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Abstract

A stock option is a financial contract which gives its owner the right to buy (or sell)
a stock for a fixed value in the future. Option pricing models aim to determine a
fair price for a stock option. The starting point of option pricing theory is considered
to be the Black and Scholes published paper of 1973 providing a model for valuing
European options.

This thesis aims at studying the discrete-time Binomial model for pricing options,
which in the limit goes to the continuous-time Black-Scholes model.

Since then, large number of parametric and non-parametric methods have been de-
veloped to relax one or more restrictions of the original Black—Scholes model.

One amongst them are the Fourier inversion methods, which depend on the availability
of an expression for the characteristic function of the stochastic processes modelling
the underlying assets.

Wavelet theory, viewed as an extension of Fourier analysis, aims to represent compli-
cated functions using sums of simple ones. In wavelets, the building blocks, instead
of sinusoidal, are wavelets, which are functions that can be arbitrarily translated and
dilated in order to generate basis of L?(R). The wavelet-based methods are based
on the approximation of functions by projecting on the wavelets basis such that the
coefficients of the expansion are expressed by means of the Fourier transform of the
function to approximate. Two such methods, one each for European and Asian op-

tions, are studied and presented.

v



Chapter 1

Introduction

1.1 Classification of financial instruments

There are many possible classifications of financial instruments.
As per [CZ04], for a division see Figure 1.1. A security is a document that confers
upon its owner a financial claim. In contrast, a general financial contract links two

parties nominally and not through the ownership of a document.

Fixed-income securities pay fixed amounts of money to their owners. These include
bonds, regular savings accounts, money-market accounts, etc.

A bond is a security that gives its owner the right to a fixed, predetermined payment,
at a future, predetermined date.

A stock is a security that gives its owner the right to a proportion of any profits that

SECURITIES AND CONTRACTS
BASIC SECURITIES DER?TIVES A]JD CONTRACTS
FIXED NCOME EQUITES OPTIONS  SWAPS FUTURES AND FORWARDS  CREDITRSK
‘//\ l /\ DERVATVES
Bonds BankAccou  Loars Stocks Cals and Puis Exotic Opfions

Figure 1.1: A classification of financial instruments



might be distributed (rather than reinvested) by the firm that issues the stock and to

the corresponding part of the firm in case it decides to close down and liquidate.

Derivatives are financial instruments whose payoff depends on the value of another
financial variable (price of a stock, price of a bond, exchange rate, and so on), called
underlying.

Futures and forwards are contracts by which one party agrees to buy the underlying
asset at a future, predetermined date at a predetermined price. The other party agrees
to deliver the underlying at the predetermined date for the agreed price.

A swap is a contract by which two parties agree to exchange two cash flows with

different features.

1.2 Background on Options

Definition. A stock option is a contract between the writer(seller) and the buyer
of the option. The writer has a short position and the buyer has a long position.
Every option has an underlying stock, an expiration date and a stock price, also

called striking price or exercise price.

1. In a call option the buyer has the right to buy the underlying stock from the

writer at the strike price K per share.

e In a European call, the right to buy can only be exercised on the expiration

date of the call.

e In an American call, the right to buy can be exercised at any time on or

before the expiration date of the call.

2. In a put option, the buyer has the right to sell the underlying stock to the writer
at the strike price K per share.

e In a European put, the right to sell can only be exercised on the expiration

date of the call.

e In an American put, the right to sell can be exercised at any time on or

before the expiration date of the call.

Most of the option pricing literature considers mainly stock options and so does this



thesis.
Exchanges. The options exchange, through which options on major stocks are
traded, determines the terms of an option, such as the expiration date and strike
price.
Purpose of Options. Primarily, options are used for hedging and for speculation.
A hedge is an investment that reduces the risk in an existing position. Options can

also be used for implicit leverage, that is, as a tool for borrowing money.

1.2.1 Payoff and Profit Curves

Payoft FPayoll Profit Profit

Stock Stack K Stock  ©st Stock.
K Frice S Price on Price M Frica

Long Call Short Call Long Call Short Call
Payolf Payoll Profit Profit
g 2 N A
Long Put Short Put Long Put Short Put
Figure 1.2:  Payoff Figure 1.3: Profit
curves curves

1.2.2 Types of Options

There are various types of options, depending on the expiration time and the way to

claculate the payoff. Some of these are mentioned in [Bucl2].
e Vanilla options
1. European - an option that may only be exercised on expiry

2. American - an option that may be exercised on any trading day on or

before expiration
e Exotic Options

1. Lookback - payoffs depend not only on the underlying asset price at ex-
piry, but also on the maximum or minimum asset price over some pre-

defined monitoring window



2. Binary - options that pay out at one or more future dates if and only if

some exercise condition is met

3. Barrier - options have payoffs which depend, at least in part, on some
aspect of the actual asset path traced out, and not just on the terminal
value of the path. Barrier options have payoffs which depend on whether
a given barrier level x = b is crossed or otherwise during the life of the

option

4. Asian - an option whose payoff is determined by the average underlying

price over some preset time period

and others.

1.2.3 Put-Call option parity

Arbitrage opportunity is an investment opportunity that is guaranteed not to
result in a loss and may (with positive probability) result in a gain. If an arbitrage
opportunity exists, then prices will be adjusted to eliminate that opportunity.

No-arbitrage Pricing Principle. As a consequence of the tendency to an arbitrage-
free market equilibrium, it only makes sense to price assets under the assumption that

there is no arbitrage.

Theorem 1.2.1 (European Options with Dividends). Suppose that a stock is cur-
rently selling at a price of Sy per share. An European put on this stock sells for P
dollars and an European call for C' dollars, both having the same strike price K and
expiration time T'. Suppose that the present value of any dividends paid by the stock
during the period in question is dy. Then the no-arbitrage pricing principle implies
that

C—P =S,—Ke™ —d,

where 1 is the risk-free interest rate.

Theorem 1.2.2 (American Options with Dividends). Suppose that a stock is cur-
rently selling at a price of Sy per share. An American put on this stock sells for P
dollars and an American call for C' dollars, both having the same strike price K and

expiration time T'. Suppose that the present value of any dividends paid by the stock

4



during the period in question is dy. Then the no-arbitrage pricing principle implies
that
Sg—K—dy < C—P < Sy— Ke™ "

where 1 is the risk-free interest rate.

Refer to [Rom04] for proofs.



Chapter 2

Mathematical prerequisites

2.1 Discrete Probability

Definition. Let €2 be a nonempty set. Then a partition of €2 is a collection P =
{By,...,B,} of nonempty subsets of (2, called the blocks of the partition, with the

following properties:
1. BBNBj=0foralli#j
2. Bl U-u Bn - Q

Definition. Let P = {By,...,B,} be a partition of a set . Then a partition
Q={C,...,C,} is called a refinement of P, written P > @, if each block C; of @
is completely contained in some block B; of P or, equivalently, if each block of P is

a union of blocks of Q.

Definition. A collection A of subsets of € is called an algebra of sets (or algebra)

if it satisfies the following properties:
L.heA
2. Ac A= A€ A
3. ABe A= AuBeA

Definition. An atom of A is a nonempty set S € A with the property that no

nonempty proper subset of S is also in A.



Definition. A finite probability space is a pair (€2, P) consisting of a finite non-
empty set €2, called the sample space and a real-valued function P defined on the
set of all subsets of €2, called a probability measure on 2. The function P must

satisfy the following properties:

1. Foral ACQ, 0<P(A) <1

2. P(2) =1

3. If A and B are disjoint, P(AU B) = P(A) + P(B)
All subsets of €2 are called events.

Definition. We assign to each of the elements w € €2 a number p,, satisfying 0 <

pw < 1 and for which

przl

we
Then we can define a probability measure P by setting P({w}) = p,. Extending

this to all events, we get

P(A) =) P({w})

we
The set {p, : w € Q} is called a probability mass or probability distribution
and the function f : Q@ — R defined by f(w) = p, is called a probability mass

function.

Definition. A real-valued function X : €2 — R defined on a finite sample space € is

called a random variable on (2.

Definition. Let X be a random variable on €2 with
im(X) ={x1,..., T}
Then the partition

Px={X =x1},.., {X =2.}}

is called the partition defined by random variable X.

Definition. If P is a probability measure on €2, then we denote P(X = z) = P({X =

x}). The partition Py defined by X then defines a probability measure Px on

7



im(X) ={xy,...,z,} by
Px(z;) = P(X = a;)

for all x; € im(X). This probability distribution on im(X) is called the probabil-
ity distribution of random variable X and the corresponding probability mass
function f : A — R defined by f(z;) = P(X = x;) is called the probability mass

function of random variable X.

Definition. Let Q = {Bjy, ..., B,} be a partition of {2. A random variable X on (2 is

O-measurable if X is constant on each block of Q, that is, if it has the form

i=1

for (not necessarily distinct) constants b; € R.

Definition. Random variables X1, ..., X, are independent random variables if
P(Xy =1, Xp = ) = [ [P(X: = 20)

for all z; € im(X;).

Definition. Let X be a random variable on a finite probability space (2,P). The

expected value or expectation of random variable X is given by

ep(X) = Y X(w)P(w)

we

Definition. Let X be a random variable with finite expected value p. The variance

of random variable X is

ox? = (X — 1)?)

Standardizing a random variable. If X is a random variable with expected

value 1 and variance o2, then we can define a new random variable Y by




Then Y has expected value 0 and variance 1.

Definition. Let (2,[P) be a finite probability space and A be an event for which
P(A) > 0. The conditional expectation of random variable X with respect to
the event A is
e(X|A) =) X(w)P(w|A)
weN
Definition. Let P = {Bj, ..., B,} be a partition of Q for which P(B;) > 0 for all 1.
The conditional expectation of random variable X with respect to partition
P is
e(X|P)=e(X|By)lp, +..+e(X | Bu)ls

2.2 Stochastic processes

A finite collection of nodes or vertices, combined with a finite collection of edges

connecting certain nodes forms a state tree. The vertical columns in which nodes of

Figure 2.1: A State Tree

a state tree are organized are called levels, often thought of as times.

Then, the time-t; intermediate states of the tree are the nodes at time ¢; and the
time-t; state space is the set of all time-t; nodes. The state space for the final time
is called the final state space.

A node b, its children and the edges that connect these children to the parent becomes

the child sub-tree of b.
Definition. A sequence F = {Py,..., Py} of partitions of a set Q@ = {wy,...,w,}

9



for which

Por-...=Pn

is called a filtration.

A filtration is called an information structure if Py = {Q} and Py = {{w1}, ..., {wn}}

Figure 2.2: The child subtree of By

The child sub-tree number for B, is defined as the sum of the edge labels in the
child sub-tree for By,

Sk
C(By) = Z Dki-
i=1

The product of the edge labels of the path is called the path number of By, denoted

Theorem 2.2.1. Let Q = {wy,...,wy,} be a finite set with information structure
F={Py,...,Pn}. Suppose that we label the edges of the state tree of F with positive
real numbers such that C(By) = 1 for all By € Py, and allk = 0,...,N — 1. Then
the path number function defines a strongly positive probability distribution on 2, with
associated probability measure P({w}) = H({w}) and more generally P(By) = H(By,)
for all states By, € Py, and all k =0,...,N. Also, p, = P(By; | Bx).

Definition. A (finite) stochastic process on a sample space €2 is a sequence X =
(Xo, X1,...,Xn) of random variables defined on Q. If k¥ < m, the change in X from
k to m is the difference

Apm(X) = X, — Xi

Definition. Let Q be a finite set, with filtration F = {Py,...,Py}. A stochastic
process X = (Xg, X1,..., Xy) on 2 is adapted to the filtration I, or is F-adapted
if X}, is Pp-measurable for all kK =0,..., N.

10



X is predictable or previewable with respect to F if X} is P,_;-measurable for all

k=1,...,N.

Definition. Let X = (X, X1,..., Xy) be a stochastic process adapted to filtration
F. Then X is a martingale with respect to the triple (Q, P, F), if

er(Xit1 | Pr) = X
or equivalently,

€p(Ak7k+1(X) | Pk) =0 (21)

forall K =0,..., N —1. This expresses the idea that X is “fair” over every one-period

time interval [t, tx1].

The martingale condition 2.1 is equivalent to
ep(Dp (X)) [ Br) =0 (2.2)

for all By € Py. Since X} is constant on By, by denoting this constant by X (By),

the martingale condition is
&(Xps1 | Br) = Xi(Bi) (2.3)

Either of 2.2 and 2.3 can be referred to as the local martingale condition at B, in
Py.
Characterizing martingales

Theorem 2.2.2. LetF = {Py,..., Py} be a filtration on Q and let X = (Xo, X1,..., Xy)

be a stochastic process adapted to F. The following are equivalent:

1. X is a martingale

(X1 | Pr) = Xi

or in terms of change,

e(Dp g1 (X) | Pr) =0
forallk=0,...,N —1; that is, X is "fair” over any [tgi1,ts].

11



2. X is "fair” over any [t, trys); that is,
e(Xiti | Pr) = Xi dee, e(Dp (X)) [ Pr) =0

for allt >0 and k > 0 for which k+1i < N.

3. X is “fair” over any time interval of the form [ty tn]|; that is,
(XN [ Pr)=Xi de, e(Dpn(X)|Pr)=0

forallk=0,...,N —1.

4. X is fair at every By € Py; that is, 2.3 holds for all k =0,..., N —1 and for all
states By, € Py..

Moreover, if X is a martingale, then
e(Xy) =e(Xo) = Xo(Q) de. e(Aogi(X)) =0

for all0 <k < N.

2.3 Continuous Probability

Definition. Let 2 be a non-empty set. A non-empty collection ¥ of subsets of € is

a o-algebra if
1. Qe X

2. If Ay, Ag, ... is a sequence of elements of ¥, then
U A, eX
i=1

3. f Ae ¥, then A® € &

Definition. A probability space is a triple (€2, %, P) comprising of a non-empty set
), called a sample space, a o-algebra ¥ of subsets of {2 whose elements are called

events and a real-valued function P defined on ¥ called a probability measure.

12



The function P must satisfy the following properties:
1. Forall Ae ¥, 0<P(A) <1
2. P(Q) =1

3. If Ay, Ag, ... Is a sequence of pairwise mutually exclusive events, then
P(J4) =) P(A)
i=1 i=1

Definition. A distribution function is a function F' : R — R satisfying:
1. F is non-decreasing; i.e.
s<t= F(s) < F(t)

2. F' is right-continuous; i.e. the right-hand limit exists everywhere and

lim F(t) = F(a)

t—a™t

3. F satisfies
lim F(t)=0 and tlim F(t)=1
— 00

t——o00

Theorem 2.3.1. 1. LetP be a probability measure on R. The function Fp: R — R
defined by
Fp(t) = P((—o0,1])

15 a probability distribution function, called the distribution function of P.

2. Let F : R — R be a distribution function. Then there is a unique probability

measure Pr on R whose distribution function is F; that is, for which

Pr((—o0,t]) = F(t)

Definition. 1. A density function f : R — R is a non-negative function for

which
/ fz)dr =1
1

3



2. A probability measure P on R or equivalently a distribution function Fp is

absolutely continuous if there is a density function f : R — R for which

FMﬂ:MFMWDZX f(z)de

From this definition, it follows that

Mwmz/fmm

Definition. A function X : ) — R is Y-measurable if the inverse image of every
open interval is in Y, i.e.,

X (a, b)) €X

A measurable function on (£2,Y) is also called a random variable.

If (©, X, P) is a probability space and X is a random variable on (€2, 3J), then X defines

a distribution function Fx and corresponding probability measure Px on R by

Fx(t) = Px((—o0,1]) = P(X <)

Definition. A collection X, ..., X,, of random variables is independent if

n

P(Xy <ty,..., X, <t,) = [[P(X; <o)

i=1

Definition. Let X be an absolutely continuous random variable, with density func-

tion f. The expected value or mean of X is the improper integral

£(X) = /Oo v f(z)dw

—00

which exists provided that
/ |z | f(z)dr < o0

14



Definition. The variance of X is

Var(X) = e((X — p)?)

Normal Distribution.  Consider the normal distribution whose density function
is
1 _(@=w)?

e 202
V2mo?

Nyo(z) =

Theorem 2.3.2. If N, is a random variable with mean p and variance o* then
Z = W is a standard normal random variable. Conversely, if Z is a standard
normal random wvariable, then N, , = ocNy1 + (v is a random variable with mean p
and variance o>.

Theorem 2.3.3. If X is lognormally distributed, that is, if Y = log X is normal with

mean a and variance b, then

Definition. A sequence of functions from R to R, (f,), converges pointwise to
f : R — R if for each real z, the sequence of real numbers (f,,(z)) converges to the

real number f(x).

Definition. Let (X)) be a sequence of random variables, defined on (2,,P,). Let
X be a random variable on (€2,P). Then (X,) converges in distribution to X,
denoted

dist

X, — X

if the distribution functions (Fl, ) converge pointwise to the distribution function Fx

at all points where F'y is continuous. Thus, if Fx is continuous at s, then

lim Fy, (s) = Fx(s)

n—oo

15



that is,
lim P,(X, <s)=P(X <s)

n—oo

Theorem 2.3.4. For (X,,) and X as above,

1.

dist

Xo — X & ep,(9(Xn)) = ep(9(X))
for all bounded continuous functions g : R — R. In particular,

dist

X, — X = ¢&p, (Xn) — &TP(X)

2. For all continuous functions f : R — R,

X SH X = f(Xa) S5 ()
Definition. Two (or more) random variables are said to be identically distributed

if they have the same distribution function.

Theorem 2.3.5 (Central Limit Theorem). Let X1, Xs,... be a sequence of in-

dependent, identically distributed random wvariables with finite mean p and variance

o> 0. If
i=1

then the standardized random wvariables S,* = % converge in distribution to a

standard normal random variable Ny, ; that is,

hm an*(t) = ¢071(t)

n—oo

and so

(O

where the error in the approximation tends to 0 as n tends to co.

Theorem 2.3.6 (Central Limit Theorem). Consider a triangular array of random

variables

16



Bia
By DBap
Bsy Bss Bs3s

where for each row, the random variables B, ; are independent, identically distributed

standard Bernoulli random wvariables with

P(B,; = \/1%) =pn and P(B,; = -L2) =g,

However, the random variables in different rows need not be independent or identically
distributed, or even defined on the same probability space. Suppose also that p, — p,

where O < p < 1. Then the random variables

1 n
Sn:_ n,i
Vi

converge in distribution to a standard normal random variable.

For proofs of the theorems in this chapter and other properties in probability, refer

[Rom04].

17



Chapter 3

Some basic models

3.1 Discrete-time pricing model

The problem of determining a fair initial value of any derivative is the derivative
pricing problem (DPP). At time ¢ = 0, the final value of the derivative is unknown,
since it generally depends on final value of underlying asset, which inturn depends
on the state of the economy at the final time. So, on the space of all final states of
the economy, we assume that the final value of the underlying is a known random

variable. This section provides a model for the DPP.

3.1.1 Assumptions:
1. All prices are given in terms of an unspecified unit of accounting.

2. There is always available a risk-free asset, which cannot decrease in value and

whose amount of increase is known in advance for each time interval.
3. Additional assumptions

e Infinitely divisible market- We can speak of, for example, —m worth of

a stock or bond.

e Frictionless market- All transactions take place immediately and with-

out any external delays.
e Perfect market- No transaction fees or commissions; no restrictions on

18



Bm: {“11}

Bra= (o)

Figure 3.1: The state tree T

short selling; borrowing rate is same as lending rate.
e Buy-sell parity- Any asset’s buying price is equal to its selling price.

e Prices determined under no-arbitrage assumption- If an arbitrage
opportunity exists in the market, the prices will be adjusted to eliminate
that opportunity. Therefore, it makes sense to price securities under the

assumption that there is no arbitrage.

3.1.2 The basic model

The basic ingredients of the discrete-time model M are:
e Times- M has T+ 1 times tp < t; < ... < tp.

e Assets- M has a finite(n) number of basic assets A = {aq,...,a,}. ap is

assumed to be risk-free, while others are risky.

e States of the economy- At the final state ¢, we assume that the economy is
in one of m possible final states, given by the state space 0 = wy, ..., w,,. At t,
we know nothing about the final state except that it lies in {2. As time passes, we
may gain some information (but never lose information) about the possible final
state of the economy. So, we use an information structure F = {Py,...,Pr} on
(), called the state information structure for M.

The partition P = {B;1,..., Bim,} of Q is called the time-t; state partition.

For ¢ < T, the blocks of P; are called the time-t; intermediate states.
e Natural probabilities- We assume that there exists a probability measure on

19



) which reflects the likelihood that each final state in §2 will be the actual final

state. These are called natural probabilities.

e Asset price- Each asset has a price at each time that depends on the state of

the economy at that time.

Definition. 1. For each time ?; and each asset a;, the price random variable
Sij : @ — R is a nonnegative P-measurable random variable for which 5; ;(w)

is the time-¢; price of asset a; under the final state w belonging to €.
2. For a fixed time tj, the price vector for ¢ is the vector of asset prices (Sk1, - . ., Skn)-

3. For a fixed asset a;, the sequence S; = (Sp;,...,S7,) is a stochastic process,

called the price process for asset a;.

4. For the risk-free asset, the price random variables are constant; that is, they do
not depend upon the state of the economy. In particular Sp; = 1, and for all

times ¢ > 0,

S 6To(t1—to) 6?"1'—1(751'751'—1)
i

)

where 7y, is the risk-free rate for the time interval [tg, t541].

Definition. The discounted asset prices are given by gi,j = g—i, also called the

(time-ty) present value of S; ;.
In particular, §i71 =1.

Definition. e The asset holding for asset a; during the time interval [t;_4,;] is
a P;_1-measurable random variable 6, ;, where 6, j(w) is the quantity of asset a;

held during this time interval under state w € €.

e The stochastic process ®; = (6 ,...,60r;) is the asset holding process for
Q.
e A portfolio for the time interval [t;_1, ;] is a random vector ©; = (0;1,...,0;,)

on ) where ¢, ; is the asset quantity for asset a; over this time interval.

The process of liquidating the portfolio 8; and acquiring the portfolio 6,1 at time t;

is termed portfolio rebalancing.
Definition. A trading strategy for M is a sequence of portfolios & = (04,...,07)
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where ©; = (0;1,...,0;,) is a portfolio for the time interval [t;_1,;].

Since a portfolio ©; exists only during the time interval [¢;_,%;], it makes sense to
assign a value to ©; only at the acquisition time ¢;,_; and the liquidation time t;.

The acquisition value or price of the portfolio ©; is defined by the inner product
Vi—l(G ) 62752 1 Zezjsz 1,7
And the liquidation value or price of ©; is defined by

vi(0;) = (6, 5;) Zews”

Definition. A trading strategy ® = (04,...,0r) is self-financing trading strat-
egy (SFTS) if for any time ¢; where i # 0, T, the acquisition price of ©;,; is equal to
the liquidation price of ©;; that is,

Vi(©it1) = vi(©;)

Thus, a SF'TS is initially purchased for the acquisition value v4(©;) of the first port-
folio and is liquidated at time ¢7, producing a final payoff of v(©1). No other money
is added to or removed from the model during its lifetime.

The term gain refers to the change in value of a portfolio over a period of time.
1. For j <k, the discounted gain from ¢; to t;, denoted EM, is given by

Cpu() =72(@) = 75(8) = (@) — 5

2. For any time t;, the (cumulative) discounted gain G|, is

. Gr(®) is the discounted final gain in ®.

Definition. We say that a SFTS & = (©,...,0%) locks in the gain in ¢ up to
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time t;, if

Theorem 3.1.1. Let ® = (O4,...,07) be a SFTS, [ty, tkim] be an interval, A =
{Bgy, ..., Bk} be a collection of time-t; states in Py and let B = By, U --- U By,.
Then the SE'TS defined by

0 ifl<i<k
O;FF ™M1 p = & &5 — (T(Phs1),0,...,001p ifk+1<i<k+m
(Grpm(®),0,...,0)1p ifk+m<i<T

locks in the discounted gain in ® over [ty, tx.m] for the states in A only; i.e.

ET(¢(k’k+m)1B) = (ak,k—i-m(q))lB

The particular example given by

0 ifl<i<k
©;i=4q (=Skj,---,0,1,0,...,0)15  ifi=k+1
(=Skj + Sk115,0,...,0)15 ifk+1<i<T

is denoted by ®[a;,t, B] and called atomic trading strategy. The final gain
Gr(®[aj, ty, B]) = G (Pla])1p = Apira(S))1s

is the change in price from ?; to t;1; for asset a; in state B € Py.

Definition. e A SFTS @ is an arbitrage trading strategy or arbitrage op-
portunity if G7(®) > 0.

e A probability measure P on (2 is a martingale measure (or risk-neutral

probability measure) for M if
1. P is strongly positive; that is, P(w) > 0 for all w € Q.
2. For each asset a;, the discounted price process (EOJ, e ,ETJ) is a martin-
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gale; that is, for all £ > 0,

ep((Skr1, | Pr) = (Sky

Theorem 3.1.2. A strongly positive probability measure P on §2 is a martingale mea-

sure for M if and only if the expected gain of every atomic trading strategy is 0, i.e.
5(5T(<I>[aj, tr, B])) =0

for all assets aj, all times t;, and all states B € Py, where 0 < k < T

Theorem 3.1.3. Let M be a discrete-time model with state information structure
F = {Po,...,Pr}. The following are equivalent for a strongly positive probability

measure P.

1. P is a martingale measure; i.e. for all j =1,...,n,

er(Dyira(S5) | Pr) = 0.

2. Forallk=0,...,T —1,

Eﬂm<7k+1(q)) —?k(q)) ‘ Pk) =0 i.e., SP(ak7k+1(q>) | Pk) =0.

3. For all ® and all ty,

ep(Gu(®) =0 e, ep(Th(®)) = To(D).

4. For all assets a;, all times t, and all states B € Py, where 0 < k < T,

6(§T(<I>[aj, tr, B])) =0.

Characterizing arbitrage

Theorem 3.1.4 (The First Fundamental Theorem of Asset Pricing). A discrete-

time pricing model M has no arbitrage opportunities iff it has a martingale measure.
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3.1.3 Computing martingale measures

Figure 2.2 shows a parent By and children {Bgi11, ..., Bri1s, |- Edge label from By,

t0 Bry1,i 18 Pry1a-

The path numbers for the final states form a probability distribution P iff

1= ZPHM (3.1)

The edge labels are the conditional probabilities

P+, = P(Bk+1,i | Bk:)

Therefore, the local martingale condition at By, (Sit1, | Bx) = Si;(Bi) can be

written as

Sk
Sk(Br) = Z§k+1,j(Bk+l,i)pk+1,i (3.2)

i=1
foreach j =1,...,m.
Equations 3.1 and 3.2 are called the local martingale equations for a martingale

measure.

Theorem 3.1.5. If the edges of the state tree are labelled with positive real numbers
Dk+1,i as described above, then the path numbers define a martingale measure P on Q

iff the local martingale equations 3.1 and 3.2 hold.

Definition. A random variable X : 2 — R is called an alternative, or contingent

claim.

In a way, an alternative X : {2 — R defines an option with final payoff X. We assume
that for any random variable X :  — R, some investor will be willing to buy and
some investor will be willing to sell an option whose final payoff is X.

Thus, the problem is of pricing an alternative X, the procedure for which is to find a

SE'TS within the model with final payoff is X; that is, for which
I/T((D) =X

. Such a SFTS is called replicating trading strategy.
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We set time-t; price of X = time-t; price of vr(®). Any other choice will lead to

arbitrage (when the alternative is added to the model).

Definition. e An alternative X is said to be attainable if it has at least one

replicating strategy. If every alternative is attainable, M is complete.

e Law of One Price states that
I/T((bl) = I/T((I)Q) = I/k(cbl) = I/k(q)g)

for all 0 < k < T and for all trading strategies ®; and ®,.

The absence of arbitrage implies that the Law of One Price must hold and the Law

of One Price ensures that the following pricing functionals are well-defined.

Definition. Let M be a model with no arbitrage. For any time ¢, if M is the vector
space of all attainable alternatives, the time-t; pricing functional Z, : M — R is
defined as: If X € M, then

T(X) = (@) (3.3)

for any replicating trading strategy ® for X. Z, is called the initial pricing func-

tional.

Pricing an alternative X at time ¢, involves first finding a replicating trading strategy

® and then setting 3.3.

Theorem 3.1.6. Let Ml be a model with no arbitrage and P its martingale measure.

Let X be an attainable alternative.

1. The discounted time-t;, price of X 1is
Ii(X) = ep(X | Py)

where X = X/Sr;
2. In particular,

To(X) = ep(X)

Theorem 3.1.7 (The Second Fundamental Theorem of Asset Pricing). Let M
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be a model with no arbitrage opportunities, and hence at least one martingale measure.

Then there is a unique martingale measure on M iff M is complete.

3.2 The Binomial model for options

3.2.1 The General Binomial Model

e Times- The lifetime L is divided into T' time intervals tg < ¢t; < --- < tp of

equal length At.
e Assets- Two assets: a risk-free asset a; and a risky asset as.

e States of the economy The model assumes that during each time interval
[t ter1], the economy either goes up, called an up-tick U in the economy
or it goes down, called a down-tick D in the economy. Each movement is

independent of previous movements. Thus, the state space is the set
Q=Qp={U, D}

of all strings of U’s and D’s of length T. These are the final states of the
economy.

Qi = {U, D}* is the set of all strings of U’s and D’s of length k. [w]; denotes the
prefix of any w € €2 of length k. For each § = e;...¢; € ), the intermediate
state By € Py is the set of all final states having prefix J; that is,

Bs = {w € Q|[wl], = 0}

e Natural probabilities- For each interval [y, tx11], there is a natural probability

pr of an up-tick and 1 — p of a down-tick in the economy.

e The price functions- The time-t; price of the stock is denoted by Sj, which
is a random variable on Q. An up-tick during [ty, tx. 1] takes the stock price up
by a factor of uy > 1 to Spy 1 = Spur and a down-tick takes the stock price

down by a factor of 0 < d, <1 to Sky1 = Skdy. uy is called the time-t; up-tick
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Figure 3.2: State tree for a Binomial Model

factor and d; the time-t, down-tick factor. wu, and d; are called the tick

parameters of the model. Note 0 < dy <1 < uy,.

If we Q, we let dg(w) be the product of the up-tick and down-tick factors that

determine the time-t; price S;. In general, we have
Sk(w) = Soék(w)

for any w € ). The price of the risk-free asset is given by the risk-free rates ry for

the intervals [tg, tg41].

Martingale measures in the Binomial Model

The binomial model is free of arbitrage iff d; < e™** < w, for all k =0,...,7T — 1.
Then M is complete and the unique martingale measure P on M is defined by the
path numbers in the state tree when the up-tick edges of the tree are labelled with

the martingale up-tick probabilities

At
e’k — dk

T —
up — di,

and the down-tick edges are labelled with the martingale down-tick probabilities

1—7Tk.
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Pricing in the Model

The pricing functionals Z; are well defined, since M is arbitrage-free and complete.

In particular, for any random variable X on 2,
To(X) = e me(X)

where r = ) ry is the sum of the risk-free rates and the expected value is taken under

the martingale measure.

3.2.2 Standard Binomial Model

Definition. A binomial model is SBM if the following hold:
1. the up-tick probabilities u = u; are the same for all times.
2. the down-tick probabilities d = dj, are the same for all times.
3. the risk-free rate » = rj, is the same for all times.
4. the natural probabilities are the same for all times.

Theorem 3.2.1. Let Ny(w) = number of U’s in w, Np(w) = number of D’s in w.
The standard binomial model is free of arbitrage iff d < €™ < w. In this case, the

time-ty, stock price function Sy is given by
Sk(w) = SOUNU([w}k)dND([w]k)
for any w € Q. In particular, the final price is
Sr(w) = SouNu (@) gNp(w)

Moreover, the model is complete and the unique martingale measure P on M is defined
by
P(w) = 7TNU(w)(l _ 7T)Np(w)

e'rAt —d
u—d

for any w € Qr, where m = 1 the martingale up-tick probability.
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Pricing in a Standard Binomial Model

Theorem 3.2.2. Let M be a complete SBM with no arbitrage. Then a Furopean call

option with strike price K expiring at the end of the model has initial value

o(Call) = et Z ( ) (SouFd™ % — K)* 7% (1 — m)T*

and a European put option has initial value
To(Put) = e "F Z ( ) (K — SouFd"™ ") Trk(1 — 7)T*

where
rAt d

15 the martingale up-tick probability.

Choosing the Tick parameters

Let p be the natural (not the martingale) probability of an up-tick in the market.
During each time interval, the stock price takes either an up-tick or a down-tick.
Hence, we can define independent Bernoulli random variables FEj, ..., Er to track

these growth factors by

Then the stock price at time-t; is given by
S = SoE; -+ Ex

and the final time-tr price is Sy = SoF1 - - - Er Since




E,1 is referred to as the simple return of the stock price over [ty,tri1]. We define

the (annualized) instantaneous return of the stock price to be
L log
Sgr1 = —— lo
R = A g Lik+1
To make the stock price look like exponential growth, we write
ST = S()El s ET = 506210gEi = SoeHT

where .
S
Hp =log (S_T) = Zlog E;
0 i=1

is called the logarithmic growth of the stock price.

Now, the expected value p and variance s? of the instantaneous return are given by

1
(log E;) = —(plogu + qlogd)

= At

1 1
§2 — WVar(log E;) = Wm(logu — log d)?

1 is called the drift and the constant o = sv/ At is called the drift volatility of the
stock price. Thus, we have

c(log B;) = pAt and Var(log E;) = o®At

We standardize log F; to get

_ log E; — pAt

X;
oV At

which are independent standard Bernoulli random variables with

with probability p
Xi -

L S
E

with probability ¢
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To write the logarithmic growth in terms of the random variables X;, we have
T
Hy = pL +oVAL Y X;
i=1

The stock price is given by

T .
ST — S(]eHT _ Soe‘uLJrJVAtZi:l X;

3.3 The Black-Scholes model for options

The Black—Scholes option pricing formula gives the price of a European put or call

based on five quantities:
e the initial price of the underlying stock,
e the strike price of the option,
e the time to expiration,

e the risk-free rate during the lifetime of the option, which is assumed to be

constant,

e the volatility of the stock price, a constant that provides a measure of the
fluctuation in the stock’s price and thus is a measure of the risk involved in the

stock.

The first three in the above list are known while the last two can only be estimated.

3.3.1 Stock prices and Brownian motion

Definition. A continuous stochastic process on an interval I C R of the real line
is a collection {X; | t € I} of random variables on §2 indexed by a variable ¢ that

ranges over the interval [.

Definition. A continuous stochastic process W = {W; | t > 0} is a Brownian

motion process with volatility o if
1. Wo=0
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2. Each increment W, — W is normally distributed with mean 0 and variance
o%(t — s). In particular, each W; is normally distributed with mean 0 and

variance o?t.

3. W has independent increments; that is, for any times t; < t, < --- < t,,, the

non-overlapping increments

W/tz_VthWt?,_Wth"aWt _WT

n n—1

are independent.

Definition. A stochastic process of the form W = {ut + W; | t > 0} where p is a
constant and {W) is Brownian motion with volatility ¢ is called Brownian motion

with drift ;4 and volatility o.

Definition. A brownian motion process {Z; | t > 0} with drift 4 = 0 and volatility

o = 1 is called standard Brownian motion. Z; has mean 0 and variance .

If {W; |t >0} is Brownian motion with drift u and variance o, then we can write

Wiy =put +oZ;

where {Z; | t > 0} is standard Brownian motion.

Definition. We assume that the stock price S; at time ¢ is given by

St = Sgth

where Sy is the initial price and H; is a Brownian motion process. The exponent
H,; represents a continuously compounded rate of return of the stock price over the

period of time [0, ].

is referred to as the logarithmic growth of the stock price.

Definition. A stochastic process of the form {e"* | t > 0} where {W; | t > 0} is

Brownian motion is called geometric Brownian motion.
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If we assume that H; follows a Brownian motion process with positive drift, then we

can write

H; = log (%) = ut + oW,
0

where {W;} is standard Brownian motion. Therefore, H; has a normal distribution
with
e(Hy) =pt and Var(H;) = o’t

3.3.2 Binomial model in the limit At — 0

Let M, be a binomial model with the following parameters:
1. Lifetime t > 0
2. T time increments, each of length At =t/T
3. Up-tick factor up and down-tick factor dr, where 0 < dr <1 < ur.
4. A probability of up-tick pr € (0,1) and down-tick g7 = 1 — pr.
5. Drift and volatility
L (prlogur + grlog dr)
= — og U 0
Hr At prlogur +— qrlogar
o1]? = —prar(logur — logdz)?
T AL T T
Let S; 1 be the final stock price and let

S,
Hyr = log(bi;;)

be the logarithmic price growth. If the family {M,r | ¢ > 0} is stable (that is, if
pr — p for some p € (0,1) and puy — p,or — o for some real numbers p and o # 0),
then

Hyr ! H, = ut 4+ o0v/tZ, and St sty S, = Soeutﬂf\/sz

Moreover, the process {vtZ, | t > 0} is standard Brownian motion. Hence, the
logarithmic growth and stock price processes {H; | t > 0} and {S; | t > 0} are

Brownian and geometric Brownian, respectively, with drift g and volatility o. Also,
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the stock price growth S;/Sy is lognormally distributed with
£(S) = § — 0eltzo)

Var(S,) = (S — 0elt2ot2 (7" — 1)

3.3.3 The Natural Binomial Model

In the general binomial model, the up-tick probability p is arbitrary and may or may
not be related to the martingale measure up-tick 7. If p is determined by empirical
means based on economic data, it is referred to as the natural up-tick probability
and denoted v. The binomial model with p = v is the natural binomial model,

under which we want to price alternatives.

Assumption 1: The natural probability v of an up-tick in the stock price satisfies
0 < v < 1 and does not depend on the number T of intervals.

Assumption 2: The resulting natural drift and volatility

1

p=rgWlogur + (1 —v)logdr)

1
o2 = Ey(l — v)(logur — log dT)2

called the natural(or instantaneous) drift and natural(or instantaneous) volatility,

respectively, do not depend on T' (or At).

Theorem 3.3.1. Let My be the natural binomial model with natural drift p and
volatility o. Then,

1. The martingale measure up-tick probability is given by

—u)At L4 At
WA VAL

VAt

m =

1
e\/u(l—u)o— 1

2. The martingale probability m = wr approaches the natural probability v as T —
oo (At — 0); that is,

lim mp = v
T—o00
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3.3.4 The Martingale Measure Binomial Model

The payoff for a European put with strike price K is
X = (K — Sp)" = (K — Spefr)*
and the absence of arbitrage implies that
T(Put) = e "e((K — Spef™™)™)

where the expected value is taken under the martingale measure of the natural bino-
mial model.
Taking limits as T" — oo gives

Py = lim Z(Put) = e lim e((K — Spe"T)")

T—o00 T—o00

where P,, denotes the limiting price random variable.
Setting g(z) = (K — Spe*)™ which is bounded and continuous on R gives

Py =" lim e(g(H,))

T—00

If Hy converges in distribution to a random variable X under the martingale measure,
then
P =" lim e(g(H,)) = e "e(g(X))

T—o0

To find the limit in distribution of Hy under the martingale measure, we consider
the binomial model M, r) formed by taking pr to be the martingale measure up-tick

probability from the natural model with natural up-tick probability v; that is,

erT _ dT

pPr =T =
ur —drp

We refer to this as the martingale measure binomial model.

Theorem 3.3.2. The martingale measure model drift ju. v and volatility o are
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related to the natural drift u, and volatility o, by

. +o 1 (’/TT — I/)
P = o VAL v(l—v)

o (mr(1 — 7r)
v(l—v)

2
Onr 1T = Oy

Theorem 3.3.3. The following limits hold:

2

. Oy .
lim p,7=r— —and lim 0,7 =0,
T—oo 2 T—oo

where 1 is the riskfree rate.

Theorem 3.3.4. Let M, 1 be a binomial model with the following parameters:
1. Lifetimet > 0
2. T time increments, each of length At =t/T
3. Up-tick factor ur and down-tick factor dr, where 0 < dr <1 < urp.

4. Probability of up-tick equal to the martingale measure up-tick probability from
the natural model with up-tick probability v, that is,

erT _ dT

pT:ﬂ'T:
up — dr

5. Drift and volatility

1
Pw T = E(?TT logur + (1 — mr) log dr)

1

O'ﬂ-’T2 = A—tﬂ'T(l — 7TT>(10g ur — log dT)2

Then
2
oy
T =V, fgeT —> T — > and or1 — 0,
where 1 is the riskfree rate and so the model is stable. Hence the logarithmic growth
satisfies

. 2
Ht,T ﬂ Ht = (T — %)t —+ O'V\/EZt
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where Z, 1s standard normal and
dist _o?
Syp NS, = 506(7‘ =V ttouViZy

where {\/tZ; | t > 0} is standard Brownian motion. The logarithmic growth and
stock price processes {H; | t > 0} and {S; | t > 0} are Brownian and geometric
Brownian, respectively, with drift i and volatility o. Also, the stock price growth

St/ So is lognormally distributed with
5(St) =5—- 06”
Var(S,) = (S — 0e™)2(e”"t — 1)

3.3.5 The Black-Scholes Option Pricing Formula

With all the above information in this section, we can derive the following:

Theorem 3.3.5 (The Black-Scholes Option Pricing Formulas). For Furopean

options with strike price K and expiration time t, we have
C = Sodo(dr) — Ke o1 (ds)

P = Ke ™ o1(—dy) — Soo1(—ds)

where Sy is the initial price of the underlying stock, o is the natural volatility, ¢o1 is

the standard normal distribution function and

dy = %ﬁ[log(%) +t(r + 302)]
dy Uiﬂ[m%) Filr— 50%)] = d— oV

where 1 is the risk-free rate.

For proofs of the theorems and other details, refer [Rom04].
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Chapter 4

Wavelet-based option pricing

4.1 Basic wavelet theory

The theory in this section is from [PO18], [Dau92| and [Bla03].

4.1.1 Mathematical background

Definition. The characteristic function (Chf) of a continuous random variable

X with probability density function f is defined as

E[e~™X] = /_OO f(x)e ™ dz. (4.1)

Let V' be a vector space over a field F' (= C or R).

Definition. A norm on V is a function p : V' — R that satisfies the following: For

all a € F' and all u,v € V,
1. (Homogeneity) p(av) =|a| p(v).
2. (Triangle inequality) p(u + v) < p(u) + p(v).
3. (Positivity) p(v) > 0. p(v) =0 only for v =0

The norm of a vector v € V' is denoted by ||v||,,.

A normed vector space is a vector space endowed with a norm.
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Definition. A Banach space is a vector space over R or C equipped with a norm
which is complete with respect to that norm, where completeness means that for all

Cauchy sequences {v,} in V, there exist v € V such that |lv, —v||,, = 0 as n — oo.

Definition. For each p, 1 < p < oo, LP(S) denotes the class of measurable functions

f on a measure space S such that

[ @i <o

These are Banach spaces with the LP(S) norm defined by

1l = (J |f (@) dz)7, for 1 < p < oc.

Definition. A separable vector space V is a vector space such that there exist a
countable dense subset {f,} ~, f» € V, which means that for all g € V and ¢ > 0 3
n such that ||f, — g||< e.

For all p < oo, the L spaces are separable.

Definition. An inner product on V is defined as a map (-,) : V. x V — F such

that for z,y € V and a,b € C,

L. (Symmetry) (y, ) = (z,y).
2. (Bilinearity) (az; + bxs,y) = a{x1,y) + b{xs,y).
3. (Positivity) (x,z) > 0; equality holds only for z = 0.

An inner vector space is a vector space endowed with an inner product. For f € V|

we define || f|,, = v/ ([, f)

Definition. A Hilbert space H is an inner product space that is also a complete

metric space with respect to the norm induced by the inner product.

We define an inner product on L*(S) by
()= [ S@alade. f.g€ 1)

(f. 1) =If1,% feL*S)

The standard norm of L?*(S) is derived from this inner product. Endowed with this
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inner product, L?(S) becomes a Hilbert space.
Definition. For an inner product space V', orthogonailty means
e Vectors X and Y are orthogonal vectors if (X,Y) = 0.

e Subspaces V; and V5 of V' are orthogonal subspaces if each vector in V; is

orthogonal to each vector in V5.
e Functions f and g are orthogonal functions, denoted f_Llg, when (f, g) = 0.

e A set of functions is an orthogonal set of functions if and only if every

distinct pair in the set is orthogonal.

Definition. Suppose V; is a finite dimensional subspace of an inner product space V.
For any vector v € V', the orthogonal projection of v onto Vj is the unique vector

vy € Vp that is closest to v; i.e.,
[ — vo||= mingey, [[v—wl

Definition. e The collection of vectors e;,7 = 1,..., N, is an orthonormal vec-

tor collection if each e; has unit length, ||e;||= 1, and e; and e; are orthogonal
for i # j.

e A sequence of functions {f,}ncz is said to be an orthonormal sequence of

functions if (f,,, f,) = dm,n, where 0, is the Kronecker delta defined by

1, for j =k,
0, forj #k.

If {¢1, o, P3, . ..} is any orthogonal set of non-zero functions, then a correspond-
ing orthonormal set {11, 9,13,...} can be constructed by “normalizing” each

Ok, that is,

Definition. Given a Hilbert space V', a Hilbert basis(or simply basis) for V' is an
orthonormal set of vectors, H, with the property that every vector in V' can be written

as an infinite linear combination of the vectors in the basis.
Theorem 4.1.1. Let {f,}°, be an orthonormal set on L*(S). Then the following
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conditions also characterize an orthonormal basis.

1. For eacq g € LP(S),

[e.9]

9= {9, fa) fu-

n=0

2. For each g € LP(S5),

lgll* = 3., {9, fa)l* -

4.1.2 Fourier analysis

Fourier series aims at decomposing a periodic signal into its frequency components
which are represented by the sine and cosine. The Fourier transform, viewed as an

extension of Fourier series to general, non-periodic functions.

Fourier series

A Fourier series decomposes any periodic function of period 2a for a € R into the
sum of a (possibly infinite) set of simple oscillating functions, specifically complex
exponentials (sines and cosines). For each p, LP(—a,a) denotes the Banach space

of functions f satisfying f(x + 2a) = f(x) almost everywhere (a.e.) in R and ||

f”LP(fa,a) < 00.

Theorem 4.1.2. For a € R, the set of functions,

1 inmTT
e e nes,,
{ Va }
is an orthonormal basis for L*(—a,a).

Definition. The complex Fourier series of a periodic function f(z) € L*(—a,a)
is given by,

f@) =3 ane™,

n=—oo

where the coefficients of the complex Fourier series are,

1 @ —inTx
Q, = %/_af(x)e o dx.
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Definition. The Fourier series of a periodic function f(x) € L*(—a,a) of period

2a is given by,
fx)=ao+ ; an, cos(%x) + ; bn, sin(%x),

where the coefficients of the Fourier series are,

%zi/jmm
a, = 2/_2 f(z) cos(%x)dx,

by, = % /_C; f(z) sin(%x)dx.

Fourier and inverse Fourier Transform

Definition. The Fourier transform of a function f € L'(R) is defined by

(e 9]

flw) = [~ e sy,

—00

The above integral converges and is bounded.

Theorem 4.1.3. If f € L'(R) and fe LY(R), then the inverse Fourier trans-
form of [ is
1 [~ ,
flx) = 5 /_Oo f(w)e™*dw.
Discrete Fourier Transform

Definition. The discrete Fourier transform (DFT) of f is

fiK = 3 flaean(—220)

and the inverse discrete Fourier transform (IDFT) formula,

—_

flol = 5 3 fiklean(”



Windowed Fourier transform

Choose a window function g : R — R>(, which has "total mass” 1 and is more or
less concentrated around ¢ = 0, which means that it has, e.g., a compact support
containing 0 or at least a maximum at ¢t = 0 and fast decay when |t|— oco.

For a given s € R, the function

gs 1t gt —s)

represents the window g, translated by the amount s(to the right, if s > 0). We define

the windowed Fourier transform by
Gf :RxR—=C, (a,s)— Gf(a,s)
of a function f by

Gfla,s) = \/%/Oo F(t)g(t — s)eotdt.

4.1.3 Wavelets

A limitation of Fourier series is that its building blocks are periodic.

So, we have a different set of building blocks, called wavelets, which, roughly speaking,
are waves that travel for one or more periods and are non-zero only over a finite
interval. A wavelet can be translated in time, stretched or compressed by scaling to
obtain low and high frequency wavelets.

Wavelets are a family of functions constructed from dilation and translation of a single

function in L*(R), ¢, with ||¢||= 1 and

Wl(“”Q da < o0.

al

CT/} = 271' f]R*

This is called the mother wavelet. When the dilation parameter a and the trans-
lation parameter b vary continuously, we have the following family of continuous

wavelets,

Yo p(x) :|a|_% (0 (%b) , a,beR, a##0.
These are also called child wavelets.
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m

Definition. The parameters a and b restricted to the discrete values: a = ag™™ and

b = nbyag™™, ag > 1, by > 0 and n, m € Z, give rise to the following family of discrete

wavelets

Yimn() =laol™? 1 (ag™x — nbo).

Definition. The wavelet series of f € L?(R) is defined as

f(:)j) = Z Z<f’ wm,n>¢m,n(‘r)a

MmEZ nEZL

provided that the functions {t,,, : m,n € Z} form an orthonormal basis of L*(R).

Continuous Wavelet Transform

Assume that a certain wavelet 1) has been chosen and is held fixed. Then the function

Wa.h)i= s [ 00 (ﬂ) dt (0 #0)

is called the continuous wavelet transform of f € L? with respect to 9.

After dilation by a and translation by b, we get

1 t—>b
Vap(t) == WW—)-

a

Clearly, ||tap||= 1. Then, W f(a,b) = (f, Vap)-
This implies that

1. At each point (a,b) € R* x R the wavelet transform W f has a well determined
value W f(a,b)

2. By Schwarz’ inequality, W f is uniformly bounded on R_?:
(W, D)<IfIl V¥ (a,b) € R2.
The Fourier transforms of the functions 1, are
Vap(€) =la]'’? 7 ) (ag).

We therefore can write W f(a, b) in the following form

W f(a,b) = (f,dap) =la|V? [ f(€) €™ P(a) dE.
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Theorem 4.1.4. For fized a # 0 the function

Wf(a,-):b— Wf(a,b)

can be regarded as the Fourier transform of the function F,, given by

Fu(&) = v2r |a]? f(£) ) (al)

A Plancherel formula. For the definition of a scalar product for functions u :
R? — C we need a measure on R_?. We see that a point (a,b) € R? is used implicitly

to characterize the affine transformation
Sap  R=R, 7—=t:=ar+0b
of the time axis. The totality
AfE(R) = {Sas | (a,b) € R%}

of these affine transformations is a topological group with respect to o (i.e. com-
position) and as such it carries a "natural” measure du, called left invariant Haar
measure. Formula above defines a parametrization of the group Aff(R) by the set R?
so the measure du becomes manifest as a measure in the (a, b)-plane. The resulting

expression for du = du(a,b) can be computed explicitly; one finds

1
| af?

dp = du(a,b) == dadb.
We define the Hilbert space as

H = LA(R%, dy) = L2 (R* xR, M)

whose scalar product is defined by

Theorem 4.1.5. Let ¥ be an arbitrary wavelet and let W denote the corresponding
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wavelet transform. Then ¥ f,g € L? the following is true:

(WfWa)n = Cy(f,9).

Theorem 4.1.6. Let v and x be two wavelets and assume that the integral

d(a)x(a) ,
27 /R* Tda =: Cyy

is defined, i.e., finite. If Wy, and W, denote the wavelet transform with respect to

and x, then the following is true for arbitrary f,g € L*:

Wy f,Wig)u = Cy(f, 9)-

Inversion Formula. For deatils and proofs, refer [Dau92].

Theorem 4.1.7. Let x be a point of continuity of f. Under suitable assumptions

about f and 1, one has

1 dadb
flz) = Co Wf(%b)%,b(w)w)
Theorem 4.1.8.
1 dadb
f(l') = C_wx . Wwf(a, b)Xa,b(‘%)‘a—lg)

if the quantity Cy, is defined.

Decay of the Wavelet Transform

Theorem 4.1.9. Assume that a wavelet 1 with tp € L' has been chosen. Let the
time signal f € L? be globally bounded and assume that f is Hoelder continuous at
the point b, i.e., there is o € (0,1] such that in a neighbourhood of b an estimate of
the form

|f(t) = fFB)I<SCJt — bl
holds. Then
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W f(a,b)|< C" [a|*+3

Multiresolution Analysis
Definition. A multiresolution analysis (MRA) consists of the following:

a llatera sequence il S OI closed subspaces O . i'S are oradere Y
A bilateral Vi|j € Z} of closed sub [ L2V dered b

inclusion

L..cVicVcV,yCc...cVpyCV,;cC...CcL? (42)
and one has
ﬂ V; = {0} (separation axiom), (4.3)
J
U V; = L2 (completeness axiom). (4.4)
J

In the limit, any f € L? can be obtained from functions f; € V;.

(b) Vj’s are connected through the property:
Viei = DalV}) VjeZ, (4.5)
where for ¢, Dytp(t) =, e ¥(t — k). For f, this means

Fev, & f2) e (4.6)

(c) There is a function ¢ € L*N L' such that (¢(-—k) | k € Z) forms an orthonormal
basis of Vy. This function ¢ is commonly called the scaling function of the

MRA.

Then, the space Vj can be described as a set of time signals f in the following way:

Vo=A{f e L[ f(t) = 2y cxd(t — k), 204 | i [P< 00}

Using ¢ as a template we now define the functions

b r(t) = 279124 <t —2];:.2j> = 279/2¢ (2% — k) (j €EZ,k € Z);
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this being in obvious concordance with the formulas defining the wavelet functions
Ymn. Then the family (¢;x|k € Z) is an orthonormal basis of V;, two subsequent
functions ¢, and ¢, x+1 now being translated by the amount 2/ with respect to each
other.

We may interpret the orthogonal projection P; of L? onto V; as: The image P;f of
a time signal f € L? incorporates all features of f whose horizontal spread over the

time axis is of size 2/ or larger. P; is given by:

o0

Pif =Y (f,0in)in

k=—o0

Because of the inclusions 4.2 the ¢, cannot be brought together to form a ”big”
orthonormal basis of L?. So we construct a system (W;|j € Z) of pairwise orthogonal
subspaces W; C L? in the following way: W; is the space gained in the transition
from V; to the next larger space V;_; in the chain 4.2, which means that W is the

orthogonal complement of V; in V;_;. Then
Via=VieW, W,LlV, VjieZ

Furthermore, everything is set up in such a way that the formulas analogous to 4.5

and 4.6, namely
Wj+1 = DQ(W]) resp. f € Wj = f(2]) e Wy,

hold likewise;

Theorem 4.1.10. If the system (V;|j € Z) possesses the properties (a) of an MRA,

then the corresponding subspaces W; are pairwise orthogonal, and furthermore

@ W; = L?(orthogonal direct sum,).

J

It can be proven that there exists a wavelet function ¢(z) € Wy such that the set

{¢j(z) = 20/2 )(2x — k), k € Z} is an orthonormal basis of W.
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Examples of wavelet functions

We have a wide range of wavelet functions: Daubechies, Haar, Shannon, Meyer,

Gaussian, Chebyshev, Morlet, Symlets, etc.

Haar wavelet The Haar scaling function is defined as

1, f0<z<l,
b (r) =

0, elsewwhere.

Its Fourier transform is

The Haar mother wavelet function is

1, for0<z< %,
ou(x) = —1, for % <z<l,

0, otherwise.

Shannon wavelet Shannon scaling function is

sinirs) if 44 0,
1, if v =0.

os(x) = sinc(z) =

Its Fourier transform is

~ w
ds(w) = rect(%)
where rect is the function
1, if |z|< 4,
rect(z) = 1/2, if |x|=3,
0, if [z|>3




4.2 A wavelet-based model for European options

This section is taken from [LCMS19].

4.2.1 Introduction

The book [Mall] describes a nonparametric option pricing model that focuses on
approximating the implied risk-neutral Moment Generating Function(MGF) of the
underlying asset returns using wavelets. The MGF can be used to obtain all the
statistical moments of the underlying asset distributions and the preference parameter
of the utility function; and out-of-sample options with different maturity dates can
be directly estimated using the risk-neutral MGF.

MGPF of a continuous random variable x is defined as the bilateral Laplace transform

of the probability density function p(x), i.e.

M(s) = / " o()e .

o0

where s is a complex number.
There are mainly three types of application of wavelet methods in finance and eco-

nomics, as per [HLMS09]
1. for multi-scaling analysis;
2. to de-noise raw data;

3. to estimate unknown parameters of a model.

4.2.2 Bilateral Laplace Transform

Following [HLMS09], let f(t) be a real-valued function, piecewise continuous on
(—00,00). Its bilateral Laplace transformation is a complex valued function
given by

L{fO)s) = Fio) = | " e,
0
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where s is a complex value and £ denotes the Laplace transform operator.

The inverse Laplace transform can be written as:

c+ioo
LYF)I) = £() = —— / F(s)eds.

210 Jolino

where ¢ is a specific real number.
Let F'(s) denote L{f(z)}(s) and G(s) denote L{g(x)}(s). Then we have the following

properties:
1. Linearity: L{af(z) + bg(z)}(s) = aF'(s) + bG(s);
L HaF(s) 4+ bG(s)}x) = af(x) + bg(z).
2. Frequency shifting: L{e"®f(z)}(s) = F(s+1), VI € R;

L YF(s+ 1)} z)=ef(z), VIER.

3. Time shifting: L{f(z — zo)}(s) = e ™°F(s), Vzy € R;
L He ™05 F(s)}(z) = f(x — x0), Vro €R.

4. Convolution: L{f(x) * g(x)} = F(s)G(s);
LHF(s)G(s)}(x) = f(x) * g(x).

where * indicates the convolution operator on f and g:

frg= "0 f(r)g(t —1)dr = [T g(r)f(t —T)dr

4.2.3 The Model

Under fairly general assumptions including i.i.d. distribution for asset returns, the

wavelet-based option pricing model can be expressed as follows:

_ 1 [ Or_(9) X
— r(te) p—1 t -
Ci(Sy, X, T) = Xe L (s(s 1)) (ln5t>

where £~ denotes the bilateral inverse Laplace transform, C; is the time-t price for
a Furopean call option written on asset whose price is S; with strike price X and
a future maturity date T'. Interest rate r and the dividend yield are assumed to be

constant.

Or_+(s)
s(s+1) 7

part Re(s) < —1 for calls and Re(s) > 0 for puts. The MGF ©r_,(s) of the logarith-

The main ingredient of the model is where s is a complex value whose real
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mic returns In “Z,—f captures the underlying asset dynamics and investor expectation
embedded in option prices, and needs to be approximated with wavelets. A wavelet
which meets the requirements (as per [Mal99]) for the given case is the Franklin hat
function defined as
(I—1¢t]) if —1<t<1
h(t) =
0 otherwise

The Laplace transform of h(t), denoted my(s), is:

hon(t) =250(2'% — k), Lk=0,+1,+2 ..

Here, [ (scaling parameter) determines the degree of dilation or contraction and k
(shifting parameter) controls the horizontal location of the function.

Laplace transform of these hyx(t), denoted my(s), are:

k

muk(s) = 2—%e‘imh(%), Lk=0,+41,42,...

The risk-neutral MGF of the return per unit of time ©(s) can be expanded as:
@(S) = Z Z alkmhk(s).
l=—00 k=—00

where ay is a set of unknown coefficients and needs to be estimated by minimizing
the sum of squared error between market option prices and theoretical prices. To

estimate these, we use the procedure in [HLMS09]

1. For positive integers L and K, set ay = 0 for all |I|> L and |k|> K. Let

9L,K = {alk}lzL,|k|§K

2. Given the collection {S;, X;,C;;,T,r ; i = 1,2,...,N}, of market data for

options at time ¢, estimate 0 x by minimizing the sum of squared errors between
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market option prices C; and theoretical prices CA’t,i:

min » (Cp; — ét,i(eL,Ky Sty Xi, Ciy T, 7“))2-

O,k “
1

3. In each iteration, increment L by 1 and repeat steps 1 and 2 until > (Cy; —

C14)? < e for an arbitrary ¢ > 0.

This yields:

é(S) == Z Z dlkmlk(s).

l|=L [k|<K
In the empirical analysis, L and K are chosen by the optimisation programme so that

a satisfactory estimation result can be obtained.

4.3 A wavelet-based model for Asian options

This section is taken from [CMM15].

4.3.1 Introduction

The value of Asian options depends on the average stock price. For fixed Strike Asian
option, the payoff depends on the difference between the average of the underlying
and a fixed strike. For floating Strike options, the payoff depends on the difference
between the average of the underlying and the value of the asset at maturity. For most
Asian options, the average is computed by considering the underlying asset values at
prefixed dates, like the end of each day, week or month.

The pricing procedure described in [FMM11] is based on a randomization technique,
according to which the expiry date of the option is modelled as a random variable
distributed as geometric. The computational kernel is the solution of integral equa-
tions. The integral equations involved in the model are Fredholm integral equations
of the second kind, the kernels of which fall within the class of the aforementioned
operators for which projection onto wavelet bases is particularly effective. For this
reason, we apply the DW'T to the linear systems which arise from the discrete opera-
tors. Transforming the linear systems matrices into sparse matrices is possible owing

to the wavelet localization property, resulting in a fast algorithm that preserves the
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accuracy of the original method.

4.3.2 The randomization pricing method

We assume that the risk-neutral process for the stock price S(t) is described by
S(t) _ SOG(T_d+g)t+L(t),

where 7 is the short rate(continuously compounded interest rate), d is the dividend
yield and ¢ is the compensator, chosen to ensure that the discounted price process
is a martingale. L(t) is a Levy process, identified by its characteristic exponent
Y(w) = log E(e™EW),

Consider M equidistant monitoring dates, with amplitude of the interval A, such that
to=0,t1 =A, -+, t,=nA, -+, tyy = MA =T. The log-return on each time interval

has the following characteristic function
(b(w) _ €(¢(w)+iw(r7d+g))A. (47)

The density f of the log-return is obtained computing the Fast Fourier Transform
(FFT) of 4.7. Let S,, denote the price of the underlying at time nA, i.e. S, = S(nA);

the pay-off of an arithmetic Asian option is given by

M
Payoff = (Iy — ¢Sy)t, where Iy = Z AnSh.

n=0

The following recursion holds for the option price:
V(Su, Ine, M) = (Ing — cSu)™

V(Sn, In,n) = e‘m/ f(s)V(Spe®, I + Apr1Sne’,n+ 1) ds;
n=M-1,...,0. (4.8)
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The expiry date T is modelled as a random variable distributed as geometric of pa-

rameter ¢; if one defines
H(z,q) = (1-q)> ¢"v(x,k) (4.9)
k=0

with v(z, k) := V(1,2, M — k), the option price is given by Syv(Ag, M), where we have
set © = I,,/S,.

By suitable choices of values of \,, and ¢, we can describe a wide class of Asian options.

Floating Strike Call Options Standard case for Floating Strike call options:

=—1, \g= A = A= — ,n=1,..., M, 4.10
c 0 M+~ M+~ n ( )
1, if Spis included in the average
’y =
0, otherwise
A
He=q [ K@pHady+ (1 - 0o (111)

where

X

) o o) = (=)

K (z,y) = —e™"* f(log(

Fixed Strike Call Options Standard case for Fixed Strike call options:

)
=

1
n=1...,M
M+~

C:O,)\OZ ——)\n:)\:

: : 4.12

7 is set as in the floating strike case, For Fixed Strike options, the value of v(z, k), k =

1,..., M, is analytically known for z > 0 and so the integral equation becomes
O ~
H(z,q) = Q/ K(z,y)H(y,q)dy + (1 — q)¢(z, q) (4.13)
with
A
7 q
o(z,q) = o(x) + T K (z,y)H(y, q)dy
0
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where if y > 0,

y(1—q) ) ] 1
l’ —
I1—ge™™  (M+7)(1—elr=D2)" 1 —gemd 1 —geda

H(y,q) = )

Applying a quadrature rule, with N nodes x; and weight w;, to it, we obtain the linear

system
(I —gKD)h =0, (4.14)
where [ is the identity matrix and for 7, 7 = 1,..., IV, the vector and matrices elements
are given by
h(i) = H(x;,q)
K(i,5) = K(z;,xj)

= (1 -q)®(xi,q)

with
o(z;), for Floating strike Asian options
(b(zh Q) = ~ . . . .
¢(xi,q), for Fixed strike Asian options.
System 4.14 is the main computational kernel in the algorithm.

The option price is recovered de-randomizing the option maturity, that is, exploiting

the complex inversion integral

1 T H (X, pe'®)

Ao, M) = e~ M3, 4.15
In particular, we approximate numerically 4.15 using:
(o) = 2 (AQ0D) e mp) Z 1) pe(0 )
v = —
P 2MpM* 1 —p 1—|—p 1—,06’3“/M ’
(4.16)
4M

where p is set to 10~
The procedure involves the following steps:
e solve 4.11 for ¢ = ¢; = pe M 5 =0, ... M;
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Procedure Asian_floating_pricing
1: compute K, D and b
2: for j=0,..,min(M,n. +m.) do
solve (I —q;KD)h; =b
end
3 : reconstruct v(Ag, M)

End Asian_floating_pricing

Procedure Asian_fixed _pricing
1: compute K and D
2: for j=0,...,min(M,n. +m,.) do
compute b = b(q;)
solve (I —q;KD)h; =b
end
3 : reconstruct v(Ag, M)
End Asian_fixed_pricing

Figure 4.1: Asian call randomization pricing algorithm. Up: Floating Strike options;
down: Fixed Strike options.

e approximate v(Ag, M) by vy (Ao, M) as in 4.16.

Rewrite 4.16 as

M
1 . y
vn(Ao, M) = = > " (=1)a;H(Ag, pe?™™M). (4.17)

To compute this, we use the Euler summation technique, a convergence acceleration
technique for evaluating alternating series, as folllows:

Fix two positive integers m,,n.. Then 4.17 can be approximated by

N 1 = (me
00 % e 3 (7 Yy ), (4.18)
pM =\
where i
bk(/\(), M) = Z(—l)jajH<)\0,p€ij7r/M).
§=0

When the number of monitoring dates M > m, + n,, instead of 4.16 which in-
volves solving M + 1 linear systems, we use the acceleration technique and evaluate
H(Xg, pe™/™M) for j =0,...,n.+m, , thus solving n, +m, + 1 systems.

Figure 4.1 shows a sketch of the pricing algorithm.
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4.3.3 Discrete Wavelet Transform

The wavelets used are from [Dau88].

Recall the portion on MRA 4.1.3. The resolution index j of each subspace V; in
the MRA must be intended as a scale: the higher the scale, the more accurate the
approximation P;f. An element of a MRA can be viewed as a screen with a certain
resolution: the successive element in the sequence could then be a screen with twice
number of pixels along each dimension. The tool for moving between resolutions is

the DWT, which is introduced owing to the following relations:

p(r) = hp(2x — k)

k€EZ

Y(@) =Y gup(2x — k)

keZ
called refinement equation and wavelet equation, respectively. The sequences h :=

{hi}rez and g := {gr }rez are usually referred to as filters of the MRA. Now, if

P f= E Cl41.kPlI+1k

ke

Pf =) cpun
ke

Quf =Y dixthin
ke

are the projections of f on Vi1, V; and W, respectively, then it holds:

Lk =Y ookt dig = Gn-2kCir1n (4.19)

nez neL

and

Cly1,k = Z hok—nCim + Z 92k—ndipn (4.20)

neZ neZ
Relations 4.19 and 4.20 ensure that to move between different levels of resolution in
MRA, we only need to know the filters of the MRA.
Let ¢41 be the set {cj414}kez. Then, the operator defined by 4.19 is the DWT ap-

plied to ¢;1. We compute ¢; convolving h with ¢;11: ¢; contains the coefficients of
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the projection of the function at a lower resolution (scaling coefficients). d; contains
the wavelet coefficients, which retain the information that is lost when moving from
resolution [ 4+ 1 to resolution /.

So, if we neglect wavelet coefficients under a fixed threshold (Hard Threshold tech-

nique (HT), [Mal99]), accuracy can be preserved with a significant gain in efficiency.

In matrix form, if

L= (hij=hj_),H= (Gi; = 9j—2i)

relations 4.19 can be written as

Cl—1 L c—1 = Lqg

di—4 H di—1 = Hg
The DWT can be applied recursively; at each step, only the scaling coefficients re-
sulting from the previous step are transformed.
To expand the kernel of the integral equations in wavelet bases, we introduce the
bi-dimensional DWT. For this, recursively define the following matrices:

Q(I) - L ,Q(k) - QY k>2
H I I

and let
Qs = H Q(Z)
i=1

then, the bi-dimensional DW'T in s steps of a discrete operator A is defined as

AsW = QSAQST-

4.3.4 Wavelet-based pricing algorithm

We discretize the integrals in 4.13 and 4.11 by means of a quadrature rule on a
truncated domain [£, A] for Floating Strike Asian options, on [£,0] for Fixed ones.
Different values for £ can be chosen according to the optimality criterion discussed
in [FMM11] and tested.

Some of the following results are from [BCRI1]. Let K(z,y) be the kernel of an
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integral operator and P the number of wavelet vanishing moments (i.e. fR xPY(x)dr =
0; p=20,...,P—1). Suppose a certain level in the MRA has been fixed. Then,
denote with v, 1 respectively the scaling and the wavelet function at the fixed level,

having supports J, J'. The coefficients of the expansion of K(x,y) are given by:

s = /R /R K (2, 4)ps ()b (y) dudy

g = / / K (&, gy ()6 (y)dardy

v = [ [ K g)s@onto)dody
R JR
If partial derivatives of K up to order P exist on the square JxJ’', then
g |+ 1Borl + 1| < C LI supyyesca 5 |gmer= K (2, 9)]-

Thus, to have small wavelet coefficients, one should have a small RHS, which holds

whenever either

1. |J| is small (points out the importance of having wavelet bases with narrow

supports); or

2. the derivatives are small (suggests the classes of integral operators for which a

wavelet-based representation can be effective).

Recall the pricing procedure in 4.1: in the solution of the linear systems (step 2), we
apply to both sides the DWT operator (), for a fixed number of DWT steps s; for

each value of ¢, we thus obtain the linear system

QI —gKD)h = Qb & (I —qQy(KD)Q,")Qsh = Qsb
for the orthogonality of the operator Q. If we denote by K D" A" bW the DWT of
KD, h,b respectively, we have

(I —gKD")R" =", (4.21)

We then apply a hard threshold to the coefficient matrix of 4.21, thus we actually

solve the linear system

(I —q(KD") )y =0b", (4.22)
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where (K'D"), is the hard threshold of K D" with threshold e. Finally, the inverse
DWT is applied to the solution y of 4.22, thus an approximation of h, Q,ly, is

obtained.
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Index

absolutely continuous, 14 Franklin hat function, 52

acquisition value, 21 ' . _
geometric Brownian motion, 32

adapted, 10
algebra, 6, 12 Haar wavelet, 49
alternative, 24 Hilbert space, 39

bit 4, 22
arbitrage, 4, identically distributed, 16

t holdi 20
asset holding process, independent, 8, 14

bilateral Laplace transform, 50 information structure, 10
Black-Scholes Option Pricing Formula, 37 inner product, 39

Brownian motion process, 31 liquidation value, 21

Central Limit Theorem, 16 local martingale condition, 11

child sub-tree, 9 locks in the gain, 21

conditional expectation, 9 logarithmic growth, 32

continuous wavelets, 43 lognormally distributed, 15

converges in distribution, 15 martingale, 11

density function, 13 martingale measure, 22
)

discounted asset prices, 20 martingale up-tick probabilities, 27

discounted gain, 21 measurable, 8, 14

discrete wavelets. 44 multiresolution analysis, 47

down-tick, 26
orthogonal projection, 40

expected value, 8, 14 orthogonality, 40
filters, 58 orthonormality, 40
filtration, 10 partition, 6, 7
Fourier transform, 42 path number, 10
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portfolio, 20

price random variable, 20
pricing functional, 25
probability distribution, 7, 8

probability measure, 7, 12

random variable, 7, 14
refinement equation, 58

risk-neutral probability measure, 22

scaling function, 47
self-financing trading strategy, 21
Shannon wavelet, 49

stable, 33

standard Brownian motion, 32
standardizing, 8

state space, 9

state tree, 9

stochastic process, 10, 31

stock option, 2
trading strategy, 20
up-tick, 26
variance, 8, 15

wavelet equation, 58

wavelet transform, 44
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