a torus knot

that represents the class (a, b) is G = {x, y|R = xay−b}. Free Differential Calculus

yields a very efficient method of computing torus owing to the fact that there are

very few generators and relations. The Abelianization map π : G→ G′ =< t > is

defined as x 7→ tb, y 7→ ta. The Jacobian is a 1× 2 matrix.

(
∂R

∂x

)ψφ
=
(
1 + x+ . . . xa−1

)ψφ
=

(
∂R

∂x

)ψφ
=
(
1 + tb + . . . tb(a−1)

)
=

1− tab

1− tb(
∂R

∂y

)ψφ
= −xa

(
y−1 + y−2 . . . y−b

)ψφ
=

(
∂R

∂y

)ψφ
= −tab

(
t−1 + t−2 . . . ta(−b)) =

−tabt−a
(
1− tab

)
1− ta

J(a,b) =

[
1− tab

1− tb
−tabt−a

(
1− tab

)
1− ta

]

The Alexander Polynomial is a generator of the smallest principal ideal, gener-

ated by the 1× 1 minors. The smallest principal ideal would be generated by the

gcd

(
1− tab

1− tb
,
1− tab

1− ta

)
. We see that each of the terms is divisble by

1− tab

(1− tb) (1− ta)
,

with quotients of the division being (1− ta) and
(
1− tb

)
respectively. Each of

these two polynomials are products of an irreducible polynomial with 1− t. Thus(
1− tab

1− tb
,
1− tab

1− ta

)
=

((
1− tab

)
(1− t)

(1− ta) (1− tb)

)
. Hence, the Alexander Polynomial of

torus knots are given by ∆a,b (t) =

((
1− tab

)
(1− t)

(1− ta) (1− tb)

)
.



Bibliography

[Ale28] James W Alexander. Topological invariants of knots and links. Transactions of the

American Mathematical Society, 30(2):275–306, 1928.

[BZ03] G. Burde and H. Zieschang. Knots. De Gruyter studies in mathematics. Walter de

Gruyter, 2003.

[CF08] R.H. Crowell and R.H. Fox. Introduction to Knot Theory. Dover books on mathe-

matics. Dover Publications, 2008.

[Fox53] Ralph H Fox. Free differential calculus. i: Derivation in the free group ring. Annals

of Mathematics, pages 547–560, 1953.

[HPoM02] A. Hatcher, Cambridge University Press, and Cornell University. Dept. of Mathemat-

ics. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002.

[Kau87] L.H. Kauffman. On Knots. Annals of mathematics studies. Princeton University

Press, 1987.

[KL17] Louis H. Kauffman and Pedro Lopes. Colorings beyond fox: the other linear alexander

quandles, 2017.

[KT08] Christian Kassel and Vladimir Turaev. Braid groups, volume 247. Springer Science

& Business Media, 2008.

[LL97] W.B.R. Lickorish and W.B. Lickorish. An Introduction to Knot Theory. Graduate

Texts in Mathematics. Springer New York, 1997.

[Mun00] J.R. Munkres. Topology. Featured Titles for Topology. Prentice Hall, Incorporated,

2000.

[Mun18] J.R. Munkres. Elements Of Algebraic Topology. CRC Press, 2018.

[Rob15] Justin Roberts. Knots knotes. 2015.

[Rol75] Dale Rolfsen. A surgical view of alexanderâs polynomial. In Geometric topology,
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