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Chapter 0

Basic notions

This chapter is a quick recap of some notions of basic algebraic geometry. It is not a

complete guide for the same. One may look at other references, such as [3] and [4].

In the later chapters, we will concentrate only on resolving singularities of projective

varieties, generalizing it to other algebraic structures will obscure the general picture.

Still, one can look for analogue techniques there.

In section one, we give basic definitions of the object of study. Section two is about

the evolution of the notion of singular points on a variety. Finally, we will talk about

divisors and then intersection theory. Throughout the text, intersection theory will

play an essential role in measuring the improvement of local invariant after suitable

transformation. For example, if C ⊂ S is a curve and KS is the canonical divisor

on the surface S, then it is the intersection number C · (C + KS) that decreases

in subsequent blow-ups. We show that it is bounded below, and the sequence of

transformations terminates after that.
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0.1 Geometric prerequisites

0.1.1 Category of varieties

Objects

For the following, k will denote an algebraically closed field of any characteristic.

Definition 0.1.1 (Affine n-space). An
k := k × k × ...× k

Definition 0.1.2 (Algebraic Sets). Given S ⊂ k[x1, x2, ..., xn], we define

V (S) := { common zeroes of f ∈ S}

to be the algebraic set on An.

An algebraic set defined by the zeroes of a single polynomial is called a hypersurface.

Remark. It is easy to verify that common zeroes of a collection of polynomials are

same as the common zeroes of the ideal generated by the same(Hilbert basis theo-

rem). Therefore, we can redefine the algebraic set to be zeroes of a finite number of

polynomials.

Definition 0.1.3 (Zariski topology on affine space). We give a topology on An by

defining algebraic sets to be the closed sets. The topology is called Zariski topology.

Definition 0.1.4 (Affine variety). We call a closed set X, reducible if there exist

proper closed subsets X1 and X2 of X such that X = X1 ∪X2. Otherwise, X is said

to be irreducible. An irreducible algebraic set is defined to be an affine variety.

Definition 0.1.5 (Projective n space). The projective n-space is by definition the set

Pnk :=
(
An+1
k − (0, 0, ..., 0)

)
/ ∼

where ′ ∼′ is defined as follows:

(a0, a1, ..., an) ∼ (b0, b1, ..., bn) if there exists λ ∈ k∗ such that ai = λbi for all i′s. We

denote the equivalence class by (a0 : a1 : ... : an) .

Remark. Similar to the notion of algebraic sets in affine space, we can define algebraic

sets in projective space to be the zeroes of homogenous polynomials (modulo the

equivalence relation). As before, these sets induce a topology on the projective space

called the Zariski topology on Pn.
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Definition 0.1.6 (Projective variety). An irreducible algebraic subset of projective

space is said to be a projective variety.

Pnk possess an affine open cover given by Pnk =
⋃n
i=0 Ui where Ui = V (xi)

c for

i = 0, ..., n. It is not hard to see that if V ⊂ Pnk is a projective variety then V ∩ Ui is

an affine variety.

Definition 0.1.7 (Quasi projective variety). We define quasi projective varieties to

be the open subsets of closed projective variety.

Remark. The idea of quasi projective variety is to generalize the notion of affine and

projective variety. There are beautiful examples of quasi projective varieties that are

neither projective nor affine.

Morphisms

Definition 0.1.8. (i) Let V ⊂ An
k be an affine variety. Then the function ϕ : V → A1

k

said to be is a regular function on V if there exists an f ∈ k[x1, ..., xn] such that

f |V = ϕ on V .

(ii) Let V ⊂ An
k and W ⊂ Am

k be affine varieties. Then the map ϕ : V → W

is said to be a regular map on V if pi ◦ ϕ is a regular function for each projection

pi : Am
k → A1

k.

(iii) Let Y ⊂ Pmk be a projective variety. Then the map ϕ : V → Y is said to be a

regular map on Y if i ◦ ϕ = (f0 : f1 : ... : fm) where fi are homogenous polynomial in

n variables and i : Y → Pmk is the inclusion map.

(iv) Let X ⊂ Pnk be another projective variety. Then the map ϕ : X → Y is said

to be a regular map on X if ϕi = ϕ|X∩Ui : X ∩ Ui → Y is regular a regular map on

X ∩ Ui for each i = 0, ..., n.

Theorem 0.1.9. Suppose X ⊂ Pn is a quasi projective variety. Then for every point

x ∈ X, there exists a neighborhood Ux that is isomorphic to an affine variety.

Proof. Let X̄ denote the projective closure of X in Pn. Then X is an open subset

of X̄ and X ∩ Ui is an open subset of the affine variety X̄ ∩ Ui = Xi. Let X ∩

Ui = Xi/Yi for some closed set Yi and x ∈ X ∩ U1 be a point. Then there exists

an f ∈ I(Y1) with f(x) 6= 0. We define D(f) := Y1 − V (f) and claim that the
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neighborhood D(f) of the point x is isomorphic to an affine variety. Indeed, it is the

zero set of the following equations,

g1(x1, ..., xm) = ... = gl(x1, ..., xm) = 0 = y.f(x1, ..., xm)− 1

inside k[x1, x2, ..., xm, y] where g′is are the defining equations of X1.

Definition 0.1.10. Let X and Y be quasi projective varieties. Then the map ϕ :

X → Y is said to be regular at the point x ∈ X if there exists an affine neighborhood

Ux of x such that ϕ is regular on Ux. The varieties X and Y are said to be isomorphic

if there are regular maps φ : X → Y and ϕ : Y → X such that φ ◦ ϕ = Id|Y and

ϕ ◦ φ = Id|X .

Remark. Let X and Y be affine varieties. Then the regular map φ : X → Y induces

a ring map

φ∗ : k[Y ]→ k[X]

f 7→ f ◦ φ.

It is easy to verify that affine varieties are isomorphic if and only if the induced map

between the coordinate rings is an isomorphism.

Rational maps

In high school calculus, we have always been interested in local pictures. For example,

the notions of limits, continuity, and differentiability at a point are ineffective of the

neighborhood chosen. On the other hand, regular functions on projective space Pnk
is just k, “the constants.” Hence, we want to define the maps that are regular on an

open subset of the variety if not on the whole of variety.

Let V ⊂ An be an algebraic set. We define,

k[V ] := { regular functions on V } = {[f ]; f ∈ k[x1, x2, ..., xn]}

where [f ] denotes an equivalence class defined by the relation

[f ] ∼ [g] if and only if f − g vanishes on V.

We see that k[V ] ' k[x1, x2, ..., xn]/I where I is the ideal of V . Let V be a variety,

then k[V ] is an integral domain. We define

k(V ) := Quotient field of k[V ]
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and call the elements in k(V ) to be rational functions.

Definition 0.1.11 (Rational maps between affine varieties ). Let V ⊂ An
k and W ⊂

Am
k be two affine varieties. Then the map ϕ : V → W is said to be rational if pi ◦ ϕ

is a rational function for each projection function pi : W → A1.

Definition 0.1.12. We call a map φ : X → Y to be birational, if φ is rational and

there exists a rational map ξ : Y → X such that φ ◦ ξ|U = Id and ξ ◦ φ|V = Id for

some open sets U ⊂ Y and V ⊂ X.

Remark. The map φ : X → Y is birational if and only if the induced map between

the function fields is an isomorphism.

0.1.2 Category of schemes

To each point (a1, ..., an) in the affine space An, we can associate a unique maximal

ideal (x1 − a1, x2 − a2, ..., xn − an) ⊂ k[x1, x2, ..., xn]. Similarly, for a = (a1, ..., an) ∈

V (I) there exists a unique maximal ideal (x1− a1, x2− a2, ..., xn− an) + I in the ring

k[x1, x2, ..., xn]/I. There is no harm in defining an affine variety to be the MaxSpec of

its coordinate ring. However, MaxSpec of a ring is not functorial, since the preimage

of a maximal ideal may not be maximal, and hence, we work with prime ideals of a

ring.

Objects

Definition 0.1.13 (Presheaf of Rings). Let X be a topological space. We define the

category Top (X) as follows:

Objects: Open subsets of X,

Morphisms: Hom (U, V ) =

inclusion if U ⊂ V and

∅ otherwise .

Then presheaf of rings is defined to be a contravariant functor F from Top (X) to the

category Rng of commutative rings.

Definition 0.1.14 (Sheaf of rings). We define a sheaf F on a topological space X to

be the presheaf that satisfies the following two additional properties:

(i) Let U be an open subset of X and {Vi} be an open cover of U . If f ∈ F(U)

maps to zero under inclusion maps for all i, then f is zero.
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(ii) Let fi ∈ F(Vi) be such that image of fi under the inclusion maps to F(Vi ∩ Vj)

is same for all i, j, then there exists an f ∈ F(U) such that f restricted to Vi is fi.

Example 1 (Affine variety with Zariski topology). Let X be an affine variety. We

have seen that X is a topological space with Zariski topology. Then for each open

set U in X, we associate the subring of rational functions that consists of functions

regular on U . It is easy to verify that this gives a sheaf structure on X.

Definition 0.1.15 (Spectrum of a ring). Let R be a ring. Consider the topology on

the set of its prime ideals SpecR defined by setting

V (I) = {P ∈ SpecR; I ⊂ P}

to be the closed sets. Then, to this topological space, we define a sheaf as follows:

Let U ⊂ SpecR be an open subset. We define OU to be the set of functions

{s : U → qP∈URP} such that s(P ) ∈ RP and s is locally a quotient of elements in R

where RP is the localization of the ring R at P (prime ideal). Spectrum of a Ring is

defined to be the pair (X = SpecR,OX) where SpecR is the topological space and

OX is the sheaf that we have just defined.

Definition 0.1.16 (Scheme). Let X be a topological space and OX be a sheaf on

X. A scheme is the pair (X,OX) such that every point has a neighborhood U that is

isomorphic to SpecR for some ring R.

Morphisms

Morphisms between two sheaves on a topological space are natural transformations.

Definition 0.1.17. A morphism of schemes (X,OX) and (Y,OY ) is the pair (f, f])

of a continuous map f : X → Y and a map of sheaf of rings f] : OY → f∗OX where

f∗OX is the sheaf defined on Y as, to each open set U in Y assign the ring OX(f−1(U))

to it.

0.1.3 Local ring

The first local invariant of a point x of a variety is the local ring Ox. It contains all

the functions that are regular in some neighborhood of x. Let X be a variety. Then
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Ox is the subring function field k(X) that consists of the functions f/g ∈ k(X) that

are regular at x i.e. f, g ∈ k[X] and g(x) 6= 0

Definition 0.1.18 (Local ring at a point). Suppose X is a variety, x ∈ X and

mx ⊂ k[X] is the ideal defined as follows:

mx := {f ∈ k[X] | f(x) = 0} .

Local ring at the point x ∈ X is defined to be the localization of k[X] at mx.

0.1.4 Dimensions

Let V be a topological space. We define the dimension of V as

dimV := max {i | C0 ( C1 ( ... ( Ci;Ci are irreducible closed subsets of V } .

But this definition may not always be feasible to work with. The definition that is

generally made is as follows:

Definition 0.1.19. Let V be an affine variety. We define the dimension of V to be

the transcendental degree of the function field k(V ). For a quasi projective variety

X, dimension of X is defined to be the dimension of an affine open subset U ⊂ X.

The following theorem gives an equivalence of the two definitions.

Theorem 0.1.20. The Krull dimension of an integral domain is the same as the

transcendental degree of its function field.

Proof. For proof, refer [4]

Remark. Let X = X1 ∪ X2 ∪ ... ∪ Xn be the decomposition of X into irreducible

components. Then we define the dimension of X to be the maximum of the dimensions

of X ′is.

Theorem 0.1.21. Let X, Y be algebraic sets. If Y ⊂ X, then dimY ≤ dimX.

Further, if X is irreducible and dimY = dimX then X = Y .

Proof. We assume X and Y to be irreducible. Let t1, ..., tl be rational functions on

X. Suppose they are algebraically dependent. Then there exist a polynomial g such

that g(t1, t2, ..., tl) = 0 on X. But g = 0 on X implies g = 0 on Y. Therefore,
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t1, t2, ..., tl are algebraically dependent on Y and dimY ≤ dimX. Now suppose, Y ⊂

X and dimX = dimY = n, we show that k[X] = k[Y ]. Let f ∈ k[X] be a non-zero

element and t1, ..., tn be the transcendental basis for k(X). We can assume, without

any loss of generality, that ti ∈ k[X] for all i. Then there exists a polynomial p(x)

such that p(f) = fk + fk−1ak−1(t1, ..., tn) + a0(t1, ..., tn) = 0 where k is the smallest

such natural number. Now, if f = 0 on Y the a0(t1. . . tn) = 0 on Y. But that is not

possible since dimY = n. Hence, k[X] = k[Y ].

Theorem 0.1.22. A hypersurface in An or Pn is an n − 1 dimensional subvariety.

The converse is true if X is an affine variety.

Proof. We can assume X to be an affine variety such that X ⊂ An. Let X = V (f) be

the hypersurface such that xn appears in f. We show that x1, ..., xn−1 are algebraically

independent in k(X). On contrary, let us suppose that, x1, ..., xn−1 are algebraically

dependent. Then there exists an irreducible polynomial g such that g(x1, ..., xn−1) = 0

on X. This implies, f divides g which is a contradiction as g does not involve xn.

Conversely, let X ⊂ An be an affine variety of dimension n−1. We choose a non-zero

polynomial f ∈ k[x1, ..., xn] such that f ≡ 0 on X. If f is reducible, then one of its

factors vanishes on X, so we can assume f to be irreducible. Now X ⊂ V (f) ⊂ An

and dimX ≤ dimV (f) < n. Since dimX = n− 1, this implies X = V (f).

0.2 Smooth versus non-singular

In high school Calculus, the notion of singularity appeared as the point of disconti-

nuity. Now we call a point p to be non-singular if the dimension of tangent space at

p is greater than the dimension of variety.

Definition 0.2.1. Let X be a scheme. A point x ∈ X is said to be non-singular if

the local ring around x is regular.

Remark. We will come back to this definition after the following discussion.

0.2.1 Tangent space

We want to define tangent space at x to be the collection of lines that are tangent to X

at x. We say that a line L through x = (0, 0, ..., 0) is tangent to X if the “intersection
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multiplicity” of L with X at x is more than one. Equivalently, the multiplicity of

t = 0 in the expression gcd(f1(tx), f2(tx), ..., fl(tx)) is ≥ 2 where fi are the defining

equations of X.

We will write the conditions for a line L to be tangent at x. Let Li be the linear

part of fi. Then fi(xt) = tLi(x) + Gi(tx). We see that Gi(tx) is divisible by t2.

Therefore, fi(xt) is divisible by t2 if and only if Li(x) = 0. Thus, the conditions for

tangency are the equations L1(x) = ... = Lm(x) = 0.

Definition 0.2.2 (Tangent space). Let X ⊂ AN be a variety defined by the equations

f1, f2, ..., fm. Then we define the tangent space of X at x = (0, 0, ..., 0) to be the

subvariety of AN defined by Li(x1, x2, ..., xN) = 0 where Li are the linear part of f ′is.

It is denoted by θx. Since the linear part of a polynomial can also be written as

dxf =
N∑
i=1

∂f

∂xi
(x)(xi − xi).

Tangent space of X at x is therefore defined by

dxf1 = dxf2 = ... = dxfm = 0

where fi are the defining equations of X.

Suppose that g ∈ k[X] has a polynomial representation G. We want to define

dxg. If we set dxg = dxG, we see that it depends on the choice of the polynomial G.

Further, if G and G′ are two representative for g then G − G′ ∈ I(X). This implies

that dxG− dxG′ = dxF for some F ∈ I(X). Let the ideal I(X) = (F1, ..., Fm). Then,

F = A1F1 + ... + AmFm, and therefore, dxF = A1(x)dxF1 + ... + Am(x)dxFm. We

know that linear forms {dxF | F ∈ I(X)} vanish on the tangent space θx. Hence,

dxg = dxG is a well-defined function on the tangent space θx.

This induces a homomorphism dx : k[X]→ θ∗x as follows

g 7→ dxG.

Since the map takes constants to zero, we can reduce the study of this map to the

ideal mx

Theorem 0.2.3. The map dx : mx/m
2
x → θ∗x defines an isomorphism.

Proof. The proof is easy and is left to the readers.
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Corollary 0.2.3.1. Let φ : X → Y be an isomorphism such that φ(x) = y. Then

θx ' θy. In particular dim θx = dim θy.

Definition 0.2.4 (Singular point). Let X be a variety and l = min {dim θx | x ∈ X}.

We say that a point x ∈ X is non-singular if dim θx = l. A variety X is said to be

non-singular if it is non-singular at every x ∈ X. If dim θx > l then x is said to be a

singular point of X.

Theorem 0.2.5. Let X be a variety and x ∈ X be a non-singular point. Then

dim θx = dimX.

Proof. We show that dim θx ≥ dimX for every point x ∈ X and that the set

{x ∈ X dim θx = dimX} is non-empty. We can assume X to be affine. Over an

algebraically closed field, an affine variety X is birational to a hypersurface Y =

V (f) ⊂ An. Let φ : X → Y be the birational map and let U ⊂ X and V ⊂ Y be the

open sets such that φ is an isomorphism on U . The tangent space of the hypersurface

V (f) = Y at x is given by

dxf =
N∑
i=1

∂f

∂xi
(x)(xi − xi).

Unless ∂f
∂xi

′
s are zero functions, there exists a point y such that the tangent space at y

is an n−1 dimensional variety. But ∂f
∂xi

= 0 implies dxf = 0 which further implies f is

either a constant if char k = 0 or f = fp1 if char k = p for some f1. Since f is irreducible

and non-constant, we conclude that the set W = {x ∈ V | dim θx = dimX} is non-

empty and open. Indeed, W is the set of all the points where at least one of the partial

derivative doesn’t vanish. Hence, φ−1(W ∩V ) ⊂ U is also open and non-empty. Since,

the dimension of tangent space remains same under isomorphism, dim θx = dimX for

x ∈ φ−1(W ∩ V ).

Definition 0.2.6 (Local parameters of a point x). The functions u1, ..., un ∈ Ox are

said to be the local parameters of x if each ui ∈ mx and the images of u1, ..., un form

a basis of the vector space mx/m
2
x.

As a consequence of Nakayama’s lemma, we see that local parameters of x generate

the maximal ideal mx of Ox
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Another equivalent definition of a non-singular point thus can be, a point x ∈ X

is said to be non-singular if the local ring Ox is regular local ring and hence, definition

5.2.3.

We call a variety X smooth over the point x if the dimension of its tangent space

is same as that of the variety, and call a point x non-singular if the local ring Ox
around x is regular local ring. We have seen that X is smooth over K at the point x

then x is a non-singular point of X. But converse may not be true always. However,

if the residue field at the point x is separable over k then non-singularity implies

smoothness.

0.3 Divisors

We can describe a rational function f ∈ k (A1) through its zeroes and poles. In the

same way, we want to assign a linear combination of codimension one subvariety to

a rational function. Let ζ be the collection of all the codimension one subvarieties of

V . We define a divisor on V to be the sum D :=
∑n

i=1 kiCi where k′is are non-zero

for finitely many i′s. Let

Div X =

{
n∑
i=1

kiCi where ki is non zero for only finitely many i’s |Ci ∈ ζ

}
,

then Div X forms an abelian group. We define SuppD :=
⋃n
i=1 Ci and call a divisor

D =
∑n

i=1 kiCi to be effective if ki ≥ 0 for all i. Let f ∈ k (V ) be a rational function.

We wish to assign an element of Div X to f . Assume that the set of singular points

of X has codimension ≥ 2. Let C ∈ ζ, and U be an affine open neighborhood such

that C ∩U 6= ∅. It contains non-singular point of X. It follows from theorem 5.2 that

C in U is defined by some u. Let f ∈ OU , then there exists an integer k ≥ 0 such

that f ∈
(
uk
)

and f /∈
(
uk+1

)
. We denote it by vC(f). We write divf :=

∑
vC(f)C.

Since each g ∈ Ox has a unique Taylor series expansion (x is non-singular). This will

guarantee the existence of k above. We extend it to the rational function f = g
h
∈ k(V )

as follows:

divf = divg − divh.

We call the divisors of rational function to be the principal divisors. This forms a

subgroup of Div X. The natural question is, Is every divisor is principal? The answer
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is no.

We define an equivalence on Div X as follows: we call D1 ∼ D2 if and only if

D1 −D2 = divf for some f ∈ k. The quotient group DivX/P (X) is called as divisor

class group of X.

Suppose X is a non-singular variety. Let C be a codimension one subvariety and

U be an affine neighborhood around x ∈ C ∩U . Then there exists a local equation u

of C in U. It follows that D =
∑n

i=1 kiCi has a local equation f =
∏n

i g
ki
i in U , where

gi are the local equations of Ci. Since closed varieties are quasi compact, there exists

a finite open cover
⋃
i Ui for X. In each of the open set Ui, let D be defined by fi.

Then these f ′is satisfy the following two conditions:

1 fi/fj are regular in Ui ∩ Uj.

2 fi/fj are nowhere zero in Ui ∩ Uj.

We call the system {(Ui, fi)} to be compatible system of functions on X. Any divisor

D on a non-singular variety gives a compatible system of functions and vica versa.

Suppose X and Y are non-singular varieties, φ : X → Y be a morphism and D

be a divisor on Y such that φ(X) * SuppD. Then we can define a pull-back of

D to be a divisor φ∗(D) on X as follows. Given a divisor D we know that it is

locally principal. Let {(Ui, fi)} be the compatible system of functions associated with

D. Then {(φ−1(Ui), φ
∗(fi))} gives a compatible system of functions on X. Let the

associated divisor be D′. We define

D′ = φ∗(D)

and call it the pull-back of D. Further note that, φ∗ defines a homomorphism

φ∗ : DivY → DivX.

Principal divisors are mapped to principal divisors under φ∗. This induces a map

φ∗ : DivY/P (Y )→ DivX/P (X).

The divisors defined by a compatible system of functions are scheme theoretic analogue

of Cartier divisors.

We define the degree of a divisor D =
∑

i kiCi as degD :=
∑

i ki.

14



0.4 Intersection theory

The multiplicity of a point in a variety is one of the first invariant that we look at

while resolving them. Intersection numbers are highly involved in the text, so we

discuss it here. We have encountered such terms while defining the tangent space of

a variety at a point. Intersection numbers are motivated by the general intersections,

but there are several differences that we will see soon.

Let X ⊂ PN be a projective variety of dimension n. We choose a form F1 that

doesn’t vanish on X and denote X ∩ V (F1) = XF1 . Note that, it is a codimension

1 subvariety of X. We choose another form F2 that does not vanish on XF1 and

denote XF1 ∩ V (F2) = XF1F2 and continue doing this. At each step, the dimension

is decreased by one. We see that XF1F2...Fn+1 is empty. Our study of intersection

numbers is limited up to codimension one subvariety, and we are interested in the

case where intersections are finite. Hence, we take n divisors that have no common

components where n is the dimension of X. We define the intersection numbers for

effective divisors and extend them linearly.

Suppose X is an n-dimensional projective variety, D1, D2, ..., Dn be effective divi-

sors with no common components and x ∈
⋂
i SuppDi. Let Ux be an affine neighbor-

hood of x and f1, f2, ..., fn be the local equations of D′is in Ux. We can assume that

f ′is are regular in Ux and have no common zeroes other than x there. It follows that

(f1, f2, ..., fn) ⊂ mk
x (1)

for some k. Consider the quotient Ox/(f1, f2, ..., fn) as a vector space over k. It follows

from (1) that it is finite dimensional.

Definition 0.4.1. Let D1, D2, ..., Dn be divisors on an n-dimensional projective va-

riety with no common component. Then intersection multiplicity of D1, D2, ..., Dn at

x is defined as follows:

(D1D2...Dn)x = dimk(Ox/(f1, ..., fn))

Now, suppose that D1, D2, ..., Dn are not effective. We can write Di = D′i −D′′i ,

then

(D1D2...Dn)x := (
n∏
i=1

(D′i −D′′i ))x =
∑

i1,i2,...,in

n∑
k=0

(−1)n−k(D′i1 ...D
′
ik
D′′ik+1

...D′′in)x.
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Definition 0.4.2. Let X be a projective variety on dimension n and D1, D2, ..., Dn be

divisors on X with no common component. Then, we define the intersection number

of D1, D2, ..., Dn as follows:

D1D2...Dn =
∑

x∈∩iDi

(D1D2...Dn)x.

Example 2. Let C1, C2, ..., Cn be codimension 1 subvariety of X and f1, f2, ..., fn be

the local equations of Ci at x. Then (C1C2...Cn)x = 1 implies that (f1, f2, ..., fn) = mx.

Therefore, the condition (C1C2...Cn)x = 1 implies that the functions f1, f2, ..., fn are

a system of local parameters of x.

Definition 0.4.3. Suppose X is an n-dimensional variety and D1, D2, ..., Dk are di-

visors on X such that ∩iSuppDi is an n − k dimensional algebraic set. Let C be a

component of ∩iSuppDi, x ∈ C be a point and f1, f2, ..., fk be the local equations of

D1, D2, .., Dk in Ux. We define the intersection multiplicity of D1, ..., Dk at C to be

(D1D2...Dk)C = lOC (OC/I)

where I = (f1, ..., fk)OC and lOC (N) is the length of the OC-module N .

Theorem 0.4.4. Suppose X ⊂ Pn be a projective variety and D1, D2, ..., Dn−1, Dn

and D1, D2, ...Dn−1, Dn+1 are divisors with no common components. Then,

(D1D2...Dn−1(Dn +Dn+1))x = (D1D2...Dn−1Dn)x + (D1D2...Dn−1Dn+1)x.

Proof. It is enough to prove the theorem for effective divisors. Let f1, f2, ..., fn, fn+1

be the local equations of D1, D2, ..., Dn, Dn+1 respectively in a neighborhood of x. We

wish to show that,

dimkOx/(f1, ..., fn−1, fnfn+1) = dimkOx/(f1, ..., fn−1, fn)+dimkOx/(f1, ..., fn−1, fn+1).

Note that,

0→ (fn+1)/(f1, ..., fnfn+1)→ Ox/(f1, ..., fnfn+1)→ Ox/(f1, ..., fn−1, fn+1)→ 0

is an exact sequence of k-vector spaces where the first map is the inclusion of the ideal

(fn+1)/(f1, ..., fnfn+1) in the ring Ox/(f1, ..., fnfn+1). It follows that

Ox/(f1, ..., fn−1, fn+1) ' Ox/(f1, ..., fnfn+1)/(fn+1)/(f1, ..., fnfn+1)
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. Therefore,

dimkOx/(f1, ..., fn, fn+1) = dimk(fn+1/(f1, ..., fnfn+1)) + dimkOx/(f1, ..., fn−1, fn+1)

It remains to show dimkOx/(f1, ..., fn−1, fn) = dimk(fn+1)/(f1, ..., fnfn+1). It fol-

lows directly after we show fn+1 is a non-zero divisor in Ox/(f1, f2, ..., fn−1). We show

that if f1, f2, ..., fn−1, fn+1 are local equations of divisors D1, ..., Dn−1, Dn+1 that have

no common components, then fn+1 is a non-zero divisor in Ox/(f1, f2, ..., fn−1). The

functions f1, f2, ..., fn are said to be a regular sequence, if fi is a non zero divisor

in Ox for all i. We proceed by induction on the dimension of the variety X. It is

trivially true for n = 1. So we suppose that the result is true for dimX = n − 1.

Let H be a hyperplane given by f such that it does not contain θx,X or any com-

ponent of ∩n−1
i=1 SuppDi. Then D1, ..., Dn−1 restricted to H have a finite intersection

and possess no common component. By the induction hypothesis, fi is a non-zero

divisor in Ox/(f1, ..., fi−1) for i = 1, ..., n − 1. Since f is non-zero divisor in Ox we

see that f, f1, f2, ..., fn−1 is a regular sequence. Regular sequences are invariant of

order. It follows that f1, f2, ..., fn−1, f form a regular sequence. In a neighborhood of

x, D1, D2, ..., Dn−1, Dn+1 have no common component other than x. So,

mk
x ⊂ (f1, f2, ..., fn−1, fn+1)

for some k. This implies fk ∈ (f1, f2, ..., fn−1, fn+1) i.e. fk ≡ afn+1 mod (f1, f2, ..., fn−1).

Therefore, fn+1 cannot be a zero divisor in Ox/(f1, f2, ..., fn−1).

Theorem 0.4.5. Suppose X is non-singular projective variety and D1, ..., Dn, D
′
n are

divisors on X such that Dn ∼ D′n and none of them have common components. Then,

D1...Dn−1Dn = D1...Dn−1D
′
n

Proof. We show it for the case where D1, D2, ..., Dn, D
′
n are effective. Since Dn ∼ D′n,

there exists an f such that Dn−D′n = divf. We will show that D1D2...Dn−1divf = 0.

Let x ∈
{
∩n−1
i=1 SuppDi

}
∩ Supp(divf) be a point. And Ux is an affine neighborhood

of x. Further, let D1, D2, ..., Dn−1 are defined by the equations f1, f2, ..., fn−1 in Ux.

We write Ō = Ox/(f1, f2, ..., fn−1), then

dimkOx/(f1, ..., fn−1, f) = lŌ(Ō/(f)).
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Note that Ō is one-dimensional local ring that has one maximal ideal mx and l prime

ideals pC1 , pC2 , ..., pCl where C ′is are the component of ∩n−1
i=1 SuppDi that pass through

x. It follows that,

lŌO/(f) =
∑
pi

lŌpi Ōpi × lŌ(Ō/(pi + fŌ))

=
∑
i

(D1...Dn−1)Ci × lŌ(OCi,x/(f)).

Let Ei denote the restriction of divf to Ci then,

(D1...Dn−1divf)x =
l∑

i=1

(D1...Dn−1)Ci × vx(Ei)

Let η : C ′i → Ci be the normalization of Ci(see chapter 3), then

(Ei)x =
∑

y∈η−1(x)

(η∗(Ei))y.

We see that,

(D1...Dn−1divf) =
l∑

i=1

(D1...Dn−1)Ci ×
∑
x∈Ci

(
∑

y∈η−1(x)

vy(η
∗(Ei)))

We know that Ei are principal divisors on the curves Ci and so are η∗(Ei). The

normalization C ′i are non-singular projective curves (see chapter 3). It is easy to

verify that degree of a principal divisor on a non-singular projective curve is zero.

Hence, the result follows.

Theorem 0.4.6. Suppose X, Y be non-singular projective surface and f : X → Y be

a birational morphism. Let D1, D2 are divisors on Y then

f ∗(D1)f ∗(D2) = D1D2.

Further, if D̄ is an exceptional divisor on X, then for any divisor D on Y

f ∗(D)D̄ = 0.

Proof. Since φ = f−1 is a rational map on a surface, we have seen that φ is not

regular at finitely many points. Let Z be the finite set where φ is not regular. Then

φ : Y − Z → X is an isomorphism. If D1, D2 does not contain Z then we are done

otherwise, we can move away D1 and D2 from Z due to the following lemma:
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Lemma 0.4.7. Let X be a non-singular projective variety D be a divisor and x ∈ X

be a point then there exists a divisor D′ such that D′ ∼ D and x /∈ SuppD′.

So we assume D1 and D2 have no intersection with Z and hence. D1D2 =

f ∗(D1)f ∗(D2)

19



20



Chapter 1

Introduction

The concept of singularity have appeared in the subject in one form or the other.

In High school, one calls a point singular if tangent space is not defined at that

point. Generalizing these definitions, we have seen that a point p in a variety X

is said to be singular if local ring around p is not regular. The idea of resolving

singularities is to replace this singular locus by a subvariety in such a way that one

can study the properties of singular point p through them. The problem of resolution

of singularities have been changing its essence since the time it was initiated. First

being, to produce a non-singular variety X ′ such that there exists a birational proper

morphism π : X ′ → X from X ′ to X.

Why proper?

Before that, what is a proper morphism?. A map f : X → Y between topological

spaces X and Y is said to be proper if preimage of every compact set is compact.

Scheme theoretic definition of a proper morphism is as follows:

Definition 1.0.1 (Proper morphism). A morphism f : X → Y of schemes is said

to be universally closed if for every scheme Z and the morphism g : Z → Y , the

projection from the product

X ×Y Z → Z

is a closed map for the underlying topological spaces. A morphism of schemes is said

to be proper if it is separated, universally closed and is of finite type.

By taking proper map we want to get rid of trivial resolutions such as “variety

minus the singular locus”. Indeed, let X = Y \ { singular locus} and Z = Y with
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g = Id|Y . Then X ×Y Y = Y , but the projection is not closed, and therefore we get

rid of trivial resolution in such case. The definition may not always be easy to work

with, so we take into account the valuative criteria of properness:

Let f : X → Y be a morphism of Noetherian scheme of finite type. Then f is a

proper map if and only if for all discrete valuation ring R with field of fractions K

and for any K − valued point x ∈ X that maps to a point f(x) defined over R, there

exists a unique lift of x of x̄ ∈ X(R).

There are other notions for resolution too. They are as follows:

Definition 1.0.2 (Embedded resolution). Let Y ⊂ X be a variety embedded in a

non-singular variety X. An embedded resolution of Y is a birational proper morphism

π : X ′ → X from a non-singular variety X ′ to X such that π is an isomorphism over

X\Sing(Y ) and the birational transform Y ′ of Y is non-singular.

Definition 1.0.3 (Strong resolution). Given a variety X we want to find a smooth

variety X ′ such that there exists a birational proper map π : X ′ → X such that π−1

is an isomorphism on X\ {Sing(S)} and π−1(Sing(S)) is a simple normal crossing.

Definition 1.0.4 (Functorial resolution). Suppose X is a variety, we wish to find

a resolution that is functorial with respect to smooth morphisms. That is for any

morphism f : X → Y there exists an f ′ : X ′ → Y ′ such that the following diagram

commute.

Definition 1.0.5 (Weak resolution). For a variety X, we wish to find a smooth variety

X ′ birational to X.

We are mostly interested in the first definition. After Hironaka has given a proof

for resolution in arbitrary dimensions, the focus has been shifted from finding new

methods of resolution to a more in-depth understanding of the existing ones with a

motive of applying these techniques in positive characteristic. In this document, we

talk about the various method and what they do to the invariants. Chapter one is

about blow-ups, where we provide a basic definition and idea of blow-ups, followed by

its applications. Finally, we show that singularity of curves and surfaces are resolved

after finitely many blow-ups centered at the singular locus. Chapter two talks about

normal varieties and what normalization do to a variety. We also talk about one of the
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interesting kinds of singularity i.e., Abelian quotient singularities. In chapter three,

we talk about projection and discuss one of the significant results by S. Abhyankar

which says that every projective variety of dimension n is birational to a normal

variety whose top locus can have multiplicity at most n!. And finally, in chapter four,

we give a proof of surface resolution in positive characteristic given by Cutkosky.
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Chapter 2

Blow up

The very first example of resolution of singularity is that of a cone

z2 = y2 + x2

Cone can also be seen as an image of the cylinder x2 + y2 = 1 under the map φ :

A3 → A3 defined by

(x, y, z) 7→ (xz, yz, z).

The map contracts xy−plane to a point. Notice that, it is an isomorphism for all the

points other than φ−1(0, 0, 0). To further illustrate the idea, let us look at another

example of the curve y2 = x2 + x3. This curve is singular at (0, 0), the singularity

of the point is due to the two branches that pass through the point having different

tangents. In order to separate the two branches of the curve, we lift two lines in A2

by associating to each line, the height z given by the slope of the line. More precise

treatment is done in section one, where discuss the notion of blow up. In section two,

we talk about some of its beautiful applications. Resolution of curve and surfaces

in characteristic 0 are discussed in section three and four. Finally, we discuss some

examples where these methods behave weird, if not carefully done. We will mostly

talk about embedded resolution in a neighborhood, but the global case can be taken

care of by patching up the local charts.
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2.1 Blow up

2.1.1 Tangent cone

Tangent space is an invariant of an algebraic variety, its dimension tells us how far a

singular point is, from being non-singular. However, for the curves like y2 = x3, the

tangent space at (0, 0) is the whole A2 which is far away from the actual picture of

tangent lines at the origin. This motivates the concept of tangent cones. We want to

define the tangent cones similar to the limiting position of secant lines.

For a variety X ⊂ An, we define X ′ ⊂ An × A1 to be the set

X ′ := {(a, t) | ta ∈ X} .

We observe that it is a closed subset of An+1. Let

φ : X ′ → A1 and ϕ : X ′ → An

be the natural projection maps.

Notice that X ′ is reducible, indeed

X ′ = {(a, 0) | a ∈ An}
⋃

φ−1 (A1 − {0}). (2.1)

Let φ1 and ϕ1 be the restriction of φ and ϕ respectively to φ−1 (A1 − {0}). The set

ϕ1

(
φ−1 (A1 − {0})

)
is the closure of set of all the points on the secants through

x = (0, 0, ..., 0). We call ϕ1

(
φ−1

1 (0)
)

as the tangent cone to X at origin and denote

it by T(0,0,...,0). Another commonly referred definition of tangent cone to the variety

X = V (I) ⊂ An at (0, 0, ..., 0) is the variety V (I∗) where I∗ = {f ∗ | f ∈ I} and

f ∗ = fk is the leading term of f = fk + fk+1 + ...+ fr.

We show that the two definitions are equivalent:

The equations of X ′ are {f |f (at) = 0 for (a, t) ∈ X ′ and f ∈ I}. Suppose that

f = fk + fk+1 + ... + fr where fj is homogenous polynomial of degree j with fk 6= 0.

Then f (at) = tk
(
fk (a) + tfk+1 (a) + ...+ tl−kfl (a)

)
. Since f (0) = 0 implies k ≥ 1.

Therefore, f decomposes into two components. The component {t = 0} corresponds

to {(a, 0) | a ∈ An} and the other component is V (fk (a) + tfk+1 (a) + ...+ tl−kfl (a)).

Comparing it with 2.1, we see that ϕ1

(
φ−1

1 (0)
)

is given by fk = 0 for f ∈ I. The

form fk is the leading form of f . Thus, tangent cone Tx at x, is defined by setting 0,
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the leading forms of all polynomials f ∈ I. We give the scheme theoretic definition

here.

Definition 2.1.1 (Tangent cone of X at x). Let k be an algebraically closed field, X

be a scheme of finite type over k and x ∈ X be a closed point. We define the tangent

cone at x to be

Tx = Spec
k[x1, x2, ..., xn]

I∗

where Spec k[x1,x2,...,xn]
I

is an affine neighborhood around x in X and

I∗ = ({ leading form of f for f ∈ I}).

At first, it might look like that the definition is dependent upon the neighborhood

we choose for x but we will relate it to the local ring Ox and the independence of

choice of neighborhood will follow.

We define

gr (Ox) :=
∞∑
n=0

mn
x/m

n+1
x

where mx is the maximal ideal of local ring Ox. It is sufficient to show the equivalence

for the point (x1, x2, ..., xn)/I. Then,

mk
x/m

k+1
x '

∑
(x1, x2, ..., xn)k / (x1, x2, ..., xn)k+1 + I ∩ (x1, x2, ..., xn)k

mk
x/m

k+1
x '

∑
(x1, x2, ..., xn)k / (x1, x2, ..., xn)k+1 + I∗k .

But,

(x1, ..., xn)k/(x1, ..., xn)k+1 + I∗k is the kth graded piece of k[x1, x2, ..., xn]/I∗.

That is,

gr (Ox) ' k[x1, x2, ..., xn]/I∗

Definition 2.1.2 (Final definition). Let X be a scheme and x ∈ X be a closed point.

We define Spec gr(Ox) to be the tangent cone at x ∈ X.

Remark. Since tangent cone is defined through a homogenous ideal I∗, it is natu-

ral to projectivize it. The ideal I∗ defines a subscheme T in Pn−1, that we call as

projectivized tangent cone. There is a natural way to put X − x and T together in

a new scheme B(ξ) in such a way that locally on B(ξ), T is a subscheme defined by

vanishing of single function.
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2.1.2 Blow up of An at origin

Definition 2.1.3 (Blow up of An at ξ = (0, 0, ...0)). Let p : An − {0} → Pn−1

be the projection map that sends (a1, a2, ..., an) to its homogenous coordinate. And

B(ξ) ⊂ An×Pn−1 be the closure of the graph of projection map p. Then the projection

map π : B(ξ)→ An is defined to be the blow up of An at origin.

Figure 2.1: Blow up of A2 at origin

Since the graph is already closed in (An − {0})×P n−1, all the points of B(ξ) that

are not in the graph lie above the origin in An. It is worth noting that the projection

π is birational map, inverse of which is defined for all the point except origin.

The geometric interpretation is as follows:

Affine space An can be visualized as the union of lines through (0, 0, ...0). Each line is

further a union of origin and p−1 (t) for some t ∈ k. Blowing up (0, 0, ...0) associate to

each line corresponding to the slope t, a new origin {0}× t. In particular the closure,

B(ξ) contains all the points of An×Pn−1 that lie over the origin in An. Therefore, we

have effectively replaced the one origin in An by a whole variety of origins in B(ξ),

one for each line. The locus of origins 0 × Pn−1 is called the exceptional divisor of

B(ξ)
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Affine open cover for B(ξ)

The blow up variety B(ξ) is not always easy to work with, so we work with the pieces.

B(ξ) is a subvariety of An × Pn−1 defined by the equations

xiyj − xjyi = 0 for i, j = 1, ..., n

where x1, x2, ..., xn are affine coordinates of An and y1, y2, ..., yn are the homoge-

nous coordinates of Pn−1. The open cover for Pn−1 given by
⋃n
i=1 Ui where Ui =

{(x1, x2, ..., xn, y1 : y2 : ... : yn) | yi 6= 0} induces an open cover for An × Pn−1 as fol-

lows:

An × Ui =

{(
x1, x2, ..., xn,

y1

yi
,
y2

yi
, ..., 1...,

yn
yi

)
|yi 6= 0

}
' An × An−1

The definition of p demands the ratios {x1 : x2 :, ..., : xn}= {y1 : y2 : ... : yn}. There-

fore,

B(ξ) ∩ (An × Ui) = V

((
..., xi.

yj
yi
− xj, ...

))
and

B(ξ) ∩ (An × Ui) = MaxSpec k

[
x1, x2, ..., xn,

y1

yi
,
y2

yi
, ...,

yn
yi

]
/

(
..., xi.

yj
yi
− xj, ...

)
See that

yj
yi

and
xj
xi

are equal in the function field of B(ξ). So we identify the affine ring

Γ
(
B(ξ) ∩ (An × Ui),OB(ξ)

)
with its isomorphic image in k

(
x1, x2, ..., xn,

y1

yi
, ..., yn

yi

)
to

obtain

B(ξ) ∩ (An × Ui) = MaxSpec k

[
xi,

x1

xi
,
x2

xi
, ...,

xn
xi

]
Replacing MaxSpec by Spec gives an open cover for X by affine schemes. Further,

these affine pieces of B(ξ) satisfies the gluing condition. Indeed,

[B(ξ)i]xj
xi

= Spec k

[
xi,

x1

xi
,
x2

xi
, ...,

xn
xi
,
xi
xj

]
= Spec k

[
xj,

x1

xj
,
x2

xj
, ...,

xn
xj
,
xj
xi

]
= [B(ξ)j] xi

xj

Therefore, we have a scheme structure on B(ξ). The exceptional divisor is given by

MaxSpeck
[
x1

xi
, x2

xi
, ..., xn

xi

]
. Indeed, the blow up morphism π induces the inclusion map

k [x1, x2, ..., xn] ⊂ k

[
xi,

x1

xi
, ...,

xn
xi

]
defined by xj 7→

(
xj
xi

)
.xi. Origin in MaxSpec k [x1, x2, ..., xn] is given by the ideal

(x1, x2, ..., xn). Since all the xj’s are the multiple of xi we see that,

E ∩B(ξ)i = V ((xi)) ' MaxSpec k

[
x1

xi
,
x2

xi
, ...,

xn
xi

]
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Remark. Having defined the blow up for An, next what follows is the blow up of

projective space along a point. The definition is on the same lines but, we define it

here for the completeness.

Definition 2.1.4 (Blow up of Pn along the point ξ = (1 : 0 : ... : 0)). Consider the

closed subvariety B(ξ) ⊂ Pn × Pn−1 defined by the equations

xiyj = yixj, i, j = 1, ..., n

where (x0 : ... : xn) and (y1 : ... : yn) are homogenous coordinates for Pn and Pn−1

respectively. Then the map π : B(ξ) → Pn given by the restriction of the first

projection π : Pn × Pn−1 → Pn is defined to be the blow up of Pn centered at ξ =

(1 : 0 : ... : 0)

2.1.3 Birational transform of a blow up

What happens to the subvariety X ⊂ An under point blow up?

Consider the curve y2 = x3 + x2 ⊂ A2. The image of this curve under the inverse of

birational map π is the consist of two components {x}
⋃
{y2 − x− 1}. Indeed, let πi

be the restriction of π to the affine piece B(ξ)i = Spec k[xi
x1

xi
, ..., xn

xi
]. Then the map

π∗i : k[x1, x2, ..., xn]→ k[xi,
x1

xi
, ...,

xn
xi

]

is defined as follows

xi → xi

xj →
xj
xi
xi.

We denote
xj
xi

= x′j and xi = x′i. Then for the curve f(x, y) = y2 − x2 − x3

π∗x (f) = (y′x′)
2 − x′2 − x′3

implies

V (π∗x (f)) = V (x′) ∪ V
(
y′2 − 1− x′

)
The set x′ = 0 constitutes the exceptional curve 0× P1 while the other component is

said to be the birational transform of the curve C = y2 − x2 − x3 in the first chart.

Notice that the birational transform of C is smooth here.
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In fact, for any curve f (x, y) ⊂ A2, image of f under π∗ is

f (x′, x′y′) = x′mult(0,0)ff ′ (x′, y′) and we define f ′ (x′, y′) to be the birational trans-

form of f in the first chart. In general, if X ⊂ An is an irreducible affine variety with

X 6= An. Then the inverse image π−1 (X) of X under the blow up of Pn centered at

ξ is reducible and consists of the two components

π−1 (X) =
(
ξ × Pn−1

)
∪ Y.

We define Y to be the birational transform of X. The restriction of π to the component

Y defines a regular map π : Y → X which is an isomorphism on Y \π−1(ξ).

2.1.4 Blow up along a subvariety

Let Y ⊂ X be a non-singular subvariety of a non-singular variety X. Then there exist

a neighborhood U and functions u1, u2, ..., um ∈ OX (U), where m = codimXY such

that the ideal aY ⊂ OX (U) is given by aY = (u1, u2, ..., um) and dxu1, dxu2, ..., dxum

are linearly independent. Suppose X is an affine variety and Y ⊂ X is defined by the

equations u1, u2, ..., um. Consider the closed subvariety X ′ ⊂ X×Pm−1 defined by the

equations

tjui (x)− uj (x) ti.

Let π : X × Pm−1 → X be the natural projection.

Definition 2.1.5 (Blow up along a subvariety). The restriction map π : X ′ → X is

defined to be blow up of X along Y .

Remark. It may appear as if the blow up variety is dependent upon the selection of

local parameters u1, u2, ..., um. But it is not the case.

Lemma 2.1.6. Suppose π1 : X1 → X and π2 : X2 → X be the blow up of X along

Y by different system of parameters say u1, u2, ..., um and v1, v2, ..., vm. Then X1 and

X2 are isomorphic such that the following diagram commutes.
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We have defined the blow up of X along a subvariety Y in a neighborhood of a

point p ∈ Y . Let X = U1 ∪U2 ∪ ...∪Un be an open affine cover of X. For each Uα we

can define Xα as above. The idea of global blow up is to glue together these pieces.

But we are mostly interested in the local pictures.

Example 3. Consider the surface S ⊂ A3 given by the following equation:

f(x, y, z) = x2 − y3z2.

Clearly, maximum possible multiplicity of a point in S is 2. The partial derivatives

are as follows:
∂f

∂x
= 2x,

∂f

∂y
= 3y2z2,

∂f

∂z
= 2zy3.

The singular locus is given by the algebraic subset,

x = 0, yz = 0.

We blow up along the curve C := {x = 0, y = 0} . The two open pieces of birational

transform are as follows:

1. x1 = x, y1 = y
x
, z1 = z

Total transform: x2
1 − y3

1x
3
1z

2
1 Birational Transform: 1− y3

1x1z
2
1

2. x1 = x
y
, y1 = y, z1 = z

Total transform: x2
1y

2
1 − y3

1z
2
1 Birational Transform: x2

1 − y1z
2
1

We see that, the second piece of the birational transform possess singularity of same

multiplicity at the curve C1 := {x1 = 0, z1 = 0} , so we blow up along C1.

1. x2 = x1, y2 = y1, z2 = z1
x1

Total transform: x2
2 + y2

2z
2
2x

2
2 Birational transform: 1− y2

2z
2
2

2. x2 = x1

z1
, y2 = y1, z2 = z1

Total transform: x2
2z

2
2 − y2z

2
2 Birational transform: x2

2 − y2

We see that, after two blow ups, the singularity of surface S has been resolved.

2.1.5 Rees-algebra and Proj

Definition 2.1.7 (Blow up of a Noetherian scheme along an ideal sheaf I). Let X

be a Noetherian scheme and let I be the sheaf of ideals on X. Consider the sheaf

of graded algebras ζ = ⊕d≤0I
d. Then Projζ is defined to be the blow up of X with

respect to the ideal I.
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Example 4. Let X = An, p ∈ X be the origin and I = (x1, x2, ..., xn),

B(I) = ProjA where A = ⊕d≤0(x1, x2, ..., xn)d.

See that, the blow up variety here is same as the one previously defined. Indeed, the

map

φ : k[x1, x2, ..., xn][y1, y2, ..., yn]→ A

yi 7→ (0, xi, 0, ...)

induces

φ̄ : k[x1, x2, ..., xn][y1, y2, ..., yn]\kerφ→ A

where Kerφ = ({xiyj = xjyi|i, j = 1, ..., n}). We see that the latter is an isomorphism.

Proposition (Universal property of blow ups). Let X be a Noetherian scheme, I be

an ideal sheaf on X and π : B(I) → X be the blow up of X along the ideal sheaf I.

If f : Z → X is a regular map such that f−1(I).OZ is an invertible sheaf of ideal on

Z then, there exists a unique regular map g : Z → B(I) factoring f

Proof. For proof, refer [4]

One can also define blow ups through universal property.

Definition 2.1.8. The blow up of a variety X along a closed subvariety Y is a regular

map π : X ′ → X such that E = π−1(Y ) is a divisor in X ′ and that for any morphism

f : Z → X with f−1(Y ) divisor in Y there exists a unique morphism φ : Z → X ′

such that f = π ◦ φ.

2.2 Applications

Rational maps from a quasi projective variety X to Pn are not defined on the whole

of X. Through blow ups we can extend these rational maps in some way to the whole

of the variety.

Theorem 2.2.1 (Resolution of indeterminacy). Let X be a non-singular projective

surface and ϕ : X → Pn be a rational map. Then there exists a chain of blow ups

Xm → ...→ X1 → X such that the composite rational map ψ = ϕ ◦ π1... ◦ πm : Xm →

Pn is regular.
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Proof. The proof will follow through several steps:

(i) We show that ϕ fails to be regular at finitely many points

Indeed, we will show it in a neighborhood of x. Since projective varieties are quasi

compact the claim will follow. Let ϕ be given by (f0, ..., fn) where fi ∈ k(X), then

the point of indeterminacy is either where fi fails to be regular or where all of them

vanish. The first one can be dealt by multiplying all the f ′is with a common factor to

make sure that all fi’s are in Ox and have nothing in common. Next, we show that

the points where all fi’s vanish is at most zero dimensional algebraic set. Suppose

on contrary, there exists a curve in the locus of indeterminacy of ϕ, then in the

neighborhood of x, it is generated by single element, say C := V (f). Then, fi = fgi

for some gi ∈ Ox. But this is contradiction to the assumption that they have no factor

in common.

(ii) We give explicit description of such points

Let D̄ = gcd (div (f0) , div (f1) , ..., div (fn)) and Di = div (fi)−D̄. The set of irregular

point for ϕ is
⋂
i SuppDi

(iii) We associate an invariant to the rational map

For the rational map ϕ, we define D(ϕ) := D2
i . We show that the invariant is bounded

below by 0 and decreases eventually under blow up at suitable centers Notice that

d(ϕ′) = 0 implies that intersection of SuppD′i and SuppD′j is empty that proves the

theorem.

(iv) We show that d(ϕ) ≥ 0 and that it decreases under blow up:

Define Dλ := div(
∑n

i=0 λifi) − D̄ where λ = (λ0, ..., λn) ∈ kn+1 − {(0, 0, ..., 0)} and

D(0,0,...,0) = 0. The set {λ|vC(Dλ) > 0 for C ⊂ SuppD0}∪{(0, 0, ..., 0)} forms a proper

subspace of kn+1. Indeed, D′is possess no common component, therefore choose for

every irreducible component C ⊂ D0, Di such that vC(Di) = 0. Let gi be the local
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equations for the Di in a neighborhood of some point c ∈ C then vC(Dλ) > 0 if and

only if
∑n

i=0 λi(gi|C) = 0.

So there exists a λ0 such that vC(Dλ0) = 0 for every component C ⊂ D0. Since

D0 and Dλ0 are effective divisors that have no common components, therefore, D2
i =

D0.Dλ0 ≥ 0.

(v) d(ϕ′) < d(ϕ)

We associate to each point ξ, multiplicity of a divisor D =
∑n

i=1 liCi as k =
∑n

i=1 liki

, where ki are the multiplicities of the Ci at ξ. Let vi be the multiplicity of Di at ξ

and v = min {vi}. The map ϕ′ is given by the functions f ′i = σ∗(fi), Then

div(f ′i) = σ∗div(fi) = σ∗(Di + D̄) = σ′(Di) + viL+ σ∗(D̄)

= σ′(Di) + (vi − v)L+ vL+ σ∗(D̄).

Let D′i = div(f ′i) − gcd {div(f ′1), div(f ′2), ..., div(f ′n)} then, D′i = σ′(Di) + (vi − v)L.

We choose i such that vi = v. By definition, d(ϕ′) = (D′i)
2 = (σ′(Di))

2

= (σ∗(Di)− vL)2 = (σ∗(Di))
2 − v2 = (Di)

2 − v2,

and hence d(ϕ′) = d(ϕ)− v2.

Theorem 2.2.2 (Castelnuovo’s contractibility criterion). Suppose X is a smooth

projective surface. Let P1 ' E ⊂ X a curve such that (E.E) = −1. Then there exists

a smooth projective surface Y and a birational regular map φ : X → Y such that

φ(E) = y and φ : X\E → Y \y is an isomorphism.

Theorem 2.2.3 (Factorization as a chain of blow ups). Let X and Y be projective

surfaces and ϕ : X → Y be a birational map. Then there exists a surface Z and maps

φ : Z → X and ψ : Z → Y such that φ and ψ are composition of blow ups. In other

words, there exists a commutative diagram.
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where X ′is and Y ′i s are surfaces and φ′is and ψ′is are blow up maps.

Proof. We shall prove it in several steps:

1. By previous theorem, it is sufficient to show that a birational morphism is compo-

sition of blow downs:

Let Z be the surface constructed in theorem 2.2.1, φ : Z → X be the composition

of blow ups and ψ = ϕ.φ. We show that ψ is composition of finitely many blow ups,

i.e. there exist surfaces Yi and blow up maps ψi : Yi → Yi−1 with Y0 = Y such that

ψ = ψn.ψn−1...ψ1 : Z → Y .

2. For each point y ∈ Y where ψ−1 fails to be regular, there exists a curve C such

that ψ(C) = y:

Let U ⊂ Z and V ⊂ Y be open sets where ψ is an isomorphism and W be the closure

of graph of ψ : U → V in Z × Y . The first and second projection p : W → Z and

q : W → Y are regular birational maps. Let y ∈ Y be a point where ψ−1 fails to

be regular. Then, q−1 also fails to be regular at y. There exists w ∈ W such that

q(w) = y. We look at the affine neighborhood S of w. In this neighborhood, g = q−1 is

given by (g1, g2, ..., gm). Then one of gi say g1 fails to be regular at y. If g1 = u
v

where

u, v ∈ OY,y, then v(y) = 0. This implies, q∗(v)(w) = v(y) = 0, so that w ∈ V (q∗(v)).

Set D = V (q∗(v)). Since q is regular, q∗(u) = 0 on D. So, q(D) ⊂ V (u) ∩ V (v). OY,y
is a UFD, Y is non-singular, so we can assume u and v have no common factor which

implies q(D) is a point. Let C = p(D), then C is a codimension one closed set.

3. Blow up at the indeterminacy locus of ψ−1:

Consider the blow up σ1 : Y1 → Y at y and define ψ′1 = σ−1
1 .ψ. We see that, ψ′ maps

the subvariety ψ−1(y) to σ−1(y) = L ' P1.
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4. We show that ψ′1 is regular:

Suppose ψ′1 is not regular at z ∈ Z, then there exists a curve in Y1 such that

ψ′−1
1 (Y1) = z. Notice that Y1 = L, in which case there exists a finite subset of L

where ψ′−1
1 fails to be regular. It follows that, ψ(z) = y, and that the tangent spaces

at z and x are isomorphic, isomorphism being given by,

dzψ : θZ,z → θY,y.

But that is the contradiction to the fact that there exists a curve C such that ψ(C) =

y. Hence, ψ′1 is a regular map.

5. After finitely many blow ups, ψ′m is an isomorphism:

Since, ψ′1 maps Z onto the whole of Y ′, it follows that it maps ψ−1(y) onto the whole

of L. There exists at least one component of ψ−1(y) that maps onto L and therefore,

the number of components of (ψ′)−1(y′) is less than the number of components of

ψ−1(y) for any y′ ∈ L. Since the components are finitely many, we see that after

finitely many blow ups, there are no exceptional divisors in X.

Remark. The statement that every rational map is a composition of blow ups is not

true, counter example is given by Hironaka. Theorem 2.2.3 in arbitrary dimension is

an open problem. While, resolution of indeterminacy in arbitrary dimension has been

proved, The proof is due to Hironaka.

Example 5 (Quadratic/Cremona transformation). Let p1 = (0 : 0 : 1), p2 = (0 : 1 :

0), p3 = (0 : 0 : 1) ∈ P2 be three points. We call the three lines L1 := V (x0), L2 :=

V (x1), L3 := V (x2) as exceptional lines. Notice that Li and Lj intersect at pk and the

line Li passes through pj and pk for i 6= j 6= k.

Definition 2.2.4. Consider P2 with homogenous coordinate (x0 : x1 : x2). The

birational involution of P2

τ : P2 → P2

given by

(x0 : x1 : x2) 7→ (x−1
0 , x−1

1 , x−1
2 ) = (x1x2 : x2x0 : x0x1)

Observations:

The map is not defined at the points p1, p2, p3, while the lines L1, L2, L3 are contracted
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to p1, p2, p3 respectively. The map τ can be seen as composition of blow up at the

three points and then contraction of the three lines. Consider the open set U =

P2\ {L1 ∪ L2 ∪ L3}. The τ is an isomorphism on U inverse of which is τ itself. Indeed,

(x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1) 7→ (x0x2x0x1 : x1x2x0x1 : x1x2x0x2).

This is the classic example where the birational map τ can be written as composition

of blow ups and blow downs.

Figure 2.2: Cremona transformation

Cremona transformation and Resolution

Theorem 2.2.5. Suppose C ⊂ P2 be a plane curve over an algebraically closed field

of characteristic zero. Let p ∈ C be a point of multiplicity m0 ≥ 2. Then there exists

a finite sequence of Cremona transformation τ = τ1 ◦ ... ◦ τn : P2 → P2 centered at

pi such that the birational transform pn is an ordinary multiple point where pi is the

preimage of p under πi.

Proof. Let p ∈ C be a singular point with multiplicity m0. We take two general lines

through p that are not contained in the tangent cone of p and have only transversal

intersection with C. Choose another line that does not pass through p and intersect

C transversely. Such choices are possible because tangent cones at different points

are proper closed subvarieties of dual space P2∗. We mark the points of intersection
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as p, q, r. We can assume the points to be the standard points p = (0 : 0 : 1), q =

(0 : 1 : 0), r = (1 : 0 : 0). Let the multiplicity of the three point in C be m0,m1,m2

respectively, and f (x, y, z) be the equation of C and f ′ be the birational transform

of f , then,

f ′ (x, y, z) = x−m2y−m1z−m0f(yz, xz, xy)

The generosity condition makes sure that the singularities of C outside p are un-

changed. But three new ordinary singularities introduced, have multiplicities degC,

degC −multpC and degC −multpC each. So, if we assume embedded resolution for

curves, we are done.

But we introduce another invariant i.e. apparent genus. Let C ⊂ P2 be a curve,

we associate a number

gapp =
d− 1!

2(d− 3!)
−
∑
i

mi!

2(mi − 2)!

where mi are the multiplicities of singular points and d is the degree of the curve.

With the observation as above, see that,

gapp(C1) <
(2d−m0 − 1)!

2(2d−m0 − 3)!
−
∑
i>0

mi!

2(mi − 2)!
− d!

2(d− 2)!
− 2

(d−m0)!

2(d−m0)!

=
d− 1!

2(d− 3!)
−
∑
i

mi!

2(mi − 2)!
= gapp(C)

Now, we show that gapp(C) ≥ 0 and the result will follow. Let W be the vector space

of all the curves that have degree d − 1 and multiplicity of pi ∈ C is mi − 1. Notice

that W 6= ∅, since, ∂f
∂x
∈ W where f is the defining equation for C. Let C ′ ∈ W . Then

the restriction of C ′ on C denotes a divisor on C such that

vpi(C) ≥ mi(mi − 1).

Consider the divisor, D =
∑
mi(mi − 1)pi. Then,

deg(C −D) = d(d− 1)−
∑

mi(mi − 1) = 2gapp(C) + 2(d− 1).

On the other hand,

dimk L(C −D) =
(d+ 1)!

2(d− 1)!
− 1−

∑
i

mi!

2(mi − 1)!
= gapp(C) + 2(d− 1).

Now since,

dim(C −D) ≤ deg(C −D) + 1,
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we have,

gapp ≥ 0.

2.3 Resolving through blow ups

2.3.1 General discussion

This has been overly stated, but we intend to prove that blow ups resolve singularity.

Before we move on to the proof, we show that the blow up map is proper.

Lemma 2.3.1. B(p)→ Spec(R) is a proper map.

Proof. Suppose V is a valuation ring containing R. Then x
y

or y
x
∈ V . Say y

x
∈ V

Then, R[ y
x
⊂ V ] and we have a morphism

SpecV → Spec
[y
x

]
⊂ B(p)

which lifts the morphism SpecV → SpecR

We will give a proof of embedded resolution i.e. we resolve singularities for hy-

persurfaces. A bridging between general resolution and embedded resolution is as

follows:

Theorem 2.3.2 (Principalisation of ideal sheaf). Let V be a smooth surface over

perfect field k and I ⊂ OV be an ideal sheaf. Then there exists a birational proper

morphism π : V ′ → V such that V ′ is smooth and IOV ′ is locally principal.

Theorem 2.3.3. Resolution of singularities for projective hypersurface of dimension

n and principalisation of ideal of non-singular varieties of dimension n implies the

resolution of singularities of projective variety of dimension n.

Proof. Let V be a projective variety over a perfect field k. Then V is birational to

a hypersurface of some projective space Pm say W = V (f). Let φ : W → V be the

birational map. Let Γ be the closure of the graph φ in V ×W. Let f1 : Γ → V and

f2 : Γ→ W be the natural projections.
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Let W ′ be the resolution of singularity for the hypersurface W. Γ is blow up of

W at the ideal J where J is the indeterminacy locus of φ. Let p : X → W ′ be the

principalisation of ideal π−1(V (J)). Then there exists a morphism f : X → Γ by

universal property of blow ups and therefore, f1 ◦ f is the resolution for V.

Definition 2.3.4. Let Y ⊂ X be a hypersurface given by the equation f(x1, x2, ..., xn) =

0. Let p be the singular point of V (f), we assume that p = (0, 0, ..., 0). We write f

as:

f(x1, x2, ..., xn) = fm(x1, x2, ..., xn) + fm+1(x1, x2, ..., xn) + ...fl(x1, x2, ..., xn)

where fi is the homogenous polynomial of degree i. Then m is said to be the multi-

plicity of Y at (0, 0, ..., 0).

Consider a hypersurface Y ⊂ X with equation (f = 0). Let (0, 0, ..., 0) ∈ Y , and

(x1, x2, ..., xn) be the local parameters of (0, 0, ..., 0). Then there is a largest power

(x1, x2, ..., xn)m of (x1, x2, ..., xn) that contains f , this m is the multiplicity of Y at

0 ∈ X. Similarly, for higher dimensional singularity Z, we say that Z sits in the

hypersurface V (f) with multiplicity m if m is largest such that f ∈ (u1, u2, ..., un)m

but /∈ (u1, u2, ..., uk)
m+1 where {u1, u2, ..., uk} are the local equations of Z in a neigh-

borhood of some point.

What happens to the curve C ⊂ A2 as divisor under point blow up?

We have seen in 2.1.3 that on the chart B0A2 = Spec k[ y
x
, x], the pull-back of f ∈

k[x, y] is f ′ ∈ k[y1, x1] given by f ′(x1, y1) = f(x1, x1y1) = xm1 f1(x1, y1). Thus, the

preimage of C contains the exceptional curve E = V (x1) with multiplicity m (defined

by (xm = 0) on the v 6= 0 chart), and the birational transform of C, denoted by C1,

is defined by (f1 = 0) in the chart v 6= 0:

π∗(C) = (mult0C) · E + C1.

41



Lemma 2.3.5. Let the notation be as above. The intersection points C1 ∩ E are the

roots of (fm(1, y) = 0) ⊂ P1 ' E. More precisely, when counted with multiplicities,

C1 ∩ E = |(fm(1, y) = 0)| where |.| denote the cardinality of the set. Thus,

(1) the intersection number (C1 · E) equals mult0C, and

(2) If p ∈ C1 ∩ E, then multpC1 ≤ mult0C

Proof. Let f(x, y) = fm(x, y)+r(x, y), where r(x, y) ∈ (x, y)m+1 f1(x1, y1) = fm(y1, 1)+

x1r1(x1, y1). Hence, the intersection points of C1 and E is the solutions of fm(1, y1) =

x1 = 0, are the points fm(y1, 1) = 0 on E. Furthermore, multiplicity of C1 at

(y1 = a, x = 0) is less than the multiplicity of y1 = a as a root of fm(y1, 1) = 0.

Theorem 2.3.6 (Weierstrass preparation theorem). Let F (x, y) ∈ K[[x, y]] = K[[y]][[x]]

be a power series. Assume that ym appears in F with non-zero coefficient and m is

the smallest such exponent. Then one can write F (x, y) uniquely as

F (x, y) = (ym + gm−1(x)ym−1 + ...+ g0(x)).(unit)

where gi ∈ K[[x]].

Lemma 2.3.7 (Abstract Hensel’s lemma). Let R be a ring and F (x) :=
∑∞

i=0 rix
i a

power series in x with coefficient in R. Assume that,

r0 = g0h0

and g0 and h0 are coprime. Then there exist H(x) and G(x) with H(0) = h0 and

G(0) = g0 such that,

F (x) = G(x)H(x).

Moreover, if we fix representatives r∗ for every residue class R/(g0), then there is a

unique solution where G(x) = g0 +
∑

i≥1 g
∗
i x

i.

Proof. We find G(x) and H(x) inductively. Suppose Gm(x) and Hm(x) are already

defined such that,

Gm(x)Hm(x) ≡ F (x) mod (xm+1).

We wish to define Gm+1 and Hm+1. For this we solve,

(Gm(x) + rm+1x
m+1)(Hm(x) + sm+1x

m+1) ≡ F (x) mod (xm+2)

Gm(x)Hm(x) + xm+1(rm+1Hm(x) + sm+1Gm(x)) + x2m+2(rm+1sm+1) ≡

F (x) mod (xm+2)
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But since

Gm(x)Hm(x) ≡ F (x) + fm+1 mod xm+2

for some fm+1. We need to solve,

rm+1h0 + sm+1g0 = fm

Since, h0 and g0 are relatively coprime, we have

a0h0 + b0g0 = 1

for some a0, b0 ∈ R. Hence, rm+1 = a0fm and sm+1 = b0fm are the required candidates

for rm+1 and sm+1. Now let

ug0 + vh0 = fm

is any other solution then,

v = g0s+ gm+1.

Put this in 2.3.1 and see that,

ug0 + g0h0s+ gm+1h0 = fm.

This gm+1 is unique because we have set a unique representative for every element r

in the residue class R/(g0).

Proof of theorem 2.3.6. According to the hypothesis,

F (0, y) = ym + f(y) + x(r(x, y)))

where deg(f(y)) ≥ (m+ 1). This implies

F (0, y) = ym.u(y)

for some unit u(y). Since u(y) is a unit, all the hypothesis of Abstract Hensel’s lemma

are fulfilled, and we have g(x, y) = ym+x(r(x, y)) for some r(x, y) and h(x, y) = some

unit. Since, degy r(x, y) ≤ m, the result follows.

Remark. We have seen that the multiplicity at a point as an invariant may not always

decrease under blow up. Therefore, to read the transformations better, we have to

introduce new invariants. We shall invoke Weierstrass preparation theorem, and do

the process in an analytic neighborhood of a point. A global resolution can then be

obtained by patching up the local charts.
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2.3.2 Resolution of curves

Let k be an algebraically closed field of characteristic 0.

Theorem 2.3.8 (Embedded resolution for curves :Local). Let C ⊂ S be a curve

embedded in a non-singular surface S defined by f = 0 over k. Then the sequence of

blow up of Si

πn : Sn → ...→ S1 → S

at singular points of the curve Ci where Ci is the birational transform of the curve

C ⊂ S in Si, terminate.

Proof. We denote SingmS := {p ∈ C|vp(C) ≥ m}.

Let m = max {r|Singr(C) 6= φ}, then we call SingmS as top Locus.

Clearly 1 < m. We will show that after finitely many steps the maximum multiplicity

drops. So, let us suppose that there exists an infinite sequence of blow up

...→ Sn → Sn−1 → ...→ S1 → S

along the points pi ∈ Ci ⊂ Si and pi sits in Ci with multiplicity m such that πi(pi) = p

where πi : Si → S is the composition of blow ups. This induces an infinite sequence

of completion of local rings around pi

R0 → R1 → ...→ Rn → ...

Let (x, y) denote the local parameters for the point p and (xi, yi) be the local param-

eters for the points pi. By linear change of parameters, assume ym = fm. We call

f to be of the normal form in such case. By Weierstrass preparation theorem and

Tschirnhausen transformation, f has the form

f = ym + a2(x)ym−2 + ...+ am(x).

We see that, normal forms are preserved under blow ups. So we let the birational

transform fi of f be given by:

f = ymi + a2,i(xi)y
m−2,i
i + ...+ am,i(xi)

where xi, yi are the local parameters of pi given by either of the following:

1. xi = xi−1

yi−1
, yi = yi−1
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2. xi = xi−1, yi = yi−1

xi−1

We claim that the invariant nj := min
{
mult(

aij(xi)

i
)
}

decreases under blow up. In-

deed, we see that n ≥ 1 for j = 0. The part of birational transform in the two affine

open sets are as follows:

1. f1(x1, y1) = ym1 + a2(x1)

x2
1
ym−2

1 + ...+ am(x1)
xm1

2. f1(x1, y1) = 1 + a2(x1y1)

y2
1

+ ...+ am(x1y1)
ym1

Note that, f1 is a unit in the second chart. This implies vp1(C1) = 0

In the first chart, we see that, n1 ≤ n0− 1. We iterate the process till ni < 1. The

birational transform of the final curve have no points of multiplicity m. Therefore,

the result follows by induction on the maximum multiplicity m.

Theorem 2.3.9 (Embedded resolution for curves : Global). Let C0 ⊂ S0 be a pro-

jective curve inside a smooth surface over a algebraically closed field k. Then the

sequence of blow ups of Si

...→ Sn → Sn−1 → ...→ S1 → S

along singular points of Ci terminates.

Proof. Let Ci ⊂ Si be the birational transform at ith step, KS denote the canonical

divisor associated to the surface S. We prove the theorem in two steps:

(i) the intersection number C · (KS + C) decreases at each step: Let p be the point

of singularity then m = multpC > 1. Let C ′ be the birational transform of C, then

(C ′ · C ′) = (π∗C +mE) · (π∗C +mE)

= π∗C · π∗C + 2m(π∗C · E) +m2(E · E)

= C · C −m2

And,

C ′ ·KS′ = ((π∗C −mE) · (π∗KS + E))

= (C ·KS)−m(E · E)

Combining the two we get,

(C ′ · C ′) + C ′ ·KS′ = C · C −m2 + (C ·KS) +m

C ′ · (C ′ +K ′S) = C · (C +KS)−m(m− 1)
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(ii) the intersection number C · (C +KS) is bounded below:

Let f : C ⊂ Pn, π : Pn → P1 be a composition of projection through points outside

C. Then, π|C : C → P1 is a separable morphism of degree n. We have the following

lemma

Lemma 2.3.10. Let f : X → Y be a separable morphism. Then there exists an exact

sequence of sheaves on X.

0→ f ∗ΩY → ΩX → ΩXY → 0

Proof. Refer [4].

It implies the injectivity

f ∗ΩP1 ↪→ ΩC .

The blow up map induces a separable morphism of degree n

f.πn : Cn → P1.

Now since, f ∗OP1(−2) ' f ∗ΩP1 ,

degΩCi/(torsion) ≥ −2n,

Further we have, the injection

ΩC/(torsion) ↪→ OS(C +KS)|C

Indeed, We note that, OS(KS + C)|C is locally generated by f−1dx ∧ dy. Its residue

along C is as follows:
1

f
dx ∧ dy =

df

f
∧ σ.

It follows thatOS(KS+C)|C is locally generated by σ|C .We can identifyOS(KS+C)|C
with ΩC along the smooth points. We show that it does not possess poles.

Since, df = ∂f
∂x
dx+ ∂f

∂y
dy, we have,

1

f
dx ∧ dy =

df

f
∧ dy

∂f
∂x

= −∂f
f
∧ dx

∂f
∂y

.

It follows that,

σ|C =
dy
∂f
∂x

= −dx
∂f
∂y

.

Finally, dx|C = −(∂f
∂y

)σC and dy|C = (∂f
∂x

)σC both have zeroes.
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Simple Normal Crossing Divisor

Definition 2.3.11 (Simple Normal Crossing Divisor). Let X be a smooth variety

and D ⊂ X be a divisor. We say that D is a simple normal crossing divisor if ev-

ery irreducible component of D is smooth and all the intersections are transversal.

Two components C1, C2 are said to intersect transversally if the intersection number

C1 · C2 = 1. The other definition of simple normal crossing divisor is as follows:

we call a divisor D =
∑n

i=1 kiCi ⊂ X to be simple normal crossing if each com-

ponent Ci is smooth and for every point x ∈ D, there exist regular parameters

{x1, x2, ..., xn} ∈ mx,X such that D is defined by x1x2...xn = 0 in a neighborhood

of x.

Example 6. The curve y2 = x3 +x2 is not a simple normal crossing divisor. But the

divisor xy = 0 is simple normal crossing divisor.

Theorem 2.3.12. Let C ⊂ S be a curve embedded in the smooth surface S over an

algebraically closed field. Then after finitely many blow ups the preimage π−1
m (C) is a

simple normal crossing divisor in Sm.

Proof. The theorem is achieved by double application of embedded resolution. First,

let Cn ⊂ Sn be non-singular for some suitable n and then to the divisor Cn+En ⊂ Sn

where En is the Exceptional Curve for the map πn : Sn → S

2.3.3 Resolution of surfaces

Theorem 2.3.13 (Ultimate theorem). Let S be a projective surface over an alge-

braically closed field k of characteristic zero then there exists a resolution of singularity

for S.

Theorem 2.3.14. Let S ⊂ V be a hypersurface (projective surface) in smooth three-

dimensional variety V over an algebraically closed field of characteristic zero. Then

there exists a sequence of blow ups along non-singular curves/points on the Si i.e.

birational transforms of S in Vi in the sequence

V ′ = Vn → Vn−1 → ...V1 → V

such that S ′, birational transform of S in V ′ is non-singular.

47



Let SingmS = {p ∈ S|vp(S) ≥ m}. The aim is to blow up the surface along curves

and points in SingmS. We will prove that after finitely many blow ups SingmS
′

is empty, and therefore the result will follow by induction. Before we move on to

the proof of theorem 5.2.3, let us set the notations. Let S ⊂ V be the surface

embedded in a smooth 3-fold defined by f(x, y, z). Suppose that zm appear in f

with positive coefficient, then by Weierstrass preparation theorem and Tschirnhausen

transformation, we have,

f(x, y, z) = zm + a2(x, y)zm−2 + ...+ am(x, y) (2.2)

We say that f is in the normal form. Notice that, p ∈ S is a point with multiplicity m

if and only if it lies on the hyperplane {z = 0} and sits in the coefficient curve ai(x, y)

with multiplicity at least i. We denote V1, V2, ... as blow up of V and S1, S2, ... denote

the birational transform of S defined by fi in Vi. Also note that the normal form is

preserved under blow up.

Blow ups along points and curves on S

1. Point blow up

Let p be a point of multiplicity m on S and (x, y, z) be the local parameters of p.

The three possible local parameters for the points in π−1(p) ∩ S̄ be (x1, y1, z1) where

x1, y1, z1 are as follows:

1. x1 = x, y1 = y
x
z1 = z

x

2. x1 = x
y
, y1 = y z1 = z

y

3. x1 = x
z
, y1 = y

z
z1 = z

The birational transform corresponding to the three neighborhoods are as follows:

1. zm1 + a2(x1,y1x1)

x2
1

zm−2
1 + ...+ am(x1,y1x1)

xm1

2. zm1 + a2(x1y1,y1)

y2
1

zm−2
1 + ...+ am(x1y1,y1)

ym1

3. 1 + a2(x1z1,y1z1)

z2
1

+ ...+ am(x1z1,y1z1)
zm1

Since the third equation is a unit, the first two covers the whole birational transform,

and we will often just work with them without stating.

2. Curve blow up

The curve lie on the hyperplane H := {z = 0}. By change of coordinates, assume

the curve is given by x = 0. Let q ∈ π−1(p) ∩ S̄, local parameters for q be (x1, y1.z1)
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where x1, y1, z1 are as follows:

1. x1 = x, y1 = y, z1 = z
x

2. x1 = x
z
,y1 = y,z1 = z

The birational transform corresponding to the two neighborhoods are as follows:

1. zm1 + a2(x1,y1)

x2
1

zm−2
1 + ...+ am(x1,y1)

xm1

2. 1 + a2(x1z1,y1)

z2
1

+ ...+ am(x1z1,y1)
zm1

Again, since the second equation is a unit, therefore any point q ∈ π−1(p)∩S̄ has local

parameters x1 = x, y1 = y, z1 = z
x

under the blow up of S along the curve V (x, z)

Lemma 2.3.15. Let C ⊂ SingmS be a non-singular curve and π : V1 → V be the

blow up at C and q ∈ π−1(p) ∩ S1 for some p ∈ C. Then vq(S1) ≤ m. Also there is

at most one point q ∈ π−1(p) ∩ S̄ with vq(S1) = m. In particular if E = π−1(C) then

E ∩ Singm(S1) is either a curve that maps isomorphically to C under π or is a set

with only finite number of points.

Proof. We show it in an analytic neighborhood of p, i.e., we look at the completion

of the local ring Op. Let IC,p = (x, z) then, f ∈ (IC,p)
m and xi divides ai(x, y). Let

q ∈ π−1(p) ∩ S̄, the local parameters of q be (x1, y1, z1) where x1 = x, y1 = y, z1 = z
x
.

Then the birational transform is given by zm1 + b2(x1,y1)

x2
1

zm−2
1 + ... + bm(x1,y1)

xm1
. Clearly,

vq(f1) ≤ m

Lemma 2.3.16. Suppose p ∈ SingmS be a point and π : B(p) → S be the blow up

at p. Let S̄ be the birational transform of S in B(p)andE = π−1(p). Then vq(S̄) ≤ m

for all q ∈ π−1(p). In particular, E ∩ Singm(S̄) is either a curve or is finite number

of points.

Proof. Proof is the same as the case of curve.

Definition 2.3.17 (Good points). We call a point p ∈ S to be a pre good point if in a

neighborhood of p, SingmS is either empty, a non-singular curve through p or simple

normal crossing there. Further we call a pre good point p, good if for any sequence

Vn → Vn−1 → ...→ V1 → V

of blow ups of non-singular curves in Singm(Si) where Si here is the birational trans-

form of S ∩ Spec(OV,p)

If a point is not good, we call it a bad point.
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Theorem 2.3.18. Suppose all the points of S are good. Then there exists a sequence

of blow ups

V ′ = Vn → Vn−1 → ...→ V1 → V

of non-singular curves in Singm(Si) such that Singm(S ′) = ∅ where S ′ is the birational

transform of S in V ′.

Proof. On contrary let us suppose, there exists an infinite sequence

...→ Vn → Vn−1 → ...→ V1 → V (2.3)

of non-singular curves in SingmSi, then there exist curves C ⊂ SingmS and Ci ⊂

SingmSi such that Ci maps to C under πi where πi : Vi → V is composition of blow

up maps. Consider the two-dimensional regular local ring R = OV,C . Let IS be the

height one prime ideal and IC be the maximal ideal. Then by dimension formula,

dimR + trdeg(R/P ) = 3

therefore, trdeg(R/P ) = 1 over k. Let t be the basis, then k[t] ∩ P = ∅ implies

k(t) ⊂ R. Then the ring R = AQ for some finitely generated k(t)−algebra A where

Q is the maximal ideal in A. Therefore, R is a local ring of a non-singular point q on

k(t)-surface SpecA and q sits in the curve IS with multiplicity m. Then the infinite

sequence 2.3 induces a sequence of blow up of non-singular k(t)-surface at points qi

that sits in the curve ISi with multiplicity m as follows:

...→ Vn ×V Spec(R)→ Vn−1 ×V Spec(V )→ ...→ Spec(R)

This contradicts embedded resolution for curves.

Lemma 2.3.19. Number of bad points are finitely many.

Proof. Let Bi = {isolated points of SingmSi}
⋃
{singular points of SingmSi} where

Si is the birational transform of S under the blow ups of Vi−1 along the open sub-

set(subscheme) Singm(Si−1) − Bi−1. Note that, SingmSi − Bi is non-singular one

dimensional subscheme of Si. We show that the sequence terminates. On contrary

let us suppose

...→ Vn −Bn → ...→ V1 −B1 → V (2.4)
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is an infinite sequence of blow up along the curves in SingmSi − Bi. We denote the

map πn : Vn −Bn → V − Tn where

Tn = B0 ∪ π1(B1) ∪ ... ∪ πn(Bn)

Let C ⊂ SingmS be a curve. We have seen that SpecOS,C is a singularity of

a curve of multiplicity m. The sequence 2.4 induces a sequence by base change an

infinite sequence as follows:

Sn ×S Spec(OS,C)→ Sn−1 ×S Spec(OS,C)→ ...→ S1 ×S Spec(OS,C)→ Spec(OS,C)

The above is an infinite sequence of open subset of blow up of points over SpecOS,C .

We know that, the sequence terminates after finite number steps . Hence no curve in

SingmSn dominate C. For such n, SingmSn
⋂
Vn −Bn is empty.

Next target is to resolve bad points.

Theorem 2.3.20. The sequence of blow up of Vi at bad points terminate after finitely

many steps.

Proof. On contrary, let us suppose, there exists an infinite sequence of blow ups at

bad points pi in Si ⊂ Vi :

...→ Vn → Vn−1 → ...→ V1 → V.

This induces an infinite sequence of completion of local rings around pi

R0 = OV,p → R1 → ...→ Rn → ...

Let (x, y, z) be the local parameters of the point p in V and the local parameters of

the points pi be (xi, yi, zi) where xi, yi, zi are as follows:

1. xi−1 = xi, yi−1 = xiyi, zi−1 = xizi

2. xi−1 = xiyi, yi−1 = yi, zi−1 = yizi

3. xi−1 = xizi, yi−1 = yizi, zi−1 = zi

By Weierstrass preparation theorem, we write

fi = zmi + a2,i(xi, yi)z
m−2 + ...+ am,i(xi, yi)

where aji(xi, yi) =
{
aj,i−1(xi,xiyi)

xji
or

aj,i−1(xiyi,yi)

yji

}
for all j. Without any loss of gener-

ality, we assume the union of coefficient curves is simple normal crossing divisor in
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Ri. Let fi = zmi + b2,i(xi, yi)x
a2,i

i y
b2,i
i zm−2

i + ... + bm,i(xi, yi)x
am,i
i y

bm,i
i where bj,i(xi, yi)

are units in Ri and aji + bji ≥ j for all bj,i 6= 0.

Claim: bji 6= 0, ak,i 6= 0 for some j and k.

Proof of claim: On contrary suppose there exists an i such that bji = 0 for all j. Then

xji/aj,i(xi, yi) and Î(Singm(Si)) = (xi, zi). Let λ : W → Vi be the blow up at the curve

(xi, zi). Then, q ∈ λ−1(pi) have regular parameter (u, v, y) where xi = u, zi = uv, or

xi = uv, zi = v and we denote f ′ = vm+d2,i(u, uv)ua2,i−2vm−2 + ...+dm,i(u, uv)uam,i−m

to be the equation of the birational transform S ′ of Si in W for the first neighborhood,

while f ′ is a unit in the other neighborhood, in which case vq(S
′) < m For the first

chart, we see that the number n = min
{
aj,i
j
|2 ≤ j ≤ r

}
is decreased by one. After

finitely many blow ups of non-singular curves in Singm, the multiplicity must reduce

to be strictly less than m for all the points pi. This implies pi is not a bad point which

is a contradiction. It follows that, bj,i 6= 0 for some j. Similarly, ai,k 6= 0 for some k.

Let a ∈ R and {a} denote the fractional part of a. Observe that a point pi ∈ Si ⊂

Vi is good if there exists j such that bj,i 6= 0 with

aj,i
j
≤ ak,i

k
,
bj,i
j
≤ bk,i

k
(2.5)

for all 2 ≤ k ≤ m and dk,i 6= 0 and
{
aj,i
j

}
+
{
bj,i
j

}
< 1. So, the motive is to reach to

an Si defined by fi such that the above is achieved for the coefficient curves.

Consider the number

αi,j,k = (
aj,i
j
− ak,i

k
)(
bj,i
j
− bk,i

k
)

. Note that

αi+1,j,k = αi,j,k + (
bj,i
j
− bk,i

k
)2

If αi,j,k < 0 we must have (
bj,i
j
− bk,i

k
) 6= 0 Thus,

(
bj,i
j
− bk,i

k
)2 ≥ 1

j2k2
≥ 1

r4
.

We note that after finitely many steps there exist an l such that for all i ≥ l, αi,j,k ≥ 0

for all i and j. So we have achieved condition 2.5. The other one can be easily obtained

after finitely many blow ups.
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2.4 Examples

2.4.1 Whitney umbrella

The example is due to Herwig Hauser. Consider the surface S := V (f = x2 + y2z).

The partial derivatives of f are as follows:

fx = 2x, fy = 2yz, fz = y2.

This implies that the singular locus of S is the Z = z − axis. Since, Z sits in S with

multiplicity 2, we see that Sing2S = Z. Following 5.2.3, possible two centers of blow

up are origin and the curve Z.

Blow up at the origin produces the following three pieces:

1. 1 + y2
1x1z1 where x1 = x, y1 = y

x
, z1 = z

x
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2. x2
1 + z1y1 where x1 = x

y
, y1 = y, z1 = z

y

3. x2
1 + y2

1z1 where x1 = x
z
, y1 = y

z
, z1 = z

And blowing up at Z produces the following two pieces:

1. 1 + y2
1z1 where x1 = x, y1 = y

x
, z1 = z

2. x2
1 + z1 where x1 = x

y
, y1 = y, z1 = z

Notice that, blowing up at origin reproduces the original surface in the third piece

but blowing up Z resolves the singularity. Though, complexity of singularity is more

at origin than the curve Z, yet taking origin as center could not solve the problem.

Nevertheless, a good idea while choosing centers for blow ups is to blow up the centers

of maximal possible dimension. Notice that, the proof of 5.2.3 have included curve

blow ups for the resolution, while point blow up was operated to achieve good points.

It is necessary to make sure that, each multiple point is included in the blow up

centers at least once.

Sometimes, choosing wrong centers may worsen the singularity. For example,

f = x2 + y3z,

blow up at origin, in the third open set is given by f ′ = x2
1 + y3

1z
2
1 .

2.4.2 Blow up along a non reduced subscheme

We invoke here Rees-proj definition of blow up to show that blow up of a non-singular

variety is not always non-singular. Indeed, blow ups centered at reduced subscheme

may not show such phenomena and therefore the following example:
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Consider the blow up of A2 at the ideal (x, y2). The blow up scheme is given by:

B(x,y2)A2 = V (uy2 − vx) ⊂ A2
x,y × P1

u,v.

Then the two affine charts are as follows:

1. For u 6= 0, the surface is defined by:

y2 − wx = 0

where w = v
u
.

2. For v 6= 0, the surface is defined by:

zy2 − x

where z = v
u
.

Clearly, the surface has a singularity at the point (0, 0) point, more precisely at the

point ((0, 0), (1 : 0)).

We wish to understand how transversal intersections behave under this blow up.

Consider the following curves:

L1 := {x+ y = 0}

L2 := {x− y = 0}

L3 := {y − ax = 0}

L4 := {x = 0}

C1 := {x = y2}

C2 := {x = y3}

We claim that, L1 and L2 are not separated even though they have transversal in-

tersections at origin. Also, L4 and C1 are separated but L4 and C2 are not. We will

come back to these assertions.

The above blow up has a description as follows:

Let π : B(x1)→ A2 be the blow up of A2 at x1 = (0, 0) and E = π−1(x1). Suppose x2

is the point of intersection of E and the birational transform of y−axis. We blow up

at x2, and call the exceptional locus to be F. Then B(x,y2) is obtained by a blow-down

of the birational transform of E. A more precise treatment is done in [?]. We now

give a geometric explanation of the assertions made before.
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Figure 2.3: Description of B(y2,x)(A2)
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Chapter 3

Normalization and Jung’s method

Hironaka has given a proof of resolution in the arbitrary dimension. For positive

characteristics, it is still an open problem. In arbitrary dimensions, the method

involves the notion of blow-up of ideal sheaves. We have seen in chapter two that it

works well for curves and surfaces. However, for small dimensions, there exist some of

the quickest ways to resolve singularity. Normalization is one of them for dimension

one. We will show that a normal variety can have the singular locus of dimension at

most n − 2, which makes the notion of normality and non-singularity equivalent for

curves. Moreover, for the surfaces, it reduces the singular locus to a finite set.
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3.1 Normal variety

Definition 3.1.1 (Normal variety). Let X be an affine variety. Then it is said to be

normal if the coordinate ring k[X] is integrally closed. A quasi projective variety X

is said to be normal if every point has a normal affine neighborhood.

Theorem 3.1.2. A non-singular variety is normal.

Proof. Let X be a non-singular variety. We claim that the local ring Ox of a point

x ∈ X is a UFD. Indeed, let Ôx denote the completion of the local ring Ox of x. Then

the completion map Φ : Ox → Ôx defined by

f 7→ ⊕(f +mi
x)

is an inclusion. This is because the point x is non-singular. It follows that m̂x∩Ox =

mx. Note that, the formal power series ring k[[T ]] is a UFD (Weierstrass preparation

theorem). Therefore, lemma 3.1.3 implies that Ox is a UFD.

Lemma 3.1.3. Suppose that a Noetherian local ring A is contained in a local ring

Â which is a UFD. Suppose that the maximal ideals m ⊂ A and m̂ ⊂ Â satisfy the

following conditions:

(a) mÂ = m̂;

(b) (m̂nA) ∩ A = mn for n > 0;

(c) for any α ∈ A and any integer n > 0 there exists an ∈ A such that α − an ∈

mnÂ.

Then A is also a UFD.

Proof. Refer [8]

Theorem 3.1.4. Let X be a normal variety of dimension n and S be the singular

locus of X. Then, dimS ≤ n− 2.

Proof. On contrary, let us suppose that S = S ′ ∪S2 ∪ ...∪Sm is the decomposition of

S into irreducible components and dimS ′ = n − 1. Then there exists an affine open

subset U of X such that S̄ = U ∩S ′ is non-empty. Let f be the equation of S̄ in U , x

is a non-singular point of S̄ and u1, u2, ..., un−1 be the local parameters of x in S̄. We

claim that the ideal mU,x = (u1, u2, ..., un−1, f). Indeed, the inclusion map φ : S̄ ↪→ U
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induces the ring map φ∗ : k[U ]→ k[S̄]. We see that kerφ∗ = (f). The map φ∗ induces

the map between local rings as follows,

φ∗ : OU,x → OS̄,x.

We see that kerφ∗ = (f)OU,x, since localization is an exact functor. Then, mOU,x,x is

the preimage of maximal ideal mOS̄,x,x under φ∗.

This implies that dim
(
mOX,x/mOX,x

2
)

= dim
(
mOU,x,x/mOU,x,x

2
)
≤ n. Therefore,

x is a non-singular point of X which is a contradiction.

Corollary 3.1.4.1. For algebraic curves, the notion of non-singularity and normality

are equivalent.

Remark. We call a scheme X normal if all of its local rings are integrally closed.

The natural question is, does there exist a way to normalize a curve? In which

case, does it produce a resolution method? The answer is yes.

3.2 Normalization

Definition 3.2.1. Let X be a variety. Then we define a normal variety X ′ together

with a finite, birational morphism η : X ′ → X to be normalization of X.

Suppose X ⊂ An be an affine variety. Let A be the integral closure of k[X] inside

k(X). Then A is reduced and finitely generated. So, there exists X ′ such that the

coordinate ring of X ′ is A. It is easy to verify that X ′ is the normalization of affine

variety X.

Lemma 3.2.2. Let X be a quasi projective curve. Then there exist a normalization

X ′ that is quasi projective.

Proof. Suppose X =
⋃
i Ui be an affine open cover for X. Let ηi : U ′i → Ui be the

normalization of Ui and Vi ⊂ Pni be their closure. Note that all the varieties defined

above are birational. Let the birational map of U ′i and Vj is given by φij : U ′i → Vj.

Note that φ′ijs are regular, since the curves U ′i are non-singular. Further, let

W :=
∏
j

Vj and φi :=
∏
j

φij : U ′j → W.
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We claim that, X ′ =
⋃
i φi(U

′
i) ⊂ W is the normalization of X. Indeed, U0 :=

⋂
i Ui is

an open subset of X. We see that, U ′0 := η−1
i (U0) ⊂ U ′i for all i. Also φ′is coincide on

U ′0 for all i. We write φ for the common restriction. Then,

φ(U ′0) ⊂ φi(U
′
i) ⊂ ¯φi(U ′i)

Obviously, φ(U ′0) is an irreducible quasi projective curve with only finitely many points

less than its closure. And hence, ¯φi(U ′i)\X ′ is also finite. It follows that, X ′ is quasi

projective and irreducible. Next, we show that X ′ is normal and there exists a finite

birational morphism from X ′ to X.

Let x ∈ X ′ then x ∈ φi(U ′i) for some i. We see that φi : U ′i → φi(U
′
i) ⊂ W is an

isomorphism. It follows that the neighborhood φi(U
′
i) of x is normal. Hence, X ′ is

normal. Next, we write gi = ηi ◦ φ−1
i : φi(U

′
i) → Ui ⊂ X. Note that, gi are finite

maps and gi and gj coincide on the open set of φ(U ′0).. Thus, gi and gj coincide at all

points where they are defined. Hence, they define a regular map η : X ′ → X which

is birational and finite.

Remark. Let X be a reduced, irreducible scheme of finite type over k. Moreover, let⋃n
i Ui be an affine open cover for X. We know that, normalization of an affine variety

exists. So let ηi : U ′i → Ui be the normalization of Ui. It is easy to see that the

normalization is unique if it exists. It follows that, η−1
i (Ui ∩Uj) and η−1

j (Ui ∩Uj) are

isomorphic. So we can glue together the normal affine pieces U ′i . The glued up scheme

is reduced, irreducible and finite type over k. It is not difficult to see that it is the

normalization of X. Hence, normalization exists for quasi projective varieties.

Remark. Theorem 3.2.2 is true for arbitrary dimension. But we shall not prove it

here. It can be found in [4].

Theorem 3.2.3. Let X be a projective curve. Then the normalization X is projective.

Proof. Let η : X ′ → X be the normalization of X as in theorem 3.2.2 and X ′ ⊂ Pn.

We call Y to be the closure of X ′ in Pn. Let y ∈ Y \X ′ and U be an affine neighborhood

around y. We define ηU : U ′ → U to be the normalization of U . We have the

commutative diagram:
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There exists a birational map g = η ◦ i−1
1 ◦ i2 ◦ ηU : U ′ → X. Since U ′ is non-

singular, g is regular. By uniqueness of normalization g lifts to f. It follows that

i1 ◦ f(U ′) = i2 ◦ ηU(U ′) which is a contradiction to the assumption that y /∈ X ′.

3.3 Jung’s method

Let k be an algebraically closed field of characteristic zero and Z ⊂ PNk be a projective

surface. We project PNk along a point z /∈ Z to a hyperplane H. Let p′ : PNk → H

be the map. Restriction of p′ to Z is a finite morphism (see 4). We continue to

project through points outside Z for n− 2 times and call it p : Z → P2
k. Consider the

commutative diagram:

Let D ⊂ P2
k be the branch locus for p and π be the blow up of P2

k such that the

total transform D′ = π−1(D) of D is a simple normal crossing divisor. Let X be the

normalization of BP2
k
(D) in the function field k(Z).

Definition 3.3.1. Let X be an affine variety and Z be a normal variety. Then X

is said to be the quotient of Z by a finite group G, if there exists a Galois extension

K/k(X) with group G such that the normalization of X in K is Z.

Definition 3.3.2 (Quotient singularities). Let X be a variety over an algebraically

closed field. We say that X has abelian quotient singularities if there exists an open

affine cover X =
⋃
Xi such that Xi is a quotient of smooth affine variety Zi by a

finite abelian group Gi for each i.

61



We will show that X possess abelian quotient singularities. Consider the following

commutative diagram:

In order to show that X have abelian quotient singularity, we define an open affine

cover
⋃
i Vi of X such that each Vi is a quotient of a smooth normal variety by an

abelian Galois group. We consider the open cover
⋃
i Ui of the blow up variety BP2

k
(D)

that we discussed in chapter 2. Let U = U1 and u1, u2 be the local parameters of

0 ∈ D′ such that D′ is defined by (u1u2) in the neighborhood U of 0. Consider the

field

K = k(U, u
1
m
1 , u

1
m
2 )

where m = deg η!. We look at the normalization of U in K and call it V. Finally, let

Y be the normalization of UX = η−1(U) in k(V )+k(X). We show that Y is smooth. If

Y is a normal variety over C then the complex space associated with Y is the normal

in analytic sense. The statement is a non-trivial theorem, and we shall assume it here.

We shift to the analytic picture to show that Y is smooth. We will not change here

the notation to indicate the analogy but all the items here present the idea of what

happens in the analytic neighborhood. Let U be a small disc in C2 and u1, u2 be the

coordinate functions. Then η : UX\(η−1(U ∩D′))→ U\(U ∩D′) is a finite map. Let

D0 := U\(U ∩D′) and DX
0 := η−1(U\(D′)). Then DX

0 is a finite cover of D0. We know

the only possible m-cover of D0 is D0 and the covering map is given by

(x, y) 7→ (xm, ym).

This implies DX
0 ' D0. The fundamental group of D0 is Z×Z, let Z×Z→ G be the

finite quotient. If m is a multiple of |G| then, (mZ)2 ⊂ Ker(Z2 → G). By Riemann
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extension theorem, we extend it to whole of the disc ∆2
(x,y). Then ∆2

(x,y) is the analytic

picture of Y. We conclude that Y is smooth. And therefore, we see that X possess

abelian quotient singularities.

Next we resolve abelian quotient singularities.

Lemma 3.3.3. Suppose Y is a normal affine variety and X be quotient of Y by the

abelian group G. Let x ∈ X be a point such that y1, y2, ..., ym are preimages of y under

normalization. Then

Ôx,X = ÔGiyi,Y

where Gi ⊂ G is stabilizer of yi.

Proof. Left to readers.

We intend to resolve Ox,X , for which it is sufficient to resolve Ôx,X . Lemma 3.3.3

implies that it is equivalent to resolve ÔGiyi,Y . We show that it reduces to resolving

singularities of the form A2/G. Indeed, Ôyi,Y is a complete local ring. More precisely,

it is a Ôyi,Y /m-algebra. The action of Gi on m/m2 is completely reducible. The

sequence of k−vector spaces

0→ m2 → m→ m/m2 → 0

is exact and the maps are G− invariant. This induces a map between the polynomial

ring

k[m/m2]→ Ôx,X

We claim that, Ôx,X is the completion of k[m/m2]. This will imply that ÔGi
x,X is the

completion of k[m/m2]Gi , since a power series is G − invariant if and only if its

homogenous components are G− invariant.

Proof of claim: The map k[m/m2]→ Ôx,X induces the map

Si → mi/mi+1.
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Note that these maps are isomorphism since Ôx,X are regular. This gives an isomor-

phism of completion of k[m/m2] and Ôx,X . But the latter is already complete and

hence the claim is true.

Now we focus on resolving singularities of the form A2/G where G is an abelian

group acting on A2 linearly. There are certain assumptions that we make. But before

that, notice G ⊂ GL(2, k) is a finite abelian group and therefore it is simultaneously

diagonalizable. We assume that the elements g of G are diagonal matrices in GL(2, k).

Also, we can assume that g = diag(µ, η) where neither of them is 1. Indeed,

Ax,y/(diag(µ, 1)) ' A2
xm,y

where µ is the mth root of unity and therefore,

A2
x,y/G ' A2

xm,y/(G/(diag(µ, 1))).

So, we assume that G is free from elements of the form diag(µ, 1) or diag(1, η).

Next, we observe that G is cyclic due to previous assumption. Let G = (g) and

g = diag(µaµb) where µ is an mth root of unity. We denote the element g as 1
n
(a, b).

There is no harm in assuming a = 1, in which case gcd(n, b) = 1. It finally reduces to

resolving

A2
x,y/

1

n
(1, a)

for some a 6= 0. We blow up A2
x,y at the ideal (xa, y). Then,

B(xa,y)(A2
x,y) = (uxa = vy) ⊂ A2

x,y × P1
u,v

The action on A2
x,y in A2

x,y×P1
u,v is induced by the action down at the base A2

x,y\(0, 0)

while we take trivial action on P1
u,v. We look at the affine pieces of the blow up variety.

1. Let v 6= 0 and s = u/v,

(sxa = y)/
1

n
(1, a, 0) ' A2

y,s.

2. Let u 6= 0 and t = v/u, then blow up variety is given by

(xa = yt)/
1

n
(1, a, 0).

We see that (xa = yt) is already singular. However,

(xa = yt) ' A2
w,z/

1

a
(1,−1)
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where x = wz, y = za, t = uq. The action of 1
n
(1, a, 0) lifts to A2

u,v as action of 1
n
(0, 1).

Therefore,

(xa = yt)/
1

n
(1, a, 0) ' A2

w,z/(
1

a
(1,−1)× 1

n
(0, 1))

But,

A2
w,z/(

1

a
(1,−1)× 1

n
(0, 1)) ' A2

w,z/(
1

n
(0, 1))/(

1

a
(1,−1)) ' A2

u,v/
1

a
(1,−n).

Thus we have obtained after blowing up A2
u,v/

1
n
(1, a), a variety X1 is isomorphic to

the surface

A2/
1

q
(1, r)

where 0 < r < a and n = b1a− r.

That is the order of group has been reduced. Hence, after finitely many blow ups we

achieve a non-singular surface.
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Chapter 4

Projection

Definition 4.0.1 (Projection). Let X ⊂ Pn be a projective variety and H ' Pn−1 be

a hyperplane in Pn.. Then we define projection of X to H through p to be the map

πp,H : X → H ' Pn−1

q 7→ {line joining p, q} ∩H.

Remark. We can choose the coordinates on Pn such that p = (0 : 0 : ... : 0 : 1) and

H := V (xn). Then πp,H(x0 : ... : xn) = (x0 : ... : xn−1). Indeed, let


x0,0

x1,0

...

xn,0




x0,1

x1,1

...

xn,1

 ...


x0,n−1

x1,n−1

...

xn,n−1

 be a basis for H ′ and p′ =


p0

p1

...

pn

 be the point of

projection then,

D =


x0,0 x0,1 · · · p1

x1,0 x1,1 · · · p2

...
...

. . .
...

xn,0 xn,1 · · · pn



−1

is the required projective transformation.
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Example 7. Suppose m1 ≤ m2 ≤ ... ≤ mr, be a sequence of positive integers. Let

C ⊂ Ar be the curve

t→ (tm1 , tm2 , tm3 , ..., tmr).

We project C through (1, 0, 0, ..., 0). Then the image curve is given by C ′ ⊂ Ar−1

t→ (tm2−m1 , tm3−m1 , tm4−m1 , ..., tmr−m1).

It is intuitively clear that the projection improves the singularity, but it is hard to

say exactly in what way.

Example 8. Consider the curve y2 = x3 + x2

Figure 4.1: Projection of y2 = x2 + x3 through (0, 0)

We project it through origin and take the closure. The image curve is non-singular.

Our aim will be to project through singular point to separate the different tangent

directions on the point. Projection map can be finite, quasi-finite or neither. For

example, projection of the cone x2 + y2 = z2 to the hyperplane z = 0 through origin

is not a finite map. Note that there is a decrease in the dimension in this case. It is

finite in Example 8. Note that, projection through general point is a finite map, but

the singular point may not always be a general point. We conclude that projection

may create singularities.
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Example 9. A non-singular cubic surface of P3 contains exactly 27 lines. An outline

of the proof can be found in [9]. There exist at most three lines of S that can pass

through a point. Let p be a point with at least two lines passing through p. Then,

the projection through the point p is a finite map only on an open subset of S. Refer

[3], [9] for more details.

4.1 Resolution through projection

For the following, k will denote an algebraically closed field of characteristic 0.

Theorem 4.1.1. Let X ⊂ Pn be a projective variety of dimension N over k. Then

there exists a normal variety X ′ birational to X, such that multx(X
′) ≤ N ! for every

x ∈ X ′

We will come back to this result.

Theorem 4.1.2. Let X0 ⊂ PN be projective variety spanning PN defined over an

algebraically closed field. Let πi : Xi → X0 be the composition of projections at points

pi where multpiXi. deg(Xi/X0) > dimX0!. If degX0 < (dimX0!+1)(N+1−dimX0),

then the sequence eventually stops with a variety Xi and a map πi : X0 → Xi such

that

(1) either deg(X0/Xi).multpXi ≤ dimX0! for every p ∈ Xi,

(2) or Xi is a cone and deg(X0/Xi) ≤ dimX0!.

Remark. Let A ⊂ Pn be a non-empty algebraic variety and π : An+1\(0, 0, ..., 0)→ Pn

be the natural projection map. Then the projective closure ¯π−1(A) ∪ (0, 0, ..., 0) ⊂

Pn+1 is the projective cone over A.

Proof. We proceed by induction on i for the formula:

deg(X0/Xi). degXi < (dimX! + 1)(N − i+ 1− dimX) (4.1)

Clearly true for i = 0. Suppose the formula is true for i. We note that, for a projective

variety X ⊂ PN

degX ≥ N + 1− dimX. (4.2)
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Indeed, we project it along a point p.

1. If X is a cone at p, then it follows by induction on dimension of X. Indeed,

degX0 = degX ′ +multpX0

≥N − 1 + 1− (dimX0 − 1) +multpX0

=N + 1− (dimX0) +multpX0

2. Otherwise, induct on N i.e. if π : X → X1 is the projection,

degX0 ≥ degX1. deg(X1/X0) +multpX

degX0 ≥ (N − n) deg(X1/X0) + 1

degX0 ≥ N − dimX0 + 1

Coming back to the proof, we see that, if Xi is a cone, the fact that deg(X0/Xi) ≤

dimX! follows from inequality 4.1 and 4.2. If Xi is not a cone and there exists a

point pi ∈ Xi such that deg(X0/Xi).multpXi ≥ n!, we project it through pi. Let

φi+1 : Xi → Xi+1 be the projection map

deg(X0/Xi+1). degXi+1 = deg(X0/Xi). deg(Xi/Xi+1). degXi+1

≤ deg(X0/Xi). degXi − deg(X0/Xi)multpiXi

≤ deg(X0/Xi). degXi − (dimX0! + 1)

≤ (dimX0! + 1)(N − i+ 1− dimX0)− (dimX0! + 1)

= (dimX0! + 1)(N − (i+ 1) + 1− dimX0)

Now, maximum value for i is N − dimX0 where

deg(X0/Xi). degXi < (dimX! + 1)(1)

Since, multpiXi < degXi ,the result follows.

Corollary 4.1.2.1. Let X be a projective variety over an algebraically closed field.

Then X can be embedded into some PN such that degX < (dimX!+1)(N+1−dimX)

and X spans PN . Thus theorem 5.2.3 is true for projective surfaces.

Remark. This proves theorem 4.1.1 for a projective varieties of dimension n if resolu-

tion exists in dimension n− 1. Indeed,
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(i) If πi : X → Xi is a birational map in the proof of theorem 5.2.3, then we take

the normalization X ′i of Xi. Note that, X ′i is birational to X and multpX
′
i ≤ dimX!.

(ii) If πi : X → Xi is not birational in the proof of theorem 5.2.3, we take normal-

ization of Xi in k(X) say X ′i. It is birational to X such that multpX
′
i ≤ dimX!

(iii) If Xi is a cone over an algebraic variety A and πi : X → Xi is birational. Let

A′ be resolution for A. Then X is birational to the smooth variety P1 × A′.

(iv) If Xi is a cone over the algebraic variety A and πi : X → Xi is not birational.

Then the normalization X ′i of P1 × A in k(X) is birational to X with multpX
′
i ≤

dimX!.

Theorem 4.1.1 gives a resolution for curves, since a birational map from a non-

singular curve is a morphism. We want to resolve double points now.

Theorem 4.1.3. Let X be a normal variety of dimension n over an algebraically

closed field of characteristic zero. Then completion of a local ring around a point

x ∈ X has the form

Ôx,X ' normalization of k[[x1, ..., xn, y]]/f(x1, ..., xn, y),

where f = ym + a1(x1, x2, ...xn)ym−1 + ... + am(x1, x2, ..., xn) and m is multiplicity of

the point x in X.

Proof. Suppose X ⊂ Pl and p′ : X → H ' Pl−1 be a projection through a point

outside X to the hyperplane H. We continue to do this for l − n− 1 times to obtain

a finite morphism p : X → Pn+1. Consider the affine open subset Y = An+1 ∩ p(X).

Since, dim(p(X)) = dimX, Y defines a hypersurface in An+1. Without any loss of

generality, we assume p(x) = (0, 0, ..., 0). Then by Weierstrass preparation theorem Y

looks like

f = ym + a1(x1, x2, ...xn)ym−1 + ...+ am(x1, x2, ..., xn)

in the completion of local ring around p(x). Since the map p : p−1(Y ) → An+1 is

finite, this induces

k[[x1, x2, ..., xn, y]]/(f)→ Ôx,X .

Finally, because completion of a normal local ring is normal, we see that

Ôx,X ' normalization of k[[x1, ..., xn, y]]/f(x1, ..., xn, y).
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Therefore, the completion of local ring at the double point x on a normal surface

S has the form

Ôx,X ' k[[x, y]]/(y2 = r(x)) ' k[[x]][
√
r(x)]

Therefore, we resolve the ring R[
√
r], where (R,m) is regular local k−algebra of

dimension two. Consider the commutative diagram:

Let S = SpecR and S[
√
r] = SpecR[

√
r]. We blow up S to make sure that total

transform of r is a simple normal crossing divisor. Let π : S ′ → S be the blow up

map. Here, S ′[
√
π∗r] denote the pull-back in the square.

Let S̄ be the normalization of S ′[
√
π∗r]. We look at the singularities of S̄. Let

s ∈ S then there exist x, y ∈ mS′ such that, f ∗r = xayb(unit). Over a neighborhood

of s ∈ S ′, S̄ is normalization

Os,S′[z′]/(z′2 − xaybu)

where 0 ≤ a, b ≤ 1. The ring is regular is either a or b is zero. If both a = b = 1,

blowing up once resolves the singularity.
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Chapter 5

In Positive characteristic

We can resolve curves in positive characteristics through normalization. We will give

a proof of surface resolution in positive characteristic in this chapter. The proof has

been sketched by Hironaka in his paper ’Desingularisation of Excellent Schemes’ and

is explained by Cutkosky. Herwig Hauser gives another description. We also present

an example where the method of characteristic zero fails in positive characteristic.

However, before we move to the proof, we show the existence of minimal resolution

for surfaces.

73



5.1 Minimal Resolution

Theorem 5.1.1. Let X ⊂ Pn be a projective surface. Then there exists a resolution

π : X ′ → X of X which is minimal. In the sense that, for any resolution φ : Y → X

of X, there exists a map ξ : X ′ → Y such that the following diagram commute.

Remark. We call the canonical divisor KX of X to be f − nef if the intersection

number KX · E ≥ 0 for every f−exceptional curve E ⊂ X. In general, we call a line

bundle L on X nef (numerically- effective) if it is non-negative on any curve on the

proper scheme X. We want to get rid of all such curves in our minimal model.

Proof. Let ξ : Y → X be a resolution for X. Suppose there exists an exceptional

divisor E such that KX · E ≥ 0. By Hodge index theorem and adjunction formula,

the intersection number E · E < 0. Hence, by Castelnuovo’s contractibility criterion,

we can contract the curve E. Since ξ(E) is a point of indeterminacy for the map ξ−1 :

X → Y, the number of exceptional curves are finitely many. Let X ′ be the resolution

with no exceptional curves. The uniqueness of X ′ follows from the Factorization

Theorem.

5.2 Resolution in positive characteristic

5.2.1 Hypersurface of maximal contact

Definition 5.2.1 (Hauser). Suppose Y ⊂ X be a variety and X is smooth. Let y ∈ Y

be a point of maximum multiplicity m. Then a hypersurface of maximal contact at y

is a smooth closed hypersurface Z that satisfy the following two conditions:

1. SingmY ⊂ Z.

2. Let π : X ′ → X be the blow up X along a non-singular component of SingmY.

And Y ′, Z ′ be the birational transform of Y, Z under π respectively. Then SingmY
′ ∩

π−1(y) ⊂ Z ′.
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Remark. Suppose V (f) is a hypersurface of X over an algebraically closed field of

characteristic zero. And p ∈ V (f) be a point of multiplicity m. Let y be one of the

local parameters of p such that ym appears in f with non-zero coefficient. Then the

m− 1st partial derivative of f with respect to y defines a hypersurface of maximal

contact at p.

5.2.2 An Example

The example is due to Hauser. Consider the surface S ⊂ A3 defined by the local

equation

f(x, y, z) = x2 + y7 + y4z2 + yz4

over an algebraically closed field of characteristic 2. See that, (0, 0, 0) sits in S with

multiplicity 2. The top locus of S is given by (z2 + y3, x+ zy2). Indeed,

f(x, y, z) = (x+ zy2)2 + y(z2 + y3)2.

In characteristic 0, the hypersurface of maximal contact for f is given by x = 0, we

will show that it is not the case for char 2.

f(x, y, z) = x2 + y7 + y4z2 + yz4

We blow up at (0, 0, 0) and look the piece:

1. x1 = x
y

, y1 = y , z1 = z
y

f1(x1, y1, z1) = x2
1 + y3

1(y2
1 + z2

1y1 + z4
1)

Next we blow up at (0, 0, 0) again and look at the following piece:

2. x2 = x1

z1
, y2 = y1

z1
, z2 = z1

f2(x2, y2, z2) = x2
2 + y3

2z
3
2(y2

2 + z2y2 + z2
2)

The coefficient curve has powers of y2 and z2 common, so we set the point (0, 1, 0) on

the exceptional locus as the new origin, the changed transformation are as follows:

3. x3 = x2

z2
, y3 = y2

z2
− 1 , z3 = z2

f3(x3, y3, z3) = x2
3 + z6

3(y3 + 1)3((y3 + 1)2 + (y3 + 1) + 1)

We blow up the birational transform three times along the curve (x, z). The number

six in the exponent of monomial z6
3 reflects the reason for choosing three.

4. x4 = x3

z3
, y4 = y3 , z4 = z3
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f4(x4, y4, z4) = x2
4 + z4

4(y4 + 1)3((y4 + 1)2 + (y4 + 1) + 1)

5. x5 = x4

z4
, y5 = y4 , z5 = z4

f5(x5, y5, z5) = x2
5 + z6

5(y5 + 1)((y5 + 1)2 + (y5 + 1) + 1)

6. x6 = x5

z5
, y6 = y5 , z6 = z5

f6(x6, y6, z6) = x2
6 + (y6 + 1)3((y6 + 1)2 + (y6 + 1) + 1)

The birational transform of x1 is x2, of x2 is x3 and so on. We see that the point (1, 0, 0)

sits in S6 = V (f6) with multiplicity 2 and (1, 0, 0) ∈ π−1
6 (0, 0, 0) but (1, 0, 0) /∈ V (x6).

Therefore, x = 0 fails to be a hypersurface of maximal contact.

5.2.3 Proof by Cutkosky

Theorem 5.2.2. Embedded resolution of singularity exist for surfaces in positive

characteristic.

Theorem 5.2.3. Embedded resolution of singularity exists for hypersurfaces of di-

mension two in positive characteristics.

We shall prove theorem 5.2.3 in two steps :

(1) We will prove it for the case where SingmS is a finite set.

(2) And then reduce all other cases to case (1)

Before we move on to the proof of case 1. Let us set the notations.

For the following, S ⊂ V will denote a projective surface embedded in a smooth

3 − fold V over an algebraically closed field of positive characteristic. Let p ∈ S be

a point then B(p) denotes blow up of V at p and B(C) denote blow up of V at the

curve C. We often write Vi in general for both the blow ups at the ith step. The

points q′is denote the points in the fiber of p under πi. The resolution we construct

is local in nature, and we shall do it in an analytic neighborhood of p. Let S ⊂

Spec(ÔV,p) be given by the equation f =
∑

i,j,k aijkx
iyjzk. And f1, f2, ... will denote

the birational transform of S under πi or defining equations of Si where (x, y, z) are

the local parameters for the point p.

76



Definition 5.2.4 (Approximate manifold). Suppose X is a smooth variety of dimen-

sion n and Y ⊂ X be a hypersurface. Let y ∈ Y be a point of multiplicity m and

U ⊂ X be an affine neighborhood of y. We assume Y is defined by f = 0 in the

neighborhood U and

f =
∑

i1+...+in≥m

ai1,i2,...,inx
i1
1 x

i2
2 ...x

in
n

where (x1, x2, ..., xn) are the local parameter of y in X. Let

L(x1, x2, ..., xn) =
∑

i1+...+in=m

ai1,i2,...,inx
i1
1 x

i2
2 ...x

in
n

be the leading form of f. We define M to be the smallest subspace of k[x1, x2, ..., xn]

spanned by x1, x2, ..., xn in k[x1, x2, ..., xn] such that L ∈ k[M ]. We define the variety

N = V (M) in Spec ÔX,y to be the Approximate manifold at y.

Let τ(y) denote the dimension of M .

Theorem 5.2.5. Suppose that Singm(S) is a finite set. Then Theorem 5.2.3 is true.

Let us see how the multiplicity of a point p and the dimension τ(p) behave under

point/curve blow up.

Point blow up:

Let p be the blown up point and the local parameters of q1 be (x1, y1, z1). Then two

of the three charts are depicted as follows:

1. x1 = x, y1 = y
x
− a, z1 = z

x
− b

f1(x1, y1, z1) = L(1, y1 + a, z1 + b) + x1g1(x1, y1, z1) for some g1.

Clearly vq(f1) ≤ m. And

L(1, y1 + a, z1 + b) =
∑

i+j+k=m

aijk(y1 + a)j(z1 + b)k, (5.1)

vq(f
′) = m implies i = 0 in 5.1. Clearly τ(p) ≤ 2

If τ(p) = 2, then 5.1 implies, a = b = 0. Therefore, τ(q1) ≥ τ(p).

If τ(p) = 1 i.e.

L = czm,

multq1S1 = m⇒ b = 0

and τ(q1) ≥ τ(p).

2. x1 = x
y
− a, y1 = y z1 = z

y
− b
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f1(x1, y1, z1) = L(x1, 1, z1) + y1g1(x1, y1, z1) for some g.

Clearly vq(f1) ≤ m. And

L(x1 + a, y1, z1 + b) =
∑

i+j+k=m

aijk(x1 + a)j(z1 + b)k, (5.2)

vq(f
′) = m implies j = 0 in 5.2. Clearly τ(p) ≤ 2

If τ(p) = 2, then 5.1 implies, a = b = 0. Therefore, τ(q1) ≥ τ(p).

If τ(p) = 1 i.e.

L = czm,

multq1S1 = m⇒ b = 0

and τ(q1) ≥ τ(p).

Similarly, in the third case, we see that, if π : B(p)→ V is blow up at p, E = π−1(p)

and q1 ∈ E ∩ S1 Then vp(S) ≥ vq1(S1). If vp(S) = vq1(S1), then τ(p) ≤ τ(q1).

Also see that, if τ(p) = 3, then N1 ∩E = φ, τ(p) = 2, then N1 ∩E is a point and is a

line if τ(p) = 1 where N1 is the birational transform of N.

Curve blow up :

Without any loss of generality, we assume C ⊂ SingmS be the curve defined by

x = y = 0. Let π : V1 = B(C) → V is the blow up of C and q ∈ π−1(p) ∩ S1. Then

the description of one of the affine chart of the blow up variety is as follows:

1. x1 = x, y1 = y
x
− a, z1 = z

The equation of exceptional divisor is x1 = 0. Then,

f1(x1, y1, z1) = L(1, y1 − a, z1) + x1g1(x1, y1, z1)

for some g1 where

L(1, y1 − a, z1) =
∑

i+j+k=m

aijk(y1 − a)jzk1 . (5.3)

Clearly, vq1(S1) ≤ vp(S). If vq1(S1) = m then a = 0, i = 0 in 5.3. Therefore,

L(x, y, z) = cym.

This implies τ(p) = 1 and clearly, τ(p) ≤ τ(q1). Similarly, for the other piece we see

that, If π : V1 → V is blow up at curve C in the top locus of S and E = π−1(C).

Then, vq1 ≤ m and vq1 = m ⇒ τ(p) ≤ τ(q1) for q1 ∈ E ∩ S1.

Also note that, N1 ∩ E = φ if τ(p) = 2 and is a curve which maps isomorphically

under π if τ(p) = 1.
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Proof of theorem 5.2.5. We will show that after finitely many blow ups the invariant

τ(qi) increases. The three cases are as follows:

Case 1 : τ(p) = 3

We know that the multiplicity drops at the very first blow up in this case.

Case 2 : τ(p) = 2

We show that after finitely many blow ups along the component in the top locus

of Si, all qn ∈ {E = π−1
n (p)} ∩ Sn with vqn(Sn) = m satisfy the equality τ(qn) = 3.

On contrary, let us suppose that there exists an infinite such sequence i.e. there

exists an infinitely many points qi (one at each step) that maps to p under πi such

that vqi(Si) = m and τ(qi) = 2. Without any loss of generality, we assume that the

sequence consists of point blow ups. This induces an infinite sequence of completion

of local ring around q′is as follows:

ÔV,p → ÔV1,q1 → ...→ ÔVn,qn → ...

Let f(x, y, z) =
∑

i+j+k≥m aijkx
iyjzk be written as

f(x, y, z) = L(x, y, z) + g(x, y, z)

where L(x, y, z) =
∑

i+j+k=m aijkx
iyjzk.

We define

γxyz(f) = min

{
k

m− (i+ j)
| aijk 6= 0 and i+ j < m

}
.

Observe that γxyz(f) < 1 if and only if vp(f) < m. Next, we define,

[f ]xyz =
∑

(i+j)γ+k−mγ

aijkx
iyjzk

where γ = γxyz. If

Tγ =

{
(i, j) | k

m− (i+ j)
= γ, i+ j < m for some k such that aijk 6= 0

}
,

then, [f ]xyz = L(x, y, z) +
∑

(i,j)∈Tγ aijγ(m−i−j)x
iyjzγ(m−i−j). We call [f ]xyz as solvable

if there exist a, b ∈ k such that,

[f ]xyz = L(x− azl, y − bzl)

for some l ∈ N.
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We observe that:

1. γx1,y1,z1(f1) = γxyz(f)− 1

2. [f1]x1,y1,z1 = 1
zm

[f ]xyz so, [f1]x1,y1,z1 is not solvable if [f ]xyz is not solvable.

3. If γx1,y1,z1(f1) > 1 then L1(x1, y1, z1) = 1
zm
L(x, y, z).

Lemma 5.2.6. There exists a set of transformations

x1 = x−
n∑
i=1

αiz
i and y1 = y −

n∑
i=1

βiz
i

such that [f ]x1,y1,z1 is not solvable.

Proof. We make the change of variable

x1 = x− azl, y1 = y − bzl

On contrary, let us suppose there does not exist a change of variable such that f is not

solvable. Then f1(x1, y1) is not solvable. We continue to make the transformations

xi = xi−1 − aizli yi = yi−1 − bizli

to obtain the power series

x′ = x−
∞∑
i=1

aiz
li y′ = y −

∞∑
i=1

biz
li

Since, li+1 > li, we see that γx′,y′,z(f) = ∞ which implies f ∈ (x′, y′)m which is a

contradiction to the assumption that pi is an isolated singularity.

Coming back to the proof of theorem 5.2.5, Through lemma 5.2.6 we assume that

f is not solvable, then after finitely many steps we have γxn,yn,zn ≤ 1.

If γxn,yn,zn < 1 then multiplicity reduces at this step. If γxn,yn,zn = 1 we show that

τ(qn) = 3 for every qn ∈ E∩Sn. Indeed, τ(qn) = 2 implies that there exist a, b, c, d, e, f

with ae 6= bd such that,

L(xn, yn, zn) = ψ(axn + byn + czn, dxn + eyn + fzn).

Putting zn = 0, we have

Ln(xn, yn, 0) = ψ(axn + byn, dxn + eyn).
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This implies [fn(xn, yn, zn)]xn,yn,zn is solvable. Indeed,

L(xn + gzn, yn + hzn) = ψ(a(xn + gzn) + b(yn + hzn), d(xn + gzn) + e(yn + hzn))

L(xn + gzn, yn + hzn) = ψ(axn + byn + (ag + bh)zn, dxn + eyn(dg + eh)zn).

In order to show that [fn]xn,yn,zn is solvable, we need to solve the linear system

ag + bh = c

dg + eh = f.

But the system possess a solution as ae− bd 6= 0. This implies [fn]xn,yn,zn is solvable

which is a contradiction.

Case 3: τ(p) = 1

Similar to the previous case, we show that after finitely many curve/point blow ups

τ(qn) = 2 for all qn ∈ E ∩Sn. On contrary, let us suppose that there exists an infinite

sequence of point/curve blow up in the top locus. We choose a sequence of points

qn ∈ Vn on the blown up subvariety that maps to q under πn such that vqn(Sn) = m

and τ(qn) = 1. Let Rn := ÔVn,qn then this induces an infinite sequence of blow ups at

either maximal ideals mqiRi or at prime ideals pCiRi. We define for

f(x, y, z) = aijkx
iyizk

a polygon

∆(f, x, y, z) =

{(
i

m− k
,

j

m− k

)
∈ Q | k < m and aijk 6= 0

}
Let Λ be the smallest set in R2 which is convex, ∆(f, x, y, z) ⊂ Λ and for every

c ≥ 0, d ≥ 0, (a+ c, b+ d) ∈ Λ for (a, b) ∈ Λ.

We define:

S(a) := line of slope −1 through (a, 0).

V (a) := vertical line through (a, 0)

αxyz(f) be the smallest real number such that (αxyz(f), b) ∈ Λ(f, x, y, z) for some b.

βxyz(f) be the smallest real number such that (a, βxyz(f)) ∈ Λ(f, x, y, z) for some a.

γxyz(f) be the first number γ such that S(γ) ∩ Λ 6= φ

δxyz(f) be such that (γxyz−δxyz, δxyz) is the first intersection of S(γ) with ∆(f, x, y, z).

εxyz(f) =| Largest slope of a line through (αxyz(f), βxyz(f)) such that there does not
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exist a points of ∆(f, x, y, z) below the line. |

Observe the following:

1. (αxyz, b), (a, βxyz) and (γxyz − δxyz, δxyz) are the vertices of Λ.

2. Vertices of Λ are the points of ∆(f, x, y, z).

3. αxyz(g) < 1 if and only if g /∈ (x, z)m.

4. A vertex lies below the line b = 1 if and only if g /∈ (y, z)m.

5. Multiplicity of the top locus of V (f) is less than m if and only if S(c) ∩ Γ 6= φ

for some c < 1 which is possible if and only if there exists a vertex (a, b) such that

a+ b < 1.

Further terminologies:

We call the parameters (x, y, z) to be good parameters if in the presentation of f as

f(x, y, z) =
∑

i+j+k≥m

aijkx
iyjzk,

a00m = 1. In which case,

S(a,b) =

{
k |
(

i

m− k
,

j

m− k

)
= (a, b) and aijk 6= 0

}
.

We define fabxyz := zm +
∑

k∈S(a,b) aa(m−k),b(m−k),kx
a(m−k)yb(m−k)zk

We say that (a, b) on Λ(f, x, y, z) is not prepared if a and b are integers and

fabxyz =
(
z − cxayb

)m
for some constant c and call it prepared otherwise. We call Λ(f, x, y, z), well-prepared

if all its vertices are prepared.

Observe that,

1. If (x, y, z) are good parameters of f and Λ(f, x, y, z) is well-prepared then z = 0 is

approximate manifold of f = 0.

We want to see what happens to the vertices of Λ when we make transformation. Let

the transformation be z1 = z − cxayb, then xiyjzk is replaced by the sum

k∑
λ=0

ck−λ
k!

λ!(k − λ)!
xi+(k−λ)ayj+(k−λ)bzλ1 .

2. If k < m, then the monomial with non-zero coefficient in xiyj(z1 + cxayb)k corre-

spond to distinct points on the line joining (a, b) and ( i
m−k ,

j
m−k ) if (a, b) 6= ( i

m−k ,
j

m−k ),
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otherwise all the monomial with non- zero coefficient in the sum correspond to the

point (a, b) = ( i
m−k ,

j
m−k ).

3.If m ≤ k and (i, j, k) = (0, 0,m), the monomial in the sum correspond to (a, b),

otherwise, all the monomials other than zm1 correspond to points in (a, b)+Q2
≥0 (a, b).

4. Therefore, the transformation z = z1 + cxayb makes the following changes to the

graph:

(i) Λ(f, x, y, z) ⊂ Λ(f, x, y, z1)\(a, b)

(ii) And all the vertices of Λ(f, x, y, z) is also a vertex of Λ(f, x, y, z1) and fabxyz is

transformed to fa
′b′

xyz1

Lemma 5.2.7. Suppose that (x, y, z) are good parameters for f at p. There exists

φ(x, y) ∈ k[[x, y]] such that Λ(f, x, y, z1) is well-prepared and (x, y, z1) are good pa-

rameters.

Proof. Let u1, v1 be the vertex of Γ(f, x, y, z) such that v1 is the smallest such. We

make the transformation

z1 = z − c1x
u1yv1 .

Let (u2, v2) be the lower most vertex of Γ(f, x, y, z1). If (u2, v2) is prepared, we are

done. Otherwise, if v2 = v1, we make the transformation,

z2 = z1 − c2x
u2yv.

We continue to do this process till we achieve one of the following:

1. (un, vn) is prepared. In which case the process terminates.

2. vn > vn−1

3. We have an infinite sequence of transformation such that the lower most vertex of

Γ(f, x, y, zi) is (ui, v) and none of them is prepared. Since un+1 > un, we make the

transformation,

z′ = z −
∞∑
i=0

cix
uiyv

such that the lower most vertex of Γ(f, x, y, z′) satisfy v′ > v. We apply the same

process for the other coordinate to achieve a power series φ(x, y) such that either the

lower most vertex (ū, v̄) of Γ(f, x, y, z̄) is prepared or Γ(f, x, y, z̄) = ∅. But the later

case implies that f = g(unit) which is not true since f is reducible.
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Final terminologies:

Let (x, y, z) be the good parameters. Then we call a well prepared graph Λ(f, x, y, z)

to be very well-prepared if either of the following holds:

(i) (γxyz − δxyzδxyz) 6= (αxyz, βxyz), and the transformation

y1 = y − cx and z1 = z − φ(x, y)

for well preparation yields :

αx,y1,z1(f) = αx,y,z(f), βx,y1,z1(f) = βx,y,z(f), γx,y1,z1(f) = γx,y,z(f) and

δx,y1,z1(f) ≤ δx,y,z(f)

(ii) (γxyz − δxyz, δxyz) = (αxyz, βxyz), and one of the following holds:

(a) εx,y,z 6= 0

(b) εx,y,z = 0 and 1
ε
/∈ Z

(c) εx,y,z 6= 0, n = 1
ε
∈ Z, and for any c ∈ k an the transformation:

y1 = y − cxn, z1 = z − φ(x, y),

εxy1z(f) = εxyz. Let (c, d) be the lower most point of the line through (αxyz, βxyz) with

slope −ε and Λ(f, x, y, z). Similarly let (c1, d1) be defined for f1, then d1 ≤ d.

Lemma 5.2.8. Suppose (x, y, z) are good parameters for f at p then there exists

power series φ(x, y), ξ(x) such that after the transformation

z1 = z − φ(x, y) and y1 = y − ξ(x)

Λ(f, x, y1, z1) are very well-prepared.

Coming back to the proof of the theorem, we see that if (x, y, z) are local param-

eters of p and q1 ∈ S1 ∩ π−1
1 (p) is such that vq1S1 = m, then the local parameters of

(x1, y1, z1) are given by one of the following:

1. x1 = x y1 = y
x

+ η z1 = z
x

2. x1 = x
y
y1 = y z1 = z

x

3. x1 = x y1 = y z1 = z
x

4. x1 = x y1 = y z1 = z
y

This is not the complete list of the possible candidates for the local parameters at q1.

But, notice that for all the remaining ones, the multiplicity decreases and hence, we

are not considering them here. We name the four transformations as T1, T2, T3, T4

respectively. We note that, for all the four transformations if vq1S1 = m and τ(q1) = 1
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then (x1, y1, z1) are good parameters for f.

We shall now discuss the effect that these transformations on the numbers

αxyz, βxyz, γxyz, δxyz, εxyz. The results have been collectively stated in table. We shall

prove the boxes in afterwards discussion.
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We shall prove the boxes of the table. Having done that, the following theorem

gives a contradiction to the assumption that there exists an infinite length as in the

assertion.

Theorem 5.2.9. Let p ∈ S be a point in the top locus and (xn, yn, zn) be good param-

eters of qn and

σ(n) = (βfn,xn,yn,zn , δfn,xn,yn,zn ,
1

εfn,xn,yn,zn
, αfn,xn,yn,zn),

then σ(n + 1) < σ(n) for all n in the lexicographic order in the lattice 1
m!
N × 1

m!
N ×

(Q+ ∪ {∞})× 1
m!
N.

Proof. The proof follows from the table.

Proof of the table:

1. Row 2 is elementary.

2. Row 3 is straight forward and we leave it to the readers.

3. We will start with column I and prove all the rows together:

Proof. Notice that the linear transformation

(x, y) 7→ (x+ y − 1, y)

maps the line with slope t 6= −1 to the lines with slopes t
t+1
.

Case 1: εxyz ≥ 1

It follows that (αxyz, βxyz) 6= (γxyz − δxyz, δxyz). Let L1 be the line joining (α, β) and

(γxyz − δxyz). Then, L1 is mapped to a line of positive slope or a vertical line, which

implies,

βx1y1z1 < βxyz.

Because very well preparation lay no effect on β, we have, βx1y1z1 < βxyz in this case.

Case 2: 1
2
≤ εxyz < 1

It follows that (αxyz, βxyz) = (γxyz− δxyz, δxyz). The slope of line joining (α+β−1, β)

and (c+ d− 1, d) is

−εx1y1z1 =
εxyz

−εxyz + 1
< −1
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where c and d are as in the definition of very well-prepared. This implies (αx1y1z1 , βx1y1z1) =

(αxyz + βxyz − 1, βxyz) and

(αx1y1z1 , βx1y1z1) 6= (γx1y1z1 − δx1y1z1 , δx1y1z1)

and (c1, d) = (c+d−1, d) is the lower most point of the intersection of the line through

(αx1y1z1 , βx1y1z1) with slope−εx1y1z1 and Λ(f1, x1, y1, z1). We claim that ∆(f1, x1, y1, z1)

is very well-prepared and leave the verification to the readers.

We have, βx1y1z1 = βxyz, δx1y1z1 = δxyz and 1
εx1y1z1

= 1
εxyz
− 1

Case 3 : εxyz = 0

It follows that, βx1y1z1 = βxyz and Λ(f1, x1, y1, z1) is very well-prepared. Also (αx1y1z1 , βx1y1z1) =

(γx1y1z1 − δx1y1z1 , δx1y1z1) = (αx1y1z1 − βx1y1z1 , βx1y1z1) and εx1y1z1 = 0. Finally εxyz = 0

implies that βxyz < 1 and the result follows.

4. We prove here II6:

II6. Since, T2 sends (a, b) to (a, a + b− 1), we see that such a linear transformation

T : m(x, y) 7→ (x, x+ y − 1) on k2 sends the lines with slope t to the lines with slope

t+ 1. In particular,

(αx1,y1,z1(f1), βx1,y1,z1(f1)) = (αx1,y1,z1(f1), αx1,y1,z1(f1) + βx1,y1,z1(f1)− 1).

Notice that, αx,y,z(f) < 1, since the singularity was at (x, y, z) and therefore, βx1,y1,z1(f1) <

βx,y,z(f). We know that, Λ(f1, x1, y1, z1) is well-prepared so, (αx1,y1,z1(f1), βx1,y1,z1(f1))

is not effected by very well preparation.

5. Notice that T3 pushes the graph down by one unit therefore, proof of III5-III9

becomes obvious after we show III4. The proof of III4 is as follows:

III4. We know that Λ(f1, x1, y1, z1) is well-prepared. Suppose that Λ(f1, x1, y1, z1) is

very well-prepared. If (γx1y1z1 − δx1y1z1δx1y1z1) 6= (αx1y1z1 , βx1y1z1), we wish to show

that the transformation

y′1 = y1 − cx1

yields :

αx1,y′1,z1
(f1) = αx1,y1,z1(f1), βx1,y′1,z1

(f1) = βx1,y1,z1(f1), γx1,y′1,z1
(f1) = γx1,y1,z1(f1)
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and δx1,y′1,z1
(f1) ≤ δx1,y1,z1(f1).

The part of f that lies on the line S(γ) are as follows :

∑
i+j+γk=mγ|k<m

aijkx
iyjzk. (5.4)

After T3, the part of f that lies on the line S(γ1) is as follows:

∑
(i+k−m)+j+γ1k=mγ1

aijkx
i+j−m
1 yj1z

k
1 (5.5)

Notice that after T3 transformation, only exponents have changed, but aijk have

remained the same i.e., if i, j, k that satisfy {i+ j + γk = mγ|k < m} in 5.4 then it

satisfies (i+ k −m) + j + γ1k = mγ1 in 5.5 since γ1 = γ − 1. And therefore we have,

δxyz(f) = δx1y1z1(f1) = min

{
j

m− k
| aijk 6= 0 in 5.5

}
.

A translation y = y′ + cx transform 5.4 into

∑
i+j+γk=mγ|k<m

bijkx
iy′jzk

and the translation y1 = y′1 − c1x transforms 5.5 into

∑
(i+k−m)+j+γ1k=mγ1

bijkx
iy′jzk.

In the case, (γx1y1z1 − δx1y1z1δx1y1z1) 6= (αx1y1z1 , βx1y1z1), we see, that Λ(f1, x1, y1, z1) is

very well-prepared. Similarly, one can see it for the other case.

6. We now give a proof of IV6:

IV6. Since T4 sends (a, b) to (a, b− 1), it pushes the graph on the left and therefore,

βx1,y1,z1(f1) < βx,y,z(f).

After a very well preparation the vertex (αx1,y1,z1(f1), βx1,y1,z1(f1)) remains unaffected

an therefore,

βx1,y′1,z
′
1
(f1) = βx1,y1,z1(f1) < βx,y,z(f).
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Proof of theorem 5.2.5 is a matter of constructing local parameters (xn, yn, zn) for

qn such that (xnynzn) are good parameters, SingmSn ⊂ V (xn, zn) or V (yn, zn) and

that Λ(fn, xn, yn, zn) is well-prepared. But this follows from the table.

It remains to show that all the cases for surface singularity reduce down to case

1, i.e., for a surface S there exists another surface S ′ and a birational proper map

f : S ′ → S such that the top locus of SingmS
′ is just finitely many points.

Theorem 5.2.10. Suppose the curves in the top locus of S ⊂ V are non-singular,

then the sequence of blow ups of Vi along curves in SingmSi terminate.

Proof. On contrary, let us suppose there exists an infinite sequence of blow up along

non-singular curves in the top locus

...→ Vn → Vn−1 → ...→ V1 → V.

The sequence induces another infinite sequence of local rings as follows :

OV,C → OV1,C1 → ...→ OVn,Cn → ...

There exist infinitely many curves C ′is that maps to C under the blow up maps πi.

As in the case of characteristic 0, we can view OVn,Cn as a local ring a point Cn in a 2

dimensional regular surface, where cn is singularity of a curve embedded in the surface

SpecOVn,Cn . Since embedded resolution for curves is true in arbitrary characteristic,

this brings a contradiction.
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