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Abstract

Scaling laws of physiological variables like life-span or metabolic rate with organism mass

across biological species provide hint to underlying universal features of organisation in

nature. One such law is the “Kleiber’s Law” which is the observation that basal metabolic

rate, B, is related to organismal mass, M , via the power law, B ∝M
3
4 . The validity of such

laws is often debated due to the noisy nature of data, absence of measurable parameters

and lack of appropriate biological model organisms. In this thesis, we propose the use of a

new model organism, Snowflake Yeast, a mutated strain of Saccharomyces cerevisiae, to test

the validity of the Kleiber’s law. Using microfluidics and isothermal calorimetry, we have

arrived at data that seems to contradict the Kleiber’s law. We also review the theoretical

treatments to model the growth of the Snowflake and attempt to model its growth to explain

the scaling relation.
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Chapter 1

Introduction

1.1 Allometric scaling studies in Biology

Scaling is the study of how size leads to changes in biological traits. It teaches us how

physical size constraints a physiological observable. For example, the study of heart rate

across mammals (see figure 1.1). Historically, it has been studied using a power-law function

of the following form:

Y = Y0M
b (1.1)

Y : Physiological observable

M : Body mass of organism

b : Scaling exponent

Y0 : Proportionality constant

Figure 1.1: Allometric scaling of heart rate with body mass (taken from [14])
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Of particular interest is the scaling exponent “b”. When this exponent is not 1, the

biological trait in consideration does not scale directly with mass, and the scaling of such

traits is said to be allometric. It is an exciting branch which unites empirical studies, theories

and experiments and has been used to study how numerous biological traits like heart rate,

organ sizes, resource consumption vary with the body mass of organisms.

1.2 Metabolic Scaling studies

Amongst the various allometric studies, metabolic scaling is widely studied because it relates

how energy production and consumption interact with size and growth (see figure 1.2).

Furthermore, since products of metabolism related to biological function are acted upon by

natural selection, it becomes interesting to study from an evolutionary perspective.

Figure 1.2: Consolidated data for Basal Metabolic Rate for mammals (taken from [47])

Several empirical studies have been carried out over the past 200 years, measuring

metabolic activity by measuring heat production or using other proxies such as O2 con-

sumption and CO2 production. Kleiber ([29],[28]) and others ([10],[6],[33]) reported that

the scaling exponent for metabolic rate is close to 0.72 which gave birth to the Kleiber’s

Law, which is the observation that for a majority of organisms, metabolic rate scales to 3/4

power of the body mass of the organism.

1.2.1 What is the exponent of Metabolic Scaling in nature?

Since several allometric studies have concluded scaling exponents close to quarter-laws [43],

it is debated that the scaling of metabolic rate may also obey a quarter law. Several articles

also argue that this law is as fundamental as the Newton’s laws of mechanics [39] and further

debate is not warranted [43]. However, several empirical studies, meta-analysis studies and

review articles disagree ( [15],[48], [43], etc ). The different and often exclusive ways of
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choosing data points and the statistical tools used to analyse them lead to contradictory

conclusions regarding the scaling exponent ( [15], [48], [43] ). In particular, for birds [15],

the 3/4 exponent is rejected and for fishes [5] the scaling exponent varies between 0.5 to 1.

The debate of the universality of quarter law exponents is not limited to metabolic scaling

but also on other physiological parameters like respiration [39].

1.2.2 Theoretical treatments to study allometric scaling of metabolic rate

Several mechanistic and non-mechanistic theories have been proposed and reviewed to ac-

count for the allometric scaling of metabolic rate [19]:

• Surface area theories: These predict that heat dissipation should scale as the surface

area of the organism since it is a mechanism for thermo-regulation ([42] and others).

• Resource distribution models: These models explain the observed scaling by the nature

and constraints of the network which distribute nutrients to metabolising cells. ([46]

and others)

• System-composition models: These models associate the allometric scaling to be re-

lated to the changes in relative contributions of components (organs or tissues) to the

metabolic output of an organism with size ([22],[27].

• Resource-Demand Models: These models attribute the change in demand of resources

for biological function (growth, locomotion and thermo-regulation) with size to the

allometric scaling of metabolic rate [18].

There are theories that combine the above mechanism like the Dynamic energy budget

theory (DEB), Metabolic-level boundaries hypothesis (MLBH) and the Contextual multi-

modal thoery (CMT). These theories have also been extended to create metabolic theories

of ecology (MTEs) which try to explain ecological processes from individuals to ecosystems

like population growth rate and trophic dynamics on the basis of metabolic scaling with

body mass [7].

1.3 What is yet to be learnt?

The exact value of the scaling exponent might not be the most relevant quantity to debate

over in the field of quantitative biology. Rather than be the Boltzmann, we need to be

the Carnots or Clausiuses of our time and develop general principles that unify seemingly

distinct features of biological systems. The need of the century is to identify more model

systems amenable to experimental control ([44], [9] ) which will give us quantitative data

allowing us to differentiate between competing theories and make general statements in

biology, in particular in the field of allometric scaling.
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1.4 What is Snowflake Yeast?

The model organism used in this study is Snowflake yeast, a mutated strain of Saccharomyces

cerevisiae which was experimentally evolved by Ratcliff et al. [37] by selecting for reduced

settling time.

Figure 1.3: GOB2 Strain in media

Figure 1.3 shows an individual Snowflake yeast. It is composed of several yeast cells

joined to each other at the point of budding. Since Snowflake yeast is a collection of several

units of single cells, it is an excellent organism to study the change in metabolism with

organism size.

1.4.1 Life cycle of wild type Saccharomyces cerevisiae

Wild type Saccharomyces cerevisiae, commonly known as baker’s yeast are unicellular eu-

karyotic organisms which are round to ovoid ranging from 5 − 10µm in diameter. There

are two forms of wild type yeast cells: haploid (with one complete set of chromosomes) and

diploid (with two complete sets of chromosomes). The haploid cells have a mitosis life cycle

depicted in figure 1.4 . It comprises of a long interphase (when the cell grows, and DNA

content is doubled), prophase ( when chromosomes condense, and the mitotic spindle is

formed), prometaphase ( when nuclear envelope vanishes and the microtubules of the spin-

dle attach to the kinetochore), metaphase (when chromosomes align along the equatorial

plane), anaphase ( when daughter chromosomes are pulled apart), telophase (when nuclear

envelope reforms) and end with cytokinesis when the bud is cut off from the parent cell.

Diploids cells also follow a mitotic cycle; however, in conditions of stress, they can enter

meiosis and form haploid spores which can later mate undergoing sexual reproduction.
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Figure 1.4: Saccharomyces cerevisiae mitotic life cycle with budding (taken from [23])
.

The duration of one cell doubling is roughly 100 mins at 300C [23]. This is an asexual

form of reproduction which implies that the daughter cell and mother cell are genetically

identical.

1.4.2 The origin of multicellularity

To understand the Snowflake yeast, one needs to understand and appreciate the experiment

that displayed the experimental evolution of multicellularity using Saccharomyces cerevisiae

[37]. The authors argue that the earliest form of multi-cellular organisms must have evolved

from unicellular organisms capable of forming clusters after division (i.e. Post-divisional

clusters). Post-divisional adhesion would reduce conflict of reproductive success within a

cluster and would form the basis of highly differentiated complex multi-cellular organisms

with elaborate labour division. They set up an evolution experiment which would favour

cells that displayed the clustering phenotype (see figure 1.5). In gist, they allowed cultures

of yeast (Wild type Y55) to grow overnight and enforced a gravity-based selection. They

allowed the culture to stand for a certain amount of time ( ts, the settling time) and propa-

gated a small fraction from the bottom of the flask. Organisms that made it to the bottom

within the settling time survived the selection. If we consider the motion of a sphere in a

fluid, the equation of motion would be the following:

v̇ = −(
ρs − ρf
ρs

)− (
6πηa

ρsV
)v (1.2)

v̇ = −α− βv (1.3)
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where:

v : Instantaneous velocity of the sphere

ρs : Density of the sphere

ρf : Density of the fluid

η : Coefficient of viscosity

V : Volume of the sphere a : Cross-sectional area of the sphere

α : (
ρs−ρf
ρs

)

β : (6πηaρsV
) the solution for which is...

v(t) = −α
β

(1− e−βt) (1.4)

Since α
β ∝ R, bigger clusters settle faster.

Figure 1.5: Schematic of experimental setup used in [37]

After 60 such selection rounds, the authors discovered that all replicates of the exper-

iment displayed clustering phenotype. This experiment is important since it forms the

starting point to create a range of distinct multi-cellular phenotype with variation in cluster

size. which would allow us to check the validity of Kleiber’s Law.

1.4.3 Snowflake yeast and its multi cellular life-cycle

If one tracks a single cell from the experimentally evolved population, as shown in figure 1.6,

it grows from a single cell to a multi-cellular aggregate which then splits up into multiple

clusters. The biggest size up to which a cluster grows is determined by the settling time

used in the experimental protocol ( tS ) [37]. The reproduction of phase of the multi-cellular

organism, caused by the splitting of cluster, is hypothesised to arise from the breaking of

weak links between the dead cells in the crowded interior of the cluster [38].The different

stages of the multi-cellular life-cycle can be seen in figure 1.6.

6



Figure 1.6: Life cycle of Snowflake Yeast (GOB 2 strain from Shashi Lab)

By tracking the growth of single snowflake, it is clear that all the cells in the cluster are

exactly genetically identical as it forms via post-divisional adhesion and not the aggregation

of genetically distinct cells (for example in biofilms). The cells enter mitosis but do not

undergo cytokinesis, which is when the mother-daughter cell detach. The mother-daughter

attachment site is visible by marking the bud-scar ( the ring about which the mother and

daughter cell are connected) with the chitin-binding marker calcofluor (see figure 1.7).

Figure 1.7: Calcofluor staining shows mother-daughter attachment sites. Taken from [37]
.

Upon investigation of the genome of the evolved population in comparison to the original

wild type Y55 unicellular yeast, it was found that amongst 10 of the most down-regulated

genes, seven are controlled by a single trans-acting transcription factor ACE2 [38]. Fur-

thermore, these seven genes are directly involved in the degradation of the mother-daughter

link, which explains the microscopy observations. The authors of [38] knocked out the gene

responsible for the production of ACE2 and observed the clustering phenotype. By rein-

troducing, the gene synthetically, they were able to conclusively prove that a single gene

could lead to the transition from unicellular to multi-cellular organisms. Understanding the

genetic basis of the clustering phenotype teaches us that the growth of the Snowflake Yeast

follows deterministic rules, to form well defined geometric structures. These rules will form

the basis of our discussion in Chapter 4, where we model its growth.
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1.5 Why is Snowflake Yeast a valid candidate to study the

Kleiber’s law?

By varying the setling time (tS) used in experimental protocol by [37], we can generate

populations of Snowflake yeast with different cluster sizes.The ability to manipulate the size

of Snowflake yeast gives us an experimentally tractable system of populations with different

characteristic masses.

Figure 1.8: Size variation achieved using Snowflake Yeast

Figure 1.8 shows two of the seven Snowflake yeast populations maintained at the Thutu-

palli lab at NCBS, Bangalore. These populations can then be used to test the validity of

Kleiber’s law.

1.6 Plan of the thesis

In the second chapter of this thesis, we discuss the experiments to characterize the Snowflake

Yeast. In the third chapter we measure it’s metabolic activity using isothermal calorimetry

and microfluidic experiments. In the fourth chapter, we discuss the various competing and

contradictory models proposed to model the growth of the Snowflake Yeast and propose an

independent model to do the same. Finally. In the fifth chapter we provide future directions

and conclude.
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Chapter 2

Experimental Characterisation of

Snowflake Yeast

The Snowflake Yeast is a novel model organism. Therefore, to use it to study allometric

scaling, it is important to firstly characterise the organism in terms of:

• Ideal conditions for maintaining populations

• Growth rate

• Mass of the organism

• Density of the organism

• Internal structure of Snowflake Yeast

2.1 Maintaining populations of Snowflake Yeast

The Snowflake yeast is an experimentally evolved population that has evolved in the extreme

conditions of gravity selection. A tightly packed cluster of cells has limited access to nutrients

( due to limited surface area) as opposed to a freely distributed population of the same

cell type. The cells in a cluster can survive the gravity selection, but have limited access

to resources due to their crowded surroundings. In the absence of the gravity selection

unicellular yeast cells can grow faster and outnumber the clusters in a short period of

time.Therefore, to avoid competition between unicellular yeast and the evolved population,

we subject the Snowflake yeast to a round of gravity selection every 24 hours. The settling

time used here is the same as that of the original experimental evolution experiment. The

Snowflake yeast is incubated at 300C at 200 rpm in 5 mL falcon tubes containing glucose

enriched YPD medium as described in table 2.1.
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Reagent Quantity

Yeast Extract 10 g
Peptone 20 g
Dextrose 20 g
Agar(for plating) 20 g

Table 2.1: Yeast Extract-Peptone-Dextrose (YPD) Medium [35]

2.1.1 Maintaining 7 populations based on settling time tS

The Thutupalli lab at NCBS maintains seven distinct populations of Snowflake yeast. The

populations are distinct for the settling time used in the daily gravity-based selection. The

tuning of the strength of the gravity selection, by varying settling time has led to 6 orders of

magnitude of mass variation amongst the different population. The daily transfer procedure

is the following:

Step 1: Remove the falcon tube containing culture from the incubator and shake to homogenize

the culture.

Step 2: Stand the falcon tube erect for the settling time tS , shown in table 2.2.

Step 3: Extract 50 µL from the bottom of the falcon tube and transfer to a new falcon tube

with 5 mL fresh media.

Step 4: Replace the new falcon tube into the incubator for 24 hrs.

Population ID GOB3 GOB4 GOB5 GOB6 GOB7 GOB8

tS(min) 2 1.5 1 30 * *

Table 2.2: Settling time tS for different populations (* Pick out the largest flake and transfer)

2.2 Age synchronization Study

The Snowflake yeast in media is a continuously growing organism. From a collection of

single cells, individual clusters grow and reproduce to form more clusters. Since all cells do

not divide simultaneously, there is a distribution of cluster sizes. Furthermore, once clusters

start dividing, there is a vast spread in cluster sizes because of the simultaneous existence

of juvenile, adult and reproducing Snowflake yeast. In this sense, any given population is

”asynchronous” in terms of age (see figure 2.1).
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Figure 2.1: Asynchronous GOB3 population

Since one cannot conduct metabolic measurements of a single individual, we needed to

find a method to generate populations of age synchronised individuals to get reliable data.

2.2.1 Chitinase digestion standardisation

The transcription factor ACE2, whose activity is disrupted in Snowflake yeast, regulates the

genes responsible for mother-daughter separation [38]. One of the genes regulated by ACE2

is CTS1 which transcribes an endochitinase enzyme. Furthermore, the mother-daughter

link contains the polymer chitin. Therefore, we proposed the use of enzyme Chitinase to

deconstruct the Snowflake cluster into single cells (see figure 2.2). Another enzyme that can

be used is lyticase [38]. However, since chitin is also a component of the cell wall of yeast

cells, extensive chitinase treatment also leads to cell lysis.

Figure 2.2: GOB2 after 12 hrs of 1mg/mL Chitinase digestion at 300 C at 300 rpm.
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After numerous experiments by varying rpm, the concentration of the chitinase enzyme

and duration for treatment for all the different population, we standardised the digestion

treatment for all the Snowflake yeast populations. We found that we could use 1 mg/mL

Chitinase at 300 rpm for all the populations by varying the duration of the digestion treat-

ment.

2.2.2 Tracking synchronized populations

Once we were able to get single cells from clusters for the different population, it was

important to track the synchronised growth of populations, to measure the duration up to

which they remain synchronised. Once the cells start growing, the populations will remain

synchronised until the clusters start reproducing and divide. This study not only tracked

the life cycle of the Snowflake yeast but also gave us a time frame within which we could do

ensemble metabolic measurements. To track the synchronised populations, we followed the

following protocol (see figure 2.3):

Figure 2.3: Schematic of experiment to track synchronised populations

Step 1: Digest asynchronous population with standardised chitinase treatment.

Step 2: Inoculate single cells in separate 5 mL flasks and incubate at 300C and 200 rpm.

Step 3: Remove flasks at different time points and image the Snowflake yeast to track growth.

Step 4: Repeat step 3 until total time from inoculation is 24 hrs

After experimenting on the different populations, we plotted the frequency distribution

of the sizes of the cluster over time. We found that, for all the populations, the frequency

distributions show the same qualitative features even though they are quantitatively differ-

ent. As seen in Fig 2.4, in the beginning, the frequency distribution is uni-modal. With

time, the spread increases due to initial conditions of individual cells and asynchronous

cell division. After a particular time, the distribution becomes bi-modal because of the

presence of a second population of Snowflakes. The second population is that of juvenile
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Snowflake, formed from the reproduction adult Snowflake yeast. Beyond this time point, the

frequency distribution spreads out, and we end up with an utterly asynchronous population

of Snowflake yeast. The frequency distribution plot for the different time points may be

plotted separately.

Figure 2.4: Frequency distribution for GOB2 population over time

As one can see in figure 2.5, at T2, 7 hrs from inoculation, the frequency distribution

becomes bi-modal when individual Snowflake yeast start dividing as clusters. Any exper-

iment, therefore, warranting synchronized GOB2 populations would have to be performed

before this time point.

Figure 2.5: Scatter plot for size distribution of GOB2 population over time
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2.3 Growth rate measurements of Snowflake yeast

The age synchronisation experiments described above allowed us to measure the growth rate

of the Snowflake yeast. Figure 2.6 shows the raw data acquired at different time points of

the age synchronisation experiment.

Figure 2.6: Individual Growth rate study of GOB3 population

2.3.1 Individual growth rate measurements

We used a macro on ImageJ to measure the areas of the clusters from the images acquired

whilst tracking synchronised populations of Snowflake yeast. Figure 2.7 shows the growth

curve of the different populations of Snowflake yeast. The plot shows variation in the growth

rates of the different populations of Snowflake yeast. In particular,the growth rate of G2

population is lower than the rest. The growth curves of the other populations lie in the

error bars of the other curves and hence are not quantitatively different.
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Figure 2.7: Individual Growth rates for different Snowflake yeast populations
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It is also interesting to see the size of the cluster before they start dividing, as depicted

in figure 2.8. As can be seen, the size at which the cluster divides is quantitatively different

across the different populations. The size variation will allow us to conduct metabolic

measurements across a range of organism mass.

Figure 2.8: Cluster size at division for different Snowflake yeast populations

2.3.2 Population growth rate measurements

To measure population growth rates, we fashioned a chamber made from PDMS, which

allowed us to image whole populations (see figure 2.9). We inoculated synchronised popu-

lations of Snowflake yeast and tracked the number of individuals to get an estimate of the

population growth rate.

Figure 2.9: Images showing the doubling of GOB4 population

This allowed us to find the doubling times of the different populations of Snowflake yeast.
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2.4 Calculating mass of Snowflake Yeast

A crucial physical parameter to measure in order to use the Snowflake yeast to verify the

validity of Kleiber’s law is its mass. Since the mass range of a single yeast cell is in the range

of 2-4 pg ([?],[8]), measuring the mass of a Snowflake yeast is a tricky task. Several methods

have been used to measure the mass of single yeast cells using suspended microchannel

resonators(SMR)[8], measuring drag force on single yeast cells ([36],[21]) and cantilever-

based micro-biosensors [30].

2.4.1 Wet mass measurement by volume displacement

Since these organisms exist in media, it is beneficial to measure the wet mass of the organism.

Furthermore, any technique developed should not damage the organisms themselves while

conducting the measurements. Keeping the above in mind, we developed the following

measurement protocol depicted in figure 2.10:

Figure 2.10: Technique to measure wet mass of Snowflake yeast

Step 1: Place a micro-centrifuge tube (MCT) on a weighing balance and re-scale the weight

to zero.

Step 2: Pipette a volume ’V’ of media into the MCT and weigh it.

Step 3: Pipette the same volume ’V’ of culture into the MCT and weight it

Step 4: The difference in the weights is the mass of the Snowflake yeast with a systematic

error coming due to missing volume of media.

A single yeast cell weighs in the range of pgs. Since a Snowflake contains hundreds of

single cells and the innoculum would contain multiple Snowflakes, we expected the ensemble
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mass to be in the range of µgs. However, this technique did not give reproducible results of

ensemble mass, due to the following identified sources of error:

• Insertion of small volumes of media onto the weighing balance using micro-pipette

incurs random error.

• Systematic error due to unaccounted volume of media.

This technique was used in the initial stages of the project, but due to its unreliability

we searched for better techniques to measure mass.

2.4.2 Drag force experiment to calculate mass of single yeast cell

An exciting method to calculate the mass of the Snowflake yeast is to measure the mass

of a single cell and use the number of cells in a Snowflake to estimate its total mass. This

method involves the assumption that all cells have similar masses. To calculate the mass of a

single cell, we decided to follow the protocol described by Rahman et al. [36] and developed

a microfluidic device (Appendix B) to track the motion of single yeast cells along a channel.

Figure 2.11: Drag force experiment to calculate mass of single yeast cell

We inserted wild type yeast cells on one end of the channel and attached the other end

to a microfluidic pressure pump. We generated suction in order to induce motion of the

cells. We then stopped the suction and tracked the deceleration of the yeast cells using an

inverted microscope, as shown in figure 2.11. The drag force acting on a particle at high

Reynolds number (> 1000) is [36] :

17



FD =
1

2
ρv2CdA (2.1)

where:

ρ = Density of the fluid

v = Speed of the object relative to the fluid

CD = Drag coefficient

A : Cross sectional area

Balance of forces gives ma = 1
2ρv

2CdA and when solved for the cell position with time

gives us :

x(t) =
1

k
ln (kv0t+ 1) + x0 (2.2)

where k = 1
2mρv

2CdA.

We tracked the position of the cell using image analysis and a tracking algorithm on

MATLAB. By using the data of x(t), we measured the quantity k. We could also extract

the cross-sectional area using image analysis. Using the value of ρ of water and CD = 0.1

[49], we arrived at the mass of a single cell to be 80pg. Since this was an order of magnitude

higher than previous measurements, we reviewed our experimental setup. We found that

due to the existence of a background flow of fluid in the micro channel, we overestimated

the relative velocity of the cell. The background flow led to an overestimation of mass. To

correct for the background flow, we have planned to repeat the experiment with 0.5µ m

tracer particles to measure the background flow to measure the relative velocity of the yeast

cell to the medium.

2.4.3 Direct mass calculation by filter based mechanism

Since the mass of a single yeast cell is of the order of pg, the mass of a single Snowflake

yeast cluster will be of the order of ng. A significant issue with measuring the mass of an

ensemble is to extract a sufficient quantity of clusters from dilute cultures to get a measurable

weight (µgs). Furthermore, it is not possible to extract biomass reliably beyond 2mL using

centrifuging and pellet extraction. A possible technique is to pass culture through a filter

paper and then drying the filter paper to measure the dry mass. Since there is no restriction

on the amount of culture that can be passed through the filter paper, measurable weights

can be achieved. This approach follows the glucose uptake kinetics study by Does et al. [16]

and is a promising technique to measure the mass of Snowflake yeast in the future.
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2.5 Calculating density of Snowflake Yeast

Calculating density is useful since it gives us a relationship between the mass and volume of

the organism. Depending on which two quantities allow experimental access, the third one

can be estimated.

2.5.1 Density gradient experiments using Percoll

Percoll can be used to create density gradients in the range of physiological densities [31].

Furthermore, its low osmolarity (= 20 mosM / kg H2O) allows percoll solutions diluted with

1.5 M NaCl or 2.5 M sucrose to maintain the integrity of cells, viruses and even sub-cellular

particles [12]. Percoll is a colloidal suspension of silica particles coated with PVP (polyvinyl

pyrrolidone). Since there is a heterogeneity in the particle sizes, centrifugation causes the

spontaneous formation of a density gradient. Alternatively, one can create a step gradient

by stacking percoll bands of different densities on top of each other.

Figure 2.12: Percoll density gradient experiments with different density ranges.

Since the experimental evolution experiment selects for both density and volume, it is not

surprising that the different populations have evolved different densities. A surprising result

in figure 2.12 is that population GOB2 has a higher density than the other tested populations

(GOB3, GOB4, GOB5). The above result is surprising and non-intuitive. Perhaps the

volume increase in the other populations outweighs their low density. Once we have marker

density bands, we will be able to quote the exact densities of the various populations. Since

we have proof that the experimental evolution experiment has led to a change in cytoplasmic

density, it will be exciting to see the mechanism of this variation. Genetic sequencing of

the different populations may give us clues as to the control of density in these various

populations.

2.6 Number of cells in a Snowflake

Across the evolution experiment, the size of the Snowflake yeast was observed to increase

[37]. This increase is hypothesised by a change in an aspect ratio of the cells, which leads to
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more efficient packing of cells [25]. To understand the increase in size and packing efficiency

of Snowflake yeast, we needed to count the number of cells in a Snowflake.

2.6.1 Cell counting by plating

As seen in section ”Chitinase digestion standardisation” it is, in principle, possible to digest a

snowflake using a standardized chitinase treatment to get single cells. These cell suspension

can be serially diluted and plated to get an estimate on the number of cells in a Snowflake.

Unfortunately, experiments with GOB7 showed that there is a significant loss of cells during

the chitinase treatment. This loss could be because the time required for the digestion of

the interior of the cluster is sufficient for outer cells to lyse.

2.6.2 Cell counting by Flow cytometry

Once we get single cells by digesting the Snowflake yeast, we can also count the number of

cells, using flow cytometry. The basic principle is that fluorescent detectors can detect cells

passing through a laser beam in a single file. The detection can count and even sort cells. As

the cell passes through the point of inspection, we record the forward scatter (FSC), and the

side scatter (SSC) from detector placed parallel and perpendicular to the laser beam. The

forward scatter can also be used to measure the cell volume (this provides an alternative

strategy to calculate the total volume of the snowflake yeast)

Figure 2.13: Schematic of Flow Cytometer (taken from [1])

Each cell passing through the laser beam results in a data point in the FSC vs SSC plot

(see figure 2.14). Depending on the fluorescence intensity of dyes, we can also differentiate
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between dead cells and live cells. By demarking regions in the plot for different types of cell

(gating), we can count and sort cells.Its resourcefulness lies in the fact that over a 1000 cells

can be scanned and sorted per second. This way, we can not only count the total number

of cells in a Snowflake, but also comment on the heterogeneity of the Snowflake yeast.

Figure 2.14: Flow cytometry data of Wild Type Cells

The above plot is the FSC vs SSC data of wild type yeast cells. We could count the

yeast cells and found that there were 1538 cells / µL

2.7 Probing the internal structure of Snowflake Yeast

It is certain that the internal structure of the Snowflake yeast is heterogeneous [37]. Some

cells are alive, some are apoptotic while the rest are dead as shown in figure 2.15.

Figure 2.15: Heterogeneity amongst cells within a Snowflake(Dead cells are stained red
(Propidium iodide), apoptotic cells are stained green (DHR)) [37]

This inspired us to look for experiments to understand the mysterious internal structure

of the Snowflake yeast.
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2.7.1 Testing the presence of resource allocation and distribution net-

works

Several theorists have tried to explain the origin of the apparent 3/4 allometric scaling law.

West et al. [46] for instance, presented a model that predicted 3/4 power laws on the basis

that nutrition distribution networks limit metabolism, and therefore, the structure of the

resource distribution network governs the scaling law [46]. Such theories have inspired ex-

perimentalists [44] to search for empirical evidence for the origin of allometric scaling laws.

During one of our experiments to measure growth rates of individual snowflakes, we ob-

served bacterial contamination that showed flow patterns directed towards the centre of the

Snowflake. To test the same in a controlled manner, we performed an experiment where we

incubated the snowflakes with 0.5 µm sized red fluorescent protein-tagged micro-beads to

confirm the presence of a directed flow (see figure 2.16).

Figure 2.16: Experiment to test presence of directed flow towards Snowflakes

In the above experiment (figure 2.16), we incubated GOB7 Snowflake in 200 µL of YPD

solution at 300C overnight and recorded using an inverted microscope at 0.2 fpm in the

bright-field and RFP channel simultaneously. Qualitatively, it was seen that the micro-beads

were being attracted to the Snowflake indicating flow of media towards the Snowflake.

2.7.2 Micro-injection experiments with Snowflake Yeast

After searching through literature, we found no evidence nor experiment claiming that there

is an internal transfer of nutrients between cells of a single Snowflake. To test the above, we

thought of a simple experiment: If we micro-inject GFP-tagged glucose into one of the cells

and followed its motion through the snowflake, we would have conclusive evidence that a

metabolite sharing amongst the cells of a snowflake. Metabolite sharing would indicate that

the evolution of multicellularity might co-evolve with the evolution of nutrient distribution

networks.

A literature review showed only one study which used a new shear based approach to

micro-inject yeast [40], primarily because of its sturdy cell wall. Determined to try the
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conventional method of micro-injection, we trained to perform micro-injection, received

tutorial to use the needle puller and micro-tips from various labs at NCBS. We also received

guidance from the micro-injection facility at InStem, NCBS.

Figure 2.17: Micro-injection experiment to probe the internal structure of Snowflake Yeast

After receiving training, we tried to inject yeast with various substrates (see figure 2.17).

Unfortunately, the sturdy cell wall of the yeast cell, prevented conventional micro-injection

techniques (used to micro-inject embryos) to yield success. Our failed experiment also

explained the lack of literature on yeast micro-injection.

2.7.3 Experiments with GFP-tagged glucose

To further test the internal structure of the Snowflake yeast, we performed an experiment

where Snowflake yeast clusters were incubated with GFP-tagged glucose to see the differen-

tial uptake of glucose by cells within a single cluster.

Figure 2.18: GOB4 incubated with GFP-tagged glucose

As one can see in figure 2.18, the amount of GFP glucose visible measured by the

intensity of GFP is different in the different cells, indicating that the cells within the cluster

23



are heterogeneous, not only in terms of life status (being dead or alive), but also in terms of

metabolic activity. This could also be indicative of the fact that all the cells are in different

life stages. Therefore, the Snowflake yeast is truly a community of distinct cells forming an

individual, making it a ”Superorganism” [11].
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Chapter 3

Metabolic measurements of

Snowflake yeast

To comment on the allometric scaling of metabolic rate with organism mass using Snowflake

yeast, we identified and measured proxies for metabolic activity. We chose to use the

following two measures for metabolic activity:

• Heat exchange with the medium

• Glucose consumption rate

3.1 Isothermal titration Calorimetry

Isothermal titration calorimetry is a technique used to study a variety of physical processes.

It can be used to study protein-ligand interaction, measure relative affinities and estimate

stoichiometry of the interaction [34] and has also found use in studying RNA Biochemistry

and Biophysics [17]. Furthermore, it has shown great application in studying embryonic

development [41] and to measure heat dissipation of biological organisms as well [44]. Since

heat dissipation is known to be a proxy to measure metabolic rate [26], we decided to use

Isothermal titration calorimetry to estimate the metabolic activity of our model organism,

Snowflake yeast.

3.1.1 Isothermal Titration Calorimeter

As depicted in figure 3.1, the instrument consists of two cells (or chambers). One is a

reference cell, in which we add only the medium, while the other is the sample cell, where we

add the medium with the Snowflake yeast. The instrument reads the change in temperature

between the two cells and feeds this information back to compensate for any heat gain or

loss in the sample cell in order to maintain the same temperature between the two cells.
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Figure 3.1: Schematic of the Isothermal Titration Calorimeter (taken from [2])

The protocol for a standard measurement is the following:

Step 1: Add 200µL of fresh glucose-enriched YPD media to both cells.

Step 2: Set the experimental temperature at 300C

Step 3: Allow ample time to allow the system to equilibrate to the experimental temperature.

Equilibration is characterized by a (zero or non-zero) horizontal line on the heat flux

graph.

Step 4: Remove 50µL of media from the sample cell and add 50µL of culture containing an

age synchronized ensemble of Snowflake yeast.

Step 5: Wait for the heat flux graph to equilibrate at a new value.

Step 6: The difference in the two equilibrium value tells us the heat dissipation rate of the

Snowflake.

3.1.2 Isothermal Calorimetry data

The calorimetry data is a time series of heat flux. The opening and closing of the calorimeter

to insert the biological organism cause a transient spike in the time series, as shown in

figure 3.2. The graph then settles to a new equilibrium value of heat flux which allows us

to calculate the metabolic activity of the biological organism.
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Figure 3.2: Isothermal Titration Calorimtery data for GOB7 population

3.1.3 Counter-intuitive results from failed experiments

Our initial experiments led us to a negative scaling exponent of metabolic rate with mass

as shown in figure 3.3

Figure 3.3: Counter intuitive result from failed experiments

We identified the following sources of error in our initial set of experiments:

• Experiments with asynchronous population of Snowflake yeast: Since the population

were asynchronous, our calculated values for metabolic rate per individual were incon-

sistent and hence not reproducible.
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• Large errors in mass measurement technique: Mass was measured using ”Wet mass

measurement by volume displacement” which as mentioned in Chapter 2 produced

very high errors.

3.1.4 Revised experimental design

To overcome the sources of error as mentioned above, we decided to use standardisation

mentioned in ”Chitinase digestion standardisation” and adopt the following protocol, as

shown in figure 3.4:

Figure 3.4: Flowchart for revised approach to be followed for calorimetry.

Step 1: Take an asynchronous population of Snowflake yeast and use the chitinase treatment

to get single cells.

Step 2: Count a fixed fraction of cells to get the total cell density

Step 3: Let the Snowflake yeast grow till it reaches adult life stage.

Step 4: Use a fixed fraction of the synchronized population for calorimetry and the rest for

mass measurement

Step 5: Use the chitinase treatment once again of synchronized populations. The digested cells

can be counted to measure the number of cells in the adult Snowflake yeast.

Step 6: Repeat data collection for all populations of Snowflake yeast.

Upon following the above strategy and using the cross-sectional area as a measure of

size, as opposed to mass, we were able to get clean data for wild type yeast, GOB2 and

GOB4 populations as shown in figure 3.5:
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Figure 3.5: log-log plot of heat flux vs projected area

From the limited data we see a scaling that follows:

B α A0.9383 (3.1)

where:

B = Heat flux

A = Projected area

which implies,

B α V
2
3
∗0.9383 α V 0.6255 α M0.6255 (3.2)

where:

M = Organism mass

V = Organism volume

This value of scaling exponent should not be assumed to be the final value as the addition

of more data points, and the correlation relation between the projected area and volume

will change its value.
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3.1.5 Evolution of cooperation between cells

Irrespective of whether the scaling exponent supports the existence of quarter-power laws

in nature [43] or not; we can infer something insightful from the data presented. The mass

of the Snowflake is the sum of the mass of the individual cells; however, the fact that the

exponent measured is less than 1 (hypometric scaling) implies that the total metabolic

activity is not the sum of the metabolic activity of the individual cells. Hypometric scaling

indicates the metabolic cooperation between cells in a snowflake. It might also indicate that

the evolution of multicellularity might also lead to the evolution of cooperation between

cells in multi-cellular organisms.

3.2 Microfluidics experiments to measure glucose consump-

tion

In past allometric studies, metabolic activity has been measure via direct calorimetry or

indirect calorimetry using proxies like O2 consumption or CO2 production. Glucose con-

sumption is also a valid measure of metabolic activity due to its direct utilization in energy

production, see quation 3.3 [3].

C6H12O6 + 2ADP + 2Pi −→ 2C2H5OH + 2CO2 + 2ATP (3.3)

To measure the same, we sought to employ the use of microfluidics. Microfluidic devices

are analogous to Integrated circuits (ICs) of the silicon world in that they incorporate all

functional components in a single space (see figure 3.6). Microfluidic technologies have been

utilized in research and industry for multiple application like polymerase chain reactions

(PCRs), drug screening and also single-cell studies [45]. Our primary aim was to develop

microfluidic devices to develop an experimental setup to measure glucose consumption of

Snowflake yeast trapped in droplets, inspired by [4]. Appendix B covers the method used

to fabricate microfluidic devices.

Figure 3.6: Microfluidic devices fabricated for the glucose consumption study.
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3.2.1 Experimental design

Droplets of media containing Snowflake yeast suspended in an oil phase are used to cre-

ate an inverse emulsion. The oil phase consists of mineral oil and a partially fluorinated

alkane chain containing 0.75 % of a surfactant blend, adopted from [4]. When the Snowflake

yeast consumes the nutrients present in the droplet, it creates an osmotic imbalance be-

tween droplets that contain the organism and those that do not. When droplets with an

osmotic imbalance come into contact, the osmotic pressure is relaxed by the fastest diffusing

molecule. A flow of water across the droplet boundaries causes a visible change in the vol-

ume of the droplets with can used to track the bio-activity of the Snowflake yeast. Volume

reduction correlates with glucose consumption when the following conditions are met:

• The products of metabolism, CO2, C2H5OH and ATP do not create an osmotic ima-

balance.

• Glucose cannot diffuse through the droplet boundary.

The first condition is met since CO2 is soluble in oil; therefore, it diffuses faster than

water or enters the continuous phase. Furthermore, C2H5OH has a solubility constant into

the membrane one order of magnitude that of water [13] and hence its production does not

lead to an osmotic imbalance. The second condition is met because the solubility constant

of water in the membrane is two orders of magnitude that of glucose [13]. Therefore, any

osmotic imbalance caused due to the consumption of glucose will be relaxed by diffusing

water and not diffusing glucose. Once these conditions are met, the volume of the droplet

should shrink as that for dilute solutions (µ ∼ c ) governed by Fick’s law:

dV

dt
= −Fvw∆c (3.4)

where:

V : Volume of the drop

F : Transport factor reflecting membrane properties

vw : molar volume of water

∆c : Time-dependent difference in glucose concentration

3.2.2 Test to check diffusion of glucose across droplet boundary

To check our system, we created a microfluidic device which could make droplets of two

types in the same device. We used it to create droplets having different concentrations of

glucose. Different colours of 0.5 µm fluorescent beads were used to distinguish between

droplets with distinct contents. The qualitative result of the experiment is shown in figure

3.7:

31



Figure 3.7: Test to check diffusion of water across droplet boundaries

As expected, there was an observable flux of water from the droplet having lower con-

centration of glucose to that containing higher concentration of glucose. This flux will

theoretically stop when the osmotic pressure between the two droplets is the same.

3.2.3 Test to check diffusion of ethanol across droplet boundary

We used a microfluidic device to simultaneously create two types of droplets, one containing

ethanol and one without ethanol. Different colours of 0.5 µm fluorescent beads were used

to distinguish between droplets with distinct contents. The qualitative result is shown in

figure 3.8:

Figure 3.8: Test to check diffusion of ethanol across droplet boundaries

There was no observable change in the volumes of the droplets. No volume change

indicates that the difference in ethanol within droplets does not lead to any exchange of

water between droplets.

3.2.4 Measuring metabolic activity of Snowflake yeast

The next step was to trap individual snowflakes inside droplets containing media. After

playing with the flow rates of the Snowflake yeast containing media and the immersion

suspension, we were able to trap 20 µm GOB2 Snowflake yeast inside droplets. The expected

setup for the final experiments is projected to be as shown in figure 3.9:
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Figure 3.9: Experimental design to measure glucose consumption rate of Snowflake yeast.

A major advantage of such a setup is that we acquire data at the level of single indi-

viduals. This will not only allow us to get population information, required for allometry,

but also the heterogeneity in metabolic activity amongst individual Snowflake yeast. Re-

searchers at the Thutupalli lab have thereon proceeded to show that the volume of droplets

containing Snowflake yeast indeed reduces in expectation with the proposed model of dif-

fusion. At present, researchers at the Thutupalli lab have also developed a novel setup to

track the exchange rate of materials from the medium of several isolated Snowflake yeast in

parallel, truly harnessing the power of microfluidic devices.
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Chapter 4

Modelling the Snowflake yeast

Models allow us to represent and explain the processes that underlie a process or physi-

cal phenomena. Building models help us comprehend data obtained from experiments or

supplement data when experiments are not possible. In this sense, they try to form a link

between theory and experiments. Models give us a starting point to think about physical

phenomena; their predictions can be tested, and consequently, a model can be evolved, cor-

rected or rejected. They are at the heart of knowledge building and portray how scientific

knowledge is tentative. To better understand the Snowflake yeast and allometric scaling of

metabolic activity of Snowflake yeast, we researched models available in the literature and

sought to build one of our own.

4.1 Considerations while modeling the Snowflake Yeast

• Tree structure: The nature of the growth of Snowflake yeast leads to an unmistakable

tree pattern.

• Growth constraints: Since the number of cells can potentially double in a cluster every

reproductive cycle, it is not difficult to imagine that the geometry of the Snowflake

yeast imposes severe restrictions on the nutrients supply and the volume available for

the growth of cells.

• Apoptosis: The artificial selection imposed on the Snowflake yeast favoured high rates

of cell death. [37]. Dead cells are hypothesized to be involved in the reproduction of

the Snowflake yeast ([32],[37]).

• Physical strain: The volume constraint imposes compression strain on the budding cells.

Physical strain is also credited in the reproduction of Snowflake yeast ([25],[32],[37]).

Physical strain and cell death are both critical in determining when and where the

cluster divides.
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4.2 Review of previous models

Since the Snowflake yeast is a novel organism with a unique 3-D geometry, it is amenable to

several theoretical treatments, and several researchers have attempted to do the same. Mod-

els suggested which do not recognize the geometrical arrangements of cells in the Snowflake

yeast. However, they fail to explain the observations seen in the experimental evolution of

Snowflake yeast. For example, they fail to explain why the rate of apoptosis increases with

the size of the Snowflake yeast.

4.2.1 Modelling developmental pattern [38]

If all cells in a cluster reproduce at the same time, the number of cells at a distance x from

the central node after d doublings will
(
d
x

)
following a Pascal’s triangle [38]. By taking into

account the assynchornous nature of cell divison within a cluster by a paremeter s ∈ (0, 1) ,

they derived the number of cells at a distance x from the central node after d+ 1 doubling

time to be:

cd(x) + s

((
d+ 1

x

)
−

(
d

x

))
(4.1)

Ref. [38] also uses the structure of the Snowflake yeast to provide analytical proof for

how the geometry of the tree pattern increases the probability for individual-level mutations

to reflect at cluster level phenotype by forming clonal propagules, linking micro and macro-

evolution

4.2.2 Agent-based tracking of cells [32]

This model considers cells to be spherical balls connected to daughter cells via links in a tree

graph. The addition of a node represents the birth of a new cell, and the death is represented

by an inability to add more nodes to it. There are several vital features/assumptions of this

model:

• Since cell death may be age-related, cells do not begin to die before a certain amount

of time has passed from their last reproduction.

• Since experiments suggest that each cell can support at most five links, there is imposed

degree cap on the daughter cells a cell has.

• Physical strain on cells is calculated by comparing the number of cells in the various

branches connected to them.
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• It assumes that the Snowflake maximizes volume by maximally spreading out and cells

occupy shells according to the number of links from the central node. The implies that

daughter cells of cells in the shell k = 1 will be in the shell k = 2 at a distance 3r - 5r

(see figure 4.1).

Figure 4.1: Shell arrangement used in model [32]

This gives us an easy way to calculate the number cells that can be present in any

given shell:

k∑
j=1

(
n

j

)
> (1 + 2k)3 (4.2)

Once this condition is reached, these cells are presumed to not reproduce any further.

• Once a cell dies, one of its links may get severed causing the reproduction of the

cluster. The severance is biased by the sizes of the branches attached to it.

For each growth simulation, the rules of growth defined are:

Step 1: Start with a single node (Central cell)

Step 2: At each time step (doubling time), all the cells reproduce provided they are alive, have

not yet reached a degree cap, below volume constraint defined by Eq 4.2

Step 3: At each time step, implement death based on the rate of apoptosis.

Step 4: If a cell dies, we break off one of its links to make a new individual.

Step 5: Note the tree structure after updating and go back to step 2.

This model gives insight on how cell death interacts with geometry within the multi-

cellular yeast cluster. Interestingly, cell death opens up more space for new cells to grow,

which counter-intuitively improve reproductive fitness. This model shows how geometry

imposes constraints on biological function and fitness. Increased apoptosis could be selected

for as it might increase cluster-level reproduction. Despite the insight provided by this

model, it fails to account for the following:
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• Compression strain due to budding cells.

• It also does not consider the fitness of cells based on the crowding of their local

environment.

4.2.3 Geometric modelling of Snowflake growth [25]

AFM measurements show that the total compression force required to break a cluster is

independent of cluster size [25]. These findings indicate that it is only essential for one link

to break to cause reproduction of the cluster and that the inter-cellular bond strength is

unchanged across the different size of Snowflake yeast. Furthermore, it is known that the

aspect ratio of cells is larger for genotypes which produce larger cluster sizes [38]. This

model tries to study the effect of the aspect ratio of cells in a cluster on the internal stress

build-up due to volume constraints in Snowflake yeast. Key feature/ assumptions of the

model are:

• Cells are assumed to be prolate spheroids (ellipsoids with equal ”equatorial” radii)

with aspect ratios taken from experimental observations.

• It assumes that yeast cells always bud at the opposite pole of their mother cell with a

polar angle 450 ± 100.

• Cells may overlap, but the budding site can not. If a forbidden budding site is chosen,

the cell skips reproduction for that reproductive cycle.

• The internal stress is calculated by estimating the linear overlap in volume between

overlapping cells.

uij = (d− ri − rj)2 (4.3)

U =
N∑
i=1

N∑
j 6=i

uij (4.4)

where:

uij : Individual deformation energy

d : Distance between centres of cells

ri : Equitorial distance of cell i

U : Total deformation energy

• It uses an ad-hoc assumption for how many generations the cell reproduce: 12 (No

clarification provided)

This model includes an important effect of considering the shapes of individual cells and

the effect of the aspect ratio of the cells on the build-up of internal stress. This model proved
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a causal relation between an increase in aspect ratio and the decrease in stress build-up in

Snowflake yeast, giving rise to larger clusters. Despite the insight provided by this model,

it does not take into account the following:

• This model does not take into account cell death and associates the reproduction of

the cluster only as a consequence of building up of local internal stresses.

• It also does not comment on the dynamics of the growth, reproduction and size dis-

tribution of cluster before and after reproduction.

The same model is used in [24] to show that increasing aspect ratio to decrease internal

stress build-up and delay inter-cell link severance is a better strategy than increasing inter-

cell bond strength to increase the fitness of Snowflake yeast. The study highlights the

importance of the elliptical shape and aspect ratio of cells in determining the stability of

larger clusters. It also makes unsatisfactory alterations to the model in [25]:

• It takes away stochasticity in the choosing budding site. In particular, the outcome of

a ”magic angle” of packing in a cone is expected from the chosen rules of growth.

• It allows overlap between buds emerging from the same mother; this is not seen in

experiments.

• It compares threshold stress and aspect ratio in limited parameter space, biasing

results.

Other studies [?] have also discussed how reproductive specialization is favoured in tree-

like sparse networks. These studies, however, do not comment on the growth dynamics of

Snowflake yeast.

4.3 Proposed model for the growth of the Snowflake yeast

To incorporate the interaction of geometry, cell death and physical strain on the cells and

study growth dynamics, we propose a new mechanistic model for the growth of the Snowflake

yeast. Key features of the proposed model are:

• We incorporate the geometrical arrangement of cells by using a tree data structure

with nodes representing cells and edges representing inter-cellular bonds.

• Cells are assumed to be prolate spheroids (ellipsoids with equal ”equatorial” radii)

with aspect ratios taken from experimental observations, inspired from [25]. Each cell

is defined by its location, its orientation and its id on the tree data structure. This

data is stored in the nodes of the data structure.
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• We start with a single parent cell [32]. Cells reproduce normal to the surface of the

ellipse, with a tunable volume overlap. Cells reproduce at an angle of 450 ± 100 [25]

from the pole, forming a bud ring (see figure 4.2).

• Bud rings cannot overlap; if they do, the cell does not reproduce in that time step.

• Apoptosis is taken into account, and cells die (can be age-related as well). These cells

do not reproduce and form weak links, where inter-cell bonds break.

• Internal stress on each inter-cell interaction is measured as in [24].

• Volume constraint is not accounted for as in [32]; however, cells stop reproducing when

no more bud rings can be accommodated on the surface of the cell (biophysical degree

cap).

The tree structure allows us to scan through the tree for neighbours. Furthermore, a

reproduction event is dealt with as removing a sub-tree from the initial tree structure. The

steps to study growth dynamics are similar to [32]; however we also track physical strain

acting on each cell.

Figure 4.2: Geometric rules of growth of Snowflake in 3D

4.3.1 Hypotheses to test

The code is currently being built and tested, but we hope to test the following ideas:

• It might be the case that the physical strain determines when a cluster divides, but

where the cluster divides depends on cell death.
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• Such a model will also allow us to calculate strain on individual cells using a better

quantitative measure than [32]. It will also allow us to see the differential strain across

the cluster and help us understand the internal structure of the Snowflake yeast.

• Tracking the internal stress buildup can be used to track the life-cycle of a Snowflake

yeast.

• We can also test the fitness of Snowflake yeast based on local crowding inside the

cluster.

• Compare size distributions over time of Snowflake yeast growth with experimental

observations.

We hope that this model gives a better understanding of the interplay between geometry,

physical strain and cell death in Snowflake yeast. This model will give us insight into the

structure and growth dynamics of Snowflake yeast.
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Chapter 5

Conclusions and future plans

5.1 Concluding remarks

In this thesis, we have revisited the 200-year-old debate on allometric scaling laws in biology,

in particular on the allometric scaling of metabolic rate with organism mass. We conclude

that there is a grave need for manipulative quantitative experiments to differentiate be-

tween different theories of metabolic scaling. This task warrants the search for new and old

model organism where one can achieve substantial range in size to conduct metabolic mea-

surements. We propose the use of a novel experimentally evolved strain of Saccharomyces

cerevisiae, Snowflake yeast, which forms tree-like multi-cellular structures with a tunable

size giving access to 6 orders of magnitude of mass. We characterise the properties of this

organism, like individual growth rate, population growth rate, number of cells, mass, density

and internal heterogeneity using a variety of experimental techniques including microscopy,

flow cytometry, micro-injection and microfluidics. We go on to make metabolic measure-

ments of the Snowflake yeast using heat dissipation and glucose consumption as proxies. We

do so using isothermal calorimetry and microfluidic experiments, respectively. We report

the observation of a hypometric scaling suggesting the evolution of metabolic cooperation

between individual cells in Snowflake yeast. Hypometric allometry also provides insight into

the cooperation between cells as a consequence of the evolution of multicellularity. In the

appendix, we discuss the engineering aspects of the thesis, namely construction of a wide

field-of-view microscope and fabrication of microfluidic devices. In Chapter 4, we review

models proposed to model the growth of the Snowflake yeast. We gather insights and dis-

cuss caveats in the models proposed. We go on to propose a novel model to study the

interaction between geometry, physical stress and cell death in Snowflake yeast. This model

will provide insight into the growth dynamics and internal structure of the Snowflake yeast.
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5.2 Plans for the future

We aim to carry out the following tasks soon:

• More measurements of heat dissipation and glucose consumption to get statistically

significant confidence in allometric scaling of metabolic rate in Snowflake yeast.

• Implement model proposed and compare with experimental observations of the growth

and structural properties of Snowflake yeast.
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Appendix A

Wide field-of-view(FOV)

microscopy using flatbed scanner

Since studying population dynamics requires calculating numbers of individuals on a slide

at the same time, being able to acquire a wide field-of-view image increases the accuracy

of time points, reduces efforts and minimizes human error. Furthermore, wide field-of-view

microscopy also helps in getting better statistics for other experiments studying individual

snowflakes as well, for example, individual growth rates. To achieve high-throughput data

acquisition for measuring growth curves of individual Snowflake yeasts and population dy-

namics, we decided to create a wide field-of-view microscope from scratch. This endeavour

was inspired by work carried out by Zheng et al [50] and Göröcs et al [20].

A.1 Approach to build

Conventional microscopes are limited in field-of-view primarily because of limited spatial

bandwidth product (a measure of the information contained in an image). This limitation

implies that increasing the field-of-view will directly lead to a reduction in resolution. There-

fore, to maintain resolution while increasing field-of-view, we need to increase the spatial

bandwidth product of our image acquisition. Several ways can do this:

• Using multiple objectives for parallel imaging

• Hardware modification to implement slide scanning.

• Contact imaging microscopy etc

While several positive steps were also successful with regards to hardware modification

to implement slide scanning, we also constructed our microscope from the schema proposed

in [50], see figure A.1.
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Figure A.1: Schematic for home-made wide field-of-view microscope

A.2 Construction of wide FOV microscope

We removed the camera and optical relay system from an old inverted microscope for a

base, lens holder and light source. We removed the glass panel from a Canon CanoScan

LiDE300 scanner and inserted on the base of the re-purposed microscope. We then used

a spare condenser lens as the converging lens for our microscope and placed our slide with

sample on top of the condenser lens (see figure A.2). To estimate the resolution achieved,

for a 1 cm x 1 cm slide, with the lens adjusted to achieve a magnification of 30 x and the

scanner set at 2400 x 2400 dpi, we can scan the whole slide at 0.34 µm resolution. To give

a comparison, if we use green light (514 nm) to image a specimen with an oil immersion

objection of the numerical aperture of 1.45, then the resolution would be 0.17 µm.

Figure A.2: Initial stages of home-made wide FOV microscope
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Despite being able to construct the microscope, we faced several issues in regards to

bypassing the Canon software (to scan on demand) and deactivating hardware components

of the scanner without upsetting the software. However, since scanner technology seemed

like a great approach to be used to study population dynamics, we purchased an Epson

Perfection V800 Flatbed Photo Scanner scanner for future experiments. This scanner offered

to scan at 6400 x 9600 dpi which gave us a resolution of 3 µm without magnification, which

can be used to see individual snowflakes (see figure A.3).

Figure A.3: Images of Snowflake using Epson V800 Scanner

In my opinion, scanner-based technologies have a lot to contribute to the field of quan-

titative biology for high-throughput data acquisition.
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Appendix B

Fabrication of Microfluidic devices

Microfluidic devices are miniaturized experimental setups composed of micro-channels fab-

ricated on glass, silicon or plastics like PDMS (poly-dimethylsiloxane)). The design and

combinations of micro-channels can be altered to create valves, pressure-controlled pumps

and controlled environments for biochemical reactions. Different sections of the microfluidic

setup can have varying functionalities, whereby one can design a whole experiment, from

preparation to measurement on a single slide making it a ”lab-on-chip” device.

B.1 Developing master mold on Silicon Wafer

This procedure needs to performed in a cleanroom to avoid contamination by any source of

dust. We performed this step in the Microfluidic Facility operated in NCBS, Bangalore.

Figure B.1: Schema to develop master mold
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Step 1: We begin with a Photo-lithography mask, an opaque plastic film with transparent

regions in the design of our desired micro-channels. This design will determine the

lengths and widths of our microfluidic device.

Step 2: We then cleaned a Si wafer and deposited a uniform layer of resin (SU-8) using a spin-

coater. The thickness of the resin will determine the height of our micro-channels. We

then soft bake the wafer with the resin on a heating plate.

Step 3: We placed the photo-lithography mask on top of the resin and exposed the wafer to

UV light.

Step 4: The resin under the transparent region of the photo-lithography mask gets cured and

hardens.

Step 5: We then develop the device with a solvent that etched away from the uncured regions.

We end up with our micro-channels on top of the Si wafer.

Step 6: Finally, bake the Si wafer with our micro-channels on a heating plate one last time.

The Si wafer is then stored in a closed petri dish.

B.2 Molding PDMS devices on glass substrate

Figure B.2: Schema for moulding PDMS microfluidic devices

Step 1: We start with the master mould placed in a petri dish, prepared using the procedure

mentioned above.

Step 2: We pour a solution of PDMS thoroughly mixed with a cross-linking agent onto the

master mould and let it cure at 800C.
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Step 3: We remove the hardened PDMS with imprinted micro-channels from the master mould

and drill holes into it using a PDMS puncher.

Step 4: We plasma clean the PDMS mould along with a glass coverslip.

Step 5: Finally, we bond the PDMS mould onto the glass coverslip to make our microfluidic

device.

B.3 Different functions of microfluidic devices

Once a master mould has been fabricated, it can be reused to make numerous devices.

Depending on the photo-lithography mask, we can design devices to serve various functions

(see figure B.3):

• To make droplet with various biochemical contents.

• Chambers to store droplets

• Channels to track flow of yeast cells etc

Figure B.3: Examples of Microfluidic devices
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