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Notation

S : stock price

S0 : current stock price

P : price of put option

C : priceof call option

K : strike price

T : expiration time(or maturity date)

r : riskfree rate

P : partition

P : probability measure

X : random variable

ε,µ : expected value or expectation

σ2 : variance

{a1, . . . , an} : assets

F : filtration

X : stochastic process

Θi : portfolio

Si,j : price random variable

I : pricing functional

Φ : trading strategy

〈·, ·〉 : inner product

‖ · ‖p : Lp-norm

ψ : mother wavelet

ψa,b : child wavelets

Wf : wavelet transform of f
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Abstract

A stock option is a financial contract which gives its owner the right to buy (or sell)

a stock for a fixed value in the future. Option pricing models aim to determine a

fair price for a stock option. The starting point of option pricing theory is considered

to be the Black and Scholes published paper of 1973 providing a model for valuing

European options.

This thesis aims at studying the discrete-time Binomial model for pricing options,

which in the limit goes to the continuous-time Black-Scholes model.

Since then, large number of parametric and non-parametric methods have been de-

veloped to relax one or more restrictions of the original Black–Scholes model.

One amongst them are the Fourier inversion methods, which depend on the availability

of an expression for the characteristic function of the stochastic processes modelling

the underlying assets.

Wavelet theory, viewed as an extension of Fourier analysis, aims to represent compli-

cated functions using sums of simple ones. In wavelets, the building blocks, instead

of sinusoidal, are wavelets, which are functions that can be arbitrarily translated and

dilated in order to generate basis of L2(R). The wavelet-based methods are based

on the approximation of functions by projecting on the wavelets basis such that the

coefficients of the expansion are expressed by means of the Fourier transform of the

function to approximate. Two such methods, one each for European and Asian op-

tions, are studied and presented.
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Chapter 1

Introduction

1.1 Classification of financial instruments

There are many possible classifications of financial instruments.

As per [CZ04], for a division see Figure 1.1. A security is a document that confers

upon its owner a financial claim. In contrast, a general financial contract links two

parties nominally and not through the ownership of a document.

Fixed-income securities pay fixed amounts of money to their owners. These include

bonds, regular savings accounts, money-market accounts, etc.

A bond is a security that gives its owner the right to a fixed, predetermined payment,

at a future, predetermined date.

A stock is a security that gives its owner the right to a proportion of any profits that

Figure 1.1: A classification of financial instruments
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might be distributed (rather than reinvested) by the firm that issues the stock and to

the corresponding part of the firm in case it decides to close down and liquidate.

Derivatives are financial instruments whose payoff depends on the value of another

financial variable (price of a stock, price of a bond, exchange rate, and so on), called

underlying.

Futures and forwards are contracts by which one party agrees to buy the underlying

asset at a future, predetermined date at a predetermined price. The other party agrees

to deliver the underlying at the predetermined date for the agreed price.

A swap is a contract by which two parties agree to exchange two cash flows with

different features.

1.2 Background on Options

Definition. A stock option is a contract between the writer(seller) and the buyer

of the option. The writer has a short position and the buyer has a long position.

Every option has an underlying stock, an expiration date and a stock price, also

called striking price or exercise price.

1. In a call option the buyer has the right to buy the underlying stock from the

writer at the strike price K per share.

• In a European call, the right to buy can only be exercised on the expiration

date of the call.

• In an American call, the right to buy can be exercised at any time on or

before the expiration date of the call.

2. In a put option, the buyer has the right to sell the underlying stock to the writer

at the strike price K per share.

• In a European put, the right to sell can only be exercised on the expiration

date of the call.

• In an American put, the right to sell can be exercised at any time on or

before the expiration date of the call.

Most of the option pricing literature considers mainly stock options and so does this
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thesis.

Exchanges. The options exchange, through which options on major stocks are

traded, determines the terms of an option, such as the expiration date and strike

price.

Purpose of Options. Primarily, options are used for hedging and for speculation.

A hedge is an investment that reduces the risk in an existing position. Options can

also be used for implicit leverage, that is, as a tool for borrowing money.

1.2.1 Payoff and Profit Curves

Figure 1.2: Payoff
curves

Figure 1.3: Profit
curves

1.2.2 Types of Options

There are various types of options, depending on the expiration time and the way to

claculate the payoff. Some of these are mentioned in [Buc12].

• Vanilla options

1. European - an option that may only be exercised on expiry

2. American - an option that may be exercised on any trading day on or

before expiration

• Exotic Options

1. Lookback - payoffs depend not only on the underlying asset price at ex-

piry, but also on the maximum or minimum asset price over some pre-

defined monitoring window
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2. Binary - options that pay out at one or more future dates if and only if

some exercise condition is met

3. Barrier - options have payoffs which depend, at least in part, on some

aspect of the actual asset path traced out, and not just on the terminal

value of the path. Barrier options have payoffs which depend on whether

a given barrier level x = b is crossed or otherwise during the life of the

option

4. Asian - an option whose payoff is determined by the average underlying

price over some preset time period

and others.

1.2.3 Put-Call option parity

Arbitrage opportunity is an investment opportunity that is guaranteed not to

result in a loss and may (with positive probability) result in a gain. If an arbitrage

opportunity exists, then prices will be adjusted to eliminate that opportunity.

No-arbitrage Pricing Principle. As a consequence of the tendency to an arbitrage-

free market equilibrium, it only makes sense to price assets under the assumption that

there is no arbitrage.

Theorem 1.2.1 (European Options with Dividends). Suppose that a stock is cur-

rently selling at a price of S0 per share. An European put on this stock sells for P

dollars and an European call for C dollars, both having the same strike price K and

expiration time T . Suppose that the present value of any dividends paid by the stock

during the period in question is d0. Then the no-arbitrage pricing principle implies

that

C − P = S0 −Ke−rT − d0

where r is the risk-free interest rate.

Theorem 1.2.2 (American Options with Dividends). Suppose that a stock is cur-

rently selling at a price of S0 per share. An American put on this stock sells for P

dollars and an American call for C dollars, both having the same strike price K and

expiration time T . Suppose that the present value of any dividends paid by the stock

4



during the period in question is d0. Then the no-arbitrage pricing principle implies

that

S9 −K − d0 ≤ C − P ≤ S0 −Ke−rT

where r is the risk-free interest rate.

Refer to [Rom04] for proofs.
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Chapter 2

Mathematical prerequisites

2.1 Discrete Probability

Definition. Let Ω be a nonempty set. Then a partition of Ω is a collection P =

{B1, . . . , Bn} of nonempty subsets of Ω, called the blocks of the partition, with the

following properties:

1. Bi ∩Bj = ∅ for all i 6= j

2. B1 ∪ · ∪Bn = Ω

Definition. Let P = {B1, . . . , Bn} be a partition of a set Ω. Then a partition

Q = {C1, . . . , Cn} is called a refinement of P , written P � Q, if each block Ci of Q

is completely contained in some block Bj of P or, equivalently, if each block of P is

a union of blocks of Q.

Definition. A collection A of subsets of Ω is called an algebra of sets (or algebra)

if it satisfies the following properties:

1. ∅ ∈ A

2. A ∈ A ⇒ AC ∈ A

3. A,B ∈ A ⇒ A ∪B ∈ A

Definition. An atom of A is a nonempty set S ∈ A with the property that no

nonempty proper subset of S is also in A.
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Definition. A finite probability space is a pair (Ω,P) consisting of a finite non-

empty set Ω, called the sample space and a real-valued function P defined on the

set of all subsets of Ω, called a probability measure on Ω. The function P must

satisfy the following properties:

1. For all A ⊆ Ω, 0 ≤ P(A) ≤ 1

2. P(Ω) = 1

3. If A and B are disjoint, P(A ∪B) = P(A) + P(B)

All subsets of Ω are called events.

Definition. We assign to each of the elements w ∈ Ω a number pw satisfying 0 ≤

pw ≤ 1 and for which ∑
w∈Ω

pw = 1

Then we can define a probability measure P by setting P({w}) = pw. Extending

this to all events, we get

P(A) =
∑
w∈Ω

P({w})

The set {pw : w ∈ Ω} is called a probability mass or probability distribution

and the function f : Ω → R defined by f(w) = pw is called a probability mass

function.

Definition. A real-valued function X : Ω→ R defined on a finite sample space Ω is

called a random variable on Ω.

Definition. Let X be a random variable on Ω with

im(X) = {x1, . . . , xn}.

Then the partition

PX = {{X = x1}, ..., {X = xn}}

is called the partition defined by random variable X.

Definition. If P is a probability measure on Ω, then we denote P(X = x) = P({X =

x}). The partition PX defined by X then defines a probability measure PX on
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im(X) = {x1, . . . , xn} by

PX(xi) = P(X = xi)

for all xi ∈ im(X). This probability distribution on im(X) is called the probabil-

ity distribution of random variable X and the corresponding probability mass

function f : A → R defined by f(xi) = P(X = xi) is called the probability mass

function of random variable X.

Definition. Let Q = {B1, ..., Bn} be a partition of Ω. A random variable X on Ω is

Q-measurable if X is constant on each block of Q, that is, if it has the form

X =
n∑
i=1

bi1Bi

for (not necessarily distinct) constants bi ∈ R.

Definition. Random variables X1, ..., Xn are independent random variables if

P(X1 = x1, . . . , Xn = xn) =
n∏
i=1

P(Xi = xi)

for all xi ∈ im(Xi).

Definition. Let X be a random variable on a finite probability space (Ω,P). The

expected value or expectation of random variable X is given by

εP(X) =
∑
w∈Ω

X(w)P(w)

Definition. Let X be a random variable with finite expected value µ. The variance

of random variable X is

σX
2 = ε((X − µ)2)

Standardizing a random variable. If X is a random variable with expected

value µ and variance σ2, then we can define a new random variable Y by

Y =
X − µ
σ
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Then Y has expected value 0 and variance 1.

Definition. Let (Ω,P) be a finite probability space and A be an event for which

P(A) > 0. The conditional expectation of random variable X with respect to

the event A is

ε(X | A) =
∑
w∈Ω

X(w)P(w | A)

Definition. Let P = {B1, ..., Bn} be a partition of Ω for which P(Bi) > 0 for all i.

The conditional expectation of random variable X with respect to partition

P is

ε(X | P) = ε(X | B1)1B1 + ...+ ε(X | Bn)1Bn

2.2 Stochastic processes

A finite collection of nodes or vertices, combined with a finite collection of edges

connecting certain nodes forms a state tree. The vertical columns in which nodes of

Figure 2.1: A State Tree

a state tree are organized are called levels, often thought of as times.

Then, the time-tk intermediate states of the tree are the nodes at time tk and the

time-tk state space is the set of all time-tk nodes. The state space for the final time

is called the final state space.

A node b, its children and the edges that connect these children to the parent becomes

the child sub-tree of b.

Definition. A sequence F = {P0, . . . ,PN} of partitions of a set Ω = {w1, . . . , wm}

9



for which

P0 � . . . � PN

is called a filtration.

A filtration is called an information structure if P0 = {Ω} and PN = {{w1}, . . . , {wm}}

Figure 2.2: The child subtree of Bk

The child sub-tree number for Bk is defined as the sum of the edge labels in the

child sub-tree for Bk,

C(Bk) =

sk∑
i=1

pk,i.

The product of the edge labels of the path is called the path number of Bk, denoted

by Hk.

Theorem 2.2.1. Let Ω = {w1, ..., wm} be a finite set with information structure

F = {P0, . . . ,PN}. Suppose that we label the edges of the state tree of F with positive

real numbers such that C(Bk) = 1 for all Bk ∈ Pk and all k = 0, . . . , N − 1. Then

the path number function defines a strongly positive probability distribution on Ω, with

associated probability measure P({w}) = H({w}) and more generally P(Bk) = H(Bk)

for all states Bk ∈ Pk and all k = 0, . . . , N . Also, pk = P(Bk,i | Bk).

Definition. A (finite) stochastic process on a sample space Ω is a sequence X =

(X0, X1, . . . , XN) of random variables defined on Ω. If k ≤ m, the change in X from

k to m is the difference

∆k,m(X) = Xm −Xk

Definition. Let Ω be a finite set, with filtration F = {P0, . . . ,PN}. A stochastic

process X = (X0, X1, . . . , XN) on Ω is adapted to the filtration F, or is F-adapted

if Xk is Pk-measurable for all k = 0, . . . , N .
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X is predictable or previewable with respect to F if Xk is Pk−1-measurable for all

k = 1, . . . , N .

Definition. Let X = (X0, X1, . . . , XN) be a stochastic process adapted to filtration

F. Then X is a martingale with respect to the triple (Ω,P,F), if

εP(Xk+1 | Pk) = Xk

or equivalently,

εP(∆k,k+1(X) | Pk) = 0 (2.1)

for all k = 0, . . . , N−1. This expresses the idea that X is “fair” over every one-period

time interval [tk, tk+1].

The martingale condition 2.1 is equivalent to

εP(4k,k+1(X) | Bk) = 0 (2.2)

for all Bk ∈ Pk. Since Xk is constant on Bk, by denoting this constant by Xk(Bk),

the martingale condition is

ε(Xk+1 | Bk) = Xk(Bk) (2.3)

Either of 2.2 and 2.3 can be referred to as the local martingale condition at Bk in

Pk.

Characterizing martingales

Theorem 2.2.2. Let F = {P0, . . . ,PN} be a filtration on Ω and let X = (X0, X1, . . . , XN)

be a stochastic process adapted to F. The following are equivalent:

1. X is a martingale

ε(Xk+1 | Pk) = Xk

or in terms of change,

ε(4k,k+1(X) | Pk) = 0

for all k = 0, . . . , N − 1; that is, X is ”fair” over any [tk+1, tk].
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2. X is ”fair” over any [tk, tk+i]; that is,

ε(Xk+i | Pk) = Xk i.e., ε(4k,k+i(X) | Pk) = 0

for all i ≥ 0 and k ≥ 0 for which k + i ≤ N .

3. X is ”fair” over any time interval of the form [tk, tN ]; that is,

ε(XN | Pk) = Xk i.e, ε(4k,N(X) | Pk) = 0

for all k = 0, . . . , N − 1.

4. X is fair at every Bk ∈ Pk; that is, 2.3 holds for all k = 0, . . . , N − 1 and for all

states Bk ∈ Pk.

Moreover, if X is a martingale, then

ε(Xk) = ε(X0) = X0(Ω) i.e. ε(∆0,k(X)) = 0

for all 0 ≤ k ≤ N .

2.3 Continuous Probability

Definition. Let Ω be a non-empty set. A non-empty collection Σ of subsets of Ω is

a σ-algebra if

1. Ω ∈ Σ

2. If A1, A2, . . . is a sequence of elements of Σ, then

∞⋃
i=1

Ai ∈ Σ

3. If A ∈ Σ, then AC ∈ Σ

Definition. A probability space is a triple (Ω,Σ,P) comprising of a non-empty set

Ω, called a sample space, a σ-algebra Σ of subsets of Ω whose elements are called

events and a real-valued function P defined on Σ called a probability measure.
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The function P must satisfy the following properties:

1. For all A ∈ Σ, 0 ≤ P(A) ≤ 1

2. P(Ω) = 1

3. If A1, A2, ... Is a sequence of pairwise mutually exclusive events, then

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai)

Definition. A distribution function is a function F : R→ R satisfying:

1. F is non-decreasing; i.e.

s < t⇒ F (s) ≤ F (t)

2. F is right-continuous; i.e. the right-hand limit exists everywhere and

lim
t→a+

F (t) = F (a)

3. F satisfies

lim
t→−∞

F (t) = 0 and lim
t→∞

F (t) = 1

Theorem 2.3.1. 1. Let P be a probability measure on R. The function FP : R→ R

defined by

FP(t) = P((−∞, t])

is a probability distribution function, called the distribution function of P.

2. Let F : R → R be a distribution function. Then there is a unique probability

measure PF on R whose distribution function is F ; that is, for which

PF ((−∞, t]) = F (t)

Definition. 1. A density function f : R → R is a non-negative function for

which ∫ ∞
−∞

f(x)dx = 1

13



2. A probability measure P on R or equivalently a distribution function FP is

absolutely continuous if there is a density function f : R→ R for which

FP(t) = P((−∞, t]) =

∫ t

−∞
f(x)dx

From this definition, it follows that

P((a, b]) =

∫ b

a

f(x)dx

Definition. A function X : Ω → R is Σ-measurable if the inverse image of every

open interval is in Σ, i.e.,

X−1((a, b)) ∈ Σ

A measurable function on (Ω,Σ) is also called a random variable.

If (Ω,Σ,P) is a probability space and X is a random variable on (Ω,Σ), then X defines

a distribution function FX and corresponding probability measure PX on R by

FX(t) = PX((−∞, t]) = P(X ≤ t)

Definition. A collection X1, . . . , Xn of random variables is independent if

P(X1 ≤ t1, . . . , Xn ≤ tn) =
n∏
i=1

P(Xi ≤ ti)

Definition. Let X be an absolutely continuous random variable, with density func-

tion f . The expected value or mean of X is the improper integral

ε(X) =

∫ ∞
−∞

xf(x)dx

which exists provided that ∫ ∞
−∞
| x | f(x)dx <∞

14



Definition. The variance of X is

V ar(X) = ε((X − µ)2)

Normal Distribution. Consider the normal distribution whose density function

is

Nµ,σ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Theorem 2.3.2. If Nµ,σ is a random variable with mean µ and variance σ2 then

Z = Nµ,σ−µ
σ

is a standard normal random variable. Conversely, if Z is a standard

normal random variable, then Nµ,σ = σN0,1 + µ is a random variable with mean µ

and variance σ2.

Theorem 2.3.3. If X is lognormally distributed, that is, if Y = logX is normal with

mean a and variance b2, then

ε(X) = ε(eY ) = ea+ 1
2
b2

V ar(X) = V ar(eY ) = e2a+b2(eb
2 − 1)

Definition. A sequence of functions from R to R, (fn), converges pointwise to

f : R → R if for each real x, the sequence of real numbers (fn(x)) converges to the

real number f(x).

Definition. Let (Xn) be a sequence of random variables, defined on (Ωn,Pn). Let

X be a random variable on (Ω,P). Then (Xn) converges in distribution to X,

denoted

Xn
dist−−→ X

if the distribution functions (FXn) converge pointwise to the distribution function FX

at all points where FX is continuous. Thus, if FX is continuous at s, then

lim
n→∞

FXn(s) = FX(s)

15



that is,

lim
n→∞

Pn(Xn ≤ s) = P(X ≤ s)

Theorem 2.3.4. For (Xn) and X as above,

1.

Xn
dist−−→ X ⇔ εPn(g(Xn))→ εP(g(X))

for all bounded continuous functions g : R→ R. In particular,

Xn
dist−−→ X ⇒ εPn(Xn)→ εP(X)

2. For all continuous functions f : R→ R,

Xn
dist−−→ X ⇒ f(Xn)

dist−−→ f(X)

Definition. Two (or more) random variables are said to be identically distributed

if they have the same distribution function.

Theorem 2.3.5 (Central Limit Theorem). Let X1, X2, ... be a sequence of in-

dependent, identically distributed random variables with finite mean µ and variance

σ2 > 0. If

Sn =
n∑
i=1

Xi

then the standardized random variables Sn
∗ = Sn−nµ√

nσ
converge in distribution to a

standard normal random variable N0,1; that is,

lim
n→∞

FSn∗(t) = φ0,1(t)

and so

P(Sn
∗ < t) ≈ 1√

2π

∫ t

−∞
e−

x2

2 dx

where the error in the approximation tends to 0 as n tends to ∞.

Theorem 2.3.6 (Central Limit Theorem). Consider a triangular array of random

variables
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B1,1

B2,1 B2,2

B3,1 B3,2 B3,3

...
...

...

where for each row, the random variables Bn,i are independent, identically distributed

standard Bernoulli random variables with

P(Bn,i = qn√
pnqn

) = pn and P(Bn,i = −pn√
pnqn

) = qn

However, the random variables in different rows need not be independent or identically

distributed, or even defined on the same probability space. Suppose also that pn → p,

where 0 < p < 1. Then the random variables

Sn =
1√
n

n∑
i=1

Bn,i

converge in distribution to a standard normal random variable.

For proofs of the theorems in this chapter and other properties in probability, refer

[Rom04].
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Chapter 3

Some basic models

3.1 Discrete-time pricing model

The problem of determining a fair initial value of any derivative is the derivative

pricing problem (DPP). At time t = 0, the final value of the derivative is unknown,

since it generally depends on final value of underlying asset, which inturn depends

on the state of the economy at the final time. So, on the space of all final states of

the economy, we assume that the final value of the underlying is a known random

variable. This section provides a model for the DPP.

3.1.1 Assumptions:

1. All prices are given in terms of an unspecified unit of accounting.

2. There is always available a risk-free asset, which cannot decrease in value and

whose amount of increase is known in advance for each time interval.

3. Additional assumptions

• Infinitely divisible market- We can speak of, for example, −π worth of

a stock or bond.

• Frictionless market- All transactions take place immediately and with-

out any external delays.

• Perfect market- No transaction fees or commissions; no restrictions on
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Figure 3.1: The state tree T

short selling; borrowing rate is same as lending rate.

• Buy-sell parity- Any asset’s buying price is equal to its selling price.

• Prices determined under no-arbitrage assumption- If an arbitrage

opportunity exists in the market, the prices will be adjusted to eliminate

that opportunity. Therefore, it makes sense to price securities under the

assumption that there is no arbitrage.

3.1.2 The basic model

The basic ingredients of the discrete-time model M are:

• Times- M has T + 1 times t0 < t1 < . . . < tT .

• Assets- M has a finite(n) number of basic assets A = {a1, . . . , an}. a1 is

assumed to be risk-free, while others are risky.

• States of the economy- At the final state tT , we assume that the economy is

in one of m possible final states, given by the state space Ω = w1, . . . , wm. At t0,

we know nothing about the final state except that it lies in Ω. As time passes, we

may gain some information (but never lose information) about the possible final

state of the economy. So, we use an information structure F = {P0, . . . ,PT} on

Ω, called the state information structure for M.

The partition P = {Bi,1, . . . , Bi,mi} of Ω is called the time-ti state partition.

For i < T , the blocks of Pi are called the time-ti intermediate states.

• Natural probabilities- We assume that there exists a probability measure on
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Ω which reflects the likelihood that each final state in Ω will be the actual final

state. These are called natural probabilities.

• Asset price- Each asset has a price at each time that depends on the state of

the economy at that time.

Definition. 1. For each time ti and each asset aj, the price random variable

Si,j : Ω → R is a nonnegative P-measurable random variable for which Si,j(w)

is the time-ti price of asset aj under the final state w belonging to Ω.

2. For a fixed time tk, the price vector for tk is the vector of asset prices (Sk,1, . . . , Sk,n).

3. For a fixed asset aj, the sequence Sj = (S0,j, . . . , ST,j) is a stochastic process,

called the price process for asset aj.

4. For the risk-free asset, the price random variables are constant; that is, they do

not depend upon the state of the economy. In particular S0,1 = 1, and for all

times i > 0,

Si,1 = er0(t1−t0)...eri−1(titi−1)

where rk is the risk-free rate for the time interval [tk, tk+1].

Definition. The discounted asset prices are given by Si,j =
Si,j
Si,1

, also called the

(time-t0) present value of Si,j.

In particular, Si,1 = 1.

Definition. • The asset holding for asset aj during the time interval [ti−1, ti] is

a Pi−1-measurable random variable θi,j, where θi,j(w) is the quantity of asset aj

held during this time interval under state w ∈ Ω.

• The stochastic process Φj = (θ1,j, . . . , θT,j) is the asset holding process for

aj.

• A portfolio for the time interval [ti−1, ti] is a random vector Θi = (θi,1, . . . , θi,n)

on Ω where θi,j is the asset quantity for asset aj over this time interval.

The process of liquidating the portfolio θi and acquiring the portfolio θi+1 at time ti

is termed portfolio rebalancing.

Definition. A trading strategy for M is a sequence of portfolios Φ = (Θ1, . . . ,ΘT )
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where Θi = (θi,1, . . . , θi,n) is a portfolio for the time interval [ti−1, ti].

Since a portfolio Θi exists only during the time interval [ti−1, ti], it makes sense to

assign a value to Θi only at the acquisition time ti−1 and the liquidation time ti.

The acquisition value or price of the portfolio Θi is defined by the inner product

νi−1(Θi) = 〈Θi, Si−1〉 =
n∑
j=1

θi,jSi−1,j

And the liquidation value or price of Θi is defined by

νi(Θi) = 〈Θi, Si〉 =
n∑
j=1

θi,jSi,j

Definition. A trading strategy Φ = (Θ1, . . . ,ΘT ) is self-financing trading strat-

egy(SFTS) if for any time ti where i 6= 0, T , the acquisition price of Θi+1 is equal to

the liquidation price of Θi; that is,

νi(Θi+1) = νi(Θi)

Thus, a SFTS is initially purchased for the acquisition value ν0(Θ1) of the first port-

folio and is liquidated at time tT , producing a final payoff of νT (ΘT ). No other money

is added to or removed from the model during its lifetime.

The term gain refers to the change in value of a portfolio over a period of time.

1. For j < k, the discounted gain from tj to tk, denoted Gj,k, is given by

Gj,k(Φ) = νk(Φ)− νj(Φ) =
1

Sk,1
νk(Φ)− 1

Sj,1
νj(Φ)

2. For any time tk, the (cumulative) discounted gain Gk is

Gk(Φ) = νk(Φ)− ν0(Φ)

. GT (Φ) is the discounted final gain in Φ.

Definition. We say that a SFTS Φ′ = (Θ′1, . . . ,Θ
′
T ) locks in the gain in Φ up to
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time tk if

GT (Φ′) = Gk(Φ)

.

Theorem 3.1.1. Let Φ = (Θ1, . . . ,ΘT ) be a SFTS, [tk, tk+m] be an interval, A =

{Bk1 , . . . , Bks} be a collection of time-tk states in Pk and let B = Bk1 ∪ · · · ∪ Bks.

Then the SFTS defined by

Θi
(k,k+m)1B =


0 if1 ≤ i ≤ k

Φi1B − (νk(Φk+1), 0, . . . , 0)1B ifk + 1 ≤ i ≤ k +m

(Gk,k+m(Φ), 0, . . . , 0)1B ifk +m < i ≤ T

locks in the discounted gain in Φ over [tk, tk+m] for the states in A only; i.e.

GT (Φ(k,k+m)1B) = (Gk,k+m(Φ)1B

The particular example given by

Θi =


0 if1 ≤ i ≤ k

(−Sk,j, . . . , 0, 1, 0, . . . , 0)1B ifi = k + 1

(−Sk,j + Sk+1,j, 0, . . . , 0)1B ifk + 1 < i ≤ T

is denoted by Φ[aj, tk, B] and called atomic trading strategy. The final gain

GT (Φ[aj, tk, B]) = Gk,k+1(Φ[aj])1B = ∆k,k+1(Sj)1B

is the change in price from tk to tk+1 for asset aj in state B ∈ Pk.

Definition. • A SFTS Φ is an arbitrage trading strategy or arbitrage op-

portunity if GT (Φ) > 0.

• A probability measure P on Ω is a martingale measure (or risk-neutral

probability measure) for M if

1. P is strongly positive; that is, P(w) > 0 for all w ∈ Ω.

2. For each asset aj, the discounted price process (S0,j, . . . , ST,j) is a martin-
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gale; that is, for all k ≥ 0,

εP((Sk+1,j | Pk) = (Sk,j

Theorem 3.1.2. A strongly positive probability measure P on Ω is a martingale mea-

sure for M if and only if the expected gain of every atomic trading strategy is 0, i.e.

ε(GT (Φ[aj, tk, B])) = 0

for all assets aj, all times tk and all states B ∈ Pk, where 0 ≤ k < T .

Theorem 3.1.3. Let M be a discrete-time model with state information structure

F = {P0, . . . ,PT}. The following are equivalent for a strongly positive probability

measure P.

1. P is a martingale measure; i.e. for all j = 1, . . . , n,

εP(4k,k+1(Sj) | Pk) = 0.

2. For all k = 0, . . . , T − 1,

εP(νk+1(Φ)− νk(Φ) | Pk) = 0 i.e., εP(Gk,k+1(Φ) | Pk) = 0.

3. For all Φ and all tk,

εP(Gk(Φ)) = 0 i.e., εP(νk(Φ)) = ν0(Φ).

4. For all assets aj, all times tk and all states B ∈ Pk, where 0 ≤ k < T ,

ε(GT (Φ[aj, tk, B])) = 0.

Characterizing arbitrage

Theorem 3.1.4 (The First Fundamental Theorem of Asset Pricing). A discrete-

time pricing model M has no arbitrage opportunities iff it has a martingale measure.
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3.1.3 Computing martingale measures

Figure 2.2 shows a parent Bk and children {Bk+1,1, . . . , Bk+1,sk}. Edge label from Bk

to Bk+1,i is pk+1,i.

The path numbers for the final states form a probability distribution P iff

1 =

sk∑
i=1

pk+1,i (3.1)

The edge labels are the conditional probabilities

pk+1,i = P(Bk+1,i | Bk)

Therefore, the local martingale condition at Bk, ε(Sk+1,j | Bk) = Sk,j(Bk) can be

written as

Sk,j(Bk) =

sk∑
i=1

Sk+1,j(Bk+1,i)pk+1,i (3.2)

for each j = 1, . . . ,m.

Equations 3.1 and 3.2 are called the local martingale equations for a martingale

measure.

Theorem 3.1.5. If the edges of the state tree are labelled with positive real numbers

pk+1,i as described above, then the path numbers define a martingale measure P on Ω

iff the local martingale equations 3.1 and 3.2 hold.

Definition. A random variable X : Ω→ R is called an alternative, or contingent

claim.

In a way, an alternative X : Ω→ R defines an option with final payoff X. We assume

that for any random variable X : Ω → R, some investor will be willing to buy and

some investor will be willing to sell an option whose final payoff is X.

Thus, the problem is of pricing an alternative X, the procedure for which is to find a

SFTS within the model with final payoff is X; that is, for which

νT (Φ) = X

. Such a SFTS is called replicating trading strategy.
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We set time-tk price of X = time-tk price of νT (Φ). Any other choice will lead to

arbitrage (when the alternative is added to the model).

Definition. • An alternative X is said to be attainable if it has at least one

replicating strategy. If every alternative is attainable, M is complete.

• Law of One Price states that

νT (Φ1) = νT (Φ2)⇒ νk(Φ1) = νk(Φ2)

for all 0 ≤ k ≤ T and for all trading strategies Φ1 and Φ2.

The absence of arbitrage implies that the Law of One Price must hold and the Law

of One Price ensures that the following pricing functionals are well-defined.

Definition. Let M be a model with no arbitrage. For any time tk, ifM is the vector

space of all attainable alternatives, the time-tk pricing functional Ik :M→ R is

defined as: If X ∈M, then

Ik(X) = νk(Φ) (3.3)

for any replicating trading strategy Φ for X. I0 is called the initial pricing func-

tional.

Pricing an alternative X at time tk involves first finding a replicating trading strategy

Φ and then setting 3.3.

Theorem 3.1.6. Let M be a model with no arbitrage and P its martingale measure.

Let X be an attainable alternative.

1. The discounted time-tk price of X is

Ik(X) = εP(X | Pk)

where X = X/ST,i

2. In particular,

I0(X) = εP(X)

Theorem 3.1.7 (The Second Fundamental Theorem of Asset Pricing). Let M
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be a model with no arbitrage opportunities, and hence at least one martingale measure.

Then there is a unique martingale measure on M iff M is complete.

3.2 The Binomial model for options

3.2.1 The General Binomial Model

• Times- The lifetime L is divided into T time intervals t0 < t1 < · · · < tT of

equal length ∆t.

• Assets- Two assets: a risk-free asset a1 and a risky asset a2.

• States of the economy The model assumes that during each time interval

[tk, tk+1], the economy either goes up, called an up-tick U in the economy

or it goes down, called a down-tick D in the economy. Each movement is

independent of previous movements. Thus, the state space is the set

Ω = ΩT = {U,D}T

of all strings of U ’s and D’s of length T . These are the final states of the

economy.

Ωk = {U,D}k is the set of all strings of U ’s and D’s of length k. [w]k denotes the

prefix of any w ∈ Ω of length k. For each δ = e1 . . . ek ∈ Ωk, the intermediate

state Bδ ∈ Pk is the set of all final states having prefix δ; that is,

Bδ = {w ∈ Ω|[w]k = δ}

• Natural probabilities- For each interval [tk, tk+1], there is a natural probability

pk of an up-tick and 1− pk of a down-tick in the economy.

• The price functions- The time-tk price of the stock is denoted by Sk, which

is a random variable on Ω. An up-tick during [tk, tk+1] takes the stock price up

by a factor of uk ≥ 1 to Sk+1 = Skuk and a down-tick takes the stock price

down by a factor of 0 < dk ≤ 1 to Sk+1 = Skdk. uk is called the time-tk up-tick
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Figure 3.2: State tree for a Binomial Model

factor and dk the time-tk down-tick factor. uk and dk are called the tick

parameters of the model. Note 0 < dk ≤ 1 ≤ uk.

If w ∈ Ω, we let δk(w) be the product of the up-tick and down-tick factors that

determine the time-tk price Sk. In general, we have

Sk(w) = S0δk(w)

for any w ∈ Ω. The price of the risk-free asset is given by the risk-free rates rk for

the intervals [tk, tk+1].

Martingale measures in the Binomial Model

The binomial model is free of arbitrage iff dk < erk∆t < uk for all k = 0, . . . , T − 1.

Then M is complete and the unique martingale measure P on M is defined by the

path numbers in the state tree when the up-tick edges of the tree are labelled with

the martingale up-tick probabilities

πk =
erk∆t − dk
uk − dk

and the down-tick edges are labelled with the martingale down-tick probabilities

1− πk.
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Pricing in the Model

The pricing functionals Ik are well defined, since M is arbitrage-free and complete.

In particular, for any random variable X on Ω,

I0(X) = e−r∆tε(X)

where r =
∑
rk is the sum of the risk-free rates and the expected value is taken under

the martingale measure.

3.2.2 Standard Binomial Model

Definition. A binomial model is SBM if the following hold:

1. the up-tick probabilities u = uk are the same for all times.

2. the down-tick probabilities d = dk are the same for all times.

3. the risk-free rate r = rk is the same for all times.

4. the natural probabilities are the same for all times.

Theorem 3.2.1. Let NU(w) = number of U ’s in w, ND(w) = number of D’s in w.

The standard binomial model is free of arbitrage iff d < er∆t < u. In this case, the

time-tk stock price function Sk is given by

Sk(w) = S0u
NU ([w]k)dND([w]k)

for any w ∈ Ω. In particular, the final price is

ST (w) = S0u
NU (w)dND(w)

Moreover, the model is complete and the unique martingale measure P on M is defined

by

P(w) = πNU (w)(1− π)ND(w)

for any w ∈ ΩT , where π = er∆t−d
u−d is the martingale up-tick probability.
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Pricing in a Standard Binomial Model

Theorem 3.2.2. Let M be a complete SBM with no arbitrage. Then a European call

option with strike price K expiring at the end of the model has initial value

I0(Call) = e−rL
T∑
k=0

(
T

k

)
(S0u

kdT−k −K)+πk(1− π)T−k

and a European put option has initial value

I0(Put) = e−rL
T∑
k=0

(
T

k

)
(K − S0u

kdT−k)+πk(1− π)T−k

where

π =
er∆t − d
u− d

is the martingale up-tick probability.

Choosing the Tick parameters

Let p be the natural (not the martingale) probability of an up-tick in the market.

During each time interval, the stock price takes either an up-tick or a down-tick.

Hence, we can define independent Bernoulli random variables E1, . . . , ET to track

these growth factors by

P(Ek = u) = p

P(Ek = d) = 1− p

Then the stock price at time-tk is given by

Sk = S0E1 · · ·EK

and the final time-tT price is ST = S0E1 · · ·ET Since

Sk+1

Sk
= Ek+1
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Ek+1 is referred to as the simple return of the stock price over [tk, tk+1]. We define

the (annualized) instantaneous return of the stock price to be

sk+1 =
1

∆t
logEk+1

To make the stock price look like exponential growth, we write

ST = S0E1 · · ·ET = S0e
∑

logEi = S0e
HT

where

HT = log

(
ST
S0

)
=

T∑
i=1

logEi

is called the logarithmic growth of the stock price.

Now, the expected value µ and variance s2 of the instantaneous return are given by

µ =
1

∆t
ε(logEi) =

1

∆t
(p log u+ q log d)

s2 =
1

(∆t)2
V ar(logEi) =

1

(∆t)2
pq(log u− log d)2

µ is called the drift and the constant σ = s
√

∆t is called the drift volatility of the

stock price. Thus, we have

ε(logEi) = µ∆t and V ar(logEi) = σ2∆t

We standardize logEi to get

Xi =
logEi − µ∆t

σ
√

∆t

which are independent standard Bernoulli random variables with

Xi =


q√
pq

with probability p

−p√
pq

with probability q
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To write the logarithmic growth in terms of the random variables Xi, we have

HT = µL+ σ
√

∆t
T∑
i=1

Xi

The stock price is given by

ST = S0e
HT = S0e

µL+σ
√

∆t
∑T
i=1Xi

3.3 The Black-Scholes model for options

The Black–Scholes option pricing formula gives the price of a European put or call

based on five quantities:

• the initial price of the underlying stock,

• the strike price of the option,

• the time to expiration,

• the risk-free rate during the lifetime of the option, which is assumed to be

constant,

• the volatility of the stock price, a constant that provides a measure of the

fluctuation in the stock’s price and thus is a measure of the risk involved in the

stock.

The first three in the above list are known while the last two can only be estimated.

3.3.1 Stock prices and Brownian motion

Definition. A continuous stochastic process on an interval I ⊆ R of the real line

is a collection {Xt | t ∈ I} of random variables on Ω indexed by a variable t that

ranges over the interval I.

Definition. A continuous stochastic process W = {Wt | t ≥ 0} is a Brownian

motion process with volatility σ if

1. W0 = 0
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2. Each increment Wt − Ws is normally distributed with mean 0 and variance

σ2(t − s). In particular, each Wt is normally distributed with mean 0 and

variance σ2t.

3. W has independent increments; that is, for any times t1 ≤ t2 ≤ · · · ≤ tn, the

non-overlapping increments

Wt2 −Wt1 , Wt3 −Wt2 , . . . , Wtn −WTn−1

are independent.

Definition. A stochastic process of the form W = {µt + Wt | t ≥ 0} where µ is a

constant and {W} is Brownian motion with volatility σ is called Brownian motion

with drift µ and volatility σ.

Definition. A brownian motion process {Zt | t ≥ 0} with drift µ = 0 and volatility

σ = 1 is called standard Brownian motion. Zt has mean 0 and variance t.

If {Wt | t ≥ 0} is Brownian motion with drift µ and variance σ2, then we can write

Wt = µt+ σZt

where {Zt | t ≥ 0} is standard Brownian motion.

Definition. We assume that the stock price St at time t is given by

St = S0e
Ht

where S0 is the initial price and Ht is a Brownian motion process. The exponent

Ht represents a continuously compounded rate of return of the stock price over the

period of time [0, t].

Ht = log(
St
S0

)

is referred to as the logarithmic growth of the stock price.

Definition. A stochastic process of the form {eWt | t ≥ 0} where {Wt | t ≥ 0} is

Brownian motion is called geometric Brownian motion.
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If we assume that Ht follows a Brownian motion process with positive drift, then we

can write

Ht = log

(
St
S0

)
= µt+ σWt

where {Wt} is standard Brownian motion. Therefore, Ht has a normal distribution

with

ε(Ht) = µt and V ar(Ht) = σ2t

3.3.2 Binomial model in the limit ∆t→ 0

Let Mt,T be a binomial model with the following parameters:

1. Lifetime t ≥ 0

2. T time increments, each of length ∆t = t/T

3. Up-tick factor uT and down-tick factor dT , where 0 < dT ≤ 1 ≤ uT .

4. A probability of up-tick pT ∈ (0, 1) and down-tick qT = 1− pT .

5. Drift and volatility

µT =
1

∆t
(pT log uT + qT log dT )

σT ]2 =
1

∆t
pT qT (log uT − log dT )2

Let St,T be the final stock price and let

Ht,T = log(
St,T
S0

)

be the logarithmic price growth. If the family {Mt,T | t ≥ 0} is stable (that is, if

pT → p for some p ∈ (0, 1) and µt → µ, σT → σ for some real numbers µ and σ 6= 0),

then

Ht,T
dist−−→ Ht = µt+ σ

√
tZt and St,T

dist−−→ St = S0e
µt+σ

√
tZt

Moreover, the process {
√
tZt | t ≥ 0} is standard Brownian motion. Hence, the

logarithmic growth and stock price processes {Ht | t ≥ 0} and {St | t ≥ 0} are

Brownian and geometric Brownian, respectively, with drift µ and volatility σ. Also,

33



the stock price growth St/S0 is lognormally distributed with

ε(St) = S − 0e(µ+ 1
2
σ2)t

V ar(St) = (S − 0e(µ+ 1
2
σ2)t)2(eσ

2t − 1)

3.3.3 The Natural Binomial Model

In the general binomial model, the up-tick probability p is arbitrary and may or may

not be related to the martingale measure up-tick π. If p is determined by empirical

means based on economic data, it is referred to as the natural up-tick probability

and denoted ν. The binomial model with p = ν is the natural binomial model,

under which we want to price alternatives.

Assumption 1: The natural probability ν of an up-tick in the stock price satisfies

0 < ν < 1 and does not depend on the number T of intervals.

Assumption 2: The resulting natural drift and volatility

µ =
1

∆t
(ν log uT + (1− ν) log dT )

σ2 =
1

∆t
ν(1− ν)(log uT − log dT )2

called the natural(or instantaneous) drift and natural(or instantaneous) volatility,

respectively, do not depend on T (or ∆t).

Theorem 3.3.1. Let MT be the natural binomial model with natural drift µ and

volatility σ. Then,

1. The martingale measure up-tick probability is given by

π =
e

(r−µ)∆t+ ν√
ν(1−ν)

σ
√

∆t − 1

e
1√

ν(1−ν)
σ
√

∆t − 1

2. The martingale probability π = πT approaches the natural probability ν as T →

∞ (∆t→ 0); that is,

lim
T→∞

πT = ν
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3.3.4 The Martingale Measure Binomial Model

The payoff for a European put with strike price K is

X = (K − ST )+ = (K − S0e
HT )+

and the absence of arbitrage implies that

I(Put) = e−rtε((K − S0e
HT )+)

where the expected value is taken under the martingale measure of the natural bino-

mial model.

Taking limits as T →∞ gives

P∞ = lim
T→∞

I(Put) = e−rT lim
T→∞

ε((K − S0e
HT )+)

where P∞ denotes the limiting price random variable.

Setting g(x) = (K − S0e
x)+ which is bounded and continuous on R gives

P∞ = e−rT lim
T→∞

ε(g(Ht))

If HT converges in distribution to a random variable X under the martingale measure,

then

P∞ = e−rT lim
T→∞

ε(g(Ht)) = e−rtε(g(X))

To find the limit in distribution of HT under the martingale measure, we consider

the binomial model M(π,T ) formed by taking pT to be the martingale measure up-tick

probability from the natural model with natural up-tick probability ν; that is,

pT = πT =
erT − dT
uT − dT

We refer to this as the martingale measure binomial model.

Theorem 3.3.2. The martingale measure model drift µπ,T and volatility σπ,T are

35



related to the natural drift µν and volatility σν by

µπ,T = µν + σν
1√
∆t

(πT − ν)√
ν(1− ν)

σπ,T
2 = σν

2 (πT (1− πT )

ν(1− ν)

Theorem 3.3.3. The following limits hold:

lim
T→∞

µπ,T = r − σν
2

2
and lim

T→∞
σπ,T = σν

where r is the riskfree rate.

Theorem 3.3.4. Let Mt,T be a binomial model with the following parameters:

1. Lifetime t ≥ 0

2. T time increments, each of length ∆t = t/T

3. Up-tick factor uT and down-tick factor dT , where 0 < dT ≤ 1 ≤ uT .

4. Probability of up-tick equal to the martingale measure up-tick probability from

the natural model with up-tick probability ν; that is,

pT = πT =
erT − dT
uT − dT

5. Drift and volatility

µπ,T =
1

∆t
(πT log uT + (1− πT ) log dT )

σπ,T
2 =

1

∆t
πT (1− πT )(log uT − log dT )2

Then

πT → ν, µπ,T → r − σν
2

2
and σπ,T → σν

where r is the riskfree rate and so the model is stable. Hence the logarithmic growth

satisfies

Ht,T
dist−−→ Ht = (r − σν

2

2
)t+ σν

√
tZt
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where Zt is standard normal and

St,T
dist−−→ St = S0e

(r−σν
2

2
)t+σν

√
tZt

where {
√
tZt | t ≥ 0} is standard Brownian motion. The logarithmic growth and

stock price processes {Ht | t ≥ 0} and {St | t ≥ 0} are Brownian and geometric

Brownian, respectively, with drift µ and volatility σ. Also, the stock price growth

St/S0 is lognormally distributed with

ε(St) = S − 0ert

V ar(St) = (S − 0ert)2(eσν
2t − 1)

3.3.5 The Black-Scholes Option Pricing Formula

With all the above information in this section, we can derive the following:

Theorem 3.3.5 (The Black-Scholes Option Pricing Formulas). For European

options with strike price K and expiration time t, we have

C = S0φ0,1(d1)−Ke−rTφ0,1(d2)

P = Ke−rTφ0,1(−d2)− S0φ0,1(−d1)

where S0 is the initial price of the underlying stock, σ is the natural volatility, φ0,1 is

the standard normal distribution function and

d1 =
1

σ
√
t
[log(

S0

K
) + t(r +

1

2
σ2)]

d2 =
1

σ
√
t
[log(

S0

K
) + t(r − 1

2
σ2)] = d1 − σ

√
t

where r is the risk-free rate.

For proofs of the theorems and other details, refer [Rom04].
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Chapter 4

Wavelet-based option pricing

4.1 Basic wavelet theory

The theory in this section is from [PO18], [Dau92] and [Bla03].

4.1.1 Mathematical background

Definition. The characteristic function (Chf) of a continuous random variable

X with probability density function f is defined as

E[e−iwX ] =

∫ ∞
−∞

f(x)e−iwxdx. (4.1)

Let V be a vector space over a field F (= C or R).

Definition. A norm on V is a function p : V → R that satisfies the following: For

all a ∈ F and all u, v ∈ V ,

1. (Homogeneity) p(av) =|a| p(v).

2. (Triangle inequality) p(u+ v) ≤ p(u) + p(v).

3. (Positivity) p(v) ≥ 0. p(v) = 0 only for v = 0

The norm of a vector v ∈ V is denoted by ‖v‖V .

A normed vector space is a vector space endowed with a norm.
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Definition. A Banach space is a vector space over R or C equipped with a norm

which is complete with respect to that norm, where completeness means that for all

Cauchy sequences {vn} in V , there exist v ∈ V such that ‖vn − v‖V → 0 as n→∞.

Definition. For each p, 1 ≤ p <∞, Lp(S) denotes the class of measurable functions

f on a measure space S such that

∫
S

| f(x)|pdx <∞

These are Banach spaces with the Lp(S) norm defined by

‖f‖p := (
∫∞
−∞ |f(x)|p dx)

1
p , for 1 ≤ p <∞.

Definition. A separable vector space V is a vector space such that there exist a

countable dense subset {fn}∞n=0, fn ∈ V , which means that for all g ∈ V and ε > 0 ∃

n such that ‖fn − g‖≤ ε.

For all p <∞, the Lp spaces are separable.

Definition. An inner product on V is defined as a map 〈·, ·〉 : V × V → F such

that for x, y ∈ V and a, b ∈ C,

1. (Symmetry) 〈y, x〉 = 〈x, y〉.

2. (Bilinearity) 〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉.

3. (Positivity) 〈x, x〉 ≥ 0; equality holds only for x = 0.

An inner vector space is a vector space endowed with an inner product. For f ∈ V ,

we define ‖f‖V =
√
〈f, f〉

Definition. A Hilbert space H is an inner product space that is also a complete

metric space with respect to the norm induced by the inner product.

We define an inner product on L2(S) by

〈f, g〉 =

∫
S

f(x) g(x) dx, f, g ∈ L2(S)

〈f, f〉 =‖f‖2
2, f ∈ L2(S)

The standard norm of L2(S) is derived from this inner product. Endowed with this
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inner product, L2(S) becomes a Hilbert space.

Definition. For an inner product space V , orthogonailty means

• Vectors X and Y are orthogonal vectors if 〈X, Y 〉 = 0.

• Subspaces V1 and V2 of V are orthogonal subspaces if each vector in V1 is

orthogonal to each vector in V2.

• Functions f and g are orthogonal functions, denoted f⊥g, when 〈f, g〉 = 0.

• A set of functions is an orthogonal set of functions if and only if every

distinct pair in the set is orthogonal.

Definition. Suppose V0 is a finite dimensional subspace of an inner product space V .

For any vector v ∈ V , the orthogonal projection of v onto V0 is the unique vector

v0 ∈ V0 that is closest to v; i.e.,

‖v − v0‖= minw∈V0 ‖v − w‖

Definition. • The collection of vectors ei, i = 1, . . . , N , is an orthonormal vec-

tor collection if each ei has unit length, ‖ei‖= 1, and ei and ej are orthogonal

for i 6= j.

• A sequence of functions {fn}n∈Z is said to be an orthonormal sequence of

functions if 〈fm, fn〉 = δm,n, where δj,k is the Kronecker delta defined by

δj,k :=

 1, for j = k,

0, for j 6= k.

If {φ1, φ2, φ3, . . .} is any orthogonal set of non-zero functions, then a correspond-

ing orthonormal set {ψ1, ψ2, ψ3, . . .} can be constructed by “normalizing” each

φk, that is,

ψk(x) = φk(x)
‖φk‖

Definition. Given a Hilbert space V , a Hilbert basis(or simply basis) for V is an

orthonormal set of vectors, H, with the property that every vector in V can be written

as an infinite linear combination of the vectors in the basis.

Theorem 4.1.1. Let {fn}∞n=1 be an orthonormal set on L2(S). Then the following
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conditions also characterize an orthonormal basis.

1. For eacg g ∈ Lp(S),

g =
∞∑
n=0

〈g, fn〉fn.

2. For each g ∈ Lp(S),

‖g‖2 =
∑

n |〈g, fn〉|2 .

4.1.2 Fourier analysis

Fourier series aims at decomposing a periodic signal into its frequency components

which are represented by the sine and cosine. The Fourier transform, viewed as an

extension of Fourier series to general, non-periodic functions.

Fourier series

A Fourier series decomposes any periodic function of period 2a for a ∈ R into the

sum of a (possibly infinite) set of simple oscillating functions, specifically complex

exponentials (sines and cosines). For each p, Lp(−a, a) denotes the Banach space

of functions f satisfying f(x + 2a) = f(x) almost everywhere (a.e.) in R and ‖

f‖Lp(−a,a) <∞.

Theorem 4.1.2. For a ∈ R, the set of functions,

{
1√
2a
e
inπx
a ; n ∈ Z

}
,

is an orthonormal basis for L2(−a, a).

Definition. The complex Fourier series of a periodic function f(x) ∈ L2(−a, a)

is given by,

f(x) =
∞∑

n=−∞

αne
inπx
a ,

where the coefficients of the complex Fourier series are,

αn =
1

2a

∫ a

−a
f(x)e

−inπx
a dx.
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Definition. The Fourier series of a periodic function f(x) ∈ L2(−a, a) of period

2a is given by,

f(x) = a0 +
∞∑
n=1

an cos(
πn

a
x) +

∞∑
n=1

bn sin(
πn

a
x),

where the coefficients of the Fourier series are,

a0 =
1

2a

∫ a

−a
f(x)dx,

an =
1

a

∫ a

−a
f(x) cos(

πn

a
x)dx,

bn =
1

2a

∫ a

−a
f(x) sin(

πn

a
x)dx.

Fourier and inverse Fourier Transform

Definition. The Fourier transform of a function f ∈ L1(R) is defined by

f̂(w) :=

∫ ∞
−∞

e−iwxf(x)dx.

The above integral converges and is bounded.

Theorem 4.1.3. If f ∈ L1(R) and f̂ ∈ L1(R), then the inverse Fourier trans-

form of f is

f(x) =
1

2π

∫ ∞
−∞

f̂(w)eiwxdw.

Discrete Fourier Transform

Definition. The discrete Fourier transform (DFT) of f is

f̂ [k] =
N−1∑
n=0

f [n]exp(
−i2πkn
N

)

and the inverse discrete Fourier transform (IDFT) formula,

f [n] =
1

N

N−1∑
k=0

f̂ [k]exp(
i2πkn

N
)
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Windowed Fourier transform

Choose a window function g : R → R≥0, which has ”total mass” 1 and is more or

less concentrated around t = 0, which means that it has, e.g., a compact support

containing 0 or at least a maximum at t = 0 and fast decay when |t|→ ∞.

For a given s ∈ R, the function

gs : t 7→ g(t− s)

represents the window g, translated by the amount s(to the right, if s > 0). We define

the windowed Fourier transform by

Gf : R× R→ C, (α, s) 7→ Gf(α, s)

of a function f by

Gf(α, s) :=
1√
2π

∫ ∞
−∞

f(t)g(t− s)e−iαtdt.

4.1.3 Wavelets

A limitation of Fourier series is that its building blocks are periodic.

So, we have a different set of building blocks, called wavelets, which, roughly speaking,

are waves that travel for one or more periods and are non-zero only over a finite

interval. A wavelet can be translated in time, stretched or compressed by scaling to

obtain low and high frequency wavelets.

Wavelets are a family of functions constructed from dilation and translation of a single

function in L2(R), ψ, with ‖ψ‖= 1 and

Cψ := 2π
∫
R∗
|ψ̂(a)|2
|a| da <∞.

This is called the mother wavelet. When the dilation parameter a and the trans-

lation parameter b vary continuously, we have the following family of continuous

wavelets,

ψa,b(x) =|a|− 1
2 ψ
(
x−b
a

)
, a, b ∈ R, a 6= 0.

These are also called child wavelets.
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Definition. The parameters a and b restricted to the discrete values: a = a0
−m and

b = nb0a0
−m, a0 > 1, b0 > 0 and n,m ∈ Z, give rise to the following family of discrete

wavelets

ψm,n(x) =|a0|m/2 ψ(a0
mx− nb0).

Definition. The wavelet series of f ∈ L2(R) is defined as

f(x) =
∑
m∈Z

∑
n∈Z

〈f, ψm,n〉ψm,n(x),

provided that the functions {ψm,n : m,n ∈ Z} form an orthonormal basis of L2(R).

Continuous Wavelet Transform

Assume that a certain wavelet ψ has been chosen and is held fixed. Then the function

Wf(a, b) :=
1

| a |1/2

∫
f(t)ψ

(
t− b
a

)
dt (a 6= 0)

is called the continuous wavelet transform of f ∈ L2 with respect to ψ.

After dilation by a and translation by b, we get

ψa,b(t) :=
1

| a |1/2
ψ(
t− b
a

).

Clearly, ‖ψa,b‖= 1. Then, Wf(a, b) = 〈f, ψa,b〉.

This implies that

1. At each point (a, b) ∈ R∗ ×R the wavelet transform Wf has a well determined

value Wf(a, b)

2. By Schwarz’ inequality, Wf is uniformly bounded on R−2:

|Wf(a, b)|≤‖f‖ ∀ (a, b) ∈ R2
−.

The Fourier transforms of the functions ψa,b are

ψ̂a,b(ξ) =|a|1/2 e−ibξ ψ̂(aξ).

We therefore can write Wf(a, b) in the following form

Wf(a, b) = 〈f̂ , ψ̂a,b〉 =|a|1/2
∫
f̂(ξ) eibξ ψ̂(aξ) dξ.
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Theorem 4.1.4. For fixed a 6= 0 the function

Wf(a, ·) : b 7→ Wf(a, b)

can be regarded as the Fourier transform of the function Fa, given by

Fa(ξ) :=
√

2π |a|1/2 f̂(ξ) ψ̂(aξ)

A Plancherel formula. For the definition of a scalar product for functions u :

R2
− → C we need a measure on R−2. We see that a point (a, b) ∈ R2

− is used implicitly

to characterize the affine transformation

Sa,b : R→ R, τ 7→ t := aτ + b

of the time axis. The totality

Aff(R) := {Sa,b | (a, b) ∈ R2
−}

of these affine transformations is a topological group with respect to ◦ (i.e. com-

position) and as such it carries a ”natural” measure dµ, called left invariant Haar

measure. Formula above defines a parametrization of the group Aff(R) by the set R2
−,

so the measure dµ becomes manifest as a measure in the (a, b)-plane. The resulting

expression for dµ = dµ(a, b) can be computed explicitly; one finds

dµ = dµ(a, b) :=
1

| a |2
dadb.

We define the Hilbert space as

H := L2(R2
−, dµ) = L2

(
R∗ × R,

dadb

| a |2

)

whose scalar product is defined by

〈u, v〉H :=

∫
R2
−

u(a, b)v(a, b)
dadb

| a |2
.

Theorem 4.1.5. Let ψ be an arbitrary wavelet and let W denote the corresponding
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wavelet transform. Then ∀ f, g ∈ L2 the following is true:

〈Wf,Wg〉H = Cψ〈f, g〉.

Theorem 4.1.6. Let ψ and χ be two wavelets and assume that the integral

2π

∫
R∗

ψ̂(a)χ̂(a)

| a |
da =: Cψχ

is defined, i.e., finite. If Wψ and Wχ denote the wavelet transform with respect to ψ

and χ, then the following is true for arbitrary f, g ∈ L2:

〈Wψf,Wχg〉H = Cψχ〈f, g〉.

Inversion Formula. For deatils and proofs, refer [Dau92].

Theorem 4.1.7. Let x be a point of continuity of f . Under suitable assumptions

about f and ψ, one has

f(x) =
1

Cψ

∫
R2
−

Wf(a, b)ψa,b(x)
dadb

| a |2
)

Theorem 4.1.8.

f(x) =
1

Cψχ

∫
R−2

Wψf(a, b)χa,b(x)
dadb

| a |2
)

if the quantity Cψχ is defined.

Decay of the Wavelet Transform

Theorem 4.1.9. Assume that a wavelet ψ with tψ ∈ L1 has been chosen. Let the

time signal f ∈ L2 be globally bounded and assume that f is Hoelder continuous at

the point b, i.e., there is α ∈ (0, 1] such that in a neighbourhood of b an estimate of

the form

|f(t)− f(b)|≤ C |t− b|α

holds. Then
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|Wf(a, b)|≤ C ′ |a|α+ 1
2

Multiresolution Analysis

Definition. A multiresolution analysis (MRA) consists of the following:

(a) A bilateral sequence {Vj|j ∈ Z} of closed subspaces of L2. Vj’s are ordered by

inclusion

. . . ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ . . . ⊂ V−(j−1) ⊂ V−j ⊂ . . . ⊂ L2 (4.2)

and one has ⋂
j

Vj = {0} (separation axiom), (4.3)

⋃
j

Vj = L2 (completeness axiom). (4.4)

In the limit, any f ∈ L2 can be obtained from functions fj ∈ Vj.

(b) Vj’s are connected through the property:

Vj+1 = D2(Vj) ∀j ∈ Z, (4.5)

where for ψ, D2 ψ(t) =
∑n

k=0 ck ψ(t− k). For f , this means

f ∈ Vj ⇔ f(2j·) ∈ V0. (4.6)

(c) There is a function φ ∈ L2∩L1 such that (φ(·−k) | k ∈ Z) forms an orthonormal

basis of V0. This function φ is commonly called the scaling function of the

MRA.

Then, the space V0 can be described as a set of time signals f in the following way:

V0 = {f ∈ L2 | f(t) =
∑

k ckφ(t− k),
∑

k | ck |2<∞} .

Using φ as a template we now define the functions

φj,k(t) := 2−j/2φ

(
t− k.2j

2j

)
= 2−j/2φ

(
t

2j
− k
)

(j ∈ Z, k ∈ Z);
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this being in obvious concordance with the formulas defining the wavelet functions

ψm,n. Then the family (φj,k|k ∈ Z) is an orthonormal basis of Vj, two subsequent

functions φj,k and φj,k+1 now being translated by the amount 2j with respect to each

other.

We may interpret the orthogonal projection Pj of L2 onto Vj as: The image Pjf of

a time signal f ∈ L2 incorporates all features of f whose horizontal spread over the

time axis is of size 2j or larger. Pj is given by:

Pjf =
∞∑

k=−∞

〈f, φj,k〉φj,k.

Because of the inclusions 4.2 the φj,k cannot be brought together to form a ”big”

orthonormal basis of L2. So we construct a system (Wj|j ∈ Z) of pairwise orthogonal

subspaces Wj ⊂ L2 in the following way: Wj is the space gained in the transition

from Vj to the next larger space Vj−1 in the chain 4.2, which means that Wj is the

orthogonal complement of Vj in Vj−1. Then

Vj−1 = Vj ⊕Wj, Wj ⊥ Vj ∀j ∈ Z;

Furthermore, everything is set up in such a way that the formulas analogous to 4.5

and 4.6, namely

Wj+1 = D2(Wj) resp. f ∈ Wj ⇔ f(2j.) ∈ W0,

hold likewise;

Theorem 4.1.10. If the system (Vj|j ∈ Z) possesses the properties (a) of an MRA,

then the corresponding subspaces Wj are pairwise orthogonal, and furthermore

⊕
j

Wj = L2(orthogonal direct sum).

It can be proven that there exists a wavelet function ψ(x) ∈ W0 such that the set

{ψj,k(x) = 2j/2 ψ(2jx− k), k ∈ Z} is an orthonormal basis of Wj.
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Examples of wavelet functions

We have a wide range of wavelet functions: Daubechies, Haar, Shannon, Meyer,

Gaussian, Chebyshev, Morlet, Symlets, etc.

Haar wavelet The Haar scaling function is defined as

φH(x) =

 1, if 0 ≤ x < 1,

0, elsewwhere.

Its Fourier transform is

φ̂H(w) =
1− e−iw

iw

The Haar mother wavelet function is

φH(x) =


1, for 0 ≤ x < 1

2
,

−1, for 1
2
≤ x < 1,

0, otherwise.

Shannon wavelet Shannon scaling function is

φS(x) = sinc(x) =


sin(πx)
πx

, if x 6= 0,

1, if x = 0.

Its Fourier transform is

φ̂S(w) = rect(
w

2π
)

where rect is the function

rect(x) =


1, if | x |< 1

2
,

1/2, if | x |= 1
2
,

0, if | x |> 1
2
.

The mother wavelet is,

ψS(x) =
sin(π(x− 1

2
))− sin(2π(x− 1

2
))

π(x− 1
2
)
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4.2 A wavelet-based model for European options

This section is taken from [LCMS19].

4.2.1 Introduction

The book [Ma11] describes a nonparametric option pricing model that focuses on

approximating the implied risk-neutral Moment Generating Function(MGF) of the

underlying asset returns using wavelets. The MGF can be used to obtain all the

statistical moments of the underlying asset distributions and the preference parameter

of the utility function; and out-of-sample options with different maturity dates can

be directly estimated using the risk-neutral MGF.

MGF of a continuous random variable x is defined as the bilateral Laplace transform

of the probability density function ρ(x), i.e.

M(s) =

∫ ∞
−∞

ρ(x)e−xsdx.

where s is a complex number.

There are mainly three types of application of wavelet methods in finance and eco-

nomics, as per [HLMS09]

1. for multi-scaling analysis;

2. to de-noise raw data;

3. to estimate unknown parameters of a model.

4.2.2 Bilateral Laplace Transform

Following [HLMS09], let f(t) be a real-valued function, piecewise continuous on

(−∞,∞). Its bilateral Laplace transformation is a complex valued function

given by

L{f(t)}(s) = F (s) =

∫ ∞
−∞

f(t)e−stdt,
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where s is a complex value and L denotes the Laplace transform operator.

The inverse Laplace transform can be written as:

L−1{F (s)}(t) = f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds.

where c is a specific real number.

Let F (s) denote L{f(x)}(s) and G(s) denote L{g(x)}(s). Then we have the following

properties:

1. Linearity: L{af(x) + bg(x)}(s) = aF (s) + bG(s);

L−1{aF (s) + bG(s)}(x) = af(x) + bg(x).

2. Frequency shifting: L{e−lxf(x)}(s) = F (s+ l), ∀l ∈ R;

L−1{F (s+ l)}(x) = e−ltf(x), ∀l ∈ R.

3. Time shifting: L{f(x− x0)}(s) = e−x0sF (s), ∀x0 ∈ R;

L−1{e−x0sF (s)}(x) = f(x− x0), ∀x0 ∈ R.

4. Convolution: L{f(x) ∗ g(x)} = F (s)G(s);

L−1{F (s)G(s)}(x) = f(x) ∗ g(x).

where ∗ indicates the convolution operator on f and g:

f ∗ g =
∫∞
−∞ f(τ)g(t− τ)dτ =

∫∞
−∞ g(τ)f(t− τ)dτ

4.2.3 The Model

Under fairly general assumptions including i.i.d. distribution for asset returns, the

wavelet-based option pricing model can be expressed as follows:

Ct(St, X, T ) = Xe−r(tt)L−1

(
ΘT−t(s)

s(s+ 1)

)(
ln
X

St

)

where L−1 denotes the bilateral inverse Laplace transform, Ct is the time-t price for

a European call option written on asset whose price is St with strike price X and

a future maturity date T . Interest rate r and the dividend yield are assumed to be

constant.

The main ingredient of the model is ΘT−t(s)
s(s+1)

, where s is a complex value whose real

part Re(s) < −1 for calls and Re(s) > 0 for puts. The MGF ΘT−t(s) of the logarith-
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mic returns ln ST
St

captures the underlying asset dynamics and investor expectation

embedded in option prices, and needs to be approximated with wavelets. A wavelet

which meets the requirements (as per [Mal99]) for the given case is the Franklin hat

function defined as

h(t) =

 (1− | t |) if − 1 ≤ t < 1

0 otherwise

The Laplace transform of h(t), denoted mh(s), is:

mh(s) = (
es/2 − e−s/2

s
)2.

Then, a set of generalized functions can be generated from h(t):

hl,k(t) = 2
1
2h(2lt− k), l, k = 0,±1,±2, . . .

Here, l (scaling parameter) determines the degree of dilation or contraction and k

(shifting parameter) controls the horizontal location of the function.

Laplace transform of these hl,k(t), denoted ml,k(s), are:

ml,k(s) = 2−
l
2 e−

ks

2lmh(
s

2l
), l, k = 0,±1,±2, . . .

The risk-neutral MGF of the return per unit of time Θ(s) can be expanded as:

Θ(s) =
∞∑

l=−∞

∞∑
k=−∞

alkml,k(s).

where alk is a set of unknown coefficients and needs to be estimated by minimizing

the sum of squared error between market option prices and theoretical prices. To

estimate these, we use the procedure in [HLMS09]

1. For positive integers L and K, set alk = 0 for all |l|> L and |k|> K. Let

θL,K ≡ {alk}l=L,|k|≤K

2. Given the collection {St, Xi, Ct,i, T, r ; i = 1, 2, . . . , N}, of market data for

options at time t, estimate θL,K by minimizing the sum of squared errors between
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market option prices Ct,i and theoretical prices Ĉt,i:

min
θL,K

∑
i

(Ct,i − Ĉt,i(θL,K , St, Xi, Ct,i, T, r))
2.

3. In each iteration, increment L by 1 and repeat steps 1 and 2 until
∑

i(Ct,i −

Ĉt,i)
2 < ε for an arbitrary ε > 0.

This yields:

Θ̂(s) =
∑
|l|=L

∑
|k|≤K

âlkmlk(s).

In the empirical analysis, L and K are chosen by the optimisation programme so that

a satisfactory estimation result can be obtained.

4.3 A wavelet-based model for Asian options

This section is taken from [CMM15].

4.3.1 Introduction

The value of Asian options depends on the average stock price. For fixed Strike Asian

option, the payoff depends on the difference between the average of the underlying

and a fixed strike. For floating Strike options, the payoff depends on the difference

between the average of the underlying and the value of the asset at maturity. For most

Asian options, the average is computed by considering the underlying asset values at

prefixed dates, like the end of each day, week or month.

The pricing procedure described in [FMM11] is based on a randomization technique,

according to which the expiry date of the option is modelled as a random variable

distributed as geometric. The computational kernel is the solution of integral equa-

tions. The integral equations involved in the model are Fredholm integral equations

of the second kind, the kernels of which fall within the class of the aforementioned

operators for which projection onto wavelet bases is particularly effective. For this

reason, we apply the DWT to the linear systems which arise from the discrete opera-

tors. Transforming the linear systems matrices into sparse matrices is possible owing

to the wavelet localization property, resulting in a fast algorithm that preserves the
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accuracy of the original method.

4.3.2 The randomization pricing method

We assume that the risk-neutral process for the stock price S(t) is described by

S(t) = S0e
(r−d+g)t+L(t),

where r is the short rate(continuously compounded interest rate), d is the dividend

yield and g is the compensator, chosen to ensure that the discounted price process

is a martingale. L(t) is a Levy process, identified by its characteristic exponent

ψ(w) = logE(eiwL(1)).

Consider M equidistant monitoring dates, with amplitude of the interval ∆, such that

t0 = 0, t1 = ∆,· · · , tn = n∆,· · · , tM = M∆ = T . The log-return on each time interval

has the following characteristic function

φ(w) = e(ψ(w)+iw(r−d+g))∆. (4.7)

The density f of the log-return is obtained computing the Fast Fourier Transform

(FFT) of 4.7. Let Sn denote the price of the underlying at time n∆, i.e. Sn = S(n∆);

the pay-off of an arithmetic Asian option is given by

Payoff = (IM − cSM)+, where IM =
M∑
n=0

λnSn.

The following recursion holds for the option price:

V (SM , IM ,M) = (IM − cSM)+

V (Sn, In, n) = e−r∆
∫ ∞
−∞

f(s)V (Sne
s, In + λn+1Sne

s, n+ 1) ds;

n = M − 1, . . . , 0. (4.8)
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The expiry date T is modelled as a random variable distributed as geometric of pa-

rameter q; if one defines

H(x, q) := (1− q)
∞∑
k=0

qkv(x, k) (4.9)

with v(x, k) := V (1, x,M−k), the option price is given by S0v(λ0,M), where we have

set x = In/Sn.

By suitable choices of values of λn and c, we can describe a wide class of Asian options.

Floating Strike Call Options Standard case for Floating Strike call options:

c = −1, λ0 =
γ

M + γ
; λn = λ = − 1

M + γ
, n = 1, . . . ,M ; (4.10)

γ =

 1, if S0is included in the average

0, otherwise

H(x, q) = q

∫ λ

−∞
K(x, y)H(y, q)dy + (1− q)φ(x) (4.11)

where

K(x, y) = −e−r∆ f(log(
x

y − λ
))

x

(y − λ)2
and φ(x) = (x− c)+

Fixed Strike Call Options Standard case for Fixed Strike call options:

c = 0, λ0 =
γ

M + γ
− K

S0

;λn = λ =
1

M + γ
, n = 1, . . . ,M ; (4.12)

γ is set as in the floating strike case, For Fixed Strike options, the value of v(x, k), k =

1, . . . ,M , is analytically known for x ≥ 0 and so the integral equation becomes

H(x, q) = q

∫ 0

−∞
K(x, y)H(y, q)dy + (1− q)φ̃(x, q) (4.13)

with

φ̃(x, q) = φ(x) +
q

1− q

∫ λ

0

K(x, y)H(y, q)dy
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where if y ≥ 0,

H(y, q) =
y(1− q)

1− qe−r∆
+

e(r−d)∆(1− q)
(M + γ)(1− e(r−d)∆)

x(
1

1− qe−r∆
− 1

1− qe−d∆
)

Applying a quadrature rule, with N nodes xi and weight wi, to it, we obtain the linear

system

(I − qKD)h = b, (4.14)

where I is the identity matrix and for i, j = 1, . . . , N , the vector and matrices elements

are given by

h(i) = H(xi, q)

K(i, j) = K(xi, xj)

b(i) = (1− q)Φ(xi, q)

D(i, i) = wi, D(i, j) = 0ifi 6= j

with

Φ(xi, q) =

 φ(xi), for Floating strike Asian options

φ̃(xi, q), for Fixed strike Asian options.

System 4.14 is the main computational kernel in the algorithm.

The option price is recovered de-randomizing the option maturity, that is, exploiting

the complex inversion integral

v(λ0,M) =
1

2πρM

∫ 2π

0

H(λ0, ρe
is)

1− ρeis
e−iMsds. (4.15)

In particular, we approximate numerically 4.15 using:

vh(λ0,M) =
1

2MρM
(
H(λ0, ρ)

1− ρ
+ (−1)M

H(λ0,−ρ)

1 + ρ
+ 2

M−1∑
j=1

(−1j)Re(
H(λ0, ρe

ijπ/M)

1− ρeijπ/M
)),

(4.16)

where ρ is set to 10−4/M .

The procedure involves the following steps:

• solve 4.11 for q = qj = ρeijπ/M , j = 0, . . . ,M ;
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Figure 4.1: Asian call randomization pricing algorithm. Up: Floating Strike options;
down: Fixed Strike options.

• approximate v(λ0,M) by vh(λ0,M) as in 4.16.

Rewrite 4.16 as

vh(λ0,M) =
1

ρM

M∑
j=0

(−1j)ajH(λ0, ρe
ijπ/M). (4.17)

To compute this, we use the Euler summation technique, a convergence acceleration

technique for evaluating alternating series, as folllows:

Fix two positive integers me, ne. Then 4.17 can be approximated by

ṽ(λ0,M) ≈ 1

2meρM

me∑
j=0

(
me

j

)
bne+j(λ0,M), (4.18)

where

bk(λ0,M) =
k∑
j=0

(−1)jajH(λ0, ρe
ijπ/M).

When the number of monitoring dates M > me + ne, instead of 4.16 which in-

volves solving M + 1 linear systems, we use the acceleration technique and evaluate

H(λ0, ρe
ijπ/M) for j = 0, . . . , ne +me , thus solving ne +me + 1 systems.

Figure 4.1 shows a sketch of the pricing algorithm.
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4.3.3 Discrete Wavelet Transform

The wavelets used are from [Dau88].

Recall the portion on MRA 4.1.3. The resolution index j of each subspace Vj in

the MRA must be intended as a scale: the higher the scale, the more accurate the

approximation Pjf . An element of a MRA can be viewed as a screen with a certain

resolution: the successive element in the sequence could then be a screen with twice

number of pixels along each dimension. The tool for moving between resolutions is

the DWT, which is introduced owing to the following relations:

ϕ(x) =
∑
k∈Z

hkϕ(2x− k)

ψ(x) =
∑
k∈Z

gkψ(2x− k)

called refinement equation and wavelet equation, respectively. The sequences h :=

{hk}k∈Z and g := {gk}k∈Z are usually referred to as filters of the MRA. Now, if

Pl+1f =
∑
k∈Z

cl+1,kϕl+1,k

Plf =
∑
k∈Z

cl,kϕl,k

Qlf =
∑
k∈Z

dl,kψl,k

are the projections of f on Vl+1, Vl and Wl, respectively, then it holds:

cl,k =
∑
n∈Z

hn−2kcl+1,n, dl,k =
∑
n∈Z

gn−2kcl+1,n (4.19)

and

cl+1,k =
∑
n∈Z

h2k−ncl,n +
∑
n∈Z

g2k−ndl,n (4.20)

Relations 4.19 and 4.20 ensure that to move between different levels of resolution in

MRA, we only need to know the filters of the MRA.

Let cl+1 be the set {cl+1,k}k∈Z. Then, the operator defined by 4.19 is the DWT ap-

plied to cl+1. We compute cl convolving h with cl+1: cl contains the coefficients of
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the projection of the function at a lower resolution (scaling coefficients). dl contains

the wavelet coefficients, which retain the information that is lost when moving from

resolution l + 1 to resolution l.

So, if we neglect wavelet coefficients under a fixed threshold (Hard Threshold tech-

nique (HT), [Mal99]), accuracy can be preserved with a significant gain in efficiency.

In matrix form, if

L = (hi,j = hj−2i), H = (gi,j = gj−2i)

relations 4.19 can be written ascl−1

dl−1

 =

L

H

 · cl ⇔

 cl−1 = Lcl

dl−1 = Hcl

The DWT can be applied recursively; at each step, only the scaling coefficients re-

sulting from the previous step are transformed.

To expand the kernel of the integral equations in wavelet bases, we introduce the

bi-dimensional DWT. For this, recursively define the following matrices:

Q(1) =

L
H

 , Q(k) =

Q(k−1) I

I I

 , k ≥ 2

and let

Qs :=
s∏
i=1

Q(i)

then, the bi-dimensional DWT in s steps of a discrete operator A is defined as

As
W := QsAQs

T .

4.3.4 Wavelet-based pricing algorithm

We discretize the integrals in 4.13 and 4.11 by means of a quadrature rule on a

truncated domain [L, λ] for Floating Strike Asian options, on [L, 0] for Fixed ones.

Different values for L can be chosen according to the optimality criterion discussed

in [FMM11] and tested.

Some of the following results are from [BCR91]. Let K(x, y) be the kernel of an

59



integral operator and P the number of wavelet vanishing moments (i.e.
∫
R x

pψ(x)dx =

0; p = 0, . . . , P − 1). Suppose a certain level in the MRA has been fixed. Then,

denote with ϕJ , ψJ ′ respectively the scaling and the wavelet function at the fixed level,

having supports J, J ′. The coefficients of the expansion of K(x, y) are given by:

αJ,J ′ =

∫
R

∫
R
K(x, y)ψJ(x)ψJ ′(y)dxdy

αJ,J ′ =

∫
R

∫
R
K(x, y)ψJ(x)φJ ′(y)dxdy

γJ,J ′ =

∫
R

∫
R
K(x, y)φJ(x)ψJ ′(y)dxdy

If partial derivatives of K up to order P exist on the square JxJ ′, then

| αJ,J ′ | + |βJ,J ′ | + |γJ,J ′|≤ C |J |P+1 sup(x,y)∈J×J ′
∑

j |
∂P

∂xj∂yP−j
K(x, y)|.

Thus, to have small wavelet coefficients, one should have a small RHS, which holds

whenever either

1. |J | is small (points out the importance of having wavelet bases with narrow

supports); or

2. the derivatives are small (suggests the classes of integral operators for which a

wavelet-based representation can be effective).

Recall the pricing procedure in 4.1: in the solution of the linear systems (step 2), we

apply to both sides the DWT operator Qs, for a fixed number of DWT steps s; for

each value of q, we thus obtain the linear system

Qs(I − qKD)h = Qsb ⇔ (I − qQs(KD)Qs
T )Qsh = Qsb

for the orthogonality of the operator Qs. If we denote by KDW , hW , bW the DWT of

KD, h, b respectively, we have

(I − qKDW )hW = bW . (4.21)

We then apply a hard threshold to the coefficient matrix of 4.21, thus we actually

solve the linear system

(I − q(KDW )ε)y = bW , (4.22)
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where (KDW )ε is the hard threshold of KDW with threshold ε. Finally, the inverse

DWT is applied to the solution y of 4.22, thus an approximation of h, Qs
Ty, is

obtained.
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expected value, 8, 14
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Fourier transform, 42
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geometric Brownian motion, 32

Haar wavelet, 49

Hilbert space, 39

identically distributed, 16

independent, 8, 14

information structure, 10

inner product, 39

liquidation value, 21

local martingale condition, 11

locks in the gain, 21

logarithmic growth, 32

lognormally distributed, 15

martingale, 11

martingale measure, 22

martingale up-tick probabilities, 27

measurable, 8, 14

multiresolution analysis, 47

normal distribution, 15

orthogonal projection, 40

orthogonality, 40

orthonormality, 40

partition, 6, 7

path number, 10
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portfolio, 20

price random variable, 20

pricing functional, 25

probability distribution, 7, 8

probability measure, 7, 12

random variable, 7, 14

refinement equation, 58

risk-neutral probability measure, 22

scaling function, 47

self-financing trading strategy, 21

Shannon wavelet, 49

stable, 33

standard Brownian motion, 32

standardizing, 8

state space, 9

state tree, 9

stochastic process, 10, 31

stock option, 2

trading strategy, 20

up-tick, 26

variance, 8, 15

wavelet equation, 58

wavelet transform, 44
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