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Chapter 1

Introduction

Quantum mechanics is one of the most important developments in physical sciences
which took place in the first half of the twentieth century. The early pioneers like Born,
Schrödinger, Heisenberg and Bohr used tools from Hamiltonian classical mechanics,
developed in the nineteenth century, to formulate a theory describing microscopic phe-
nomena. We follow the formulation of the theory as given in standard books such
as Sakurai (Sakurai (1993)). and Peres (Peres (1993)). For a historical development
of quantum mechanics, see Mehra & Rechenberg (1982a,b,c). For the development
of quantum information and computation, refer to Nielsen and Chuang (Nielsen &
Chuang (2000)).

Quantum entanglement plays a central role in quantum theory from a conceptual as
well as a practical point of view. On the conceptual front, entanglement is intimately
connected with the notions of non-locality and violation of Bell’s inequalities Bell
(1964, 1995), which is at the heart of the way the quantum mechanical description of
the world differs from the classical one. On the practical front, quantum entanglement
is essential in providing computational advantage to quantum computers over their
classical counterparts Aaronson (2013); Nielsen & Chuang (2000).

The central question in this study is to determine whether a given arbitrary (pure or
mixed) bipartite state ρ is entangled or separable. The problem has a simple solution
for the case of pure states. A pure bipartite state is separable if and only if the reduced
density operator obtained by tracing over one of the systems is pure. In fact the entropy
of the reduced density operator can be used to quantify the amount of entanglement.
However, for the case of mixed states such a characterization is not possible and only
partial solutions are available. While there are methods to uncover entangled states,
all of them are one-way conditions whose violation indicates entanglement. However
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1. Introduction

satisfying a finite number of these conditions cannot guarantee separability. Thus the
solution to this problem has remained elusive. Indeed from a computational perspec-
tive, the separability problem belongs to the class NP-hard Gurvits (2003); Ioannou
(2007). A vast body of literature exists in this field. See Horodecki et al Horodecki
et al. (2009) or Gühne and Tóth Gühne & Tóth (2009) for an exhaustive review.

Positivity is an important concept in quantum mechanics. The set of all states in
a given dimension forms a closed cone. Maps which preserve positivity are called
positive maps. Quantum evolution is described by a subclass of positive maps, called
completely positive maps. Maps which are positive but not completely positive, are
also important and will appear in this work, as they are the ones which can ‘detect’ en-
tangled states. This study is important from a mathematical perspective as well, where
positivity plays a key role. Indeed, in a list of fundamental tools used in mathemat-
ics, Fields medalist Alain Connes put positivity on the top of the list Connes (2004).
It plays a key role in probability theory, in quantum mechanics and in operator alge-
bra. Positivity of operators, used in quantum mechanics, is related to the positivity of
Hilbert space operators. Thus in the study of quantum entanglement, we encounter
non-commutative positivity, which Blecher Blecher (2007) coined as Quantum Posi-
tivity. In this thesis, we study positive maps which are not completely positive, with a
view to explore quantum entanglement. We construct extensions of such maps, avail-
able in literature, discover new classes of entangled states, unearth a connection with
unextendable product basis and quantum filtering.

1.1 Background & Motivation

In this section we give the basic ideas of quantum mechanics. We also discuss the
developments of quantum computation and information in the past twenty years. The
treatment is not exhaustive and the topics discussed here are to provide a context for
our work.

1.1.1 Postulates of quantum mechanics

Quantum mechanics can be studied from an axiomatic point of view. A quantum sys-
tem is described by a separable complex Hilbert space.

Axiom I The state space of a quantum system is the set of all positive semidefinite
operators ρ ∈ B(H), with unit trace. H is a separable complex Hilbert space.

2



1.1 Background & Motivation

Such operators are called states or density operators.
A state of rank 1 is called a pure state. Otherwise it is called a mixed state.

Axiom II Physical observables can be represented by Hermitian operatorsA ∈ B(H).
The expectation value of the observableA for the system represented by the state
ρ is Tr[ρA].

Axiom III The most general quantum operation between two systems H and K is
given by a linear map φ : B(H)→ B(K) such that:

1. φ is positive. For any density operator ρ ∈ B(H), 0 ≤ φ(ρ) ∈ B(K)

2. 0 ≤ Tr(ρ) ≤ 1.

3. For any natural number k, the natural extension of the map φ, written as

1k ⊗ φ : B(Ck)⊗B(H) → B(Ck)⊗B(K)

A⊗B 7→ A⊗ φ(B),

is positive. Such a map is called a completely positive map.

Such completely positive maps can be described by the structure theorem given in-
dependently by Sudarshan (Sudarshan et al. (1961)), Kraus (Kraus (1971)) and Choi
(Choi (1975a)). Any such quantum operation φ can be represented by a set of operators
{Vk ∈ B(H,K)}, where

∑
V †k Vk ≤ I and

φ(ρ) =
∑
k

V †k ρVk. (1.1)

Such operators Vk are called Kraus operators. More details about such maps are given
later in Section 1.2.1.2 and in the Appendix B.2.

The time evolution of a quantum system is given by a completely positive map
which is trace preserving and unital. Any such map is described by a Kraus operator,
which is a one parameter unitary operator U(t). The generator of this group corre-
sponds to the Hamiltonian of the system.

Axiom IV Quantum measurement is described by a set {Mk} of measurement opera-
tors, which satisfy the completeness equation∑

k

M †
kMk = I. (1.2)

3



1. Introduction

If the state of a quantum system is in the state ρ before measurement, then the
probability that the result k occurs is

P (k) = Tr(M †
kρMk), (1.3)

and the state after the measurement is

ρ′ =
M †

kρMk√
P (k)

. (1.4)

By completeness of probability ∑
k

P (k) = 1.

1.1.1.1 Quantum states

Although quantum mechanical state space can be of infinite dimensions, in our work in
this thesis only finite dimensional quantum systems are considered. In the finite dimen-
sional case quantum states are described by finite dimensional operators i.e. matrices
on a suitable space. We write down some definitions coming out of the axioms.

Definition 1.1.1 (State). A (finite dimensional) quantum system is represented by a
complex Hilbert space H = Cn. A state ρ ∈ B(Cn) is a Hermitian positive semidefi-
nite operator with unit trace.

A state of rank one is called a pure state otherwise it is called a mixed state. Hence
a pure state can be represented by the corresponding nonzero eigen vector which is
also called a state vector.

The simplest quantum system is a qubit which is represented by a two-dimensional
complex Hilbert space. A pure state of a qubit can be written as

|ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1,

where |0〉 and |1〉 denote the standard basis.

For simplicity, the word ‘positive’ is used in the place of ‘positive semidefinite’
throughout this thesis, unless explicitly mentioned otherwise.

It is useful to know the structure the state space of a quantum system. For the
simplest case, i.e. for a two level system, a state ρ ∈ B(C2) can be written as,

ρ =
1

2
(I2 + x.σx + y.σy + z.σz); (1.5)

4



1.1 Background & Motivation

where x, y and z are real numbers and

σx =

(
0 1
1 0

)
, σy =

(
0 −ı
ı 0

)
, σz =

(
1 0
0 −1

)
(1.6)

are the Pauli matrices. Hence any state can be uniquely represented by the triplet
(x, y, z). Positivity of ρ implies that x2 + y2 + z2 ≤ 1. The set of all the states
are represented as points of a unit ball in R3, which in literature is known as Bloch-
Poincare sphere. The surface of this sphere corresponds to pure states.

The problem of determining structure of all states becomes computationally diffi-
cult for higher dimensions. For dimension 3, it was solved by Arvind et al. (1997).
The problem remains open for the higher dimensions.

1.1.1.2 Composite systems and Entanglement

If there are k > 1 distinguishable quantum systems, then the state space of the com-
posite quantum system is given by the tensor product of the state space of individual
systems.

Definition 1.1.2. Let there be k distinct quantum systems whose state spaces are given
by operators on the Hilbert spaces H1, · · · ,Hk. Then the state space of the composite
system is given by the operators on the Hilbert space H1 ⊗ · · · ⊗Hk. If ρj ∈ Hj is
a quantum state in the jth system, then the combined state in the composite system is
given by ρ1 ⊗ · · · ⊗ ρk.

In particular, for a bipartite system, i.e. when k = 2, any state ρ is a positive
semidefinite Hermitian operator of B(H1 ⊗H2), whose trace is unity.

Any arbitrary state ρ acting on a composite system H1, · · · ,Hk need not be of
the form of ρ1 ⊗ · · · ⊗ ρk. This leads to the important concepts of separability and
entanglement. We give the definitions for the bipartite systems. These definitions can
easily be extended for the general k as well.

Definition 1.1.3. A state ρ ∈ B(H1 ⊗H2) is said to be separable if it can be written
as a finite sum

ρ =
k∑
j=1

pjρ
(1)
j ⊗ ρ

(2)
j , pi > 0,

k∑
j=1

pj = 1; (1.7)

where ρ(i)
j ∈ B(Hi) are the states in the respective sub-systems.

A state is called entangled if it cannot be written in the above form.
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1. Introduction

In this thesis we restrict our study to bipartite entanglement.

Example 1.1.1. The simplest example of an entangled quantum state is the pure state
1√
2
(|00〉 + |11〉) ∈ C2 ⊗ C2. {|0〉 , |1〉} denotes the standard orthonormal basis of the

Hilbert space C2.

Entanglement is one of the fundamental aspects which distinguishes quantum sys-
tems from classical systems. Due to the developments of quantum information theory
in past two decades, entanglement has been used increasingly as an asset (Nielsen &
Chuang (2000)).

Entanglement was initially considered as a counterexample to show the impossi-
bility of quantum theory by Einstein, Podolsky and Rosen (Einstein et al. (1935)). Let
Alice and Bob share an entangled state as given in Example 1.1.1. Each one of them
can control only one of the subsystems since they are separated. If Alice makes a
measurement in the {|0〉 , |1〉} basis of her system, and gets the value |0〉, then Bob’s
state also collapses to |0〉. Thus Alice can perfectly predict the outcome of Bob’s mea-
surement even if they are space like separated and hence cannot communicate. This,
according to Einstein, Podolsky and Rosen, cannot take place. Hence they concluded
the incompleteness of quantum theory. This conjecture is named as EPR conjecture,
after the initials of the authors.

The above work created a long debate regarding validity of quantum mechanics, in
which both physicists and philosophers contributed. A local hidden variable model of
quantum mechanics was proposed to solve the above problem. This came to a logical
conclusion with the seminal paper of Bell (Bell (1964)). Bell showed the impossibility
of local hidden variable theories. He proved that entanglement is indeed a prime feature
of quantum theory which separates quantum mechanics from its classical counterpart.
Historical development of the theory as well as contributions of others can be seen in
the book by Bell (Bell (1987)).

1.1.2 Quantum computation

Quantum computation is one of the most recent techniques of computation. In a sense,
the researchers were interested to use materials beyond silicon and get a boost in the
computational power. It was also wishfully thought that, by using new techniques
one can bypass the problems related to NP-completeness. Among many propos-
als, two of them are noteworthy. The first was by Adleman (Adleman (1994)), who
had introduced DNA computer and solved experimentally an instance of Hamiltonian
path problem: This is a well known NP-complete problem. At the same time, Peter
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1.1 Background & Motivation

Shor used quantum computation to give an algorithm for integer factorization problem.
Hardness of factorization is the key point of the security of RSA crypto system. Shor’s
algorithm showed that a quantum computer can possibly perform computations which
a classical computer cannot achieve.

1.1.2.1 Brief history

As the name suggests, a quantum computer uses laws of quantum mechanics for per-
forming computational tasks. Feynman worked on the difficulty of simulating quantum
states by classical computers. The complexity increases exponentially with the num-
ber of systems. Given copies of an n-qubit state and applying a unitary operator on it,
we can determine the output state by repeated measurement or by tomography. How-
ever determining them by simulation takes exponential resources. Feynman wanted to
use this phenomenon directly for computation, in which the input(s) and output(s) are
quantum states and the classical data is extracted by (repeated) measurement (Feynman
(1981/82)). 1

Bennett and Brassard (Bennett & Brassard (1985, 1984)) used the works of Wies-
ner and quantum systems to create a novel scheme for key distribution of Shanon’s
perfect (classical) crypto system. Security of the method comes from the fact that any
eavesdropping in this system is active in nature and can be determined by the sender
and receiver. A different crypto system was created by Ekert (Ekert (1991)) by sharing
of maximally entangled states.

The lectures of Feynman was first taken seriously by David Deutsch and Richard
Jozsa when they proposed their algorithm (Deutsch & Jozsa (1992)). It showed that
quantum computers are faster than (deterministic) classical computers in computing
certain symmetric functions.

Computer scientists seriously started considering quantum computation when the
first quantum algorithm for factorizing integers was announced by Shor (Shor (1994,
1997)). Factorizing an integer is considered as a difficult problem, though its complex-
ity status is unknown till date. A major part of the public key cryptography is based on
assumptions that certain problems like factorization, discrete logarithm etc. are diffi-
cult to compute. It is shocking to realize that an experimental realization of quantum

1Historically it was first proposed by the famous Soviet mathematician Ya Manin in a series of
lectures from Moscow radio (see bibliographic notes in the book of Nielsen and Chuang (Nielsen &
Chuang (2000))). Due to iron curtain, it was not known to most of the western block nations and hence
not properly advertised. Indeed Feynman was the first to independently speculate and advertise, what is
today known as quantum computation.
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1. Introduction

computer can theoretically break most of the existing crypto systems. As a result, both
physicists and computer scientists started working on this newly discovered area.

It was quickly pointed out by the sceptics, that any such computer is highly error
prone.1 Quantum computation requires a level of purity of the state which may not be
achievable in any practical setup. Even making a single qubit and isolating it for suffi-
cient time from environment to manipulate, is not an easy job for the experimentalists.
Thus making a quantum computer was considered an impossible task and the whole
achievement was labeled as an interesting intellectual exercise. However in the very
next year the first quantum error correcting code was announced by Shor (Shor (1996)).
This showed that an error induced by environment or anything else can be corrected by
quantum algorithms/codes. In due course, quantum error correcting codes became an
increasing subject, just like its classical counterpart (for latest developments, see the
book by Parthasarathy (Parthasarathy (2013))).

Of course all those good things has limitations. We are yet to create a scalable
quantum computer. Neither an impossibility result has been proved theoretically.2.
The first quantum computer used NMR techniques, which using Shor’s algorithm, has
managed to find out that 15 = 3×5, with a high probability. Nevertheless, many of the
points of sceptics were countered by both experimentalists and theorists. First of all,
with increasing sophistication of technology it is now possible to isolate a system for
sufficiently longer time. It was clear that a scalable quantum computer is possible to
construct if and only if the postulates of quantum mechanics are correct. This creates
a serious problem for computer scientists and physicists. For example, if quantum
mechanics is nonlinear (and such a model was considered), a classical computer can
exploit that nonlinearity (however small) and can solve NP-complete problems in
polynomial time. This is difficult to accept for most of the computer scientists. A more
serious problem may arise with the definition of Turing machine and computability
itself. For a lively discussion one can look at the recent book of Aaronson (Aaronson
(2013)). Nevertheless we are in the same boat of Charles Babbage, when he failed to
make a classical computer as he did not have the correct technologies.

1Incidentally the same thing holds for other computation methods like DNA computer.
2For the historical reason of keeping records, the company named D-Wave needs to be mentioned.

They manufacture and market gigantic quantum computers (based on quantum annealing). Whether it
is truly scalable, and the methodology of the machines are a matter of ongoing dispute
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1.1 Background & Motivation

1.1.2.2 Grover search algorithm

How powerful is a quantum computer? Regardless of whatever the popular science
magazines claim, till date, it cannot solve any known NP-complete problems in poly-
nomial time.This can be explained the bounds provided by Grover search algorithm
(Grover (1996, 1997)). In classical computation, searching unsorted database cannot
be done less than linear time. Grover showed that, by using a suitable quantum or-
acle, it can be done sub-linear times, and its complexity is O(

√
n). This bound is

optimal. Impressing at the first glance, it shows that : removing the structure of an
NP-complete problem, solving can be reduced to a searching problem on correct so-
lution on the solution space. In this case the present quantum computer which use
discrete Fourier transformation can only give quadratic speed up. This concept was
further extended in the seminal paper by Bennett et al (Bennett et al. (1997)), which
also formally started the beautiful research area of quantum complexity. Such com-
plexity theoretic arguments and bounds are not only mathematical jargons, but having
physical meanings - as shown by Ambainis (Ambainis (2002)). In this paper a quan-
tum argument for the search bounds has been given. This also gives us hope that the
traditional complexity problems (like P versus NP, and various other similar ones) can
have a physical meaning and perhaps the common belief that P6=NP can be proved by
using ‘laws of nature’.

Grover search algorithm was nevertheless used for many special cases. Most im-
portant among them are graphs (for instance rooted trees). Just to mention, various
improvements of the above algorithm and tighter bounds have been constructed which
are beyond the scope of this thesis. However, we need to mention that the search-
ing problem has been used to understand and explain the dynamics of electrons inside
certain light harvesting molecules in plants (Lee et al. (2007)).

1.1.2.3 Quantum teleportation

Regardless of the negative result of Grover, quantum technology had a boom in the past
decade. One remarkable idea is the concept of teleportation, Proposed by Bennett et al
(Bennett et al. (1993)) and experimentally verified as well in which newer records of
distances are achieved by increasing advancement of technology. The theory in a nut-
shell is that Alice sends an unknown state |ψ〉 to Bob, makes a few measurements in the
process and transfers the measurement outcomes to Bob classically. Bob in turn, based
on those outcomes, makes a series of local transformations on the state he receives
and successfully recovers |ψ〉. Notice that, since Alice destroys the state, the quantum
no-cloning theorem has not been violated. Quantum teleportation is a fundamental
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1. Introduction

tool to build a quantum network. The present record is of distance 143 kilometer by
using optical fiber (Ma et al. (2012)). Moreover it has been successfully done between
clouds of gas atoms which are macroscopic objects (Krauter et al. (2013)).

1.1.2.4 Possible powers of quantum computation

Complexity class NP consists of all the languages which have a polynomial time veri-
fier. The quantum analogue is the class QMA which are decided by a quantum polyno-
mial time verifier with quantum state as certificate. By definition NP ⊆ QMA. Though
their precise relation is unknown and the above relation is based on standard com-
plexity hierarchy. At least two possible cases have been identified, in which quantum
information can give extra advantages.

Informally, the class #P can be defined as, “How many solutions exists of a given
problem”. If the given problem is NP, then #P deals with the number of different
solutions. Thus, NP ⊆ #P. Valiant (Valiant (1979)) showed that finding permanent of
a arbitrary matrix whose entries are coming from a given distribution (say, Gaussian) is
#P. Recently Aaronson and Arkhipov (Aaronson & Arkhipov (2013)) had shown that
while classical computers cannot do such a computation, such computations are very
natural for bosonic particles. In particular, the Bosonic sampling problem is a doable
experiment which shows the power of quantum computers over classical computers,
assuming the standard hypothesis of quantum mechanics.

1.2 The problem

It is interesting to note that all of the above protocols of quantum algorithm or cryptog-
raphy exploit quantum entanglement. Entanglement is used in quantum information
and computation as a resource. For most of the studies, pure entangled states are em-
ployed. However for all practical purposes, we may not be able to keep the state pure
and may be forced to use a mixed state. Hence it is important to know the structure of
the state space of entangled states.

A central problem in quantum information theory is the following: Given an un-
known quantum state ρ in a bipartite (or multipartite) system, determine whether it is
an entangled state or separable. As stated earlier, the structure of set of states is not
known. Even for simple 2⊗ 2 states, of which we have better knowledge, a proper ge-
ometric structure of the set of separable (as well as entangled) states is not completely
known. (For recent developments in the 2⊗ 2 case, see Kye (Kye (2013)) ).
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1.2 The problem

For the case of (bipartite) pure states of any dimensions, the problem is easy. Let
ρ = |ψ〉〈ψ| ∈ B(H1 ⊗H2) be a pure state. ρ is separable if and only if the reduced
density operator Tr1/2ρ is a pure state. (The subscript of Tr denotes the partial trace
with respect to the first or the system respectively). The problem appears for the mixed
states, which most of the experimentalists are expected to encounter.

1.2.1 Previous Work

For the mixed states, it has been proven to be NP-hard by Gurvits (Gurvits (2003)).
There is some indication that the problem can be of NP-complete as well (Ioannou
(2007)). In this situation, there are several methods to check the separability of a given
state. It is to be noted that, the above result hold for the states whose density matrix is
known. For an actual experimental set up, the problem is even more complicated.

1.2.1.1 Witnessing entanglement

Lemma 1.2.1 (Horodecki et al. (1996)). Let H1 and H2 be finite dimensional com-
plex Hilbert spaces. For any inseparable state ρ ∈ B(H1) ⊗ B(H2), there exists a
Hermitian operator A such that Tr(Aρ) < 0 but Tr(Aσ) ≥ 0 for all separable state σ.

The set of quantum states forms a closed convex set. The set of separable states
forms a closed convex subset of the set of states. Hence, by using Hahn-Banach sep-
aration theorem, we can ‘separate’ a given entangled state from the set of separable
states by a linear functional. More formally, if S is the set of separable states and ρ is
an entangled state, then there exists a linear functional f over the real space of Hermi-
tian matrices, such that f(ρ) < 0 whereas f(σ) ≥ 0 for all σ ∈ S. Such a functional
is represented by a Hermitian operator A. It follows that A should not be a positive
operator. Properties of A are given in the following theorem.

Theorem 1.2.1 (Horodecki et al. (1996)). A state ρ ∈ B(H1)⊗B(H2) is separable if
and only if Tr(A · ρ) ≥ 0 for any Hermitian operator A satisfying Tr(A ·P ⊗Q) ≥ 0,
where P and Q are projection operators acting on H1 and H2 respectively.

In other words, it should not have a separable state as an eigenvector corresponding
to a negative eigenvalue. Such an operator is known as an entanglement witness.
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1. Introduction

1.2.1.2 Positive maps

The above construction leads to the concept of positive maps which are not completely
positive and their connection with entanglement. A simple way to check, whether a
given positive map is completely positive or not is given by Choi (Choi (1975a)) and
Jamiołkowski (Jamiołkowski (1972)).

Let {|0〉 , · · · , |n− 1〉} be the standard basis of the space Cn, and

|ψ〉 =
1√
n

n−1∑
j=0

|j, j〉 ∈ Cn ⊗ Cn

be a maximally entangled state in Cn ⊗ Cn.

Theorem 1.2.2 (Jamiołkowski (1972), Choi (1975a)). Let φ : H(Cn) → H(Cn) be a
positive map. φ is completely positive if and only if the operator

1⊗ φ(|ψ〉 〈ψ|) =
n−1∑
i,j=0

|i〉 〈j| ⊗ φ(|i〉 〈j|)

is positive semidefinite.

The same result holds, even if we replace |ψ〉 by any other maximally entangled
state. (See the original works of Jamiołkowski (Jamiołkowski (1972)) and Choi (Choi
(1975a)), which were done in a finite dimensional C∗ algebra settings). The most
generalized version of this theorem is given in Appendix Theorem B.2.3.

The above theorem is known as Choi-Jamiołkowski isomorphism. Using the in-
verse of the isomorphism, on an entanglement witness arising from lemma 1.2.1, we
get a map which is positive but not completely positive.

Theorem 1.2.3. Let W ∈ B(Cm ⊗ Cn) be an entanglement witness as given in the
Lemma 1.2.1. Then the map

φ : B(Cn) → B(Cm)

X 7→ TrCn(XT ⊗ Im ·W ),

is a positive map which is not completely positive. T denotes the transpose operator.

Thus the theorem 1.2.1 reduces to the following condition.

Theorem 1.2.4. A state ρ ∈ B(H1 ⊗H2) is separable if and only if for any positive
map φ : B(H2)→ B(H1), the operator (1⊗ φ)ρ is positive.
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Thus we find that, the structure of entangled states is related with the structure of
positive maps which are not completely positive. Though the structure of completely
positive maps are well known, we do not know the structure of positive maps which
are not completely positive, except for the following case. Størmer (Størmer (1963))
and Woronowicz (Woronowicz (1976b)) has shown that the positive maps B(Cm) →
B(Cn), where (m,n) = (2, 2), (2, 3), (3, 2), can be written as sum of a completely
positive (CP) and transpose of a completely positive (called co-Cp or CCP) maps.
In other words, for the above dimensions, the set of positive maps is a real linear
combination of the set of CP maps and the transpose. Thus for the states in dimension
≤ 6 transpose is the only map which determines whether the state is separable or
entangled. A state is separable if and only if it is positive under the map 1⊗transpose,
called in literature as partial transpose.

The above result does not hold for higher dimensions. Indeed, in all other dimen-
sions, there exists maps which can not be written in the above form. Such maps are
called indecomposable. Similarly, for any bipartite or multi-partite systems of dimen-
sion greater than 6 there are entangled states which are positive under partial transpose
(PPT). Thus PPT is necessary and sufficient for separability of the systems 2 ⊗ 3 and
2 ⊗ 2 but only necessary in all other dimensions. Indecomposable maps are the only
ones which can detect these states. The first example of such maps was discovered
by Choi (Choi (1975b)). Since our work is based on this method; we give a detailed
description in the appendix B.2.3.

Existence of PPT entangled states was known in the functional analysis literature.
The first example of such states was given by Choi (Choi (1980a)). In fact, Størmer
(Størmer (1982)) gave an alternate proof of in-decomposability of Choi’s map, by pro-
ducing a PPT entangled operator which is detected by Choi’s map. Independently,
Woronowicz (Woronowicz (1976a)) also discovered a similar PPT entangled state in
2⊗ 4 system, which was later used in the seminal paper of Horodecki et al (Horodecki
et al. (1996)). Existence of PPT entangled states has serious consequences in quantum
information theory, in particular for the existence of bound entangled states and on
quantum key distribution.

1.2.1.3 Computable cross norm criteria (CCNR)

For a density matrix ρ ∈ B(HA ⊗ HB), its Schmidt decomposition in the operator
space is given as

ρ =
∑
k

λkG
A
k ⊗GB

k (1.8)
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where λk ≥ 0 and {GA
k } and {GB

k } are orthonormal basis of B(HA) and B(HB)

respectively.

Theorem 1.2.5. Chen & Wu (2003); Rudolph (2004, 2005) If a state is separable, then
sum of all λk of 1.8 is less than equal to 1.

The Schmidt decomposition defines a norm. For separable states the norm is 1, and
for entangled states, the triangle inequality gives the result.

The above criteria can detect all entangled states in all dimensions except for the
two qubit case (see Rudolph (2003)). The difficulty is generally to compute the neces-
sary decomposition.

1.2.1.4 Schmidt rank

CCNR criteria is one of the generalisations of Schmidt number of pure states. There
are many other generalisations as well (Aniello & Lupo (2009)). Generally computing
this rank for an arbitrary state is difficult. We give one important generalisation given
by Terhal and Horodecki (Terhal & Horodecki (2000)).

Given a pure bipartite state |ψ〉 ∈ Cm ⊗ Cn we write the Schmidt decomposition
as

|ψ〉 =
k∑
j=i

√
λk|ak〉 ⊗ |bk〉; (1.9)

where {|ak〉} and {|bk〉} are part of some orthonormal basis of Cm and Cn respectively
and λk > 0,

∑
k λk = 1. The number k is called as Schmidt rank of |ψ〉. It can be

shown that Schmidt rank is 1 if and only if the state is separable. Moreover, k ≤
min{m,n}.

Definition 1.2.1 (Schmidt rank for density matrix). A bipartite state ρ has Schmidt
rank k if

1. for any ensemble decomposition of ρ as {pj ≥ 0, |ψj〉}where ρ =
∑

j pj|ψj〉〈ψj|;
at least one of the vectors |ψj〉 has at least Schmidt rank k, and

2. there exists a decomposition of ρ with all vectors {|ψj〉} has Schmidt rank at
most k.

It is clear that any state (pure or mixed) is separable if and only if the Schmidt
rank is 1. Again it is not easy to compute this term for any state. However there is an
important connection between the states of Schmidt rank and k-positive maps.
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Theorem 1.2.6. Let ρ ∈ B(Cn⊗n) be a density matrix. Then it has Schmidt rank at
least k + 1 if and only if there exists a k-positive map h : B(Cn) → B(Cn) such that
1⊗ h(ρ) 6≥ 0.

In other words, if an entangled state ρ has Schmidt rank k+ 1, no l-positive but not
(l + 1)-positive map, where l < k can detect the entanglement of ρ. This number is
invariant under local operations, and hence is used as a measure of entanglement.

1.2.1.5 Range criteria

This was introduced by Horodecki (Horodecki (1997)). Apart from positive maps, this
is perhaps the second such method constructed for detecting PPT entangled states. If
a state ρ is separable, then there is a set of product vectors {|uj, vj〉} which spans the
range of ρ such that the set {|a∗j , bj〉} spans ρTA . TA denotes the partial transpose.

The weakness is, if the state is of full rank entangled, the above criteria does not
work as all the above conditions are already fulfilled. Physically, entanglement of a
state affected by noise can not be detected by the above criteria.

One important byproduct of range criteria is the object called Unextendible Product
Basis (UPB) (Bennett et al. (1999)). This is an incomplete basis whose each term is a
product vector, and it cannot be extended to a full basis by introducing more product
vectors. In other words all (normalised) vectors in the complement of the convex hull
of such UPB are entangled. Bennett et al (Bennett et al. (1999)) constructed PPT
entangled sates which are in this complement which can be detected by range criteria.
In this thesis, we discover entanglement of PPT entangled states coming from UPBs.
Such states are robust under noise (for instance, see Bandyopadhyay et al. (2008)). A
detailed descriptions on UPB and beyond is given in Chapter 6.

1.2.1.6 Majorisation criteria

Let x = (x1, · · · , xn) ∈ Rn. x↓ (respectively x↑) is the vector where the coordinates
are written in decreasing (respectively increasing) order. We say x is majorised by y,
and write as x↓ ≺ y↓ (respectively x↑ ≺ y↑) if

k∑
j=1

xj ≤
k∑
j=1

yj, 1 ≤ k ≤ n. (1.10)

This is an important tool in matrix analysis. For more details and applications regard-
ing majorisation see the book on Matrix Analysis by Bhatia (Bhatia (2007)).
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Let ρ ∈ HA⊗HB. Let p be the set of eigenvalues of ρ and q be the eigenvalues of
reduced density matrix ρA = TrB(ρ). The majorisation criteria of Nielsen and Kempe
(Nielsen & Kempe (2001)) says that if ρ is separable the p↓ ≺ q↓. Similarly the same
is true for the reduced density matrix ρB = TrA(ρ).

1.2.1.7 Covariance matrix

Given a set of observables {Aα} the covariance matrix γ is defined to be

γ = [[〈MpMq〉 − 〈Mp〉〈Mq〉]].

Let {GA
j } and {GB

k } are sets of mutually orthogonal sets of observables in HA and
Hb respectively. Consider the sets of observables {GA

j ⊗IB, IA⊗GB
k }. The covariance

matrix criteria (Gühne et al. (2007)) says that, if the state ρ is separable then there exist
matrices κA/B =

∑
pkγ(|ψA/B〉) such that

γρ =

(
A C
CT B

)
≥
(
κA 0
0 κB

)
.

This condition is very powerful, as it can detect PPT entangled states as well.

1.2.1.8 Bell inequality

Since Bell inequalities show the difference between classical and quantum systems,
it is only natural to use them for detecting entanglement. Quantum entanglement is
necessary for the violation of Bell inequalities (Bell (1964)). However the relationship
between them is not fully understood. Peres conjecture states that no bound entangled
state can violate Bell inequality. This is not true for multipartite systems (see Vértesi
& Brunner (2012) and the references therein). As we know, the bipartite case is still
unsolved. Such a violation, if exists, is very small, as shown by Moroder et al (Moroder
et al. (2013)).

Gisin (Gisin (1996)) showed that for some such states violation can be created by
local filters. An entangled state which does not violate Bell inequality can be made
to violate it under this transformation. (For a recent work in this line, see Hirsch et al
(Hirsch et al. (2013))).

In the above section we gave the most popular approaches of detecting entangled
states. It has been shown that in certain dimensions some of the approaches are related
to each other. It is generally believed that the same property holds for any dimension.
However a general theory is yet to be discovered. A vast body of literature exists in
this field. See the survey articles by Horodecki et al (Horodecki et al. (2009)) or by
Gühne and Tóth (Gühne & Tóth (2009)) for an exhaustive review.
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1.2.2 PPT entangled states

In this thesis, we concentrate the problem of detecting entanglement for PPT entangled
states. Basic definitions are already given in the section 1.2.1.2. In this section, we give
a short summary of such states.

Transpose map on a matrix algebra is defined to be

T : [[xij]] 7→ [[xji]]. (1.11)

This is a positive map which is not completely positive. In fact, this map is 1-positive
but not 2-positive. Hence it can be used for detecting entangled states. The extended
map 1 ⊗ T is not positive is applied on any state ρ ∈ B(Cm ⊗ Cn). With respect to
some basis ρ can be expressed in the block matrix form as,

ρ = [[ρij]]p,q=1,··· ,m;

where each ρij is a n× n matrix. The action of the map is given as

1⊗ T (ρ) = [[T (ρij)]]p,q.

In other words, transpose operation is applied on each block. Such an operation is
called partial transpose.

It turns out that, positivity under partial transpose is a necessary and sufficient
condition for all separable states in the composite systems of dimensions less than or
equal to 6. However, this is only a necessary condition, not sufficient, for separability
in all other dimensions. Entangled states which are positive under partial transpose (in
short, PPT entangled states) appear for composite systems of all dimensions greater
than 6.

PPT entangled states are also known as bound entangled states, and sometimes
the terms are used interchangeably in the literature. Most of the quantum information
protocols requires pure entangled states. However, it is not possible to eliminate noise
completely. Thus the question of so called entanglement distillation comes up. Let
Alice and Bob share a finite number of copies of a state ρ. Distillation protocols give
a way to generate a singlet state by using LOCC operations. For the detail protocols,
see the works of Bennett et al (Bennett et al. (1996)) and Deutsch at al (Deutsch et al.
(1996)). A state ρ is said to be distillable if the above protocols can give maximally
entangled states as outcome. Otherwise it is called as bound entangled.

It has been shown that no PPT entangled state is distillable. For the details of
the proof and further developments see the works of Horodecki et al (Horodecki &
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Horodecki (1999); Horodecki et al. (1998)) and Hiroshima (Hiroshima (2003)). The
existence of a NPT state which is not distillable, is a long standing open problem.

Detection of PPT entangled states is a computational challenge. Most of the meth-
ods described earlier are difficult to apply for detecting such states. The approach of
positive maps requires an appropriate indecomposable positive map to detect entan-
glement. Similar difficulty arises for choosing the correct observables for applying the
covariance matrix criteria. Range criteria requires detection of an appropriate product
basis in the image space of the state. If the state is of low rank, detecting the existence
or non-existence of such basis is comparatively easy. With the increasing dimensions
of the system or rank of the state, the dimension of the range space increases. As a
result, it becomes difficult to apply this method. It is not known whether any PPT en-
tangled state can be detected by majorization criteria. The method of Bell inequality
is again difficult to apply. First of all, there are families of Bell type inequalities, all of
them detect nonlocality. There are maximally entangled states which violates one ver-
sion of Bell inequality but do not violate other versions. Thus to check Bell inequality
violation of any state, one needs to check all possible Bell type inequalities. Further,
Gisin (Gisin (1996)) has given examples of pure entangled states (and hence NPPT)
which do not violate some version of the inequality. Whether there exists any bipartite
PPT entangled state which violates some version of Bell inequality, is an open problem
and is known as Peres conjecture. The multi-partite version of this conjecture is false.

A different line of research is to create PPT entangled states. Since PPT entangle-
ment is difficult to detect, such states are prepared in a way so that they violate at least
one of the conditions written above. The first method to create PPT entangled states
was given by Bennett et al (Bennett et al. (1999)) by using unextendable product bases.
(We have discussed this approach in details at Chapters 4 and 6).

The set of PPT states also form a closed convex set. It has been proved that if a
given PPT states violates range criterion then the smallest face containing it has no
separable states in the interior. (See Choi and Kye (Choi & Kye (2012)) and also
the Subsection 1.2.1.5) is an extremal point of this set. In this approach, a state is
constructed which is positive under partial transpose and violates the range criteria.
Often such states have some extra properties. For instance the states constructed by
Clarisse (Clarisse (2006)) and by Kye and Osaka (Kye & Osaka (2012)) have certain
fixed matrix rank. The work of Chen and Doković (Chen & —Doković (2013)) gives the
latest developments of this topic.
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1.3 Arrangement of the thesis

1.3 Arrangement of the thesis

In chapter 2, we give a numerical method to construct a PPT entangled state, which
can be detected by a given positive map. The output states are symmetric under partial
transpose.

In chapter 3 we discuss the positive biquadratic forms and their connection with the
positive maps. A method for generating new maps from the given forms are shown.
Moreover, we have constructed a new method for generating extremal maps from the
forms. We also construct a numerical method to construct PPT entangled state, which
are detected by the new maps.

In chapter 4 we generate a theory of local isomorphism and using it, generate new
classes of extremal positive maps. We also show that these modified maps can detect
entanglement of the PPT entangled states coming from UPB.

The automorphisms which are not unitary are difficult to implement. These are
known as the filtering operations. In the chapter 5, we have developed a POVM ap-
proach of implementing such operation.

PPT entangled states coming from the UPB construction of Bennett et al (Bennett
et al. (1999)) is used extensively throughout the thesis. These bound entangled states
are normalised projection operators on some subspace. Such subspaces are studied
extensively by Parthasarathy (Parthasarathy (2004)) and Bhat (Bhat (2006)). We have
studied the properties of the projection operators on such subspaces in the chapter 6.

In the process of the above work, we have encountered several negative results.
These results, though not published, are included in appendix A. Here we try to develop
a system to identify potential examples of extremal points of the set of positive maps.
It gives greater attention to the case of the space C3 ⊗ C3. We note that given two
positive maps φ1 and φ, is the difference φ1 − φ is a completely positive map, then the
map φ is more powerful than φ1 in terms of detecting entangled states. Since we are
considering the detection of PPT entangled states, the difference can be any constant
times a decomposable map to hold the general theory. Though this construction is
weaker than the one given by Lewenstein et al (Lewenstein et al. (2000)), we can show
that this technique is easily applicable. Using it we can show that most of the positive
maps available in the literature are actually interior points of the cone of positive maps.
We also identify the potential candidates of extremal points as well.

An appendix B is added to give some basic informations regarding the C∗ algebra
concept of positivity. It gives a list of available positive maps till date, which are not
completely positive and indecomposable. The question of extremal and exposed maps
are also discussed in brief. The examples of positive maps which are proven to be
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1. Introduction

extremal are also mentioned. The theory of positive maps is not well understood. A
subclass of the theory, namely the theory of completely maps is rather well studied,
as it has a structure theorem which is Kraus decomposition. We give the necessary
background of the C∗ algebra and the positive maps in the appendix B. This contains
a survey of the subject along with a list of known classes of such maps which will be
used extensively in the text.
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Chapter 2

Cholesky decomposition and
numerical construction of PPT
entangled states

PPT entangled states are exotic quantum states which are found in bi-partite systems of
dimensions 3⊗ 3 and higher. The entanglement in these states is not distillable and is
also referred to as bound entanglement. Even for the simplest bi-partite system namely,
the system with Hilbert space dimension 3 ⊗ 3, the set of PPT entangled states is not
fully characterized. There is no systematic way of finding such states. The examples of
PPT entangled states found in literature are either isolated cases or are generated from
UPB. Typically, the entanglement of a PPT entangled state is detected by a positive
map which is not completely positive. However, given such a map, it is not possible to
find all states whose entanglement is implicated by this map.

In this chapter, a method for generating states which are symmetric under partial
transpose and are detected by a given positive map, is given. By construction, these
states are PPT and their entanglement is detected by the given map. To achieve this,
we perform a numerical search over symmetric states and employ the Cholesky de-
composition to selectively scan the states in the Hilbert space. We also make use of
Choi Jamiołkowski isomorphism to create an entanglement witness for the state. Al-
though we employ this method for specific maps, the method of searching for PPT
entangled states detected by a given positive but not completely positive map is in fact
more general and can be tried for other maps as well.
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2. Cholesky decomposition and numerical construction of PPT entangled states

2.1 Cholesky decomposition

Any operator A is positive if and only if it can be written as A = B†B. Given A, such
a B need not be unique. One can restrict the choice of B to an upper triangular matrix.
Such a decomposition is known as Cholesky decomposition.

Theorem 2.1.1 (Cholesky decomposition (See Bhatia (Bhatia (2007))). A matrixAB(Cn)

is positive if and only if A = T †T for some upper triangular matrix T . Further, T
can be chosen to have nonnegative diagonal entries. If A is strictly positive (i.e. all
eigenvalues are greater than zero), then T is unique. This is called the Cholesky de-
composition of A. A is strictly positive if and only if T is nonsingular.

The application of Choi-Jamiołkowski isomorphism to construct entanglement wit-
nesses comes from the Theorems B.2.4 and B.2.4. Consider a composite system
H1 ⊗ H2 where both the subsystems are of dimension d. Using the standard basis
|i〉 in both the H1 and H2 we define a maximally entangled state

|ψ〉 =
1√
d

d−1∑
i=0

|i〉 ⊗ |i〉; (2.1)

Given a positive map Φ that is not completely positive we define an operator

WΦ =
1√
d

d−1∑
i=0

|i〉〈j| ⊗ Φ(|i〉〈j|). (2.2)

Such an operator is not positive. By construction, such a W acts as an entanglement
witness given in the theorem 1.2.1. Given a density matrix ρ defined on H1 ⊗H2 the
operator W provides a sufficient condition for entanglement

Tr(Wρ) < 0 =⇒ ρ Entangled (2.3)

This is a one-way condition. Given a witness W such that Tr(Wρ) ≥ 0 does not imply
that the state ρ is separable. The witness W is dependent on the choice of maximally
entangled state. A different choice of the maximally entangled state will give rise to a
different witness, which can potentially detect a completely different set of entangled
states.

The above condition for entanglement given in (2.3) helps us in quickly identifying
states whose entanglement is revealed by the map Φ and we employ this condition in
our search for PPT entangled states revealed by Osaka family of maps.
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2.1 Cholesky decomposition

2.1.1 The scheme

Let the space be Cd ⊗ Cd. A positive, not completely positive, indecomposable map
Φ : B(Cd)→ B(Cd) is given.

Step 1. Consider the d2×d2 upper triangular operator T = ((ai,j)), where ai,j =

0 for i < j. This requires 1
2
d2(d2 + 1) indeterminate ai,js.

Step 2. Let A = T †T = [[αi,j]]i,j=1,··· ,d2 .

Step 3. Let APT = [[βi,j]]i,j=1,··· ,d2 be the partial transpose of the operator A.

Step 4. Set A = APT and write down the equations

αi,j = βi,j, i, j = 1, · · · , d2. (2.4)

In the above numeration, some of the equations will be repeated. A can be considered
as a d×dmatrix [[Ap,q]] where eachAp,q is a d×dmatrix. ThusAPT can be written as a
transpose operation on each such d× d block, i.e APT = [[ATp,q]]. Since transpose does
not alter the diagonal elements of each block, we get (d2 − d) = d(d − 1) equations
from each block. Maximum number of possible distinct equations is d3(d− 1).

Step 5. Choose a suitable maximally entangled state as in equation 2.1, and con-
struct the witness WΦ corresponding to the map Φ as shown in the equa-
tion 2.2.

Step 6. Consider the inequality Tr(WΦ ·A) < 0 and add it in the list of equations
coming from Step 4.

Step 7. Solve the system of equations and inequalities.

Step 8. If a solution exists then, based on the values of ai,j’s, reconstruct T .
Else: declare, “No such symmetric state exists”.

Step 9. Declare the state ρ = 1
Tr(A)

A.

It can happen that, we want a particular state, which is not detected by a certain map
φ. In that case :

Step 10. Construct Wφ as in the previous way.

Step 11. Consider the inequality Tr(Wφ · A) ≥ 0 and add it in the list of equa-
tions and inequalities given after Step 6.

23



2. Cholesky decomposition and numerical construction of PPT entangled states

Step 12. Goto Step 7.

The above algorithm can easily be modified if there are more than one maps to con-
sider. Further, the case when the dimensions are different, i.e. the case of the system
Cd1 ⊗ Cd2 can also be accommodated easily by changing the maximally entangled
state.

2.2 Implementation and examples

Although the scheme presented above seems simple and straightforward, the complex-
ity of the algorithm increases with increasing dimensions. Moreover an increase in the
number of variables decreases the chances of finding numerical solutions. To deal with
the first problem, we can restrict the search space of each aij . A state ρ is always nor-
malised, and so ‖ρ‖1 ≤ 1. Thus we can restrict ourselves to the case when each entry
of the matrix ρ can be written as ρi,j = ri,j exp(ıθi,j), where ri,j ≤ 1 and−π ≤ θ ≤ π.
We can further restrict the number of variables by inserting zeros for specific values
of ai,j . As we will see in the following example, the algorithmic scheme presented
above combined with intuitive understanding of the map, leads to unearthing bound
entangled states.

An interesting class of positive maps was given by Kye (1992), who extended the
result of Choi and Lam, and generated a class of maps whose extremality was proved
by Osaka (1992). Kye – Osaka’s map ΦO(x, y, z) is defined as

ΦO(x, y, z) :

a11 a12 a13

a21 a22 a23

a31 a32 a33

 7→
a11 + xa33 −a12 −a13

−a21 a22 + ya11 −a23

−a31 −a32 a33 + za22

 , (2.5)

where x, y, z > 0 and xyz = 1. Osaka (1992) showed that this class of maps is
extremal. If x = y = z = 1, we get back the map given by Choi. The examples
of PPT entangled states detected by the Choi map are known in the literature. The
interesting question is whether the Osaka generalization of the Choi map can detect
states which are not detected by the Choi map. We address this question by employing
our numerical scheme where we find states whose entanglement is detected by the
generalized Osaka map. Further, we show that this search processs leads to states
whose entanglement is not detected by the Choi map. As an example, we want to find
a PPT entangled state which is detected by the above map, where the values x, y, z are
not all equal to 1. In other words, the PPT entangled state which could not be detected
by the Choi map, is now detected by the generalised Kye–Osaka map.
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2.2 Implementation and examples

Following the algorithm outlined in the previous section, we first construct an upper
triangular matrix T . We only consider the case where ai,j ∈ R. This amounts to
generating a nontrivial solution of the equation

(T tT )PT − T tT = 0. (2.6)

For example in the 3⊗ 3 situation we take T to be of the form

a1,1 0 0 0 a1,5 0 0 0 a1,9

0 a2,2 0 a2,4 0 0 0 0 0
0 0 a3,3 0 0 0 a3,7 0 0
0 0 0 a4,4 0 0 0 0 0
0 0 0 0 a5,5 0 0 0 a5,9

0 0 0 0 0 a6,6 0 a6,8 0
0 0 0 0 0 0 a7,7 0 0
0 0 0 0 0 0 0 a8,8 0
0 0 0 0 0 0 0 0 a9,9


(2.7)

Using this as T we can reconstruct A as


a21,1 + a21,5 + a21,9 0 0 0 a1,5a5,5 + a1,9a5,9 0 0 0 a1,9a9,9

0 a22,2 + a22,4 0 a2,4a4,4 0 0 0 0 0

0 0 a23,3 + a23,7 0 0 0 a3,7a7,7 0 0

0 a2,4a4,4 0 a24,4 0 0 0 0 0

a1,5a5,5 + a1,9a5,9 0 0 0 a25,5 + a25,9 0 0 0 a5,9a9,9

0 0 0 0 0 a26,6 + a26,8 0 a6,8a8,8 0

0 0 a3,7a7,7 0 0 0 a27,7 0 0

0 0 0 0 0 a6,8a8,8 0 a28,8 0

a1,9a9,9 0 0 0 a5,9a9,9 0 0 0 a29,9


.

By construction this is a positive matrix. For it to become a quantum state we need
to normalise it. To make it symmetric under partial transpose (and hence PPT) we use
equation 2.6 and get the following equations.

a1,5a5,5 + a1,9a5,9 = a2,4a4,4

a1,9a9,9 = a3,7a7,7

a6,8a8,8 = a5,9a9,9

(2.8)

It is not always possible to find a non-trivial solution to the above equation. The pos-
sibility of finding a solution depends upon the choice of T . Therefore, if we do not
find a solution, we begin with a new T . However, if we begin with a sparse matrix
T like in 2.7, it is very likely that a solution of the above system of equations can be
found. Now that we have a state which is invariant under partial transpose, it is enough
to check whether the state is entangled or not. Given an indecomposable map Φ we
now use the Choi-Jamiołkowski isomorphism. Thus a set of solutions satisfying the set
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2. Cholesky decomposition and numerical construction of PPT entangled states

of equation 2.6 and the inequalities 2.3 gives us PPT entangled states detected by the
given map Φ. To complete our example of a state in a 3 ⊗ 3 system which is detected
only by Osaka’s map not Choi’s map; at every stage of the search process, we impose
the following conditions: {

Tr (WΦOρ) < 0
Tr (WΦCIρ) ≥ 0

(2.9)

This means that we restrict ourselves to those PPT states whose entanglement is re-
vealed by Osaka’s map but is not revealed by Choi’s map.

We now address the question of constructing PPT entangled states for which Os-
aka’s map acts as an entanglement witness. Although the three-parameter family of
maps due to Osaka as described in equation 2.5 has been defined, and is known to be
positive but not completely positive, there has not been an explicit construction of PPT
entangled states whose entanglement is revealed by this class of maps.

The above methodology guides us in our numerical search to look for classes of
states whose entanglement is revealed by the Osaka family of maps by finding the
solution space of equations 2.8 and the inequalities 6.3. Using this method of numerical
search, we construct an example of a PPT entangled state for a 3⊗3 system. The upper
triangular matrix

T =



√
10y 0 0 0 2+5y√

10
0 0 0 3(1+y)√

10

0 y 0 2 + 5y 0 0 0 0 0
0 0 3y 0 0 0 1 + y 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 4+5y√

10
0 0 0 1+y√

10

0 0 0 0 0 1 + 2y 0 1 + y 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


. (2.10)

leads to a one parameter family of density operators, parameterized by a positive pa-
rameter y.

ρ(y) =
1

N
×



10y2 0 0 0 y(2 + 5y) 0 0 0 3y(1 + y)

0 y2 0 y(2 + 5y) 0 0 0 0 0

0 0 9y2 0 0 0 3y(1 + y) 0 0

0 y(2 + 5y) 0 (2 + 5y)2 0 0 0 0 0

y(2 + 5y) 0 0 0 2 + 6y + 5y2 0 0 0 (1 + y)(1 + 2y)

0 0 0 0 0 (1 + 2y)2 0 (1 + y)(1 + 2y) 0

0 0 3y(1 + y) 0 0 0 (1 + y)2 0 0

0 0 0 0 0 (1 + y)(1 + 2y) 0 (1 + y)2 0

3y(1 + y) 0 0 0 (1 + y)(1 + 2y) 0 0 0 (1 + y)2


(2.11)
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2.2 Implementation and examples

where N = 10 + 36y + 57y2 is the normalization factor such that Tr(ρ(y)) = 1.
We apply a one parameter subfamily of Osaka’s map defined in (2.5) ΦO

(
1, x, 1

x

)
to

the family of states ρ(y) and compute the eigen values of the resultant operator. We
do a similar computation of the eigenvalues of the operator which is obtained by the
action Choi’s maps ΦI

C and ΦI
CI for comparison. In Figure 2.1 the least eigenvalue is

0

2

4

y

0 5 10

x

-0.01

0.00

0.01

Figure 2.1: Application of Osaka’s map ΦO

(
1, x, 1

x

)
to the density operator ρ(y). x and

y are the two variables, and the vertical axis denotes the eigenvalues of ρ(y) under the
map. The curved surface represents the variation of the minimum eigenvalue. The plane
in the center is the plane xy = 0, which highlights the portion the surface with negative
eigenvalue.

plotted as a function x and y. Here the curved surface denotes the minimum eigenvalue
corresponding to the ΦO

(
1, x, 1

x

)
. The middle plane denotes the xy plane which is

placed to indicate the place when the surface becomes negative.
In Figure 2.2 we have taken a fixed value of x. The eigenvalues are plotted along

the vertical axis and y varies along the horizontal axis. We apply the map ΦO

(
1, 6, 1

6

)
to this state ρ(y) and plot the minimum eigenvalue which is denoted by the continuous
curve in Figure 2.2. The dashed curve denotes the minimum eigenvalue achieved by
the Choi’s map. The plot highlights that approximately after point y = 0.326402 the
minimum eigen value under ΦO

(
1, 6, 1

6

)
becomes negative. Thus there is a range of

values, where Osaka’s map can identify more PPT entangled states where the Choi’s
map fails to do so.

In the next Chapter 3 we have given a method to construct a new positive map from
a given one. In particular we consider the Choi map and modify it by using parameters
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2. Cholesky decomposition and numerical construction of PPT entangled states

Figure 2.2: Application of Osaka’s map with x = 6. y is the horizontal axis and eigen-
values are in the vertical axis. The continuous line denotes the variation of eigenvalues
under ΦO

(
1, 6, 1

6

)
. The dashed line corresponds to Choi’s map. It clearly shows that ap-

proximately after y = 0.326402 onward, PPT entanglement is revealed by ΦO(
(
1, 6, 1

6

)
.

However Choi’s map can reveal entanglement approximately from y = 0.369284. This
shows the superiority of Osaka’s map over Choi’s map for this instance of ρ(y).

(2, 1, 1). Using the method described above we construct the upper triangular matrix

T =



0 0 0 0 −9x
16

0 0 0 3x
2

0 0 0 −9x
16

0 0 0 0 0
0 0 0 0 0 0 3x

2
0 0

0 0 0 −91x
12

0 0 0 0 0
0 0 0 0 −9x

4
0 0 0 2x

0 0 0 0 0 0 0 2x 0
0 0 0 0 0 0 x 0 0
0 0 0 0 0 0 0 x 0
0 0 0 0 0 0 0 0 x


We get the (not normalised) positive operator as

657x2

256
0 0 0 273x2

64
0 0 0 3x2

2

0 81x2

256
0 273x2

64
0 0 0 0 0

0 0 9x2

4
0 0 0 3x2

2
0 0

0 273x2

64
0 8281x2

144
0 0 0 0 0

273x2

64
0 0 0 145x2

16
0 0 0 2x2

0 0 0 0 0 4x2 0 2x2 0

0 0 3x2

2
0 0 0 x2 0 0

0 0 0 0 0 2x2 0 x2 0
3x2

2
0 0 0 2x2 0 0 0 x2


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2.3 Conclusions

For the modified Choi map with parameters (2, 1, 1) we see from the Figure 2.3 that
the state is detected for some values of x where as the original Choi map fails to detect
the entanglement.

1.05 1.10 1.15 1.20 1.25 1.30
x

-0.002

-0.001

0.001

0.002

0.003

0.004

0.005

Eigenvalue

Figure 2.3: Comparison between Choi’s map and the map corresponding to the parameters
(2, 1, 1). The red line denotes the change of eigenvalues corresponding to the map of
a = 2. The blue line shows the change by using the Choi’s map

It can be shown that the with the parameterisation (a, 1, 1) of modified Choi map
we can detect more entangled states as shown in the next figure 2.4.

2.3 Conclusions

In this chapter we have developed an algorithm which can potentially construct PPT
entangled states detected by certain positive but not completely positive, indecompos-
able maps. The PPT nature of the state is ensured throughout the search process and
by a suitable choice of the initial T matrix one can adjust the degree of difficulty of
the search. The algorithm can also be setup in a way that we do not get into undue
difficulties when we go to higher dimensions. One limitation of the method is that it
cannot be used to construct PPT entangled states which are not symmetric under partial
transpose.
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2. Cholesky decomposition and numerical construction of PPT entangled states

1.0

1.2

1.4x

0

1

2

3

4

a

- 0.2

0.0

0.2

0.4

Eigenvalue

Figure 2.4: 3D plot of entangled states detected by the modified Choi map corresponding
to the parameters (a, 1, 1). The middle plane shows the plane for which minimum eigen-
value is equal to 0. As seen from the plot, corresponding to a = 1, which is the original
Choi map, no entanglement is detected for any value of x.
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Chapter 3

Bi-quadratic forms, entanglement
witnesses and bound entangled states

The study of positive maps is closely related with the study of positive forms. A form
is a homogeneous polynomial in several variables. The study and structure of positive
forms is an important concept in both geometry and algebra. The relation between
positive semidefinite bi-quadratic forms with positive maps was given by Choi (Choi
(1975b)). Choi gave an example of a positive semidefinite bi-quadratic form which
cannot be written as a sum of squares of quadratic forms. Using this form, Choi con-
structed the first example of a positive indecomposable map. Motivated by this result,
a large volume of work on the study and construction of positive indecomposable maps
on matrix algebras has been carried out since then. The subsequent positive indecom-
posable maps discovered by Kye (Kye (1992)), Cho et al (Cho et al. (1992)), Chruś-
ciński and Kossakowski (Chruściński & Kossakowski (2008)) extended and enriched
the initial work of Choi to discover new examples of such maps.

In this chapter, we follow the above tradition and discover new classes of positive
semidefinite bi-quadratic forms which can not be written as a sum of squares. We
further construct the positive maps corresponding to these forms. Given a positive
form, we give a method to construct new examples of such forms. We also examine
the extremality of such objects. Using the forms, we construct positive indecomposable
maps. We give examples of PPT entangled states detected by such maps. The chapter
concludes with a robustness analysis of the examples of PPT entangled states.
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3. Bi-quadratic forms, entanglement witnesses and bound entangled states

3.1 Positive forms and Minkowski’s conjecture

The theory of forms arises in algebra (and hence in geometry) as a study of homo-
geneous polynomials. From a geometric point of view, it is interesting to study such
polynomials which are positive semi-definite.1 Given such a form P (x1, · · · , xn) ≥
0, ∀(x1, · · · , xn) ∈ Rn of even degree d, the question whether P can always be writ-
ten as a sum of squares of polynomials has been around for a long time. Minkowski
conjectured that in general the answer should be ‘no’. It was proved by Hilbert that,
except for three exceptional cases (n = 1, d arbitrary; n arbitrary, d = 2; and one non-
trivial case n = 2, d = 4), there always exist positive semi-definite polynomials which
cannot be written as a sum of squares of polynomials. This proof was by an indirect
method and did not provide actual examples of such polynomials. The generalized
version of this problem on rational polynomials, is known as Hilbert’s 17th problem,
for which the answer is ‘yes’. For a survey and development of the original problem,
see Rudin (Rudin (2000)).

Hilbert expected that it would be reasonably easy to construct a counter example
following his proof, but he did not give an explicit construction. The first counterex-
ample was a ternary sextic

z6 + x4y2 + x2y4 − 3x2y2z2, (3.1)

constructed by Motzkin (Motzkin (1967)). Slightly later, Robinson independently con-
structed similar examples on ternary sextic and quaternary quartics (Robinson (1973)).

Choi (Choi (1975b)) came up with a different example of such objects and con-
nected it with the problem of finding positive maps which are not completely pos-
itive and indecomposable. He considered a positive semi-definite bi-quadratic form
Fµ(X : Y ) (each term having degree four), with six variables, divided into two sets
denoted by X = {x1, x2, x3}, and Y = {y1, y2, y3} given by:

Fµ(X : Y ) = (x2
1y

2
1 + x2

2y
2
2 + x2

3y
2
3)− 2(x1x2y1y2 + x2x3y2y3 + x3x1y3y1)

+ µ(x2
1y

2
2 + x2

2y
2
3 + x2

3y
2
1), whereµ ≥ 1. (3.2)

Theorem 3.1.1 (Choi (1975b)). For µ > 1, the bi-quadratic form 3.2 is positive
semidefinite and can not be written as a sum of squares of quadratic forms.

Proof. Since the indeterminates are all real numbers, one of the following cases, |x1| ≤
|x2|, |x2| ≤ |x3|, |x3| ≤ |x1|, is possible. Moreover, any cyclic permutation of the

1As earlier, we will use the term positive, in place of positive semidefinite.
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3.1 Positive forms and Minkowski’s conjecture

subscripts of two sets of variablesX and Y do not change F . Without loss of generality
we may assume |x1| ≤ |x2|. Hence

Fµ(X : Y ) = (x1y1 − x2y2 + x3y3)2 + 2x2
1y

2
2 + µ(x2

2y
2
3 + x2

3y
2
1 − 2x3x1y3y1).

The last term is positive provided |x1| ≤ |x2|. This shows that F is a positive form.
It remains to show that F can not be written as a sum of squares of quadratic forms.

To show this, let us assume it is possible. Let F =
∑
f 2
i , where fi are quadratic forms,

then f 2
i ’s can not contain the terms x2

1y
2
3 , x2

2y
2
1 and x2

3y
2
2 , as they are missing in F . Let

fi = gi + hi, where each gi contains terms of x1y1, x2y2 and x3y3; each hi contains
terms x1y2, x2y3 and x3y1 only. Equating F =

∑
(gi + hi)

2, we get∑
g2
i = (x2

1y
2
1 + x2

2y
2
2 + x2

3y
2
3)− 2(x1x2y1y2 + x2x3y2y3 + x3x1y3y1)(3.3)∑

2gihi = 0 (3.4)∑
h2
i = µ(x2

1y
2
2 + x2

2y
2
3 + x2

3y
2
1). (3.5)

Equation 3.3 is not possible. If xi = yj = 1 for all i, j, then the right hand side is
negative whereas the left hand side is the sum of real squares. Hence F can not be
written as a sum of squares of quadratic forms.

Choi’s method has been modified and extended, and different examples of such
positive semi-definite bi-quadratic forms were found. Among these, the results by
Kye (Kye (1992)), Osaka (Osaka (1992)), Cho et al (Cho et al. (1992)), and Ha (Ha
(1998, 2002, 2003)), Ha and Kye (Ha & Kye (2013)) are important. Generalizations
of these methods for generating such forms in arbitrary dimensions were developed by
Chruściński and Kossakowski (Chruściński & Kossakowski (2007)).

3.1.1 Connection with positive maps

We now describe the connection between positive maps and positive forms. This was
also discovered by Choi (Choi (1975b)).

The connection between the Hermiticity preserving maps and bi-quadratic forms
can be established as follows. Consider a Hermiticity preserving linear map

S : B(Cm)→ B(Cn), (3.6)

We can construct the corresponding bi-quadratic form F (X : Y ) as

F (X : Y ) = 〈Y |S(X ·XT )|Y 〉 (3.7)
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3. Bi-quadratic forms, entanglement witnesses and bound entangled states

where T is the transpose operation, X =

x1
...
xm

 and Y =

y1
...
yn

.

On the other hand, let F (X : Y ) be a bi-quadratic form. Notice that, it is a
quadratic form with respect to Y (as well as X). So we can write it in the form
〈Y |AX |Y 〉, where AX is a symmetric matrix associated with X . Thus we get a map
which takes any one-dimensional projection X.XT to AX . Using linearity and Her-
miticity, we can extend it to a map which preserves Hermiticity. It was shown by Choi,
that given any positive semi definite form the corresponding map is a positive map
and vice-versa (Choi (1975b, 1980b)). Since the choices of xi’s and yj’s are arbitrary,
every one-dimensional real projection PX = X.XT is mapped to a positive operator.
Hence the corresponding map is a positive map.

Thus there is a bijective relation between the set of positive semi definite forms and
positive maps between matrix algebras. The property of complete positivity can also be
translated easily. If a map is completely positive, the corresponding bi-quadratic form
can be written as a sum of squares of quadratic forms and vice versa. Put differently, if
a map is positive but not completely positive, the corresponding bi-quadratic form will
be positive semi definite but can not be written as a sum of squares of quadratic forms.
Thus each such form gives rise to a unique map between the space of real symmetric
operators, which can be trivially extended to the set of all Hermitian operators, and
then to all operators. This also connects with the work of Arveson (Arveson (1969,
1974)) and Størmer (Størmer (1963, 1982)) who were exploring the set of positive
maps between C∗-algebras. Since then, other examples and classes of such maps have
been discovered.

By the above correspondence, the Choi quadratic form given in equation (3.2)
leads to the following map for 3× 3 matrices.

ΦI
C :

a11 a12 a13

a21 a22 a23

a31 a32 a33

 7→
a11 + µa33 −a12 −a13

−a21 a22 + µa11 −a23

−a31 −a32 a33 + µa22

 , (3.8)

with µ ≥ 1. Interchanging X and Y variables we get another map -

ΦII
C :

a11 a12 a13

a21 a22 a23

a31 a32 a33

 7→
a11 + µa22 −a12 −a13

−a21 a22 + µa33 −a23

−a31 −a32 a33 + µa11

 . (3.9)

As explained in section 1.2.1.2, our interest in these positive but not completely
positive maps is because of their ability to detect entanglement of quantum states. For
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3.1 Positive forms and Minkowski’s conjecture

the maps that are to be used as entanglement witnesses, two notions, namely decom-
posability and extremality are very important. We define these notions below.

Definition 3.1.1. A positive but not completely positive map is called decomposable,
if it can be written as a sum of a completely positive and a completely co-positive map
(combination of transpose and a completely positive map).

This property was discussed first independently by Woronowicz (Woronowicz (1976b))
and Choi (Choi (1975a)). Since decomposable maps are obtained by combining a com-
pletely positive map with a transposed completely positive map, it is clear that they are
weaker than partial transpose in terms of their ability to detect entanglement and there-
fore are not of interest. The interesting point however is that, given a map which is
positive but not completely positive, there is no standard way to check if it is decom-
posable or not!

Proposition 3.1.1. Given a decomposable map φ = ψ1 +T ◦ψ2 and a completely pos-
itive map φ′ = ψ1 + ψ2, where ψ1, ψ2 are completely positive map, the corresponding
forms Fφ and Fφ′ are equal.

Proof. It is easy to notice that the maps transpose T and identity 1 gives the same
form. Hence the proof.

The above proposition gives hope that given an unknown positive map, we just
need to create the corresponding form and check whether it can be written as a sum of
squares. Unfortunately, for a general form, it is not easy to check this property.

Choi and Lam define an extremal map using the corresponding bi-quadratic form
Choi and Lam (Choi & Lam (1977/78)) as follows.

Definition 3.1.2 (Extremal form). A positive semi-definite bi-quadratic form F is said
to be extremal, if for any decomposition of F = F1 + F2 where Fi’s are positive semi-
definite bi-quadratic forms, Fi = λiF , where λ1, λ2 are non-negative real numbers
with λ1 + λ2 = 1.

Since the set of positive maps is a convex set it can be described by its extremal
elements. Therefore, it is most natural to study the extremal positive maps.

Proposition 3.1.2. From the point of view of detecting entanglement, any extremal
map is more powerful than the maps which are internal points of the set of positive
maps.
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3. Bi-quadratic forms, entanglement witnesses and bound entangled states

Proof. Let h be a positive map which is not extremal. Then there exists finite number
of extremal positive maps hi and λi > 0 such that h =

∑
i λihi where

∑
i λi = 1. Now

for an entangled state ρ detected by h, i.e 1 ⊗ h(ρ) 6≥ 0. Then
∑

i λi1 ⊗ hi(ρ) 6≥ 0.
By Weyl’s inequality (see Bhatia (Bhatia (1997))) there exists at least one i such that
1⊗ hi(ρ) 6≥ 0. Hence the result.

It was shown by Choi and Lam that in the case µ = 1, the form F1 defined in
equation (3.2) is extremal.

Since the set of positive semi-definite forms is a convex set, it is enough to identify
the set of such extremal forms. At this stage it is useful to change the notation to
original Choi Lam notation for the bi-quadratic forms and we therefore denote F (X :

Y ) as F
(
x1 x2 x3

y1 y2 y3

)
.

3.1.2 Modification of a given map

For a given bi-quadratic form, it is possible to define extensions. LetF = F

(
x1 x2 x3

y1 y2 y3

)
be an extremal positive semi-definite bi-quadratic form. For a given set of non-zero
positive real numbers a, b, c we define

G

(
x1 x2 x3

y1 y2 y3

)
= F

(
ax1 bx2 cx3

y1 y2 y3

)
. (3.10)

Proposition 3.1.3. The form G is positive semi-definite and extremal.

Proof. We first prove the positivity. Let us assume that the proposition is not true and

there exists real numbers p1, p2, p3, q1, q2, q3 such that G

(
p1 p2 p3

q1 q2 q3

)
< 0. But then

by definition F

(
p′1 p′2 p′3
q1 q2 q3

)
< 0; for a set of real numbers p′1, p

′
2, p
′
3, q1, q2, q3 where

p′1 = ap1, p
′
2 = bp2 and p′3 = cp3. This contradicts the assumption that F is a positive

semi-definite form for all real values of xi’s and yj’s.

For extremality, let us assume G = G1 + G2, where G1 and G2 are positive semi-
definite bi-quadratic forms.
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3.1 Positive forms and Minkowski’s conjecture

Notice that

F

(
x1 x2 x3

y1 y2 y3

)
= G

(
x1
a

x2
b

x3
c

y1 y2 y3

)

= G1

(
x1
a

x2
b

x3
c

y1 y2 y3

)
+G2

(
x1
a

x2
b

x3
c

y1 y2 y3

)
,

as we have assumed. Define two positive semi-definite forms

Fi

(
x1 x2 x3

y1 y2 y3

)
= Gi

(
x1
a

x2
b

x3
c

y1 y2 y3

)
,

for i = 1, 2. We can now write,

F = F1 + F2.

However, F is extremal. Therefore, Fi = λiF, i = 1, 2, and λ1 and λ2 are positive

real numbers with λ1+λ2 = 1. ThusGi

(
x1
a

x2
b

x3
c

y1 y2 y3

)
= λiF

(
x1 x2 x3

y1 y2 y3

)
. Hence

Gi

(
x1 x2 x3

y1 y2 y3

)
= Gi

(
ax1
a

bx2
b

cx3
c

y1 y2 y3

)

= λiF

(
ax1 bx2 cx3

y1 y2 y3

)
= λiG.

Since λ1, λ2 ≥ 0 and λ1 + λ2 = 1; the form G is an extremal form.

The family of maps corresponding to the bi-quadratic forms G defined above are
positive maps which are extremal. Therefore we have a three parameter family of
extremal maps originating from the original map corresponding to the bi-quadratic
form F . It is straightforward to extend this construction to higher dimensions.

Proposition 3.1.4. Given any extremal positive semi definite bi-quadratic form,

F = F

(
x1 x2 · · · xn

y1 y2 · · · yn

)
,

for any non zero positive real a1, a2, · · · , an; G = F

(
a1x1 a2x2 · · · anxn

y1 y2 · · · yn

)
is

positive semi-definite and extremal.
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3. Bi-quadratic forms, entanglement witnesses and bound entangled states

3.2 Examples of new bound entangled states

3.2.1 Modification of a positive map and the states detected by it

We now turn to the map corresponding to the extremal bi-quadratic form G defined in
equation 3.2. Let us choose three non-zero real numbers a, b, c, and consider the form

G

(
x1 x2 x3

y1 y2 y3

)
= F1

(
ax1 bx2 cx3

y1 y2 y3

)
= a2x2

1y
2
1 + b2x2

2y
2
2 + c2x2

3y
2
3 − 2(abx1x2y1y2 + bcx2x3y2y3 + cax3x1y3y1)

+a2x2
1y

2
2 + b2x2

2y
2
3 + c2x2

3y
2
1 (3.11)

The corresponding positive map is then given as,

Φ(a, b, c) :

x11 x12 x13

x21 x22 x23

x31 x32 x33

 7→
a2x11 + c2x33 −abx12 −acx13

−abx21 b2x22 + a2x11 −bcx23

−acx31 −bcx32 c2x33 + b2x22

 ;

(3.12)
where a, b, c 6= 0. By Choi and Lam (Choi & Lam (1977/78)), the form F1 of equa-
tion 3.2 is extremal. Using the proposition 3.1.3, we see that the form G of equation
3.11 is extremal. Hence, the map Φ(a, b, c) is an extremal positive map which is not
completely positive for all nonzero a, b and c and it can act as an entanglement witness.

We now construct a set of PPT entangled states for which the above map acts as an
entanglement witness. Consider a density operator for a 3 ⊗ 3 system defined by two
parameters t and x.

ρ(x, t) =
1

4 + 3
t

+ 4t



1 + t 0 0 0 x 0 0 0 x
0 t 0 x 0 0 0 0 0
0 0 1

t
0 0 0 x 0 0

0 x 0 1
t

0 0 0 0 0
x 0 0 0 1 + t 0 0 0 x
0 0 0 0 0 t 0 x 0
0 0 x 0 0 0 1 0 0
0 0 0 0 0 x 0 1

t
0

x 0 0 0 x 0 0 0 1


. (3.13)

This ρ is a unit trace density operator for t > 0 and 0 ≤ x ≤ 1.
The action of the map Φ(a, b, c) on the density operator ρ(x, t) leads to the trans-

formed density operator ρx,.

ρ′(x, t) = (Φ(a, b, c)⊗ 13)ρ(x, t). (3.14)
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3.2 Examples of new bound entangled states

We compute eigenvalues of ρ(x, t)′ and use the negativity of the least eigen value
as an indicator of entanglement of ρ(x, t). It is useful to note that the map Φ(a, b, c)

with a = b = c = 1, reduces to Choi’s map ΦI
C(1) while for other values of a, b and c

it is still an extremal map with a potential to reveal entanglement of quantum states.
A computation of eigenvalues of ρ′(x, t) reveals that for this example, the maps

Φ(a, b, c) have more potential than the Choi’s map in unearthing the entanglement of
PPT quantum states. The results are displayed graphically in Figures 3.1 and 3.2. We
take the parameter values to be a = 1 + 3

5
, b = c = 1 and calculate the minimum

eigenvalues of ρ(x, t) for the range x ∈ [0, 1] and t ∈ (0, 1]. The results are displayed
in Figure 3.1. The curved surface denotes the minimum eigenvalue of ρ(x, t) after the
action Φ(1 + 3

5
, 1, 1). To show the power of this map clearly, we display a section of

the above graph where we fix the parameter x = 1
20

and plot the minimum eigen value
as a function of t. We compare our result with Choi’s maps. The result is shown in
Figure 3.2. The continuous line here denotes the minimum eigenvalue corresponding
to the action Φ(1+ 3

5
, 1, 1) while the other two dashed lines are the minimum eigenval-

ues corresponding to ΦI
C and ΦII

C . It turns out that after approximately x = 0.604428,
the minimum eigenvalue becomes negative under Φ(1 + 3

5
, 1, 1) while the minimum

eigenvalues under ΦI
C(1) and ΦII

C (1) still remain positive. It is only after x crosses
the value 0.66 that the Choi maps begin to detect entanglement for this class of states.
Therefore, for ρ(x, 1

20
), there is a clear window of x values where the entanglement is

revealed by Φ(1 + 3
5
, 1, 1) and is not revealed by any of the Choi maps.

The map Φ(1 + 3
5
, 1, 1) was chosen as a representative example. In fact the class

of maps Φ(a, b, c) can reveal entanglement of a large class of PPT entangled states and
therefore provide a genuine extremal extension of the Choi’s maps.

3.2.2 Robustness analysis

We have constructed two different families of PPT entangled states. In chapter 2,
we constructed the family of states detected by Osaka’s map and in this chapter we
have constructed the family detected by extremal extensions of the Choi map. We
now consider the robustness of these PPT entangled states given in equations (2.11)
and (3.13). Let ρ be an arbitrary entangled state. We consider the convex combination
of ρ with a maximally mixed state. We consider the following convex combinations;

ρ′(ε) =
ε

9
I9 + (1− ε)ρ;

where ε is a real positive parameter less than one and I9 denotes the identity matrix
of dimension 9. To explore how robust is the entanglement of state ρ, we compute
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Eigenvalues

0.00.10.2

t

0.60
0.65

0.70

x

-0.005

0.000

0.005

Figure 3.1: The plot of least eigen values of ρ′(x, t) as a function of x and t. The curved
surface corresponds to the case where ρ′(x, t) was generated by the action of Φ(1+ 3

5 , 1, 1)

upon ρ(x, t). The middle plane is the plane xy = 0, given a referral plane for highlighting
the negativity of the eigenvalues represented by the curved surface.

the range of ε for which ρ′ is entangled. Since the identity matrix represents noise,
this calculation indicates as to how much noise can be added to the state ρ without
destroying its entanglement. Typically, the map which detects entanglement of ρ is
used on ρ′ as well.

We begin with ρ(y) of the example (2.11). Using the process previously described,
we obtain the new state

ρ′(ε, y) =
ε

9
I9 + (1− ε)ρ(y).

For y = 5
2
, ρ(y) is an entangled state, whose entanglement is revealed by ΦO. We

use the map ΦO on the family of states ρ′
(
ε, 5

2

)
and can see that there is a continuous

range of ε for which ρ′
(
ε, 5

2

)
remains entangled. The change in eigenvalues is shown

in Figure 3.3. It shows that approximately up to ε = 0.045, the state remains entangled.
We now use the same procedure for ρ(x, t) of the example in (3.13). The family of

states is given by;

ρ′(ε, x, t) =
ε

9
I9 + (1− ε)ρ(x, t).

We use ρ
(

7
10
, 3

40

)
, which is an entangled state and its entanglement is revealed by

Φ
(
1 + 6

10
, 1, 1

)
. Now the family ρ′

(
ε, 7

10
, 3

40

)
is dependent on ε. We plot the change

of minimum eigenvalue of this family. Figure 3.4 shows that up to approximately
ε = 0.012 the state remains entangled.

40



3.3 Conclusions

Figure 3.2: The section corresponding to t = 1
20 of Figure 3.1 is displayed here. The blue

line corresponds to the map Φ(1 + 3
5 , 1, 1) while the other two curves correspond to the

two Choi maps. The window of values of x (approximately x >= 0.6025 and x < 0.66)
where the map Φ(1 + 3

5 , 1, 1) is able to reveal the entanglement of ρ(x, t) and where the
Choi maps do not reveal the entanglement is clearly visible.

3.3 Conclusions

We have generated a family of extremal extensions of Choi’s original map and shown
that these extremal extensions are capable of revealing the entanglement of new classes
of entangled states.

After publication of the above results, Ha (Ha (2013)) pointed out that, contrary to
previously published results (example Kim & Kye (1994); Osaka (1992); Robertson
(1985)), the extension from the positive semidefinite bi-quadratic form to the positive
maps on real or complex matrices need not be unique. There may exist different pos-
itive maps which have the same bi-quadratic form, and gave examples of such maps.
Furthermore, the extremality of the forms need not make the corresponding maps to be
extremal. If φ is an extremal map, then the map 1

2
(φ+T ◦φ) also haves the same form.

We note that, the extremality of the maps given by our construction is further validated
by the content of the next chapter 4. Further details about the above important paper
by Ha (Ha (2013)) is discussed in appendix B.
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3. Bi-quadratic forms, entanglement witnesses and bound entangled states

Figure 3.3: Application of Osaka’s map ΦO on the convex combination ρ′
(
ε, 5

2

)
=

ε
9I9 + (1 − ε)ρ

(
5
2

)
. ε is plotted along the horizontal axis, and eigenvalues along the

vertical axis. The blue line shows the change in minimum eigenvalue. The state remains
entangled approximately up to ε = 0.045.

Figure 3.4: Application of Φ
(
1 + 6

10 , 1, 1
)

on ρ′
(
ε, 7

10 ,
3
40

)
. ε is plotted along the hor-

izontal axis, and eigenvalues along the vertical axis. The blue line shows the change in
minimum eigenvalue. The state remains entangled upto approximately ε = 0.012.
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Chapter 4

Automorphism of positive maps,
extremal extensions and unextendable
product basis

The set of positive maps forms a closed convex cone. For such sets the interior points
can be expressed as convex sums of extremal points. Therefore to study the set of
positive maps it is sufficient to study the structure of its extremal points namely the
extremal positive maps. In the context of composite quantum systems and action of
positive maps on their states it is not easy to enumerate all the extremal points. Given
an extremal point, finding other extremal points related to it is of interest. This may
also lead to new entanglement witnesses and help unearth new entangled states and
enhance our understanding of quantum entanglement.

In Chapter 3 we have given examples of extremal extensions of known extremal
positive maps. We have shown that such examples can be generalised for arbitrary fi-
nite dimensions. In this chapter, we further advance the methods. We use the method of
automorphism in the state space to construct new examples of positive maps. We show
that there are two different types of automorphisms, which we call inner automorphism
and outer automorphism. We also show the ability of detecting new entangled states
by these modified maps.

One of the most important classes of PPT entangled states comes from the unex-
tendable product basis (Bennett et al. (1999)). It can be shown that the PPT states
constructed by Bennett et al (Bennett et al. (1999)) are not detectable by the standard
Choi map or the variations of Choi maps available in literature. The only map which
can detect such states were constructed by Terhal (Terhal (2001)) which uses the same
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product basis

UPB and a nontrivial optimization.
Using the inner automorphism, we can show that the examples of the such PPT en-

tangled states are detectable by the standard Choi’s map. Entanglement of such states
given by DiVincenzo et al (DiVincenzo et al. (2003)) has been verified by identifying
suitable positive maps for certain cases.

One of the most useful generalizations of the Choi map was done by Cho-Kye-
Lee (Cho et al. (1992)). Recently, Ha and Kye (Ha & Kye (2011)) had shown that a
subclass of this class gives the optimal entangled witness in the sense of Lewenstein
et al (Lewenstein et al. (2000)). Further, this class can be written as a one-parameter
family, where the parameter t ∈ [0,∞]. Further, the exposed nature of the maps of this
class have been verified recently by Ha and Kye (Ha & Kye (2011)). We show that the
class 0 ≤ t < 1 and 1 < t ≤ ∞ are related to each other by a combination of inner
and outer unitary operations.

4.1 Extremal extensions of Positive Maps

In this section, starting with a P map (which is not CP) and a CP map, we construct
a composite map. This composite map turns out to be extremal if the original map
is extremal and under certain conditions has more power to detect entanglement as
compared to the original map. Consider ϕ : B(Cn) −→ B(Cn) to be a positive
indecomposable map. For any A ∈ Gln(C) we can define a map

A : B(Cn) −→ B(Cn)

X 7−→ AXA† For X ∈ B(Cn) (4.1)

By definition,A is a CP map. Note that we are using the same symbolA for theGln(C)

element and the corresponding map. To make it a valid quantum operation, we impose
the condition AA† ≤ I where I denotes the identity element of B(Cn).

We can then define the two automorphisms as the compositions

ϕ ◦ A =ϕA

A ◦ ϕ =ϕA (4.2)

The former is called inner automorphism while the latter is called outer automorphism.
The outer automorphism is not useful for us as it does not strengthen the entanglement
detection capability of ϕ. However as we will see below and in the next sections, the
inner automorphism is useful.
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4.1 Extremal extensions of Positive Maps

It is worth noting that the set of positive maps is a convex set and can be described
by its ‘extremal points’, in our case ‘extremal maps’. Recall that a positive map h is
said to be extremal, when for any decomposition h = h1 + h2, where h1 and h2 are
positive maps, hi = λih, where λi ≥ 0 and λ1 + λ2 = 1.

Theorem 4.1.1. For any positive map ϕ : B(Cn) 7−→ B(Cn), and for any full rank
operatorA, (such thatAA† ≤ I) ϕA is a positive map. Moreover, if ϕ is not completely
positive and extremal, so is the map ϕA.

Proof: The map A : X 7−→ AXA†, when A is a non-singular operator defines an
automorphism on B(Cn). If X is Hermitian, so is AXA† and if X is positive, so is the
image as the map A is completely positive. Thus the map A is a bijection map from
the set of positive semi-definite operators onto itself.

Let ϕ be a P but not CP map. Assume that ϕA is a CP map. Then by Kraus
decomposition, there exists a finite set of operators {Vi} which represents the map and
we can write for any X ∈ B(Cn)

ϕA(X) =
∑
i

ViXV
†
i . (4.3)

Now ϕ(X) = ϕA(A−1XA†
−1

) since A is a non-singular operator. We thus have

ϕ(X) = ϕA(A−1XA†
−1

) =
∑
i

ViA
−1XA†

−1
V †i . (4.4)

implying that ϕ is a CP map. This is a contradiction. Hence ϕA is a P but not CP map.
For the second part, let ϕ be extremal and let us assume that ϕA is not extremal.

Then there exist positive maps ϕ1 and ϕ2 so that ϕA = ϕ1 + ϕ2. Using a similar
argument as above we can write

ϕ(X) = ϕA(A−1XA†
−1

)

= ϕ1(A−1XA†
−1

) + ϕ2(A−1XA†
−1

)

= ϕ1
A−1(X) + ϕ2

A−1(X). (4.5)

But the map ϕ is an extremal map. By definition of extremality, if ϕ = ϕ1 +ϕ2, where
ϕi are positive maps, then ϕi = λiϕ, where λ1 + λ2 = 1. Hence

ϕiA−1 = λiϕ⇒ ϕiA−1 ◦ A = λiϕ ◦ A
⇒ ϕi = λiϕA.

(4.6)

Hence ϕA is an extremal map.
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A special case of interest is when A is unitary which we denote by U . A number
of special results are available for this case. By the Russo-Dye theorem (see Bhatia
(Bhatia (2007))) we can show that for any unitary operator U ,

‖ϕU‖ = ‖ϕU‖ = ‖ϕ‖. (4.7)

It is obvious that if ϕ is unital, so are ϕU and ϕU .
Further, positivity under partial transpose is invariant under inner unitary auto-

morphism. In other words, for the transpose map T and any unitary operator U ,
(I ⊗ T )ρ ≥ 0 implies (I ⊗ TU)ρ ≥ 0 for any state ρ.

This can be proved as follows: Let ρ ∈ B(Cn ⊗ Cn) be a PPT state. Let us
write ρ = ((ρij)) in the block form, where for each i and j, ρij ∈ B(Cn). Then
(I ⊗ T )ρ = ((T (ρij)) = ((ρTij)). Hence

(1⊗ TU)ρ = ((T (UρijU
†))

= ((UT (ρij)U
†
))

= (I ⊗ U)(1⊗ T )ρ(I ⊗ U)†. (4.8)

Where U = ((uij)) and its complex conjugate U = ((uij)) are unitary operators. Since
eigenvalues remain invariant under unitary transformations (local unitary in our case),
the result follows.

Theorem 4.1.2.

1. For any positive map ϕ : B(Cn) −→ B(Cn), and any unitary operator U , the
outer automorphism ϕU is a positive map.

2. Any entangled state ρ detected by ϕU is detected by ϕ and vice versa.

Proof: Let x ∈ B(Cn) be any positive semi-definite Hermitian operator. Since ϕ
is positive, ϕ(x) ≥ 0. Since the unitary operators do not change eigenvalues, we have
Uϕ(x)U † ≥ 0, i.e. ϕU = U(x) ◦ ϕ ≥. Hence ϕU is a positive map.

For the second part, notice that the eigenvalues are invariant under unitary opera-
tors. Hence,

(1⊗ ϕ)ρ 6≥ 0 ⇐⇒ (I ⊗ U)(1⊗ ϕ)ρ(I ⊗ U)† 6≥ 0

⇐⇒ (1⊗ UϕU †)ρ 6≥ 0

⇐⇒ (1⊗ ϕU)ρ 6≥ 0. (4.9)
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This means that for the entanglement detection application, unitary outer automor-
phisms are not useful and therefore we should focus only on the inner automorphism.

In the next section we discuss the power of such extensions. We will consider PPT
entangled states discovered through UPB construction due to Bennett et al (Bennett
et al. (1999)) and apply one-parameter sub-families of unitary inner automorphisms to
them.

4.2 Extensions of Choi map and UPB construction

4.2.1 The Choi Map

The first non-trivial example of a P map which is not CP and can provide a witness
for the entanglement of some PPT entangled states was discovered by Choi (Choi
(1975b)). This map comes in two variants and they are defined on a 3-dim Hilbert
space as follows:

ϕC1 : ((xij)) 7−→
1

2

x11 + x22 −x12 −x13

−x21 x22 + x33 −x23

−x31 −x32 x33 + x11

 (4.10)

and

ϕC2 : ((xij)) 7−→
1

2

x11 + x33 −x12 −x13

−x21 x22 + x11 −x23

−x31 −x32 x33 + x22

 (4.11)

Both these maps as defined in (4.10) and (4.11) are useful in unearthing entanglement
of PPT entangled states and are extremal points in the space of maps (Choi & Lam
(1977/78)). There are only a few examples of extremal maps and apart from Choi
maps, there have been extensions of Choi maps by Kye (Kye (1992)) which were
shown to be extremal by Osaka (Osaka (1992)). We are interested in unitary inner
automorphisms of the Choi maps which are defined as the composition ϕC1,2 ◦U where
U ∈ SU(3) is a unitary operator. For every U ∈ SU(3) we have an extremal map
generated from the Choi map. For example, for every one-parameter subgroup of
SU(3) we will have a family of maps which can help us unearth entanglement of PPT
entangled states.

4.2.2 The TILES construction

The unextendable product basis, the ‘TILES’ construction was proposed by Bennett et
al (Bennett et al. (1999)). Given a composite system with Hilbert space C3 ⊗ C3, we
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consider the normalized orthogonal states

|ψ0〉 =
1√
2
|0〉 (|0〉 − |1〉) ,

|ψ2〉 =
1√
2
|2〉 (|1〉 − |2〉) ,

|ψ1〉 =
1√
2

(|0〉 − |1〉) |2〉,

|ψ3〉 =
1√
2

(|1〉 − |2〉) |0〉,

|ψ4〉 =
1

3
(|0〉+ |1〉+ |2〉) (|0〉+ |1〉+ |2〉) (4.12)

Bennet et. al. showed that there is no product state in the orthogonal complement of
these states. Therefore, the state

ρ =
1

4

(
I9 −

4∑
i=0

|ψi〉〈ψi|

)
. (4.13)

is entangled. Further, by construction this state is PPT and therefore we have a PPT
entangled state. We can apply the maps I ⊗ ϕC1,2 to the state and it turns out that the
state remains positive and does not reveal its entanglement. Consider a one-parameter

- Π -
3 Π

4 -
Π

2
-

Π

4

Π

4

Π

2

3 Π

4
Π

Θ

-0.02

-0.01

0.01

0.02
Eigenvalues

- Π -
3 Π

4 -
Π

2
-

Π

4

Π

4

Π

2

3 Π

4
Π

Θ

-0.02

-0.01

0.01

0.02
Eigenvalues

Figure 4.1: Plot of minimum eigenvalue as a function of θ of the operators ρ′1(θ) and ρ′2(θ)

obtained after the action of I3 ⊗ ϕC1,2(θ) on the state ρ defined in equation (4.13). The
upper graph corresponds to ρ′1(θ) while the lower one corresponds to ρ′2(θ). The straight
line represents the minimum eigenvalue corresponding to the operators obtained after the
action of the corresponding Choi map through the operators I3 ⊗ ϕC1,2 . The negativity of
the minimum eigen value, which occurs in both the graphs in a similar way but for shifted
values of θ, indicates that the map has revealed the entanglement of the state.
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4.2 Extensions of Choi map and UPB construction

family of extremal extensions of the Choi maps ϕC1,2(θ) = ϕC1,2 ◦ U(θ) with

U(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 . (4.14)

These two families of maps defined via the unitary inner automorphism can now be
tried on the PPT entangled states defined in Equation (4.13) to see if they can reveal its
entanglement. We apply the maps I ⊗ϕC1,2(θ) to the state defined in Equation (4.13).

I3 ⊗ ϕC1,2(θ) : ρ→ ρ′1,2(θ) (4.15)

We compute the eigen values of ρ′1(θ) and ρ′2(θ). It turns out that the smallest eigen
value becomes negative for a range of θ values indicating that the resultant operator
is not a state, thereby revealing the entanglement of the original state ρ. The plot of
minimum eigen values of ρ′1(θ) and ρ′2(θ) are shown in Figure 4.1. The upper graph
corresponds to the case ρ′1(θ) and the lower one corresponds to the case ρ′2(θ).

Both families of maps are able to reveal the entanglement of the state ρ defined in
Equation (4.13). However the θ ranges for which the map reveals the entanglement are
different in each case. The lower graph can be superimposed on the upper graph by a
shift of π2 in θ. In each graph the straight lines show the positive minimum eigen value
obtained after application of the corresponding non-modified Choi map.

4.2.3 The PYRAMID construction

Another interesting UPB construction for the 3 ⊗ 3 Hilbert space is the PYRAMID
construction (Bennett et al. (1999)). We first define five vectors in a three dimensional
Hilbert space as:

vi = N

(
cos

2πj

5
, sin

2πi

5
, h

)
j = 0, · · · , 4; (4.16)

where h = 1
2

√
1 +
√

5 and N = 2√
5+
√

5
. Using these vectors we define the UPB set

as
|ψj〉 = |vj〉 ⊗ |v2j mod 5〉, j = 0, · · · , 4. (4.17)

The corresponding PPT entangled state is obtained by substituting the UPB states given
in Equation (4.17) above into Equation (4.13). We carry out an identical analysis to
the TILES case and find that the entanglement of this state is again detected by the
modified Choi maps. The plots are shown in Figure 4.2 where the minimum eigen
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Figure 4.2: Plot of minimum eigen value of operators ρ′1,2(θ) as a function of θ. The
operators ρ′1,2(θ) are obtained from the PPT entangled states in the orthogonal complement
of the PYRAMID UPB construction by the action of families of extremal extensions of two
Choi maps on the second system. The negativity of the minimum eigenvalues shows that
the map is able to detect entanglement of the states. The straight line in each graph shows
the minimum eigenvalue in the case of the original Choi map which remains positive and
therefore does not reveal the entanglement.

value is displayed as a function of θ for the operator obtained after action of modified
Choi Both the families of maps reveal the entanglement of the state and the graphs
(Figure 4.2) also display an invariance under a shift of π2 in θ, as was seen for the
TILES case. However in this case, the range of values over which the minimum eigen
value is negative is different. This means that the extremal maps which reveal the
entanglement of the state in this case are different from the ones in the TILES case.

Recent results independently given by Skowronek (Skowronek (2011)) and by
Chen and Doković (Chen & —Doković (2011)), gives a curious connection between
PPT entangled states and UPBs.

Theorem 4.2.1 ( Chen & —Doković (2011); Skowronek (2011)). Positive partial trans-
pose rank 4 states in 3⊗ 3 systems are either separable or are of the form

ρ = (A⊗B)†

(
I −

5∑
i=1

|αi〉〈αi| ⊗ |βi〉〈βi|

)
(A⊗B), (4.18)

where A, B ∈ Sl3(C) and {|αi ⊗ βi〉}5
i=1 forms an orthonormal unextendible product

basis.

Since any such basis is local unitarily equivalent with any other known UPB’s, for
example the UPB of 4.12, and the operators A and B are invertible, we can combine
our earlier results with the above theorem and conclude that
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Theorem 4.2.2. Any rank 4 PPT entangled state in 3⊗ 3 system can be detected by a
positive map which is inner automorphism of Choi’s map.

4.3 Further examples of extermal extensions

To demonstrate the usefulness of the extensions based on automorphisms we describe
below three insightful results. The first result is that the two maps due to Choi de-
scribed in Equations (4.10) and (4.11) naturally get connected via a combination of
inner and outer unitary automorphisms. The map ϕC1 thus gets related to ϕC2 .

ϕC1 = U

(
3π

2

)
◦ ϕC2 ◦ U

(π
2

)
. (4.19)

Secondly, the construction that we had described in the previous chapter 3 where
we have generated extremal maps as candidate entanglement witnesses from the ex-
isting ones turns out to be a nonunitary inner automorphism. This extremal extension
can be recast as an inner automorphism of the original map given below

ϕ(a1,··· ,an) = ϕ ◦ A (4.20)

where A is an operator given by the diagonal matrix

A = Diag(a1, a2 · · · , an) (4.21)

This is clearly a non-unitary inner automorphism and connects our earlier result with
the present formulation.

In the third example we turn to a generalization of the Choi map defined by Cho,
Kye and Lee (Cho et al. (1992)) as

ϕm((xij)) 7→
1

2

ax11 + bx22 + cx33 −x12 −x13

−x21 ax22 + bx33 + cx11 −x23

−x31 −x32 ax33 + bx11 + cx33


(4.22)

where a, b, c satisfy certain conditions given in detail in their paper.
It has been shown by Ha and Kye (Ha & Kye (2011)) that a sub-class of the above

family of maps, given by

0 < a < 1, a+ b+ c = 2, bc = (1− a)2; (4.23)
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are extremal maps. It has been further shown by Ha and Kye (Ha & Kye (2011); Ha
& Kye (2011)) that these extremal maps can be written as a one-parameter family of
maps ϕt with 0 ≤ t <∞. The parameters a(t), b(t) and c(t) are given by

a(t) =
(1− t)2

1− t+ t2
, b(t) =

t2

1− t+ t2
, c(t) =

1

1− t+ t2
. (4.24)

We have ϕt=0 = ϕC1 , ϕt→∞ = ϕC2 while ϕt=1 is a decomposable map. Using the
unitary automorphism defined through the one-parameter family of unitary transfor-
mations given in Equation (4.14), we are able to relate the maps in the interval [0, 1] to
maps in the interval [1,∞) as follows:

ϕt = U

(
3π

2

)
◦ ϕ 1

t
◦ U

(π
2

)
. (4.25)

This mean that we need to consider only the maps in the interval [0, 1] if we are inter-
ested in using them as entanglement witnesses and the others can be generated via the
automorphism given above. The above examples show that the automorphisms provide
us with a way to connect various seemingly unrelated maps.

A natural question is whether any two extremal maps are related to each other
by such an isomorphism. It can be shown that there does not exist any such local
isomorphism. Consider the maps given in Equations 4.10 and 4.22. It is clear that
there is no local isomorphism which can convert one to the other.

4.4 Conclusions

In this chapter we have described extremal extensions of P maps which are not CP
via their composition with quantum operations. Two kinds of automorphisms are de-
scribed and it is shown that only one of them, namely, the inner automorphism has the
ability to enhance the entanglement detection power of the original map. This con-
struction opens up new possibilities of extremal extensions of P maps which are CP.
Focusing on the famous Choi map and its extensions via a one-parameter family of
unitary transformations, we have discovered a useful and interesting connection with
UPB. We discover that for a certain parameter range the map begins to unearth the
entanglement of states in the orthogonal complement of UPB.

The exposedness of maps has been discussed and used in the entanglement context
in a recent interesting development Ha and Kye (Ha & Kye (2011)). It turns out that
the automorphisms described in our work preserve the exposed property and thus if
we start with an exposed map we can construct families of exposed maps. In this
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context extensions of extermal exposed maps have also been considered by Sarbicki
and Chruściński (Sarbicki & Chruściński (2013)).

In the context of UPB there is a way to interpolate between TILES and PYRAMID
(DiVincenzo et al. (2003)). This possibility provides us with a rich variety of PPT
entangled states. There are several possible extensions of this work. For one, the
possibility of detecting these states with extensions of already known P but not CP
maps or implicating the non-CP character of certain maps using these states. Further,
there could be interesting consequences of these results in higher dimensions.
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Chapter 5

Quantum Filtering and detection of
PPT entangled states

The concept of inner (and also outer) automorphism give an important tool to dis-
cover entangled quantum states. These automorphisms are transformations on posi-
tive maps where a completely positive map is combined with a positive map which is
not completely positive to give new entanglement witnesses. In a dual approach, the
completely positive map that we use, can be thought of as an action on the quantum
states. The operations are only on one subsystem of the bipartite system and there-
fore come under the general ambit of LOCC. This operation can be unitary as well as
non-unitary. In the unitary case, it is in fact a Hamiltonian quantum evolution, while
in the non-unitary case it is in general a POVM on the subsystem. In this case after
the POVM, we retain a sub-ensemble of the original ensemble corresponding to a par-
ticular value of the measurement. Therefore, it amounts to implementing a quantum
filter. In this chapter we re-intepret the automorphisms described in Chapter 4 from
this point of view. In the examples of entanglement witnesses given in Chapters 4 and
3, we have used unitary as well as non-unitary automorphisms. In general these au-
tomorphisms can be described by an invertible operator S and the map is of the form
ρ 7→ 1

Tr(SρS†)
(SρS†). Such operations are known as quantum filtering.

All completely positive maps acting on quantum systems can have a POVM repre-
sentation. We start with a brief description of POVM. We find out the differences of
local and global operations and their action on the entangled states. We show that the
operations used in Chapter 4 are the ones which preserve entanglement. We further
discuss the general form of such filtering. Gisin (Gisin (1996)) has shown that, such
maps are possible in an experimental set up. This construction was up on the states
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of two spin 1
2

particles. We start with the example of Gisin and represent it in terms
of projection operators. We further consider the general case of arbitrary finite dimen-
sion. Since most of the examples of entangled states given in this thesis are for 3 ⊗ 3

systems, we give special importance to this case. We further show that given a bi-
partite system, the general filtration scheme can be achieved by using local projection
operations. Thus we give a theoretical recipe for practical implementation of filters.

5.1 Super-positive maps

Let φ : (Cn) → (Cn) be a completely positive map. Then it can be represented by a
Kraus operators {L1, · · · , Ls}.

φ(X) = L1XL
†
1 + · · ·+ LsXL

†
s.

It is important to know the minimal number s required to represent a completely posi-
tive map φ.

Definition 5.1.1 (Ando (2004)). Let φ be a completely positive map and {L1, · · · , Ls}
is the minimal Kraus representation. Let

k = max{rank(Lj), j = 1, 2, · · · , s}.

Then the map φ is called to be k-super positive .

The structure of such maps is still not fully understood. One of the most important
classes of maps is the case when k = 1. Such a map is called entanglement breaking
channel. For such channels, given any entangled state ρ ∈ B(Cn⊗Cn), the output state
(1n⊗φ)ρ is a separable state. Maps corresponding to other values of k are also studied
by Szarek et al (Szarek et al. (2008)) and by Skowronek and Størmer (Skowronek &
Størmer (2012)).

In our case, we consider the maps which has only one Kraus operator L and that
operator is of rank n. In other words, we consider the n-super positive maps.

Proposition 5.1.1. Let L1 and L2 be two full rank operators. Then the map ρ 7→
(L1 ⊗ L2)ρ(L1 ⊗ L2)† does not change the Schmidt number of the state.

Proof. Recall that, a bipartite state ρ has Schmidt rank k if

1. for any ensemble decomposition of ρ as {pj ≥ 0, |ψj〉}where ρ =
∑

j pj|ψj〉〈ψj|;
at least one of the vectors |ψj〉 has at least Schmidt rank k, and
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2. There exists a decomposition of ρ where all vectors {|ψj〉} in the decomposition
have a Schmidt rank at most k.

Hence it is sufficient to check that given any state written in its Schmidt decomposition

|ψ〉 =
∑
j

λj |ej〉 ⊗ |fj〉

the Schmidt number remains invariant under the operation |ψ〉 7→ L1 ⊗ L2 |ψ〉 (for
time being, we ignore the normalisation factor). Notice that Schmidt rank(SR) of |ψ〉
is the matrix rank of

∑
j λj |fj〉 〈ej|. Thus

SR(L1 ⊗ L2(|ψ〉)) = rank
∑
j

λjL2 |fj〉 〈ej|L†1.

Let L1 = U1D1V1 and L2 = U2D2V2 be the respective singular value decompositions,
where U1, V1, U2, V2 are unitary operators. Then

SR(L1 ⊗ L2(|ψ〉)) = rank
∑
j

λjU2D2V2 |fj〉 〈ej|V †1 D
†
1U
†
1

= rank
∑
j

λjD2

∣∣f ′j〉 〈e′j∣∣D†1
where

∣∣e′j〉 = V1 |ej〉 and
∣∣f ′j〉 = V2 |fj〉 are mutually orthogonal basis of first and

second system respectively. Since L1 and L2 are of full rank, the diagonal matrices
D1 and D2 are also of full rank, and the above assertion holds, i.e. SR |ψ〉 is invariant
under these operations.

The above proposition further shows that, entanglement is not created or destroyed by
the above operations.

Proposition 5.1.2. Any PPT entangled state remains PPT entangled after the invert-
ible local operations described above. Similarly any NPPT state remains NPPT.

Proof. Follows from the previous proposition.

The above proposition connects with the concept of inner and outer automorphisms
described in Chapter 4. Since the nature of entanglement is not changed, a given state
ρ can be converted to another state by using local filters, whose entanglement can be
checked by a given map. This gives us a handle to generate new PPT entangled states
from the old ones via quantum filtering.
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5.2 Quantum measurement

In Chapter 1, we have given the basic axioms of quantum mechanics. Axiom IV deals
with quantum measurement and its outcomes, which we recapitulate here.

Axiom IV Quantum measurement is described by a set {Mk} of measurement opera-
tors which satisfy the completeness equation∑

k

M †
kMk = I. (5.1)

If the state of a quantum system is in the state ρ before measurement, then the
probability that the result k occurs is

P (k) = Tr(M †
kρMk), (5.2)

and the state after the measurement is

ρ′ =
M †

kρMk√
P (k)

. (5.3)

By completeness of probability ∑
k

P (k) = 1.

If we denote Ek = M †
kMk, then

∑
k Ek = I . The operators {Ek} are known as POVM

elements associated with the measurement. The finite version of Neumark dilation
theorem (Paulsen (2002)) gives that

Theorem 5.2.1. Let E = {Ej} be a set of POVM elements on B(H). Then we can
embed H to a larger Hilbert space H′ such that E is extended to a set of projection
operators. In other words, the POVM elements can be represented as a projective
measurements in a higher dimensional space.

This extension is not unique. In the subsequent sections we discuss the way to
extend and write the local filtrations in terms of projection operators. In this way,
such quantum operations can be be implemented for a practical purpose. We further
show that any such projection operations can also be performed locally. The way this
implementation happens is that for a given outcome of the measurement, we select the
corresponding state. By repeated such selection, we create a sub-ensemble represented
by a new density operator. This process is called quantum filtering.
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5.3 Filtration of two qubit systems

An interesting example of quantum filtration was introduced by Gisin Gisin (1996) for
an entangled mixed state of two spin -1

2
particles. He showed that by using a polarised

beam splitter one can convert the input state to an output state which remains entangled
but its entanglement can not be detected by a Bell inequality violation. Borrowing
quantum optics language, such local operations are called local filters.

Interpreting the Gisin filter in our formalism reveals that in his case ρ 7→ (I2 ⊗
A)ρ(I ⊗ A†), where the operator A is given by

A =

(√
β
α

0

0 1

)
, (5.4)

where α and β are two real numbers such that α > β > 0 and α2 + β2 = 1. Clearly
A is a non-unitary operator. We have ignored the normalisation here, which can be
put back to ensure that the filtered state has unit trace. Since the operator A is acting
locally, we need to look for the map

B(C2) 3 σ 7→ AσA†.

We write the spectral decomposition of A as

A = A1 + A2, (5.5)

where

A1 =

(√
β
α

0

0 0

)
(5.6)

and

A2 =

(
0 0
0 1

)
(5.7)

Now all POVM elements must sum up to identity. Hence we introduce two more
POVM elements A3 and A4 given by

A3 = A4 =

(
1
2
(1−

√
β
α

) 0

0 0

)
(5.8)

so that
∑

iAi = I . According to Neumark’s theorem any POVM acting on a Hilbert
space H can be realized by a projective measurement on a larger Hibert space H ⊗
Haux. Let us suppose that we have a system in state ρ and an ancilla in the state
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5. Quantum Filtering and detection of PPT entangled states

ρaux. Let us perform a projective measurement given by the projective operator P on
the Hilbert space comprising the system and the ancilla. The corresponding POVM
element A is given by a matrix whose elements are calculated using the formula (see
Peres (Peres (1993))),

〈m|A |n〉 =
∑
r,s

〈mr|P |ns〉 〈s| ρaux |r〉 (5.9)

In the above equation, the bold indices m and n denote the system indices and the
indices r and s denote those of the ancilla. If the ancilla is taken to be a quantum system
in the pure state |0〉 〈0|, then the above formula suggests that a projection operator
should contain the corresponding POVM element as its top leftmost block, i.e.

P =

(
A

)
Thus the entire problem of constructing a projection operator out of a POVM element
reduces to one of matrix completion. For each Aj , we need to construct a projection

operator Pj =

(
Aj

)
. Since each Aj is a rank one operator, it can be easily be

extended to a projection operator. Such an extension need not be unique. We construct
the following operators P1, P2, P3 and P4 for A1, A2, A3 and A4, respectively:

P1 =



√
β
α

0 0 −
√√

β
α
− β

α

0 0 0 0
0 0 0 0

−
√√

β
α
− β

α
0 0 1−

√
β
α



P2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



P3 =



1
2
(1−

√
β
α

) 0 1
2

√
1−

√
β
α

1
2

√√
β
α
− β

α

0 0 0 0

1
2

√
1−

√
β
α

0 1
2

1
2
(β
α

)
1
4

1
2

√√
β
α
− β

α
0 1

2
(β
α

)
1
4

1
2

√
β
α


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5.3 Filtration of two qubit systems

P4 =



1
2
(1−

√
β
α

) 0 −1
2

√
1−

√
β
α

1
2

√√
β
α
− β

α

0 0 0 0

−1
2

√
1−

√
β
α

0 1
2

−1
2
(β
α

)
1
4

1
2

√√
β
α
− β

α
0 −1

2
(β
α

)
1
4

1
2

√
β
α


Notice that the projection operators Pj are mutually orthogonal and

∑
j Pj = I . Fur-

ther

P1 + P2 =

(
A

)
Taking a general density operator σ = 1

2

(
1 + z x− ιy
x+ ιy 1− z

)
as the state of the system

and ρaux = |0〉 〈0| as that of the ancilla, let us operate the POVM elements on it. The
desired outcome is

(A1 + A2)σ(A1 + A2)† =

 (1+z)β
2α

1
2
(x− ιy)

√
β
α

1
2
(x+ ιy)

√
β
α

1−z
2

 (5.10)

On the other hand, on the combined Hilbert space of the system and ancilla the result
of the transformation dictated by the projection operators is

(P1 + P2)(|0〉 〈0| ⊗ σ)(P1 + P2) =
(1+z)β

2α
1
2 (x− ιy)

√
β
α 0 − 1

2 (1 + z)
√

β
α

√
−β
α +

√
β
α

1
2 (x+ ιy)

√
β
α

1−z
2 0 − 1

2 (x+ ιy)

√
−β
α +

√
β
α

0 0 0 0

− 1
2 (1 + z)

√
β
α

√
−β
α +

√
β
α − 1

2 (x− ιy)

√
−β
α +

√
β
α 0 1

2 (1 + z)(−β
α +

√
β
α


We can see that the top left most block of the above matrix is the same as that obtained
in the previous equation. This part cannot be extracted using partial trace. However,
the trick in the physical realization of the POVM A lies in the following. Given the
outcome of the projective measurement P1 +P2, if a projective measurement in the σz
basis is carried out in the ancilla space only, we will get outcomes |0〉 〈0| ⊗ ρtop left block

and |1〉 〈1| ⊗ ρrest. Now we will select the first kind of outcomes only and discard the
rest. In this way we actually get what is obtained by applying the POVM element.
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5. Quantum Filtering and detection of PPT entangled states

5.4 General scheme

Our basic aim is to write down quantum filtration from a physical point of view. Any
filtration operation can be written as B(Cn) 3 σ 7→ SσS† where S ∈ Sln(C). Any
such invertible operator S can be written as S = UDV , where U and V are unitary
operators and D is a diagonal matrix where each diagonal entry is real and strictly
positive. Since unitary operators correspond to Hamiltonian evolutions and can be
realized in an experiment in a straightforward way, we focus on the diagonal matrices.
In this section, we give a scheme to write a physical realisation of the operator in terms
of projection operators. Notice that, we have not normalised the outcome.

We consider the mapping σ 7→ LσL† where L =

d1

. . .
dn

, and 0 < dj ≤ 1

for each j. Our scheme is as follows: We want to show that corresponding to such an
L there exists a projection operator P ∈ B(Cn2

) of the form

P =

(
L . . .
... . . .

)
n2×n2

(5.11)

Using this projection operator P on the state |0〉〈0|⊗σ (where |0〉 ∈ Cn is the standard
basis vector i.e. we use ancilla of the same size as that of the system), we get the
outcome

P (|0〉〈0| ⊗ σ)P =
1

LσL†

(
LσL† · · ·

... . . .

)
(5.12)

Projection operators are physical. Moreover the normalisation is also taken care of af-
ter the projection. Now taking the partial trace with respect to the ancillia system (i.e.
the first system in this situation), we get the required result (including the normalisa-
tion).

We consider a set of operators {Lj} such that

Lj =


0

. . .
dj

. . .
0

 ; Ln+j =


0

. . .
1− dj

. . .
0

 ; j = 1, · · · , n.

(5.13)
Notice that

∑
j Lj = I . Our objective is to construct a set of projection operators {Pj}

corresponding to each Lj such that P =
∑

j Pj . For each j, Lj is a rank 1 operator
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5.4 General scheme

which can be written as (
√
dj|j − 1〉)(

√
dj〈j − 1|) (and similarly for Ln+j). We write

down a n × n2 matrix where the first 2n column vectors in the appropriate order are
the column vectors

√
dj|j − 1〉,

√
1− dj|j − 1〉 and the rest of the columns are the

zero columns. Thus the matrix looks like


√
d1

√
1− d1√

d2

√
1− d2

. . . . . .√
dn

√
1− dn

 ;

(5.14)
where the first two blocks are of length n and the last block consists of zeros and is
of length n2 − 2n. Let uj be the jth row vector of the above matrix. We use Gram-
Schmidt ortho normalisation on the set {uj}nj=1 to construct a set of orthonormal basis
vectors of Cn2 . (This process need not be unique. We have used standard basis along
with the above set to construct a orthonormal set of vectors). Let {uk}n

2

k=1 be the set of
orthonormal vectors where k = j for 1 ≤ k ≤ n. Writing the basis vectors we get the
matrix


u1
...
un
...

un2

 =



√
d1

√
1− d1√

d2
√

1− d2
. . . . . .

√
dn

√
1− dn

−
√

1− d1
√
d1

−
√

1− d2
√
d2

. . . . . .

−
√

1− dn
√
dn

In2−2n


;

where I denotes the identity matrix. Let vj be the jth column of this matrix and
Pj = vjvj

† be the corresponding projection operator. We notice that the matrix P =

P1 + · · ·+ Pn is the required projection operator.
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5. Quantum Filtering and detection of PPT entangled states

5.5 The case of 3⊗ 3 systems

This thesis for the most part looks at entangled states of 3 ⊗ 3 systems. Therefore we
delineate the filtration process for such systems in detail. Let us begin by discussing
the filtrations on a single three level system. Later we will consider composite systems
where each part is a three level system. For simplicity, we start with an example of
such a filtration. The general scheme will be discussed in the same line.

Example 5.5.1. Let us consider the map

ρ 7→ DρD†,

where ρ ∈ B(C3) and

D =


1
2

1

1

 .

The operators are given by

A1 =


1
2

0

0

 A2 =

0

1

0

 A3 =

0

0

1

 A4 =


1
2

0

0

 ;

such that A1 + A2 + A3 + A4 = I4. We write down the 3 × 9 dimensional matrix as
given earlier. 

√
1
2

√
1
2

1 0

1 0

 ;

Completion of the matrix will be of the form.

√
1
2

√
1
2

1 0

1 0

−
√

1
2

√
1
2

0 1

0 1

I3


.
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The required projection operators are of the form

P1 =
1

2



1 −1

0

0

−1 1

0

0

0

0

0


,

P2 =



0

1

0

0

0

0

0

0

0


,

and

P3 =



0

0

1

0

0

0

0

0

0


,
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5. Quantum Filtering and detection of PPT entangled states

where the empty spaces represent zeros. The required projection operator is then

P1 + P2 + P3 =



1
2

−1
2

1

1

−1
2

1
2

0

0

0

0

0


,

We now consider the most general case for three level systems. Let us consider the

following transformation ρ 7→ DρD† where D =

d1

d2

d3

 and di ∈ R+. To

construct the corresponding projective measurements, we first write the equations as

A1 =

d1

0
0

 A2 =

0
d2

0

 A3 =

0
0

d3


A4 =

1

2

1− d1

0
0

 A5 =
1

2

1− d1

0
0

 A6 =
1

2

0
1− d2

0


A7 =

1

2

0
1− d2

0

 A8 =
1

2

0
0

1− d3

 A9 =
1

2

0
0

1− d3



so that

9∑
j=1

Aj = I3.
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The corresponding projection operators are given by

P1 =



d1 0 0 0 0 0 −
√
d1(1− d1) 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−
√
d1(1− d1) 0 0 0 0 0 1− d1 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



P2 =



0 0 0 0 0 0 0 0 0

0 d2 0 0 0 0 0 −
√
d2(1− d2) 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 −
√
d2(1− d2) 0 0 0 0 0 1− d2 0

0 0 0 0 0 0 0 0 0



P3 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 d3 0 0 0 0 0 −
√
d3(1− d3)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 −
√
d3(1− d3) 0 0 0 0 0 1− d3



P4 =



1
2

(1− d1) 0 0
√

1−d1
2

0 0 1
2

√
− (d1 − 1) d1 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0√

1−d1
2

0 0 1
2

0 0
√
d1
2

0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
2

√
− (d1 − 1) d1 0 0

√
d1
2

0 0 d1
2

0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


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P5 =



1
2

(1− d1) 0 0 −1
2

√
1− d1 0 0 1

2

√
− (d1 − 1) d1 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−1
2

√
1− d1 0 0 1

2
0 0 −

√
d1
2

0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1
2

√
− (d1 − 1) d1 0 0 −

√
d1
2

0 0 d1
2

0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



P6 =



0 0 0 0 0 0 0 0 0

0 1
2

(1− d2) 0 0
√

1−d2
2

0 0 1
2

√
− (d2 − 1) d2 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0
√

1−d2
2

0 0 1
2

0 0
√
d2
2

0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 1
2

√
− (d2 − 1) d2 0 0

√
d2
2

0 0 d2
2

0
0 0 0 0 0 0 0 0 0



P7 =



0 0 0 0 0 0 0 0 0

0 1
2

(1− d2) 0 0 −1
2

√
1− d2 0 0 1

2

√
− (d2 − 1) d2 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 −1
2

√
1− d2 0 0 1

2
0 0 −

√
d2
2

0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 1
2

√
− (d2 − 1) d2 0 0 −

√
d2
2

0 0 d2
2

0
0 0 0 0 0 0 0 0 0


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P8 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 1
2

(1− d3) 0 0
√

1−d3
2

0 0 1
2

√
− (d3 − 1) d3

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0
√

1−d3
2

0 0 1
2

0 0
√
d3
2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 1
2

√
− (d3 − 1) d3 0 0

√
d3
2

0 0 d3
2



P9 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 1
2

(1− d3) 0 0 −1
2

√
1− d3 0 0 1

2

√
− (d3 − 1) d3

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 −1
2

√
1− d3 0 0 1

2
0 0 −

√
d3
2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 1
2

√
− (d3 − 1) d3 0 0 −

√
d3
2

0 0 d3
2


Given the POVM diagonal matrixD, we get the corresponding projective measurement
P given by

P = P1 + P2 + P3

=


d1 0 0 0 0 0 −

√
d1(1− d1) 0 0

0 d2 0 0 0 0 0 −
√
d2(1− d2) 0

0 0 d3 0 0 0 0 0 −
√
d3(1− d3)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−
√
d1(1− d1) 0 0 0 0 0 1− d1 0 0

0 −
√
d2(1− d2) 0 0 0 0 0 1− d2 0

0 0 −
√
d3(1− d3) 0 0 0 0 0 1− d3


For any operator σ ∈ B(C3) we use the ancillary system |0〉〈0| and use projection on
this system as P (|0〉〈0| ⊗ σ)P . Then the required operation is

DσD† = Tr1 [(P (|0〉〈0| ⊗ σ)P ) · (|0〉〈0| ⊗ I3)] , (5.15)

where Tr1 is the partial trace with respect to the first system.
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If we had used the extended system as σ ⊗ |0〉〈0| then we would have had to
exchange the order by using a SWAP operator which is given as

USWAP =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


.

The modification of equation 5.15 is

DσD† = Tr1

[
(PUSWAP (σ ⊗ |0〉〈0|)U †SWAPP ) · (|0〉〈0| ⊗ I3)

]
, (5.16)

5.5.1 For a composite ρ ∈ 3⊗ 3 system

Let us consider the most general filtration map ρ 7→ (C⊗D)ρ(C⊗D)†, whereC andD
are both real diagonal matrices.1 Let Alice and Bob be the two parties who are sharing
a state ρ ∈ B(C3⊗C3) = B(HA⊗HB). Both of them use the auxiliary system |0〉〈0|
and apply the corresponding projection operators P and Q on their respective system.
More precisely, the extended system is |0〉A〈0| ⊗ ρ ⊗ |0〉B〈0|. |0〉A, B ∈ Haux

A, B = C3

are the respective auxiliary systems (and spaces) of Alice and Bob.
Let P and Q be the projective measurements for the transformationsσ 7→ CσC†

and σ 7→ DσD† respectively. On the system Haux
A ⊗ HA, Alice use the projection

operator P . Similarly on HB ⊗ Haux
B Bob uses the projection operator Q. Then the

transformation is

|0〉A〈0|⊗ρ⊗|0〉B〈0| 7→ (P⊗Q)(I9⊗USWAP )(|0〉A〈0|⊗ρ⊗|0〉B〈0|)(I9⊗USWAP )†(P⊗Q).

(5.17)
Notice that after USWAP operation, the state is in the space Haux

A ⊗HA⊗Haux
B ⊗HB.

The required state is recovered by taking the product with |0〉A〈0| ⊗ I3 ⊗ |0〉B〈0| ⊗ I3

1A generalised invertible operator S can be written in the polar decomposition S = HU where H
is a positive operator and U is a suitable unitary. Further H should have a spectral decomposition where
the spectrum is positive. Hence S = V1DV2 for some positive diagonal matrix D and unitary operators
V1 and V2. Thus we need to consider the diagonal transformations only.
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and then tracing out all the auxiliary systems.

(C ⊗D)ρ(C ⊗D)† =

TrHaux
A ,Haux

B
[((P ⊗Q)(I9 ⊗ USWAP )(|0〉A〈0| ⊗ ρ⊗ |0〉B〈0|)

(I9 ⊗ USWAP )†(P ⊗Q)
)
× (|0〉A〈0| ⊗ I3 ⊗ |0〉B〈0| ⊗ I3)

]
.

The scheme has been shown in the following Figure 5.1.

A

aux

B

aux

QP

0

BobAlice

A

3
= C

B

3
= C

A
0 0

B
0

Figure 5.1: Schematic diagram for performing the measurement in the3⊗3 shared entan-
gled state ρ

5.6 Conclusions

In this chapter, we have discussed the connection of automorphisms of positive maps
with quantum operations. In this dual picture, the state transforms from one PPT en-
tangled state to another PPT entangled state. It may turn that the entanglement of the
new state is detectable by a given map, while that of the old one is not detectable. The
simple case of such a transformation is a local unitary. However, the non-trivial cases
involve application of general quantum filters. These quantum filters are shown to
correspond to quantum measurements which need not be projective. We have shown
explicitly how these quantum filters can be physically implemented by introducing
ancilla spaces. This gives a concrete physical interpretation of the automorphisms de-
scribed in the earlier chapters.
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Chapter 6

Role of projection operators on
entangled subspaces

In quantum information processing ideally pure states are used as inputs and we get
pure states as output (Nielsen & Chuang (2000)). For non-trivial situations, these states
invariably involve quantum entanglement. The structure and geometry of pure entan-
gled states is well studied in literature (see Bengtsson and Życzkowski (Bengtsson &
Życzkowski (2006))). Though these states are rank one operators, their structure can be
complicated. For the case of mixed states, the situation is qualitatively more difficult.

In Chapter 4 we discussed the concept of UPBs. These are incomplete product
bases of a composite system, which cannot be extended by adding any further prod-
uct vector. Bennett et al (Bennett et al. (1999)) gave a construction of bound entan-
gled states which are normalised projection operators in the orthogonal complement
of the subspace spanned by the UPB. Shortly thereafter, Wallach (Wallach (2002)) and
Parthasarathy (Parthasarathy (2004)) independently looked at the structure of the sub-
space where each normalised vector is an entangled (pure) state. This study was fur-
ther extended by Cubitt, Montanaro and Winter (Cubitt et al. (2008)), where they have
given the maximal dimensions of subspaces where the Schmidt rank of each entangled
state is greater than or equal to some given number. In this Chapter, motivated by the
work of Bennett et al (Bennett et al. (1999)), we study the properties of such subspaces
and the projection operators onto them. We start with a description of UPB and give
the constructions of Parthasarathy (Parthasarathy (2004)) and Bhat (Bhat (2006)). The
subspaces constructed from these structures are written in terms of the orthonormal
basis vectors.

The projection operators on such spaces when normalized, correspond to density
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6. Role of projection operators on entangled subspaces

operators of entangled quantum states. We study the nature of entanglement of such
states. We also construct the subspaces of the above spaces and the projection operators
onto them. The entanglement structure of the states which are normalised projection
operators are also discussed. Using the techniques of Davidson, Marcoux and Radjavi
(Davidson et al. (2008)), we give an independent proof of the main result of (Cubitt
et al. (2008)).

6.1 Unextendable product bases (UPB)

There is no explicit structure of entangled states as such, though partial results regard-
ing the structure of PPT and NPPT states are available. Moreover there is no systematic
way to generate such states. One well studied way to produce PPT entangled states was
produced by Bennett et al (Bennett et al. (1999)) by using UPB.

An incomplete product bases set B in the Hilbert space H = ⊗kj=1Hj is called
unextendable if the space 〈B〉⊥ does not contain any product vector. To be explicit, we
give the key theorem of (Bennett et al. (1999)).

Theorem 6.1.1. Bennett et al. (1999) If in the Hilbert space H of dimension D, as
defined earlier, there is a mutually orthonormal set of unextendible product basis
{|ψj〉 : j = 1, · · · , d}, then the state

ρ =
1

D − d

(
ID −

d∑
j=1

|ψj〉〈ψj|

)
, (6.1)

where ID is the identity operator, is an entangled state which is positive under partial
transpose.

The proof depends heavily on the orthogonality of the basis vectors. If |α〉 ⊗ |β〉 is
a product vector in the UPB, then under partial transpose the projection operator

|α〉〈α| ⊗ |β〉〈β| partial transpose−−−−−−−−→ |α〉〈α| ⊗ |β̄〉〈β̄|

is also a product projection operator. (Throughout this chapter, |z̄〉 ∈ Cn will denote
the vector whose terms are complex conjugates of the corresponding terms of |z〉 ∈
Cn). Hence the sum of the right hand side of equation 6.1 remains positive under
partial transpose. The general multi-partite case is also similar.

The above theory was further extended by DiVincenzo et al (DiVincenzo et al.
(2003)), where some of the above examples are further generalised. Also a character-
isation of the existence of UPBs with the Ramsay number of the orthogonality graph
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6.1 Unextendable product bases (UPB)

was established. Inspite of all these results, there is no systematic method of construct-
ing such bases.

6.1.1 Entangled subspaces

Let H = H1 ⊗ · · · ⊗ Hk, where Hj = Cdj for some finite dj . Wallach (Wallach
(2002)) considered the question of the maximal possible dimension of the subspace
S of H where each nonzero vector is an entangled state. We call such subspaces as
entangled subspaces, as they do not contain any nonzero product vector. He showed
that

Theorem 6.1.2. Wallach (2002) dim S ≤ d1 · · · dk−(d1+· · · dk)+k−1. Furthermore,
this upper bound is attained.

6.1.2 Parthasarathy’s construction

Parthasarathy’s proof of the above theorem is mostly existential, which uses Noether
normalising lemma. Parthasarathy (Parthasarathy (2004)) gave an explicit construction
of such entangled subspaces where the maximal dimension is attained, and thus gave
an independent proof of the theorem.

We follow the above notation and let N = d1 + · · ·+dk−k+1. Choose N distinct
complex numbers λ1, · · · , λN . Let

|uij〉 =


1
λi
λ2
i
...

λ
dj−1
i

 , 1 ≤ i ≤ N, 1 ≤ j ≤ k.

For 1 ≤ i ≤ N , consider |ui1〉 ⊗ · · · ⊗ |uik〉. Denote F = span{|ui〉 , 1 ≤ i ≤ N}.
Consider the subspace S = F⊥.

It has been shown by Parthasarathy (Parthasarathy (2004)) that the above space
does not contain any product vector. Indeed if a nonzero product vector |v〉 = |v1〉 ⊗
· · · ⊗ |vk〉 ∈ S where each |vj〉 ∈ Hj , then

∏k
j=1〈vj|uij〉 = 0 for 1 ≤ i ≤ N . By using

van der Monde determinant, the vector |v〉 has to be equal to zero.
If Ej = {i : 〈vj|uij〉 = 0} ⊆ {1, · · · , N}, then the above construction gives

that
⋃k
j=1Ej = {1, · · · , N}. Hence N ≤

∑k
j=1 |Ej|. By using van der Monade

determinant, it follows that

dim S = d1 · · · dk − (d1 + · · ·+ dk)− k + 1.
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6. Role of projection operators on entangled subspaces

Simple computations show that the basis vectors of F need not be orthogonal, but
the subspaces of F can contain orthonormal basis of product vectors. This is true for
multi-partite systems as well.

6.1.3 Bhat’s construction

For notational convenience, he starts with an infinite dimensional space with a basis
{e0, e1, · · · }. Identify Hr = 〈{e0, · · · , edr−1}〉, 1 ≤ r ≤ k, where k is the total
number of partitions of H = H1 ⊗ · · · ⊗Hk.

Let N =
∑k

r=1(dr − 1). For 0 ≤ n ≤ N , let In = {i = (ir)
k
r=1, 0 ≤ ir ≤

dr − 1,
∑k

r=1 ir = n}.
Let I =

⋃N
n=0 In. For i ∈ I, let ei = ⊗kr=1eir .

For 0 ≤ n ≤ N , let Hn = 〈{ei : i ∈ In}〉, and {ei : i ∈ In} is an orthonormal basis
for Hn. Further H =

⊕N
n=0 Hn and {ei : i ∈ I} is an orthonormal basis for H. Let

un =
∑

i∈In ei, 0 ≤ n ≤ N . Let T(n) = Cun, then H(n) = S(n)
⊕

T (n), where

S(n) = span{ei − ej : i, j ∈ In}.

Clearly S(n) is also equal to all the sums
∑

i∈In αiei such that
∑
αi = 0. Let S =⊕

S(n) and T =
⊕

T(n). The H = S ⊕ T and S⊥ = T which is the F in the
Parthasarathy’s construction as shown in the previous section.

Theorem 6.1.3. Bhat (2006) S is a completely entangled subspace of maximal dimen-
sion.

Theorem 6.1.4. Bhat (2006) The set of product vectors in S⊥ id {czλ : c ∈ C, λ ∈
C ∪ {∞}} where

zλ =
k⊗
r=1

(e0 + λe1 + · · ·+ λdr−1edr−1), λ ∈ C

z∞ =
k⊗
r=0

edr−1 .

6.1.4 Subspace with bounded Schmidt rank

Motivated by the above works, Cubitt, Montanaro and Winter (Cubitt et al. (2008))
considered the subspaces where each vector is entangled and of Schmidt rank ≥ r.
Since Schmidt rank of a state vector is uniquely defined for the bipartite cases only,
they confined their work to H = H1 ⊗H2. It was shown that
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6.2 Projection for bipartite systems

Theorem 6.1.5. Cubitt et al. (2008) The maximal dimension of the subspace S of H
where each nonzero vector is of Schmidt rank is≥ r is given by (d1−r+1)(d2−r+1).

6.2 Projection for bipartite systems

Theorem 6.2.1. Let H be the bipartite system defined as above.

1. The (normalised) projection operator onto the maximally entangled subspace S

is not positive under partial transpose.

2. F does not contain any unextendable orthonormal product basis.

To prove this, we need the explicit construction of the basis vectors of Parthasarathy’s
system Parthasarathy (2004). When H = Cn ⊗ Cn, Parthasarathy gave an explicit
construction of the orthonormal set of basis vectors of S. For completeness, we give
the construction. As mentioned above choose (2n − 1) distinct complex numbers
λ1, · · · , λ2n−1. Let

uλj =
n−1∑
x=0

λxj |x〉.

Consider F = span{uλj ⊗uλj : 1 ≤ j ≤ 2n− 1} and set S = F⊥. By the construction
S is a completely entangled subspace of dimension (n2 − 2n + 1). The basis vectors
are given by:

• Antisymmetric basis vectors:

1√
2

(|xy〉 − |yx〉), 0 ≤ x < y ≤ n− 1. (6.2)

• For 2 ≤ j ≤ n− 1 and j is even, vectors are of the forms

1√
j(j + 1)

 j
2
−1∑

m=0

(|m, j −m〉+ |j −m,m〉)− j
∣∣∣∣j2 , j2

〉 , and (6.3)

1√
j

j
2
−1∑

m=0

exp

(
4πımp

j

)
(|m, j −m〉+ |j −m,m〉), 1 ≤ p ≤ j

2
− 1. (6.4)

• For 2 ≤ j ≤ n− 1 and j is odd, vectors are of the form:

1√
j + 1

j−1
2∑

m=0

exp

(
4πımp

j + 1

)
(|m, j−m〉+|j−m,m〉), 1 ≤ p ≤ j − 1

2
. (6.5)
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6. Role of projection operators on entangled subspaces

• For n ≤ j ≤ 2n− 4 and j is even, vectors are of the form:

1√
(2n− 2− j)(2n− 1− j)

 2n−2−j
2
−1∑

m=0

(|j − n+m+ 1, n−m− 1〉

+|n−m− 1, j − n+m+ 1〉)− (2n− 2− j)
∣∣∣∣j2 , j2

〉)
, and

(6.6)

1√
2n− 2− j

2n−2−j
2
−1∑

m=0

exp

(
4πımp

2n− 2− j

)
(|j − n+m+ 1, n−m− 1〉

+|n−m− 1, j − n+m+ 1〉), 1 ≤ p ≤ 2n− 2− j
2

− 1.

(6.7)

• For n ≤ j ≤ 2n− 4 and j is odd, vectors are of the form:

1√
2n− 1− j

2n−1−j
2
−1∑

m=0

exp

(
4πımp

2n− 1− j

)
(|j − n+m+ 1, n−m− 1〉

+|n−m− 1, j − n+m+ 1〉) , 1 ≤ p ≤ 2n− 1− j
2

− 1.

(6.8)

Proof. Let {Pj : 1 ≤ j ≤ (d− 1)2} be the projection operators for the corresponding
the above basis vectors written in some order. Let PS =

∑(d−1)2

j=1 Pj be the projection
onto the maximally entangled space S. Let P1 = 1

2
(|0〉〈0| ⊗ |1〉〈1| − |0〉〈1| ⊗ |1〉〈0| −

|1〉〈0| ⊗ |0〉〈1| + |1〉〈1| ⊗ |0〉〈0| be one of the projection operators corresponding to
x = 0 and y = 1 in the equation (6.2). We use the following lemmas whose proofs are
obvious.

Proposition 6.2.1. A square matrix A is positive semidefinite if and only if all its
principal sub-minors are positive semidefinite.

Proposition 6.2.2.

(
0 −1

2

−1
2
∗

)
6≥ 0, where ∗ denotes any arbitrary number.

We use this to show that in the partial transpose of PS, there is a 2 × 2 principal
sub-minor of the form as in the proposition (6.2.2).

Suppose PS =
∑n−1

q,r,s,t=0 pq,r,s,t|q〉〈r| ⊗ |s〉〈t|. Since j ≥ 2 none of the projection
operators coming from equations (6.2 – 6.8) contributes any nonzero coefficient of
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6.3 Orthonormal basis of product vectors

|0〉〈0| ⊗ |0〉〈0|. In other words p0,0,0,0 = 0. Similar reasons show that the coefficients
p0,1,1,0 = p1,0,0,1 = −1

2
.

Under partial transpose,

P PT
S =

n−1∑
q,r,s,t=0

pq,r,s,t|q〉〈r| ⊗ |t〉〈s| =
n−1∑

q,r,s,t=0

pq,r,t,s|q〉〈r| ⊗ |s〉〈t|.

Thus we get a principal sub-minor of the form

0|0〉〈0| ⊗ |0〉〈0| − 1

2
|0〉〈1| ⊗ |0〉〈1| − 1

2
|1〉〈0| ⊗ |1〉〈0|+ p1,1,1,1|1〉〈1| ⊗ |1〉〈1|.

As shown in the proposition (6.2.2), this matrix is not positive definite. Hence by
proposition (6.2.1), the result follows.

The second part of the theorem follows immediately by using the first part. If there
exists such a UPB, then the right hand side of the equation (6.1) would give a positive
multiple of the projection operator PS which will be positive under partial transpose,
contradicting the theorem (6.2.1). Hence the result follows.

Let H = Cn ⊗ Cn. Let the basis vectors due to the construction of Parthasarathy
(2004) are enumerated as {|v1〉 , · · · ,

∣∣v(d−1)2
〉
} where the first 1

2
n(n − 1) are the an-

tisymmetric vectors. Let Pvj = |vj〉 〈vj| are the corresponding projection operators.
The above computation shows that

Corollary 6.2.1. Any positive operator of the form 1∑(d−1)2

j=1 pj

∑(d−1)2

j=1 pjPvj , where

pj > 0 for all j, is not positive under partial transpose.

Proof. The theory follows from the above proof. Under partial transpose, we are going

to get a sub-matrix of the form

(
0 −p1

1
2

−p1
1
2

∗

)
, where ∗ denotes any number. Such

submatrix can not be positive semidefinite. Hence, the result follows.

6.3 Orthonormal basis of product vectors

Remark 6.3.1. The space F is independent of the choice of λ’s.

Though the basis vectors of F are not orthonormal, we can still extract a orthonor-
mal set out of it. These vectors span a subspace of F.
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6. Role of projection operators on entangled subspaces

Theorem 6.3.1. This subspace is of dimension d.

We prove the theorem by a series of lemmas. We begin with a set up as in the pre-
vious subsection 6.1.2 and try to check whether a UPB exists for the space orthogonal
complement of the space of entangled vectors. Take

vλ =

(
d1−1∑
j1=0

λjej1

)
⊗ · · · ⊗

(
dk−1∑
jk=0

λjejk

)
=

∑
j1,··· ,jk

λj1+···+jkej1 ⊗ · · · ⊗ ejk

=
ν∑

n=0

λn

 ∑
j1,··· ,jk

j1+···+jk=n

ej1 ⊗ · · · ⊗ ejk


=

ν∑
n=0

λn

(∑
i∈In

ei

)

=
ν∑

n=0

λnun where un =
∑
i∈In

ei.

Lemma 6.3.1. 〈vλ, vµ〉 = δλµ if and only if λ̄µ is a root of unity.

Proof. Given vλ =
∑ν

n=0 λ
nun, where un =

∑
i∈In ei, we have

〈vλ, vµ〉 =
∑
n

(λ̄µ)n‖un‖

= (λ̄µ)n|In|.

This shows that (λ̄µ)n is a root of the equation

0 =
ν∑

n=0

Xn|In| = (1 +X + · · ·+Xd1−1) · · · (1 +X + · · ·+Xdk−1).

Roots of this equation are respectively d1, · · · , dkth roots of unity (except 1 itself).

Let us consider the bipartite case Cd⊗Cd. If we choose the set Λ = {λ, λ1, · · · , λd}
then λ̄λj’s are roots of unity. It is easy to check that the orthogonality relation requires
the λ = exp(ıθ).

Theorem 6.3.2. Projection onto this subspace is positive under partial transpose and
is a separable state.
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6.3 Orthonormal basis of product vectors

Proof. The PPT property follows directly from theorem 6.1.1.

Remark 6.3.2. Moreover the analogous theorem for multipartite setup with a general
H = H1 ⊗ · · · ⊗Hk is also true.

Let us consider the case when d = 3 and the λs are from the set {1, ω, ω2}, where ω

is a complex cube root of unity. Then the orthogonal vectors are |u1〉 =

1
1
1

⊗
1

1
1

,

|u2〉 =

 1
ω
ω2

 ⊗
 1
ω
ω2

 and |u3〉 =

 1
ω2

ω

 ⊗
 1
ω2

ω

. The projection operator onto

the orthogonal complement of the space spanned by |uj〉s is given by

P = I9 − (Pu1 + Pu2 + Pu3);

where Puj = |uj〉〈uj|. The range of this projection is spanned by the following product
vectors. 1

1
1

⊗
 1
ω
ω2

 ,

1
1
1

⊗
 1
ω2

ω


 1
ω
ω2

⊗
1

1
1

 ,

 1
ω2

ω

⊗
1

1
1


 1
ω
ω2

⊗
 1
ω2

ω

 ,

 1
ω2

ω

⊗
 1
ω
ω2


Thus the projection P (and hence the state formed by the normalised projection oper-
ator) is a separable state. The general result follows in the same way. In this case the
space is spanned by the set of product vectors {

∣∣uλj〉 ⊗ |uλk〉 : j 6= k, 1 ≤ j, k ≤
d− 1}.

For the general bipartite case, as above, let

Λθ = {exp(ıθ), exp(−ıθ)ω, · · · , exp(−ıθ)ωd−1},

where ω is a d-th root of unity (not equal to 1). There are infinitely many different
choices of the set based on the choice of θ. However, projection operators correspond-
ing to the above set is local unitarily equivalent with projection operator corresponding
to the set {1, ω, · · · , ωd−1}, with the local unitary operator is given as
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
1

e−ıθ

. . .
e−ı(d−1)θ

⊗


1
e−ıθ

. . .
e−ı(d−1)θ

 .

For the case H = Cd1 ⊗ Cd2 , where d1 6= d2, we have the λ̄λj’s are the complex
roots of the equation (1 +X + · · ·+Xd1−1)(1 +X + · · ·+Xd2−1) = 0. Let ωd1 is a
d1th root of unity, and ω2 is a d2th root of unity. It can be seen easily that the vectors

1
ωd1

...
ωd1−1
d1

⊗


1
ωd1

...
ωd2−1
d1

 and


1
ωd2

...
ωd1−1
d2

⊗


1
ωd2

...
ωd2−1
d2

 can not be orthogonal to each other

unless they are powers of each other. This can only happen if gcd(d1, d2) 6= 1. Even
then, the separability condition holds for the above construction. Further, the above
constructions yield the product vectors which spans the projection operator. Hence we
can conclude that

Theorem 6.3.3. Any normalised projection operator constructed by the method of
theorem 6.3.2 (as well as of the remark 6.3.2) is separable.

6.4 Subspaces of fixed Schmidt rank

Schmidt number is an important tool in quantum information and is a measure of entan-
glement, which we have discussed in 1.2.1.4. As mentioned, there is no generalisation
in multi-partite setting. In this section, we try to determine the maximal dimensions of
subspaces of H1⊗H2 where each state vector is of Schmidt rank greater than or equal
to a fixed number r.

Let |ψ〉 =
∑

i,j cij |i〉 ⊗ |j〉 be the Schmidt decomposition of the vector |ψ〉,
where |i〉 and |j〉 are orthonormal basis of H1 and H2 respectively. This space can
be identified with the B(H2,H1). Thus the vector |ψ〉 is mapped to the operator
M(ψ) = [[cij]]i=1,··· ,d1, j=1,··· ,d2 .

To move further, we need the following identification. Let H = H1 ⊗ H2 be of
finite dimensional space. Then

H1 ⊗H2
Γ−→ B(H2,H1)

|u〉 ⊗ |v〉 ↔ |v〉 〈u|
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6.4 Subspaces of fixed Schmidt rank

Since we are dealing with a finite dimensional situation, the right hand side gives a
matrix of order d2 × d1.

Lemma 6.4.1. The set of all states in H1 ⊗H2 with Schmidt rank r is isomorphic to
the set of all d1 × d2 density matrices with rank r.

Proof. If |ψ〉 =
∑k

j=1 pj |uj〉 ⊗ |vj〉, where pi ≥ p2 ≥ · · · ≥ pk > 0. {|uj〉} and
} |vj〉} forms orthonormal bases of H1 and H2 respectively.

Consider unitary operators U and V of order d1 and d2, and the map Z 7→ UZV 4

in Md1,d2 . Notice that

〈UZ1V |UZ2V 〉 = TrV †Z†1Z2V = TrZ†1Z2 = 〈Z1|Z2〉.

Clearly rank Z = rank UZV . Thus

rank Γ |ψ〉 = rank
k∑
j=1

pj |uj〉 〈vj|

= rank
∑
j

pjU |uj〉 〈vj|V †

= rank
∑
j

pj |ej〉 〈fj|

= rank


p1

p2

. . .

pk


= k

We are going to calculate the exact dimension of the maximal subspace where
every vector is of Schmidt rank greater than or equal to k.

Definition 6.4.1 (Davidson et al. (2008)). A subspace V of B(H2,H1) is called k-
transitive if for every choice of k-linearly independent vectors |x1〉 , · · · , |xk〉 in H1,
there exists k linearly independent vectors |y1〉 , · · · , |yk〉 in H2, there is aA ∈ B(H2,H1)

such that A |xj〉 = |yj〉.
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6. Role of projection operators on entangled subspaces

If V is a (k − 1) transitive subspace. Then the space V⊥ maps to a subspace of
H1 ⊗H2 where each vector is of Schmidt rank k.

Theorem 6.4.1 (Davidson et al. (2008)). The minimal dimension of a (k−1)-transitive
subspace of the above space is (k − 1)(d1 + d2 − k + 1).

This shows that

Theorem 6.4.2. Maximal dimensional of the subspace of H1⊗H2, where each vector
is of Schmidt rank greater than or equal to k, is d1d2 − (k − 1)(d1 + d2 − k + 1).

Proof. Follows from the theorem above.

6.5 Conclusions

In this chapter, we have shown the characterisation of the states coming from the nor-
malised projection operators of subspaces of Hilbert spaces. Further we have given a
proof of the maximal dimension of the subspace where vectors are of rank greater than
or equal to some fixed number k.
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Appendix A

Families of positive maps which are
not completely positive and their
power to detect entanglement

In the course of our work, we have analyzed a large number of positive maps which are
not completely positive, with a view to study their ability to detect quantum entangle-
ment. In this process, we have gained insights and have found a number of interesting
results. Some of these results are not included in the main course of the thesis and
therefore we discuss them in this appendix. As it turns out, some of these results are
negative.

We begin with a survey of the geometric properties of positive maps. The set of
Hermitian operators in the space Cn forms a real vector space. This space can be
identified with Rn2 . The set of states forms a closed space Ω in the subspace of Rn2−1.
Any positive map can be considered as a map Rn2 → Rn2 which embeds Ω to itself.
Even though the complete structure of Ω is not known in general, partial insights are
available. These in turn have been exploited to generate positive maps. Such maps can
be completely positive, and decomposable as well.

Any linear map which embeds Ω to itself gives rise to a linear map at the matrix
level. We notice that any affine map with the above property also gives rise to a linear
map at the matrix level. This indicates the complexity of the geometry of maps. Using
the above geometric construction and the methodology developed in the Chapter 4, we
identify some of the maps as completely positive and some as decomposable. Hence
these maps cannot be used for detecting PPT entangled states.

In the set of positive maps we define a partial ordering “>”. This ordering can be
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A. Families of positive maps which are not completely positive and their power
to detect entanglement

used to compare the powers of two different maps in terms of detecting entanglement.
Given a map φ : B(Cn)→ B(Cn) let Dφ = {ρ ∈ B(Cn ⊗Cn) is a state : (1⊗ φ)ρ 6≥
0} be the set of entangled states detected by φ. We show that, if φ1 > φ, then the
Dφ1 ⊂ Dφ. We apply it on some of the known classes of positive maps and identify
the maps φ which gives the largest Dφ in size. This process is weaker than the method
of finding extremal points of the set of maps. However, it is easier to use. Thus it can
be used for identifying the potential classes of extremal points of positive maps.

A.1 Geometry of maps for three-dimensional systems

We present a discussion of the geometry of maps in three dimensions with a view to
get insights into the Choi map which we have used extensively in our work. This con-
struction was initially proposed by Kossakowski (Kossakowski (2003)) and later used
by other authors (example Simon et al. (2006), Simon et al. (2009)). This geometrical
construction also works for generalizations of the Choi map due to Ha and Kye.

We can represent all 2× 2 density matrices as:

ρ =
1

2
(I + x.σ),

where x = (x1, x2, x3) and σ = (σ1, σ2, σ3) are the Pauli matrices. Hermiticity gives
that the vector x ∈ R and positivity gives that ‖x‖ ≤ 1.
The picture is more difficult for higher dimension. We extend this idea in higher di-
mension by representing n× n density matrices as a real linear combination of n2 − 1

traceless matrices along with identity. We need to understand structure of the convex
space Ω ⊂ Rn2−1. The traceless matrices are of the following types:

• σ3 type of matrices.

J1 = diag(1,−1, 0, · · · , 0)
√

3J2 = diag(1, 1,−2, 0, · · · , 0)
...√

(n−1)(n−2)
2

Jn−2 = diag(1, 1, 1, · · · , 1,−(n− 2), 0)√
n(n−1)

2
Jn−1 = diag(1, 1, 1, · · · , 1,−(n− 1))

• σ1 and σ2 types: For 1 ≤ i0 < j0 ≤ n

(M(i0, j0))i,j = δii0δjj0 + δij0δji0

(N(i0, j0))i,j = i(δii0δjj0 − δij0δji0)
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A.1 Geometry of maps for three-dimensional systems

• Rename and relabel all n2 − 1 matrices as J1, · · · , Jn2−1.

Thus any Hermitian operator A can be represented as

A = x0

(
I +

n2−1∑
k=1

xkJk

)
(A.1)

where x0 =
1

n
Tr(ρ)

xk =
1

2x0

Tr(Jkρ), k = 1, 2, · · · , n2 − 1.

In the three dimensional case the corresponding basis of generalised Pauli matrices
gives the trace zero Gell-Mann matrices along with identity matrix I3. Gell-Mann
Matrices are given by

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0


λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0


λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


The representation looks like

A = x0

(
I3 +

8∑
i=1

xiλi

)
;

where xi ∈ R and are given by

x0 =
1

3
Tr(A)

xi =
1

2x0

Tr(Aλi) i = 1, · · · , 8.

If we restrict ourselves to the study of density operators only, then x0 = 1 and each
state is mapped to a unique point (x1, · · · , x8). Let

Ω = {x = (x1, · · · , x8)↔ ρ is a trace class operator}. (A.2)
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A. Families of positive maps which are not completely positive and their power
to detect entanglement

Let ((aij)) ∈M3(C). The major coefficients are given as
x0 = a11+a22+a33

3

x3 = a11−a22
2x0

x8 = a11+a22−2a33
2x0
√

3

(A.3)

The other coefficients are the real or imaginary parts of the off diagonal elements di-
vided by 2x0.

Conversely given x = (x1, · · · , x8), and x0 = 1
3
; the corresponding density opera-

tor is of the form

1

3

1 + x3 + x8√
3

x1 − ix2 x4 − ix5

x1 + ix2 1− x3 + x8√
3

x6 − ix7

x4 + ix5 x6 + ix7 1− 2 x8√
3

 . (A.4)

Proposition A.1.1. Any affine transformation φ on R8 gives rise to a linear map Tφ

Proof. Any affine transformation can be written as x 7→ B.x + c, where B is a real
operator acting on R8 and c = (c1, · · · , c8) is a fixed translation.

Let φ : x 7→ Bx, By linearity of the above transformations, Tφ is a linear map on
B(C3).

Let φ : x 7→ x + c; where c = (c1, · · · , c8) is a fixed translation. Now for any
arbitrary Hermitian matrix A ∈M3 we have

Tφ : A 7→ A+ CTr(A), where C =

c3 + c8√
3

c1 − ic2 c4 − ic5

c1 + ic2 −c3 + c8√
3

c6 − ic7

c4 + ic5 c6 + ic7 −2 c8√
3

 . (A.5)

C is a constant matrix determined by c and trace is linear map. Combining, we get the
result.

The above method can easily be extended to any arbitrary finite dimension n. Fur-
ther, it shows that any such affine map gives rise to a Hermiticity preserving map.
Notice that, the above proposition does not deal with the positivity of the map.

Now any map Ω ↪→ Ω maps a positive operator to a positive operator. Since any
positive semi-definite Hermitian operator can be diagonalised by a unitary transfor-
mation, we need to consider only the diagonal cases. Apart from the identity matrix,
there are two diagonal basis matrices available, namely λ3 and λ8. Now any positive
semi-definite trace class operator can be written as a convex combination of three ma-
trices Diagonal[1, 0, 0], Diagonal[0, 1, 0], and Diagonal[0, 0, 1]. These three matrices
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A.1 Geometry of maps for three-dimensional systems

correspond to three points
(

3
2
,
√

3
2

)
,
(
−3

2
,
√

3
2

)
and

(
0,−
√

3
)

in the λ3 − λ8 plane in

R8, which are the three vertices of an equilateral triangle centred at origin denoted by
4. The origin represents the maximally mixed state. Now we need to find all the maps
φ : 4 ↪→ 4 so that the lifting in the operator space Tφ is positive and linear. The
lifting of the maps is given in the following diagram.

M3(C)
Th̃−−−→ M3(C)y y

Ω
h̃−−−→
⊂

Ω

∪
x ∪

x
4 φ−−−→

⊂
4

We are going to use Th, instead of Th̃ when the embedding is obvious, i.e. it is a
reflection in (λ3, λ8) plane.

The largest disk which can be embedded in this equilateral triangle 4 is of radius√
3

2
. Similarly the smallest disk, in which this triangle can be embedded is of radius√

3. For n = 3 the radii of in-sphere and out-sphere of the convex subset Ω ⊂ Rn2−1

is in 1 : 2.
In general, Ω is a simplex in Rn2−1. The same argument as above gives,

Proposition A.1.2. The radii of in-sphere and out-sphere of the convex subset Ω ⊂
Rn2−1 is in 1 : (n− 1).

It is clear from the correspondence between n × n Hermitian unit trace matrices
and points in Rn2−1, that any linear map preserving trace and Hermiticity are in in 1-1
correspondence with the homogeneous elements of L(Rn2−1,Rn2−1)- which maps Ω

to itself. SU(n) operations give a rotation of in Rn2−1. These rotations form a proper
subset of orthogonal group O(n2− 1). Now given any (n2− 1)× (n2− 1) orthogonal
matrix; testing whether it maps Ω to itself is in general nontrivial. However in certain
cases it is easy.

Any element R ∈ O(n2 − 1) maps the out-sphere of Ω onto itself. Now reducing
it by a scale factor n − 1 it maps the out sphere to in sphere. Now any point inside
the in-sphere is a valid state and no point outside the out-sphere is a valid state. So we
have:

Theorem A.1.1. Kossakowski (2003); Simon et al. (2006); Simon et al. (2009) Every
map represented by a matrix of the form 1

n−1
R where R ∈ O(n2 − 1) is positive.
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to detect entanglement

The importance of the above theorem is that, many of the important classes of maps
are of the above form. In particular for Choi’s map (Choi (1975b)), rotation matrix is
given by a rotation in (λ3, λ8) plane combined with a reflection with respect to the
(λ3, λ8) plane. Similarly a general rotation in (λ3, λ8) gives rise to the class of maps
given by Ha and Kye (Ha & Kye (2012)).

A.2 Comparison of maps

We first define a partial order on the set of positive maps. This in turn gives a way to
compare power of detecting entanglement between maps.

Definition A.2.1. Given two positive maps φ1 and φ2, we denote φ1 > φ2 if (φ1 − φ2)

is a completely positive map.

Definition A.2.2. Let

Dφ = {ρ ∈ B(Cn ⊗ Cn) is a state : (1⊗ φ)ρ 6≥ 0}

be the set of entangled states detected by φ. φ is said to be more powerful than another
positive map φ1, if Dφ1 ⊂ Dφ. This shows that for any positive semidefinite operator
ρ (1 ⊗ φ1)ρ 6≥ 0 implies that (1 ⊗ φ)ρ 6≥ 0, i.e. any entangled state detected by the
map φ1 will always be detected by φ.

Using this definition, we can see that if the difference (φ1 − φ) is a completely
positive map, we have for any density operator ρ acting an appropriate product space

1⊗ (φ1 − φ)ρ ≥ 0

⇒ 〈x|1⊗ (φ1 − φ)ρ|x〉 ≥ 0 ∀x
⇒ 〈x|(1⊗ φ1)ρ|x〉 ≥ 〈x|(1⊗ φ)ρ|x〉 ∀x

Hence any entangled state identified by φ1 can always be identified by φ. The converse
need not be true in general. In case the converse is true, we call φ and φ1 are of equal
power to detect entanglement.

It can be possible that this difference is not a positive map. However, if φ is a
positive map, then for any ε > 0, εφ is also a positive map. Hence we can use the
same argument with the difference (φ1 − εφ), by some suitable choice of ε such that
the difference is a CP map. Downside is, we may have to deal with non-diagonal
elements. This of course breaks the partial order structure. However, this gives an
advantage if we restrict our attention to detecting PPT entangled states only. Thus we
modify the definition A.2.2 as
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Definition A.2.3. An indecomposable positive map φ is stronger than a map φ1 for
detecting PPT entangled states if there exists a constant ε such that (φ1 − εφ) is a
decomposable map.

Notice that, for any PPT state ρ, we have 1 ⊗ (φ1 − εφ)ρ ≥ 0. Thus, we can use
the same logic once again. However, in general, it is difficult to determine whether a
given map is decomposable or not.

The above technique is weaker than detecting extremality. However, since it is
easier, it can be used to detect stronger maps from a class of maps from the point of
view of entanglement detection. We can show various classes of maps and detect the
stronger ones from them. We give a few examples of the classes of maps available in
literature and try to detect the stronger members of the class.

Example A.2.1. We consider the class of maps discovered by Choi (1975b) (written in
example B.2.3). The map is given as follows

Sµ :

a11 a12 a13

a21 a22 a23

a31 a32 a33

 7→
 a11 −a12 −a13

−a21 a22 −a23

−a31 −a32 a33

+ µ

a33 0 0

0 a11 0

0 0 a22

 . (A.6)

The class of maps is positive for all µ ≥ 1. Størmer discovered a class of operators
dependant on µ which are positive under partial transpose but not positive under the
above map. The map for µ = 1 was shown to be extremal by Choi & Lam (1977/78).
Using the above method, we have

(Sµ − S1)

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = (µ− 1)

a33 0 0

0 a11 0

0 0 a22

 .

For µ > 1 right hand side gives a completely positive map (µ − 1 > 0 and for any
positive operator the diagonal elements are always positive, and hence their rear-
rangements as well). Hence the map S1 is more powerful to detect entangled state
than all other Sµ and any entangled state detected by Sµ is detectable by S1.

Example A.2.2. Kye (1992) made one of the generalisation of Choi’s map and ex-
tremality of one of the subclass was shown by Osaka (1992) (shown in the B.2.5). A
further generalisation of the above was made by Ha (2002, 2003). For completeness,
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to detect entanglement

we write the map as follows.

Sx,y,z :

a11 a12 a13

a21 a22 a23

a31 a32 a33

 7→
 a11 −a12 −a13

−a21 a22 −a23

−a31 −a32 a33

+

xa33 0 0

0 ya11 0

0 0 za22

 .

(A.7)
Ha showed that the above map is positive provided xyz ≥ 1 where x, y, z > 0. The
example of Choi (1975b) S1 is achieved when x = y = z = 1 and Kye - Osaka’s
extremal map is derived when xyz = 1. We want to show that the map Sx,y,z for
xyz > 1 is weaker than the map Sx′,y′,z′ when x′y′z′ = 1 for a suitable choice of
x′, y′, z′; in the above sense of detecting entanglement.

It is sufficient to prove that there exists a point (x′, y′, z′) with x′ ≤ x, y′ ≤ y, z′ ≤
z and x′y′z′ = 1. Using the method as above, we can easily see that the bi quadratic
form corresponding to Sx,y,z − Sx′,y′,z′ is a sum of squares of quadratic forms. Hence
the map Sx,y,z − Sx′,y′,z′ is completely positive.

Without loss of generality we can assume that x ≥ y ≥ z. Set z′ = min{1, z}. Two
possibilities may arise.
Case I: z′ = 1. That means x ≥ y ≥ z ≥ 1. We can simply put x′ = y′ = z′ = 1, to
get the required condition.
Case II: Let z′ = z, i.e. z < 1. Choose y′ = y and put x′ = 1

yz
≤ x, to satisfy all the

conditions.1

This example was further generalised by Ha for arbitrary dimensions, as shown
in the example B.2.6. We use the same notation and consider the case for dimension
d = 3. Here we have two situations:

1. When p0 = 1 we have p1p2p3 ≥ 1. This is the same case as discussed earlier,
with x, y, z is replace by p1, p2, p3. The extremal maps are given by the p1p2p3 =

1.

2. When 1 < p0 < 2, then 2− p0 < 1. Put (2− p0)3 = 1
s
. Clearly s ≥ 1. We have

p1p2p3 ≥ 1
s
; i.e. sp1p2p3 ≥ 1. Now put x = sp1, y = p2 and z = p3. Hence

the case is as in the theorem 3. So we can have x′, y′, z′ with the required
properties. Now replace p′1 = x′

s
, p′2 = y′ and p′3 = z′. Since s > 1 the extremal

points lie on the surface p1p2p3 = 1
s
.

1The proof can also follow the line shown by Lewenstein et al. (2000).
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By repeatedly combining the variables as above we get the general result for di-
mension d.

Theorem A.2.1. For the generalised Ha map, as given in example B.2.6, we have the
following two classes of maps which are stronger than the other maps of the same
category.

1. If p0 = d− 2, then p1 · · · pd = 1.

2. If p0 > d− 2, then p1 · · · pd = (d− 1− p0)d.

It can happen that two given maps are not comparable. Since our object is to detect
PPT entangled states, we can drop the condition of completely positivity from the
definition A.2.2. Suppose the difference is a positive decomposable map. Then for any
PPT state ρ, we have 1⊗ (φ1− εφ)ρ ≥ 0. Thus, we can use the same logic once again.
However, in general, it is difficult to determine whether a given map is decomposable
or not.

Example A.2.3. Another important generalisation of Choi’s map is given by Cho et al.
(1992) and written in B.2.4. Let us denote the map as φa,b,c. Recently it has been shown
that a subclass of the maps, namely the case when 0 < a < 1, a + b + c = 1, bc =

(1 − a)2, has been shown to be optimal Ha & Kye (2011), and exposed in Ha & Kye
(2011). Our method gives that the above class is ‘the’ strongest among this class of
maps, and all other maps are weaker than the these maps. We achieve it by steps.

Case I Let a = 1. Then from the conditions we get that b+ c ≥ 1, 0 ≤ bc < 1
4
. Assume

that b ≥ 1. Then for any matrix ((xij), we get

(φ1,b,c − φ1,1,0) ((xij)) =

(b− 1)x22 + cx33

(b− 1)x33 + cx11

(b− 1)x11 + cx22

 .

The blank spaces denote zero. By our choice of b ≥ 1, c > 0 Since for any
positive semi-definite operator the diagonal elements are always greater than or
equal to zero, we can see that the map (φ1,b,c − φ1,1,0) is a completely positive
map. Hence by the earlier argument, φ1,1,0 is more powerful than φ1,b,c when
b ≥ 1. φ1,1,0 is a standard example of Choi’s map which is extremal. Similarly
when c ≥ 1 we use the map φ1,0,1 (which is again extremal) and come to the
similar conclusion.
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Case II By the previous case we need to look at the points a, b, c so that a = 1, b+c = 1.
We know that, the two extremal maps are φ1,1,0 and φ1,0,1. Moreover the map
φ1, 1

2
, 1
2

is a decomposable map. 1 Consider the case of a = 1, b > 1
2
, c < 1

2
.

(φ1,b,c − εφ1,1,0) ((xij))

=

(
(1− ε)x11 + (b− ε) x22 + cx33 −(1− ε)x12 −(1− ε)x13

−(1− ε)x21 (1− ε)x22 + (b− ε)x33 + cx11 −(1− ε)x23
−(1− ε)x31 −(1− ε)x32 (1− ε)x33 + (b− ε)x11 + cx22

)

= (1− ε)
(
x11 + b−ε

1−ε
x22 + c

1−ε
x33 −x12 −x13

−x21 x22 + b−ε
1−ε

x33 + c
1−ε

x11 −x23
−x31 −x32 x33 + b−ε

1−ε
x11 + c

1−ε
x22

)
We need to find whether there exists any ε > 0 satisfying the above conditions.
It can be checked that the map φ1, b−ε

1−ε ,
c

1−ε
is a P map of Kye type as it satisfies

the first three conditions of B.2.4. However, to taste the decomposability we note
that the conditions

(b− ε)c
(1− ε)2

≥ 1

4
, provided


b+ c = 1
1
2
< b ≤ 1

0 ≤ c < 1
2

;

is satisfied by the solution ε = (b− c). Thus the corresponding subtraction gives
a decomposable map and the conditions are satisfied.

Case III Suppose a > 1, and a+ b+ c = 2. Without loss of generality, assume b > c, and
use φ1,1,0.

(φa,b,c − εφ1,1,0) ((xij)) = (1− ε)φa−ε
1−ε ,

b−ε
1−ε ,

c
1−ε

((xij)).

1Decomposition of φ1, 12 , 12 is given by

φ1, 12 ,
1
2
((xij)) =

 x11 −x12

2 −x13

2

−x21

2 x22 −x23

2

−x31

2 −x32

2 x33

+
1

2

x22 + x33 −x12 −x13
−x21 x33 + x11 −x23
−x31 −x32 x11 + x22

 .

The first map ((xij)) 7→

 x11 −x12

2 −x13

2

−x21

2 x22 −x23

2

−x31

2 −x32

2 x33

 is a CP map, where as the second map ((xij)) 7→

x22 + x33 −x12 −x13
−x21 x33 + x11 −x23
−x31 −x32 x11 + x22

 is a well known CCP map known in literature as reduction map.
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A.3 Comparison between affine maps

Notice that it is of the type of Kye map and satisfies the first two conditions
of positivity. Again Choosing the point ε = (b − c), we see that the equality
bc = (2−a)2

4
holds which makes the resultant map decomposable. Hence the

result.

Case IV Hence the most important part seems the case when 0 < a < 1 and a+b+c = 2.
We need to check the conditions for this case only, which seems not possible.

For a single ε the calculations are like the earlier ones. However, the third
condition gives that b′c′ ≥ (1−a′)2, which implies (b−ε)c ≥ (1−a)2. However
if we assume bc = (1− a)2 from the beginning, as in Ha & Kye (2011), then this
method does not work for any ε.

A.3 Comparison between affine maps

In this section we use the methods of Section A.1 to produce examples of positive
maps which corresponds to affine transformations. We use the techniques of Section
A.2, we can identify stronger maps in terms of detecting entanglement. As a side
result, we show that ’all’ maps of example B.2.4 correspond to a certain rotation in R8.

We use this method to check the decomposability of some of the entanglement wit-
nesses described by Chruściński & Kossakowski (2009). In this paper they discussed
about the most generalised form of witnesses generated by rotation and affine trans-
formation (also see Kimura & Kossakowski (2004); Kossakowski (2003)). Let ρ̃ be a
strictly positive quantum state.

ρ̃ = λ̃1P1 + · · ·+ λ̃nPn, where λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n > 0;

and Pi’s are the rank 1 projections corresponding to the eigenvectors. The above equa-
tion can be written as

ρ̃ = λ1P1 + · · ·+ λn−1Pn + λn
I
n

;

where

λi = λ̃i − λ̃n for i = 1, · · · , n− 1

λn = nλ̃n

The basic idea is the following. There is a ball B(ρ̃, r) centred at ρ̃ which can be
inscribed in the space of density operators of B(Cn). The maximal radius of the ball
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is rmax = λn√
n(n−1)

, using the notations as above. The first map defined is

φµ : A 7−→ µA+ (1− µ)Tr(A)ρ̃.

Tr(a) denote the trace of a matrix a, and µ is a real parameter.

Theorem A.3.1 (Chruściński & Kossakowski (2009)). If µ satisfies |µ| ≤ µmax; where

µmax =
rmax√

1 + λ2
1 + · · ·+ λ2

n−1 −
λ2n
n

and rmax is defined as above; then φµ is a positive map.

It is obvious that if µ ∈ [0, 1] then φµ is a completely positive map as it is a
convex combination of two positive maps. It is less obvious that for any n, and any
choice of completely positive state ρ̃, rmax ≤ 1

n−1
To prove this, observe that λi ≥ 0

for i = 1, · · · , n − 1. Also, the smallest eigenvalue of ρ̃, denoted by λ̃n can not be
more than 1

n
, as all the eigenvalues are non zero and sum of them is 1. Thus we have

λn = nλ̃n ≤ 1. Now putting it back in the above expression, we get the required
relation. Moreover, this upper bound is attained when ρ̃ = In

n
. Physically, it is the

maximal radius of sphere which can be inscribed in the manifold of quantum states in
dimension n, centred at the maximally mixed state.

Consider the case of n = 3, ρ̃ = I3
3

. We can see that in this case |µmax| = 1
2
. As

discusses above, for µ ∈ [0, 1
2
], the map φµ is a completely positive map. We want to

consider the case when µ ∈ [−1
2
, 0]. Set µ = −s for 0 ≤ s ≤ 1

2
. Thus we rewrite the

above map as

φs : A 7−→ (1 + s)Tr(A)
I3

3
− sA =

1 + s

3

(
Tr(A)I3 −

3s

1 + s
A

)
.

Notice that, when s = −µmax = 1
2
, the above map becomes φµ(a) = 1

2
(Tr(a)I3 − a),

which is known in literature as reduction map (or criteria).
We define a scaled map Φs = 3

1+s
φs. Then for any arbitrary non negative definite

Hermitian operator A, we have

(Φs − Φ 1
2
)A =

(
1− 3s

1 + s

)
A.

Since s ∈ [0, 1
2
], we have the coefficient of A in the right hand side as a positive

quantity. Hence the map Φs − Φ 1
2

is a completely positive map. Using the notation
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and procedures as used earlier, we get that for any arbitrary |x〉, and any fixed density
operator ρ in suitable dimension

〈x|I ⊗ Φsρ|x〉 ≥
〈
x
∣∣∣I ⊗ Φ 1

2
ρ
∣∣∣x〉 .

Replacing the value of Φs and using the notation 〈x|I ⊗ Φsρ|x〉 = α and 〈x|I ⊗
Φ 1

2
ρ|x〉 = β, we get 3

1+s
α ≥ 2β, i.e. β ≤ 3

2(1+s)
α. Since 0 ≤ s ≤ 1

2
, we have 3

2(1+s)
>

0. Hence we can conclude that if α < 0, the value of β < 0, but not the converse. In
other words, for any arbitrary state ρ, by applying I ⊗ φs for 0 ≤ s ≤ 1

s
, if we get

any negative eigen value λ with the eigenvector λ〉; the quantity 〈λ|I ⊗ φ 1
2
ρ|λ〉 will be

forced to be less than 0. However the converse does not hold, i.e. if 〈x|I⊗φ 1
2
ρ|x〉 < 0

for any |x〉, that does not imply that 〈x|I ⊗ φsρ|x〉 < 0.
It is shown in the literature that the reduction map denoted here as φ 1

2
here, is com-

pletely co-positive and decomposable. Thus it is not stronger than the partial transpose
(see Bengtsson & Życzkowski (2006)). The above calculations show that the map φµ
where µ ∈ (−1

2
, 0] is weaker than φ 1

2
which is the reduction map. Combining these

two results we get

Lemma A.3.1. For n = 3 and ρ̃ = I3
3

, none of the positive but not completely positive
maps φµ defined as above are stronger than partial transpose.

We can generalise it in higher dimensional too. In that case we have to define Φs

as
Φs =

1 + s

n
φs.

Remaining part follows exactly as above for 0 ≤ s ≤ 1
n−1

. Hence we can summarise
as:-

Lemma A.3.2. For any arbitrary n and ρ̃ = In
n

, none of the positive but not com-
pletely positive maps φµ where |µ| ≤ 1

n−1
, defined as above are stronger than partial

transpose.

Instead of maximally mixed state, we can now consider for diagonalised states

ρ̃ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn

where λi > 0 for all i. In this case µmax is not known for any

arbitrary choice of ρ̃. As above, we substitute −µmax = s. Since we are not interested
in the positive side of the combination, we have 0 ≤ s ≤ smax = µmax ≤ 1

n−1
. Define

Φs =
1

1 + s
φs : a 7−→

(
Tr(a)ρ̃− s

1 + s
a

)
.
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Doing the usual calculations for any arbitrary a we find that

(Φs − Φsmax)a =

(
smax − s

(1 + smax)(1 + s)

)
a.

Since 0 ≤ s ≤ smax ≤ 1
n−1

, we have the map (Φs − Φsmax) is completely positive.
Thus we can repeat the above calculations and arrive at a similar conclusion as above.
Notice that, instead of diagonal states we could take any arbitrary strictly positive state,
and the calculations remains unaffected. Hence we can conclude

Theorem A.3.2. Let ρ̃ be a strictly positive state with only nonzero entries are the
diagonals. Consider the map

φµ : Mn(C) −→Mn(C)

defined as
a 7−→ µa+ (1− µ)Tr(a)ρ̃,

where |µ| ≤ µmax defined as earlier in theorem A.3.1. These maps are positive maps,
and they are not completely positive when −µmax ≤ µ < 0. Moreover the maps φµ for
−µmax < µ < 0 are weaker than φ−µmax , in the sense that any entangled state detected
by φµ can be detected by applying φ−µmax , but not the converse.

To check the effectiveness of the above map, we check the case when for n = 3,

and ρ̃ =

λ1 0 0
0 λ2 0
0 0 λ3

, with λi > 0 for i = 1, 2, 3 and λ1 +λ2 +λ3 = 1. The general

case for diagonal matrices follows the same proof pattern. By the earlier theorem, it is
sufficient to check for the map

φ−µmax : a 7→ −µmaxa+ (1 + µmax)Tr(a)ρ̃ = (1 + µmax)

(
Tr(a)ρ̃− µmax

1 + µmax

a

)
.

Denote µmax

1+µmax
by ε. The following inequality can be checked easily.

Proposition A.3.1. λi ≥ ε, for all i = 1, 2, 3.

Proof. Without loss of generality we may assume λ1 ≥ λ2 ≥ λ3 > 0. Then, it is
sufficient to prove that λ3 ≥ ε.

µmax =

3λ3√
6√

λ2
1 + λ2

2 + (1− λ3)2
.
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Now by simple calculations and using the relations between λi’s,the proposed inequal-
ity boils down to the identity

(λ1 − λ2)2 ≥ 0;

which validates the correctness of the above inequality.

In general, if we have λ1 ≥ · · · ≥ λn > 0, with
∑
λi = 1, the above inequality

boils down to verifying the inequality

(n− 1)
n−1∑
i=1
i 6=j

λ2
i ≥ 2

n−1∑
i=1
i 6=j

λiλj.

This directly follows from the standard arithmetic mean and geometric mean inequality
upon λ2

i and λ2
j , for 1 ≤ i, j ≤ n − 1, and i 6= j.Thus we can extend the above

proposition as:

Proposition A.3.2. λi ≥ ε, for all i = 1, · · · , n.

Given the map for dimension 3, in the above form, the corresponding Choi matrix
will be of the form

C =



λ1 − ε 0 0 0 −ε 0 0 0 −ε
0 λ2 0 0 0 0 0 0 0
0 0 λ3 0 0 0 0 0 0
0 0 0 λ1 0 0 0 0 0
−ε 0 0 0 λ2 − ε 0 0 0 −ε
0 0 0 0 0 λ3 0 0 0
0 0 0 0 0 0 λ1 0 0
0 0 0 0 0 0 0 λ2 0
−ε 0 0 0 −ε 0 0 0 λ3 − ε


,

without considering the normalisation factor, which is just a scalar multiple. This
matrix can be positive or negative, depending upon the choice of λi’s. In particular, if
we choose ρ̃ as the maximally mixed state, we get back the reduction map, which is P,
but cot CP, and in fact co-CP. Thus its power is less than or equal to the power of partial
transpose. In other words, it can not detect PPT entangled states. To check, whether
it is CcP map, we take CT2 , which is the partial transpose on the second system of
the Choi operator. Notice that, under row-column transformation, eigenvalues of any
matrix remains invariant, as the resultant matrix is a similar matrix. Using row-column
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transformation on the CT2 , we get the following matrix

λ1 − ε
λ2 − ε

λ3 − ε
λ1 −ε
−ε λ2

λ2 −ε
−ε λ3

λ3 −ε
−ε λ1


.

Since λi ≥ ε by our earlier proposition, we have λi − ε ≥ 0. Hence the positivity of
the matrix is determined by the the matrix of the lower right block. Since all entries
are real, the matrix is Hermitian. A Hermitian matrix is positive if and only if all its
principal minors are positive. In this case, it is positive if and only if each block matrix(
λi −ε
−ε λj

)
is positive for each pair (i, j), i 6= j. Calculating the eigenvalues, we can

see that they are positive if and only if λiλj ≥ ε2 for all i, j, i 6= j. But by the earlier
proposition(s), this is true for all choice of i and j. Thus CT2 is always positive as long
we choose ρ̃ as diagonal matrix. The general case for any dimension also follows the
same line of argument. Hence we conclude that:

Theorem A.3.3. For any density matrix ρ̃ =

λ1

· · ·
λn

, with λi > 0, the corre-

sponding maps φµ, as defined earlier, are either CP or co-CP.

We can now handle the general case also, instead of a diagonal matrices.

Theorem A.3.4. For any strictly positive density matrix ρ̃ the corresponding maps φµ,
as defined earlier are CP or co-CP.

Proof. First notice that, for any fixed unitary operator U , the map A 7→ UAU † is a
bijection on Mn(C). Since ρ̃ is Hermitian, there exists unitary operator U such that
Uρ̃U † is a diagonal matrix.

Now the maps
φµ : A→ µA+ (1− µ)Tr(A)ρ̃,

and
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φµ,U : A→ µUAU † + (1− µ)Tr(A)Uρ̃U †,

are local unitary equivalent, φµ,U(A) = Uφ(A)U † for all A ∈ Mn(C). Hence the set
of entangled states detected by them are the same. But the second map φµ,U deals with
a diagonal matrix Uρ̃U †. Hence by the previous theorem φµ,U is either CP or co-CP.
Hence so is φµ.

A.4 Conclusions

In this appendix, we have studied the geometric structures of positive maps. We have
reviewed the matrix representations of maps and certain cases which guarantee the
map to be positive.

We have also developed a partial ordering in the set of positive maps. A modified
version of this ordering gives rise to a simple checking criteria for the comparative
entanglement detection power of maps. We have used it on some known classes of
positive maps. We have identified subclasses of maps which can detect more entan-
gled states than other maps of the bigger class. In certain cases, we have identified
exactly the classes which are known to be extremal. Though this method can not iden-
tify extremal maps directly, it can produce the subclasses of maps which are better
candidates for being extremal.

We have studied some of the non unital positive maps. We have considered the
power of such maps for detecting entanglement. Using the inner automorphism con-
cept of Chapter 4 we show that shifting the origin does not give us any advantage, as
the maps produced are all completely positive (hence cannot detect entanglement) or
decomposable (which cannot detect PPT entangled states).

101



A. Families of positive maps which are not completely positive and their power
to detect entanglement

102



Appendix B

Positive maps

The concept of operators (and their finite dimensional avatar - matrices) was well
known in the mathematics community by the time of discovery of quantum mechanics.
The major use of matrices and operators was in the theory of solving linear equations
and differential equations. Matrix groups also frequently appeared in the abstract the-
ory of groups and its actions of spaces. Heisenberg pioneered the development of
quantum mechanics as a subclass of (infinite) matrix theory and named it as Matrix
Mechanics. This mathematical scheme was immediately noticed and carried forward
by Weyl (1977), von Neumann (1996) and Mackey (1963). 1 These works also re-
vealed the intriguing connection of quantum mechanics with functional analysis and
helped mutual development. This is evident in the more advanced (and recent) works in
quantum mechanics like Gustafson & Sigal (2003), Takhtajan (2008), Strocchi (2005),
Teschl (2009); more advanced uses - Thirring (1979) in the atomic systems, Prugov-
ečki (1971) on Hilbert space operators, and in quantum statistical mechanics by Bratteli
& Robinson (1987, 1997). Last but not the least, we must mention the monumental
treatises of Reed & Simon (1975, 1978, 1979, 1980).

Another important reference is a recent book by Størmer Størmer (2013) dealing
the same subject with more detail. We mention the key points of this area, and spend
more time on the areas least covered in the above mentioned books. In particular,

1. we give a list of available positive maps which are not completely positive,

2. some detailed discussions regarding the exposed maps.

1To cast the quantum mechanics foundations by a set of axioms was an Hilbertian goal for mathe-
maticians, in particular von Neumann.
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Functional analysis can be understood as a study of vector spaces under norms
and the functionals on them. It started in the last decade of nineteenth century and
carried forward in twentieth century by Hilbert, Riesz and the Polish group (Banach,
Sz-Nagy, Foias, Stanisław Mazur), in USA by Barry Mazur, von Neumann, Halmos,
Segal etc., and in USSR by a renowned subgroup of researchers under Kolmogorov,
Gelfand, Naimark etc. It supplied tools and methods to describe newly developed
quantum mechanics. In doing so, it also developed new areas, which are now known
as C∗ algebra, von Neumann algebra, spectral theory and perturbation theory of linear
operators. Without going to this beautiful historical development we introduce and
give an overview of the relevant areas necessary for the problem stated in the previous
chapter.

B.1 Positivity and C∗ algebra

The primary materials of the subject are covered in many excellent text books like Sun-
der (1997), Arveson (1976), Davidson (1996) and advanced references: like Takesaki
(2002), Kadison & Ringrose (1997). We give a series of basic definitions to mantain
the continuity before coming to the

B.1.1 C∗ algebra

Definition B.1.1 (Normed algebra). Let A be a normed space (on C). It is called as
a normed algebra if there is a well defined multiplication structure, i.e. there is a well
defined map A×A→ A, denoted by (x, y) 7→ xy, satisfying the following conditions
for all x, y, z ∈ A and for all α ∈ C

1. (associativity) (xy)z = x(yz),

2. (distributivity) (αx+ y)z = αxz + yz, z(αx+ y) = αzx+ zy,

3. (sub-multiplicativity of norm) ‖xy‖ ≤ ‖x‖.‖y‖.

Definition B.1.2 (Banach algebra). A Banach algebra is a normed algebra which is
complete as a normed space. A normed (or Banach) algebra is said to be unital if
it has a multiplicative identity - i.e., if there exists an element, which we shall denote
simply by 1, such that 1x = x1 = x, for all x.
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A mapping A 3 x 7→ x∗ ∈ A is said to be involution, or adjoint operation of the
algebra A if it satisfies the following conditions:

1. (conjugate linearity) (αx+ y)∗ = αx∗ = y∗,

2. (product reversal) (xy)∗ = y∗x∗,

3. (order two) x∗∗ = x.

A Banach algebra with involution is called a Banach ∗-algebra.

Remark B.1.1. Adjoint of a square matrix, which is by definition transpose complex
conjugate, is an example of involution. This is generally referred in mathematical texts
as ∗ and in physics texts as †. In the main text we follow the latter symbol.

Definition B.1.3 (C∗ algebra). A C∗ algebra is a Banach ∗- algebra A, with the prop-
erty

‖x∗x‖ = ‖x‖2. (B.1)

The above identity is also called the C∗ identity.

One of the most important theorems in C∗ algebra theory is the following

Theorem B.1.1. For any C∗ algebra A, there exists a isometric representation π :

A→ L(H) for some Hilbert space H.
If A is separable, then the Hilbert space H can be chosen to be separable as well.

We omit the proof of the theorem, as it will not be used in the text. For further
proof, see Sunder (1997) or Davidson (1996).

Remark B.1.2. In some of the references (ex: Higson & Roe (2000)) the above the-
orem is considered as a definition of C∗ algebra and called as concrete C∗ algebra.
More precisely, a concrete C∗ algebra is a Banach ∗-algebra which is isometrically
∗-isomorphic to a norm closed ∗-subalgebra of B(H). The algebra given in definition
B.1.3 is called abstract C∗algebra.

For quantum systems, the space H is some separable Hilbert space (of finite or
infinite dimension), and the C∗ algebra representation is isometric isomorphic with it.
In other words, the C∗ algebra is B(H). For more details, see Varadarajan (1985) or
Parthasarathy (1992, 2005).
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B.1.2 Positive elements

Positivity is one of the fundamental concepts in the present mathematical research.
Based on various approaches stated above, there are different ways to define positivity,
and they are all equivalent. In this subsection we show that, the set of positive elements
of a C∗ algebra A forms a cone.

Definition B.1.4. Let A is a unital Banach algebra and x ∈ A. The spectrum of x is
the defined as the set

σ(x) = {λ| : (x− λ)is not invertible},

and the spectral radius of x is the defined as

r(x) = sup{|λ| : λ ∈ σ(x)}.

Definition B.1.5 (Positive element). An element x in a C∗ algebra A is said to be
positive (and written as x ≥ 0) if there is a self adjoint element y ∈ A such that
x = y2.

Lemma B.1.1. Let A be a C∗ algebra. A 3 x, y ≥ 0, implies (x+ y) ≥ 0.

Proof. Without loss of generality we may assume A to be unital (by embedding it in
a larger algebra with unity). Moreover we can also assume that ‖x‖, ‖y‖ ≤ 1 (by a
suitable scaling). Then r(x) ≤ 1 and σ(x) ⊆ [0, 1]. Hence σ(1 − x) ⊆ [0, 1] and
(1 − x) ≥ 0 and ‖(1 − x)‖ = r(1 − x) ≤ 1. Similarly ‖(1 − y)‖ ≤ 1. Then
‖1 − x+y

2
‖ = 1

2
‖(1 − x) + (1 − y)‖ ≤ 1. Since x+y

2
is self adjoint σ(x+y

2
) ⊆ [0, 2]

i.e.σ(x+ y) ⊆ [0, 4], hence the proof.

Proposition B.1.1. For any element z ∈ A, z∗z ≤ 0 implies z = 0

Proof. It can be easily seen from the definition that for any x, y ∈ A, σ(xy) ∪ {0} =

σ(yx) ∪ {0}. Using this we have z∗z + zz∗ ≤ 0. If z = u + ıv be the Cartesian
decomposition. Then 0 ≤ z∗z + zz∗ = 2(u2 + v2) ≥ 0. This gives z∗z + zz∗ =

2(u2 + v2) = 0. Hence the result.

Lemma B.1.2. In a C∗ algebra A any element x is positive if and only if there exists
z ∈ A such that x = z∗z.
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Proof. If x is positive set z = x
1
2 .

For the converse, note that any self adjoint element x can be uniquely decomposed
as x = x+ − x−, where x+ and x− are positive elements of A such that x+x− = 0.
Hence we have x−xx− = −x3

− ≤ 0. But x−xx− = (zx−)∗(zx−). Hence by the
previous proposition x3

− = 0 and z∗z = x = x+.

B.1.3 With operators

In the recent years it became clear to the operator algebraists that the structure of C∗

algebra are too much restrictive. Operator algebraists relaxed conditions of C∗ algebra
and discovered objects called operator system and operator spaces.

Definition B.1.6 (Operator system). A ∗-closed subset of a unital C∗ algebra A is said
to be a operator system.

Though the concept of operator system was already known (though not by the
present name) since the seminal paper of Arveson (1969), it was subsided by coura-
geous development of operator space in the late eighties pioneered by Ruan (1988).

Definition B.1.7 (Operator space). A closed subspaceE ⊂ B(H) is called an operator
space.

Because of the simplicity of definition, research on operator spaces became more
prominent. In recent years, the theory of operator systems made a comeback due to
works of Johnston & Størmer (2012); Johnston et al. (2009, 2011, 2013); Paulsen
et al. (2011). One of the reasons for its revival is the recent advancement of quantum
information theory, entanglement and positive maps. Indeed the operator systems are
conceptually closer to quantum systems, as to study the quantum systems, we need to
study the states, which are positive semidefinite self adjoint operators.

The usefulness of the above notions will become clear in the next section when we
study the positive maps between them.

B.2 Positive map

The structure of operator space and the study of positive maps between them is an
important topic for various reasons.

Definition B.2.1 (Positive map). Let A and B are two C∗ algebras. A map φ : A→ B

is said to be positive if for all a ∈ A, φ(aa∗) ≥ 0.

107



B. Positive maps

Definition B.2.2 (k-positive and Completely positive map). A positive map φ is said
to be k-positive if the natural extension

φk : Mk(A)→Mk(B)

φk((ai,j)) 7→ ((φ(ai,j))).

A map is said to be completely positive if it is k-positive for all k.

The adverb ‘completely’ means all members of the sequence {φn} satisfies the
same property. In a similar way, we can define complete contraction and complete
boundedness when the original map φ is contractive or bounded, respectively.

The above definitions can be easily be converted to the more general operator space
settings. For details see Paulsen (2002) or Pisier (2003).

The set of all completely bounded maps carry a natural norm associated with it.
This norm is defined as

‖φ‖cb = sup
k
{‖φk : Mk(A)→Mk(B)‖} <∞,

and called as cb norm. Set of all completely bounded maps between A and B along
with the cb norm form a Banach space.

B.2.1 Kraus representation

It turns out that the completely positive maps are the allowed maps between two quan-
tum systems. Fortunately its structure is known due to Sudarshan et al. (1961), Kraus
(1971), Choi (1975a) (for the finite dimensional cases). The more general case (i.e.
when A ⊂ B(H)) is given by Stinespring.

Theorem B.2.1 (Stinespring’s dialation Stinespring (1955)). Let A be a unital C∗-
algebra and φ is a completely positive map.

B(H1) B(H2)x x
A

φ−−−→ B

Then there exists a Hilbert space K, a unital ∗-homomorphism

π : B(H1)→ B(K),
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and operator V : H→ K with ‖φ(1)‖2 = ‖V ‖2 = ‖V ∗V ‖ such that

φ(a) = V ∗π(a)V, ∀a ∈ A.

Moreover φ admits a completely positive extension φ̃

B(H1)
φ̃−−−→ B(H2)x x

A
φ−−−→ B

such that ‖φ̃‖cb = ‖φ‖cb.

Theorem B.2.2 (Choi (1975a); Kraus (1971); Sudarshan et al. (1961)). Let φ : B(H1)→
B(H2) be a unital completely positive map. The there exists a set of operators {Vj :

H2 → H1} such that
φ(X) =

∑
j

V ∗j XVj, (B.2)

where
∑

j V
∗
j Vj = IH2 is strongly convergent sum.

In our work, the Hilbert spaces are finite-dimensional. Hence the C∗ structure is of
a matrix algebra B(Cn) = Mn, where n < ∞ is the dimension. The following work
assumes that finite dimensionality, unless stated otherwise.

Since H1 and H2 are finite dimensional, we are dealing with complex matrix al-
gebra. Hence the above Kraus form B.2 is consists of only finitely many operators.
In fact, using Choi’s theorem B.2.3 one can show that the maximal number of such
operators required to represent any completely positive map is dim(H1) dim(H2).

B.2.2 Positive maps which are not CP

The completely positive maps are the highest forms of positivity possible between
operator systems.1 Choi used an easy way to check the completely positivity of any
given positive map. Let Mn be the complex matrix algebra of dimension n <∞.

Theorem B.2.3. Let A be a C∗ algebra with unit. Let S be an operator system in A

and ϕ : S→Mn. The following things are equivalent:

1. ϕ is completely positive.
1Most of these theorems are true for operator space set up as well with possible modifications.
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2. ϕ is n-positive.

3. Choi - Jamiołkowski isomorphism Choi (1975a); Jamiołkowski (1972). There
is a unique way to associate any map ϕ : S→Mn with an element of Mn(S).

B(S,Mn) −→Mn(S)

ϕ 7→ (1n ⊗ ϕ)
(∑n

i,j=1 Eij ⊗ Eij
)

=
∑n

i,j=1Eij ⊗ ϕ(Eij) (B.3)

where Eij = |i〉〈j|, written in the standard basis. ϕ is completely positive if and
only if the corresponding Matrix in right hand side is positive semi-definite.

The matrix given in equation B.3 is known in literature as Choi matrix and is the
most useful tool to decide the complete positivity of a given map. The inverse of the
above isomorphism is also useful. Given a (Hermitian) operator C ∈ Mn(S), the
corresponding map φC is given by

φC(X) = Tr1

(
XT ⊗ I · C

)
, (B.4)

where I is the identity element of Mn and T denotes the transpose operation. Tr1

denotes the partial trace with respect to the first system, which is the operator system
S. Use of the above theorem will be shown in the subsection B.2.3.

If a map ϕ is positive but not completely positive, there is a least k such that the
canonical extension of the map 1k ⊗ ϕ (described above) is not positive. Notice that
for any positive semidefinite A ∈ Mk and B ∈ S, 1n ⊗ ϕ(A ⊗ B) = A ⊗ ϕ(B) ≥ 0.
Real positive linear combination of positive operators is positive. Hence image of any
positive operator which can be written as a positive linear combination of tensor prod-
uct of positive operators (like A ⊗ B) is also positive. Since the map 1k ⊗ ϕ is not
positive, there exists positive operators which can not be expressed as positive linear
combinations of tensor product of positive operators. Hence positive maps which are
not completely positive can be used to detect such positive operators. This clearly
shows that positive but not completely positive maps can be used to detect entangle-
ment of a system. In the next subsection B.2.3, we give the formal statements of the
relevant results in this direction.

B.2.3 Entanglement and positive maps

The theorem B.2.4 connects the witness with the positive maps which are not com-
pletely positive Horodecki et al. (1996).
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Theorem B.2.4. A state ρ ∈ B(H1 ⊗H2) is separable if and only if for any positive
map φ : B(H2)→ B(H1), the operator (1⊗ φ)ρ is positive.

Suppose the map φ is positive. Then φ(σ) ≥ 0 for any state σ. The extended map
1⊗ φ sends the set of separable states to itself, as for any separable state σ1 ⊗ σ2, the
map 1⊗φ(σ1⊗σ2) = σ1⊗φ(σ2) ≥ 0. Hence it is true for any convex combination of
separable states. However the map 1⊗ φ is not positive. So there exists non-separable
and hence entangled, states ρ such that 1 ⊗ φ(ρ) 6≥ 0. Thus, these maps are very
important to detect entanglement.

B.2.4 List of examples

The structure of positive maps is closely related with the structure of quantum states.
The structure for both of them are not well known. Though the structure of the com-
pletely positive maps are well understood, the general structure of positive maps has
turned out to be very complicated. In the absence of a general structure, discovering
particular examples of positive maps became an important branch of study. In fact,
there are only few examples of such maps available in literature. We give a list of
some well known maps. This list is not exhaustive.

B.2.4.1 Decomposable maps

Example B.2.1. The simplest possible map is transpose X 7→ XT . This map is 1-
positive not 2-positive.

Definition B.2.3 (Decomposability). A positive map φ is said to be decomposable if it
can be written as φ = ψ1 +ψ2 ◦T , where ψ1 and ψ2 are completely positive maps and
T is the transpose operation.

A positive but not completely positive map, which can not be written in the above
form is called a indecomposable map.

If a transpose of a map is completely positive, then the map is called completely
co-positive (CCP). Thus these maps are of the form T◦-some CP map. These are a
subclass of decomposable maps.

Example B.2.2 (Reduction map). Mn 3 X 7→ 1
n−1

(Tr(X)In −X) ∈ Mn, where In
is the identity matrix, and Tr(X) is the trace of X . This map is decomposable, and
actually CCP. Hence it is unitarily equivalent to transpose. This map, surprisingly is
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stronger Hiroshima (2003) than majorisation criteria Nielsen & Kempe (2001). More-
over this map can be extended to an indecomposable map for all even dimensions more
than 2 as shown in the example B.2.10.

B.2.4.2 Indecomposable maps

The structure of all indecomposable maps is not known. In absence of a structure
theory, different examples of such maps are discovered. To determine whether a map is
CCP is rather easy, as it needs to be checked whether the map combined with transpose
is completely positive or not. It should be noted that, though there are many known
examples of positive maps, only a few of them are proved to be indecomposable.

There are two ways of proving in-decomposability. The first is by showing that
there exists an entangled state which is positive under partial transpose, and whose
entanglement is detected by the given map. In absence of the structure of the set of
states, there is no systematic way to generate such examples. The second method is by
using positive semidefinite bi-quadratic forms and is also not easy to determine.

A list of positive maps which are proved to be indecomposable, is given below.

Example B.2.3 (Choi Choi (1975b); Choi & Lam (1977/78)). This is the first example
of such maps. Choi showed that the map

B(Cn) 3 ((xi,j)) 7→
1

2

x11 + µx33 −x12 −x13

−x21 x22 + µx11 −x23

−x31 −x32 x33 + µx22

 , where µ ≥ 1;

(B.5)
is positive, 2-positive, but not 3-positive (hence not CP), and indecomposable. A PPT
entangled state which can be determined by this map is given below.

ρ(a) =
1

3
(
1 + a+ 1

a

)



1 0 0 0 1 0 0 0 1

0 a 0 1 0 0 0 0 0

0 0 1
a

0 0 0 1 0 0

0 1 0 1
a

0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 0 a 0 1 0

0 0 1 0 0 0 a 0 0

0 0 0 0 0 1 0 1
a

0

1 0 0 0 1 0 0 0 1


. (B.6)

112



B.2 Positive map

It was shown that the state is positive under partial transpose (PPT), and entangled
for a > 0. The above map detects its entanglement for all but a = 1. This example
is due to Simon et al. (2006); Simon et al. (2009). This can be also seen as a modified
version of the example constructed by Størmer (1982).

There are several modified versions of Choi’s map. A few of them are proved to be
indecomposable. Two most important versions are given below.

Example B.2.4 (Cho et al. (1992)).

((xi,j)) 7→
1

a+ b+ c

ax11 + bx22 + cx33 −x12 −x13

−x21 ax22 + bx33 + cx11 −x23

−x31 −x32 ax33 + bx11 + cx22

 ;

(B.7)
where a, b, c are positive real parameters. The map is positive and indecomposable if
the following conditions are satisfied:

1. 0 ≤ a < 2.

2. a+ b+ c ≥ 2.

3.

{
(1− a)2 ≤ bc < (2−a)2

4
, if 0 ≤ a ≤ 1

0 ≤ bc < (2−a)2

4
, if 1 ≤ a < 2.

For all a ≥ 2 the above map is CP. The third condition gives the indecomposability
criteria. For (a, b, c) = (1, 0, 1), the map reduces to Choi’s map.

Example B.2.5 (Kye (1992)).

((xi,j)) 7→

x11 + ax33 −x12 −x13

−x21 x22 + bx11 −x23

−x31 −x32 x33 + cx22

 ; (B.8)

where a, b, c are positive real parameters and abc ≥ 1. Notice that this map reduces
to Choi’s map (without normalisation) for a = b = c = 1. Moreover for this special
choice of (a, b, c) (and their positive scalar multiples i.e. (λ, λ, λ) where λ ≥ 1) only,
the map can be made as unital.

113



B. Positive maps

Example B.2.6. This example can be generalised in the higher dimensions, i.e. a posi-
tive indecomposable map from B(Cn) to itself. Define φp by choosing n+1 parameters
p = (p0, p1, · · · , pn).

φp(E11) = p0E11 + pnEdd,

φp(E22) = p0E22 + p1E11,
...

...
...

φp(Enn) = p0Enn + pn−1Ed−1,d−1,

φp(Eij) = −Eij, i 6= j.

It has been shown in Ha (2003) that if

1. p1, · · · , pn > 0,

2. n− 1 > p0 ≥ n− 2,

3. p1 · · · · · nd ≥ (n− 1− p0)n,

then φp is a positive indecomposable map.

Example B.2.7. A family of maps constructed from unextendible product basis Bennett
et al. (1999) by Terhal (2001).

Example B.2.8. A discrete family τn,k, k = 1, · · · , n − 2 (Ha (1998)) is one such
extension of Choi’s map. Let s be a unitary shift defined by,

sei = ei+1 i = 1, · · · , n;

(where en+1 ≡ e1). The maps τn,k are defined as follows

τn,k(X) = (n− k)ε(X) +
k∑
i=1

ε(siXs∗i)−X, (B.9)

where ε(X) is the projector onto the diagonal part, i.e.

ε(X) =
d∑
i=1

Tr[XEii]Eii. (B.10)
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The map τn,0 is completely positive and the map corresponding to k = n − 1 is
completely co-positive Ha (1998). Note that τn,k(In) = (n − 1)In and τn,k(X) =

(n− 1)Tr(X). Hence the normalised map

Φn,k(X) =
1

n− 1
τn,k(X),

are bi-stochastic. In particular Φ3,1 is the Choi’s map.

Example B.2.9. The following example is given by Robertson (1983a,b,c, 1985). The
Robertson map, φR : B(C4)→ B(C4) can be written as follows:

φR

(
X11 X12

X21 X22

)
=

1

2

(
I2Tr(X22) −X12 −R(X21)

−X21 −R(X12) I2Tr(X11)

)
, (B.11)

where, R : B(C2)→ B(C2) is a reduction map defined as

R(X) = I2Tr(X)−X.

Example B.2.10 (Breuer (2006), Hall Hall (2006)). This map is only for the even
dimensions 2n where n > 1. This is given by,

ϕBH : X 7→ I2nTr(X)−X − U †XTU ; (B.12)

where U is an antisymmetric unitary operation (UT = −U ). Such operations are only
possible for even dimensions. Hence such maps are possible in the even dimensional
spaces.

These shows that there are only few known examples of indecomposable positive
maps available in literature. A few examples of the above are generalised in arbitrary
dimensions by Chruściński and Kossakowski (Chruściński & Kossakowski (2007)).

Example B.2.11. The pattern of Choi’s map and its generalisations gives rise to a nat-
ural question. Does there exist any positive map which does not disturb the diagonals?
Mathematically, such objects will be of the form

φA,B : X 7→ A ◦X +B ◦XT + I ◦X, X ∈Mn(C), (B.13)

where A and B are operators with zero diagonals, I is the identity operator and X ◦Y
denotes the Hadamard product (product of term by term). Kye (1995) had shown
that for the dimension three any such map will be decomposable. But in the higher
dimensions, there exist indecomposable positive maps which fix the diagonals Kim &
Kye (1994).
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B.2.5 Extremal maps

The set of all positive maps forms a closed convex set. By the celebrated Krain -
Milman theorem any closed convex set can be expressed as a convex hull of its extremal
points. Hence it is important to know the extremal points of this set of all positive maps.
We call this set as the set of extremal maps. This study of extremal maps started with
the works of Choi and Lam (Choi & Lam (1977/78)). Recently, Eom and Kye (Eom &
Kye (2000)), Ha and Kye (Ha & Kye (2011); Ha & Kye (2012, 2013)), and Chruściński
(Chruściński (2011)) made efforts to discover new examples of extreme positive maps.
In this section, we mention some of the definitions and the results given in the above
mentioned papers.

Definition B.2.4 (Extremal map). A positive map ϕ is said to be extremal, when for
any decomposition ϕ = ϕ1 +ϕ2, where ϕ1 and ϕ2 are positive maps, ϕi = λiϕ, where
λi ≥ 0 and λ1 + λ2 = 1.

There are only few maps available in literature which are extremal. Choi’s map
given in B.5 corresponding to µ = 1 is shown to be extremal by Choi and Lam Choi
& Lam (1977/78).

An important subclass of the set of extreme points are called the exposed points.
We give a few definitions.

Definition B.2.5. Let A be a convex subset of a real vector space. Let ` : A → R
be a non constant linear functional such that supx∈A `(x) = α < ∞. Then the set
F = {y|`(y) = α} is a tangent hyperplane and is called an exposed set. If F consists
of a single point, then that point is called an exposed point.

Extreme points are the boundary points of the closed convex set but the converse is
not true. Similarly the exposed points are extreme points but not the converse.

Example B.2.12.

A = {(x, y) : −1 ≤ x ≤ 1, −2 ≤ y ≤ 0} ∪ {(x, y) : x2 + y2 = 1}

The curve above y = −2 is a differentiable curve, hence there is unique supporting
hyperplane through each of the boundary points. But the support hyperplane through
the extreme point (1, 0) is x = 1. So (1, 0) is not an exposed point though it is extreme
point.
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The major importance of such points is that for a given closed convex body any
extreme point can be considered as a limit of a sequence of exposed points. Thus we
can write the Krein-Milman theorem as

Theorem B.2.5 (Krein-Milman). LetA be a compact convex subset of a locally convex
Banach space X . Then A = closed convex hull of Exp(A). Exp(A) denotes the set of
all exposed points of A.

Let P = {φ : B(H) → B(K) : φ(AA†) ≥ 0 ∀A ∈ B(H)} be the cone of positive
maps. The dual cone P◦ is defined as

P◦ = conv{|x〉 〈x| ⊗ |y〉 〈y| : 〈y|φ(|x〉 〈x|)|y〉, φ ∈ P, |x〉 ∈ H, |y〉 ∈ K}.

A face F of P is a subset such that if φ ∈ F and φ = λφ1 +(1−λ)φ2, where 0 ≤ λ ≤ 1

and φ1, φ2 ∈ P, then φ1, φ2 ∈ F. A ray is the set {λφ : λ > 0} generated by the map
φ and is written as [φ]. A ray is said to be extreme, if it is a 1-dimensional face of the
set P.

Definition B.2.6. A face F is exposed if there exists a supporting hyperplane H for a
convex cone P such that F = H ∩ P.

It can further be shown that for positive maps,

Proposition B.2.1. A face F is exposed if there exists |x〉 ⊗ |y〉 ∈ H ⊗K such that

F = {φ ∈ P : 〈y|φ(|x〉〈x|)|y〉 = 0}.

The dual face of F can be defined in the similar way. If F is exposed, then the dual
face F′, a subset of P◦, is defined as

F′ = conv{|x〉 〈x| ⊗ |y〉 〈y| : 〈y|φ(|x〉〈x|)|y〉 = 0, φ ∈ F}.

It has been proved by Eom and Kye (Eom & Kye (2000)) that

Theorem B.2.6 (Eom & Kye (2000)). A face F is exposed if and only if F′′ = F.

Example B.2.13. Transpose map is an example of exposed map.

Using the above theorem, a few examples of positive exposed mas has been identi-
fied.
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Example B.2.14. Reduction map B.2.2 for single qubit (i.e. n = 2) is also an example
of exposed map. Note that the fie n ≥ 3, reduction map is not exposed.

Example B.2.15. One of the most important class of examples of generalisations of
Choi’s map was given by Cho, Kye and Lee (Cho et al. (1992)), given here in the
Example B.2.4. This map is defined by three parameters [a, b, c]. It was known that the
specific example of [1, 1, 0] and [1, 0, 1] gave two different versions of Choi’s map (Choi
(1975b)). The class [0, 1, 1] is known as decomposable. However, this is an example
of decomposable extermal map. These maps are known to be extremal (Choi & Lam
(1977/78); Ha (2013)). A subfamily of this map is given by a + b + c = 2, a ≤ 1 and
bc = (1 − a)2 is proved to be exposed by Ha and Kye (Ha & Kye (2013)). We have
shown in the Appendix A, that for other values of [a, b, c] we do not get any extremal
or exposed maps.

Example B.2.16. It has been shown by Chruściński (Chruściński (2011)) that the
Robertson map (Robertson (1983a,b,c, 1985), shown here in Example B.2.9), and
Breuer-Hall map (Breuer (2006); Hall (2006), given here in Example B.2.10) are local
unitarily equivalent to each other. Further this maps are exposed.

B.3 Conclusions

In this appendix, we have given some basics of C∗ algebra. We have reviewed the
basics of positivity in the non-commutative context. We have given the major results
concerning positive maps. Further, we have given some well known examples of pos-
itive maps which are not completely positive. We have concluded with some recent
results regarding the extremality of positive maps.
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CHEN, L. & —DOKOVIĆ, D.Ž. (2013). Properties and construction of extreme bipartite
states having positive partial transpose. Comm. Math. Phys., 323, 241–284. 18

CHO, S.J., KYE, S.H. & LEE, S.G. (1992). Generalized Choi maps in three-
dimensional matrix algebra. Linear Algebra Appl., 171, 213–224. 31, 33, 44, 51,
93, 113, 118

CHOI, H.S. & KYE, S.H. (2012). Facial structures for separable states. J. Korean
Math. Soc., 49, 623–639. 18

CHOI, M.D. (1975a). Completely positive linear maps on complex matrices. Linear
Algebra and Appl., 10, 285–290. 3, 12, 35, 108, 109, 110

121



REFERENCES

CHOI, M.D. (1975b). Positive semidefinite biquadratic forms. Linear Algebra and
Appl., 12, 95–100. 13, 31, 32, 33, 34, 47, 90, 91, 92, 112, 118

CHOI, M.D. (1980a). Positive linear maps. In Operator Algebras and Applications
(Kingston, 1980), Proceedings of the Symposium on Pure Mathematics, vol. 38 (2),
583 – 590, American Mathematical Society. 13

CHOI, M.D. (1980b). Some assorted inequalities for positive linear maps on C∗-
algebras. J. Operator Theory, 4, 271–285. 34

CHOI, M.D. & LAM, T.Y. (1977/78). Extremal positive semidefinite forms. Math.
Ann., 231, 1–18. 35, 38, 47, 91, 112, 116, 118
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