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Abstract

Observations have established that more than two-thirds of the energy density of

the Universe is due to the contribution of dark energy. Dark energy accounts for the

observed late-time acceleration of the universe. The nature of dark energy is, as yet,

a mystery. To understand the nature of dark energy many models have been pro-

posed, the simplest and the most favoured being the cosmological constant model

(ΛC DM model). The agent for cosmological constant is the energy density of the

vacuum, and it remains constant throughout the evolution of the Universe. This sim-

ple explanation costs us some serious theoretical problems like ‘the fine-tuning and

the coincidence problem’. The ΛC DM model also suffers from some observational

inconsistencies between independent observations. There is a tension between the

Planck observations and the other independent growth rate measurements in esti-

mation of cosmological parameters. These facts motivate us to go for dynamical

dark energy models, e.g., canonical and non-canonical dark energy models.

In this thesis, we have studied a particular scalar field dark energy model known

as tachyon dark energy, and compared it with the cosmological constant and other

dark energy models. This is a viable model in cosmology, and it has been shown

that the tachyon scalar field can effectively explain dark energy. In this analysis,

using low redshift distance measurement data, we obtain constraints on tachyon

field parameters by way of combining these datasets. Our motivation is to compare

the constraints on the tachyon models from previous studies using the same datasets

and to check if the non-canonical scalar field models prefer different combinations of

cosmological parameters. We find that constraints on tachyon models are stringent

and these are as good as the ΛC DM model to satisfy the low redshift data we have

used.

Background data alone can not rule out degeneracy between different models.

We study the effect of perturbations in tachyon dark energy in order to get con-

straints on parameters from observations other than distance measurements. We

analyze the dynamics and nature of tachyon perturbations and their effect on the

evolution of matter clustering. Calculating the linear growth rate of matter cluster-

ing, we compare our theoretical predictions with growth rate measurements. For

tachyon models, the tension between the Planck observation and growth rate mea-

surement is reduced. We find that dark energy perturbations are insignificant with

respect to matter clustering at sub-Hubble scales, and dark energy can be considered

homogeneous. However, at Hubble and super-Hubble scales, dark energy perturba-

tions are significant when compared to the matter perturbation.
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Chapter 1

Introduction

The cosmos is a large lab to test our current knowledge of physics. A cosmologist

attempts to describe what is there in the Universe, how it is distributed, and how

it is moving. We gather light (electromagnetic radiation) from distant galaxies and

clusters in our instruments, and recreate a picture of our past universe. Cosmologists

then try to explain these observations based on current knowledge of physics, and

make any modification if needed. In the last two decades, human capability to

observe the Universe has improved significantly. It is possible to cover a large range

of the electromagnetic band, from radio to X-rays and gamma-rays. In near future,

it will also be possible to take a snapshot of our universe using gravitational waves.

When we map our universe at higher redshifts (earlier in time), we find that

the currently observable part of the universe was much smaller, extremely hot and

dense. This suggests that the Universe originated from an explosion (the ‘Hot Big

Bang theory’, HBB). This was followed by an inflationary era. During this era, the

Universe expanded exponentially for a tiny fraction of a second. Evidence of HBB

and inflation comes from observation of the ‘Cosmic Microwave Background’ (CMB)

which is the relic radiation from the HBB. Small fluctuations (of the oder of 10−5) in

otherwise isotropic CMB suggest that the seeds for structure formation in the Uni-

verse were planted during inflation. Once the inflationary era ended, the Universe

entered a decelerating phase of radiation and subsequently a phase of matter dom-

ination. During the matter dominated era all the structures of the Universe, e.g.

galaxies, clusters of galaxies and super-cluster were formed.

The present time is an era of high-precision data and large-scale surveys. With

this technological advantage, it is discovered that the Universe is accelerating its ex-

pansion at present. In late 1990s, two teams, the Supernova Cosmology Project [4]
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Figure 1.1: Distance modulus vs redshift plot as an evidence for the transition from
deceleration in the past to acceleration today. Black data points are SN Ia data from
the Supercal compilation [1], whereas the read data points are extracted from recent
BAO measurements (BOSS DR12) [2]. Green area represents models for flat, closed
and open universe with only matter ( 0.3 ≤ Ωm ≤ 1.5 ). Red curve is for the model
in which the Universe always accelerates ( Λ-only models ). Finally, the blue curve
represents the model which fit the data well, and in which expansion of the Universe
makes a transition from decelerating phase to an accelerating one at lower redshift.
Image credit - Huterer and Shafer (2017) [3]. License agreement to reuse this figure
is in appendix A.

and the High-z Supernova Search Team [5] discovered it independently. Later, this

discovery was also confirmed by other observations, e.g. observations of Baryon

Acoustic Oscillations (BAO), Cosmic Microwave Background, etc. This discovery

ruled out many existing models of expanding universe at that time, and it became

clear that only those models will be favored by the data which exhibit a low redshift

accelerated expansion after the decelerating phases. From figure 1.1, it is clear that

models in which the Universe is always decelerating ( e.g. flat, open and closed

universe models with only matter ), or always accelerating models ( Λ-only models

), are ruled out entirely [3].

Explanation of late-time accelerated expansion requires more than two-thirds of

the energy density of the Universe to be made up of an exotic negative pressure

medium, called ‘dark energy’. The challenge is to explain the origin, nature, and

behavior of this component. The equation of state parameter w, the ratio of pressure

to energy density, is a key parameter in the study of dark energy. At present, many
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Figure 1.2: Evolution history of constraints on parameter space in Ωm − w plane,
assuming a flat universe such that Ωde = 1−Ωm. Image credit - Huterer and Shafer
(2017) [3]. License agreement to reuse this figure is in appendix A.

models exist. The simplest and the most favored being the cosmological constant

model (ΛC DM model) [6, 7, 8]. The cosmological constant is the energy density

of the vacuum, and it remains a constant. The equation of state parameter for this

component is given by w = −1. This simple explanation comes at the cost of some

serious theoretical problems like ‘the fine-tuning and the coincidence problem’ [8].

Therefore, cosmologists need to search for alternatives to this model. One of the

main goals in modern cosmology is to find the true value of the equation of state

parameter and deviation, however small, from −1. At present many large surveys,

e.g. the Dark Energy Survey (DES), are specially dedicated to achieve this purpose.

In figure 1.2, a history of evolution of constraints on w with another key cosmological

parameter, present day value of matter density parameter Ωm, is shown. We can see

that, in approximately two decades, with development of technology, constraints on

parameter space of w−Ωm plane has become significantly tighter. There still remains

room for other cosmological models with w 6= −1.

Apart from the theoretical problems mentioned above, the ΛC DM model suffers

from tension between a few independent observations. The Planck mission has con-

strained the cosmological parameters for this model to a very high precision. On the

other hand, we also have a robust set of ‘growth-rate data’ obtained from several

surveys, e.g. SDSS, BOSS, WiggleZ, Euclid, LSST, etc. There is a discrepancy be-
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tween the Planck observations and other independent growth rate measurements in

estimation of cosmological parameters in the context ofΛC DM model [9]. These in-

clude the estimation of the Hubble constant H0, the root mean square matter power

fluctuation in 8 h−1 M pc radius σ8, and the present day matter density parameter

Ωm0. This problem persists for the constant w model. These facts motivate us to

go for dynamical dark energy models e.g., canonical and non-canonical dark energy

models.

Dynamical dark energy models are an alternative to ΛC DM model and typically

have an evolving equation of state parameter. These models include the barotropic

fluid models, canonical and non-canonical scalar field models, etc. A fluid dark

energy equation of state parameter is considered to be a function of redshift or

the scale factor. There are two key parameters, the present day value of the equa-

tion of state parameter w0, and the value of its derivative w′0. Detailed studies of

the background evolution and constraints on the parameters for these models have

been done in [10, 11, 12, 13, 14, 15, 16, 17]. Quintessence scalar field is also

a candidate for dark energy. Using a slow rolling potential, the late-time acceler-

ated expansion can be achieved. The equation of state parameter of this field is a

function of time, and its value depends on the functional form of the potential term

and the kinetic energy of the field. Quintessence models are broadly classified into

‘freezing’ and ‘thawing’ depending on whether the equation of the state parame-

ter is approaching to a cosmological constant like value or departing from it. The

background cosmology in the presence of the canonical scalar field has been stud-

ied in [18, 19, 20, 21, 22, 23, 24, 25]. The perturbations in the quintessence field,

its dynamics, and its effect on the evolution of matter clustering have been studied

in [26, 27, 28, 29].

Alternative to the canonical scalar field and the fluid model are the non-canonical

scalar field models, e.g., the ‘tachyon model’ and the ‘K-essence model’. The K-

essence scalar fields were introduced as the K-inflation models by Armendariz-Picon

[30]. This idea was extended as dynamical dark energy models to explain late-time

accelerated expansion [31, 32, 33]. Tachyon scalar field arises as a decay mode of

D-branes in string theory [34, 35, 36]. The background cosmology for this model

has been studied in [37, 38, 39] and it is potentially a good candidate for dark

energy. Tachyon scalar field has also been used to explain inflation [40, 41, 42, 43,

44, 45, 46, 47]. Since its equation of state becomes dust like in the course of time,

it is also considered a viable candidate for dark matter [35, 36, 48, 49, 50, 51, 52].

The tachyon model is in good agreement with current observations; data puts tight

constraints on cosmological parameters and the fine-tuning problem is less severe
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than the cosmological constant model. Observations can not however completely

distinguish this model from the ΛC DM and other models. Perturbation in dark

energy can potentially break the degeneracy between models, for instance via the

Integrated Sachs-Wolf Effect (ISW effect) as it affects the low l CMB angular power

spectrum [53, 54].

The Einstein’s theory of general relativity is an essential tool for studying the

cosmos. It is one of the most beautiful creations of the human mind. In chapter 1,

we begin with the mathematical machinery required for studying cosmology. The

Einstein’s equation, which relates the geometry of the Universe to its matter-energy

contents, is discussed in section 1.1. Then, the simplest model of the Universe, the

Friedmann model, is discussed in section 1.2. Models for the accelerated expansion

of the Universe, ΛC DM , and dark energy models, are discussed in section 1.3. In

section 1.4, we explain the distances in cosmology. Linear perturbation theory to

study the structure is explained in section 1.5. The observational data sets used to

obtain constraints on cosmological parameters are described in section 1.6.

1.1 General Relativity and Cosmology

According to Einstein’s theory of general relativity, gravity is a manifestation of ge-

ometry or curvature of space-time. The geometry of space-time is imprinted in met-

ric element

ds2 = gµν d xµ d xν ; µ, ν= 0, 1, 2, 3, (1.1)

where, gµν is the ‘metric tensor’. The metric tensor contains all geometrical prop-

erties of space-time. Einstein’s theory of general relativity provides us necessary

mathematical machinery to study our Universe. The theory of general relativity

relates the geometrical property of space-time to the matter-energy contents of the

Universe, namely energy-momentum tensor Tµν. These two parts are related to each

other via the Einstein field equation, given by

Gµν ≡ Rµν −
1

2
gµν R=

8πG

c4
Tµν, (1.2)

where constants G and c are the universal gravitational constant and the speed of

light in vacuum respectively. Gµν is known as the Einstein tensor. Rµν and R are the

Ricci curvature tensor and the Ricci scalar. Quantities Rµν are, defined by

Rµν =
∂ Γ λ

µν

∂ xλ
−
∂ Γ λ

µλ

∂ xν
+ Γ λ

µν
Γ
δ
λδ
− Γ δ

µλ
Γ
λ
νδ

, (1.3)
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where Γ λ
µν

are the Christoffel symbols and can by calculated from the metric tensors

via the relation

Γ
λ
µν
=

1

2
gλτ

�

gτµ,ν + gτν,µ − gµν,τ

�

. (1.4)

The Ricci scalar R can be calculated by contracting the Ricci tensor

R= gµνRµν. (1.5)

The general solution of equation (1.2) is not possible. To get a solution, we first

need to specify the source term, the energy-momentum tensor Tµν.

1.1.1 The Energy-Momentum Tensor

The energy-momentum tensor Tµν is a second rank symmetric tensor which com-

prises of everything that can curve the space-time or gravitate. It describes the flux

of µ component of 4-momentum across the constant xν surface. Since it is a sym-

metric tensor, it has only ten independent components [55, 56, 57].

• T 00 = T t t represents energy density.

• T 0i (i=1,2,3) represents the flow of energy across the x i surface.

• T i0 represents the i-component of momentum density.

• T i j, for i 6= j, represents the shear stress.

• T ii represents the normal stress or pressure.

The energy-momentum tensor is symmetric tensor, i.e. Tµν = Tνµ, so it has only ten

independent components [55, 56, 57]. Now we describe some well-known energy-

momentum tensors, commonly used in cosmology.

1. Dust- Identical, massive, non-interacting, electrically neutral particles consti-

tute dust. The energy-momentum tensor for dust is given by

Tµν = ρuµuν. (1.6)

In the rest frame of dust uµ = (1, 0, 0, 0), therefore the only non-vanishing

component of the energy-momentum tensor is T 00 = ρ.

6



2. Perfect Fluid- Fluid which has no heat conduction or viscosity, consists of a col-

lection of particles with small (non-relativistic) random motions has energy-

momentum tensor

Tµν = (ρ + p)uµuν ± pgµν, (1.7)

where ρ and p are the density and pressure of the fluid. Here, in ‘±’ and at

other places in this thesis, top and bottom signs correspond to (−,+,+,+) and

(+,−,−,−) signatures of the metric element respectively.

3. Scalar Field- For a scalar fieldφ, the energy-momentum tensor can be derived

from its Lagrangian Lφ using equation

T
µν

(φ)
=

2p−g

δ (
p−g Lφ)

δ gµν.
(1.8)

For a canonical scalar field, which is describe by a Lagrangian Lφ = ∓1
2 gµν∂µφ∂νφ−

V (φ), the energy-momentum tensor is given by

T
µν

(φ)
= ∂ µφ∂ νφ ± Lφ gµν, (1.9)

We describe a canonical scalar field as dark energy in section 1.3.4. The

energy-momentum tensor for a tachyon field, which has a Lagrangian L =

−V (φ)
Æ

1± gµν∂νφ∂µφ, can be derived from

T
µν

(φ)
=

V (φ)∂ µφ∂ νφ
Æ

1± gαβ∂αφ∂βφ
± Lφ gµν. (1.10)

Here, V (φ) is an arbitrary potential. We discus the tachyon field in sec-

tions 1.3.5.

From equation (1.2), we can deduce that Gµν;µ = 0 (the Bianchi identity). In other

words, the Einstein tensor has zero divergence. This leads us to the conservation of

the energy-momentum tensor

Tµν;µ = 0, (1.11)

or

Tµ
ν;µ ≡

∂ Tµ
ν

∂ xµ
+ Γ µ

αµ
Tα
ν
− Γ α

νµ
Tµ
α
= 0. (1.12)

With all the tools of general relativity described above, we can study the dynamics

of the Universe. To do so, we need to specify the line element (or metric ) which

represent the geometrical part and the form of energy-momentum tensor or species

of contents of the Universe.
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1.2 Friedmann Universe

The simplest model of the Universe is one in which the geometrical properties of

space-time are independent of a spatial location and of direction. Such a universe

will be spatially homogeneous and isotropic. This assumption is called the ‘cos-

mological principle’. To hold the cosmological principle in the Universe, Einstein’s

equations demand homogeneity and isotropy in the matter field. We certainly see

the structures like galaxies and clusters etc. in it. As we go to larger and larger

scales, the Universe become more and more homogeneous. Therefore, we assume

that at larger scales (> 100M pc) these inhomogeneities can be ignored, and the

matter distribution is described by a smoothed out average density. The geomet-

rical properties of homogeneity and isotropy in the space-time are evident in the

metric, given by

ds2 = −c2d t2 + a2(t)

�

dr2

1− Kr2
+ r2

�

dθ 2 + sin2θdφ2
�

�

, (1.13)

where a(t) is scale factor of universe. This metric is called the ‘Friedmann-Lemaitre-

Robertson-Walker (FLRW)’ metric. This coordinate system is called the ‘comoving

coordinate system’, and world lines with xα = constant are geodesics. Observer fol-

lowing these world lines is called a fundamental (or comoving) observer. Constant

‘K ’ specifies the geometry of 3-space (the spatial hypersurface); K = +1, 0, − 1

corresponds to close, flat and open geometry, respectively.

1.2.1 Kinematics

Let the comoving separation between two observers, located at two different special

locations in the Universe, is δx . Then the proper separation between them is given

by

δl = a(t)δx . (1.14)

In the expanding Universe, each of these observer sees other to moving with velocity

δv =
dδl

d t
= ȧδx =

�

ȧ

a

�

δl. (1.15)

Now, let’s assume an electromagnetic signal of frequency ω is sent by one observer.

Since, these observers are receding with each other with velocity δv, the other ob-

server will receive a Doppler shifted electromagnetic wave with frequency ω+δω,
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where
δω

ω
= −δv

c
= −δv = − ȧ

a
δl = − ȧ

a
δt = −δa

a
. (1.16)

Integrating above equation we get

ω(t)a(t) = constant. (1.17)

Thus in the expanding Universe, the frequency of electromagnetic waves is propor-

tional to inverse of scale of expansion, that is ω ∝ a−1. If a radiation is emitted

from a location at te with wavelength λe and received at t0 with wavelength λ0 at

another location, then λ0 > λe if a(t0) > a(te). In such an expanding universe we

can associate a redshift z with time t by the relation

1+ z ≡ λ0

λ
=

a(t0)

a(t)
=

a0

a
. (1.18)

Thus, the variables t , a and z are interchangeable. Here, z = 0 corresponds to

present epoch, and without loss of generality we can set a0 = 1. Further details on

kinematics of the Friedmann Universe can be found in [55, 58].

1.2.2 Hubble’s Law

Hubble and Slipher, individually, observed redshift in the spectrum of distant galax-

ies, although Slipher did not know those were galaxies. This redshift can be ex-

pressed by equation (1.18). The physical distance of an object from another ob-

server in the Universe is given by r = ax, where x is comoving distance. Then,

taking derivative with respect to cosmic time t , we get

ṙ = Hr+ aẋ, (1.19)

where H = ȧ/a is known as ‘Hubble parameter’ and it is the expansion rate of the

Universe. The first term on the right, Hr, describe the cosmic expansion or Hubble

flow. Whereas, second term, a_x, is called ‘the peculiar velocity’, caused by local

gravitational field. Now, the speed of an object along the line of sight is given by

v ≡ ṙ · r/r = Hr + vp · r/r, (1.20)
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where r ≡ |r| and vp = a_x. In general, the peculiar velocity is much smaller than

the Hubble expansion rate, so we can write

v ≃ H0r. (1.21)

Here, H0 is the present day value of the Hubble parameter H(z) and known as

the ‘Hubble constant.’ This equation holds for z ≪ 1 and is known as the ‘Hubble

law’ [59]. Edwin Hubble observed twenty five galaxies and found their distances,

and also their velocities by calculating redshift in their spectrum. In 1929, he pub-

lished his article [59], and first time showed that the Universe is expanding. Hubble

derived the value of the Hubble constant H0 ∼ 500 km s−1M pc−1, which, due to

large uncertainty in his data, is much larger than the current estimate. Planck-2018

collaboration provides H0 = 67.4± 0.04 km s−1M pc−1 [60].

1.2.3 Friedmann Equations and their Solutions

In a homogeneous and isotropic universe, described by the FLRW metric (1.13), the

source term (Tµν) is restricted to perfect fluid given by equation (1.7). For such a

universe, (00) and (ii) components of the Einstein equations (1.2) can be obtained

as
ȧ2 + K

a2
=

8πG

3
ρ, (1.22)

2ä

a
+

ȧ2 + K

a2
= −8πG ρ. (1.23)

Once the equation of state p = p(ρ) is defined, these two equations completely

determined the quantity a(t), ρ(t) and p(t). These are known as the ‘Friedmann

equations.’ Eliminating K from equation (1.23) and using equation (1.22) we get

the acceleration equation of the Universe, given by

ä

a
= −4πG

3
(ρ + 3p). (1.24)

Clearly, if (ρ+ 3p) > 0 or (1+ 3p/ρ) > 0 then ä < 0 and the expansion of universe

will be decelerating, otherwise it will be accelerating. Since, the energy density ρ

remains always positive, the equation of state defined as

w =
p

ρ
, (1.25)

decide the fate of the Universe, whether it will accelerating or decelerating depend-

ing on w < −1/3 or w > −1/3 respectively.
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From equation (1.22) we get ρa3 = (3/8πG)a
�

ȧ2 + K
�

. Differentiating it with

respect to cosmic time and using equation (1.23) we end up with relation

d

da
(ρa3) = −3a2p. (1.26)

This equation is called the conservation or continuity equation. We can also de-

rive this equation by solving conservation equation of energy-momentum tensor,

i.e. Tµ
ν;µ = 0, for the FLRW background.

The continuity equation (1.26) suggests that, if the equation of state parameter

w is a constant, we get a solution of the Friedmann equations, given by

ρ∝ a−3(1+w). (1.27)

For non-relativistic matter w = 0 (because its pressure is negligible), so ρnr∝ a−3.

The equation of state of relativistic matter (or radiation) is w = 1/3, so ρr∝ a−4. If

p = −ρ (corresponding to vacuum), then w = −1 and ρ = constant or independent

of a.

The curvature term in equation (1.22) can be expressed as

K

a2
=

ȧ2

a2

�

ρ

ρcr

− 1
�

, (1.28)

where ρcr = 3H3/8πG is known as ‘the critical density’. Equation (1.28) motivate

to define a ‘density parameter’ given by

Ω(t) =
ρ

ρcr

, (1.29)

and curvature term can be express in terms of matter content of a universe as

K

a2
=

ȧ2

a2
[Ω− 1] . (1.30)

Clearly the closed, flat and open geometry of the Universe, corresponding to K =

+1, 0, − 1, can be expressed by Ω > 1, Ω = 1, and Ω < 1 respectively. Hence in

terms of the density parameter the Friedmann equation (1.22) can be written as

ȧ2 + K

a2
=

8πG

3
ρ = H2

Ω(t). (1.31)

Here, the energy density ρ (and Ω) are sum of energy densities of all the matter

species in the Universe, i.e., ρ =
∑

ρi and Ω =
∑

Ωi. For late time cosmology, it is
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sufficient to consider only the relativistic matter, the non-relativistic matter, and a

negative pressure medium. Then the equation (1.31) takes the form

ȧ2 + K

a2
= H2

0

�

Ωr0a−4 +Ωm0a−3 +ΩΛ0

�

, (1.32)

Here, and everywhere else in this thesis, the subscript ‘0’ represents the present time

(t = tpresent or z = 0). The symbols Ωr0, Ωm0, and Ω
Λ0 denote the present day values

of corresponding quantities. These are defined as

Ωr0 =
8πG

3H2
0

ρr0 , Ωm0 =
8πG

3H2
0

ρm0 , and Ω
Λ0 =

8πG

3H2
0

ρ
Λ
. (1.33)

If we defined a density parameter for curvature term as ΩK0 = −K/H2
0 , we can add

it on the right hand side of the equation (1.32), given as

ȧ2

a2
≡ H2 = H2

0

�

Ωr0

a4
+
Ωm0

a3
+
ΩK0

a2
+ΩΛ0

�

, (1.34)

The Cosmic Microwave Background observations have constrained the spatial cur-

vature to be very near to zero, i.e., the Universe is spatially flat. The WMAP 5 year

data provide constraint on curvature as −0.0175 < ΩK0 < 0.0085 at the 2σ confi-

dence level [61]. Hence, for further analysis in this thesis, we assume a flat universe

considering ΩK0 = 0. From equation (1.30), we can see that this requires the sum of

all density parameters to be unity, i.e. Ω ≡ Ωr+Ωm+ΩΛ = 1. From equation (1.34),

it is clear that during the evolution of the Universe, each species dominate the en-

ergy budget at a different epoch. In radiation and matter dominated era, since the

equation of state parameter is w = 1/3 and 0 respectively, hence ä < 0, and the Uni-

verse went through a decelerating phase. Only if the energy budget is dominated

by a negative pressure medium with an equation of state w < −1/3, the Universe

can go to an accelerating phase.

1.3 Accelerated Expansion of the Universe

Observations have confirmed that the Universe underwent a transition from deceler-

ating to accelerating expansion in recent past [62] and accelerating since then [4, 5,

63]. The simplest model considers vacuum energy density, with an equation of state

w = −1, as the reason for this transition and accelerated expansion. We shed some

light on this model (known as ΛC DM model), how it agrees with observations, and

theoretical problems it suffers from.
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1.3.1 ΛC DM Model

The acceleration in the expansion rate of the Universe can be explained by adding a

constant Λ, known as ‘the cosmological constant’, in the Einstein field equations. It

was originally introduced by Einstein in 1917 to get solution for a static universe, but

after the discovery of the expanding Universe by Hubble, it was dropped. Addition

of constant Λ in the source part of Einstein field equations, alter the Friedmann

equations in the form, given by

ȧ2 + K

a2
=

8πG

3
ρ +

Λ

3
, (1.35)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
. (1.36)

The physical explanation of the cosmological constant is given by introducing vac-

uum energy density (which is constant). The energy density and the density param-

eter of vacuum, in terms of cosmological constant, take the form [64, 65]

ρΛ =
Λ

8πG
, and ΩΛ =

Λ

3H2
. (1.37)

The pressure density of vacuum is given by pΛ = −ρΛ = −Λ/8πG. Hence, the

equation of state of this component w = p
Λ
/ρ
Λ
= −1, and it remains constant during

the evolution of the Universe. With these definitions, we can write the Friedmann

equation as
ȧ2

a2
≡ H2 = H2

0

�

Ωr0

a4
+
Ωm0

a3
+Ω

Λ0

�

, (1.38)

here, we have considered the geometry of a universe flat, i.e. ΩK = 0. The non-

relativistic component is sum of pressure-less baryonic matter and dark matter, i.e.,

Ωm0 = Ωb0 +Ωdm0.

In the top left panel of figure 1.3, we show the phases of the evolution for this

model. We can see that after decelerating phases of radiation and matter domina-

tion, the Universe goes through a transition in recent past and start accelerating. In

the right panel of the same figure, we show the evolution of the density parameters

of all three components. The ΛC DM model is consistent with most of the current

cosmological observations [4, 5, 60, 63, 66]. For example, in the second row of

figure 1.3, we show comparison ΛC DM model with SN-Ia union 2.1 and H(z) data.

Although, This model is simple and the most favoured one, it runs into problems at

theoretical front.
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Figure 1.3: In the top left panel, we show the phases of evolution of the Universe
for the ΛC DM model. The evolution of the density parameters of matter (in red),
vacuum (in blue), and radiation (in orange) are shown in top right panel. In these
plots, we set the parameter Ωm0 = 0.315 and H0 = 67.4 km s−1M pc−1 (Planck-2018
best fit values). In the bottom left and right panels, we show comparison of this
model with SN-Ia union 2.1 data and direct measurements of Hubble parameter
H(z).

1.3.2 Fine Tuning Problem in the Cosmological Constant Model

Despite the success of theΛC DM model, it suffers from some theoretical issues. One

of these issues is the discrepancy between theoretical and observational values of the

cosmological constant. In ΛC DM model, the cosmological constant is equivalent to

a zero point vacuum energy density, ρvac = Λ/8πG. The value of the vacuum energy

density calculated from zero point vacuum fluctuation in field theory is ρ theor y
vac

∼
2 × 10110er g cm−3, whereas the value obtained by observations in cosmology is

ρobs
vac
∼ 2 × 10−10er g cm−3, for details refer to [67]. We can see that there is a

discrepancy of 120 order of magnitude between these values. This problem is known

as ‘the cosmological constant problem.’

The relative scaling ρ
Λ
/ρm ∝ a3 implies that the cosmological constant was

negligible in the past (in the matter-dominated era), and will dominate in future. If

the cosmological constant is set as an initial condition at very early in the matter-
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dominated era, it has to be set or tuned precisely. A couple of orders higher value can

result in lack of large-scale-structure today, and a couple of orders smaller value re-

sults in cosmological constant to be undetectable. There is no explanation as to why

the energy density of the cosmological constant has the same order of magnitude

as that of the matter density at present. This problem is known as the ‘coincidence

problem’. Current observational data, however, does not rule out the value of the

equation of state parameter w 6= −1 and dynamical nature of energy density re-

placing the vacuum density. These facts motivate the study of alternate sources for

accelerated expansion, namely dark energy.

1.3.3 Barotropic Fluid Models of Dark Energy

The simplest alternative to the cosmological model are those for which the dynami-

cal nature of the equation of state parameter is assumed by considering a functional

form or parametrization of w. Here, the equation of state is either a constant (with

w 6= −1) or a function of redshift or scale factor. In these models, the two impor-

tant parameters are the present value of the equation of state parameter, w0, and

it’s derivative, w′(z = 0). Following parameterizations are among the most popular

and widely used

• The Chevallier-Polarski-Linder (CPL) parameterization [68, 69] in which

w(a) = w0 +w′(a = 1)(1− a), (1.39)

or

w(z) = w0 +w′(z = 0)
z

1+ z
. (1.40)

• The Jassal-Bagla-Padmanabhan parameterization [70] in which

w(z) = w0 +w′(z = 0)
z

(1+ z)2
. (1.41)

• The logarithmic parameterization [71] in which

w(z) = w0 +w′(z = 0)log(1+ z). (1.42)

All these models agree with each other at low redshifts, but as we see in the fig-

ure 1.4, at higher redshift their behavior starts deviating from each other. Although,

the equation of state parameter is a well-behaved function for all these parame-

terizations at high redshifts and present, it diverges in far future. The most general

15



Figure 1.4: Evolution of equation of state with redshift for parametrized models
of dark energy. Read, blue and sky-blue colours represent the CPL model, the JBP
model and the logarithmic model respectively. For the purpose of this plot, we have
set w0 = −1.0 and w′(z = 0) = 0.05.

parameterization of w is the ‘Pade parameterization’, which does not diverge at small

and high redshifts. The Pade approximation [72, 73] of oder (m, n) of a function

f (x) is given by

f (x) =
a0 + a1 x + a2 x2 + ...+ am x m

b0 + b1 x + b2 x2 + ...+ bn x n
. (1.43)

The Pade parameterizations have been found consistent with the current expansion

data [16, 74]. Some examples of Pade parameterizations are as follows [16, 73]

• Expansion of w(a) with respect to (1-a) up to oder (1, 1), given by

w(a) =
w0 +w1(1− a)

1+w2(1− a)
. (1.44)

Clearly, if w2 = 0 this parameterization reduces to CPL model.

• Parameterization of w(a) as a function of ln a up to oder (1, 1), given by

w(a) =
w0 +w1ln a

1+w2ln a
. (1.45)

In oder to avoid singularity in parameterization 1.44, we need to impose condition

w2 6= 0 and −1, where as in parametrization 1.45 w2 6= 0. Then, these Pade pa-

rameterizations are well-behaved functions in the range 0 ≤ a ≤∞. More detailed

16



0.0 0.5 1.0 1.5 2.0

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

z

w

✇num,thawing

✇num,freezing

✇CPL,thaw.
bf

✇CPL,freez.
bf

Figure 1.5: A comparison between thawing and freezing quintessence models (dot-
ted curves). Solid lines represent best fit CPL parameterizations. Clearly, CPL param-
eterization fits thawing model better than freezing model. Image credit - Pantazis
et. al. (2016) [77]. License agreement to reuse this figure is in appendix A.

discussion on Pade parameterizations, constraints on parameters and cosmological

evolution under these models can be found in [16, 73, 74]. There are many other

parametrized models described in [10, 11, 12, 75, 76].

1.3.4 Canonical Scalar Field Model of dark Energy

Canonical scalar field, also known as the quintessence field, is a well studied dark

energy model. In scalar field models, the present day accelerated expansion of the

Universe is achieved by a slow rolling field. The quintessence field is described by a

canonical Lagrangian

L = ∓1

2
gµν∂µφ∂νφ − V (φ), (1.46)

where V (φ) is an arbitrary potential. The dynamics of a homogeneous quintessence

field are governed by the equation

φ̈ + 3Hφ̇ +
dV (φ)

dφ
= 0. (1.47)

To study the evolution of the Universe, we need to solve the Friedmann equation

along with equation (1.47). The energy density and pressure of a quintessence field

is given by

ρφ =
1

2
φ̇2 + V (φ) , and Pφ =

1

2
φ̇2 − V (φ). (1.48)

17



The equation of state parameter for quintessence model is given by

wφ =
Pφ

ρφ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (1.49)

Clearly, the functional form of the equation of state parameter depends on whether

the kinetic term dominates, or the potential term is the dominating one. For a slowly

evolving scalar field, φ̇2/2V (φ) << 1 then we get wφ ≈ −1. In this case, the

scalar field behaves like a slowly varying vacuum energy with ρvac(t)≃ V (φ(t)). In

general, wφ can take any value between -1 to +1, depending on whether the scalar

field is slowly varying or evolving rapidly respectively.

Based on the evolution of the equation of state parameter the quintessences mod-

els are broadly classified into ‘thawing’ and ‘freezing’ models [19, 20, 78]. In the first

class of models, value of the equation of state parameter at early time remain frozen

at its initial value ( w ≃ −1) due to large Hubble damping. Only in the near past the

Hubble damping decreases and the potential starts rolling to its minimum, the equa-

tion of state starts to evolve from a cosmological constant like value [25, 77, 79].

In the freezing models, at early time due to steep potential the kinetic term rolls

down towards its minimum and it is non-zero. At later time, the potential becomes

shallower and the kinetic term negligible. Therefore, the equation of state param-

eter asymptotically freezes to a value w = −1. Depending on the details of the

dynamics, the freezing models are also sub-classified into ‘tracking’ and ‘scaling’

models [77, 80, 81, 82]. In figure 1.5, we can see the comparison between thawing

and freezing quintessence models with their best fit CPL parameterizations. Because

of concave nature of CPL and other parameterizations mentioned in section 1.3.3,

when increasing, they fit thawing model better than the freezing model [77]. Nev-

ertheless, quintessence models do not have the fine-tuning problem that ΛC DM

model suffers from; they have tuning problem of their own. To achieve present-

day accelerated expansion they require an ad-hoc potential. The detailed study on

quintessence model can be find in [18, 19, 20, 21, 22, 23, 24, 25, 80].

1.3.5 Non-Canonical Scalar Field - Tachyon Scalar Field Model

Tachyon scalar field is a non-canonical scalar field which arises naturally in string

theory as a decay mode of D-branes [34, 35, 36]. The tachyon scalar field is de-

scribed by the Lagrangian

L = −V (φ)
q

1± gµν∂µφ∂νφ, (1.50)
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where V (φ) is an arbitrary potential. The energy density and pressure of tachyon

field are

ρφ =
V (φ)

Æ

1− φ̇2
, Pφ = −V (φ)

q

1− φ̇2. (1.51)

Therefore, the equation of state parameter of the tachyon field is wφ = Pφ/ρφ =

φ̇2 − 1. The dynamics of the scalar field is governed by the equation of motion for

the scalar field

φ̈ = −(1− φ̇2)

�

3Hφ̇ +
1

V (φ)

dV

dφ

�

. (1.52)

As φ̇ approaches ±1, the equation of state becomes dust like, and the quantity φ̈

goes to zero. Therefore, the equation of state remains dust like for a long time.

The cosmological evolution in this model too depends on the choice of potential.

We consider two runaway potentials which have been employed to study tachyon

dynamics. The runaway potentials naturally arise in string theory and M-theory,

and they are capable of generating the late time accelerated expansion of the Uni-

verse [83, 84, 85, 86]. The background cosmology in the presence of two different

tachyon scalar field potentials is summarized in section 2.1.1 and 2.1.2. We discuss

tachyon scalar field as smooth homogeneous dark energy, its dynamics and con-

straints on parameters, in chapter 2. The effect of perturbations in tachyon dark

energy on clustering of matter and its growth rate are discussed in chapter 3.

1.4 Distances in Cosmology

Most of the observations used to constrain the cosmological parameters are based

on measurements of distances. Actually, cosmological history is hidden in the rela-

tion between distance and redshift. But in cosmology, we can not measure distances

directly, they are measured through changes in some physical quantities, like lumi-

nosity and the angular diameter of some object in the Universe. The electromagnetic

signal (light) gets redshifted while traveling along the path between the source and

the observer. The amount of redshift depends on the expansion rate of the Universe

and its energy budget. Since these quantities are model dependent, the distances in

cosmology also depend on the model we are considering [55, 56, 87].

Let a photon emitted at time t = te from r = re (redshift z) reaches the observer

at time t = t0 with r = 0 (and z = 0). This light travels along the null geodesic
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ds2 = −c2d t2 + a2(t)dr2 = 0. Therefore, distance r is given by equation

rc ≡ r =

∫ r

0

dr =

∫ t0

te

c

a
d t =

∫ a0

ae

c

aȧ
da. (1.53)

This distance is known as ‘comoving distance’. Using equation (1.18), we can write

comoving distance as

rc =
c

a0H0

∫ z

0

dz

E(z)
, (1.54)

here, E(z) = H(z)/H0. Equation (1.54) provide an intuitive way of defining dis-

tance, but it is not directly measurable. The observable distances are the luminosity

distance and the angular diameter distance described bellow.

1.4.1 Luminosity Distance

If we know the luminosity of an object, a ‘standard candle’, by observing its flux, we

can calculate its distance. One such important standardized candle is the supernova

type Ia. The luminosity distance of an object at redshift z is defined by equation

D2
L
=

Le

4πF , (1.55)

where Le is the absolute luminosity of the source and F is flux observed. Note that

the luminosity observed at z = 0 is different from absolute luminosity Le because of

expansion. The flux of an object at comoving distance rc is F = L0/4πr2
c
. Then the

luminosity distance (1.55) reduce to

D2
L
= r2

c

Le

L0

. (1.56)

Now, if a source emit ∆Ee energy in time interval ∆te, its absolute luminosity is

Le = ∆Ee/∆te. Similarly, observer receive ∆E0 energy in time interval ∆t0, its

observed luminosity is L0 = ∆E0/∆t0. Since the wavelength is inversely propor-

tional to energy, we can find that ∆Ee/∆E0 = λ0/λe = 1 + z. On the other hand,

∆t0/∆te = λ0/λe = 1+ z. Hence, the ratio of luminosities is

Le

L0

=
∆Ee

∆E0

∆t0

∆te

= (1+ z)2. (1.57)
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Then, the luminosity distance is

DL = (1+ z)rc =
c

H0

(1+ z)

∫ z

0

dz

E(z)
. (1.58)

This equation clearly show that the luminosity distance is directly related to the ex-

pansion rate of the Universe. In the top panel of figure 1.6, we can see the evolution

of luminosity distance (in unit of cH−1
0 ) with redshift. Here, we have considered a

flat-ΛC DM model with Ωr0 = 4.5× 10−5, and we have varied Ωm0. We can see that

as we increase Ωm0, the luminosity distance decreases at a fixed redshift. For more

general discussion on the luminosity distance refer to [55, 58, 88].

1.4.2 Angular Diameter Distance

If the object of actual or physical size ∆l orthogonal to the line of sight subtends an

angle ∆θ at the observer, then its distance given by

DA =
∆l

∆θ
. (1.59)

This distance is known as the ‘angular diameter distance’. If the angle, subtended

by an object of known physical size called the ‘standard ruler’ in cosmology is mea-

sured, its distance can be calculated from the above equation. One such standard

ruler is provided by ‘the Baryon Acoustic Oscillations (BAO)’, and it is described in

section 1.6.3. If the comoving distance of the object is rc, then its physical size is

given by ∆l = a(te)rc∆θ . Then the angular diameter distanced is reduce to

DA = a(te)rc =
c

H0

1

1+ z

∫ z

0

dz

E(z)
. (1.60)

Clearly, the relation between angular diameter and luminosity distance is

DA =
DL

(1+ z)2
. (1.61)

This known as duality or reciprocity or Etherington relation.

In the bottom panel of figure 1.6, we can see the evolution of the angular di-

ameter distance. We have considered the same model described in section 1.4.1 to

generate this plot. Unlike luminosity distance, angular diameter distance does not

evolve monotonically with redshift. Initially, it grows with redshift, takes a maxi-

mum then decreases as we increase the value of redshift. We can see that similar to
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Figure 1.6: Evolution of luminosity and angular diameter distance and their depen-
dence on Ωm0 for flat ΛC DM model. Here, DL and DA are in the unit of cH−1

0 . Red,
green, blue, light-blue and pink colours are for Ωm0 = 0.1, 0.2, 0.25, 0.3, and 0.35
respectively.
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luminosity distance, angular diameter distance also decreases as we increase Ωm0 at

a fixed redshift. Further discussion on the Angular diameter distance can be found

in [55, 58, 88]. so for we have described a homogeneous and isotropic universe.

These assumptions are true at large scales. We can certainly see structures like galax-

ies, clusters, etc. In the next section, we present theory for the structure formation

in the Universe.

1.5 Inhomogeneity in the Universe and Linear Pertur-

bation Theory

The small but important anisotropy in cosmic microwave background radiation (CMB),

indicates that our universe was already inhomogeneous at z ∼ 1000. In the form

relative temperature fluctuation it was ∆T/T ≈ 10−5. This fact allows us to assume

that for the structures we see today, seeds were planted in the past (during the in-

flationary era) in the form of small deviation from homogeneities in our universe.

These small inhomogeneities, then grew due to gravitational instability with time

and formed structures like galaxies and clusters, etc. The inhomogeneity can be

quantified using ‘relative density contrast’, defined by equation

δ(r, t) =
ρ(r, t)− ρ̄(t)

ρ̄(t)
, (1.62)

where ρ̄(t) is average density of the Universe at time t . Clearly, δ ≥ −1, because

ρ ≥ 0. The δ > 0 are overdense region and produce additional gravitational po-

tential than the cosmic average, whereas region with δ < 0 are underdense. In

overdense region the expansion rate is slower than the average Hubble expansion

due to the stronger gravitational field, and it also increases the clumping further.

For under dense region, situation is just the opposite. In this thesis, we mainly con-

centrate on overdense region with δ > 0. There are three possible cases, first when

δ ≪ 1, then it is possible to linearize Einstein equations and get solutions which

describe the growth of linear perturbations. On the other hand, if δ ≈ 1 or δ≫ 1

then a solution is possible only with some specific assumptions, e.g. assumption of

spherical symmetry, or by numerical computation. We focus only on linear case. We

study matter perturbations as well as dark energy perturbations. This makes the

equation fairly complicated, and it is only possible to solve them numerically.
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1.5.1 Linear Perturbation Theory

The Poisson equation, which relates the matter density to the gravitational poten-

tial, is a linear equation. This fact enables us to consider the effect of homogeneous

matter distribution and that of density fluctuations separately. Hence the total grav-

itational field can be considered as a sum of the gravitational field of homogeneous

part and that of density fluctuations. To study structure formation, we consider

perturbations in the metric gµν and the source Tµν into the form gµν + δgµν and

Tµν + δTµν. Here, ( gµν , Tµν ) represents the background universe, and ( δgµν ,

δTµν ) represents the perturbation. Considering perturbations small, we solve lin-

earized Einstein’s equations and get a solution in the form

L̂(gµν)δgµν = δTµν, (1.63)

where L̂ is a linear differential operator. It depends only on the background universe.

Because of linearity of the equations, their solution can be expand in terms of some

mode functions. For the flat universe (Ω = 1) mode functions will be plane waves.

By transforming variables in Fourier space we get a set of equations

L̂(k)δg(k) = δT(k), (1.64)

for each mode. Here, k represents the magnitude of wave vector k. Solutions of

equation (1.64) determine the evolution of each mode or ‘k’ separately.

1.5.2 Gauge Freedom in Cosmology

The field equations remain invariant under a general coordinate transformation. So

we are free to use any frame of reference. We select those transformations that

leave gµν invariant and only change δgµν, because we want the background to re-

main FRLW like. These transformations are called ‘gauge transformations’. Hence,

going from one frame to other and by scaling coordinates, we can make small pertur-

bations large and vice versa. These can even vanish in some frame. This ambiguity

needs to be resolved before obtaining meaningful results. There is a simple solution

to this problem. We choose to work in a fixed coordinate system and compute phys-

ical quantities. If this coordinate system is well motivated, all physical quantities

will be well defined. Two widely used gauges are the synchronous gauge and the

conformal Newtonian gauge (also known as the longitudinal gauge) [89]. Metric in
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the synchronous gauge is defined by

ds2 = a2(τ){−dτ2 + (δi j + hi j)d x id x j}, (1.65)

where τ is conformal time. The quantity hi j is the metric perturbation. More details

about this gauge can be found in [55, 89]. The conformal Newtonian gauge is

physically well motivated and better in dealing with the scalar degree of metric

perturbations. In this gauge, the line element is given by

ds2 = −(1+ 2Ψ)d t2+ a2(t)(1+ 2Φ)δi jd x id x j, (1.66)

where t is cosmic time which has relation with conformal time as d t = a(t)dτ.

Here, Ψ and Φ define the scalar degrees of freedom of metric perturbation. The

tensor perturbations are eliminated here because the dynamical equations for these

(which govern the evolution of gravitational waves) decouple from the rest [55].

For our purpose, it is sufficient to study only scalar degree of freedom. In equa-

tion (1.66), we can see that the metric in this gauge is diagonal. Another advantage

of working in this gauge is that the metric perturbationΨ represents the gravitational

potential in Newtonian limit, and hence has a simple physical interpretation. In the

absence of anisotropic stress in the energy-momentum tension T i j we get Ψ = −Φ,

and we have only one scalar degree of freedom [55, 89]. In the next section we

present the solution of perturbed Einstein equations for this gauge.

1.5.3 Solution of Perturbed Einstein Equations

In the absence of anisotropic stress, the Einstein equations in longitudinal gauge

reduce to the following set of equations.

∇2
Φ+ 3a2H

�

HΨ − Φ̇
�

= 4πGa2δT 0
0 , (1.67)

a∇2
�

Φ̇−HΨ
�

= −4

3
πGa2δT i

0,i, (1.68)

Ψ = −Φ, (1.69)

Φ̈+ 3HΦ̇−HΨ̇ −
�

3H2 + 2Ḣ
�

Ψ = −4

3
πGδT i

i
. (1.70)
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Here dot represents a derivative with respect to cosmological time t , and ∇ repre-

sents spatial derivatives evaluated with the background metric. The equation (1.69)

follows from δT i
j
= 0. In oder to solve above set of linear perturbation equations,

first we need to specify perturbed energy-momentum tensor δTµ
ν

. We discuss a sim-

ple case of single perfect fluid as a source, for illustration.

Solution for a single fluid: Let us consider a single fluid model with the energy-

momentum tensor Tµ
ν

defined equation (1.7). In oder to calculate the perturbed

energy-momentum tensor δTµ
ν

, we need to find the perturbed part of the four-

velocity uµ = d xµ

ds
. To first oder in all perturbed quantities, using conformal gauge

defined in equation (1.66), we obtain

uµ =

�

(1−Ψ) ,
v i

a

�

, uµ = gµνu
ν, uµu

µ = −1, (1.71)

where v i = d x i

dτ
= a d x i

d t
is the peculiar velocity of matter with respect to the Hubble

expansion. Substituting equation (1.71) in equation (1.7), we get the perturbed

part of the energy-momentum tensor

δT 0
0 = −δρ, δT 0

i
= −δT i

0 = (1+w)ρ̄v i, δT 1
1 = δT 2

2 = δT 3
3 = δp. (1.72)

Here w = ρ̄/p̄. The energy-momentum tensor satisfies the continuity equation

Tµ
ν;µ = 0. The first-oder perturbed counter part of this equation δTµ

ν;µ = 0 provides

some useful equations. For ν = 0, this equation reduces to

δρ + 3aH (δρ + δp) = − (ρ̄ + p̄)
�

θ + 3aΦ̇
�

, (1.73)

where θ = ∇i v
i is the divergence of velocity. Using unperturbed continuity equa-

tion, ˙̄ρ + 3aH (ρ̄ + p̄) = 0, with equation (1.73), we get equation for the density

contrast δ = δρ

ρ̄
, given by

δ̇+ 3H
�

c2
s
−w

�

δ = −1

a
(1+w)

�

θ + 3aΦ̇
�

, (1.74)

called the ‘perturbed continuity equation’. Equation for θ , can be derived by solving

equation δT
µ

i;µ = 0, and given by

θ̇ +

�

H (1− 3w) +
ẇ

1+w

�

θ = −1

a
∇2

�

c2
s

1+w
δ+Ψ

�

, (1.75)

where the sound velocity c2
s
=

δp

δρ
.
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Since all necessary equations are linear in all perturbed quantities, we use the

Fourier technique to solve them. We define Fourier space counterpart of each quan-

tity using relation

A(~x , t) =

∫

d3kAkei~k.~x . (1.76)

Here A(~x , t) stands for quantities (Φ,Ψ,δ,θ ) in real space, whereas Ak stands for

their Fourier space or k-space counter parts. The symbol k represents the wave

number for each Fourier mode. It is related to physical length scale of perturbation

λp through relation λ= 2πa/k. Using equations (1.67) - (1.70) , (1.74) and (1.75)

we get the following set of equations for each Fourier mode

k2
Φ+ 3a2H

�

Φ̇−HΨ
�

= 4πGa2ρ̄δ, (1.77)

ak2
�

Φ̇−HΨ
�

= −4πGa2 (1+w) ρ̄θ , (1.78)

Ψ = −Φ (1.79)

Φ̈+ 3HΦ̇−HΨ̇ −
�

3H2 + 2Ḣ
�

Ψ = −4πGc2
s
ρ̄δ (1.80)

δ̇+ 3H
�

c2
s
−w

�

δ = −1

a
(1+w)

�

θ + 3aΦ̇
�

, (1.81)

θ̇ +

�

H (1− 3w) +
ẇ

1+w

�

θ =
k2

a
∇2

�

c2
s

1+w
δ+Ψ

�

, (1.82)

where, now θ = i~k.~v. In above equations, we have used same symbols for (Φ,Ψ,δ,θ )

to represent their Fourier space counter parts.

Among equations (1.77) - (1.82) only three are independent. By combining

equations (1.77) and (1.78) we get

k2
Φ = 4πGa2ρ̄δ̃, (1.83)

where δ̃ =
�

δ+ 3aH (1+w)θ/k2
�

. Similarly, by combining equation (1.77) , (1.79)

and (1.80) we get dynamical equation for Φ, given by

Φ̈+H(4+ 3c2
s
)Φ̇+

�

c2
s
k2

a2
+ 3H2c2

s
+ 3H2 + 2Ḣ

�

Φ= 0. (1.84)

27



0.11.010.0

z

0.1

1

δ(
z)

/δ
(t

o
d

ay
)

w=−1

w=−1/3

Figure 1.7: Evolution of linear growth factor D+
m
= δ(z)/δ(0) at sub-Hubble scale in

a flat universe with dark energy. Here, a constant w model of dark energy is consid-
ered with fixed ΩDE. Image credit - Frieman et.al.(2008) [64]. License agreement
to reuse this figure is in appendix A.

In the long-wavelength limit λp >> H−1 or equivalently k << aH. In this limit,

for a single-component universe with w = c2
s
= constant (true for radiation and

matter), equation (1.84) reduces to

Φ̈+H(4+ 3c2
s
)Φ̇ = 0. (1.85)

Clearly, Φ̇ = 0 is a solution to this equation. Now, neglecting k2
Φ term in the equa-

tion (1.77) we get

3H2
Φ = 8πGρ̄δ. (1.86)

Substitution of 3H2 = 8πGρ̄ from the Friedmann equation reduces above equation

to

δ = 2Φ. (1.87)

Here, we can conclude thatΦ = constant impliesδ = constant in the long-wavelength

limit. Thus we find that in a single-component universe with c2
s
= w at scale larger

than the Hubble radius the gravitational potential remains constant. But, during

the transition between two eras (e.g. transition from radiation to matter dominated

era), this condition is violated.
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Now, we show the results for sub-Hubble scale, i.e. for k >> aH. In this limit,

equation (1.78) indicates that Φ̇− HΨ ≈ 0. Therefore, equation (1.77) reduces to

k2
Φ = 4πGa2ρ̄δ. Taking derivative with respect to t and using equations (1.81)

and (1.82) with straightforward algebra we get dynamical equation for density con-

trast, given by

δ̈+ 2Hδ̇+

�

c2
s
k2

a2
− 3

2
H2

�

δ = 0. (1.88)

If H → 0 (the Minkowski limit), then equation (1.88) reduces to a fluid like wave

equation δ̈ + (c2
s
k2/a2)δ = 0. Equation 1.88 shows that perturbations undergo

damped oscillations and do not grow if (c2
s
k2/a2 − 3H2/2) > 0, i.e. if the physical

length of perturbation λp = 2πa/k is smaller than the Jeans length, λJ = cs

p

π/Gρ.

For the case csk << aH, gravity overcomes the pressure, and the perturbations

grow freely. In this case, the sub-Horizon equation (1.88) for a single pressure less

fluid becomes

δ̈+ 2Hδ̇− 4πGρ̄δ = 0. (1.89)

Solution of above equation can be written in the form δ(~x , t) = D(t)δ̃(~x). Here,

δ̃(~x) is an arbitrary function of the spatial coordinate, and D(t) satisfies the equation

D̈+ 2HḊ− 4πGρ̄D = 0. (1.90)

This equation has two linearly independent solutions. The growing mode D+(t) in-

creases with time, whereas other is the decreasing mode D−(t). As time progresses

growing mode dominates, and decaying solution become irrelevant. If D+(t) is nor-

malized such that D+(t0) = 1, then the solution of the equation (1.89) can be written

as

δ(~x , t) = D+(t)δ0(~x), (1.91)

where D+(t) is known as the ‘linear growth factor’ and δ0(~x) is ‘linearly extrapo-

lated density fluctuation field’. The form of solution (1.91) indicates that in linear

theory only the amplitude of density fluctuation increases, its spacial shape remains

frozen in comoving coordinates. In matter-dominated era a(t) = (t/t0)
2/3, hence

the solutions of the equation (1.89) come out to be

δ+∝ a = (t/t0)
2/3, δ−∝ a−3/2 = (t/t0)

−1. (1.92)

Substituting δ+ into the Poisson equation (1.86), we get Φ∝ constant. Therefore,

we conclude that in matter-dominated era, the gravitational potential remain con-

stant.
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Once the dark energy starts to dominate the energy budget and accelerates the

expansion of the Universe, gravitational potential decays. Then, due to the Hubble

damping term 2HḊ in the equation (1.90), growth of matter is suppressed. Fig-

ure 1.7 shows the effect of dark energy on growth of linear growth factor D+
m
=

δ(z)/δ(0) at sub-Hubble scale in a flat universe with dark energy. For dark energy

a constant w model is considered. Two cases with w = −1/3 and −1 are shown

for a fixed value of dark energy density parameter ΩDE. Clearly, growth of matter

perturbation comes to an end when dark energy starts to dominate, in this case at

z = (Ωm/ΩDE)
1/3w − 1. For a fixed ΩDE, larger the equation of state parameter w, it

starts suppressing the growth of structure earlier . This means, to achieve the same

amplitude today, it has to start with a larger amplitude and the growth needs to be

faster at higher redshifts. This example shows that the observation of matter clus-

tering at different redshifts can be used as a tool for studying nature and behavior

of dark energy. In above analysis, dynamical nature of dark energy and clustering

in it are neglected. Such a analysis for the tachyon model and a comparison with

ΛC DM model are shown in the chapter 3.

Analysis becomes more complicated in the case of a multicomponent fluid with

time dependent w and c2
s
. At cosmological scales, it is sufficient to consider the

components of our universe to be photons, neutrinos, baryons, dark matter and

dark energy. All these components contribute to the background density and drive

expansion. When these components get perturbed, a density contrast δA = δρA/ρ̄A

arises for each component. In this case, it is δtotal = δρtotal/ρ̄total, where δρtotal =
∑

ρ̄AδA and ρ̄total =
∑

ρ̄A, leads to a perturbed gravitational potential that drives

the instability. Then, this potential further drives the inhomogeneities whereas the

expansion of the Universe works against it. In chapter 3, we present a study on

growth of perturbation in presence of dark matter fluid with perturbed tachyon

scalar field dark energy as well as with a smooth cosmological constant background.

Linear theory breaks down when |δ|¦ 1, because approximations we made are

no longer valid. In this case over dense regions decouple from cosmic expansion and

grow independently. Mathematical formalism to study such a non-linear structure,

e.g. ‘spherical collapse model’, is well established. Details of such formalism and

along with linear perturbation theory can be found in [55, 56, 88, 90]. After setting

up the mathematical machinery in linear perturbation theory, we also need statistical

tools to quantify results and compare them with observations.
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1.5.4 Correlation Function and Power Spectrum

In this section we introduce the statistical tools to quantify the order of clustering

or structures in the Universe. It is clear that no simulation can generate the same

copy of the Universe we live in, i.e., it is not possible to create the same distribution

of matter around our galaxy (Milky way) as we see. Instead, we can at best gener-

ate, using laws of physics, a universe which is statistically similar to our universe.

Structures in the Universe are formed in the form of galaxies. These galaxies are

not distributed randomly, rather they are found in groups, clusters or even in super

clusters. Therefore, it is more probable to find a galaxy near another. To quantita-

tively describe this fact, we consider two locations x and y with a volume element

dV around them. If the average number density of galaxy is ρ̄n, then the average

number of particle in volume element dV is ρ̄ndV . Now, the average number of

pairs at x and y separated by distance rx y = |x− y| is given by

dNx y = 〈nx ny〉 = (ρ̄ndV )2[1+ξg(rxy)]. (1.93)

This equation defines the ‘two-point correlation function ξ(r)’ of galaxies. The

averaging is done over an ensemble of distributions that have identical statistical

properties. The Universe is considered as statistically homogeneous, therefore, the

correlation function ξ can only depend on separation r = x − y, not on a specific

location. Then the ensemble average can be replace by spatial averaging, i.e., the

system is ergodic. This is important because we have only one universe available to

measure. Clearly, if the distribution of galaxies are uncorrelated (and distribution is

completely random) then the average number of pairs dNx y = 〈nx ny〉= (ρ̄ndV )2 is

just the product of particles at both locations. In this case the correlation function

ξ vanishes. If it is non-zero, then

ξ(rx y) =
dNx y

(ρ̄ndV )2
− 1 = 〈δ(rx)δ(ry)〉, (1.94)

where we have used the relations δ(rx) = nx/ρ̄ndV and 〈δ(rx)〉 = 〈δ(ry)〉 = 0. In

equation (1.94), the average is sample average, the two-point correlation function

can be written as

ξ(r) =
1

V

∫

δ(y)δ(y+ r)dVy , (1.95)

where the integration is over specified volume V at all possible locations y. If we

further impose the condition of isotropy, correlation function only depends on |r|,
i.e., ξ ≡ ξ(r).
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An alternate description of the structure formation in the Universe is the ‘power

spectrum’ P(k). It describes the level of clustering at length scale λ = 2π/k, where

k is wave number. Higher the value of power spectrum P(k), larger the amplitude of

fluctuations on the length scale 2π/k. In linear theory, the density fluctuations can

be decomposed into a sum of plane waves, i.e., δ(x) =
∑

Akcos(x.k). Then, P(k)

describes the distribution of amplitudes Ak with equal k = |k|. The power spectrum

is defined as

P(k) = V |δk|2 = Vδkδ
∗
k
. (1.96)

Here δk is Fourier coefficient of the density contrast δ(x). We can see that the power

spectrum has the dimension of volume. Using equation (1.95), the equation (1.96)

can be written as

P(k) =
1

V

∫

δ(x)δ(y)e−ik.(x−y)dVx dVy

=

∫

ξ(r)e−ik.rdV.

(1.97)

We can see that the power spectrum is the Fourier transform of the correlation

function. This is known as ‘Wiener-Khinchin theorem’. Imposing isotropy in equa-

tion (1.97), we get

P(k) = 4π

∫

ξ(r)
sin kr

kr
r2dr. (1.98)

The power spectrum is an important quantity in the structure formation study.

We can relate other quantities of interest with it. A popular way to describe power

on a particular scale R is to compute rms fluctuation in a sphere of radius R, i.e.,

σ2
R
= 〈δ2

R
(x)〉, where

δ2
R
(x) =

∫

d3 x ′δ(x′)WR(x− x′). (1.99)

Here WR(x) = 1 for x < R and 0 otherwise, and it is known as the tophat window

function. In terms of power spectrum P(k), the rms fluctuation σR can be reduced

as

σ2
R
=

1

2π2

∫

P(k)W 2
R
(k)k2dk, (1.100)

where, WR(k) is the Fourier coefficient of tophat window function. For more details

on correlation function, power spectrum and other statistical quantities see [56, 87]

.
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Figure 1.8: Schematic diagram showing how real space space shapes change in
redshift space. Darker shades represent higher oder of clustering.

1.5.5 Peculiar Velocity and Redshift Space Distortion

The distances of galaxies are measured through their redshift. The measured red-

shift of a galaxy includes contribution of peculiar velocity. So, there is an error in

distance measurement. Due to the peculiar velocity the position of a galaxy in red-

shift space is actually distorted in comparison with the real space. Let us consider

a slightly overdense spherical region of galaxies. In this region, galaxies will move

towards the centre of overdense region. The galaxies closer to us move away from

us and appear farther from us than they actually are. Similarly, the galaxies of other

side move toward us and appear closer to us than they actually are. Because of

this, there is an apparent quadrupole moment in a circular overdense region. In

figure 1.8, we schematically show how the actual shapes of underdense, overdense

and non-linear structures change in redshift space. In nonlinear overdense region

the nature of radshift space distortion is different from linear region. In nonlin-

ear region, the sign of quadrupole moment is opposite to that in linear region. We

restrict ourselves to linear overdensity for the purpose of our discussion.

To extract the correlation function or power spectrum from some redshift survey,

we need first to find out how these distorted quantities are related to their true real
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space spectrum. This relation was derived for linear theory by Nick Kaiser [91]. Up

to the first oder, the over-density in redshift space is sum of the over-density in real

space and contribution due to peculiar velocity [88], i.e.,

δs(x) = δ(x)−
∂

∂ x

�

v(x) · x̂
H0

�

. (1.101)

Here subscript ‘s’ is for quantity in redshift space. The second term in the right

hand side is due to the peculiar velocity. In the distant observer approximation the

Fourier-transformation of equation (1.101) reduced to [88]

δs(k) =
�

1+ f µ2
k

�

δ(k). (1.102)

Here µk is the cosine of the angle between wevevector k and the line of sight. Quan-

tity f is the dimension less linear growth rate, define as,

f =
d ln δ

d ln a
. (1.103)

Since f µ2
k
> 0, the overdensity in redshift space appears larger than in the real

space. From equation (1.102), we can calculate the relation for power spectra in

redshift space and real space as [88]

Ps(k) = P(k)
�

1+βµ2
k

�2
. (1.104)

Here the parameter β accounts for the fact that the mass density δ is not necessarily

equal to the galaxies overdensity δg . The velocity samples the mass density, i.e.

v∝ δ∝ δg/b, where ‘b’ is bias defined as

b =
δg

δ
, (1.105)

and hence the parameter β = f /b. According to the equation (1.104), by measuring

the redshift space distortion we can compute β , a combination of linear growth rate

and bias. This can be achieved by measuring the ratio of the quadrupole to the

monopole of the power spectrum [9, 88, 92].

1.6 Statistical Analysis and Observational Data

A model is characterized by a hypothesis and set of parameters. Bayesian statistics

has been a standard tool for testing viability of a model, estimation of likelihood,
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and for comparison between models. We have a rich sets of cosmological data to

achieve this purpose. According to the Bayes theorem, the posterior probability of

a model parameters p ≡ (p1, p2, ...) of a model M for a given data set D is given

by [93, 94, 95]

P (p|D, M) =
P (D|p, M)P (p|M)
P (D|M) . (1.106)

Here, P (p|M) is prior probability distribution of p before arrival of data , and it

is often taken to be flat. Quantity P (D|p, M) is likelihood of data. Denominator

P (D|M) is a normalization constant, known as ‘Bayesian evidence’. It is to ensure

that the posterior is normalized, hence given by [93, 94, 95]

Evidence ≡P (D|M) =
∫

P (D|p, M)P (p|M)dp. (1.107)

Bayesian evidence is an important quantity for model selection. Clearly, posterior of

parameter p can be calculated by computing the likelihood P (D|p, M).

1.6.1 Likelihood and Confidence Intervals

By maximizing likelihood L (p) ≡ P (D|p, M) we can find most likely parameters

for given data. If the distribution of data points are Gaussian then the likelihood

L (p)∝ ex p(−χ2/2), where χ2 is defined as [93, 94, 95, 96]

χ2(p) =

N
∑

i, j=1

[X th,i(p)− Xobs,i]C
−1
i, j [X th, j(p)− Xobs, j], (1.108)

where N is the number of data points in the dataset, X th is a vector of the theoretical

value of corresponding observable, and Xobs is a vector of the observational values.

Ci j is the covariance matrix of data points. The posterior distribution of a particular

parameter in the set p≡ (p1, p2, ...) can be computed by marginalizing χ2(p) over

other parameters, e.g., for parameter p1

χ2(p1) =

∫

χ2(p)e−χ
2(p)/2d(p2, p3, ...)

∫

e−χ2(p)/2d(p2, p3, ...)
. (1.109)

Similarly, distribution of χ2 in two dimensional parameter space (pi, p j) can be

estimated by marginalizing χ2(p) over rest of the parameters.

Clearly, we can maximize likelihood by minimizing χ2(p). A point in the param-

eter space corresponding to its minimum value, χ2
min
(p), provides values of most
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likely parameters. A given confidence region around this point can be estimated

using condition χ2 < χ2
min
+∆χ2. The value of ∆χ2 depends on the number of

parameters and required confidence limit. It can be calculated from χ2-distribution

function [97], given by

F(z) =
1

2m/2Γ (m/2)

∫ z

0

e−u/2u(m−2)/2du. (1.110)

Here, m is the number of parameters and z = ∆χ2 which is to be added to χ2
min

to

get required confidence interval. For two dimensional parameter plane m = 2, then

equation (1.110) reduces to z = −2 ln[1 − F(z)]. Therefore, in two dimensional

parameter space 68%, 95% and 99% confidence intervals correspond to ∆χ2 =

2.28, 5.99 and 9.21.

1.6.2 Bayesian Model Comparison

The Bayesian evidence or marginal likelihood, defined in equation (1.107), is a mea-

sure of model’s performance. Two models M0 and M1 can be compare using ration

of their posterior probabilities or posterior odds [94, 95], as

P (M0|D)
P (M1|D)

=
P (D|M0)

P (D|M1)

P (M0)

P (M1)
. (1.111)

Here, first term in right hand side is a ratio of Bayesian evidences of models, and

known as ‘Bayes factor’, given by

B01 ≡
E0

E1

=
P (D|M0)

P (D|M1)
. (1.112)

Bayes factor indicates the change in relative odds between models after arrival of

data. If B01 > 1 then we conclude model that M0 is more favorable by the data, if not

then conclusion is otherwise. An empirically calibrated scale for strength of evidence

to compare the models is provided by the Jeffrey’s scale [98] given in table 1.1.

For a complex model with many parameters, it is difficult to solve integration

in the equation (1.107). There are alternate information criteria for model selec-

tion, simpler to use, those depends only on maximum likelihood rather than the

likelihood over whole parameter space. Example of such information criteria in-

cludes the Akaike information criterion (AIC) and the Bayesian information crite-

rion (BIC) [93, 94, 95]. These criteria are derived using some assumptions, e.g.,

Gaussianity or near-Gaussianity of the posterior distribution [93, 94]. These as-
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|ln B01| odds Probability Strength of evidence
< 1.0 ® 3 : 1 < 0.750 Inconclusive
1.0 ∼ 3 : 1 0.750 Weak
2.5 ∼ 12 : 1 0.923 Moderate
5.0 ∼ 150 : 1 0.993 Strong

Table 1.1: Empirical Jeffrey’s scale for the strength of evidence when comparing two
models M0 versus M1 [98]. The probabilities (posterior) are calculated assuming
non-committal priors on the two competing models, i.e. P (M0) = P (M1) = 1/2
and P (M0) +P (M1) = 1 [96].

sumption may not be valid in real situations. The AIC and BIC for a model are

defined as [93, 94, 95]
AIC = −2 ln Lmax + 2k

BIC = −2 ln Lmax + k ln N
(1.113)

where, Lmax is the maximum likelihood, k is the number of parameters of model,

and N is the number of data points. The best model is one which minimizes AIC

and BIC. It is assume that data points are independent and identically distributed

[93]. In presence of parameter degeneracy, inclusion of an unconstrained parame-

ters is do not penalized by evidence, but by the AIC and BIC [93]. Therefore, one

should consider all these boundaries before selection of information criteria to use

it for model selection. A detail discussion on Bayesian model selection can be found

in [93, 94, 95, 96, 97]. In next sections, we describe the data sets used in this thesis

with the statistical tool described above to find constraints on the model parameters.

These include the Baryon acoustic oscillation data, the Hubble parameter data, the

Supernova type Ia data, and the redshift space distortion data.

1.6.3 Baryon Acoustic Oscillation Data

The oscillation feature in the correlation function of large scale structure (LSS) is

known as the Baryon Acoustic Oscillations (BAO) [99, 100, 101, 102, 103, 104, 105].

The opposing forces of gravity and radiation pressure in the pre-recombination baryon

- photon plasma resulted in acoustic waves in it. These waves left their imprint on

the baryonic clustering and gave rise to the BAO peaks. The characteristic angular

scale of these peaks is given by θA = rs(zd)/DV (z), where DV is effective distance

ratio, and it can be calculated using the angular diameter distance DA(z) as follows

DV (z) =

�

(1+ z)2DA(z)
2 cz

H(z)

�1/3

. (1.114)
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Measurement Redshift BAO data Ci j

DM(rd, f id/rd) 0.38 1512 624.707 23.729 325.332 8.34963 157.386 3.57778
H(rd/rd, f id) 0.38 81.2 23.729 5.60873 11.6429 2.33996 6.39263 0.968056
DM(rd, f id/rd) 0.51 1975 325.332 11.6429 905.777 29.3392 515.271 14.1013
H(rd/rd, f id) 0.51 90.9 8.34963 2.33996 29.3392 5.42327 16.1422 2.85334
DM(rd, f id/rd) 0.61 2307 157.386 6.39263 515.271 16.1422 1375.12 40.4327
H(rd/rd, f id) 0.61 99.0 3.57778 0.968056 14.1013 2.85334 40.4327 6.25936

Table 1.2: BAO data from Baryon Oscillation Spectroscopic Survey (BOSS) DR12
[2]. Here, the comoving angular diameter distance DM is in M pc and the Hub-
ble parameter H is in km s−1M pc−1. The fiducial value of sound horizon rs, f id =

147.78 M pc. The last six columns show the covariance elements of matrix Ci j.

Measurement Redshift BAO data Ci j

DA(rd, f id/rd) 0.32 956 0.77636E+03 0.43793E+02
H(rd/rd, f id) 0.32 95.0 0.43793E+02 0.16253E+02
DA(rd, f id/rd) 0.59 1421 0.53559E+03 0.27875E+02
H(rd/rd, f id) 0.59 96.7 0.27875E+02 0.74866E+01

Table 1.3: BAO data for LOWZ and CMASS at redshift z = 0.32 and 0.59 respectively
taken from [106]. The fiducial value of sound horizon rs, f id = 147.66 M pc. Last
four columns show the elements of covariance matrix Ci j for both the data sets.

and rs is sound horizon at drag epoch zd , which is given by

rs(zd) =

∫ ∞

zd

cs(z)

H(z)
dz, (1.115)

We use the BAO data from Baryon Oscillation Spectroscopic Survey (BOSS)

DR12 [2] which provides 6 data points (see table-7 of Alam et al.) at redshifts

z = 0.38, 0.51, 0.61 in terms of H(z)rs(zd)/rs, f id and DM (z)rs, f id/rs(zd) where

rs, f id = 147.78 M pc and DM(z) = (1 + z)DA(z) is the comoving angular diameter

distance. The sound horizon rs(zd) given by [107]

rs(zd) =
55.154exp[−72.3(ων + 0.0006)2]

ω0.12807
b

ω0.25351
cb

Mpc, (1.116)

where ων = Ωνh
2 = 0.0107(

∑

mν/1.0eV ), ωb = Ωbh2 and ωcb = Ωmh2 − ων.
Symbols Ων, Ωb and Ωm represent density parameters of neutrinos, baryons and

non-relativistic matter (baryonic matter + dark matter). We set mass of neutrinos
∑

mν = 0.06 eV and Ωbh
2 = 0.02225 with h = 0.676. We have tabulated this data

along with the covariance matrix Ci j in table 1.2.

We also use BAO data from LOWZ and CMASS at redshift z = 0.32 and 0.59

as given in reference [106]. Here rs, f id = 147.66 Mpc and the approximation for
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Sample Redshift A(z)
6dFGS 0.106 0.526± 0.028
SDSS 0.2 0.488± 0.016
SDSS 0.35 0.44± 0.016

WiggleZ 0.44 0.474± 0.034
WiggleZ 0.6 0.442± 0.020
WiggleZ 0.73 0.424± 0.021

Table 1.4: BAO data from 6dFGS, SDSS DR7 and WiggleZ in term of the acoustic
parameter A(z).

rs(zd) is the same as shown in equation (1.116). These data sets are tabulated in

table 1.3. We also use older BAO data from 6dFGS, SDSS DR7 and WiggleZ at

redshifts z = 0.106, 0.2, 0.35, 0.44, 0.6 and 0.73. These are listed in table-3

of [108] in term of the acoustic parameter. The acoustic parameter [109] is

A(z) =
100DA

p

Ωmh2

cz
. (1.117)

Here c is the speed of light in vacuum. In table 1.4 we show these older BAO data

set in term of the acoustic parameter.

1.6.4 Hubble Parameter Data

We also use the measurement of cosmic expansion rate in terms of the Hubble pa-

rameter. The Hubble parameter can be computed from the Friedmann equation and

is given by

H(z) = H0

�

Ωm0(1+ z)3 +Ωr0(1+ z)4 +Ωφ
�1/2

, (1.118)

where H0 is the present value of the Hubble parameter. The Hubble parameter data

set [62, 110, 111, 112, 113, 114, 115, 116] consists of values of Hubble parameters

H(z) at different redshifts and associated errors in the measurement. In table 1.5 we

show the Hubble parameter data set (H(z) data set) up to redshift z = 2.36 along

with the references. This data set is also compiled and listed in table-1 of [110].

The table contains values of the Hubble parameters at 38 different redshifts. Out

of 38 we use only 32 (listed in table 1.5 ) points as we do not consider three data

points taken from Alam et. al.(2016) at redshifts z = 0.38, 0.51, 0.61 and three

data points taken from Black et. al.(2012) at redshifts z = 0.44, 0.6, 0.73. We do

it to make data sets independent because we include these data points in our BAO

dataset (see subsection 1.6.3).
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z H(z) σH Reference z H(z) σH Reference
0.070 69 19.6 [117] 0.480 97 62 [113]
0.090 69 12 [118] 0.593 104 13 [114]
0.120 68.6 26.2 [117] 0.680 92 8 [114]
0.170 83 8 [118] 0.781 105 12 [114]
0.179 75 4 [114] 0.875 125 17 [114]
0.199 75 5 [114] 0.880 90 40 [113]
0.200 72.9 29.6 [117] 0.900 117 23 [118]
0.270 77 14 [118] 1.037 154 20 [114]
0.280 88.8 36.6 [117] 1.300 168 17 [118]
0.352 83 14 [114] 1.363 160 33.6 [119]

0.3802 83 13.5 [120] 1.430 177 18 [118]
0.400 95 17 [118] 1.530 140 14 [118]

0.4004 77 10.2 [120] 1.750 202 40 [118]
0.4247 87.1 11.2 [120] 1.965 186.5 50.4 [119]
0.4497 92.8 12.9 [120] 2.340 222 7 [105]
0.4783 80.9 9 [120] 2.360 226 8 [121]

Table 1.5: Hubble parameters H(z) and error in its measurements σH at different
redshift. These quantities are in km s−1M pc−1.

1.6.5 Supernova Type Ia Data

The supernova type Ia is supernova explosion of a white dwarf star. Supernova are

classified by their light curves and supernova type Ia is characterized by the absence

of H-line and presence of strong Si absorption lines in the spectra. When a white

dwarf star accreting mass from its binary companion crosses the Chandrasekhar limit

of 1.4M⊙ it explodes [122]. This is a supernova explosion of Type-Ia. Since at the

time of explosion its mass is known we can calculate the luminosity of explosion and

hence its luminosity distance [4, 5, 63, 123, 124, 125, 126, 127, 128, 129]. The

supernova Ia serves is therefore a ‘standard candle’ [130]. Therefor, observation of

the supernova Ia provide us a means to find out distance-redshift relation. The the-

oretical value of the luminosity distance of Supernova-Ia which occurred at redshift

z is given by equation (1.58).

For our analysis, we use the supernova Ia data from Supernova Cosmology Project

(SCP) “Union2.1” SN Ia compilation. In SN-Ia data, we have distance moduli of

580 supernovae up to redshifts z = 1.414 along with their associated observational

error [123]. The theoretical values of distance modulus can be calculated using

luminosity distance as

µ= 5log(dL)− 5, (1.119)

here dL is in the unit of 10 pc and µ= m−M is the distance modulus, m and M are
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z f σ8(z) σ f σ8
Ω

f ed.
m0 Ref.

0.02 0.428 0.0465 0.3 [132]
0.02 0.398 0.065 0.3 [133, 134]
0.02 0.314 0.048 0.226 [134, 135]
0.10 0.370 0.130 0.3 [136]
0.15 0.490 0.145 0.31 [137]
0.17 0.510 0.060 0.3 [131]
0.18 0.360 0.090 0.27 [138]
0.25 0.3512 0.0583 0.25 [139]
0.32 0.384 0.095 0.274 [140]
0.37 0.4602 0.0378 0.25 [139]
0.38 0.440 0.060 0.27 [138]
0.44 0.413 0.080 0.27 [102]
0.59 0.488 0.060 0.307115 [141]
0.60 0.550 0.120 0.3 [142]
0.60 0.390 0.063 0.27 [102]
0.73 0.437 0.072 0.27 [102]
0.86 0.400 0.110 0.3 [142]
0.978 0.379 0.176 0.31 [143]
1.40 0.482 0.116 0.27 [144]
1.23 0.385 0.099 0.31 [143]
1.526 0.342 0.070 0.31 [143]
1.944 0.364 0.106 0.31 [143]

Table 1.6: Values of measurements of f σ8(z) at different redshift along with error
and values of fiducial Ω f ed.

m0 . Last column shows the references from where values
have been taken.

the apparent and absolute magnitude respectively of the supernova.

1.6.6 Redshift Space Distortion Data

In section 1.5.5, we discussed how by measuring radshift space distortion we can

find out the parameter β (= f /b) which is combination of growth rate of matter f

and galaxy bias b. The parameter β is sensitive for bias, which varies in the range

b ∈ [1, 3] for different observations [9]. This makes difficult to combine data from

different observations and decreases the reliability of data set. The more reliable

quantity is the combination f (z)σ8(z) = f σ8(z), where σ8(z) is rms fluctuations of

the linear density field within spheres of radius R = 8h−1M pc. It is independent of

bias and can be obtained either by redshift space distortion or weak lensing [9, 92,

131].

In table 1.6, we show the compilation f σ8(z) from different observations based
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on redshift space distortion measurement along with corresponding error in mea-

surements, fiducial cosmology and references. In our analysis we use these 22

data points from redshift 0.02 to 1.944, out of which 18 points are compiled in

table III of [9] with their fiducial cosmology and references. This compilation is

named as ‘Gold-2017’ data set. We have added four more data points at redshift

0.978, 1.23, 1.526 and 1.944 from [143] for our analysis. All these 22 data points,

with the value of f σ8(z), error, fiducial cosmology and corresponding references,

are tabulated in table I of [92].

CWig gleZ = 10−3







6.400 2.570 0.000

2.570 3.969 2.540

0.000 2.540 5.184





 (1.120)

CSDSS−I V = 10−2











3.098 0.892 0.329 −0.021

0.892 0.980 0.436 0.076

0.329 0.436 0.490 0.350

−0.021 0.076 0.350 1.124











(1.121)

In this data set, three WiggleZ points [102] are correlated and their covariance ma-

trix is given in equation (1.120). The four high recent high redshift data point

from [143] are also correlated and their covariance matrix is given in equation (1.121).

All these data are actually depended on fiducial model used to convert redshift ot

distance [9]. The fiducial model for data points in table 1.6 is flat-ΛC DM with value

ofΩm0 given in column-4. To use this data set we first need to correct for this fiducial

cosmology. We explain the method, as suggested in [9], to do this in section 3.3.

The aim of this thesis is to explore cosmology in context of the tachyon dark

energy model. In first part of this work, we assume tachyon dark energy as a ho-

mogeneous field and update constraints on this model as well as on cosmological

parameters. For this work, we use low redshift background data (described in sec-

tion 1.6). Then in light the parameter allowed by observation, we explore the ex-

pansion history of the Universe. This work is explained in chapter 2. Effect of per-

turbations in tachyon dark energy on matter clustering is explained in the chapter 3.

We compare the evolution of linear growth function and growth rate of matter for

tachyon models with the ΛC DM model. Using the ‘redshift space distortion’(RSD)

data we find constraints on Ωm − w plane, and analyze the tension between Plank

CMB data and growth rate data. In chapter 4 we present summary of this thesis.
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Chapter 2

Low Redshift Constraints on Tachyon

Dark Energy

This chapter is adapted from following published article

Avinash Singh, Archana Sangwan and H. K. Jassal, Low redshift observational con-

straints on tachyon models of dark energy, Journal of Cosmology and Astroparticle

Physics 04 (2019)047. arXiv:1811.07513

In this chapter, we discuss the cosmological model in which dark energy is de-

scribed by a homogeneous tachyon field. We consider two models; one with an

inverse power law potential and another with an exponential potential which have

been the default potentials used for studying tachyon field cosmology. We revisit

the constraints on tachyon dark energy model with new datasets, Baryon Acoustic

Oscillations (BAO) [99, 100, 101, 102, 103, 104, 105], Supernova Type Ia (SN-Ia)

[4, 5, 63, 123, 124, 125, 126, 127, 128, 129] and direct measurements of Hub-

ble parameter (H(z)) [62, 110, 111, 112, 113, 114, 115, 116]. Our motivation is

to compare the constraints on the tachyon models from previous studies using the

same datasets and to check if the non-canonical scalar field models prefer a differ-

ent combination(s) of cosmological parameters. In this analysis, we have restricted

ourselves to the low redshift datasets. We obtain stringent constraints on tachyon

field parameters, by way of combining these datasets. The structure of this chapter

is as follows. In the next section 2.1, we discuss the background cosmology in the

presence of a tachyon field and two different scalar potentials. We discuss our re-

sults in section 2.2 for both the tachyon models, and summarize as well as conclude

the chapter in section 2.3.
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2.1 Solutions of Cosmological Equations

We consider a universe filled with a minimally coupled system of non-relativistic

matter, radiation (relativistic components) and scalar field. The dynamics of the

Universe, then, is governed by the Friedman equations, which are given by

ȧ2

a2
=

8πG

3

�

ρm +ρr +ρφ
�

ä

a
= −4πG

3
(ρ + 3P),

(2.1)

where ρ = ρm + ρr + ρφ . The quantities ρm and ρr are energy densities of non-

relativistic matter(baryonic matter + dark matter ) and relativistic matter respec-

tively, whereas ρφ represents energy density of the tachyon field. As explained in

section 1.2.3, ρm ∝ a−3 and ρr ∝ a−4, where ‘a(t)’ is scale factor of the expand-

ing Universe. With an arbitrary potential V (φ), the energy density ρφ and pressure

Pφ of tachyon field is given by equation (1.51). The equation of state parameter

of tachyon scalar field, wφ = φ̇
2 − 1, is theoretically bounded between -1 and 0.

Therefore, the tachyon field has no phantom like equation of state. The dynamics

of this non-canonical field is explained by equation (1.52). In next subsections, we

introduce the tachyon field potentials we have used for our analysis, and derive the

dimensionless form of the required equations.

2.1.1 The Inverse Square Potential

A potential which describes a tachyon scalar field model of dark energy is given as

V (φ) =
n

4πG

�

1− 2

3n

�1/2

φ−2, (2.2)

where n determines the amplitude of the potential. The inverse power-law poten-

tials are known as the ‘Ratra-Peebles potentials’ [18, 145, 146], in quintessence.

The inverse square potential leads to a cosmological evolution of the form a = tn

[38]. Cosmological dynamics of tachyon scalar field dark energy with this po-

tential have been studied in [37], and the stability analysis of this potential has

been done in [39, 147, 148]. The cosmological dynamics depend on the quantity

λ = −MnV−3/2dV/dφ, which is a constant. With the slow-rolling condition, this

leads to a stable critical fixed point for this potential which can generate a late time
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accelerated expansion (with n > 1). This fixed point is an attractor which leads to

Ωφ = 1 and the equation of state parameter wφ = 2/3n−1 asymptotically. There still

remains the requirement of a tuning, which is needed for a sufficient acceleration

at the present time [39, 147].

To numerically solve the cosmological equations, we transform the above equa-

tions by introducing the following dimensionless variables

y =
a(t)

a(t in)
, ψ =

φ(t)

φ(t in)
,

x = Hin t ,

(2.3)

here ’t in’ represents the initial time. The equations can then be written as

y ′ = y



Ωm,in y−3 +Ωr,in y−4 +
Ωφ,in

p−wφ,in

ψ2
q

1−φ2
inH2

inψ
′2





1/2

,

ψ′′ =
�

1−φ2
in

H2
in
ψ′

2�
�

2

φ2
inH2

inψ
− 3ψ′

y ′

y

�

,

(2.4)

The prime on superscript denotes derivative with respect to x = Hin t , and different

Ω’s are dimensionless density parameters defined as the ratio of the density of the

relevant component and critical density ρcr =
3H2

0

8πG
. Here, we have assumed the

Universe to be spatially flat and hence Ωtotal = Ωm,in +Ωr,in +Ωφ,in = 1.

We integrate the equations numerically from the present time (t in = t0) to early

times, and Ωm0, φ0H0 and φ̇0 or wφ0 are the parameters which are varied. The

amplitude of the potential can be constrained by using the relation

2n

3

�

1− 2

3n

�1/2

= Ωφ0φ
2
0H2

0

Æ

−wφ0. (2.5)

To calculate the value of n from the above equation we need to solve the polynomial

equation

12n3 − 8n2 − 27q2n = 0, (2.6)

where q = Ωφ0φ
2
0H2

0

p−wφ0 is a positive number. The solution of equation (2.6) for

accelerated expansion (n> 1) is

n =
1

3
+

1

6

Æ

4+ (9q)2, (2.7)
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with the condition that q > 2
p

3
9 . The value of the present day radiation density

parameter Ωr0 is [149]

Ωr0 =
Ωm0

1+ zeq

, (2.8)

where zeq = 2.5× 104
Ωm0h2(Tcmb/2.7K)−4, Tcmb = 2.7255K . The initial conditions

for the numerical solutions are

y0 = 1, ψ0 = 1, (2.9)

and ψ′0 can be calculated using relation

ψ′ =
φ̇

φ0H0

=

p

1+wφ

φ0H0

. (2.10)

2.1.2 The Exponential Potential

The exponential potential for tachyon scalar field dark energy is given by

V (φ) = Va exp (−φ/φa) , (2.11)

where amplitude Va and φa are the scalar field parameters. Cosmological dynamics

with this potential have also been studied in [37], and the stability analysis of this

potential has been done in [39, 147, 148]. For this potential, λ→∞ as φ →∞.

This is a fixed point for which Ωφ ≃ 0 and a dust like equation of state. Since λ

changes dynamically [147], the Universe goes to a temporary accelerated phase for

λ ® 1 and enters a decelerated phase for λ ≫ 1. In other words, the present day

acceleration is temporary, and the Universe enters a phase of decelerated expan-

sion once again. This evolution of the Universe, therefore, avoids the future event

horizon problem.

Introducing the same dimensionless variables as introduced in the last subsec-

tion, we can transform the required equations as

y ′ = y



Ωm,in y−3 +Ωr,in y−4 +
Ωφ,in

p−wφ,ine
φin
φa
(1−ψ)

q

1−φ2
in

H2
in
ψ′2





1/2

,

ψ′′ =
�

1−φ2
in

H2
in
ψ′

2�
�

φin/φa

φ2
in

H2
in

− 3ψ′
y ′

y

�

,

(2.12)
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We therefore have three model parametersφ0H0 ,φ0/φa and φ̇0 or wφ0 to constrain.

Apart from these parameters, there are cosmological parametersΩm0 and H0. In this

case, the amplitude of potential can be calculated by the relation

8πG

3H2
0

Va = Ωφ0eφ0/φa
Æ

−wφ0, (2.13)

Structure of these equations suggests that −1 ≤ wφ0 = φ
2
0H2

0ψ
′
0

2 − 1 < 0. For this

potential, we also use the same initial conditions given in equation (2.9) and (2.10).

2.2 Results and Discussion

We use low redshift data sets of Baryon Acoustic Oscillations (BAO), Supernova

Type Ia (SN-Ia) and direct measurements of Hubble parameter (H(z)) to find out

the likelihood of the parameters. These data sets are described in section 1.6 of

this thesis. We do the standard χ2 analysis to constrain parameters for the tachyon

dark energy. Value of χ2
BAO

for the Baryon Acoustic Oscillation data is the sum of χ2

over all redshifts given in subsection 1.6.3. We calculated χ2 for DR12 data using

the expression given in the equation (1.108). We employ the covariance matrix Ci j

taken from the online files of Alem et al. (2017) and Chi-Hsun et al. (2017). Value

of χ2 for older BAO data (BAO data from 6dFGS, SDSS DR7 and WiggleZ), H(z)

data and SN-Ia data is calculated using

χ2
olderBAO/Hz/SN

=

N
∑

i=1

�

OD(zi)−OM(zi,p)

σi

�2

, (2.14)

Here OD(zi) is the theoretical value of the observable at redshift zi, and OM (zi,p)

is its value for model at redshift zi with the set of parameters p. The quantity σi

is the error in the measurement of the observable OD(zi). Here observable ‘O’ is

the acoustic parameter A(z) for the older BAO data, Hubble parameter for the H(z)

data and distance modulus µ(z) for the SN-Ia data. We then find the maximum of

likelihood (e−χ
2
tot ) of the parameter space by minimizing χ2

tot
= χ2

BAO
+χ2

Hz
+ χ2

SN
.

2.2.1 Constraints on the Inverse Square Potential

As mentioned in section 2.1.1, we constrain three parameters, Ωm0, wφ0 and φ0H0

for this potential. Since only the square of the quantity φ0H0 appears in the equa-
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Figure 2.1: In this figure, the acoustic parameter A(z), the Hubble parame-
ter H(z) and the distance modulus µ(z) are shown as functions of redshift z

for inverse square potential (2.2). The data points and error bars are taken
from [108, 110, 123]. There are six very closely separated solid lines representing
the model with inverse square potential in each plot for the values of the parame-
ter φ0H0 = 2.0, 3.0, 4.0, 5.0, 6.0 and 7.0. The values of other parameters Ωm0

and wφ0 are the corresponding best fit values taken from each row of the table 2.1.
There is a good agreement of the theoretical quantities with their observed values.
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Figure 2.2: The figure shows plots of the acoustic parameter A(z), the Hub-
ble parameter H(z) and the distance modulus µ(z) as a function of redshift z

for the exponential potential (2.11). The data points and error bars are taken
from [108, 110, 123]. In each panel this figure too, there are six (theoretical)
solid lines representing tachyon dark energy model with exponential potential
for φ0H0 = 0.08, 0.09, 0.1, 0.3, 0.5 and 0.7. We have fixed the parameter
φ0/φa = 0.1 and the values of other parameters Ωm0 and wφ0 are the corresponding
best fit values taken from each row of the table 2.2.
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Figure 2.3: In this figure, we show χ2 as a function of the parameter φ0H0 for BAO
data (top panel), H(z) data (bottom left) and SN-Ia data (bottom right) respectively.
Here, we have fixed Ωm0 = 0.285, whereas the red, green, blue, sky-blue and pink
lines represent the value of wφ0 to be −1.0, − 0.95, − 0.90, − 0.85 and −0.80
respectively.
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Figure 2.4: The figure shows 1σ, 2σ and 3σ confidence contours between wφ0 and
φ0H0 for tachyon model with inverse square potential. Top left and right panels
correspond to BAO data and H(z) data, whereas bottom left panel corresponds to
SN-Ia data for fixed value of present matter density parameter Ωm0 = 0.285. In the
bottom right panel, we show the marginalized confidence contours in the wφ0−φ0H0

plane for combined data (BAO + H(z) + SN-Ia).
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tions, we need to consider only one of the two, positive or negative branches. There

is a degeneracy between parameters wφ0 andφ0H0; these parameters are correlated.

In top panel of figure 2.1, we plot the acoustic parameter A(z) obtained from

the BAO data from 6dFGS, SDSS DR7 and WiggleZ [108]. In bottom left and right

panels we have shown the Hubble parameter H(z) and the distance modulus µ(z) as

a function of z respectively. Data points and error bars are as in [110, 123]. There are

six (overlapping) theoretical solid lines in each of these plots representing inverse

square potential (2.2). To draw these curves we have taken the best fit value of

parameters φ0H0, Ωm0 and wφ0 from each row of table 2.1. We can see that there is

a good agreement of the theoretical curves with data.

The values of χ2 vs φ0H0 for Ωm0 = 0.285 are plotted in figure 2.3. The five

different colours represent different values of wφ0 from −1.0 to −0.80 in the steps

of 0.05. We can see that if wφ0 is close to−1.0 (red and green curves) all larger value

ofφ0H0 are allowed. If we fix wφ0 to a value away from−1.0, we can get a minimum

in χ2 curves and fixing this parameter is equivalent to fixing φ̇0 as wφ = φ̇
2−1. Since

we are interested in constraining Ωm0 and wφ0, we choose to fix φ0H0. Degeneracy

between these parameters can also be seen in figure 2.4, where we have shown

1σ, 2σ and 3σ contours in the wφ0 - φ0H0 plane for the three datasets. After

marginalizing over Ωm0, we find that φ0H0 ≥ 0.775 at 3σ confidence level using

combined data. The marginalized contours for combine data (BAO + Hz + SN-Ia)

are shown in the bottom right panel of figure 2.4. It can be clearly seen that there

is a bound on the lower value of φ0H0 but not on its upper value. We constrain the

parameter space of Ωm0−wφ0 and shown its variation with φ0H0 in figure 2.5.

For each of these contours, we have fixed the value of φ0H0. The most stringent

constraints come from the BAO data, and combined constraints limit the parameter

space to a very small range. Value of Ωm0 is well constrained by combined dataset

at 0.285+0.023
−0.022 with 3σ confidence, and this remains at almost the same value with

variation in parameter φ0H0. However, the constraint on wφ0
depends on the value

of φ0H0. As we increase the value of φ0H0, all the three datasets prefer a value

of wφ0 close to −1. In table 2.1 we have shown, the minimum value of χ2 for a

fixed value of φ0H0 and the best fit value of parameters Ωm0 and wφ0 with the 3σ

confidence limit for combined data. We started with φ0H0 = 2.0 and increased its

value in unit step. Here we can see that minimum value of χ2 saturates for a larger

value of φ0H0, and so does the parameter Ωm0. In this background cosmological

model, we can tune the parameter φ0H0 to be very close to wφ = −1.0. In the strict

sense, it is not possible to constrain φ0H0 using these background data. A large
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Figure 2.5: The plots show contours in the Ωm − wφ plane, for constant φ0H0 for
all the three and combined datasets for the inverse square potential. Contours in
red, orange and blue are for BAO, H(z) and SN-Ia data respectively. Black con-
tours filled with colours represent combined constraints. The value of parameter
φ0H0 = 2.0, 4.0, 5.0 and 7.0 in the top left, top right, bottom left and bottom right
panels respectively.
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φ0H0 χ2
min

Ωm0 wφ0 n

2.0 596.145 0.285+0.023
−0.022 −0.950+0.033

−0.031 [4.323,4.726]

3.0 592.045 0.285+0.023
−0.021 −0.973+0.023

−0.022 [9.445,10.250]

4.0 590.944 0.284+0.024
−0.021 −0.984+0.021

−0.015 [16.635,18.016]

5.0 590.515 0.285+0.023
−0.022 −0.990+0.019

−0.009 [25.906,27.959]

6.0 590.335 0.285+0.023
−0.022 −0.993+0.017

−0.007 [37.252,40.133]

7.0 590.285 0.285+0.023
−0.022 −0.995+0.016

−0.005 [50.659,54.504]

Table 2.1: The table lists the best fit values of Ωm0 and wφ0 along with their 3σ
confidence range for different values ofφ0H0 for inverse square potent for combined
data (BAO + H(z) + SN-Ia). In the second column minimum value of corresponding
χ2

min
have been shown. In the last column, we have shown the 3σ allowed range

of ‘n’, calculated from equation (2.7) considering 3σ confidence range of Ωm0 and
wφ0.

range of values of φ0H0 are acceptable as the background data only put a lower

bound on its value. In the last column of table 2.1, we have shown the 3σ allowed

range of ‘n’ computed from the equation (2.7) considering the 3σ confidence range

of Ωm0 and wφ0. From equation (2.5), it is clear that the amplitude of the tachyon

potential and constant ‘q’ are proportional to the value of φ2
0H2

0 , as can be seen in

the equation (2.5). This is the reason, the allowed value of ‘n’ also increases with

it. Since the Universe expands like a∝ tn for a given ‘n’, for a larger value of φ0H0

the accelerated expansion is faster in dark energy dominated era. We find that for

this model, the transition redshift is between 0.61® zacc ® 0.80.

The evolution of the matter density parameter Ωm(z)(red curves) and the dark

energy density parameter Ωφ(z)(blue curves) are shown in the bottom panel of fig-

ure 2.9. We can see that even in the matter dominated era, dark energy contributes

significantly to the energy budget. For smaller values of φ0H0, the contribution of

dark energy, in the matter dominated era, is larger than it is for larger value of this
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Figure 2.6: The figure shows 1σ, 2σ and 3σ confidence contours on wφ0 −φ0H0

plane for exponential potential. Red, orange and blue colours represent BAO, Hz
and SN-Ia data respectively. First, second and third rows are for φ0/φa = 0.01, 0.1
and 1.0. For all these plots we have set Ωm0 = 0.285.

parameter. Here it should be noted that parameter φ0H0 and wφ0 are correlated.

As we increase the value of φ0H0, matter approaches complete domination on the

expansion dynamics at large redshift.

The evolution of the equation of state of the dark energy wφ is shown in the top

panel of the figure 2.9. In the matter dominated era and before it, the equation of

state of tachyon dark energy is like that of dust. After that, it starts evolving and

make a sharp transition towards smaller value than its present value wφ0 then rises

again. For a given value of φ0H0 it maintains a constant value in the future. For the

larger values of φ0H0, this constant value for future evolution is closer to -1.0 as a

larger value of φ0H0 prefers a cosmological constant like behaviour.
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2.2.2 Constraints on the Exponential Potential

For the exponential potential, we need to constrain parameters φ0H0,φ0/φa, wφ0

and Ωm0. Rewriting the potential as V = e
ln(Va)− φ

φa , we see that there is an explicit

degeneracy between Va and φin, i.e., a change in Va and the corresponding change

in φin leads to the same Vin. Since we have replaced Va by the other parameters

shown in equation (2.13), this degeneracy reflects in degeneracy between φ0/φa

and φ0H0.

In figure 2.2 we show the agreement between data and theory with exponential

potential (2.11). We plot the acoustic parameter A(z), the Hubble parameter H(z)

and the distance modulus µ(z) as a function of redshift z along with the data points

and the error bars, taken from [108, 110, 123]. There are six overlapping theoretical

curves in each of these plots representing the exponential potential. To draw these

theoretical curves, we have taken the best fit values of the parameters φ0H0, Ωm0

and wφ0 from each row of table 2.2.

To show the degeneracy mentioned above, we first plot the 1σ, 2σ and 3σ con-

tours in wφ0 −φ0H0 plane in figure 2.6. In these plots, we have fixed Ωm0 = 0.285

and first, second and third row are for φ0/φa = 0.01, 0.1 and 1.0. We can see

that all datasets (BAO, Hz and SN-Ia) have lower bound on φ0H0. In figure 2.7 we

show marginalized confidence contours for combination of all the three data sets.

We can see that the lower bound on the parameter φ0H0 depends on the value of

φ0/φa; for φ0/φa = 0.01 we have φ0H0 ¦ 4 × 10−3, for φ0/φa = 0.1 we have

φ0H0 ¦ 0.04 and φ0/φa = 1.0 we have φ0H0 ¦ 0.41. The lower bound on φ0H0

increases with φ0/φa. We fix the parameter φ0/φa = 0.1, and we do our analysis

by keeping other parameters free. The analysis below is equally valid for any other

value of this parameter if φ0H0 is adjusted accordingly or properly scaled.

We have shown constraints onΩm0−wφ0 plane in figure 2.8 forφ0H0 = 0.08, 0.3, 0.5,

and 0.9. Here we have fixed φ0/φa = 0.1. The contours filled with three different

colours represent result for the combination of datasets. The 3σ results for this

model are shown in table 2.2. We started from φ0H0 = 0.08 as for smaller values,

the value of χ2
min

increases sharply. We can see that for a smaller value of φ0H0 the

three datasets are not in good agreement with each other and hence a large value of

χ2
min

. As we increase the value of this parameter, the value of χ2
min

decreases and the

combined contours become smaller. The BAO data provides the tightest constraint

on Ωm0 among all; this is consistent with previous studies [13, 14]. The value of this

parameter is Ωm0 = 0.285+0.023
−0.022 with 3σ confidence for the combination of all three
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Figure 2.7: The figure shows the marginalized confidence contours on wφ0 −φ0H0

plane for combine data (BAO + Hz + SN-Ia) for exponential potential. The value
of parameter φ0/φa = 0.01, 0.1 and 1.0 in the top, bottom left and bottom right
panels respectively.
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datasets, and it is almost a constant with variation in φ0H0. On the other hand,

the value of wφ0 depends on φ0H0. In the last column of table 2.2, we have shown

the 3σ allowed range of the amplitude of the potential normalized to the present

day value of the critical density ρcr =
3H2

0

8πG
using equation (2.13), considering 3σ

confidence interval of Ωm0 and wφ0. From equation (2.13) it is clear that the am-

plitude of the potential is not explicitly dependent on φ0H0 and as we have fixed

φ0/φa = 0.1; its value only depends on other parameters Ωm0 and wφ0. Since the

values of these parameters saturates with an increase in φ0H0, the amplitude of po-

tential also approaches a fixed value unlike the case of tachyon model with inverse

square potential.

The evolution of the equation of state parameter at different epochs in the expan-

sion history of the Universe is shown in the top panel of figure 2.10. For a tachyon

field with an exponential potential, the accelerating phase is sandwiched between

two decelerating phases. In future, the Universe goes back to a decelerating phase

and duration of the accelerating phase depends on the value of φ0H0 and wφ0. In

this plot, we can see that for a smaller value of φ0H0, this duration is small and the

Universe goes to decelerating phase once again in relatively near future than it is

for larger values of this parameter. The notable thing here is that parameters φ0H0

and wφ0 are correlated and for small φ0H0 the best fit value of wφ0 is large or away

from -1.

We can see that in the matter dominated era, the dark energy behaves like a

fluid and in the near past, it starts to deviate from wφ = 0 sharply. For a larger

value of φ0H0, its deviation begins earlier. At first, it goes close to −1 depending

on its present day value wφ0 and then it rises away from −1. For a smaller value

of φ0H0 it faster approach to a fluid like equation of state wφ = 0 and as it crosses

the condition wφ ≤ −1/3 for an accelerated expansion and the Universe goes to

a decelerating phase once again. We have shown the evolution of density param-

eters Ωm(red curves) and Ωφ(blue curves) with redshift in the panel at bottom of

figure 2.10. In the matter dominated era, matter does not fully dominate the en-

ergy budget. Part of sub-dominated dark energy density parameter is large (solid

line) for a smaller value of φ0H0 and as we increase the value of this parameter

non-relativistic matter dominates the energy of the Universe completely.
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Figure 2.8: Contours in the Ωm0 - wφ0 plane for a fixed value of φ0/φa = 0.1 for
the exponential potential. Top left and right panels correspond to φ0H0 = 0.08 and
0.3 respectively, whereas bottom left and right panels are for φ0H0 = 0.5 and 0.9
respectively. The red, orange and blue colours represent BAO, H(z) and SN-Ia data
respectively. Black contours filled with colours represent combined constraints.
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φ0H0 χ2
min

Ωm0 wφ0
Va

ρcr

0.08 600.125 0.285+0.022
−0.022 −0.928+0.034

−0.038 [0.724,0.801]

0.10 595.862 0.285+0.023
−0.022 −0.949+0.030

−0.032 [0.733,0.806]

0.30 590.327 0.285+0.023
−0.022 −0.993+0.017

−0.007 [0.756,0.815]

0.50 590.136 0.284+0.024
−0.021 −0.997+0.013

−0.003 [0.759,0.815]

0.70 590.132 0.285+0.023
−0.022 −0.999+0.012

−0.001 [0.760,0.815]

0.90 590.061 0.285+0.023
−0.022 −0.999+0.011

−0.001 [0.760,0.815]

Table 2.2: Best fit values for Ωm0 and wφ0 with 3σ confidence interval for the ex-
ponential potential for different values of φ0H0 for combine data (BAO + H(z) +
SN-Ia) set. Here we have fixed the value of φ0/φa = 0.1. In the last column, we
have shown the range of amplitude of potential Va normalized by present critical
density ρcr . It is calculated from equation (2.13) considering 3σ confidence range
of Ωm0 and wφ0.

2.3 Summary and Conclusions

In this work, we have constrained parameters of the tachyon dark energy model

with an inverse square potential and an exponential potential. For this purpose,

we have used the Baryon acoustic Oscillation data (from SDSS DR12, 6dFGS, SDSS

DR7, WingleZ surveys), direct measurement of Hubble parameter (H(z)) data and

Supernova-Ia Union 2.1 data. For the inverse square potential, we have three pa-

rameters φ0H0, wφ0 and Ωm0. For the exponential potential, apart from these three,

there is an extra parameter φ0/φa. There is a lower bound on the parameter φ0H0,

and all larger values are allowed. For the inverse square potential, φ0H0 ≥ 0.775

at the 3σ confidence level. For the exponential potential, this value depends on

φ0/φa, and the lower bound on φ0H0 increases with increase in φ0/φa. Using

combined data of all three measurements, we find that the present day matter den-

sity parameter is constrained to the values Ωm0 = 0.285+0.023
−0.022 at the 3σ confidence
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for both the potentials and it remains almost same with variation in φ0H0. This

value of Ωm0 for the tachyon model is less than the value of this parameter for a flat

ΛC DM model as determined by current observations, e.g., Ωm0 = 0.295± 0.034 (

at 68% confidence using JLA data [150]), Ωm0 = 0.3089± 0.0062 (at 68% confi-

dence obtained from CMB-TT,TE,EE+ low-P + lensing+ BAO+JLA+ H0 data [66]),

Ωm0 = 0.311± 0.0056 (at 68% confidence obtained from CMB-TT,TE,EE+ low-P +

lensing+ BAO data [60]) and Ωm0 = 0.310± 0.005 (at 95% confidence using BAO

DR12 + SN-Ia data [2]). The value of Ωm0 for tachyon model is in agreement with

its value for flat ΛC DM model constrained by the JLA data within 1σ. There is a

tension with constraints from Planck and BAO DR12 data.

The value of wφ0 depends on φ0H0. For a smaller value of φ0H0, the equation of

state parameter wφ0 has a larger value and as its value increases, wφ0 approaches

−1. A large range of φ0H0 is allowed by the background data. The parameter φ0H0

need to be tuned to obtain the value of the equation of state parameter wφ0 which is

supported by observations (wφ0 = −1.006±0.045 [66] and wφ0 = −1.03±0.03 [60]

). This tuning is not as severe as the fine-tuning problem in ΛC DM model. This

parameter is constrained from below to a value closer to unity, and there is no upper

bound. Therefore the tuning of this parameter is not severe. The potentials, we

have used in this paper, have also been extensively used for canonical scalar field

(quintessence field) model of dark energy and similar results have been found [18,

19, 151, 152, 153, 154]. Specially, tracker solutions of quintessence model are able

to solve the fine-tuning problem, and thawing or freezing model ameliorate this

problem [18, 19, 152, 154]. In [151], it has been shown that for the potential

V (φ)∝ φ−n, with n < 5, the solutions do not have a fine-tuning problem and a

large range of initial conditions provide acceptable solutions. Similar results have

also been shown in [18, 19, 152, 155] for inverse power law potentials. Exponential

potential have been studied in [18, 155, 156, 157] for quintessence model and it is

found to ameliorate the fine-tuning problem. In our study, tachyon models with both

the potentials generate acceptable solution for large range of parameters. On the

other hand, for larger value of φ0H0, it is able to mimic the cosmological constant

like equation of state at present. Hence, in the light of current observational data,

tachyon model is an interesting and important alternate model of dark energy.

We have also studied the evolution of the phases of expansion, the density param-

eters and the equation of state of dark energy with redshift. We find the transition

redshift to be in the range 0.61 ® zac ® 0.80. For the exponential potential, the

duration of the acceleration phase depends on φ0H0 and wφ0 (as these parameters

are correlated). For a smaller value of φ0H0 this duration is small. The equation of

61



Figure 2.9: The plot on the top shows the evolution of equation of state wφ with red-
shift for inverse square potential. Red, green, blue, sky-blue, yellow and pink colours
represent value of φ0H0 = 2.0, 3.0, 4.0, 5.0, 6.0 and 7.0. The plot on the bottom
shows the evolution of Ωm(red curves) and Ωφ(blue curves) with redshift. The solid,
dash-dot and dashed-dot-dot-dot lines represent the value of φ0H0 = 2.0, 4.0 and
6.0 respectively. The value of parameter wφ0 and Ωm0 are the best fit values taken
from table 2.1 for the corresponding value of φ0H0.
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Figure 2.10: The plot on the top shows the evolution of equation of state wφ with
redshift for exponential potential. Red, blue, sky blue, orange and gray lines repre-
sent φ0H0 = 0.08, 0.1, 0.3, 0.5 and 0.7. The plot on the bottom shows evolution
of Ωm (red curves) and Ωφ (blue curves) with redshift are shown. Solid, dash-dot
and dashed-dot-dot-dot lines represent φ0H0 = 0.08, 0.1 and 0.3. Parameter Ωm0

and wφ0 are the best fit values taken from table 2.2 for the corresponding value of
φ0H0. Parameter φ0/φa = 0.1.
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state of the tachyon dark energy, in the matter dominated and earlier phases, is dust

like (wφ = 0). It then makes a sharp transition to that of a cosmological constant

as dark energy domination begins. The value of the equation of state parameter

rises again to match its present day value wφ0. For the inverse square potential, it

approached a constant value depending on the values of φ0H0 and wφ0. For ex-

ponential potential, it rises towards wφ = 0, and as it becomes greater than −1/3,

the Universe once again goes to a decelerating expansion phase. For tachyon dark

energy, matter does not fully dominate the energy budget. However, as we increase

the value of parameter φ0H0, it approaches full domination as the equation of state

approaches like that of a cosmological constant.

The constraints obtained here are stringent, and there is a clear preference for

models which are close to the cosmological constant model. A specific set of parame-

ters can be ruled out in a given set of models whereas current data cannot completely

distinguish between different models and does not fully rule out any. The range of

the combined constraints on the matter density parameter and the equation of state

parameter are determined largely by the BAO data and by the supernova data re-

spectively. While the Hubble parameter data constrains the parameters well, the

allowed range is larger than that allowed by other observations. This is possibly

due to the fact that the Hubble parameter measurement data is a compilation of

measurements with different methods and accompanies measurements of different

cosmological quantities. The constraints on the parameters are stringent and more

data, and further studies in perturbations in tachyon dark energy are likely to break

the degeneracy between different models which are allowed by pure distance mea-

surements.
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Chapter 3

Perturbations in Tachyon Dark

Energy

This chapter is adapted from following published article

Avinash Singh, H. K. Jassal, Manabendra Sharma, Perturbations in tachyon dark en-

ergy and their effect on matter clustering, Journal of Cosmology and Astroparticle

Physics 05 (2020)008. arXiv:1907.13309

In this chapter, we analyze the dynamics and nature of tachyon perturbations and

their effect on the evolution of matter perturbations. We begin with a homogeneous

tachyon scalar field and allow allow perturbations in it, as the matter clustering

grows with time. In this analysis, we the consider same two tachyon potentials, an

inverse square potential and an exponential potential (which are introduced in chap-

ter 2) for study of background cosmology. We solve linearized Einstein’s equations

in ‘the Newtonian conformal gauge’ to study the formation of linear oder structure

in the Universe. The clustering of dark energy is a scale dependent phenomena, it is

higher at larger scales, opposite to the matter clustering which is higher at smaller

scales. Dark energy perturbations are insignificant with respect to matter clustering

at sub-Hubble scales, and dark energy can be considered homogeneous. At Hubble

and super-Hubble scales, dark energy perturbations are significant when compared

with the matter perturbation. However, as the present value of the equation of state

wφ0 → −1, it can be considered homogeneous and this model coincides with the

ΛC DM model.

We also study the linear growth rate f (z) of matter clustering for these models
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and compare our theoretical computation with the redshift space distortion (RSD)

data. We find that initially, in matter dominated era, the growth rate is higher for

tachyon model than it is for ΛC DM model, but in dark energy dominated era the

situation is opposite to this. This makes tachyon model a better alternate to fit

growth rate data. We use the ‘Gold-2017’ RSD data compiled and tabulated in [9]

with some additional data from [143]. The growth rate measurements from RSD

provide the value of f σ8(z), where σ8(z) is the root mean square fluctuation in the

matter power spectrum in a sphere of radius 8 h−1M pc. In [9], it has been shown

that there is a tension of> 3σ between Gold-2017 and Planck-2015 data for ΛC DM

model. We find that this tension continues to exist between the RSD data we use

and Planck-2018 data for ΛC DM model. We show that, for tachyon models, this

tension is reduced when equation of state parameter wφ0 is larger than -1 and dark

energy is allowed to get perturbed.

Perturbations in the tachyon scalar field and the matter part are introduced in

section 3.1. We derive the required sets of dynamical equations here using the New-

tonian conformal gauge. We discus our numerical approach in section 3.2 and trans-

form the required set of equations into dimensionless form. The results of our anal-

ysis are discussed in section 3.3. Finally, we summarize our results in section 3.4.

3.1 Perturbation in the Tachyon Scalar Field

We consider the perturbed FLRW metric to study the perturbations in matter and in

the scalar field. If there are no anisotropic components in the spatial part of energy-

momentum tensor, i.e., T i
j
= 0 for i 6= j, then in longitudinal gauge the perturbations

can be described by a line element of the form

ds2 = −(1+ 2Φ)d t2 + a2(t)(1− 2Φ)[d x2 + d y2 + dz2], (3.1)

where Φ is the scalar perturbation. In the Newtonian limit, the metric perturbation

Φ represents the effective gravitational potential. The dynamical equation for this

scalar perturbation Φ can be derived by solving perturbed Einstein’s equation δGµ
ν
=

8πGδTµ
ν

. Here, the perturbed energy-momentum tensor δTµ
ν

consists of two parts,

one for the matter component δTµ
ν(mat ter)

and other for the scalar field δTµ
ν(φ)

. We

consider matter as a perfect fluid with energy-momentum tensor

Tµ
ν(mat ter)

= (ρ + p)uµuν + pgµ
ν
. (3.2)
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Here ρ, p and uµ are energy density, pressure and four velocity respectively. The

perturbations in the matter field are defined by

ρ(t , ~x) = ρ̄(t) + δρ(t , ~x),

p(t , ~x) = p̄(t) + δp(t , ~x),

uµ = ūµ +δuµ,

(3.3)

where ūµ = {1, 0, 0, 0}, ρ̄(t) and p̄(t) are the average values of their respective quan-

tities and δuµ is the peculiar velocity. Substituting these values in equation (3.2),

the components of the perturbed energy-momentum tensor of matter are

δT 0
0 = −δρ,

δT i
0 = (ρ̄ + p̄)δui,

δT i
j
= δpδi

j
.

(3.4)

The energy-momentum tensor for the tachyon field can be derived from

T
µ

ν(φ)
=

V (φ)∂ µφ∂νφ
Æ

1+ gαβ∂αφ∂βφ
+ Lφ gµ

ν
, (3.5)

where for tachyon scalar field the Lagrangian Lφ is given by equation (1.50). We

define the perturbation in the scalar field as

φ(t , ~x) = φ̄(t) + δφ(t , ~x). (3.6)

Here φ̄(t) is the average background field. Using equation (3.5) with the met-

ric element of longitudinal gauge from equation (3.1), components of perturbed

energy-momentum tensor for tachyon scalar field can be calculated:

δT 0
0 = −δρφ = −

�

∂ V
∂ φ

�

φ̄
δφ

q

1− ˙̄φ2

+
1

2

V (φ̄)
q

1− ˙̄φ2

�

2Φ ˙̄φ2 − 2 ˙̄φδ̇φ

1− ˙̄φ2

�

,

δT i
j
= δpφδ

i
j
= −V (φ̄)

Ç

1− ˙̄φ2

�

Φ
˙̄φ2 − δ̇φ ˙̄φ

1− ˙̄φ2

�

δi
j
−
�

∂ V

∂ φ

�

φ̄

δφ

Ç

1− ˙̄φ2δi
j
,

δT 0
i
= (ρφ + pφ)δui =

V (φ̄)
q

1− ˙̄φ2

˙̄φδφ,i.

(3.7)
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We can now solve perturbed Einstein’s equation δGµ
ν
= 8πGδTµ

ν
; where the per-

turbed energy-momentum tensor are given by equations (3.2) and (3.5). Compo-

nents of the perturbed Einstein tensor δGµ
ν

can be calculated using line element (3.1).

We retain the terms in the solution of perturbed Einstein’s equations up to first (or

linear) order in all perturbed quantities. We then transform these linearized Einstein

equations into the Fourier space or the k− space, where the perturbed quantities of

both the spaces are related by the equation

A(~x , t) =

∫

d3kA(~k, t)ei~k.~x . (3.8)

Here, ~k is the wave vector.

In longitudinal gauge, the Fourier transformed Einstein’s equations are given by

3
ȧ2

a2
Φ+ 3

ȧ

a
Φ̇+

k2
Φ

a2
= −4πG

�

δρm +δρφ
�

, (3.9)

Φ̈+4
ȧ

a
Φ̇+

�

2
ä

a
+

ȧ2

a2

�

Φ = 4πG

�

−V (φ̄)

Ç

1− ˙̄φ2

�

Φ
˙̄φ2 − δ̇φ ˙̄φ

1− ˙̄φ2

�

−
�

∂ V

∂ φ

�

φ̄

δφ

Ç

1− ˙̄φ2

�

,

(3.10)

Φ̇+
ȧ

a
Φ = 4πG

 

ρ̄a−3vm +
V (φ̄)

q

1− ˙̄φ2

˙̄φδφ,i

!

, (3.11)

where vm represents the potential for the matter peculiar velocity, i.e., δui = Ïi vm.

Here although we have used the same symbol for quantities Φ,δφ,δρm and vm, as

they are in real physical space, they represent the Fourier components of respective

quantities in kth mode of perturbation. The wave number is given by k = 2π/λp,

where λp is the comoving length of the perturbation. Therefore, the Einstein’s equa-

tions given above represent the evolution of the kth mode of perturbations. Equa-

tion (3.10) is the dynamical equation for metric perturbation Φ. Since matter is

pressureless, the dynamics of metric perturbation Φ is driven only by perturbation

in the scalar field. Here, in these equations, there are two unknown perturbed quan-

tities, Φ and δφ. Once these two are determined, then other perturbed quantities

like δρm and vm can be calculated from equation (3.9) and (3.11). The dynamical

equation for the perturbed tachyon scalar field δφ can be derived by solving the

Euler-Lagrangian equation using the Lagrangian function (1.50) for the perturbed

68



scalar field, and in the Fourier space for kth mode, it is given by

δ̈φ

(1− ˙̄φ2)
+

�

3H +
2 ˙̄φ ¨̄φ

(1− ˙̄φ2)2

�

δ̇φ +

�

3H ˙̄φ
V ′

V
+

k2

a2
+

¨̄φ

(1− ˙̄φ2)

�

V ′

V

�

+
V ′′

V

�

δφ

−
�

12H ˙̄φ +
2(2+ ˙̄φ2) ¨̄φ

(1− ˙̄φ2)
+

2V ′

V
+

2 ˙̄φ4 ¨̄φ

(1− ˙̄φ2)2

�

Φ+
3 ˙̄φ3 − 4 ˙̄φ

(1− ˙̄φ2)
Φ̇= 0,

(3.12)

where the prime represents the derivative with respect to the background scalar field

φ̄. The coupled equations (3.10) and (3.12) form a closed system of equations.

Solving these equations together with the background equations, we can find the

quantities Φ and δφ and then the respective fractional density contrasts δ = δρ/ρ̄

of kth mode for matter and tachyon scalar field can be computed from the following

equations

δφ =
V ′(φ̄)

V (φ̄)
δφ −

�

Φ
˙̄φ2 − ˙̄φδ̇φ

1− φ̇2

�

,

δm = −
1

4πGρma−3

�

3
ȧ2

a2
Φ+ 3

ȧ

a
Φ̇+

k2
Φ

a2

�

− 1

ρma−3





V ′(φ̄)δφ
q

1− ˙̄φ2

− V (φ̄)
q

1− ˙̄φ2

�

Φ
˙̄φ2 − ˙̄φδ̇φ

1− φ̇2

�





= − 1

4πGρma−3

�

3
ȧ2

a2
Φ+ 3

ȧ

a
Φ̇+

k2
Φ

a2

�

−
δφ

ρma−3

V (φ̄)
q

1− ˙̄φ2

.

(3.13)

To calculate matter density contrast δm = δρm/ρm we have used equation (3.9).

We can see from the above equations that the density contrasts of matter and dark

energy are coupled with each other.

The growth of structure, quantified by the linear growth function D+
m

, defined as

D+
m
=
δm

δm0

, (3.14)

The quantity δm0 is the present value of matter density contrast, and the growth

rate, defined as

f =
d ln δ

d ln a
. (3.15)
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Figure 3.1: The plots on the top shows the evolution of the equation of state param-
eter of dark energy and the plot on the bottom shows the evolution of the density
parameters for inverse square potential. Red, sky-blue, green and blue colours rep-
resent φinH0 = 1.0, 1.5, 2.0 and 3.0. In the bottom panel, the solid line is for Ωm

and the dashed line is for Ωφ. Parameters Cn and Va/ρcr are tuned for each value of
φinH0 to get Ωm0 = 0.285.
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Figure 3.2: The plots on the top shows the evolution of the equation of state param-
eter of dark energy and the plot on the bottom shows the evolution of the density
parameters for exponential potential. Colour and line scheme as well as the values
of parameters are same as described in figurer 3.1.
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3.2 Numerical Approach and Methodology

To solve for a, φ, Φ and δφ, we need four equations. We choose two background

equations, first of the Friedmann equations (2.1) and the dynamical equation of

scalar field (1.52). The third equation is the dynamical equation of the perturbed

scalar field, equation (3.12) and the fourth one is the dynamical equation for the

metric perturbation, the second equation of Einstein’s equations (3.10). We rewrite

these equations in the dimensionless form by introducing the following variables

x = tH0, y =
a

ain

, ψ=
φ

φin

, ΦN =
Φ

Φin

, δψ=
δφ

Φinφin

, (3.16)

to above equations to solve them. Derivatives are defined with respect to x as

y ′ =
d y

d x
, ψ′ =

dψ

d x
, Φ′

N
=

dΦN

d x
. (3.17)

3.2.1 Dimensionless Equations for the Inverse Square Potential

In terms of the above dimensionless variables (3.16), the background equations (2.1)

and (1.52) with inverse square potential (2.2), take the form

y ′ = y

�

Ωmin
y−3 +

2n

3 (1−
2

3n
)1/2ψ−2

φ2
in

H2
0

Æ

1−φ2
in

H2
0ψ
′2

�1/2

, (3.18)

ψ′′ =
�

1−φ2
in

H2
0ψ
′2�
�

2

φ2
inH2

0ψ
− 3

y ′

y
ψ′
�

, (3.19)

where Ωmin
can be linked to the present matter density parameter Ωm0 using the

relation

Ωm =
Ωm0

(H/H0)
2

�

a

a0

�−3

. (3.20)

Here, a0 is the present day value of the scale factor. To solve the above background

equations, we need values of the parameters Ωmin
, Cn, and φinH0. Here Cn =

2n

3 (1−
2

3n
)1/2 is the amplitude of the potential.

Using the variables defined in equation (3.16), with inverse square potential (2.2),

the dynamical equation for metric perturbation Φ, equation (3.10), and the dynam-
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Figure 3.3: In this figure we show the dependence of the present day value of the
equation of state parameter, wφ0 (plot on the top), and the deceleration to acceler-
ation transition redshift, zdz (in the bottom panel) on φinH0. The red curve is for
inverse square potential and blue cure is for the exponential potential. The values
of Cn and Va/ρcr are the same as in 3.1.
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ical equation of perturbed scalar field δφ, equation (3.12) takes the form

Φ
′′
N
+ 4

y ′

y
Φ
′
N
+

�

2
y ′′

y
+

�

y ′

y

�2�

ΦN

= n

�

1− 2

3n

�1/2
�

2δψ

φ2
in

H2
0ψ

3

q

1−φ2
in

H2
0ψ
′2 − ΦNψ

′2 −ψ′δψ′

ψ2
Æ

1−φ2
in

H2
0ψ
′2

�

,

(3.21)

δψ′′
�

1−φ2
in

H2
0ψ
′2
� +



3
y ′

y
+

2φ2
in

H2
0ψ
′ψ′′

�

1−φ2
in

H2
0ψ
′2
�2



δψ′

+

�

−6
y ′

y

ψ′

ψ
+

k2

a2
inH2

0 y2
− 2ψ′′

ψ
�

1−φ2
in

H2
0ψ
′2
� +

6

φ2
inH2

0ψ
2

�

δψ

−



12
y ′

y
ψ′ +

2
�

2+φ2
in

H2
0ψ
′2�ψ′′

�

1−φ2
in

H2
0ψ
′2
� − 4

φ2
in

H2
0ψ
+

2φ4
in

H4
0ψ
′4ψ′′

�

1−φ2
in

H2
0ψ
′2
�2



ΦN

+

�

3φ2
in

H2
0ψ
′3 − 4ψ′

�

1−φ2
in

H2
0ψ
′2
�

�

Φ
′
N
= 0.

(3.22)

On solving the perturbation equations along with the background using the

above initial conditions, we can find the values of ΦN and δψ as a functions of

redshift or scale factor. Subsequently, the values of density parameters can be cal-

culated using equations

δφ

Φin

= −2
δψ

ψ
−φ2

in
H2

0

�

ψ′2ΦN −ψ′δψ′
1−φ2

inH2
0ψ
′2

�

,

δm

Φin

=
−2

Ωmin
y−3

�

y ′2

y2
ΦN +

y ′

y
Φ
′
N
+

k2/H2
0

2a2
in

y2
ΦN

�

−
δφ/Φin

Ωmin
y−3

2n
3 (1− 2/3n)1/2ψ−2

φ2
in

H2
0

Æ

1−φ2
in

H2
0ψ
′2

.

(3.23)

To derive the above equations we have substituted dimensionless variables defined

in equation (3.16) to equation (3.13).
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Figure 3.4: The evolution of gravitational potential with scale factor. Solid
lines correspond to tachyon with inverse square potential whereas the dashed
lines are for ΛC DM model. The plots on the top and the bottom correspond
to φinH0 = 1.0 and φinH0 = 2.0 respectively. We set the value of present
day matter density parameter Ωm0 = 0.285. The red, green, blue, sky-blue,
pink, yellow, orange and light-green colours represents the scales of perturbation
λp = 50, 100, 500, 1000, 5000, 10000, 20000 and 50000 M pc respectively.
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Figure 3.5: The evolution of gravitational potential with scale factor. Here, solid
lines correspond to tachyon model with exponential potential, whereas dashed
lines are for ΛC DM model. The plots on the top and the bottom correspond to
φinH0 = 1.0 and 2.0 respectively. The value of other parameter and colour scheme
is same as in the figure 3.4.
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3.2.2 Dimensionless Equations for the Exponential Potential

In terms of the variables defined in equation (3.16), the background equations for

exponential potential (2.11) can be written as

y ′ = y



Ωmin
y−3 +

Va

ρcr
e
−φin
φa
ψ

Æ

1−φ2
in

H2
0ψ
′2





1/2

, (3.24)

ψ′′ =
�

1−φ2
in

H2
0ψ
′2�
�

φin/φa

φ2
inH2

0

− 3
y ′

y
ψ′
�

. (3.25)

To solve these background equations, we need value of parameters Ωmin
, Va/ρcr ,

φinH0 and φin/φa. On introducing variables defined in equation (3.16), with ex-

ponential potential, equations (3.10) and (3.12) for perturbed quantities Φ and δφ

are

Φ
′′
N
+ 4

y ′

y
Φ
′
N
+

�

2
y ′′

y
+

�

y ′
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�2�
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�
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δψ−
φ2

in
H2

0(ΦNψ
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,

(3.26)
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Φ
′
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(3.27)

77



In terms of the dimensionless variables, defined in equation (3.16), the equation

for density parameters (3.13) for exponential potential takes the form

δφ

Φin

= −φin

φa

δψ−φ2
in

H2
0

�

ψ′2ΦN −ψ′δψ′
1−φ2

in
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′2

�

,
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Ωmin
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ΦN +

y ′

y
Φ
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+
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0
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Ωmin
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e−

φin
φa
ψ

Æ
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inH2

0ψ
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

 .

(3.28)

3.3 Results and Discussion

We evolve the perturbation equations from redshift z = 1000 to the present day.

The main assumption we have made is that the dark energy field is initially homo-

geneous. Equation (3.13) suggests that for this assumption to be valid we need not

only to consider δφ in = 0, but also ˙̄φin = 0 or equivalently an initial equation of

state parameter of dark energy wφin
= −1. Therefore the analysis, along with con-

straints on the free parameters we are providing, are subject to this assumption. For

background equations, our initial conditions are

yin = 1, ψin = 1, (3.29)

and ψ′
in

can be calculated using relation

ψ′ =
φ̇

φinH0

=

p

1+wφ

φinH0

. (3.30)

In [158], it has been shown that with the potentials mentioned in section 2.1,

the constraint on matter density contrast is Ωm0 = 0.285+0.023
−0.022 at 3σ confidence.

On the other hand, background data puts only a lower bound φ0H0 ¦ 0.775 and

all larger values are allowed. Here, φ0 is the value of the scalar field at present,

i.e., (φ̄)0. Constraint on wφ0 depends on the value of φ0H0, as they are correlated

quantities. The tachyon scalar field starts evolution only in the near past, this allow

us to assume φinH0 ≈ φ0H0 [37]. In this chapter, we have done our analysis for

the best fit value of Ωm0 and other parameters have been varied. In the case of the

exponential potential, differences due to the change in the parameter φin/φa can
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Figure 3.6: Evolution of matter density contrast with the scale factor. Solid lines
correspond to tachyon dark energy with inverse square potential and the dashed
lines are for ΛC DM model. The plots on the top and the bottom correspond to
φinH0 = 1.0 and 2.0 respectively. The value of other parameter and colour scheme
is same as in the figure 3.4.
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Figure 3.7: Evolution of matter density contrast with the scale factor is shown in the
above figure. Solid lines correspond to tachyon dark energy model with exponential
potential and the dashed lines are for ΛC DM model. The plots on the top and
the bottom correspond to φinH0 = 1.0 and 2.0 respectively. The value of other
parameter and colour scheme is same as in the figure 3.4.
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be restored by scaling φinH0 appropriately [158]. We have fixed the value of this

parameter at φin/φa = 1.

The evolution of the equation of state of dark energy and the density parameters

are shown in figure 3.1 for inverse square potential and in figure 3.2 for exponential

potential. Red, sky-blue, green and blue colours represent φinH0 = 1.0, 1.5, 2.0

and 3.0. For each value of φinH0, we need to tune the amplitude of potential,

Cn =
2n
3 (1− 2/3n)1/2 for the inverse square potential and Va/ρcr for the exponen-

tial potential, such that the present value of the matter density parameter matches

Ωm0 = 0.285. We can see that the equation of state parameter for both the potentials

remains at −1 in the matter dominated era, and starts evolving as the dark energy

begins to dominate. In the bottom panel of figure 3.3, we see that the deceleration

to acceleration transition redshift, zda, is higher for smaller value of φinH0 and grad-

ually decreases as we increase this parameter. Hence for smaller values of φinH0,

the value of equation of state parameter begin to deviate, or start increasing, from

-1 earlier. That is the reason why wφ0 is larger for these values than it is for the

larger value of φinH0. For larger φinH0, the value of wφ0 is closer to −1. This corre-

lation can be seen in the top panel of the same figure. We find that for a given value

of φinH0, wφ0 relatively closer to −1 for the exponential potential than it is for the

inverse square potential. The reason for this is that the transition from decelerated

to accelerated expansion, for a fixed value of φinH0, occurs earlier for the inverse

square potential than for the exponential potential. For example, for φinH0 = 2.0

the value of the transition redshift zda = 0.732 for the inverse square potential and

zda = 0.717 for the exponential potential. Comparing both the panels of figure 3.3,

we can conclude that there is a linear relation between wφ0 and zda.

The future evolution of wφ can be seen in figure 3.1 and 3.1, and it is clear

that the wφ for the inverse square potential becomes constant in future, as for this

potential, the equation of state asymptotically approaches wφ = 2/3n− 1 [37, 38,

39]. Whereas for the exponential potential, the equation of state increases to wφ = 0

(dust like). For smaller values of φinH0, it evolves faster and approaches wφ = 0

relatively earlier than for larger values of φinH0. Since in future the dominating

component is dark energy, the effective equation of state of the Universe depends

only on wφ . For the exponential potential, when wφ becomes larger than −1/3,

the Universe once again goes to a decelerating phase. Hence, for the exponential

potential, there is no future horizon problem for tachyon model of dark energy [37,

38, 39].

The perturbation in the scalar field at initial (at z = 1000) is assumed to be
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Figure 3.8: This figure shows the matter density contrast (in the top panel) and
the dark energy density density contrast (in the bottom panel) normalized to initial
gravitational potential, at present epoch (z = 0), as a function ofφinH0 at the scale of
λp = 1000 M pc. Red and blue colours represent the inverse square and exponential
potentials respectively.
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Figure 3.9: In this figure we show the evolution of linear growth function of matter
D+

m
=

δm

δm0
as a function of the scale factor. Solid lines correspond to tachyon dark

energy model with inverse square potential and the dashed lines are for ΛC DM

model. The colour scheme for scales of perturbation is the same as in 3.4. Plot on
the top is for sub-Hubble scales and that on the bottom is for Hubble and super-
Hubble scales.
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Figure 3.10: In this figure we show the evolution of linear growth function of matter
D+

m
=

δm

δm0
as a function of the scale factor. Solid lines correspond to tachyon dark

energy model with exponential potential and the dashed lines are forΛC DM model.
The colour scheme for scales of perturbation is the same as in 3.4. Plot on the top is
for sub-Hubble scales and that on the bottom is for Hubble and super-Hubble scales.
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negligibly small, compared to Φ and δm. The scalar field can initially be assumed to

be homogeneous, and our initial conditions for perturbation are

ΦNin
= 1, δψin = 0, δψ′

in
= 0. (3.31)

In [26], it was shown that the gravitational potential does not evolve in the matter

dominated era, and starts to decay when dark energy begins to dominate. This fact

allows us to assume Φ′
Nin
(k) = 0, for all scales. In figures 3.4 and 3.5, we show the

evolution of the gravitational potential with the scale factor. The gravitational poten-

tial is normalized to its initial value; solid lines are for tachyon models and dashed

lines are for ΛC DM model. Different colours represent different length scales of

the perturbation, λp, from 50 M pc to 5 × 104 M pc. We solve the set of required

equations for each of these fixed scales, introduced using the dimensionless ratio

k̄ = kc/H0, where k = 2π/λp; with H0 = 70 Kms−1M pc−1 and c = 2.99×105 Kms−1.

The gravitational potential remains a constant during the matter dominated era. As

dark energy starts to dominate the energy budget, gravitational potential decays at

all length scales. We can see that for ΛC DM model, the gravitational potential falls

more rapidly and at the same rate at all scales. For tachyon models, the gravitational

potential decays more rapidly at a smaller scales than the larger scales. At super-

Hubble scales, its decay slows down in future. In the top panel of figure 3.5, we see

that for the exponential potential, the gravitational potential at super-Hubble scales

in future first rises and then become constant. However, as we increase the value

of parameter φinH0 (because wφ0→−1), this effect of scale dependence decreases,

and the difference with respect to the ΛC DM model also decreases. The model with

exponential potential is more sensitive to the value of the parameter φinH0, as we

can see that increasing this parameter from 1 to 2 decreases the scale dependence

effect more significantly.

The evolution of matter density contrast, normalized by the initial value of the

gravitational potential is shown in figures 3.6 and 3.7, for φinH0 = 1.0 and 2.0.

Since the gravitational potential remains constant during the matter-dominated era,

at sub-Hubble scales the matter density contrast grows linearly with the scale factor

i.e. δm∝ a, whereas at Hubble and super-Hubble scale it evolves at a slower rate.

In the matter dominated era, there is a very small difference between tachyon model

(for both the potentials) and ΛC DM model (dashed lines). In the dark energy dom-

inated era, the evolution of matter density contrast is suppressed. At Hubble and

super-Hubble scales with the exponential potential it decays in future. This differ-

ence in the behavior of the matter density contrast in future is due to the difference

in the evolution of the equation of state parameter and the gravitational potential.
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Figure 3.11: The evolution of the logarithmic growth rate f =
d ln δm

d ln a
with redshift

is shown here. Solid black, dashed blue and dashed-dot red curves are for ΛC DM

model, tachyon model with exponential potential and with inverse square potential
respectively. Top panel is for scale of perturbation λp = 50 M pc, whereas bottom
left and right panels are for λp = 1000 M pc and 5000 M pc respectively. For these
plots, the value of parameters φinH0 = 1.0 and Ωm0 = 0.285.

Whereas in the ΛC DM model, the evolution of the matter density contrast remains

suppressed in the Λ dominated era. The evolution of δm depends on the parameter

φinH0 (or on wφ0). In the top panel of figure 3.8, we show the dependence of δm/Φin

at z = 0 at the scale of λp = 1000 M pc on φinH0. For smaller value of φinH0 (or

larger wφ0), the present day value of δm(z = 0) is small, and as we increase φinH0

and wφ0 decreases, the value of δm(z = 0) increases. For larger values of φinH0, its

value approaches a constant as decrease in wφ0 saturates. For a fixed value ofφinH0,

the value of δm(z = 0) is large for the exponential potential than it for the inverse

square potential. For a fixed φinH0, the value of wφ0 is smaller for the exponential

potential than it is for the inverse square potential. As we increase the value of the

parameter φinH0 and wφ0 approaches−1, the difference between the two potentials

decreases.

In top panels of figures 3.9 and 3.10, we show the evolution of linear growth

function D+
m
=

δm

δm0
at sub-Hubble scales for the inverse square and exponential po-

tentials respectively. Here, we have taken the value of parameters φinH0 = 1.0 and
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Ωm0 = 0.285. We can see that at sub-Hubble scales linear growth is scale inde-

pendent, as all lines overlap. The bottom panels of these figures are for Hubble and

super-Hubble scales. At these scales, the evolution of D+
m

is scale dependent. In mat-

ter dominated era, the linear growth D+
m

is large for tachyon models than the ΛC DM

model at all scales. That is why as dark energy dominates it has to slow down, even

more than ΛC DM model to match the present value. This becomes more clear in

figure 3.11, where we show the evolution of growth rate f =
d ln δm

d ln a
with redshift,

at the scale of perturbation λp = 50, 1000 and 5000 M pc, for φinH0 = 1.0. We can

see that the growth rate is higher at shorter scales, and as we increase the scale of

perturbation growth rate decreases. We can also see that in matter-dominated era,

the growth rate remains a constant for smaller scales (sub-Hubble scales), whereas

at Hubble and super-Hubble scale it grows linearly and reaches a maximum value.

In the dark energy dominated era the growth rate falls at all scales, for all the three

models. In the matter-dominated era, the growth rate is larger for tachyon models

than the ΛC DM model. As the dark energy starts to dominate, it comes below the

ΛC DM model. As we increase the value of φinH0, the tachyon model approaches

the ΛC DM model (because wφ0→−1) and this difference decreases.

We show the evolution of dark energy perturbations as function of the scale

factor in figure 3.13 for both the potentials. The dark energy density contrast is

normalized to the initial gravitational potential. The magnitude of the dark energy

density contrast is higher at larger scales. This behavior is opposite to that of the

matter density contrast, which is higher in magnitude at smaller scales. As the dark

energy dominates and gravitational potential decreases, the growth of the dark en-

ergy contrast ceases and becomes constant at Hubble and super-Hubble scale; this

is true for the inverse square potential. For the exponential potential, if the value

of parameter φinH0 is small, δφ keeps on growing (with smaller rate) in the future.

If we increase the value of this parameter, the growth of δφ is suppressed for the

exponential potential as well. At sub-Hubble scale, the dark energy density contrast

reaches its maximum at near present epoch and then decreases in future.

The evolution of dark energy density contrast can be understood from the equa-

tion of δφ in (3.13). At sub-Hubble scales, initially the second of three terms, term

Φ
˙̄φ2, dominates. Since in matter dominated era the gravitational potential remains

a constant, −δφ/Φin rises as ˙̄φ2 or wφ increases as a function of the scale factor. In

dark energy dominated phase, due to decrease in gravitational potential, −δφ/Φin

decreases. In future, the first term (term with scalar field perturbation δφ) domi-

nates, and as it rises −δφ/Φin rises once again. At super-Hubble scale the δφ rises,

but other two terms fall. This results in a net suppression of evolution of −δφ/Φin.
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Figure 3.12: A comparison of theory with Redshift Space Distortion (RSD) data.
Solid black, dashed blue and dashed-dot red curves are for ΛC DM model, tachyon
model with exponential potential and tachyon with inverse square potential respec-
tively. The top and the bottom panels represent φinH0 = 0.8 and 3.0 respectively.
Other parameters Ωm0 and σ8(z = 0) are fixed to the corresponding best fit values
taken from table 3.2. Data points are taken from table I of [92].
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Figure 3.13: Evolution of dark energy density contrasts with the scale fac-
tor for tachyon model with inverse square potential (in row-1) and exponen-
tial potential (in row-2). Plots on the left and the right in each row corre-
spond to φinH0 = 1.0 and 2.0 respectively. Amplitude of potentials Cn and
An are tuned to get Ωm0 = 0.285 at present. Red, green, blue, sky-blue,
pink, yellow, orange and light-green lines represents the scale of perturbation
λp = 50, 100, 500, 1000, 5000, 10000, 20000 and 50000 M pc respectively.
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Figure 3.14: The plots shows the dependence of ratio δφ/δm on φinH0 and wφ0

for the inverse square potential. Lines from bottom to top represent the scale of
perturbation λp = 500, 103, 5 × 103, 104, 5× 104 and 105 M pc. Amplitude of
potentials Cn is fixed to get the present day Ωm0 = 0.285.
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Figure 3.15: The plots shows the dependence of ratio δφ/δm on φinH0 and wφ0 for
the exponential potential. Colour scheme is same as in the figure 3.14. Amplitude
of potentials Va/ρcr is fixed to get the present day Ωm0 = 0.285.
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For the exponential potential, with smaller value of φinH0, the δφ term dominates

in future, and −δφ/Φin keeps on rising although with a smaller rate of growth. The

density contrast δφ/Φin as a function of φinH0 is shown in the bottom panel of fig-

ure 3.8. We can see that for smaller value of this parameter (or larger wφ0), dark

energy perturbation is larger. As we increaseφinH0 and wφ0 approaches−1, the fac-

tor δφ/Φin becomes negligible, and we can consider dark energy as homogeneous.

Although, the magnitude of δm is higher than that of δφ, we can see in figure 3.13

that in matter dominated era the slopes of −δφ/Φin curves, at all scales, are greater

than that of −δm/Φin (in figure 3.6). This implies that in matter dominated era the

evolution of the dark energy density contrast is faster than that of the matter density

contrast.

In figures 3.14 and 3.15, we show the ratio of density contrasts δφ/δm at present

epoch z = 0 as a function of φinH0 and wφ0. For a fixed scale, if the value of the

parameter φinH0 is small, say of the order of unity (or the value of wφ0 is away

from -1), the value of δφ/δm is large. As we increase the value of φinH0 it decreases

monotonically. For example, at λp = 1000 M pc the value of (δφ/δm)z=0 is 1.172×
10−4 for φinH0 = 1.0, and it is 1.069× 10−5 for φinH0 = 4.0, for the inverse square

potential. Near wφ0 = −1 the ratio δφ/δm decreases sharply. So δφ/δm → 0 as

wφ0→−1.

In figures 3.16, we show the variation of δφ/δm with the scale of perturbation

λp. We find that for smaller value of the field, say φinH0 = 0.8, at scale of λp =

105M pc, the ratio (δφ/δm)z=0 = 0.2645 and 0.1060, for the inverse square and the

exponential potential respectively. At these scales, the value of δm is very small,

hence the value of δφ is a considerable fraction of the energy density. This ratio

decreases monotonically at smaller scales. For example, at λp = 102M pc the ratio

(δφ/δm)z=0 is in the range 10−6 to 10−8. While the dark energy density contrast

is negligible at smaller scales (sub-Hubble scales), it is significant at Hubble and

super-Hubble scales.

3.3.1 Effect of Inhomogeneities in the Dark Energy at Early Uni-

verse

We also study the effect of deviation of initial equation of state parameter from −1

at early epoch. For this, we vary the value of wφin
at z = 1000 from −1 assuming

perturbation in scalar field δφ and its derivative δ̇φ negligibly small. In figure 3.17,

we show the evolution of the equation of state parameter in this scenario for both the
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Figure 3.16: In this figure, we have plotted the ratio δφ/δm with respect to the scale
for the inverse square potential (in the top panel) and for the exponential potential
(in the bottom panel). For curves from top to bottom, in each panel, values of the
the parameter φinH0 = 0.8, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0 and 7.0.
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Figure 3.17: Evolution of the equation of state parameter wφ for V (φ) ∝ φ−2

(top panel) and for V (φ) ∝ ex p(−φ/φa) (bottom panel). Red and blue colours
represent initial equation of state parameter of dark energy wφin

to be −10−5 and
−0.5 respectively. The black curves are for initially homogeneous dark energy with
wφin

= −1. We have fixed the value of parameter φinH0 = 1.0 and Ωm0 = 0.285 for
these plots.
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Figure 3.18: Evolution of δφ/Φin at scale of 50 M pc. Plot on the top is for V (φ)∝
φ−2 and on the bottom is for V (φ)∝ ex p(−φ/φa). Colour scheme and the values
of parameters φinH0 and Ωm0 are same as in figure 3.17.
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φinH0 Ωm0 σ8(0) wφin

[0.001, 10.0] [0.01, 0.9] [0.1, 3.0] [−10−10,−1]

Table 3.1: Priors ranges for the parameters Ωm0, φinH0, σ8(0) and wφin

potentials. We can see, even if wφin
deviate from−1, the equation of state parameter

wφ sharply approaches to it with the Hubble expansion of the Universe. We find that

only for the cases where wφin
≈ 0 (a fluid like equation of state), wφ survives deep

into the matter dominated era. There is no effect of the parameter wφin
on the

evolution of wφ in later epoch. Equation 3.13 suggest that deviation of wφ from −1

(hence ˙̄φ 6= 0) introduce contrast in dark energy through gravitational potential.

Larger the value of wφin
larger the dark energy contrast δφ in early epoch. We show

results for sub-Hubble scale in figure 3.18. In this figure, we can see that the early

perturbations in dark energy go throw a damped oscillation as the equation of state

parameter approaches −1. The dark energy contrast δφ decreases in amplitude

until it approach to evolution track of wφin
= −1 case. After that, δφ for all values

of wφin
follow same track. In figure 3.19, we can see that at sub-Hubble scales there

is no effect of deviation of wφin
or early dark energy perturbations on the matter

density contrast δm or on the linear growth function D+
m
= δm/δm0 for both the

potentials. Reason for this behavior can be understood from the Equation 3.13. In

matter dominated era, the ratio of dark energy density to matter density (ρφ/ρm) is

vary small. Therefore, at early epoch it does not affect δm. At present epoch δφ itself

very small for all the wφin
in comparison to δm at sub-Hubble scales. Even if we vary

δφin, it does not affect the evolution of linear growth function D+
m

at sub-Hubble

scales. The effect of perturbation in dark energy (and deviation of wφin
from −1)

is considerable only at the Hubble and super-Hubble scales, where the ratio δφ/δm

become significant.

3.3.2 Constraints on the Parameters

Observations do not provide a direct measurement of δm. Instead, the observational

data on the growth of structure measures the product f σ8(z), where,

σ2
R
(z) =

1

2π2

∫ ∞

0

P(k, z)W 2
R
(k)k2dk∝ δ2(z), (3.32)
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is the root mean square fluctuation in linear density field or power spectrum P(k, z)

within a sphere of radius R [159]. Taking R= 8 h−1M pc, it can be written as,

σ8(z) = σ8(0)
δm(z)

δm(0)
. (3.33)

Here, σ8(0) is the present value of σ8(z) and it is a parameter. In figure 3.12, we

show the comparison between data and theory. The data points are values of f σ8(z)

extracted from redshift space distortion (RSD) measurements. We have used 22 RSD

data points from redshift 0.02 to 1.944, which includes data from ‘Gold-2017’ com-

pilation [9] and some new measurements [92]. This data set is described and listed

in section 1.6.6. In figure 3.12, solid black, dashed blue and dashed-dot red curves

are for ΛC DM model, tachyon model with exponential potential and with inverse

square potential respectively. Left and right panels are for φinH0 = 0.8 and 3.0

respectively. We set the parameters Ωm0 and σ8(0) to their corresponding best fit

values given in table 3.2. We can see that the tachyon models (with both the poten-

tials) are in good agreement with the data. There is significant difference between

tachyon models and the ΛC DM model if the parameter φinH0 is small (about order

of unity) or large wφ0 (because these two parameters are correlated). As we in-

creaseφinH0 and wφ0 approaches−1, tachyon models then coincide with theΛC DM

model.

We now constrain the free parameters of the tachyon field model using Redshift

Space Distortion (RSD) data. We find out the maximum likelihood by minimizing χ2

given by equation (1.108). The quantities Xth and Xobs are the vectors of theoretical

and observed values of the observable f σ8 respectively. As suggested in [9], to

remove the fiducial cosmology, we scale the theoretical value of f σ8 by the ratio

r(z) =
H(z)dA(z)

H f id(z)d
f id

A (z)
, (3.34)

where H(z) and dA(z) are the Hubble parameter and the angular diameter distance

at redshift z respectively. The observable X th,i = r(zi) f σ8(zi,p), where p is the set of

parameters. We constrain the parameters Ωm0, φinH0 and σ8(0). The prior used for

these parameters are shown in table 3.1. Since, the parameter wφin
does not affect

the evolution of D+
m
= δm/δm0 at sub-Hubble scale, we do not see any change in

the theoretical value of f σ8 by varying this parameter. The RSD data set, we have

used, does not constrain wφin
. We have checked it by varying wφin

in the prior range

[−10−10,−1] for this parameter. Therefore, we need not include this parameter

in our analysis. For the exponential potential, we have fixed φin/φa = 1.0, since

changes due to variation in this parameter can be compensated by scaling φinH0

97



100

101

102

103

 0.001  0.01  0.1  1  10

-(
δ m

/Φ
in

)*
10

-3

a(t)

win=-10-5

win=-0.5
win=-1.0

100

101

102

103

 0.001  0.01  0.1  1  10

-(
δ m

/Φ
in

)*
10

-3

a(t)

win=-10-5

win=-0.5
win=-1.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

δ m
/δ

m
0

a(t)

win=-10-5

win=-0.5
win=-1.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

δ m
/δ

m
0

a(t)

win=-10-5

win=-0.5
win=-1.0

Figure 3.19: Evolution of δm/Φin andδm/δm0 at scale of 50 M pc. Column-1 and 2
are for V (φ) ∝ φ−2 and V (φ)∝ ex p(−φ/φa) respectively. Colour scheme and
the values of parameters φinH0 and Ωm0 are same as in figure 3.17.
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Figure 3.20: Marginalized Constraints and the likelihood for the parameters Ωm0,
φinH0 and σ8(0) of the tachyon model with inverse square potential. The 2D-
contours filled with blue, green and red colours show 68%, 95% and 99% confi-
dence region respectively. We do not include results for the parameter wφin

because
it is not constrained by the data we use (see sections 3.3.1 and 3.3.2 for details)
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Figure 3.21: Marginalized Constraints and the likelihood for the parameters Ωm0,
φinH0 and σ8(0) of the tachyon model with exponential potential. The 2D-contours
filled with blue, green and red colours show 68%, 95% and 99% confidence re-
gion respectively. We do not include results for the parameter wφin

because it is not
constrained by the data we use (see sections 3.3.1 and 3.3.2 for details).
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appropriately [158].

In figures 3.20 and 3.21, we show the marginalized contours of 68%, 95% and

99% confidence region for the tachyon model with inverse square potential and the

exponential potential respectively. We also show the one dimensional likelihood for

each parameter. We find that the constraints on the parameter φinH0 > 0.081 at

99% confidence level for model with exponential potential have no upper bound on

it. This can also be seen in the likelihood function of the parameter φinH0 which

becomes constant for larger values. We have checked it for arbitrarily large values

of this parameter. For tachyon model with inverse square potential φinH0 ¦ 0.001.

Since only the square of the parameter φinH0 appears in the equations, we show

results only for positive branch. We obtain similar results as have been shown in

our previous study with background data [158]. As mentioned earlier, a smaller

value of φinH0 leads to wφ0 away from −1 and allows dark energy to be perturbed.

We conclude that the growth-rate data we use does not rule out perturbations in

dark energy. When the value of parameter φinH0 is small, say less than 0.1, data

prefers a relatively smaller value of Ωm0 and a larger value of σ8(0). This correlation

is found for both the potentials. Since, a large range of initial field is allowed by the

data, we do not need to fine tune the value of the parameter φinH0.

We also show constraints in the Ωm0−σ8(0) plane and find them to be consistent

with the observations. In table 3.2, we show the best fit values of parameters along

with their 68%, 95% and 99% confidence range for tachyon model with both the po-

tentials, as well as for ΛC DM model. In figure 3.22, we compare the constraints on

Ωm0 −σ8(0) plane for tachyon models with constraint for the ΛC DM model. Here,

the black dot and triangle show the best fit values for Planck-2015 [66] and Planck-

2018 [60] respectively. The constraints on (Ωm0,σ8) forΛC DM model are (0.3156±
0.0091, 0.831±0.013) from Planck-2015 (TT,TE,EE+lowP) at 68% confidence [66]

and (0.3166 ± 0.0084, 0.8120 ± 0.0073) from Planck-2018 (TT,TE,EE+lowE) at

68% confidence [60]. We find that Planck-2015 and Planck-2018 best fit points are

at 2.9σ and 2.26σ levels respectively for ΛC DM model. Similar result has also

been found between ‘Gold-2017’ growth rate data and Planck-2015 data for ΛC DM

model, see [9] for more details. This tension is reduced in the tachyon models. The

best fit values of Planck-2015 and Plank-2018 are at 1.93σ and 1.66σ levels respec-

tively for the tachyon model with inverse square potential. For the tachyon model

with exponential potential these points are at 2.45σ and 1.86σ levels respectively.

Therefore, we can see that inclusion of perturbation in dark energy with wφ0 6= −1

reduces the tension between RSD data and Planck data.
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Figure 3.22: Marginalized constraints on Ωm0 − σ8(0) plane. Blue, green and red
colors represent the 68%, 95% and 99% confidence region respectively. Top plot is
forΛC DM model whereas bottom left and right plots are for the tachyon model with
inverse square and exponential potentials respectively. The black dot and triangle
show the best fit values for Planck-2015 [66] and Planck-2018 [60] respectively.
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To compare the models, we calculate Bayesian evidence for all the three mod-

els. The Bayesian evidence or model likelihood is defined in the equation (1.107).

Clearly, the evidence is the average value of the likelihood over entire parameter

space. Two models M0 and M1 can be compared using the ratio of their Bayesian

evidences known as the Bayes factor B01, defined in equation (1.112). The Bayes

factor indicate the change in relative odds between the models after arrival of data.

If B01 > (<)1 then the model M0 is more (less) favorable than the model M1 by the

given data. The Jeffreys’ scale provides an empirically calibrated scale for strength

of evidence to compare the two models [98]. A notable property of the evidence is

that it does not penalize the parameter which is unconstrained by the data [93], e.g.

in our case the initial value of the equation of state win. There are other popular

and simpler way to compare different models, namely Akaike Information criterion

(AIC) and Bayesian Information criterion (BIC) [93, 94, 95]. These methods re-

quire only the maximum likelihood to compare models [93, 94]. These criterion

are derived using various assumptions, e.g. Gaussianity of the posterior distribution.

These assumptions are not valid for the tachyon models, as posteriors (particularly

for φinH0) are not Gaussian. Therefore, we do not use AIC or BIC for comparison

and rely on evidence calculation and Bayes factor. We find that B01 = 0.996 and

B02 = 1.019, where ‘0’ stands for ΛC DM model, ‘1’ for tachyon models with inverse

square potential and ‘2’ for tachyon models with exponential potential. For this

calculation we take uniform or flat prior for all three models. Since, Bayes factor

1 < B <
p

10 is only a weak evidence [98], we clearly find that the RSD data, we

use, does not exclusively favor any of these models. Therefore, we conclude that

the tachyon models are as good as ΛC DM model to satisfy this data set.

3.4 Summary and Conclusions

In this chapter, we have studied perturbations in tachyon scalar field dark energy and

their effect on matter clustering. We consider two tachyon scalar field potentials, the

inverse square potential and the exponential potential. We begin with a homoge-

neous dark energy with equation of state wφin
= −1 and evolve our equations with

time. Gravitational potential remain constant in matter dominated era, and decay as

dark energy starts to dominate the energy budget. For the ΛC DM model evolution

of gravitational potential is scale independent, whereas for the tachyon models it

depends on scale. Decay of gravitation potential in future for tachyon models slows

down as we go for larger scales. The matter and dark energy perturbations are cou-

pled with each other and if the equation of state of dark energy wφ 6= −1 then dark
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Model χmin φinH0 Ωm0 σ8(0)

ΛC DM 12.260 - 0.235+0.125+0.209+0.306
−0.085−0.116−0.140 0.836+0.175+0.286+0.401

−0.135−0.193−0.242

Tachyon With
V (φ)∝ e−φ/φa

12.252 > 0.081 0.234+0.125+0.209+0.306
−0.085−0.149−0.194 0.843+0.183+0.897+1.807

−0.139−0.197−0.248

Tachyon with
V (φ)∝ φ−2 12.255 ¦ 0.001 0.231+0.126+0.210+0.307

−0.084−0.131−0.180 0.853+0.191+0.742+1.597
−0.144−0.204−0.255

Table 3.2: The table lists the best fit values of Ωm0 and σ8(0) along with their 1σ,
2σ and 3σ confidence ranges for the ΛC DM model as well as tachyon model with
both the potentials. In column-2 we show the lower bound on the parameter φinH0.
To constrain the parameters we use 22 RSD data points compiled and tabulated
in [9, 92].

energy is not distributed homogeneously. Distribution of inhomogeneity in tachyon

dark energy, like in other scalar field models, is a scale dependent phenomenon. The

dark energy density contrast δφ is higher in magnitude at larger scales than it is at

shorter scale, opposite to the matter density contrast δm which is higher at shorter

scales. In matter-dominated era at sub-Hubble scales, δm∝ a(t) for tachyon mod-

els as well as for the ΛC DM model. In dark energy dominated era, its evolution

is suppressed. Future evolution of matter density contrast is significantly different

in all three models. At super-Hubble scales, δm rises again for the inverse square

potential, and falls for the exponential potential, whereas for the ΛC DM model it

remains a constant. In the matter dominated era, dark energy density contrast δφ
evolves monotonically at same rate at all scales with a(t). Although the magnitude

of δφ is much smaller than that of δm in matter dominated era, its growth rate is

higher. We also study the effect of parameters, φinH0 and wφ0, on the evolution of

δm and δφ. These two parameters are correlated and as we increase the value of

φinH0, wφ0→−1 (a ΛC DM value).

We have also studied the evolution linear growth function D+
m
= δm/δm0 and the

growth rate f =
d ln δm

d ln a
. Evolution of D+

m
, at sub-Hubble scales is scale independent,

whereas it depends on scale for larger scales. This is true for for all the three mod-

els. At higher redshift (in matter dominated era), the growth rate f for tachyon

models is higher than the ΛC DM model, and as evolution approaches dark energy

dominated era, growth rate falls, even below the value for ΛC DM model. To show
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the agreement between theory and observation, we calculated f σ8(z) for the three

models and compared it with RSD data. We find that the tachyon models are in

good agreement with the data. If the value of parameter φinH0 is small (or wφ0 is

large), the tachyon models show significant difference from the ΛC DM model. As

wφ0→−1, for larger φinH0, tachyon models coincide with the ΛC DM model.

The tachyon dark energy density contrast, δφ < 10−4δm at scales λp < 103 M pc

with both the potentials. Therefore at these sub-Hubble scales, dark energy inho-

mogeneities can be neglected. If the dark energy equation of state wφ0 6= −1, then

at Hubble and super-Hubble scales, δφ become significant. For example at the scale

of λp = 105 M pc, for φinH0 = 0.8 the ratio (δφ/δm)z=0 = 0.2645 and 0.1060 for

the inverse square and the exponential potential respectively. Since at these scales

δm itself very small, δφ contributes significantly.

We constrain the free parameters of the ΛC DM model as well as tachyon model

with both the potentials using Redshift Space Distortion data. For the tachyon

model, we constrain Ωm0, φinH0 and σ8(0). We find that there is a lower bound

on φinH0 and all larger values are allowed by the RSD data. This feature has also

been seen in analysis with the background data [158]. The smaller value of φinH0

implies a larger value of wφ0 and a larger (δφ/δm)z=0. We therefore conclude that

growth-rate data allows for perturbations in dark energy. In the Ωm0−σ8(0) plane,

we find that there is a tension of 2.9σ (2.26σ) between the redshift space distortion

data and Planck-2015 (Planck-2018) best fit value for ΛC DM model. A similar re-

sult has also been reported in [9]. This tension is reduced slightly, when wφ0 6= −1

and perturbations in dark energy are considered, for the tachyon models. This is

true for both the potentials. We compare tachyon models with ΛC DM model by

calculating the ratio of the Bayesian evidences or the Bayes factor B01. We find that

the tachyon models are as good as the ΛC DM model to satisfy the RSD data we use.
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Chapter 4

Summary and Future Directions

In this thesis, we present a detailed study of cosmological consequences of a tachyon

scalar field dark energy. This field is a viable model, and it has been shown that the

tachyon scalar field can effectively explain dark energy. Apart from explaining ac-

celerated expansion, an important property of this model is that its equation of state

becomes dust like at early times, i.e., the equation of state parameter becomes zero

in the past. This ‘tachyon dust’ can potentially be a candidate of combined dark

energy and dark matter. The dynamics of the Universe in this case are driven by

what is known as the ‘runaway’ potential. This model is consistent with the obser-

vations and constraints on the parameters are stringent. The theoretical problems

and observational inconsistencies that ΛC DM model suffers from are less severe in

this model. These considerations make this description of dark energy an interesting

alternative to both fluid and canonical scalar field models.

In the first part of this work, we have used two runaway potentials, an inverse

square potential and an exponential potential, and revisit the constraints on their

parameters as well as on the other cosmological parameters. For this work we set

our initial condition at present epoch and solve dynamical equations backward in

time, i.e., with increasing redshift. We find the constraints on the present value

of the tachyon scalar field and the equation of state parameter of dark energy for

these potentials. We also constrain the present day matter density parameter for

these models. We restrict ourselves to low redshift data. We use the Baryon acoustic

Oscillation data (from SDSS DR12, 6dFGS, SDSS DR7, WingleZ surveys), direct

measurement of Hubble parameter (H(z)) data and Supernova-Ia Union 2.1 data.

These are diverse data sets and are complementary to one another. We find that the

present day matter density parameter is constrained to the values Ωm0 = 0.285+0.023
−0.022

at the 3σ confidence for both the potentials. The value of Ωm0 for tachyon model
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is in agreement with its value for flat ΛC DM model constrained using the JLA data

within 1σ. However, there is a tension with constraints from Planck and BAO DR12

data .

The data puts only a lower bound on the parameterφ0H0 (φ0 is the present value

of the tachyon field and H0 is the Hubble constant) which is oder unity, and all larger

values are allowed. This way, we need not fine-tune this parameter to get present

day accelerated expansion. The parameters wφ0 ( the present day equation of state

parameter ) and φ0H0 are correlated. As we increase the value of φ0H0 the present

equation of state of dark energy wφ0→−1. Therefore, for sufficiently larger values

of φ0H0, the tachyon models are capable of mimicking a cosmological constant like

equation of state. Setting up the constraints on the parameters, we explore the evo-

lution of the Universe in the past and in the future. We find that for tachyon model,

the Universe goes through a transition from decelerated to accelerated expansion

between redshifts 0.61 ® zac ® 0.80. For tachyon model with exponential potential

the equation of state wφ rises to value larger than −1/3 (for smaller value of φ0H0

) in future, and the Universe once again goes to a decelerating phase. Therefore,

in the case of this potential there is no ‘future horizon problem’. We find that con-

straints on tachyon models are stringent and these are as good as ΛC DM model

to be consistent with the low redshift data we have used. Background data alone

can not rule out degeneracy between models. We study effect of perturbations in

tachyon dark energy in oder to get constraints on parameters from observations

beyond distance measurements.

In the second part of this work, we have focused on the growth of structure in

the Universe in presence of a perturbed tachyon dark energy. The field equations

remain invariant under gauge transformation, therefor we are free to choose any

frame to work with. Going from one frame to other and by scaling coordinates, we

can make small perturbations large and vice versa. To fix this problem, we choose

to work in a fixed gauge and calculate all physical quantities of interest in it. We

use the Newtonian conformal gauge and solve the Einstein’s equations considering

all perturbed quantities up to linear oder. We consider perturbation in scalar field

as φ( x̄ , t) = φ̄(t) + δφ( x̄ , t), and derive dynamical equation for perturbed part of

the scalar field δφ( x̄, t) using conservation of energy-momentum tensor. We set our

initial condition at just after epoch of decoupling, z = 1000, considering dark energy

initially homogeneous. We use the same two tachyon potentials that have been used

in background dynamics study. We setΩm0 = 0.285, the best fit value by background

data, and φinH0 ≈ φ0H0. The results for these models are then compared with the

results for ΛC DM model.
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The gravitational potential remains constant in the matter dominated era, but in

dark energy dominated era it decays. For tachyon model, this phenomenon is scale

dependent in contrast to ΛC DM model. At sub-Hubble scales, all three models show

similar behavior, but at Hubble and super-Hubble scales they show significant dif-

ference. At sub-Hubble scales matter density contrast δm∝ a in matter dominated

era for all three models. As the dark energy starts to dominate, its growth is sup-

pressed, as gravitational potential decays. Dark energy density contrast δφ evolves

at the same rate at all scales in matter dominated era, whereas in dark energy dom-

inated era it is suppressed. At larger scales the δφ is higher in magnitude than it is

for the shorter scales; this behavior is opposite to that of the matter sector. At sub-

Hubble scales, evolution of linear growth factor D+
m
= δm/δm0 is scale independent

in all the three models, but at larger scales it is scale dependent. For smaller value

of the parameter φinH0 (wφ0 > −1) these models show significant difference, but

for larger value of this parameter, wφ0→−1 and all three models coincide.

We also study evolution of the logarithmic growth rate f =
d ln δm

d ln a
. The growth

rate decreases as we go to larger and larger scales. In the matter-dominated era, the

growth rate is higher for tachyon models, than it is for theΛC DM model at all scales.

In recent past, growth rate starts slowing down, and for tachyon models it decays so

fast that it comes below ΛC DM model. To compare with observations, we calculate

f σ8(z) for all three models, and compare it with redshift space distortion (RSD)

data. We find all these models are in good agreement with data, and as wφ0 → −1

these models are indistinguishable. We also study the effect of early perturbation in

dark energy by varying the parameter wφin
. We find that early perturbations in dark

energy show damped oscillation and die out first. There is no effect on the growth

of matter at sub-Hubble scales. These effects are only visible at larger scales. Using

the RSD data, we constrain the parameters of the models as well as Ωm0 and σ8(0).

We find that there is a tension of ≈ 3σ between RSD growth rate data and Planck-

2.15/2018 CMB data for ΛC DM model. For tachyon models this tension is reduced

bellow 2σ level. Finally, comparing the ratio (δφ/δm)z=0 at different scales, we find

that although the clustering in dark energy at sub-Hubble scales (λp < 1000 M pc)

is insignificant as compared to matter clustering, it becomes significant at Hubble

and super-Hubble scales.

At small scales, dark energy can be considered homogeneous, but different back-

grounds can make a difference. Therefore, the next step in this study would be to

compare the effect of different dark energy models on evolution of matter clustering

and parameter constrain. Only background observation can not remove the degen-

eracy between models. Perturbation can break the degeneracy via the ‘Integrated
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Sachs-Wolf Effect’ (ISW effect), since it affects the low l CMB angular power spec-

trum. Since the dark energy perturbations are significant at scales comparable to

the Hubble radius, its effects are expected to be seen prominently in the ISW effect.

Therefore, it is important to investigate ISW effect in tachyon model and compare

it with other dynamical dark energy models. One can investigate the possibility

of getting the ISW signal in the CMB temperature anisotropies by cross-correlating

with large-scale structure surveys. Using the cross-correlation data of the ISW sig-

nal with other background and growth-rate data, we can constrain cosmological

parameters. We can therefore attempt to rule out or compare different dark energy

models. Since tachyon models are viable cosmological models, various aspects of

tachyon cosmology merits further study.
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