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Abstract

Monomial ideals provide a bridge between combinatorics and commutative

algebra. In this thesis we consider three families of monomial ideals: 1-

skeleton ideal of the G-parking function ideal MG, monomial ideals induced

by permutation avoiding patterns, and the edge ideals of circulant graphs.

The 1-skeleton ideal M(1)
G is a subideal of MG. Postnikov and Shapiro showed

that the number of standard monomials of MG is also given by det L̃G, where

L̃G is the truncated Laplace matrix of G. We prove that number of standard

monomials of M(1)
G is bounded below by det Q̃G, where Q̃G is the truncated

signless Laplace matrix of G. We have also given examples of some families

of graphs for which this lower bound is attained.

Next, we consider monomial ideals induced by some permutation avoid-

ing patterns. We show that number of standard monomials of Alexander

dual of the monomial ideal induced by 132 and 312 avoiding patterns are

also enumerated by number of rooted labeled forests avoiding 213 and 312

patterns. Formulas for number of standard monomials for other permutation

avoiding patterns are also obtained.

Finally, we study edge ideals of the following three families of cir-

culant graphs Cn(1, . . . , ĵ, . . . , bn2 c), Clm(1, 2, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c) and

Clm(1, 2, . . . , l̂, . . . , 2̂l, . . . , b lm2 c) and obtain all N-graded Betti numbers of

these ideals. Other algebraic and combinatorial properties such as when

these graphs are well-covered, shellable, Cohen-Macaulay, Buchsbaum etc.

ix
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are also discussed.

The results are based on research done in collaboration with C. Kumar,

G. Lather and S. Anand.



Notations

[n] : {1, 2, . . . , n}.

|S| : cardinality of a set S.

#A : number of elements in a finite set A.

Kn+1: complete simple graph on n+ 1 vertices {0, 1, . . . , n}.

Ka,b
n+1: complete multigraph on n+ 1 vertices {0, 1, . . . , n}.

K: a field.

N: set of natural numbers containing zero.

R: set of real numbers.

C: set of complex numbers

Ri: the ith row of a matrix.

Ci: the ith column of a matrix.

MG: the G-parking function ideal of a graph G.

M
(1)
G : the 1-skeleton ideal.

Q̃G: reduced (truncated) signless Laplace matrix of a graph G.

Sn: set of all permutations of [n].

IS: monomial ideal induced by a set S ⊆ Sn.

Cn: cycle graph of length n.

Cn(S): circulant graph on the generating set S ⊆ {1, 2, . . . , bn2 c}.

βi,j: ith N-graded Betti numbers in degree j.
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Chapter 1

Introduction

Monomial ideals provide a bridge between commutative algebra and combi-

natorics. Combinatorial problems are encoded into monomial ideals, which

then enable us to use techniques and tools in commutative algebra to solve

the original problem. Richard Stanley [49] was the first mathematician who

successfully applied such methods. To each simplicial complex he associated

a square-free monomial ideal, called the Stanley-Reisner ideal (Section 2.3.1).

Combinatorial properties of the simplicial complex are intimately related to

the algebraic properties of this ideal. In this thesis we aim to understand

certain algebraic and combinatorial properties of three families of monomial

ideals: 1-skeleton ideals of the graphical parking function ideals (Section 3.2),

monomial ideals induced by permutation avoiding patterns (Section 4.1), and

the edge ideals of circulant graphs (Section 5.1).

The main object of study in Chapter 3 is the graphical parking function

ideals and their skeleton ideals. Parking functions were introduced by Kon-

heim and Weiss [26] in relation to hashing problems. This concept turned

out to have connections and applications to many areas of mathematics. For

example, it was shown in [27] that the parking functions of size n are in one

to one correspondence with trees in n + 1 labeled vertices. There are many

1
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generalizations of parking functions; one such is the G-parking functions or

the graphical parking functions defined for a directed graph G. Interestingly,

the graphical parking functions are related to the abelian sandpile model

introduced by Dhar [12]. It was shown by Gabrielov [16] that the number

of G-parking functions equals the number of oriented spanning trees of the

directed graph G. Postnikov and Shapiro [45] introduced (graphical) parking

functions in an algebraic context. Given a directed graph G on n+1 vertices,

they associated a monomial ideal MG, called the G-parking function ideal.

The standard monomials of R/MG are given by the G-parking functions,

where R is the polynomial ring in n variables over a field. The Matrix-Tree

Theorem [50, Theorem 5.6.8] says that the number of oriented spanning trees

NG of a digraph G is equal to det L̃G, where L̃G is the truncated Laplace ma-

trix of G. Thus the number of G-parking functions of a digraph G is given

by det L̃G.

The ideals MG have connections to ‘chip firing’ [5] and a discrete

Riemann-Roch theory for graphs [4, 36]. Motivated by certain constructions

in ‘hereditary chip firing’ models, Dochtermann [14] introduced the notion of

k-skeleton ideals M(k)
G of MG. These are by definition, subideals of MG. In

this thesis we focus on the 1-skeleton ideal M(1)
G of an undirected multigraph

G. Dochtermann showed that if G = Kn+1, the complete simple graph, then

the number of standard monomials of R/M(1)
G equals det Q̃G, where Q̃G is the

truncated signless Laplace matrix of G. He also asked whether it is true that

for a simple graph G, #{standard monomials ofR/M(1)
G } ≥ det Q̃G. We have

shown that this is indeed true for all multigraphs. More generally, we have

associated a monomial ideal JH to a certain class of symmetric matrices H

defined over nonnegative integers (see Section 3.2) and showed the following

in [33, Theorem 3.3].
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Theorem 1.0.1. If H is positive semidefinite, then

#{standard monomials ofR/JH} ≥ detH.

In case H = Q̃G, the ideal JH = M
(1)
G so that the above theorem an-

swers the question of Dochtermann. Moreover, we have characterized the

subgraphs of the complete multigraph Ka,1
n+1, in particular all simple graphs

G such that #{standard monomials ofR/M(1)
G } = det Q̃G (see Theorem

3.3.16). Examples of some families of multigraphs for which this equality

holds are also given in Chapter 3.

In Chapter 4 we consider monomial ideals induced by permutation avoid-

ing patterns. Let Sn be the set of all permutations of [n] = {1, 2, . . . , n}. For

various S ⊆ Sn, the monomial ideals IS = 〈xσ : σ ∈ S〉 and its Alexander

dual I [n]
S have many interesting combinatorial properties. For example, the

ideal ISn is called a permutohedron ideal and the Alexander dual I [n]
Sn

is the

tree ideal MKn+1 . The ith Betti number βi(I [n]
Sn

) = (i!)S(n + 1, i + 1), where

S(n, r) is the Stirling number of the second kind, i.e., the number of set-

partitions of [n] into r blocks. Further, #{standard monomials ofR/I [n]
Sn
} =

#{parking functions of size n} = (n + 1)n−1. When S = Sn(τ1, . . . , τr) is

a set of permutations avoiding patterns, the ideals IS and their Alexander

duals I [n]
S also have many pleasing structures. For example, when S is the

set of permutations avoiding 132 and 231-patterns, it is shown in [30] that

the number of standard monomials of R/I [n]
S is given by the integer sequence

(A000262) in OEIS [48]. The monomial ideals IS induced by permutation

avoiding patterns Sn(123, 132) and Sn(123, 132, 213) are investigated in [31].

We have considered the monomial ideal IW and its Alexander dual I [n]
W , where

W = Sn(132, 312). The ideal IW also appeared in [29], where it is called a

hypercubic ideal. We have identified the standard monomials of R/I [n]
W with

the integer sequence (A007840) in OEIS [48].
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Theorem 1.0.2. [35, Theorem 2.7] For n ≥ 1, we have dimK

(
R

I
[n]
W

)
=∑n

r=1(r!)s(n, r), where s(n, r) is the signless Stirling number of the first kind.

Thus the standard monomials of R/I [n]
W are also enumerated by rooted-

labeled forests on [n] avoiding 213 and 312-patterns [3]. For S1 =

Sn(123, 132, 312), S2 = Sn(123, 213, 231) and S3 = Sn(132, 213, 231), we

have identified the standard monomials of R/I [n]
Sa (1 ≤ a ≤ 3) with the integer

sequence (A001710) [35, Theorem 3.5]. Similarly, for T1 = Sn(123, 132, 231)

and T2 = Sn(213, 312, 321), the standard monomials of R/I [n]
Tb
, b = 1, 2, are

identified with the integer sequence (A000254) [35, Theorem 3.7].

In Chapter 5 we study edge ideals of circulant graphs. Edge ideals of

a graph are introduced by Villarreal [56]. They are mainly investigated to

study the relationship between algebraic properties of the ideals and combina-

torial properties of the graphs [20,25]. Recently there has been an increased

interest to study edge ideals of circulant graphs [1, 15, 41, 54, 55]. Circu-

lant graphs are Cayley graphs over the simplest family of groups, the cyclic

groups. In the literature they have appeared in a number of applications

such as networks [7], connectivity [8], error-correcting codes [46] and even

music [9] because of their regular structure. Brown and Hoshino studied the

independence polynomial of a circulant graph in [9]. They have shown that

it is in general a co-NP-complete problem to characterize all well-covered cir-

culant graphs [10]. Moreover, they have classified all well-covered circulant

graphs of the form Cn(1, 2, . . . , d), Cn(d + 1, d + 2, . . . , bn2 c) and 3-regular

circulant graphs. Using these results Van Tuyl et al determined which cir-

culant graphs of the above form are vertex decomposable, shellable, Cohen-

Macaulay or Buchsbaum [15, 55]. In this thesis we study three families of

circulant graphs, Cn(1, . . . , ĵ, . . . , bn2 c), Clm(1, 2, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c) and

Clm(1, 2, . . . , l̂, . . . , 2̂l, . . . , b lm2 c). We have given formulas for all the N-graded

Betti numbers of their edge ideals [2, Theorems 3.8, 4.3, 4.4, 4.5, 5.2]. The
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circulant graphs are expressed as a join of some well-known families of graphs.

In [2] we have shown the following.

Proposition 1.0.3. [2, Proposition 2.8] Let d ≥ 2 be an integer. Suppose

G1, . . . , Gd are d number of finite simple graphs with disjoint vertex sets. Let

G = G1 ∗ · · · ∗Gd. Then

(i) The induced matching number ν(G) =

maxi{ν(Gi)} if ν(Gi) 6= 0 for some i ,

1 otherwise.

(ii) G is well-covered if and only if all Gj’s are well-covered and for each

i 6= j

α(Gi) = α(Gj).

(iii) G is vertex decomposable/shellable/Cohen-Macaulay (or S2) if and only

if Gj’s are complete graphs for all j.

(iv) G is sequentially Cohen-Macaulay if and only if Gt is sequentially

Cohen-Macaulay for some 1 ≤ t ≤ d and Gj’s are complete for all

j 6= t.

(v) G is Buchsbaum if and only if each Gi is Buchsbaum for 1 ≤ i ≤ d.

Using this we have determined under what conditions the above three

families of circulant graphs are vertex decomposable, shellable, Cohen-

Macaulay, sequentially Cohen-Macaulay, Buchsbaum or if they satisfy Serre’s

condition S2 [2, Theorems 3.9, 4.7, 5.4]. Moreover, formulas for Castelnuovo-

Mumford regularity, projective dimension and induced matching numbers are

also given in [2].

The thesis is organized as follows. In Chapter 2 we recall some definitions

and results in order to use them in subsequent chapters. In Chapter 3 we give

a lower bound for the number of standard monomials of the 1-skeleton ideal of

a multigraph and characterize all subgraphs of Ka,1
n+1 which attains the lower
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bound. In Chapter 4 we identify the standard monomials of some Artinian

monomial ideals induced by permutation avoiding patterns with some well-

known integer sequences. In Chapter 5 we first compute the graded Betti

numbers of the edge ideals of three families of circulant graphs and then

determine certain algebraic and combinatorial properties of these ideals.



Chapter 2

Preliminaries

In this chapter we recall some definitions and basic results in commutative

algebra. The general references for this chapter are the books by Matsumura

[37], Bruns and Herzog [11], Miller and Sturmfels [39], and Peeva [43]. We

also discuss some properties of positive semidefinite matrices following the

book by Horn and Johnson [23].

2.1 Graded modules and Betti numbers

Let K be a field and R = K[x1, x2, . . . , xn] be the polynomial ring in n

variables. Let m be the maximal ideal 〈x1, x2, . . . , xn〉 in R. We define two

gradings on R in the following way. For i ∈ N, let Ri be the K-vector space

of homogeneous polynomials of degree i. Then R can be written as a direct

sum of K-vector spaces, R ∼= ⊕i∈NRi. We refer to this grading as the N-

grading of R. Another grading for R is called the Nn-grading and is defined

in the following way. A monomial in R is of the form xa := ∏n
i=1 x

ai
i for some

a = (a1, . . . , an) ∈ Nn. For a ∈ Nn, consider the one-dimensional K-vector

space Ra = {cxa | c ∈ K}. Then R ∼= ⊕a∈NnRa as a K-vector space and this

gives the Nn-grading for R.

7



8 2.1. Graded modules and Betti numbers

Let S denote the Abelian semigroup N or Nn. A graded R-moduleM is an

R-module together with a direct sum decomposition M = ⊕i∈SMi satisfying

RiMj ⊆ Mi+j. An element x ∈ Mi is called a homogeneous element of M

with deg x = i. The Nn-grading is finer than the N-grading in the sense

that Nn-graded modules are naturally N-graded. Note that, R is a graded

module over itself. For j ∈ N (respectively, a ∈ Nn), let R(−j) (respectively,

R(−a)) denote the free N-graded (respectively, Nn-graded) R-module of rank

one with a homogeneous generator of degree j (respectively, degree a).

Let M be an R-module. A free resolution of M is a sequence

F : · · · → Fp
dp−→ Fp−1 → · · · → F1

d1−→ F0 → 0

of free R-modules Fi such that di◦di+1 = 0 with coker d1 = M and F is exact

except at the 0th position. Therefore, the homology groups H0(F) ∼= M and

Hi(F) = 0 for i ≥ 1. A resolution F is called a graded free resolution if R is

a graded ring, M is a graded R-module, the Fi are graded free modules in

the same grading as of M and all the di are homogeneous of degree 0, i.e.,

for all i ≥ 1, and for all y ∈ Fi, deg di(y) = deg y.

LetM be a (graded) R-module. A (graded) free resolution F ofM over R

is called a minimal (graded) free resolution if, for all i ≥ 1, di(Fi) ⊆ mFi−1.

Every graded module M has a minimal graded free resolution. Moreover,

Hilbert’s syzygy theorem [43, Theorem 15.2] says that every finitely generated

graded R-module M has a finite graded minimal free resolution of length at

most n.

LetM and N be finitely generated graded R-modules. Let F be a graded

free resolution of M . Consider the complex

HomR(F, N) : 0→ HomR(F0, N) −→ Hom(F1, N)→ . . . .
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The R-module Hi(HomR(F, N)) is denoted by ExtiR(M,N) for i ≥ 0. Note

that, Ext0
R(M,N) = HomR(M,N). Since F is a graded free resolution the

complex HomR(F, N) is a graded complex. So, its homology is graded. Thus

ExtiR(M,N) is a graded R-module with the same type of grading as N or

Nn. Further, they do not depend on the choice of resolution of M (see [43,

Theorem 38.2]).

Given two graded free resolutions F of M and F′ of N consider the com-

plexes

F ⊗R N : . . .→ Fi ⊗R N → Fi−1 ⊗R N → . . .→ F0 ⊗R N → 0

and

M ⊗R F′ : . . .→M ⊗R F ′i →M ⊗R F ′i−1 → . . .→M ⊗R F ′0 → 0.

Theorem 2.1.1. [58, Theorem 2.7.2] Let M and N be graded R-modules

with graded free resolutions F and F′ respectively. Then

Hi(F ⊗R N) ∼= Hi(M ⊗R F′).

Define

TorRi (M,N) := Hi(F ⊗R N) ∼= Hi(M ⊗R F′),

for i ≥ 0. Note that, TorR0 (M,N) ∼= M ⊗R N . Since F is a graded free

resolution the complex F⊗RN is also a graded complex. So, its homology is

graded. Thus every TorRi (M,N) is a graded R-module with the same type of

grading as N or Nn. Further, they do not depend on the choice of resolutions

of M and N (see [43, Theorem 38.1]).

We define the graded Betti numbers and multigraded Betti numbers as

follows.
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Definition 2.1.2 (Betti numbers). Let M be a finitely generated N-graded

R-module. For 0 ≤ i ≤ n and j ∈ N, the graded Betti numbers βi,j(M) (or

simply βi,j), of M, are defined as βi,j(M) := dimK TorRi (M,K)j. Similarly, if

M is an Nn-graded R-module then for 0 ≤ i ≤ n and a ∈ Nn, the multigraded

Betti numbers βi,a(M) := dimK TorRi (M,K)a. The Betti numbers βi(M) (or

simply βi), of M , are defined as βi(M) := dimK TorRi (M,K).

Proposition 2.1.3. [39, Lemma 1.32] Let F : 0 → Fr
dr−→ Fr−1 → · · · →

F1
d1−→ F0 → 0 be a minimal N-graded free resolution of an R-module M .

Then Fi = ⊕j∈NR(−j)βi,j(M) for each 0 ≤ i ≤ r. Similarly, if M is Nn-

graded then for each i, Fi = ⊕a∈NnR(−a)βi,a(M).

Since every Nn-graded module is naturally an N-graded module we get

the following.

Corollary 2.1.4. Let M be a finitely generated Nn- graded R-module. Con-

sidering M as an N-graded module we have βi,j(M) = ∑
|a|=j βi,a(M), where

for a = (a1, . . . , an) ∈ Nn, |a| = ∑n
i=1 ai.

Definition 2.1.5. Let M be a finitely generated N-graded R-module. The

length of a minimal graded free resolution of M is called as the projective

dimension of M and is denoted by pd(M), i.e., pd(M) = max{i | βi,j(M) 6=

0 for some j}. The Castelnuovo-Mumford regularity (or simply the regular-

ity) of M , denoted by reg(M), is defined as reg(M) = max{j− i | βi,j(M) 6=

0}.

Note that reg(M) is well-defined since a finitely generated graded R-

module has a finite free resolution.
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2.2 Cohen-Macaulay rings and some related

notions

In this section we recall some properties of Noetherian rings following the

book by H. Matsumura [37].

Let A be a commutative ring with identity and M an A-module. An

element x ∈ A is said to be M -regular if xm = 0 for some m ∈ M implies

m = 0.

Definition 2.2.1 (Regular sequence). A sequence x1, . . . , xn of elements of

A is said to be an M-sequence (or an M-regular sequence) if the following

two conditions hold:

1. x1 is M-regular, x2 is (M/x1M)-regular,..., xn is (M/
∑n−1
i=1 xiM)-

regular;

2. M/
∑n
i=1 xiM 6= 0.

Let A be a Noetherian ring, I an ideal of A and M a finite A-module

such that M 6= IM ; then by [37, Theorem 16.7] the length of a maximal

M -sequence in I is a well-defined integer which we denote by depth(I,M).

For an A-module M , the ideal {x ∈ A : xM = 0} is denoted by

ann(M). Moreover, we define dim(M) to be the Krull dimension of the

ring A/ ann(M).

Let (A,m, k) be a Noetherian local ring with the unique maximal ideal

m and the residue field k. We call depth(m,M) simply the depth of M .

Definition 2.2.2. Let (A,m, k) be a Noetherian local ring, and M a finitely

generated A-module. We say that M is a Cohen-Macaulay module if M 6= 0

and depthM = dimM , or if M = 0. If A is a Cohen-Macaulay module over

itself then we say that A is a Cohen-Macaulay local ring.
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A Noetherian ring A is said to be a Cohen-Macaulay ring if Ap is a

Cohen-Macaulay local ring for every prime ideal p in A.

Next we define the well-known Serre’s conditions (Si) for i ≥ 0 and see

how it is related to the Cohen-Macaulay condition.

Definition 2.2.3 (Serre’s condition (Si)). Let A be a Noetherian ring. We

say that A satisfies Serre’s condition (Si) for i ≥ 0 if for each prime ideal

p in A, we have depth(Ap) ≥ min(ht(p), i), where ht(p) is the height of the

prime ideal p.

From the definition we see that a Noetherian ring A is Cohen-Macaulay

if and only if it satisfies Serre’s condition (Si) for each i ≥ 0. For rings of

Krull dimension ≤ 2, Cohen-Macaulay condition is same as (S2).

Next we define the notion of Buchsbaum ring. First recall that for a

Noetherian local ring (A,m, k) of dimension r, there exists an m-primary

ideal generated by r elements, but none generated by fewer [37, Theorem

13.4]. If a1, . . . , ar ∈ m generate an m-primary ideal, then {a1, . . . , ar} is said

to be a system of parameters of A.

Definition 2.2.4 (Buchsbaum ring). A Noetherian local ring (A,m, k) is

said to be a Buchsbaum local ring if every system of parameters of A is

a weak sequence, i.e., if {a1, . . . , ar} is a system of parameter of A, then

m · ((a1, . . . , ai−1) : ai) ⊂ (a1, . . . , ai−1) for all i.

A Noetherian ring A is said to be a Buchsbaum ring if Ap is a Buchsbaum

local ring for every prime ideal p in A.

Note that a Cohen-Macaulay ring is always a Buchsbaum ring.

Definition 2.2.5 (Gorenstein ring). Let (A,m, k) be a Noetherian local ring

of dimension r. A is said to be a Gorenstein local ring if A is a Cohen-

Macaulay local ring and ExtrA(k,A) ∼= k.
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A Noetherian ring A is said to be a Gorenstein ring if Ap is a Gorenstein

local ring for every prime ideal p in A.

Let R = K[x1, . . . , xn] be the polynomial ring over a field K and I a

homogeneous ideal in R. We have the following criterion for R/I to be

Gorenstein.

Theorem 2.2.6. [43, Theorem 25.7] Let I be a homogeneous ideal in R.

Let R/I has Krull dimension q. The quotient R/I is Gorenstein if and only

if pd(R/I) = n− q and βn−q(R/I) = 1.

2.3 Monomial ideals

In this section we recall some basic results related to monomial ideals that

we need in the subsequent sections.

2.3.1 Simplicial complex and Stanley-Reisner ring

Let R = K[x1, . . . , xn] be the polynomial ring in n variables. An (abstract)

simplicial complex ∆ on the vertex set V = {x1, . . . , xn} is a collection of

subsets of V called faces or simplices closed under taking subsets, i.e., if

F ∈ ∆ is a face and G ⊂ F , then G ∈ ∆. The maximal elements of ∆,

with respect to inclusion, are called the facets of ∆. If {F1, F2, . . . , Ft} is a

complete list of the facets of ∆, we will sometimes write ∆ = 〈F1, . . . , Ft〉.

The dimension of a face F ∈ ∆, denoted by dimF , is given by dimF =

|F | − 1, where we make the convention that dim ∅ = −1. The dimension

of ∆, denoted by dim ∆, is defined to be dim ∆ = maxF∈∆{dimF}. The

dimension of ∆ is −∞ if ∆ = {}, the void complex with no face.

Example 2.3.1. Let V = {x1, x2, x3, x4}. Then an example of a simplicial

complex on V is ∆ = {∅, {x1}, {x2}, {x3}, {x4}, {x2, x3}, {x3, x4}}.



14 2.3. Monomial ideals

Let ∆ be a simplicial complex on {x1, . . . , xn}. For each integer i, let

Fi(∆) be the set of i-dimensional faces of ∆, and letKFi(∆) be the vector space

over K whose basis elements eσ correspond to i dimensional faces σ ∈ Fi(∆).

The reduced chain complex of ∆ over K is the complex C̃·(∆;K):

0→ KFn−1(∆) ∂n−1−−−→ · · · → KFi(∆) ∂i−→ KFi−1(∆) → · · · ∂0−→ KF−1(∆) → 0.

The boundary maps ∂i are defined by setting sign(xj, σ) = (−1)r−1 if xj is

the rth element of the set σ ⊆ {x1, . . . , xn}, written in the increasing order

x1 < x2 < · · · < xn, and ∂i(eσ) = ∑
xj∈σ sign(xj, σ)eσrxj .

If i < −1 or i > n − 1, then KFi(∆) = 0 and ∂i = 0 by definition. It can

be checked that ∂i ◦ ∂i+1 = 0. For each integer i, the K-vector space

H̃i(∆;K) := ker(∂i)/ im(∂i+1)

is defined to be the ith reduced homology of ∆ over K.

Example 2.3.2. Let ∆ be the simplical complex from Example 2.3.1.

The simplical complex ∆ has all its reduced simplical homology zero, i.e.,

H̃i(∆,K) = 0 for each integer i.

Given a simplicial complex ∆ on the vertex set V = {x1, . . . , xn},

we can associate it with a square-free monomial ideal I∆ in the polyno-

mial ring R = K[x1, x2, . . . , xn] in the following way. For every subset

F of V , we define a monomial xF := ∏
xi∈F xi in R. Then the ideal

I∆ := 〈xF : F /∈ ∆〉 is called the Stanley-Reisner ideal of ∆ and the quo-

tient ring K[∆] = R/I∆ is called the Stanley-Reisner ring. Conversely, if I is

a square-free monomial ideal in R, then it can be associated to a simplicial

complex ∆(I) = {F ⊆ V : xF /∈ I}. This correspondence between simpli-

cial complexes on V = {x1, . . . , xn} and square-free monomial ideals in R is

called the Stanley-Reisner correspondence.
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Example 2.3.3. Let ∆ be the simplicial complex from Example 2.3.1. Then

the Stanley-Reisner ideal of ∆ is I∆ = 〈x1x2, x1x3, x1x4, x2x4, x2x3x4〉.

In order to describe some algebraic and combinatorial properties of the

simplicial complex ∆ and its Stanley-Reisner ring K[∆], we first recall some

definitions related to simplicial complexes [57]. A simplicial complex is called

pure if all its facets have the same dimension. A simplex is a simplicial

complex having exactly one facet. Let ∆ and ∆′ be two simplicial complexes

with vertex sets V and V ′ respectively. The union ∆ ∪ ∆′ is a simplicial

complex with vertex set V ∪V ′ and F is a face of ∆∪∆′ if and only if F is a

face of ∆ or ∆′. For a simplicial complex ∆, if F ∈ ∆ is a face then the link of

F is the simplicial complex lk∆(F ) = {H ∈ ∆ | H ∩F = ∅ and H ∪F ∈ ∆},

and deletion of F is the simplicial complex del∆(F ) = {H ∈ ∆ | H ∩F = ∅}.

When F = {xi}, then we simply write lk∆(xi) or del∆(xi).

Example 2.3.4. Let ∆ = 〈{a, b}, {a, c, d}, {c, d, e}〉 be a simplicial complex

on the vertex set {a, b, c, d, e}. Take x = b. Then lk∆(b) = 〈{a}〉 is a simplex.

Moreover, del∆(b) is the simplicial complex 〈{a, c, d}, {c, d, e}〉.

Given a pure simplicial complex ∆, we say ∆ is vertex decomposable if

either ∆ is a simplex, or there exists a vertex x such that lk∆(x), del∆(x) are

vertex decomposable and every facet of del∆(x) is a facet of ∆.

Example 2.3.5. Let ∆ = 〈{a, b, c}, {b, c, d}〉 be a pure simplicial complex on

the vertex set {a, b, c, d}. Since lk∆(a) = 〈{b, c}〉 and del∆(a) = 〈{b, c, d}〉,

we see that ∆ is vertex decomposable.

A simplicial complex ∆ is called shellable if ∆ is pure and there exists an

ordering of facets F1 < F2 < · · · < Fr such that for all 1 ≤ j < i ≤ r, there

is some x ∈ Fi \ Fj and some k ∈ {1, . . . , i− 1} for which Fi \ Fk = {x}.

Example 2.3.6. Let ∆ = 〈{a, b, c}, {a, c, d}, {c, d, e}〉 be a pure simpli-

cial complex on the vertex set {a, b, c, d, e}. Taking F1 = 〈{a, b, c}〉, F2 =
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〈{a, c, d}〉 and F3 = 〈{c, d, e}〉 we see that ∆ is shellable. The simplicial

complex in Example 2.3.5 is also shellable.

Let ∆ be a pure simplicial complex on V . We say ∆ is Cohen-Macaulay

over a field K if the Stanley-Reisner ring K[∆] is a Cohen-Macaulay ring.

Theorem 2.3.7 (Reisner’s criterion, [11, Corollary 5.3.9]). A simplicial com-

plex ∆ is Cohen-Macaulay over a field K if and only if H̃i(lk∆(F );K) = 0 for

all F ∈ ∆ and all i < dim lk∆(F ) (here H̃i(−;K) is the ith reduced simplicial

homology group).

If lk∆(x) is Cohen-Macaulay for all x ∈ V , then the pure simplical complex

∆ is called a Buchsbaum simplicial complex. A simplicial complex ∆ is said

to satisfy Serre’s condition S2 if K[∆] satisfies S2.

Theorem 2.3.8. [42] Let ∆ be a simplicial complex.Then ∆ satisfies Serre’s

condition S2 if and only if ∆ is pure and lk∆(F ) is connected for every face

F of ∆ having dim lk∆(F ) ≥ 1.

For a (not necessarily pure) simplicial complex ∆ the pure ith skeleton

of ∆ is the subcomplex ∆[i] of ∆ whose facets are the faces F of ∆ with

dimF = i. If ∆[i] is Cohen-Macaulay for all i then ∆ is called a sequentially

Cohen-Macaulay simplicial complex. Note that sequentially Cohen-Macaulay

pure simplicial complexes are also Cohen-Macaulay. If ∆ is Buchsbaum, then

the ring K[∆] is called a Buchsbaum ring. Similarly, if ∆ is sequentially

Cohen-Macaulay, then the Stanley-Reisner ring K[∆] is called a sequentially

Cohen-Macaulay ring.

2.3.2 Alexander duality

Let ∆ be a simplicial complex on the vertex set [n] = {1, . . . , n}. The

Alexander dual ∆∗ of ∆ is the simplicial complex {F : F c /∈ ∆}, where
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F c = [n] \ F . Let I ⊆ R = K[x1, . . . , xn] be a square-free monomial ideal.

Consider I as a Stanley-Reisner ideal I∆ for some simplicial complex ∆. The

Alexander dual of the square-free monomial ideal I = I∆, denoted by I∗, is

by definition the Stanley-Reisner ideal I∆∗ of the Alexander dual ∆∗.

Example 2.3.9. Let ∆ = {∅, {1}, {2}, {3}, {4}, {2, 3}, {3, 4}} be a simplicial

complex. Then ∆∗ = {∅, {1}, {2}, {3}, {4}, {2, 3}, {3, 4}, {1, 3}, {2, 4}} and

I∆∗ = 〈x1x2, x1x4, x2x3x4〉.

For a simplicial complex ∆ on the vertex set [n] and for W ⊆ [n], the

restriction of ∆ to W is the subcomplex ∆[W ] = {F ∈ ∆ : F ⊆ W}.

Given W ⊆ [n], we associate it with a vector a ∈ {0, 1}n as follows. If

a = (a1, . . . , an) then ai = 1 if and only if i ∈ W . Further the restriction

of ∆ to a is ∆[a] := ∆[W ]. For a square-free monomial ideal I = I∆ in

the polynomial ring R the Betti numbers of R/I can be calculated using the

following formula by M. Hochster.

Theorem 2.3.10 (Hochster’s Formula, [22]). Let K[∆] = R/I∆ be the

Stanley-Reisner ring of the simplicial complex ∆. The non-zero Betti num-

bers of K[∆] are only in square-free degrees a and may be expressed as

βi,a(K[∆]) = dimK H̃|a|−i−1(∆[a];K).

In particular, by Corollary 2.1.4 the N-graded Betti numbers of K[∆] may

be expressed as

βi,j(K[∆]) =
∑

W⊂[n]
|W |=j

dimK H̃j−i−1(∆[W ];K). (2.1)

Alexander duality for square-free monomial ideals has been extended to

any monomial ideal by Miller [38] as follows. Let a = (a1, . . . , an) ∈ Nn

and xa be the monomial ∏n
i=1 x

ai
i in R = K[x1, . . . , xn]. The monomial
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ideal 〈xaii : ai > 0〉 is denoted by ma. Now every monomial ideal I in R

has a unique set of minimal monomial generators and the primary compo-

nents of I are also a unique set of monomial ideals of the form ma (see [39,

Lemma 5.18]). Let {xa : a ∈ A} be the set of minimal generators of I and

{ma : a ∈ A′} be the set of (monomial) primary components of I, where A

and A′ are finite subsets of Nn. Then I = 〈xa : a ∈ A〉 = ∩{ma : a ∈ A′}.

Let b = (b1, . . . , bn) ∈ Nn such that b ≥ a, i.e., bi ≥ ai for 1 ≤ i ≤ n.

Then we define b \ a = (b1 \ a1, . . . , bn \ an) ∈ Nn, where

bi \ ai =


bi − ai + 1 if ai ≥ 1,

0 otherwise.

If I is the monomial ideal in R generated by {xa : a ∈ A} then the Alexander

dual I [b] of I with respect to b is defined by Miller [38] as the monomial ideal

I [b] =
⋂
{mb\a : a ∈ A} =

〈
xb\a : a ∈ A′

〉
.

Example 2.3.11. Let I = 〈x2, xy2〉 = 〈x〉∩〈x2, y2〉. Then the Alexander dual

of I with respect to the vector b = (2, 4) is I [b] = 〈x2, xy3〉 = 〈x〉 ∩ 〈x2, y3〉.

Let I be a square-free monomial ideal in R = K[x1, . . . , xn]. Then I = I∆

for some simplicial complex ∆ on the vertex set {x1, . . . , xn}. We show that

the Alexander dual I∗ = I [1], where 1 = (1, 1, . . . , 1), as follows. Let F ∈ ∆

be a face. Identify F with a vector aF ∈ {0, 1}n, where aF = (a1, . . . , an)

with ai = 1 if and only if xi ∈ F . We can write I = I∆ = ∩F∈∆maFc (see [39,

Theorem 1.7]). Then I [1] = 〈xF c | F ∈ ∆〉. Since I∗ = 〈xF | F /∈ ∆∗〉,

where ∆∗ = {F | F c /∈ ∆}, we see that I [1] = I∗. Thus Alexander duality of

monomial ideals by Miller is indeed a generalization to the square-free case.

The Alexander duality is a duality in the following sense.

Theorem 2.3.12. [39, Theorem 5.24] If all the minimal generators of a
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monomial ideal I divide xb, then all minimal generators of I [b] divide xb

and (I [b])[b] = I.

The minimal generators of the Alexander dual of a monomial ideal can

be determined using the following result.

Proposition 2.3.13. [39, Proposition 5.23] Suppose that all the minimal

generators of a monomial ideal I divide xb. If b ≥ a, then xa lies outside of

I if and only if xb−a lies inside of I [b].

2.3.3 Cellular resolution

Let C be a subset of Rn such that for any two points x, y ∈ C the line

segment {λy + (1 − λ)x : λ ∈ R, 0 ≤ λ ≤ 1} joining x and y is in C, then

the set C is called a convex set in Rn. Note that intersection of nonempty

convex sets is again convex. For any nonempty subset X of Rn, the convex

hull Conv(X) of X is the intersection of all convex sets C ⊂ Rm (m ≤ n)

containing X. A polytope P in Rn is the convex hull of a finite set of points.

A polytope can also be expressed as a finite intersection of closed half-

spaces. Let b ∈ Rm with b 6= 0 and c ∈ R. The set Hb,c = {x ∈ Rm :

〈b,x〉 = c}, where 〈b,x〉 := ∑m
i=1 bixi = 0 is the hyperplane with normal

vector b. Then the closed half-space H+
b,c is defined as H+

b,c = {x ∈ Rm :

〈b,x〉 ≥ c}. If P is a polytope then P = ⋂s
i=1H

+
bi,ci

for some bi, ci and the

converse is also true provided that the intersection is bounded. A subset

P′ ⊆ P is a face of P if there are b ∈ Rm \ {0} and c ∈ R such that

P′ = Hb,c ∩P and P ⊆ H+
b,c. A zero-dimensional face is called a vertex of P.

Note that a face is also a convex polytope.

For many interesting properties of convex polytopes we refer to [60].

Definition 2.3.14. [39, Chapter 4] A polyhedral cell complex X is a fi-

nite collection of convex polytopes in Rn, called faces of X, satisfying two

properties:



20 2.3. Monomial ideals

• If P is a polytope in X and F is a face of P, then F is in X.

• If P and Q are in X, then P ∩ Q is a face of both P and Q.

Given a polyhedral cell complex X, Bayer and Sturmfels [6] defined a

monomial labeling on X as follows:

(i) Each vertex v of X is labeled with a monomial xbv , where bv ∈ Nd.

(ii) Each face F of X is labeled with the monomial xbF = lcm(xbv : v ∈

F is a vertex).

(iii) The empty face ∅ is labeled with 1.

Such a polyhedral cell complex is called a labeled cell complex and the expo-

nent bF is called the degree of face F .

Example 2.3.15. Let X be the polyhedral cell complex consisting of faces of

a filled pentagon 〈v1, v2, v3, v4, v5〉. We give the monomial labels on the ver-

tices by defining the degrees as follows: bv1 = (2, 1),bv2 = (1, 2),bv3 =

(1, 5),bv4 = (3, 2) and bv5 = (5, 0). Then the degrees of the edges are

b〈v1,v2〉 = (2, 2),b〈v2,v3〉 = (1, 5),b〈v3,v4〉 = (3, 5),b〈v4,v5〉 = (5, 2),b〈v5,v1〉 =

(5, 1) and the degree of the whole complex is given by b〈v1,v2,v3,v4,v5〉 = (5, 5).

We are now in a position to define the reduced chain complex associated

to a polyhedral cell complex X. Let us fix a total ordering on the vertices of

X. An orientation of a face is a choice of ordering of its vertices. The reduced

chain complexes for polyhedral chain complexes are defined the same way as

the reduced chain complexes of simplicial cell complexes, except the signs de-

pend on the orientation of the faces. The faces ofX are oriented in such a way

that for each oriented face F and its facet G, we define sign(G,F ) is +1 if the

orientation of G is induced by orientation of F , and −1 otherwise. Moreover,
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the boundary chain of a face F is given by ∂(eF ) = ∑
facets G⊂F sign(G,F ) ·eG,

where the boundary maps ∂ have the property ∂ ◦ ∂ = 0.

Let X be a oriented labeled polyhedral cell complex with vertex set V

and I be the ideal
〈
xbv : v ∈ V

〉
generated by the monomial labeled on the

vertices. Corresponding to X we define a free complex FX and determine

the conditions such that FX becomes a free resolution of R/I.

Let FX,i be the set of i-dimensional faces of X. Then we define the free

R-modules

Fi =
⊕

F∈FX,i
R(−bF )eF .

Consider the chain complex

FX : · · · → Fi
∂i−→ Fi−1 → · · · → F1

∂1−→ F0,

where the boundary maps ∂i(eF ) = ∑
facets G of F sign(G,F )xbF−bGeG. The

signatures sign(G,F ) is defined in such a way that ∂i ◦ ∂i+1 = 0. The maps

∂i are in fact an Nn-graded R-module homomorphisms. If FX is an exact

complex then it becomes a free resolution of R/I.

Definition 2.3.16. Let I be a monomial ideal and X be a polyhedral cell

complex labeled by the minimal generators of I. The free complex FX is

called a cellular resolution of R/I if FX is exact (or acyclic).

Given two vectors a and b in Nn, we write b � a if a − b ∈ Nn. Given

a ∈ Nn the two complexes, X� consisting of faces of X with degree bF �

a and X≺ obtained from X� by removing the faces of degree a of X are

subcomplexes of X.

Theorem 2.3.17. [6, Proposition 1.2] The cellular free complex FX sup-

ported on X is a cellular resolution if and only if X�a is acyclic over K

for all a ∈ Nn. When FX is acyclic it is a free resolution of R/I, where
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I =
〈
xbv : v ∈ X is a vertex

〉
is generated by the monomial labels on ver-

tices. Moreover the cellular resolution FX is a minimal resolution if and

only if any two comparable faces F ′ ⊂ F of the complex X have distinct

degrees bF 6= bF ′.

Example 2.3.18. [6, Example 1.9] Let u1, . . . , un be distinct integers and

I be the ideal generated by the n! monomials xu1
π(1)x

u2
π(2) · · ·x

un
π(n) in R =

K[x1, . . . , xn], where π runs over all permutations of {1, 2, . . . , n}. Let X

be the complex of all faces of the permutohedron [60, Example 0.10], which

is the convex hull of the n! vectors (π(1), , . . . , π(n)) in Rn. The i-faces F of

X are indexed by chains

∅ = A0 ⊂ A1 ⊂ . . . ⊂ An−i−1 ⊂ An−i = {u1, u2, . . . , un}.

The following monomial labels are assigned to the i-face F indexed by this

chain:

xbF =
n−i∏
j=1

∏
r∈Aj\Aj−1

xmax{Aj\Aj−1}
r .

It can be checked that FX is acyclic and for any two comparable faces F ⊂ F ′,

the monomial labels xbF and xbF ′ are different (see [6] for more details).

Hence FX is the minimal free resolution of R/I.

2.4 Positive semidefinite matrices

Let Mn(C) denote the set of all n × n matrices over complex numbers. For

M = [ai,j] ∈Mn(C), the adjointM∗ of the matrixM is defined asM∗ = M̄ t,

in which M t is the transpose of M and M̄ is the entrywise conjugate of M .

A matrix M ∈Mn(C) is said to be Hermitian if M∗ = M .

Definition 2.4.1. A Hermitian matrix M ∈ Mn(C) is called a positive
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semidefinite matrix if

x∗Mx ≥ 0 for all x ∈ Cn,

and is called positive definite if

x∗Mx > 0 for all nonzero x ∈ Cn.

Let M ∈ Mn(C) and α ⊆ [n] be an index set. We denote by M [α] the

(sub)matrix of M whose entries lie in the rows and columns of M indexed

by α. A matrix of the form M [α] is called a principal submatrix of M .

Example 2.4.2. Let M =


1 2 3

2 4 6

3 6 9


3×3

and α = {1, 3}. Then M [α] =

1 3

3 9


2×2

.

Proposition 2.4.3. [23, Observation 7.1.2] Let M = Mn(C) be a Hermitian

matrix. If M is positive semidefinite (respectively, positive definite) then

all its principal submatrices are positive semidefinite (respectively, positive

definite).

Proposition 2.4.4. [23, Observation 7.1.8] Let M ∈ Mn(C) be Hermitian

and let E ∈Mn,m, whereMn,m is the set of n×m matrix with complex entries.

If M is positive semidefinite then E∗ME is also positive semidefinite. If M

is positive definite then E∗ME is positive definite if and only if rankE = m.

Let Ri and Ck denote the ith row and kth column of a matrix M , respec-

tively. The elementary column operation Cj ± (Ck1 + · · ·+ Ckr) in M means

the matrix M is transformed to a matrix M ′, where only jth column C′j of

M ′ differs from the jth column Cj of M and C′j = Cj ± (Ck1 + · · ·+Ckr). The

elementary row operations are also defined in a similar way.
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Lemma 2.4.5. Let M ∈ Mn(C) be a Hermitian positive semidefinite ma-

trix. Suppose M ′ is a matrix obtained from M by applying the elementary

column and row operations Ci1 − Ck,Ri1 − Rk, . . . ,Cir − Ck,Rir − Rk, where

{i1, . . . , ir, k} ⊆ [n]. Then M ′ is a positive semidefinite matrix. If M is

positive definite then M ′ is also positive definite.

Proof. Let In be the identity matrix of order n and εi,j be the n× n matrix

with 1 at (i, j)th place and zero elsewhere. Then the matrix E = In− (εk,i1 +

εk,i2 +· · ·+εk,ir) has determinant detE = 1 and E∗ME = M ′. By Proposition

2.4.4, M ′ is positive semidefinite and since E has full rank, the matrix M ′ is

positive definite if and only if M is positive definite.

Theorem 2.4.6 (Hadamard). Let M = [ai,j] ∈ Mn(C) be positive definite.

Then

detM ≤
n∏
i=1

ai,i (2.2)

with equality if and only if M is diagonal.

Proof. For a proof see [23, Theorem 7.8.1].

Theorem 2.4.7 (Fischer). Let M ∈Mn(C) be a positive semidefinite matrix

having block decomposition M =

 A B

B∗ C

 with square matrices A and C.

Then

detM ≤ det(A) det(C). (2.3)

If M is positive definite then equality occurs in (2.3) if and only if B = 0.

Proof. Let n = p + q, i.e., M ∈ Mp+q(C) with A ∈ Mp(C) and C ∈ Mq(C).

We follow the proof of [23, Theorem 7.8.5]. First suppose that M is pos-

itive definite. Let A = U1DU
∗
1 and C = U2D

′U∗2 be spectral decom-

position, in which U1 and U2 are unitary and D = diag(d1, . . . , dp) and
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D′ = diag(d′1, . . . , d′q) are positive diagonal matrices. Let U = U1 ⊕ U2 and

then

U∗MU =

 D U∗1BU2

U∗2B
∗U1 D′

 .
Then by Hadamard’s inequality (2.2),

detM = det(U∗MU) ≤ (d1 · · · dp)(d′1 · · · d′q) = (detA)(detC).

Now if M is positive semidefinite then we clearly have (2.3) as both A and

C are positive semidefinite by Proposition 2.4.3. For the statement about

equality, note that by Theorem 2.4.6, detM = det(U∗MU) = (detA)(detC)

if and only if U∗1BU2 = 0, i.e., B = 0 (as both U1 and U2 are unitary).

Let M ∈ Mn(C) be a Hermitian matrix and its real eigenvalues be ar-

ranged in a non-decreasing order λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M). The

Courant-Weyl inequalities compare eigenvalues of two Hermitian matrices

with their sum.

Theorem 2.4.8 (Courant-Weyl). Let M1,M2 ∈Mn(C) be Hermitian matri-

ces. Then

λi(M1 +M2) ≤ λi+j(M1) + λn−j(M2) for j = 0, 1, . . . , n− i.

Proof. For a proof see [23, Theorem 4.3.1].

Lemma 2.4.9. Let M = (ai,j)n×n ∈ Mn(R) be a real symmetric positive

semidefinite matrix. Suppose N is obtained fromM by replacing one diagonal

element, say ai,i, with an element b such that ai,i ≥ b. If detN > 0, then N

is a positive definite matrix.

Proof. Let εi,j be the n× n matrix with 1 at the (i, j)th place and zero else-

where. Then M = N + N ′, where N ′ = (ai,i − b)εi,i. Clearly, λ1(N ′) =
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· · · = λn−1(N ′) = 0 and λn(N ′) = ai,i − b. Since M is positive semidefinite,

0 ≤ λ1(M) ≤ · · · ≤ λn(M). Taking i = j = 1 in the Courant-Weyl inequali-

ties withM = N+N ′, we obtain λ1(M) ≤ λ2(N)+λn−1(N ′) = λ2(N). Thus

0 ≤ λ2(N) ≤ . . . ≤ λn(N). As detN = ∏n
i=1 λi(N) > 0, N must be positive

definite.



Chapter 3

Graphical parking function

ideals and skeleton ideals

In this chapter we study the notion of k-skeleton ideals as introduced by

Dochtermann [14]. In particular we focus on the k-skeleton ideal for k = 1.

We show that for a (undirected) multigraph, number of standard monomials

of 1-skeleton ideal is always bigger than or equal to the determinant of trun-

cated signless Laplace matrix of the corresponding graph. Some of the results

in this chapter are based on a joint work with C. Kumar and G. Lather [33].

3.1 Graphical parking function ideals

For a directed graph G, Postnikov and Shapiro associated a monomial ideal

MG, and studied various algebraic and combinatorial properties of this ideal

[45]. In this thesis we consider only loopless undirected graphs. The ideals

MG are called the G-parking function ideals (or the graphical parking func-

tion ideal for the graph G). Among others, they showed that the standard

monomials of MG are given by the G-parking functions, which are a natural

generalization of the classical parking functions.

27
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Definition 3.1.1 (Parking function). [50] A sequence (p1, . . . , pn) of non-

negative integers is said to be a parking function of length n if a rearrange-

ment pi1 ≤ · · · ≤ pin satisfies pij < j for 1 ≤ j ≤ n. Equivalently,

#{i : pi < r} ≥ r for r = 1, . . . , n.

Example 3.1.2. The parking functions of length 2 are {(0, 0), (0, 1), (1, 0)}.

The sequences (2, 1, 0) and (1, 0, 1) are examples of parking functions of length

3. The sequence (1, 1, 1) is not a parking function.

Parking functions were introduced by Konheim and Weiss [26] in relation

to hashing problems.

Theorem 3.1.3. [26] The number of parking functions of length n is (n +

1)n−1.

Parking functions have appeared in many areas of mathematics. For more

on parking functions, we refer to [52, 59]. One particular generalization of

the classical parking functions is the G-parking functions or the graphical

parking functions for a graph G.

Let G be a (multi)graph on the set of vertices V = {0, 1, . . . , n} = {0} ∪

[n]. The vertex 0 is considered to be the root of the graph. The graph G is

determined by its adjacency matrix A(G) = [aij]0≤i,j≤n. Given a graph G,

let E(i, j) be the set of edges between i, j ∈ V . We assume E(i, j) = E(j, i)

and |E(i, j)| = aij = aji for all i, j. We also assume that G is loopless, i.e.,

aii = 0 for all i ∈ V . For ∅ 6= A ⊆ [n] = {1, 2, . . . , n}, set dA(i) = ∑
j∈V \A aij,

for i ∈ A. Then di = d{i}(i) is the degree of the vertex i in G.

Definition 3.1.4 (G-parking function). For a graph G, a sequence

(p1, . . . , pn) of nonnegative integers is called a G-parking function, if for any

nonempty subset A ⊆ {1, . . . , n}, there exists i ∈ A such that pi < dA(i).

Fix two nonnegative integers a and b. Let Ka,b
n+1 be the complete multi-

graph on the vertices 0, 1, . . . , n with edges (0, i), i 6= 0, of multiplicity a and
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the edges (i, j), i, j 6= 0, of multiplicity b. For a = b = 1, the graph K1,1
n+1 is

called the complete simple graph and is also denoted by Kn+1. Note that if

G = Kn+1, then the G-parking functions are the ordinary parking functions.

For a graph G, the set of all G-parking functions are denoted by PF (G). We

will also denote the set of all ordinary parking functions PF (Kn+1) as PFn
in Chapter 4.

We now define the Laplace matrix and signless Laplace matrix of a graph.

Let DG = diag[d0, d1, . . . , dn] be the diagonal matrix of order n+ 1, where di
is the degree of the vertex i. The Laplace matrix LG and the signless Laplace

matrix QG of G are given by

LG = DG − A(G) and QG = DG + A(G).

By deleting rows and columns corresponding to the root 0 from LG and

QG, we respectively obtain truncated (or reduced) Laplace matrix L̃G and

truncated (or reduced) signless Laplace matrix Q̃G of G. A spanning tree of

a graph G is a subgraph T ⊆ G such that the vertex set V (T ) = V (G)

and T does not contain any cycle. The Matrix-Tree Theorem [50, Theorem

5.6.8] says that the number of spanning trees NG of a graph G equals to

det L̃G. Although L̃G is obtained from LG by deleting the row and column

corresponding to root vertex, it is well known that the number NG does not

depend on the vertex chosen. The number of G-parking functions are related

to L̃G by the following theorem:

Theorem 3.1.5. [16] The number of G-parking functions of a graph G is

given by det L̃G, the number of spanning trees of G.

Fix a fieldK. Let R = K[x1, . . . , xn] be the polynomial ring on n variables.

Sometimes, we write R = Rn to indicate the number of variables in the

polynomial ring. The G-parking function ideal is a monomial ideal in Rn.
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Definition 3.1.6 (G-parking function ideal). [45] For a graph G on the

vertex set V = {0} ∪ [n] the G-parking function ideal MG in R is given by

MG =
〈
mA =

∏
i∈A

x
dA(i)
i : ∅ 6= A ⊆ [n]

〉
.

Note that R/MG is a finite dimensional vector space over the field K.

Also, a sequence p = (p1, . . . , pn) ∈ Nn is a G-parking function if xp =∏n
i=1 x

pi
i is a standard monomial of R/MG (i.e., xp /∈ MG). Postnikov and

Shapiro reproved Theorem 3.1.5 in an algebraic context.

Theorem 3.1.7. [45, Theorem 2.1] For a graph G on the vertex set V =

{0} ∪ [n],

dimK

(
R

MG

)
= det L̃G = NG.

Another important generalization of the parking function is the λ-parking

function (or vector parking function) [17].

Definition 3.1.8 (λ-parking function). Let λ = (λ1, λ2, . . . , λn) ∈ Nn with

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 1. A finite sequence p = (p1, . . . , pn) ∈ Nn is called a

λ-parking function if a non-decreasing rearrangement pj1 ≤ pj2 ≤ · · · ≤ pjn

of p satisfies pji < λn−i+1 for all i.

A parking function is a λ-parking function for λ = (n, n−1, n−2, . . . , 1).

Let PF (λ) denote the set of λ-parking functions. The number |PF (λ)| can

be evaluated by the Steck determinant formula. For this, we first define the

n× n Steck matrix Λ(λ) whose (i, j)th entry is given by λj−i+1
n−i+1

(j−i+1)! if i ≤ j + 1,
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and 0, otherwise (See [53]). In other words,

Λ(λ) = Λ(λ1, λ2, . . . , λn) =



λn
λ2
n

2!
λ3
n

3! · · · λn−1
n

(n−1)!
λnn
n!

1 λn−1
λ2
n−1
2! · · · λn−2

n−1
(n−2)!

λn−1
n−1

(n−1)!

0 1 λn−2 · · ·
λn−3
n−2

(n−3)!
λn−2
n−2

(n−2)!
... ... ... . . . ... ...

0 0 0 · · · λ2
λ2

2
2!

0 0 0 · · · 1 λ1


n×n

.

Theorem 3.1.9 (Steck). |PF (λ)| = n! det(Λ(λ)).

Proof. A proof of the above theorem can be found in [28, Theorem 2.8].

Given λ = (λ1, λ2, . . . , λn) ∈ Nn, consider the monomial ideal Mλ =〈
(∏i∈A xi)λ|A| : ∅ 6= A ⊆ [n]

〉
in R.

Proposition 3.1.10. The standard monomials of R/Mλ are precisely the

λ-parking functions for λ = (λ1, λ2, . . . , λn).

Proof. Let p = (p1, p2, . . . , pn) be such that xp is a standard monomial of

R/Mλ. For each ∅ 6= A ⊆ [n], there exists some iA ∈ A such that piA < λ|A|.

Take A1 = [n]. There exists j1 ∈ A1 such that pj1 < λn. Take A2 = A1\{j1}.

There exists j2 ∈ A2 such that pj2 < λn−1. Continuing this way we see that

pji < λn−i+1 for 1 ≤ i ≤ n. Thus p is a λ-parking function.

By Theorem 3.1.9, we have

dimK

(
R

Mλ

)
= |PF (λ)| = n! det (Λ(λ)) .

For particular values of λ, the numbers det(Λ(λ)) are interesting. Let x be

a variable and b ∈ N. Suppose fn,b(x) = det(Λ(x + (n − 1)b, x + (n −

2)b, . . . , x + b, x)) and gn,b(x) = det

Λ(x+ b, x, . . . , x︸ ︷︷ ︸
n−1

)

. The functions

fn,b(x) and gn,b(x) are polynomials in x of degree n.



32 3.1. Graphical parking function ideals

Lemma 3.1.11. gn,b(x) is a polynomial in x of degree n given by

gn,b(x) = xn−1(x+ nb)
n! .

Proof. We prove this by induction on n, following the proof of [32, Proposi-

tion 2.1]. Consider the Steck determinant

gn,b(x) = det



x x2

2!
x3

3! · · ·
xn−1

(n−1)!
xn

n!

1 x x2

2! · · ·
xn−2

(n−2)!
xn−1

(n−1)!

0 1 x · · · xn−3

(n−3)!
xn−2

(n−2)!
... ... ... . . . ... ...

0 0 0 · · · x x2

2!

0 0 0 · · · 1 x+ b


n×n

.

Clearly, g1,b(x) = x + b and g2,b(x) = x(x+2b)
2! . Assume that gm,b(x) =

xm−1(x+mb)
m! for 1 ≤ m < n. Let Ci be the ith column of the above matrix.

Then gn,b(x) = det[C1, . . . ,Cn]. Now g′n,b(x) = ∑n
i=1 det[C1, . . . ,C

′
i, . . . ,Cn],

where C′i is the derivative of Ci with respect to x. Since C′i = Ci−1 for

i ≥ 2, det[C1, . . . ,C
′
i, . . . ,Cn] = 0 for i = 2, . . . , n. Hence, g′n,b(x) =

det[C′1,C2, . . . ,Cn]. Note that C′1 =



1

0
...

0


. Therefore, expanding along the

first column we get g′n,b(x) = det Λ(λ1, . . . , λn−1), where λ1 = x + b and

λi = x for 2 ≤ i ≤ n − 1. Hence, g′n,b(x) = gn−1,b(x) = xn−2(x+(n−1)b)
(n−1)! . Since

gn,b(0) = 0, upon integrating, we have gn,b(x) = xn−1(x+nb)
n! .

Lemma 3.1.12. [34, Proposition 2.5] fn,b(x) is a polynomial in x of degree

n given by

fn,b(x) = x(x+ nb)n−1

n! .
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Proof. We have f1,b(x) = x and f2,b(x) = x(x+2b)
2! . Our proof is by induction

on n. Assume that fj,b(x) = x(x+jb)j−1

j! for j ∈ [n− 1] and for all x. Using the

properties of determinant we see that f ′n,b(x) = fn−1,b(x + b), where f ′n,b(x)

is the derivative of fn,b(x). Hence, f ′n,b(x) = (x+b)(x+nb)n−2

(n−1)! . Since fn,b(0) = 0,

after integrating f ′n,b(x), we have fn,b(x) = x(x+nb)n−1

n! .

The functions fn,b(x) and gn,b(x) also enumerate standard monomials of

some G-parking function ideals for some particular values of x and b. For

G = Ka,b
n+1, the complete multigraph on n+ 1 vertices,

dimK

 R

MKa,b
n+1

 = |PF (λ)|, (3.1)

for λ = (a+ (n− 1)b, a+ (n− 2)b, . . . , a+ b, a). Therefore, by Lemma 3.1.12,

dimK(R/MKa,b
n+1

) = a(a + nb)n−1, which is equal to the number of spanning

trees of the complete multigraph Ka,b
n+1. In fact, Gaydarov and Hopkins [17]

have completely characterized the overlap between G-parking functions and

λ-parking functions. They have shown the following in [17, Theorem 2.5].

Theorem 3.1.13. A G-parking function is a λ-parking function if and only

if one of the following holds:

• G is an a-tree and PF (G) = PF (λ), where λ = (a, a, . . . , a) for some

a ≥ 1;

• G is an a-cycle and PF (G) = PF (λ), where λ = (2a, a, . . . , a︸ ︷︷ ︸
n−1

) for some

a ≥ 1;

• G = Ka,b
n+1 and PF (G) = PF (λ), where λ = (a+(n−1)b, a+(n−2)b, . . . , a)

for some a, b ≥ 1.

Here an a-tree is a tree where every edge has multiplicity a and similarly an

a-cycle is a cycle with multiplicity of each edge being a.
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3.2 Skeleton ideals and the inequality

The ideals MG have connections to chip-firing on G. Motivated by some

constructions in ‘hereditary set’ chip-firing, Dochtermann [14] introduced the

notion of k-skeleton ideals which are by definition subideals of the G-parking

function ideal MG. Here we consider the graph G to be an undirected (multi)

graph but the definitions can be extended to directed graphs also.

Definition 3.2.1 (k-skeleton ideal). Let G be a graph on the vertex set

{0} ∪ [n]. For an integer k with 0 ≤ k ≤ n − 1, the k-skeleton ideals M
(k)
G

are given by

M
(k)
G =

〈
mA =

∏
i∈A

x
dA(i)
i : ∅ 6= A ⊆ [n], |A| ≤ k + 1

〉
.

For example, if G = C5, the cycle graph on five vertices {0, 1, 2, 3, 4} and

k = 1, then M
(1)
C5 = 〈x2

1, x
2
2, x

2
3, x

2
4, x1x2, x2x3, x3x4〉. Clearly, for k = n−1, we

get M(n−1)
G = MG. Thus the k-skeleton ideals are in fact a generalization of

the G-parking function ideals. For k = 0, the ideal M(0)
G is generated by the

monomials xdii , where di is the degree of the vertex i. The standard mono-

mials of R/M(0)
G are easy to describe. By definition they are the monomials

{
n∏
i=1

xαii : 0 ≤ αi < di

}
.

We proceed to study the standard monomials of R/M(1)
G . Recall that

for k = n − 1 the standard monomials are related to the truncated Laplace

matrix L̃G. In fact, we have dimK
(
R/M

(n−1)
G

)
= det L̃G (Theorem 3.1.7), for

any graph G. For one-skeleton ideals the truncated signless Laplace matrix

Q̃G makes an appearance. Let G = Kn+1, then the standard monomials of

R/M
(1)
Kn+1 and det Q̃Kn+1 are related in the following way [14, Corollary 3.4]:

Theorem 3.2.2. dimK
(
R/M

(1)
Kn+1

)
= det Q̃Kn+1.
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One natural question to ask is what happens to the above equality if we

remove one edge from a complete graph. Let us look at some examples:

Example 3.2.3. Consider the graph G1 on the vertex set {0, 1, 2, 3}, obtained

from the complete graph K4 by removing the edge (2, 3). The one-skeleton

ideal M(1)
G1 = 〈x3

1, x
2
2, x

2
3, x

2
1x2, x

2
1x3, x

2
2x

2
3〉. By a simple calculation we see that

dimK
(
R/M

(1)
G1

)
= 9. The truncated signless Laplace matrix

Q̃G1 =


3 1 1

1 2 0

1 0 2


3×3

,

with det Q̃G1 = 8. Therefore, in this case we have dimK

(
R/M

(1)
G1

)
> det Q̃G1.

Example 3.2.4. Let G2 be the graph on the vertex set {0, 1, 2, 3} obtained

from the complete graph K4 by removing the edge (0, 3). We have M
(1)
G2 =

〈x3
1, x

3
2, x

2
3, x

2
1x

2
2, x

2
1x3, x

2
2x3〉 with dimK

(
R/M

(1)
G2

)
= 12 and

Q̃G2 =


3 1 1

1 3 1

1 1 2


3×3

,

with det Q̃G2 = 12 = dimK
(
R/M

(1)
G2

)
.

Dochtermann asked the following question.

Question 3.2.5. [14, Question 3.7] For any graph G is it true that

dimK

(
R

M
(1)
G

)
≥ det Q̃G?

We show that the above inequality holds for any multigraph. For some

results related to when the equality might occur in Question 3.2.5, see Section

3.3.
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Let n ≥ 1 and Mn(N) be the set of all n × n matrices over nonnegative

integers N. Let

Gn = {H = [ai,j] ∈Mn(N) : H t = H and ai,i ≥ max
j 6=i

ai,j for 1 ≤ i ≤ n}.

For H = [ai,j]n×n ∈ Gn with αi = ai,i, we associate a monomial ideal

JH =
〈
xαll , x

αi−ai,j
i x

αj−ai,j
j : 1 ≤ l ≤ n, 1 ≤ i < j ≤ n

〉

in the polynomial ring Rn = K[x1, . . . , xn]. If H = Q̃G, the truncated signless

Laplace matrix of a multigraph G on V = {0, 1, . . . , n}, then JH = M
(1)
G .

We will show that dimK(Rn/JH) ≥ detH for every positive semidefinite

H ∈ Gn. Therefore, as a corollary we get the inequality for any multigraph G.

The proof uses the Courant-Weyl inequalities (Theorem 2.4.8) and Fischer’s

inequality (Theorem 2.4.7).

Theorem 3.2.6. Let H ∈ Gn be positive semidefinite and JH be the mono-

mial ideal in the polynomial ring R = Rn associated to H. Then

dimK

(
Rn

JH

)
≥ detH.

Proof. We prove the theorem by induction on the order n of H. For n = 1,

H = [α1]1×1 and JH = 〈xα1
1 〉, and thus dimK (R1/JH) = α1 = detH. For

n = 2,

H =

 α1 a1,2

a1,2 α2


2×2

and JH =
〈
xα1

1 , x
α2
2 , x

α1−a1,2
1 x

α2−a1,2
2

〉
⊆ R2.

The standard monomials of JH are {xt11 xt22 : t1 < α1, t2 < α2 and, either t1 <

α1 − a1,2 or t2 < α2 − a1,2}. Thus dimK (R2/JH) = α1α2 − a2
1,2 = detH.
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Assume that n ≥ 3 and the theorem holds for every positive semidefinite

matrix in Gm for m < n. Let H = [ai,j]n×n ∈ Gn; αi = ai,i, and maxi 6=j ai,j =

b. On permuting rows and columns of H, we obtain H ′ =
[
a′i,j
]
∈ Gn similar

to H such that there exists an integer r (0 ≤ r ≤ n− 2) satisfying a′i,r+1 < b

and a′r+1,j = b for 1 ≤ i < r+1 < j ≤ n. The monomial ideal JH′ is obtained

from JH by renumbering variables. Thus dimK (Rn/JH) = dimK (Rn/JH′)

and detH = detH ′. Hence, without loss of generality, assume that H = H ′,

i.e., there exists r (0 ≤ r ≤ n − 2) such that ai,r+1 < b and ar+1,j = b for

1 ≤ i < r + 1 < j ≤ n. Now consider the short exact sequence of K-vector

spaces,

0→ Rn(
JH : xαr+1−b

r+1

) µ
x
αr+1−b
r+1−−−−−→ Rn

JH

ν−→ Rn〈
JH , x

αr+1−b
r+1

〉 → 0, (3.2)

where µ
x
αr+1−b
r+1

is the map induced by multiplication by xαr+1−b
r+1 and ν is the

quotient map.

Let H1 =



α1 a1,2 · · · a1,r+1

a1,2 α2 · · · a2,r+1
... ... . . . ...

a1,r+1 a2,r+1 · · · b


(r+1)×(r+1)

.

In other words, H1 is the principal (r+1)×(r+1) submatrix of H consisting

of the first r+1 rows and columns except the entry αr+1, which is replaced by

b. Then H1 ∈ Gr+1. If αr+1 = b in H, then H1, being a principal submatrix

of H, is positive semidefinite. In any case, we see that

(
JH : xαr+1−b

r+1

)
=
〈
JH1 , x

αl−b
l : r + 2 ≤ l ≤ n

〉
,
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where JH1 ⊆ Rr+1 = K[x1, . . . , xr+1]. Thus

dimK

 Rn(
JH : xαr+1−b

r+1

)
 = dimK

(
Rr+1

JH1

)
·

 n∏
l=r+2

(αl − b)
 (3.3)

Let H2 be the (n−1)× (n−1) submatrix of H obtained by deleting (r+1)th

row and (r+1)th column. Since H2 ∈ Gn−1 is positive semidefinite, the mono-

mial ideal JH2 ⊆ K [x1, . . . , x̂r+1, . . . , xn] = Rn−1 satisfies dimK(Rn−1/JH2) ≥

detH2, by induction assumption. Also, 〈JH , xαr+1−b
r+1 〉 = 〈JH2 , x

αr+1−b
r+1 〉. Thus

dimK

 Rn〈
JH , x

αr+1−b
r+1

〉
 = (αr+1 − b) dimK

(
Rn−1

JH2

)
. (3.4)

From (3.2), (3.3) and (3.4), we get

dimK

(
Rn

JH

)
=
 n∏
l=r+2

(αl − b)
 dimK

(
Rr+1

JH1

)
+ (αr+1 − b) dimK

(
Rn−1

JH2

)
.

(3.5)

As determinant is linear on columns, writing αr+1 = (αr+1 − b) + b in H, we

have

detH = (αr+1 − b) detH2 + detT, (3.6)

where T is the matrix obtained fromH by replacing αr+1 with b. On applying
elementary column and row operations, Cr+2 − Cr+1,Rr+2 − Rr+1, . . . ,Cn −
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Cr+1,Rn − Rr+1 on T , it reduces to a n× n matrix T ′ described below



α1 · · · a1,r a1,r+1 a1,r+2 − a1,r+1 · · · a1,n − a1,r+1
...

. . .
...

...
...

. . .
...

a1,r · · · αr ar,r+1 ar,r+2 − ar,r+1 · · · ar,n − ar,r+1

a1,r+1 · · · ar,r+1 b 0 · · · 0

a1,r+2 − a1,r+1 · · · ar,r+2 − ar,r+1 0 αr+2 − b · · · ar+2,n − b
...

. . .
...

...
...

. . .
...

a1,n − a1,r+1 · · · ar,n − ar,r+1 0 ar+2,n − b · · · αn − b


.

Let εi,j be the n×n matrix with 1 at (i, j)th place and zero elsewhere. Then

the matrix P = In − (εr+1,r+2 + · · ·+ εr+1,n) has determinant detP = 1 and

P tTP = T ′. Thus detT = detT ′. Now we consider two cases:

Case I : detT ≤ 0. Then from (3.6), detH ≤ (αr+1 − b) detH2. Thus by

induction assumption and (3.5), we get

detH ≤ (αr+1 − b) dimK

(
Rn−1

JH2

)
≤ dimK

(
Rn

JH

)
.

Case II : detT > 0. If αr+1 = b, then H = T is positive definite. Otherwise,

H = T+S, where S = (αr+1−b)εr+1,r+1. Clearly, λ1(S) = · · · = λn−1(S) = 0

and λn(S) = αr+1 − b. Since H is positive semidefinite, 0 ≤ λ1(H) ≤

λ2(H) ≤ · · · ≤ λn(H). Taking i = j = 1 in the Courant-Weyl inequalities

with H = T + S, we obtain λ1(H) ≤ λ2(T ) + λn−1(S) = λ2(T ). Thus

0 ≤ λ2(T ) ≤ · · · ≤ λn(T ). As detT = ∏n
i=1 λi(T ) > 0, T must be positive

definite. Hence T ′ = P tTP is also positive definite. Thus by Fischer’s

inequality,

detT = detT ′ ≤ det(H1) det(C),

where C =


αr+2 − b · · · ar+2,n − b

... . . . ...

ar+2,n − b · · · αn − b


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is positive definite. By Fischer’s inequality, detC ≤ ∏n
l=r+2(αl − b). Hence,

det(T ) ≤
 n∏
l=r+2

(αl − b)
 det(H1). (3.7)

From (3.6) and (3.7),

detH ≤
 n∏
l=r+2

(αl − b)
 detH1 + (αr+1 − b) detH2.

By (3.5) and induction assumption (T positive definite implies so is H1), we

have

dimK

(
Rn

JH

)
≥

 n∏
l=r+2

(αl − b)
 detH1 + (αr+1 − b) detH2

≥ detH.

Corollary 3.2.7. Let G be a multigraph on V = {0, 1, . . . , n}. Then

dimK

(
Rn

M
(1)
G

)
≥ det Q̃G.

Proof. The matrix Q̃G is a diagonally dominant matrix, i.e, if Q̃G = [ai,j],

then ai,i ≥
∑
j 6=i |ai,j| for each i. By Geršgorin disc theorem ( [23, Theo-

rem 6.1.1]), Q̃G is a positive semidefinite matrix. Thus, taking H = Q̃G in

Theorem 3.2.6 we get our result.

Remark 1. It is natural to ask whether the condition in Theorem 3.2.6 is also

necessary, i.e., if H ∈ Gn such that dimK(Rn/JH) ≥ detH implies H must

be positive semidefinite. As we always have dimK(Rn/JH) ≥ 0, the answer

to this question is obviously no if we take some H ∈ Gn for which detH < 0.

But in Example 3.2.8 below we provide a matrix H ∈ Gn such that H is not
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positive semidefinite but dimK(Rn/JH) > detH > 0. In Example 3.2.9 we

give an example of a matrix H in Gn for which detH > dimK(Rn/JH) > 0.

By the above theorem this matrix is not positive semidefinite, which can also

be checked by showing that it has a negative eigenvalue.

Example 3.2.8. Consider the matrix

H =



11 1 2 8 6 4

1 10 5 7 1 9

2 5 10 8 7 1

8 7 8 9 5 2

6 1 7 5 10 1

4 9 1 2 1 10


6×6

Using Macaulay2 [19] we can check that dimK(Rn/JH) = 11301 > 2868 =

detH. If f(x) is the characteristic polynomial of H, then f(0) > 0, while

f(−1) < 0. So, H is not positive semidefinite.

Example 3.2.9. Let

H =



11 10 2 8 6 4

10 10 9 7 9 9

2 9 10 8 7 8

8 7 8 9 5 2

6 9 7 5 10 9

4 9 8 2 9 10


6×6

.

Again calculations using Macaulay2 [19] show that detH = 19216 > 355 =

dimK(Rn/JH). Also the matrix has an eigenvalue in the interval (−2, 0).

Consequently, H is not a positive semidefinite matrix.



42 3.3. The equality condition

3.3 The equality condition

In this section we consider the graphs G such that dimK(R/M(1)
G ) = det Q̃G.

We give some examples of family of graphs G for which the above equality

holds. Moreover, we characterize all subgraphs of Ka,1
n+1, in particular all

simple graphs G which satisfies dimK(R/M(1)
G ) = det Q̃G.

Recall that for λ = (λ1, λ2, . . . , λn) ∈ Nn we have defined Mλ =〈
(∏i∈A xi)λ|A| : ∅ 6= A ⊆ [n]

〉
in the polynomial ring R = K[x1, . . . , xn]. The

standard monomials of R/Mλ are all the λ-parking functions. By defini-

tion, M
(1)
Kn+1 = Mλ for λ = (n, n − 1, . . . , n − 1) and M

(1)
Ka,b
n+1

= Mλ for

λ = (a+ (n− 1)b, a+ (n− 2)b, . . . , a+ (n− 2)b).

We can easily see that det
(
Q̃Ka,b

n+1

)
= (a + (n − 2)b)n−1(a + (2n − 2)b).

Consequently, using Lemma 3.1.11 we have,

dimK

 R

M
(1)
Ka,b
n+1

 = (n!)gn,b(a+ (n− 2)b) = det
(
Q̃Ka,b

n+1

)
. (3.8)

In case a = b = 1, i.e., for the complete simple graph Kn+1 we have

dimK

 R

M
(1)
Kn+1

 = (n!)gn,1(n− 1) = (n− 1)n−1(2n− 1) = det
(
Q̃Kn+1

)
,

as shown also in Theorem 3.2.2.

We have seen that dimK

(
R

M
(1)
G

)
= det

(
Q̃G

)
in case G is the complete

simple graph or the complete multigraph. We show next that the equality in

(3.8) also holds if we delete some edges through the root 0 from a complete

multigraph Ka,b
n+1. We first check this for such simple graphs.

More precisely, let 0 ≤ r ≤ n and Gn,r be the graph obtained from Kn+1

by deleting exactly r edges through the root 0. We have Gn,0 = Kn+1. On

renumbering vertices, we assume that the deleted edges are between 0 and
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i for n − r + 1 ≤ i ≤ n. We proceed to verify that dimK
(
R/M

(1)
Gn,r

)
=

det
(
Q̃Gn,r

)
.

Let a be a fixed positive integer and let ω be a weight function (depending

on r ∈ [0, n]) given by

ω(i) =


a if i ∈ [n− r],

a− 1 if i ∈ [n] \ [n− r].

Let I〈a〉n,r be a monomial ideal in Rn = K[x1, . . . , xn] given by

I〈a〉n,r =
〈
x
ω(i)
i , x

ω(i)−1
i x

ω(j)−1
j : i, j ∈ [n] and i 6= j

〉
.

Clearly, I〈n〉n,r = M
(1)
Gn,r .

Lemma 3.3.1. Let r ≥ 1. Then
(
I
〈a〉
n,r−1 : xn−r+1

)
= I〈a〉n,r and there exists a

short exact sequence of R = Rn modules (or K-vector spaces)

0→ Rn

I
〈a〉
n,r

µxn−r+1−−−−−→ Rn

I
〈a〉
n,r−1

ν−→ Rn〈
I
〈a〉
n,r−1, xn−r+1

〉 → 0, (3.9)

where µxn−r+1 is the map induced by multiplication by xn−r+1 and ν is the

natural projection.

Proof. Consider the map µxn−r+1 : Rn → Rn

I
〈a〉
n,r−1

given by µxn−r+1(f) =

xn−r+1f + I
〈a〉
n,r−1 for f ∈ Rn. Then kerµxn−r+1 =

(
I
〈a〉
n,r−1 : xn−r+1

)
= I〈a〉n,r

and this produces the short exact sequence in (3.9).

Lemma 3.3.2. Let r ≥ 1. Then

dimK

(
Rn

I
〈a〉
n,r

)
= dimK

 Rn

I
〈a〉
n,r−1

− dimK

 Rn−1

I
〈a〉
n−1,r−1

 .
Proof. We see that

〈
I
〈a〉
n,r−1, xn−r+1

〉
=
〈
I〈a〉n,r , xn−r+1

〉
. Also, Rn〈

I
〈a〉
n,r ,xn−r+1

〉 ∼=
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Rn−1

I
〈a〉
n−1,r−1

as K-vector spaces. From the short exact sequence of K-vector spaces

(3.9), we have

dimK

(
Rn

I
〈a〉
n,r

)
= dimK

 Rn

I
〈a〉
n,r−1

− dimK

 Rn〈
I
〈a〉
n,r−1, xn−r+1

〉


= dimK

 Rn

I
〈a〉
n,r−1

− dimK

 Rn−1

I
〈a〉
n−1,r−1

 .

Lemma 3.3.3. (i) dimK

(
Rn

I
〈a〉
n,0

)
= (a− 1)n−1(a+ (n− 1)).

(ii) For 0 ≤ r ≤ n,

dimK

(
Rn

I
〈a〉
n,r

)
=

r∑
i=0

(−1)i
(
r

i

)
(a− 1)n−i−1(a+ (n− i− 1)).

Proof. We have I〈a〉n,0 = 〈xai , (xixj)a−1 : i, j ∈ [n]; i 6= j〉. Thus dimK

(
Rn

I
〈a〉
n,0

)
is

equal to the number of λ-parking functions for λ = (a, a−1, . . . , a−1) ∈ Nn.

Here λ = (x+ 1, x, . . . , x) for x = a− 1 and b = 1. Therefore,

dimK

 Rn

I
〈a〉
n,0

 = n! det (Λ(λ)) = (n!)gn(a− 1)

= (a− 1)n−1(a+ n− 1) (by Lemma 3.1.11).

This proves (i).

We shall prove (ii) by induction on r.

For r = 0, it follows from (i).

Assume r ≥ 1. We have

dimK

(
Rn

I
〈a〉
n,r

)
= dimK

 Rn

I
〈a〉
n,r−1

− dimK

 Rn−1

I
〈a〉
n−1,r−1

 .
Suppose θl(x) = xl−1(x + l). Then by induction assumption, for n ≥ r ≥ 1,
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we have

dimK

 Rn

I
〈a〉
n,r−1

 =
r−1∑
i=0

(−1)i
(
r − 1
i

)
θn−i(a− 1) and

dimK

 Rn−1

I
〈a〉
n−1,r−1

 =
r−1∑
i=0

(−1)i
(
r − 1
i

)
θn−1−i(a− 1)

=
r∑
i=1

(−1)i−1
(
r − 1
i− 1

)
θn−i(a− 1).

Thus,

dimK

(
Rn

I
〈a〉
n,r

)
=

r−1∑
i=0

(−1)i
(
r − 1
i

)
θn−i(a− 1) +

r∑
i=1

(−1)i
(
r − 1
i− 1

)
θn−i(a− 1)

= θn(a− 1) +
r−1∑
i=1

(−1)i
[(
r − 1
i

)
+
(
r − 1
i− 1

)]
θn−i(a− 1)

+ (−1)rθn−r(a− 1)

=
r∑
i=0

(−1)i
(
r

i

)
θn−i(a− 1)

=
r∑
i=0

(−1)i
(
r

i

)
(a− 1)n−i−1(a+ (n− i− 1)).

Remark 2. Note that I〈a〉n,n = I
〈a−1〉
n,0 for a ≥ 2. Thus we obtain an interesting

combinatorial identity:

(a−2)n−1(a+(n−2)) =
n∑
i=0

(−1)i
(
n

i

)
(a−1)n−i−1(a+(n−i−1)) for n ≥ 2.

Being a polynomial identity in a, it is valid for all a ∈ R.

Proposition 3.3.4. dimK

(
Rn

M
(1)
Gn,r

)
= det

(
Q̃Gn,r

)
.

Proof. The determinant of the truncated signless Laplace matrix Q̃Gn,r of
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Gn,r is given by

det
(
Q̃Gn,r

)
= (n− 1)n−r−1(n− 2)r−1 [(2n− 1)(n− 2) + r] . (3.10)

Indeed, on applying the column operation C1 + (C2 + · · · + Cn) on Q̃Gn,r

followed by the row operations R2−R1,R3−R1, . . . ,Rn−R1, Q̃Gn,r reduces

to the matrix


2n− 1 1 · · · 1 1 · · · 1

0 n− 1 · · · 0 0 · · · 0
... ... . . . ... ... . . . ...

0 0 · · · n− 1 0 · · · 0

−1 0 · · · 0 n− 2 · · · 0
... ... . . . ... ... . . . ...

−1 0 · · · 0 0 · · · n− 2


n×n

,

where the diagonal elements n− 2 appear in last r rows. Now expanding the

determinant along the first column, we get (3.10).

Also, I〈n〉n,r = M
(1)
Gn,r and from Lemma 3.3.3, we have

dimK

 Rn

M
(1)
Gn,r


=

r∑
i=0

(−1)i
(
r

i

)
(n− 1)n−i−1((2n− 1)− i)

= (n− 1)n−r−1(2n− 1)
{

r∑
i=0

(−1)i
(
r

i

)
(n− 1)r−i

}

+ (n− 1)n−r−1
{

r∑
i=0

(−1)i+1
(
r

i

)
i(n− 1)r−i

}
.
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Adding up we get,

dimK

 Rn

M
(1)
Gn,r

 = (n− 1)n−r−1(n− 2)r−1 [(2n− 1)(n− 2) + r]

= det
(
Q̃Gn,r

)
.

We now proceed to generalize Proposition 3.3.4 to multigraphs.

Theorem 3.3.5. Let G be a multigraph on V = {0, 1, . . . , n} obtained from

the complete multigraph Ka,b
n+1 by deleting some edges through the root 0.

Then

dimK

(
Rn

M
(1)
G

)
= det Q̃G. (3.11)

Proof. We shall prove this theorem by induction on n. For n = 1, G =

Ka,0
2 for some a ≥ 0. Then M

(1)
G = 〈xa1〉 ⊆ R1 and Q̃G = [a] and hence

(3.11) holds. For n = 2, the adjacency matrix A(G) =


0 a1 a2

a1 0 b

a2 b 0


3×3

for

some a1, a2 ≤ a and b ≥ 1. Then M
(1)
G =

〈
xa1+b

1 , xa2+b
2 , xa1

1 x
a2
2

〉
and Q̃G =a1 + b b

b a2 + b


2×2

. Again, dimK
(
R2/M

(1)
G

)
= (a1 +b)(a2 +b)−b2 = det Q̃G

shows that (3.11) holds.

By induction assumption, suppose the theorem holds for multigraphs on the

vertex set {0, 1, . . . ,m}; m < n, obtained from Ka,b
m+1 by deleting some edges

through the root 0 for any a, b ≥ 1. Let n ≥ 3 and G be a multigraph on

V = {0, 1, . . . , n} obtained from Ka,b
n+1 by deleting some edges through the

root 0. The adjacency matrix A(G) = [aij](n+1)×(n+1) of G is of the form
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a0i = ai0 = ai ≤ a and aij = b for i, j ∈ [n] with i 6= j. Then

M
(1)
G =

〈
x
al+(n−1)b
l , x

ai+(n−2)b
i x

aj+(n−2)b
j : 1 ≤ l ≤ n, 1 ≤ i < j ≤ n

〉
.

Let e0 be a fixed edge from 0 to j in G (1 ≤ j ≤ n). Consider the multigraph

G1 = G − e0 obtained from G by deleting the edge e0. We see that M(1)
G1 =(

M
(1)
G : xj

)
and the sequence of K-vector spaces

0→ Rn

M
(1)
G1

µxj−−→ Rn

M
(1)
G

ν−→ Rn〈
M

(1)
G , xj

〉 → 0 (3.12)

is short exact, where as before µxj is the map induced by multiplication by

xj and ν is the quotient map. Let G2 be a multigraph on the vertex set

V \ {j} with adjacency matrix A(G2) =
[
a(2)
rs

]
0≤r,s≤n
r,s6=j

; a(2)
0,r = ar + b, a(2)

rs = b

for r, s ∈ [n] \ {j}, r 6= s. Then, writing Rn−1 = K[x1, . . . , x̂j, . . . , xn] for the

polynomial ring over K in n− 1 variables x1, . . . , xj−1, xj+1, . . . , xn, we have

Rn−1

M
(1)
G2

∼=
Rn〈

M
(1)
G , xj

〉 .
Thus from the short exact sequence (3.12), we get

dimK

(
Rn

M
(1)
G

)
= dimK

 Rn

M
(1)
G1

+ dimK

Rn−1

M
(1)
G2

 . (3.13)

As determinant is linear on columns, we have

det
(
Q̃G

)
= det

(
Q̃G1

)
+ det

(
Q̃G2

)
. (3.14)

By induction assumption, dimK

(
Rn−1

M
(1)
G2

)
= det

(
Q̃G2

)
. Thus from (3.13) and
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(3.14), we see that

dimK

(
Rn

M
(1)
G

)
= det

(
Q̃G

)
⇐⇒ dimK

 Rn

M
(1)
G1

 = det
(
Q̃G1

)
.

In other words, if the theorem holds for a multigraph G on V then it also

holds for the multigraph G1 = G \ e0, and vice-versa. Since

dimK

 Rn

M
(1)
Ka,b
n+1

 = (n!)gn(a+ (n− 2)b)

= (a+ (n− 2)b)n−1(a+ (2n− 2)b)

= det
(
Q̃Ka,b

n+1

)
,

we see that (3.11) holds for G by deleting edges through the root from Ka,b
n+1,

one by one.

We now describe an easy extension of Theorem 3.3.5. Let K̃b
n denote

the complete multigraph on vertex set {1, 2, . . . , n}, i.e., between any two

vertices of K̃b
n there are exactly b edges. For a graph G and W ⊆ V (G), the

induced subgraph of G on the vertex set W , denoted by GW , is the graph

whose edge set consists of all the edges in G that have both endpoints in W .

Proposition 3.3.6. Let G be a multigraph on V = {0, 1, . . . , n} and G̃ = GV ′

be the induced subgraph of G, where V ′ = [n]. Suppose G̃ ∼= K̃b1
n1 t K̃

b2
n2 t· · ·t

K̃br
nr . Then dimK(R/M(1)

G ) = det Q̃G.

Proof. Without loss of generality, suppose we can partition [n] = V1 t V2 t

· · · t Vr such that GVi
∼= K̃bi

ni
for 1 ≤ i ≤ r. Then the graphs Gi = GVi∪{0}

are obtained from complete multigraphs Kai,bi
ni+1 for some ai > 0, by deleting

some edges through the root 0. Consequently, M(1)
G = ∑r

i=1 M
(1)
Gi
R such that

dimK

(
R

M
(1)
G

)
=

r∏
i=1

dimK

 Rni

M
(1)
Gi

 .
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We see that the truncated signless Laplace matrix of G is a block diagonal

matrix

Q̃G =



Q̃G1

Q̃G2

. . .

Q̃Gr


n×n

.

Therefore,

det Q̃G =
r∏
i=1

det Q̃Gi .

Since by Theorem 3.3.5, dimK(Rni/M
(1)
Gi

) = det Q̃Gi , for each i, we see that

dimK(R/M(1)
G ) = det Q̃G.

Recall that in Section 3.2 we have defined a monomial ideal JH for every

H ∈ Gn. Let G be a graph on the vertex set {0, 1, . . . , n}. If we take H = Q̃G,

then JH = M
(1)
G . The following theorem is a generalization of Theorem 3.3.5.

Theorem 3.3.7. Let H =



a1 b b · · · b

b a2 b · · · b

b b a3 · · · b
... ... ... . . . ...

b b b · · · an


n×n

be a matrix over non-

negative integers such that ai ≥ b for 1 ≤ i ≤ n. Then

dimK

(
Rn

JH

)
= detH.

Proof. We prove this by induction on n. For n = 2, the matrix H =a1 b

b a2


2×2

and the ideal JH =
〈
xa1

1 , x
a2
2 , x

a1−b
1 xa2−b

2

〉
. Thus dimK(R2/JH) =

a1a2 − b2 = detH.

Suppose n ≥ 3 and the theorem is true for any m with m < n. If b = 0,

then JH = 〈xaii : 1 ≤ i ≤ n〉. Thus dimK(Rn/JH) = ∏n
i=1 ai = detH. If
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ai = b for each i, then dimK(Rn/JH) = 0 = detH. Hence, without loss

of generality, assume that a1 > b > 0. Let r = a1 − b > 0. The ideal

JH =
〈
xall , x

ai−b
i x

aj−b
j : 1 ≤ l ≤ n, 1 ≤ i < j ≤ n

〉
.

Let H1 = diag[b, a2 − b, a3 − b, . . . , an − b] be the n × n diagonal

matrix and H2 be the matrix obtained from H by deleting row R1 and

column C1. We see that (JH : xr1) = JH1 and 〈JH , xr1〉 = 〈JH2 , x
r
1〉.

Therefore, dimK(Rn/ (JH : xr1)) = dimK(Rn/JH1) = detH1. Moreover,

dimK(Rn/ 〈JH , xr1〉) = r dimK(Rn−1/JH2) = r detH2 (by induction hypoth-

esis). Consider the short exact sequence of K-vector spaces,

0→ Rn

(JH : xr1)
µxr1−−→ Rn

JH
x

ν−→ Rn

〈JH , xr1〉
→ 0, (3.15)

where µxr1 is the map induced by multiplication by xr1 and ν is the nat-

ural quotient map. We have, dimK(Rn/JH) = dimK(Rn/ (JH : xr1)) +

dimK(Rn/ 〈JH , xr1〉) = dimK(Rn/JH1) + r dimK(Rn−1/JH2). Hence,

dimK(Rn/JH) = detH1 + r detH2.

Writing a1 = b+ r and using the additivity property of the determinant,

we see that detH = r detH2 + detA, where A is the matrix obtained from

H by replacing the element a1 with b. On applying elementary column and

row operations, C2 − C1,R2 − R1, . . . ,Cn − C1,Rn − R1 on A, it reduces to

the matrix H1. Thus, detA = detH1. Hence, dimK(Rn/JH) = detH.

The following theorem is a generalization of Theorem 3.3.7.

Theorem 3.3.8. Let Hi =



αi,1 bi · · · bi

bi αi,2 · · · bi
... ... . . . ...

bi bi · · · αi,ni


ni×ni

with αi,j ≥ bi and Ai
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be the ni × ni matrix with all entries equal to di. Consider the matrix

H =



H1 A1 A2 · · · Ar−1

A1 H2 A2 · · · Ar−1

A2 A2 H3 · · · Ar−1
... ... ... . . . ...

Ar−1 Ar−1 Ar−1 · · · Hr

∑r

i=1 ni×
∑r

i=1 ni

(3.16)

with b1 ≥ d1, bi ≥ di−1 for 2 ≤ i ≤ r, and di ≥ di+1 for 1 ≤ i ≤ r−2. Assume

that αi,j, bi and di are all nonnegative integers. Suppose n = ∑r
i=1 ni. Then

dimK(Rn/JH) = detH.

Proof. If n = 2, then we see that dimK(R2/JH) = detH. We prove the

theorem by induction on the order n of H. Assume that n ≥ 3 and the

theorem holds for every m × m matrix of the above form for m < n. The

monomial ideal JH is generated by the following monomials

x
αi,j
i,j : 1 ≤ i ≤ r, 1 ≤ j ≤ ni ,

x
αi,u−bi
i,u x

αi,v−bi
i,v : 1 ≤ i ≤ r, 1 ≤ u < v ≤ ni ,

xαs,w−dt−1
s,w x

αt,l−dt−1
t,l : 1 ≤ s ≤ r − 1, 1 ≤ w ≤ ns, s+ 1 ≤ t ≤ r, 1 ≤ l ≤ nt .

We now divide the proof into two cases:

Case I : nr = 1. Let B1 be the matrix obtained from H by deleting the row

and column containing the diagonal element αr1 and B2 be an (n−1)×(n−1)

matrix whose all entries are dr−1. Let B3 = B1 −B2. We see that the ideals(
JH : xαr,1−dr−1

r,1

)
=
〈
JB3 , x

dr−1
r,1

〉
and

〈
JH , x

αr,1−dr−1
r,1

〉
=
〈
JB1 , x

αr,1−dr−1
r,1

〉
. By

induction hypothesis,

dimK

(
Rn−1

JB3

)
= detB3 and dimK

(
Rn−1

JB1

)
= detB1.
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Thus, dimK
(
Rn/(JH : xαr,1−dr−1

r,1 )
)

= dr−1 dimK(Rn−1/JB3) = dr−1 detB3.

Moreover, dimK
(
Rn/

〈
JH , x

αr,1−dr−1
r,1

〉)
= (αr,1 − dr−1) dimK(Rn−1/JB1) =

(αr,1 − dr−1) detB1. Using the short exact sequence of K-vector spaces

0→ Rn(
JH : xαr,1−dr−1

r,1

) µ
x
αr,1−dr−1
r,1−−−−−−−→ Rn

JH
→ Rn〈

JH , x
αr,1−dr−1
r,1

〉 → 0,

we get dimK (Rn/JH) = dr−1 detB3 + (αr,1 − dr−1) detB1. As determinant

is linear on columns, writing αr,1 = (αr,1 − dr−1) + dr−1, we have detH =

(αr,1 − dr−1) detB1 + detB4, where B4 is the matrix obtained from H by

replacing the diagonal element αr,1 with dr−1. Applying elementary column

and row operations, C1 − Cn,R1 − Rn, . . . ,Cn−1 − Cn,Rn−1 − Rn on B4, we

get detB4 = dr−1 detB3. Consequently, dimK(Rn/JH) = detH.

Case II : nr ≥ 2. Let B5 be the matrix obtained from H by first delet-

ing rows and columns containing the diagonal elements αr,1, αr,2, . . . , αr,nr−1

and then replacing the diagonal element αr,nr with br. Hence, B5 is an

(n + 1 − nr) × (n + 1 − nr) matrix. Note that the ideal
(
JH : xαr,nr−brr,nr

)
=〈

JB5 , x
αr,1−br
r,1 , . . . , x

αr,nr−1−br
r,nr−1

〉
. By induction hypothesis, we observe that

dimK (Rn+1−nr/JB5) = detB5. Thus

dimK

 Rn(
JH : xαr,nr−brr,nr

)
 =

(
nr−1∏
i=1

(αr,i − br)
)

dimK

(
Rn+1−nr

JB5

)

=
(
nr−1∏
i=1

(αr,i − br)
)

detB5.

Let B6 be the (n − 1) × (n − 1) matrix obtained from H by deleting

the row and column containing the diagonal element αr,nr . We see that〈
JH , x

αr,nr−br
r,nr

〉
=
〈
JB6 , x

αrnr−br
r,nr

〉
. Also, dimK(Rn−1/JB6) = detB6 (by induc-
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tion hypothesis). Thus

dimK

 Rn〈
JH , x

αr,nr−br
r,nr

〉
 = (αr,nr − br) dimK

(
Rn−1

JB6

)

= (αr,nr − br) detB6.

Now using the short exact sequence of K-vector spaces

0→ Rn(
JH : xαr,nr−brr,nr

) µ
x
αr,nr−br
r,nr−−−−−−→ Rn

JH
→ Rn〈

JH , x
αr,nr−br
r,nr

〉 → 0,

we get dimK(Rn/JH) =
(∏nr−1

i=1 (αr,i − br)
)

detB5+(αr,nr−br) detB6. Writing

αr,nr = (αr,nr − br) + br and using the additivity property of the determinant

we see that detH = (αr,nr − br) detB6 + detB7, where B7 is the matrix

obtained from H by replacing the diagonal element αr,nr with br. Applying

the elementary column and row operations, Ci − Cn,Ri − Rn for n − nr <

i < n on B7, we get, detB7 =
(∏nr−1

i=1 (αr,i − br)
)

detB5. Consequently,

dimK(Rn/JH) = detH.

Definition 3.3.9. Let G1 be a multigraph on the vertex set {0, 1, . . . , n} and

G2 be a multigraph on the vertex set {0, 1, . . . ,m}. Let d be a nonnegative

integer. Define the graph G1∗dG2 on the vertex set {0, 1, . . . , n, n+1, . . . , n+

m} as follows. If 1 ≤ i, j ≤ n then the number of edges between i and j in

G is same as the number of edges between i and j in G1. If i, j ≥ n+ 1 then

the number of edges between i and j in G is same as the number of edges

between i − n and j − n in G2. For 1 ≤ i ≤ n the number of edges between

0 and i in G is same as the number of edges between 0 and i in G1. For

j ≥ n + 1 the number of edges between 0 and j in G is same as the number

of edges between 0 and j − n in G2. For each 1 ≤ i ≤ n and j ≥ n + 1 the

number edges between i and j is exactly d.

Example 3.3.10. We give an example of the graphs constructed above in
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Figure 3.1.

∗1

0

1 2

G1

0

21

G2

=

0

1 2

3 4

G1 ∗1 G2

Figure 3.1: G1 ∗d G2 for d = 1.

Corollary 3.3.11. Let Gi be a multigraph on the vertex set {0, 1, . . . , ni}

obtained from a complete multigraph Kai,bi
ni+1 by removing some edges through

the root 0, where 1 ≤ i ≤ r. Suppose n = ∑r
i=1 ni. Let G = ((· · · (G1 ∗d1

G2)∗d2 · · ·∗dr−2Gr−1)∗dr−1Gr) be the multigraph on the vertex set {0, 1, . . . , n},

where d1 ≥ d2 ≥ · · · ≥ dr−1 are nonnegative integers, b1 ≥ d1, and bi ≥ di−1

for 2 ≤ i ≤ r. Then dimK(Rn/M
(1)
G ) = det Q̃G.

Proof. The truncated signless Laplacian Q̃G of the graph G is a matrix of

the form (3.16). Taking H = Q̃G in Theorem 3.3.8 we get our result.

Lemma 3.3.12. Let G be a multigraph on {0, 1, . . . , t} and G̃ be the induced

subgraph on the vertex set [t]. Suppose the connected components of G̃ are

G̃1, . . . , G̃r with |Vi| = ti, where Vi = V (G̃i) for 1 ≤ i ≤ r. Consider the

induced subgraphs Gi = GVi∪{0} of G. We have, dimK(Rt/M
(1)
G ) = det Q̃G if

and only if dimK(Rti/M
(1)
Gi

) = det Q̃Gi for 1 ≤ i ≤ r .

Proof. We see that the ideal M(1)
G = ∑r

i=1 M
(1)
Gi

such that dimK(R/M(1)
G ) =∏r

i=1 dimK(Rti/M
(1)
Gi

). Also, the truncated signless Laplace matrix Q̃G is a

block-diagonal matrix with blocks being the truncated signless Laplace ma-

trices of the graphsGi. Therefore, det Q̃G = ∏r
i=1 det Q̃Gi . By Theorem 3.2.6,

dimK(Rti/M
(1)
Gi

) ≥ det Q̃Gi for 1 ≤ i ≤ r. Hence, dimK(Rt/M
(1)
G ) = det Q̃G if

and only if dimK(Rti/M
(1)
Gi

) = det Q̃Gi for 1 ≤ i ≤ r.
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Next we proceed to give some necessary condition for a multigraph G to

satisfy dimK( R
MG

) = det Q̃G. Consequently we characterize all simple graphs

G for which the equality between the number of standard monomials of the 1-

skeleton ideal and the determinant of the truncated signless Laplace matrix

holds. In order prove these results we introduce the notion of essentially

connected subgraph of a multigraph below.

Definition 3.3.13. Let G be a multigraph on the vertex set {0, 1, . . . , t} and

G̃ be the induced subgraph of G on the vertex set {1, . . . , t}. If G̃1 is a con-

nected component of G̃ with vertex set V1, then we call the induced subgraph

G1 = GV1∪{0} of G an essentially connected component of G. Moreover, if G̃

is connected, we say that G is essentially connected.

Remark 3. We see that a connected graph on vertex set {0, 1, . . . , n} may

not be essentially connected. Further, an essentially connected graph may

not be connected also. For example, let G be a simple graph on the vertex set

{0, 1, 2} obtained from the complete simple graph K3 by removing all the edges

attached to the root 0. Clearly, G is essentially connected but not connected.

However, an essentially connected multigraph G is connected if and only if

G has at least one edge attached to the root 0.

Now we proceed to give the necessary condition for a graph G in terms

of its essentially connected components. In order to do so we first prove

analogous result for positive semidefinite matrices H and the monomial ideal

JH induced by H.

Discussion 3.3.14. Notice that by Lemma 3.3.12, to check whether for

a multigraph G the equality dimK(R/M(1)
G ) = det Q̃G holds, it is enough

to check this for its essentially connected components. Suppose G is an

essentially connected multigraph on the vertex set {0, 1, . . . , t}. Consider the

induced subgraph G̃ = G{1,...,t}. Find two vertices in G̃ such that the number
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of edges between them is maximum among the number of edges between any

pair of vertices of G̃. Rename these two vertices as 1 and 2. Suppose there

are b edges between them. Now find some i ∈ V (G̃), if it exists, such that

i /∈ {1, 2} and there are b edges from i to both the vertices 1 and 2. Rename

the vertex i as 3 and continue this way to find a maximal clique (a complete

multigraph) on the vertex set (say) {1, 2, . . . , n} having b edges between any

two vertices. Then, the truncated signless Laplace matrix of G will be of the

form

H := Q̃G =



α1 · · · b b d1,1 d1,2 · · · d1,m
... . . . ... ... ... ... . . . ...

b · · · αn−1 b dn−1,1 dn−1,2 · · · dn−1,m

b · · · b αn dn,1 dn,2 · · · dn,m

d1,1 · · · dn−1,1 dn,1 β1 c1,2 · · · c1,m

d1,2 · · · dn−1,2 dn,2 c1,2 β2 · · · c2,m
... . . . ... ... ... ... . . . ...

d1,m · · · dn−1,m dn,m c1,m c2,m · · · βm


t×t

,

(3.17)

where n + m = t with n ≥ 2. If t = n, then dimK(Rn/M
(1)
G ) = det Q̃G

by Theorem 3.3.7. Therefore, we may assume that m ≥ 1. Note that if

αi = αj = b for some i 6= j, then the two vertices i and j will form a

connected component of G̃ and hence G will not be essentially connected.

Similarly, for i 6= j we cannot have βi = ci,j = βj or αi = di,j = βj. Also,

if for some 1 ≤ j ≤ m, di,j = b for each 1 ≤ i ≤ n, then the set of vertices

{1, . . . , n} will not form a maximal clique.
More precisely, the matrix H given in (3.17) satisfies the following con-
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ditions.

For each i ∈ [n] and j ∈ [m], αi ≥ b ≥ 1, b ≥ di,j ≥ 0, βj ≥ 1, and βj ≥ di,j .

(3.18)

For each i ∈ [m], k ∈ [m], and r < i < j, βi ≥ ci,j , βi ≥ cr,i and b ≥ ci,k. (3.19)

For each i, j ∈ [n] and i 6= j, either αi > b or αj > b. (3.20)

For each i, j ∈ [m] and i 6= j, either βi > ci,j or βj > ci,j . (3.21)

For each i ∈ [n] and j ∈ [m], either αi > di,j or βj > di,j . (3.22)

For each j ∈ [m], there exists some i ∈ [n] such that b 6= di,j . (3.23)

Our aim is to prove the following theorem. The proof uses Fischer’s

inequality (Theorem 2.4.7).

Theorem 3.3.15. Consider the matrix H given in (3.17). Assume that H

satisfies the conditions (3.18) to (3.23). Suppose H is a positive semidefinite

matrix. If dimK(Rt/JH) = detH, then for each 1 ≤ l ≤ m we have dr,l = ds,l

for 1 ≤ r, s ≤ n.

Proof. If possible, let dr,l 6= ds,l for some l. Without loss of generality, assume

that l = 1, i.e., dr,1 6= ds,1 for some 1 ≤ r < s ≤ n. We first show that

αi > b for all i ∈ [n]. (3.24)

If possible, let αi = b for some i ∈ [n]. Without loss of generality, let αn = b.

Then, αi > b for each i < n (by the condition (3.20)). Moreover, the ideal
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JH is generated by the following monomials

xαi−bi , xbn, y
βj
j : 1 ≤ i < n, j ∈ [m],

xb−dn,jn y
βj−dn,j
j : j ∈ [m],

y
βi−ci,j
i y

βj−ci,j
j : 1 ≤ i < j ≤ m.

Consider the block-diagonal matrix H1 =

 D(n−1)×(n−1) 0

0 A(m+1)×(m+1)

 ,
where the matrix D = diag[α1 − b, α2 − b, . . . , αn−1 − b] is diagonal and

the matrix A is obtained from H by deleting the rows and columns

R1,C1, . . . ,Rn−1,Cn−1. We see that the ideal JH1 = JH . We also have

dimK(Rt/JH) > 0 because of the conditions (3.18), (3.20) to (3.22). Thus

detH > 0 and hence, H is a positive definite matrix. Applying elementary

column and row operations C1 − Cn,R1 − Rn, . . . ,Cn−1 − Cn,Rn−1 − Rn on

H we see that the reduced matrix



α1 − b · · · 0 0 d1,1 − dn,1 d1,2 − dn,2 · · · d1,m − dn,m
...

. . .
...

...
...

...
. . .

...

0 · · · αn−1 − b 0 dn−1,1 − dn,1 dn−1,2 − dn,2 · · · dn−1,m − dn,m
0 · · · 0 b dn,1 dn,2 · · · dn,m

d1,1 − dn,1 · · · dn−1,1 − dn,1 dn,1 β1 c1,2 · · · c1,m

d1,2 − dn,2 · · · dn−1,2 − dn,2 dn,2 c1,2 β2 · · · c2,m
...

. . .
...

...
...

...
. . .

...

d1,m − dn,m · · · dn−1,m − dn,m dn,m c1,m c2,m · · · βm



is a positive definite matrix, by Lemma 2.4.5. By our assumption, dr,1 6= ds,1

for some 1 ≤ r < s ≤ n, we see that detH1 > detH by Fischer’s inequality.

The matrix A is also positive definite, since H is positive definite. Hence, H1

is a positive definite matrix because αi > b for each i < n. By Theorem 3.2.6,

dimK(Rt/JH1) ≥ detH1. Thus dimK(Rt/JH) = dimK(Rt/JH1) ≥ detH1 >

detH, a contradiction. Therefore, the matrix H given in (3.17) satisfies the

condition (3.24).
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Next we claim the following.

For each j ∈ [m], either βj > dn,j or b > dn,j. (3.25)

On the contrary, let βj = b = dn,j for some j ∈ [m]. Without loss of

generality, assume that j = 1, i.e., β1 = b = dn,1. Then, the ideal JH is

generated by the following monomials

xαii , x
αn−b
n , y

βj
j : 1 ≤ i < n, j ∈ [m],

xαi−bi x
αj−b
j : 1 ≤ i < j < n,

x
αi−di,j
i y

βj−di,j
j : 1 ≤ i < n, j ∈ [m],

y
βi−ci,j
i y

βj−ci,j
j : 1 ≤ i < j ≤ m.

Let H2 be the matrix obtained from H by replacing the diagonal element αn
with αn − b and all other element of Rn and Cn with zero, i.e.,

H2 =



α1 · · · b 0 d1,1 d1,2 · · · d1,m
... . . . ... ... ... ... . . . ...

b · · · αn−1 0 dn−1,1 dn−1,2 · · · dn−1,m

0 · · · 0 αn − b 0 0 · · · 0

d1,1 · · · dn−1,1 0 b c1,2 · · · c1,m

d1,2 · · · dn−1,2 0 c1,2 β2 · · · c2,m
... . . . ... ... ... ... . . . ...

d1,m · · · dn−1,m 0 c1,m c2,m · · · βm


t×t

.

Then, JH = JH2 . We have dimK(Rt/JH) > 0 because of the conditions (3.18),

(3.20) to (3.22). Thus detH > 0 and hence, H is a positive definite matrix.

Applying elementary column and row operations Cn − Cn+1 and Rn − Rn+1
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on H we see that the reduced matrix


α1 · · · b b− d1,1 d1,1 d1,2 · · · d1,m
... . . . ...

...
...

... . . . ...

b · · · αn−1 b− dn−1,1 dn−1,1 dn−1,2 · · · dn−1,m

b− d1,1 · · · b− dn−1,1 αn − b 0 dn,2 − c1,2 · · · dn,m − c1,m

d1,1 · · · dn−1,1 0 b c1,2 · · · c1,m

d1,2 · · · dn−1,2 dn,2 − c1,2 c1,2 β2 · · · c2,m
... . . . ...

...
...

... . . . ...

d1,m · · · dn−1,m dn,m − c1,m c1,m c2,m · · · βm


t×t

is a positive definite matrix, by Lemma 2.4.5. Because of the condition

(3.23) we have b 6= di,1, for some 1 ≤ i < n. Therefore, detH < detH2 by

Fischer’s inequality. Since αn > b and H is a positive definite matrix, H2

is also positive definite. By Theorem 3.2.6, dimK(Rt/JH2) ≥ detH2. Thus,

dimK(Rt/JH) > detH, a contradiction. Hence, the matrix H given in (3.17)

also satisfies condition (3.25).

The ideal JH is generated by the monomials

xαii , y
βj
j : i ∈ [n], j ∈ [m],

xαi−bi x
αj−b
j : 1 ≤ i < j ≤ n,

x
αi−di,j
i y

βj−di,j
j : i ∈ [n], j ∈ [m],

y
βi−ci,j
i y

βj−ci,j
j : 1 ≤ i < j ≤ m.

Consider the block-diagonal matrix H3 =

 D̂(n−1)×(n−1) 0

0 Â(m+1)×(m+1)

 ,
where the matrix D̂ = diag[α1 − b, α2 − b, . . . , αn−1 − b] is diagonal and

the matrix Â is obtained from H by deleting the rows and columns

R1,C1, . . . ,Rn−1,Cn−1 and then replacing the element αn with b. We see

that (JH : xαn−bn ) = JH3 . Let H4 be the matrix obtained from H by replacing
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the diagonal element αn with αn − b and every other elements in Rn and Cn

with zero, i.e.,

H4 =



α1 · · · b 0 d1,1 d1,2 · · · d1,m
... . . . ... ... ... ... . . . ...

b · · · αn−1 0 dn−1,1 dn−1,2 · · · dn−1,m

0 · · · 0 αn − b 0 0 · · · 0

d1,1 · · · dn−1,1 0 β1 c1,2 · · · c1,m

d1,2 · · · dn−1,2 0 c1,2 β2 · · · c2,m
... . . . ... ... ... ... . . . ...

d1,m · · · dn−1,m 0 c1,m c2,m · · · βm


t×t

.

We have JH4 =
〈
JH , x

αn−b
n

〉
. Now, from the short exact sequence of K-vector

spaces,

0→ Rt

(JH : xαn−bn )
µ
x
αn−b
n−−−−→ Rt

JH
→ Rt

〈JH , xαn−bn 〉
→ 0,

we have dimK(Rt/JH) = dimK(Rt/JH3) + dimK(Rt/JH4). Also, writing

αn = (αn − b) + b and using the additivity property of the determinant,

we get detH = detH4 + detB, where B is obtained from the matrix H by

replacing αn with b. The matrix H4 is positive semidefinite since H is pos-

itive semidefinite and αn > b. By Theorem 3.2.6, dimK(Rt/JH4) ≥ detH4.

We also have dimK(Rt/JH3) > 0 because of the conditions (3.18), (3.21),

(3.24) and (3.25). Since dimK(Rt/JH) = detH we must have detB > 0. By

Lemma 2.4.9, B is a positive definite matrix since αn ≥ b and H is a posi-

tive semidefinite matrix . Applying elementary column and row operations

C1 − Cn,R1 − Rn, . . . ,Cn−1 − Cn,Rn−1 − Rn on B we see that the reduced
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matrix



α1 − b · · · 0 0 d1,1 − dn,1 d1,2 − dn,2 · · · d1,m − dn,m
...

. . .
...

...
...

...
. . .

...

0 · · · αn−1 − b 0 dn−1,1 − dn,1 dn−1,2 − dn,2 · · · dn−1,m − dn,m
0 · · · 0 b dn,1 dn,2 · · · dn,m

d1,1 − dn,1 · · · dn−1,1 − dn,1 dn,1 β1 c1,2 · · · c1,m

d1,2 − dn,2 · · · dn−1,2 − dn,2 dn,2 c1,2 β2 · · · c2,m
...

. . .
...

...
...

...
. . .

...

d1,m − dn,m · · · dn−1,m − dn,m dn,m c1,m c2,m · · · βm



is a positive definite matrix, by Lemma 2.4.5. Since dr,1 6= ds,1 for some

1 ≤ r < s ≤ n, we have detB < detH3, by Fischer’s inequality. The matrix

H3 is positive definite since B is a positive definite matrix and αi > b for 1 ≤

i < n. By Theorem 3.2.6, dimK(Rt/JH3) ≥ detH3. Thus, dimK(Rt/JH) ≥

detH3 + detH4 > detB + detH4 = detH, a contradiction, and this proves

the theorem.

By Theorem 3.3.5, if G is a simple graph on the vertex set {0, 1, . . . , n},

obtained from a complete simple graph Kn+1 by deleting some edges through

the root 0, then dimK(Rn/M
(1)
G ) = det Q̃G. Furthermore, by Lemma 3.3.12,

in order to check for a graph G when the equality dimK(Rn/M
(1)
G ) = det Q̃G

holds, we just need to check this for its essentially connected components.

Now as a consequence of Theorem 3.3.15 we can characterize all simple graphs

G which satisfy the property dimK(Rn/M
(1)
G ) = det Q̃G. More generally,

Theorem 3.3.16. Let G be a subgraph of the complete multigraph Ka,1
n+1 on

the vertex set {0, 1, . . . , n}. The graph G satisfies dimK(Rn/M
(1)
G ) = det Q̃G if

and only if each essentially connected component Gi of G with |V (Gi)| = ni,

is obtained from a complete multigraph Kai,1
ni+1 by deleting some edges through

the root 0.

Proof. First suppose that G is an essentially connected subgraph of the com-

plete multigraph Ka,1
n+1 such that dimK(Rn/M

(1)
G ) = det Q̃G. We proceed
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along the same lines as in Discussion 3.3.14. Suppose G̃ is the induced sub-

graph G{1,...,n} of G. We find two vertices in G̃ such that there is an edge

between them and rename these two vertices as 1 and 2. Now find another

vertex (if it exists) which has edges connecting both 1 and 2. Rename the

new vertex as 3 and continue this way to find a maximal clique on the vertex

set say {1, 2, . . . , r} for r ≤ n. The truncated signless Laplace matrix of G

will be of the form

Q̃G =



α1 · · · 1 1 d1,1 d1,2 · · · d1,m
... . . . ... ... ... ... . . . ...

1 · · · αr−1 1 dr−1,1 dr−1,2 · · · dr−1,m

1 · · · 1 αr dr,1 dr,2 · · · dr,m

d1,1 · · · dr−1,1 dr,1 β1 c1,2 · · · c1,m

d1,2 · · · dr−1,2 dr,2 c1,2 β2 · · · c2,m
... . . . ... ... ... ... . . . ...

d1,m · · · dr−1,m dr,m c1,m c2,m · · · βm


n×n

,

where r+m = n, and for each 1 ≤ j ≤ m there exists some i ∈ [r] such that

di,j = 0. Since dimK(Rn/M
(1)
G ) = det Q̃G, we must have di,j = 0 for all i and

j, by Theorem 3.3.15. Hence, we have r = n since G is essentially connected.

Thus G is obtained from a complete multigraph Ka,1
n+1 by deleting some edges

through the root 0.

If G is a subgraph of Ka,1
n+1 and dimK(Rn/M

(1)
G ) = det Q̃G, then by Lemma

3.3.12 and the above discussion we see that each essential component Gi of

G is obtained from a complete multigraph Kai,1
ni+1 by deleting some edges

through the root 0.

The converse follows from Lemma 3.3.12 and Theorem 3.3.5.

Corollary 3.3.17. Let G be a simple graph on n + 1 vertices {0, 1, . . . , n}.
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For the graph G, dimK(Rn/M
(1)
G ) = det Q̃G holds if and only if each essen-

tially connected component Gi of G with |V (Gi)| = ni, is obtained from a

complete simple graph Kni+1 by deleting some edges through the root 0.

Proof. Taking a = 1 in Theorem 3.3.16 we get our result.
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Chapter 4

Monomial ideals induced by

permutation avoiding patterns

In this chapter we consider some Artinian monomial ideals induced by per-

mutation avoiding patterns. We count the number of standard monomials

of their quotient rings. The results here are based on a joint work with C.

Kumar [35].

4.1 Permutation avoiding patterns and mono-

mial ideals

LetSn be the set of all permutations of [n] = {1, 2, . . . , n}. We write elements

ofSn in word notation. For example, the permutation 132 means

1 2 3

1 3 2

.
Sometimes we also write permutations, for example 132, as (1, 3, 2). For

r ≤ n, consider a τ ∈ Sr, called a pattern. A permutation σ ∈ Sn is

said to avoid a pattern τ if there do not exist integers 1 ≤ j1 < · · · <

jr ≤ n such that for all 1 ≤ a < b ≤ r, we have τ(a) < τ(b) if and only

if σ(ja) < σ(jb). For example, the permutation 165432 ∈ S6 avoids the

67
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pattern 312. Let Sn(τ) be the subset consisting of permutations σ ∈ Sn

that avoid pattern τ . If r > n, then Sn(τ) = Sn. Also, if τ (i) ∈ Sri

for 1 ≤ i ≤ s, then Sn(τ (1), . . . , τ (s)) = ⋂s
j=1 Sn(τ (j)). Enumeration and

combinatorial properties of the set of permutations avoiding patterns are

obtained in [47].

For a nonempty set S ⊆ Sn, consider the monomial ideal IS =〈
xσ = ∏n

i=1 x
σ(i)
i : σ ∈ S

〉
in R induced by S, where R = K[x1, . . . , xn] is

the polynomial ring in n variables over a field K. Throughout this chapter

we use R to denote the polynomial ring in n variables. The monomial ideal

ISn is called a permutohedron ideal and the Alexander dual I [n]
Sn

of ISn with

respect to n = (n, . . . , n) is the tree ideal MKn+1 (i.e., I [n]
Sn

is the G-parking

function ideal MG for G = Kn+1). Hence, the ith Betti number βi(I [n]
Sn

) of

I
[n]
Sn

is given by

βi(I [n]
Sn

) = βi+1

 R

I
[n]
Sn

 = (i!)S(n+ 1, i+ 1); (0 ≤ i ≤ n− 1),

where S(n, r) is the Stirling number of the second kind, i.e., the number of

set-partitions of [n] into r blocks (see [45, Corollary 6.9]). Further, by the

theorem of Konheim and Weiss [26] (see Theorem 3.1.3), we know that the

standard monomials of R

I
[n]
Sn

is given by dimK

(
R

I
[n]
Sn

)
= |PFn| = (n + 1)n−1

(see also Theorem 3.1.13), where PFn is the set of ordinary parking functions

PF (Kn+1). Note that for S ⊆ Sn, we have I [n]
Sn
⊆ I

[n]
S . Thus standard

monomials of R

I
[n]
S

are always ordinary parking functions.

Recall that, a sequence p = (p1, . . . , pn) ∈ Nn is called a G-parking

function if xp = ∏n
i=1 x

pi
i is a standard monomial of R

MG
(i.e., xp /∈ MG),

where MG is the G-parking function ideal of the graph G (see Section 3.1).

Let SPT(G) be the set of spanning trees of G rooted at 0 and PF(G) be

the set of G-parking functions of G (cf. Section 3.1). Then |PF(G)| =
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|SPT(G)| (see [45, Theorem 2.1]). A recursively defined bijection φ : PFn −→

SPT(Kn+1) has been constructed by Kreweras [27]. An algorithmic bijection

φ : PF(G) −→ SPT(G), called DFS-burning algorithm, is given by Perkinson

et. al. [44] for a simple graph G and by Gaydarov and Hopkins [17] for

multigraph G.

For various subsets S ⊆ Sn, the Alexander dual I [n]
S of IS with respect

to n = (n, . . . , n) has many interesting properties similar to the Alexander

dual of permutohedron ideal. The Betti numbers and enumeration of stan-

dard monomials of the Alexander dual I [n]
S for subsets S = Sn(132, 231),

Sn(123, 132) and Sn(123, 132, 213) are obtained in [30,31].

LetW = Sn(132, 312). The monomial ideal IW of R is called a hypercubic

ideal in [29]. The standard monomials of R

I
[n]
W

correspond bijectively to a

subset P̃Fn of PFn. An element p ∈ P̃Fn is called a restricted parking

function of length n. In this chapter we show that (see Theorem 4.2.11) the

number of restricted parking functions of length n is given by

dimK

(
R

I
[n]
W

)
= |P̃Fn| =

n∑
r=1

(r!) s(n, r),

where s(n, r) is the (signless) Stirling number of the first kind, i.e., the num-

ber of permutations of [n] having exactly r cycles in its cyclic decomposi-

tion. Thus the nth term of integer sequence (A007840) in OEIS [48] can

be interpreted as the number of restricted parking functions of length n, or

equivalently, as the number of standard monomials of the Artinian quotient
R

I
[n]
W

.

The concept of pattern avoiding permutations has been generalized to

many combinatorial objects. A notion of rooted forests that avoids a set of

permutations is introduced and many classes of such objects are enumerated

in [3]. Let Fn be the set of rooted-labeled forests on [n]. Let Fn(τ) (or more

generally, Fn(τ (1), . . . , τ (r))) be the subset of Fn consisting of rooted-labeled
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forests avoiding a pattern τ (or a set of patterns {τ (1), . . . , τ (r)}). Anders and

Archer [3] have shown that

|Fn(213, 312)| =
n∑
r=1

(r!) s(n, r) = |P̃Fn|.

It is surprising that enumeration of standard monomials of R

I
[n]
W

and enumera-

tion of rooted-labeled forests Fn(213, 312) avoiding 213 and 312-patterns are

related. It is an interesting problem to construct an algorithmic bijection

φ : P̃Fn −→ Fn(213, 312), analogous to DFS-burning algorithm that could

explain the relationship between these objects.

In the last section of this chapter we have considered the monomial ideal

IS for the subsets Sn(123, 132, 312), Sn(123, 213, 231), Sn(132, 213, 231),

Sn(123, 132, 231), Sn(213, 312, 321) and Sn(123, 231, 312).

4.2 Hypercubic ideals and restricted parking

functions

Consider the subset W = Sn(132, 312) of permutations of [n] that avoid 132

and 312-patterns. For σ ∈ Sn, it can be checked that σ ∈ W if and only

if σ(1) ∈ [n] is arbitrary, and σ(j) = ` for j > 1 if either σ(i) = ` + 1 or

σ(i) = ` − 1 for some i < j, and hence, |W | = 2n−1 (see, for example [47,

Proposition 10]). The monomial ideal IW appeared in [29], where it is called

a hypercubic ideal. Many properties of IW and its Alexander dual I [n]
W with

respect to n = (n, . . . , n) ∈ Nn have been obtained in [29]. We proceed to

enumerate the standard monomials of R

I
[n]
W

. For this purpose, we consider a

generalization.

Let u = (u1, . . . , un) ∈ Nn with 1 ≤ u1 < u2 < · · · < un. For σ ∈ Sn, let

σu = (uσ(1), . . . , uσ(n)) and xσu = ∏n
i=1 x

uσ(i)
i . For any nonempty subset S ⊆
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Sn, we consider the monomial ideal IS(u) = 〈xσu : σ ∈ S〉 in the polynomial

ring R. We see that IS((1, 2, . . . , n)) = IS. The ideals ISn(u) and IW (u) are

also called a permutohedron ideal and a hypercubic ideal, respectively.

The minimal generators of the Alexander dual IW (u)[un] of the ideal

IW (u) with respect to un = (un, . . . , un) ∈ Nn are as follows:

Theorem 4.2.1. [29, Theorem 3.3] The minimal generators of the Alexander

dual IW (u)[un] are given by

IW (u)[un] =
〈∏
j∈T

x
µj,T
j : ∅ 6= T = {j1, . . . , jt} ⊆ [n]; j1 < · · · < jt

〉
,

where µj1,T = un − ut + 1 and µji,T = un − ut+ji−i + 1 for 2 ≤ i ≤ t.

For an integer c ≥ 1, we consider the Alexander dual IW (u)[un+c−1] of the

hypercubic ideal IW (u) with respect to un + c− 1 = (un + c − 1, . . . , un +

c − 1) ∈ Nn. Replacing [un] by [un + c− 1] in the above Theorem 4.2.1 we

get the following.

Proposition 4.2.2. The minimal generators of IW (u)[un+c−1] are given by

IW (u)[un+c−1] =
〈∏
j∈T

x
µu
j,T

j : ∅ 6= T = {j1, . . . , jt} ⊆ [n]; j1 < · · · < jt

〉
,

where µu
j1,T = un − ut + c and µu

ji,T
= un − ut+ji−i + c for 2 ≤ i ≤ t.

The ideal IW (u)[un+c−1] is an example of a class of ideal called order

monomial ideal ( [45]).

Definition 4.2.3 (Order monomial ideal). [45] Let (P,�) be a finite par-

tially ordered set, or poset. Let M = {mv | v ∈ P} be a collection of mono-

mials in the polynomial ring K[x1, . . . , xn] labeled by elements of the poset

P . Also let Mv denote the set of all monomials divisible by mv. Let us say

that the ideal I = 〈M〉 generated by the monomials mv is an order monomial

ideal, if the following condition is satisfied.
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• For any pair v1, v2 ∈ P , there exists an upper bound v ∈ P of v1 and

v2 such that Mv1 ∩Mv2 ⊆Mv, i.e., mv divides lcm(mv1 ,mv2).

Here an upper bound means an element v such that v � v1 and v � v2

in P . In particular, this condition implies that the poset P has a unique

maximal element. Postnikov and Shapiro [45] have given an example of a

free resolution for any order monomial ideal and determined when such a

free resolution is minimal as follows.

For a = (a1, . . . , an) ∈ Nn, let R(−a) denote the free Nn-graded R-

submodule in R generated by the monomial xa. If a ≥ b componentwise,

then R(−a) is a submodule of R(−b) and we write R(−a) ↪→ R(−b) to

denote the natural multidegree preserving embedding of R-modules.

Let M = {mv | v ∈ P} and I = 〈M〉 be an order monomial ideal. For

any subset V ⊆ P , let mV = lcm(mv | v ∈ V ) be the least common multiple

of the monomials mv, v ∈ V . Assume that m∅ = 1. Let aV ∈ Nn be the

exponent vector of the monomial mV .

The homological order complex C∗(M) for an order monomial ideal I =

〈M〉 is the sequence of Nn-graded R-modules

· · · δ4−→ C3
δ3−→ C2

δ2−→ C1
δ1−→ C0 = R→ R/I→ 0

whose kth component is

Ck =
⊕

v1�···�vk
R(−a{v1,...,vk}),

where the direct sum is over strictly increasing k-chains v1 ≺ · · · ≺ vk in P .

The differential δk : Ck → Ck−1 is defined on the component R(−a{v1,...,vk})

as the alternating sum δk = ∑k
i=1(−1)iEi of the multidegree preserving

embeddings Ei : R(−a{v1,...,vk}) ↪→ R(−a{v1,...,v̂i,...,vk}) of R-modules, where

v1, . . . , v̂i, . . . , vk denotes the sequence with skipped ith element.
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Theorem 4.2.4. [45, Theorem 6.1] The homological order complex C∗(M)

is a free resolution of the order monomial ideal I = 〈M〉.

If m{v1,...,vk} 6= m{v1,...,v̂i,...,vk}, for any increasing chain v1 ≺ · · · ≺ vk in

the poset P and i = 1, . . . , k, then the homological order complex C∗(M) is a

minimal free resolution of the order monomial ideal I = 〈M〉.

The above construction of C∗(M) is an example of the cellular complexes

due to Bayer and Sturmfels [6] (see also Section 2.3.3). Here the cell complex

is the geometrical order complex ∆(P ) of the poset P . The faces of the

simplicial complex ∆(P ) correspond to nonempty strictly increasing chains

in P :

∆(P ) = {{v1, . . . , vk} ⊆ P | v1 ≺ · · · ≺ vk, k ≥ 1}.

Suppose P = Σn, the set of all nonempty subsets in [n] ordered by inclusion.

Then ∆(Σn) is the barycentric subdivision of the (n−1)-dimensional simplex.

Proposition 4.2.5. The ideal IW (u)[un+c−1] is an order monomial ideal.

Proof. The minimal generators of IW (u)[un+c−1] are given in Proposition

4.2.2. Let T1 = {j1, . . . , js} ∈ Σn and T2 = {j′1, . . . , j′t} ∈ Σn, where

j1 < · · · < js and j′1 < · · · < j′t. The monomial labeling mTi = ∏
j∈Ti x

µj,Ti
j

for i = 1, 2, where µj,Ti are as in Proposition 4.2.2. Since u1 < · · · < un, we

see that mT divides lcm(mT1 ,mT2), where T = T1 ∪ T2 ∈ Σn.

Let T = {{j1, j2, . . . , jt} ⊆ [n] | j1 < j2 < · · · < jt}. The monomial

labeling mT for T is xun−ut+cj1

(∏t
i=2 x

un−ut+ji−i+c
ji

)
. Since c ≥ 1 and un > ur

for all r ≤ n− 1, we see that the exponent of xji in mT is nonzero for all i.

Hence, mT ′ 6= mT for any T ′ ( T . By Theorem 4.2.4, the minimal resolution

of IW (u)[un+c−1] is the cellular resolution supported on the order complex

∆(Σn) of Σn. Thus, the ith Betti number

βi(IW (u)[un+c−1]) = (i!)S(n+ 1, i+ 1); (0 ≤ i ≤ n− 1),
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where S(n + 1, i + 1) is the Stirling number of the second kind, i.e., the

number of partition of the set {0, 1, . . . , n} into (i + 1) nonempty blocks

(see [45, Equation 6.4]).

We now describe standard monomials of R
IW (u)[un+c−1] . Since IW (u) ⊆

ISn(u), we have ISn(u)[un+c−1] ⊆ IW (u)[un+c−1]. Hence, standard monomials

of R
IW (u)[un+c−1] are of the form xp for some p ∈ PFn(λ). Thus the standard

monomials are given by a subset of the set of λ-parking functions PF(λ)

for λ = (λ1, . . . , λn) with λi = un − ui + c. Recall that, a sequence p =

(p1, . . . , pn) ∈ Nn is called a λ-parking function of length n, if a nondecreasing

rearrangement pi1 ≤ pi2 ≤ · · · ≤ pin of p satisfies pij < λn−j+1 for 1 ≤ j ≤ n

(see also Definition 3.1.8).

Definition 4.2.6. A λ-parking function p = (p1, . . . , pn) ∈ PFn(λ) is said

to be a restricted λ-parking function of length n if there exists a permutation

α ∈ Sn such that pαi < µu
αi,Ti

for all 1 ≤ i ≤ n, where αi = α(i), T1 =

[n], Ti = [n] \ {α1, . . . , αi−1}; (i ≥ 2) and µu
j,T is as in Proposition 4.2.2.

Let P̃Fn(λ) be the set of restricted λ-parking functions of length n. For

u = (1, 2, . . . , n) and c = 1, we have λ = (n, n − 1, . . . , 1). In this case, a

restricted λ-parking function is called a restricted parking function of length

n and we simply write P̃Fn for P̃Fn(λ). Also, µj,T = µu
j,T is given by µj1,T =

n−t+1 and µji,T = (n−t+1)−(ji−i); i ≥ 2, where ∅ 6= T = {j1, . . . , jt} ⊆ [n]

with j1 < · · · < jt.

Proposition 4.2.7. A monomial xp is a standard monomial of R
IW (u)[un+c−1]

if and only if p ∈ P̃Fn(λ) is a restricted λ-parking function of length n, with

λi = un − ui + c ; (1 ≤ i ≤ n). In particular, a monomial xp is a standard

monomial of R

I
[n]
W

if and only if p ∈ P̃Fn is a restricted parking function of

length n.

Proof. Standard monomials of R
IW (u)[un] are characterized in [29, Theorem
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4.3]. Replacing un by un + c− 1 and proceeding on similar lines, we get the

desired result.

Using the cellular resolution of IW (u)[un+c−1] supported on the order com-

plex ∆(Σn), we obtain the multigraded Hilbert series H
(

R
IW (u)[un+c−1]

)
of

R
IW (u)[un+c−1] . Proceeding as in the proof of [29, Proposition 4.5], we get a

combinatorial formula

|P̃Fn(λ)| = dimK

(
R

IW (u)[un+c−1]

)
(4.1)

=
n∑
i=1

(−1)n−i
∑

∅=A0(A1(···(Ai=[n]

i∏
q=1

 ∏
j∈Aq\Aq−1

µu
j,Aq



for enumeration of standard monomials of R
IW (u)[un+c−1] , where µu

j,Aq is as in

Proposition 4.2.2. Let C be a chain in Σn of the form

C : A1 ( A2 ( · · · ( Ai = [n]

of length `(C) = i−1 and let µu(C) = ∏i
q=1

(∏
j∈Aq\Aq−1 µ

u
j,Aq

)
, where A0 = ∅.

Suppose Ch([n]) is the set of such chains C in Σn. Then formula (4.1) can be

expressed compactly as

|P̃Fn(λ)| = dimK

(
R

IW (u)[un+c−1]

)
=

∑
C∈Ch([n])

(−1)n−`(C)−1µu(C). (4.2)

We now take ui = i in (4.2). For c ≥ 1, let dimK

(
R

I
[n+c−1]
W

)
= an(c). Then

we see that an(c) is a polynomial expression in c of degree n for n ≥ 1. In

fact, a1(c) = c and a2(c) = c2 + 2c.

Lemma 4.2.8. Let n ≥ 3, u = (1, 2, . . . , n) and c ≥ 1. For a chain C ∈ Ch[n]

of length i − 1 of the form A1 ( · · · ( Ar ( Ar+1 ( · · · ( Ai = [n] with

n ∈ Ar+1 \ Ar and |Ar+1 \ Ar| ≥ 2, there exists a unique chain, namely

C̃ : A1 ( · · · ( Ar ( Ar ∪ {n} ( Ar+1 ( · · · ( Ai = [n] in Ch[n] of length i
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such that µu(C) = µu(C̃).

Proof. Since µu(C) = ∏i
q=1

(∏
j∈Aq\Aq−1 µ

u
j,Aq

)
, the equality µu(C) = µu(C̃)

holds if µu
n,Ar∪{n} = µu

n,Ar+1 . We see that µu
n,Ar∪{n} = n − (|Ar| + 1 + n −

(|Ar|+ 1)) + c = c and µu
n,Ar+1 = n− (|Ar+1|+ n− |Ar+1|) + c = c.

Let Ch′[n] be the set of chains in Σn obtained from Ch[n] by deleting

chains C and C̃ appearing in Lemma 4.2.8. Then

an(c) =
∑

C∈Ch([n])
(−1)n−`(C)−1µu(C) =

∑
C∈Ch′([n])

(−1)n−`(C)−1µu(C).

For u = (1, 2, . . . , n) and c ≥ 1, the value µu(C) depends on the chain C and c.

Thus, we write µc(C) for µu(C). Hence, an(c) = ∑
C∈Ch([n])(−1)n−`(C)−1µc(C) =∑

C∈Ch′([n])(−1)n−`(C)−1µc(C).

For n ≥ 3, the chains in Ch′[n] can be divided into three types.

• A chain C : A1 ( · · · ( Ai = [n] in Ch′[n] is called a Type-I chain if A1 =

{n}. The Type-I chains in Ch′[n] are in one-to-one correspondence with

chains in Ch[n− 1]. This correspondence is given by

C 7→ C \ A1 : A2 \ {n} ( · · · ( Ai \ {n} = [n− 1].

As `(C)− 1 = `(C \ A1) and µc(C) = (n− 1 + c) µc(C \ A1), we have

∑
C∈Ch′[n];

Type-I

(−1)n−`(C)−1 µc(C) = (n− 1 + c) an−1(c).

• A chain C : A1 ( · · · ( Ai = [n] in Ch′[n] is called a Type-II chain

if Ai−1 = [n − 1]. The Type-II chains in Ch′[n] are in one-to-one cor-

respondence with chains in Ch[n − 1]. This correspondence is given

by

C 7→ C|[n−1] : A1 ( · · · ( Ai−1 = [n− 1].
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As `(C)− 1 = `(C|[n−1]) and µc(C) = (c) µc+1(C|[n−1]), we have

∑
C∈Ch′[n];
Type-II

(−1)n−`(C)−1 µc(C) = (c) an−1(c+ 1).

• A chain C : A1 ( · · · ( Ai = [n] in Ch′[n] is called a Type-III chain if

n ∈ A1 and |A1| ≥ 2. The Type-III chains in Ch′[n] are in one-to-one

correspondence with chains in Ch[n− 1]. This correspondence is given

by

C 7→ C \ {n} : A1 \ {n} ( · · · ( Ai \ {n} = [n− 1].

As `(C) = `(C \ {n}) and µc(C) = (c) µc(C \ {n}), we have

∑
C∈Ch′[n];
Type-III

(−1)n−`(C)−1 µc(C) = (−c) an−1(c).

Consider the poset Σn and form the poset Λn = Σn−1
∐(Σn−1 ∗ {n}); for

n ≥ 2, where Σn−1 ∗ {n} = {A ∪ {n} : A ∈ Σn−1} is a subposet of Σn. Two

elements A,B ∈ Λn are comparable if either A,B ∈ Σn−1 are comparable

or A,B ∈ Σn−1 ∗ {n} are comparable or the comparable pair (A,B = [n]),

where A ∈ Σn−1. The Hasse diagram of Λn for n = 3, 4 are given in Figure

4.1.

We see that Type-II chains in Ch′[n] are chains in Λn with an edge [n−1] (

[n], while Type-III chains in Ch′[n] are chains in Λn containing [n] but not

[n− 1].

Proposition 4.2.9. For n ≥ 3 and c ≥ 1, an(c) = dimK

(
R

I
[n+c−1]
W

)
satisfies

the recurrence relation

an(c) = (n− 1)an−1(c) + c an−1(c+ 1).
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123

12 13 23

1 2

Λ3

1234

123 124 134 234

12 13 1423 24 34

1 2 3

Λ4

Figure 4.1: Hasse diagram for Λ3 and Λ4

Proof. As an(c) =
∑

C∈Ch([n])(−1)n−`(C)−1µc(C) =
∑

C∈Ch′([n])(−1)n−`(C)−1µc(C),

we have

an(c) =

 ∑
C∈Ch′[n];

Type-I

+
∑

C∈Ch′[n];
Type-II

+
∑

C∈Ch′[n];
Type-III

 (−1)n−`(C)−1 µc(C)

= (n− 1 + c) an−1(c) + (c) an−1(c+ 1) + (−c) an−1(c)

= (n− 1) an−1(c) + (c) an−1(c+ 1).

Replacing c by an indeterminate x, we consider polynomial an(x). The

recurrence relation in Proposition 4.2.9 holds for all c ≥ 1, thus there exists

a polynomial identity

an(x) = (n− 1) an−1(x) + x an−1(x+ 1) for n ≥ 3. (4.3)

Since a1(x) = x and a2(x) = x2 + 2x, on setting a0(x) = 1, the recurrence

relation (4.3) is valid for n ≥ 1. Note that an(0) = 0 for n ≥ 1.
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Proposition 4.2.10. For n ≥ 1, an(x) = ∑n
r=1 s(n, r) x(x+1) · · · (x+r−1),

where s(n, r) is the (signless) Stirling number of the first kind.

Proof. Let xr̄ = x(x + 1) · · · (x + r − 1) be the rth rising power of x. Then

{xr̄ : r = 0, 1, . . .} is a Q-basis of Q[x], where x0̄ = 1. As an(0) = 0 for n ≥ 1,

we can express an(x) = ∑n
r=1 αn(r)xr̄. By recurrence relation (4.3)

n∑
r=1

αn(r)xr̄ = (n− 1)
n−1∑
r=1

αn−1(r)xr̄ + x
n−1∑
r=1

αn−1(r)(x+ 1)r̄

=
n−1∑
r=1

(n− 1)αn−1(r)xr̄ +
n−1∑
r=1

αn−1(r)xr+1

=
n−1∑
r=1

(n− 1)αn−1(r)xr̄ +
n∑
r=2

αn−1(r − 1)xr̄

= αn−1(n− 1)xn̄ +
n−1∑
r=1

[(n− 1)αn−1(r) + αn−1(r − 1)]xr̄.

Therefore, αn(n) = αn−1(n − 1) and αn(r) = (n − 1)αn−1(r) + αn−1(r − 1).

Moreover, since a1(x) = x, we have α1(1) = 1. Taking α0(0) = 1, we see that

αn(r) and the (signless) Stirling number s(n, r) of the first kind satisfy the

same recurrence relation with the same initial conditions; see [51, Lemma

1.3.3]. Thus αn(r) = s(n, r).

Theorem 4.2.11. For n ≥ 1, dimK

(
R

I
[n]
W

)
= an = ∑n

r=1(r!) s(n, r).

Proof. Since an = an(1), the statement follows from Proposition 4.2.10.

Consider the integer sequence (A007840) in OEIS [48]. The nth term bn

of this sequence is the number of factorization of permutations of [n] into
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ordered cycles and bn = ∑n
r=1(r!) s(n, r). It can be verified that

bn = Per([mij]n×n) = Per



1 1 1 . . . 1

1 2 1 . . . 1

1 1 3 . . . 1
... ... ... . . . ...

1 1 1 . . . n


,

where mii = i and mij = 1 for i 6= j (see A007840 in [48]). We recall that

permanent Per([mij]n×n) of the matrix [mij]n×n is given by∑σ∈Sn
∏n
i=1miσ(i).

There are many combinatorial interpretations of this integer sequence. The-

orem 4.2.11 gives a description of the integer sequence (A007840) in terms of

enumeration of standard monomials of R

I
[n]
W

, or equivalently, in terms of the

number |P̃Fn| of restricted parking functions of length n.

We now show that enumeration of standard monomials of R

I
[n]
W

is related

to enumeration of rooted-labeled unimodal forests on [n]. The concept of

permutations avoiding patterns has been extended to many combinatorial

objects; such as, trees, graphs and posets. Let Fn be the set of (unordered)

rooted-labeled forests on the vertex set [n]. By Cayley’s formula, |Fn| =

(n+ 1)n−1 (cf. [45]). A rooted-labeled forest on [n] is said to avoid a pattern

τ ∈ Sr if along each path from a root to a vertex, the sequence of labels do

not contain a subsequence with the same relative order as in the patterns

τ = τ(1)τ(2) . . . τ(r) (see [3]). Let Fn(τ) be the set of rooted-labeled forests

on [n] that avoid pattern τ . For example, if τ = 21 is a transposition,

then Fn(21) is the set of rooted-labeled increasing forests on [n]. In other

words, labels on any path from a root to a vertex for a forest in Fn(21) form

an increasing sequence. Let Fn(τ (1), . . . , τ (s)) be the set of rooted-labeled

forests on [n] that avoid a set {τ (1), . . . , τ (s)} of patterns. The enumeration

of rooted-labeled forests on [n] that avoid various patterns are obtained in [3].
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In particular, it is shown that |Fn(213, 312)| = ∑n
r=1(r!) s(n, r) for n ≥ 1.

The rooted-labeled forests on [n] avoiding 213 and 312-patterns are precisely

the unimodal forests. Since |P̃Fn| = |Fn(213, 312)|, an explicit or algorithmic

bijection φ : P̃Fn −→ Fn(213, 312) is desired.

Before we end this section, we describe an easy extension of Theorem

4.2.11.

Let b, c ≥ 1 and u = (u1, . . . , un) ∈ Nn with ui = u1 + (i − 1)b. Let

PFn(λ) be the set of λ-parking function of length n where λi = un−ui + c =

(n−i)b+c. Then |PFn(λ)| = c(c+nb)n−1 (see, for example, [17, Theorem 2.5]

or Theorem 3.1.13). Let |P̃Fn(λ)| = dimK

(
R

IW (u)[un+c−1]

)
= ãn(c). Actually,

ãn(c) depends on b also, but we are treating b to be a fixed constant. Also,

ãn(c) is a polynomial expression in c.

Proposition 4.2.12. For n ≥ 3, b, c ≥ 1, ãn(c) satisfies a recurrence rela-

tion

ãn(c) = ((n− 1)b) ãn−1(c) + (c) ãn−1(c+ b).

Proof. From equation (4.2), we have

ãn(c) = dimK

(
R

IW (u)[un+c−1]

)
=

∑
C∈Ch([n])

(−1)n−`(C)−1 µu(C),

where ui = u1 + (i− 1)b. For such u, Lemma 4.2.8 holds. Thus

ãn(c) =
∑

C∈Ch([n])
(−1)n−`(C)−1 µu(C) =

∑
C∈Ch′([n])

(−1)n−`(C)−1 µu(C).

Now proceeding as in the proof of Proposition 4.2.9 we get our result.

Replacing c with an indeterminate x, we consider polynomial ãn(x). Thus
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there is a polynomial identity

ãn(x) = ((n− 1)b) ãn−1(x) + x ãn−1(x+ b) for n ≥ 3. (4.4)

Since ã1(x) = x and ã2(x) = x2 + 2bx, on setting ã0(x) = 1, the recurrence

relation (4.4) is valid for n ≥ 1. Again, we have ãn(0) = 0 for n ≥ 1.

Theorem 4.2.13. For n ≥ 1, ãn(x) = ∑n
r=1(bn−r s(n, r)) x(x + b) · · · (x +

(r − 1)b). In particular, for λ = (λ1, . . . , λn) with λi = (n− i)b+ c

|P̃Fn(λ)| = ãn(c) = bn
n∑
r=1

s(n, r)
Γ( c

b
+ r)

Γ( c
b
) ,

where Γ is the gamma function, i.e., Γ(x + 1) = x Γ(x) for x > 0 and

Γ(1) = 1.

Proof. As in the proof of Theorem 4.2.11, let

ãn(x) =
n∑
r=1

α̃n(r) x(x+ b) · · · (x+ (r − 1)b).

Then from recurrence relation (4.4), α̃n(r) satisfies the recurrence relation

α̃n(r) = (n− 1)b α̃n−1(r) + α̃n−1(r − 1); for 1 ≤ r ≤ n,

with initial conditions α̃0(1) = 0 and α̃1(1) = 1. Therefore, α̃n(r) =

bn−r s(n, r).

4.3 Some other cases

The Betti numbers and enumeration of standard monomials of the Artinian
quotient R

I
[n]
S

for S = Sn(132, 231),Sn(123, 132) and Sn(123, 132, 213) are
given in [30,31]. In this section, the monomial ideal IS and its Alexander dual
I

[n]
S are studied for various other subsets S ⊆ Sn consisting of permutations
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avoiding patterns. For clarity of presentation, we divide the study into three
cases.

Case 1. S1 = Sn(123, 132, 312), S2 = Sn(123, 213, 231), S3 = Sn(132, 213, 231).

Case 2. T1 = Sn(123, 132, 231), T2 = Sn(213, 312, 321).

Case 3. U = Sn(123, 231, 312).

We have, |Sa| = |Tb| = |U | = n for 1 ≤ a ≤ 3 and 1 ≤ b ≤ 2 (see [47,

Lemma 6, Proposition 16*]).

Lemma 4.3.1. The minimal generators of the Alexander dual I [n]
S for S =

Sa, Tb or U are given as follows.

(i) I [n]
S1 =

〈
x`+1
` , xii

(∏
j>i xj

)
: 1 ≤ ` ≤ n− 1; 1 ≤ i ≤ n

〉
.

(ii) I [n]
S2 =

〈
xn` , x

i
ix
j−1
j : 1 ≤ ` ≤ n; 1 ≤ i < j ≤ n

〉
.

(iii) I [n]
S3 =

〈
xn` , x

i
ix
n−(j−i)
j : 1 ≤ ` ≤ n; 1 ≤ i < j ≤ n

〉
.

(iv) I [n]
T1 =

〈
x`+1
` , xnn, x

i
ix
i
n : 1 ≤ ` ≤ n− 1; 1 ≤ i < n

〉
.

(v) I [n]
T2 =

〈
xn−`+1
` , xnn, x

n−i
i xn−in : 1 ≤ ` ≤ n− 1; 1 ≤ i < n

〉
.

(vi) I [n]
U =

〈∏
j∈A x

νj,A
j : A = {j1, . . . , jt} ∈ Σn

〉
, where νj1,A = n− (j|A|− j1)

and νji,A = ji − ji−1 for i ≥ 2, provided j1 < j2 < · · · < jt.

Proof. We recall that a vector b ∈ Nn satisfying b ≤ n (i.e., bi ≤ n) is

maximal with xb /∈ IS if and only if xn−b is a minimal generator of I [n]
S (see

Proposition 2.3.13). Now proceeding as in the proof of [31, Lemma 2.1, 2.2],

we can get the minimal generators of the Alexander duals. We sketch a proof

of part (i), (v) and (vi) as the proof for other parts is on similar lines.

For any two integers r, s with r ≤ s, let [r, s] denote the set {r, r+1, . . . , s}.

(i) For ` ∈ [n − 1], let b` = (n, . . . , n − ` − 1, . . . , n) (`th coordinate

n − ` − 1, elsewhere n). We claim that xb` /∈ IS1 . If not, then there is

a σ ∈ S1 such that xσ divides xb` . Thus 1 ≤ σ(`) ≤ n − ` − 1. This
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implies that ` ≤ n − 2. Moreover, |{a ∈ [n] : a < σ(`)}| ≤ n − ` − 2 and

|[`+1, n]| = n− ` together ensure that there exists some u, v ∈ [`+1, n] such

that σ(`) < σ(u) < σ(v). Hence, σ contains either a 123 pattern or a 132

pattern, a contradiction. Further, for any b′` with b` < b′` ≤ n, xσ′ divides

xb′` for σ′ = (n − 1, n − 2, . . . , 1, n) ∈ S1. This gives the minimal generator

x`+1
` ∈ I

[n]
S1 . For i ∈ [n], let bi,n = (n, . . . , n, n − i, n − 1, . . . , n − 1) ∈ Nn

(i.e., ith coordinate is n − i, first i − 1 coordinates are n, and the last n − i

coordinates are n − 1). We claim that xbi,n /∈ IS1 . If not, then there exists

σ ∈ S1 such that xσ divides xbi,n . If i = 1 or n, we see that such a σ cannot

exist. Let 2 ≤ i ≤ n − 1. We have σ(i) ≤ n − i and σ(u) ≤ n − 1 for

i+ 1 ≤ u ≤ n. Moreover, |[1, n− i]| = n− i and |[i, n]| = n− i+ 1 together

ensure that there exists some v ∈ [i + 1, n] such that n − i < σ(v) ≤ n − 1.

Since σ(j) = n for some j < i we see that σ contains a 312 pattern, a

contradiction. We now show that such a bi,n is maximal. Let bi,n < b′ ≤ n.

Then the ith coordinate of b′ is r for some r ≥ n− i. If r ≥ n− i + 1, then

xσ′ divides xb′ for σ′ = (n, n− 1, . . . , 1) ∈ S1. When r = n− i, there exists

some j with i + 1 ≤ j ≤ n such that the jth coordinate of b′ is n. In this

case take σ′ ∈ S1, where σ′(t) =



n− t for t < j,

n− t+ 1 for t > j,

n otherwise.

Then xσ′ divides xb′ . This gives the minimal generators xii(
∏
j>i xj) ∈ I

[n]
S1 .

Next we show that b` and bi,n are the only possible maximal b(≤ n) such

that xb /∈ IS1 . If not, let b = (α1, . . . , αn) ≤ n be maximal, not be equal

to b` or bi,n, and satisfy xb /∈ IS1 . Then αn ≥ 1 and αi ≥ n − i for

1 ≤ i ≤ n − 1. We have αn ≤ n − 1 because otherwise xσ divides xb,

where σ = (n − 1, n − 2, . . . , 1, n) ∈ S1. If αn−1 = 1, then b ≤ bn−1,n. If

αn−1 = n, then xσ divides xb, where σ = (n − 1, n − 2, . . . , 2, n, 1) ∈ S1.

Thus 2 ≤ αn−1 ≤ n− 1. Similarly, we can show that i+ 1 ≤ αn−i ≤ n− 1 for
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0 ≤ i ≤ n−2. If α1 = n, then xσ divides xb, where σ = (n, n−1, . . . , 1) ∈ S1.

Thus α1 = n− 1. But, in that case b ≤ b1,n, a contradiction.

(v) Let bn = (n, . . . , n, 0) (nth coordinate 0, elsewhere n). We see that

xbn /∈ IT2 . Further for any b′ with n ≥ b′ > bn, xσ′ divides xb′ where

σ′ = (2, 3, . . . , n, 1) ∈ T2. This gives the minimal generator xnn ∈ I
[n]
T2 . For

` ∈ [n−1], let b` = (n, . . . , `−1, . . . , n) (`th coordinate `−1, elsewhere n). We

claim that xb` /∈ IT2 . If not, then there is a σ ∈ T2 such that xσ divides xb` .

Thus 1 ≤ σ(`) ≤ `−1. Hence ` ≥ 2. Moreover, |{a ∈ [n] : a < σ(`)}| ≤ `−2

and |[1, `−1]| = `−1 together ensure that there exists some u ∈ [1, `−1] such

that σ(u) > σ(`). Since σ(n) = i for some i ∈ [n], we see that σ contains 213

or 321 or 312 pattern, a contradiction. Further, for any b′` with b` < b′` ≤ n,

xσ′ divides xb′` for σ′ = (1, 2, . . . , n) ∈ T2. This gives the minimal generator

xn−`+1
` ∈ I

[n]
T2 . For 1 ≤ i < n let bi,n = (n, . . . , n, i, n, . . . , n, i) ∈ Nn (i.e.,

ith coordinate and nth coordinate are i and elsewhere n). We claim that

xbi,n /∈ IT2 . If not, then there exists σ ∈ T2 such that xσ divides xbi,n . Thus

σ(i) ≤ i and σ(n) ≤ i. This implies that 2 ≤ i ≤ n− 1. If σ(j) = n for some

j < i, then σ has either a 312 pattern or a 321 pattern, a contradiction. Let

σ(j) = n for some j > i. Since |[1, i]| = i and σ(i) ≤ i, σ(n) ≤ i, there exists

some u < i such that σ(u) > σ(i). Thus σ contains a 213 pattern which is a

contradiction. We now show that such a bi,n is maximal. Let bi,n < b′ ≤ n.

Then the ith coordinate or the nth coordinate of b′ is strictly greater than i.

In the first case take σ′ ∈ T2, where σ′(t) =



t if t < i,

t+ 1 if t ≥ i, t 6= n,

i if t = n,

so that xσ′ divides xb′ . In the second case take σ′ ∈ T2, where σ′(t) =

t if t ≤ i,

t+ 1 if t ≥ i+ 1, t 6= n,

i+ 1 if t = n,
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so that xσ′ divides xb′ . Next we show that bn, b` and bi,n are the only

possible maximal b(≤ n) such that xb /∈ IT2 . If not, let b = (α1, . . . , αn) ≤ n

maximal, not equal to bn or b` or bi,n, and satisfy xb /∈ IT2 . Then αn ≥ 1

and αi ≥ i for 1 ≤ i ≤ n − 1. If αn = 1, then αi ≥ i + 1 for 1 ≤ i ≤ n − 1.

In that case, xσ divides xb, where σ = (2, 3, . . . , n, 1) ∈ T2. Thus αn ≥ 2. If

αn = 2, then αi ≥ i+ 1 for 2 ≤ i ≤ n− 1. In that case, xσ divides xb, where

σ = (1, 3, . . . , n, 2) ∈ T2. Thus αn ≥ 3. Continuing this way we can show

that αn = n. But, in that case xσ divides xb, where σ = (1, 2, . . . , n) ∈ T2,

a contradiction.

(vi) If A = {`} ∈ Σn, then taking b̂` = (n, . . . , 0, . . . , n) (i.e., 0 at `th

place and elsewhere n), we see that xb̂` /∈ IU . Further, for any b′ with

b̂` < b′ ≤ n, xσ′ divides xb′ for σ′ = (`, . . . , 2, 1, n, n − 1, . . . , ` + 1). Thus

we get the minimal generator xn` ∈ I
[n]
U .

For A = {j1, . . . , jt} ∈ Σn with t ≥ 2 and j1 < · · · < jt, let b̂A = (b1, . . . , bn),

where bj1 = jt − j1, bji = n− (ji − ji−1) (for i ≥ 2) and br = n (for r /∈ A).

Claim : xb̂A /∈ IU .

Otherwise, there exists a σ ∈ U such that xσ divides xb̂A . Thus σ(j1) ≤

jt − j1 and σ(ji) ≤ n− (ji − ji−1) for 2 ≤ i ≤ t. We show that

σ(j1) > σ(j2) > · · · > σ(jt).

If σ(ji−1) < σ(ji) for 1 < i ≤ t, then σ(ji−1), σ(ji) ∈ [n − (ji − ji−1)]. But

|[n − (ji − ji−1)]| = n − (ji − ji−1) and |[ji−1]∐[ji, n]| = n − (ji − ji−1) + 1.

Thus there exists ` ∈ [n] \ [ji−1, ji] such that σ(`) /∈ [n − (ji − ji−1)]. This

shows that σ(ji−1) < σ(ji) < σ(`). Hence, σ has a 123 or a 312-pattern, a

contradiction to σ ∈ U . Now σ(jt) < σ(j1) ≤ jt− j1 implies that jt− j1 ≥ 2.

Again, σ(j1), σ(jt) ∈ [jt− j1], but |[jt− j1]| = jt− j1 < |[j1, jt]| = jt− j1 + 1.

Thus there exists ` ∈ [j1 + 1, jt − 1] such that σ(`) > jt − j1. This shows

that, σ(jt) < σ(j1) < σ(`) with j1 < ` < jt. Thus σ has a 231-pattern, a
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contradiction. This proves our claim. It can be shown that b̂A has the desired

maximality property and hence xn−b̂A is a minimal generator of I [n]
U .

We shall show that all monomial ideals in Lemma 4.3.1 are order mono-

mial ideals.

It is convenient to study the monomial ideal IS in Lemma 4.3.1 according

to the three cases already described.

Case-1. To each monomial ideal I [n]
Sa , we associate a poset Σn(Sa) (for

1 ≤ a ≤ 3) as follows.

(i) Let Σn(S1) = {{`} : 1 ≤ ` ≤ n − 1} ∪ {[i, n] : 1 ≤ i ≤ n}, where

[i, n] = {a ∈ N : i ≤ a ≤ n} and [n, n] = {n}. We define a poset

structure on Σn(S1) by describing cover relations. For `, `′ ∈ [n − 1]

and i, i′ ∈ [n], {`} covers {`′} (or [i′, n]), if `′ = ` + 1 (respectively,

i′ = ` + 2). Also, [i, n] covers {`′} (or [i′, n]) if i = `′ (respectively,

i′ = i + 1). The monomial labels ω{`} = x`+1
` and ω[i,n] = xiixi+1 . . . xn.

Set µ1
j,C for C ∈ Σn(S1) so that ωC = ∏

j∈C x
µ1
j,C

j . The finite poset

Σn(S1) appeared in [31].

(ii) Let Σn(S2) = {{`} : 1 ≤ ` ≤ n} ∪ {{i, j} : 1 ≤ i < j ≤ n}. A

poset structure on Σn(S2) is given by the following cover relations. For

i, j, i′, j′ ∈ [n] with i < j and i′ < j′, {i, j} covers {i′, j′}, if either

(i = i′ and j′ = j+ 1) or (j = i′ and j′ = j+ 1). Also, {i, j} covers {i′}

if either (i = i′ and j = n) or (i′ = j = n). In this case, the monomial

labels ω{`} = xn` and ω{i,j} = xiix
j−1
j . Set µ2

j,C for C ∈ Σn(S2) so that

ωC = ∏
j∈C x

µ2
j,C

j .

(iii) Let Σn(S3) = {{`} : 1 ≤ ` ≤ n} ∪ {{i, j} : 1 ≤ i < j ≤ n}. Again,

a poset structure on Σn(S3) is given by the following cover relations.

For i, j, i′, j′ ∈ [n] with i < j and i′ < j′, {i, j} covers {i′, j′}, if either

(i = i′ and j = j′+ 1) or (i = i′− 1 and j′ = j). Also, {i, j} covers {i′}
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if either (i = i′ and j = i+ 1) or (i′ = j = i+ 1). Again, the monomial

labels ω{`} = xn` and ω{i,j} = xiix
n−(j−i)
j . Set µ3

j,C for C ∈ Σn(S3) so

that ωC = ∏
j∈C x

µ3
j,C

j .

The Hasse diagrams of Σ4(S1), Σ4(S2) and Σ4(S3) are given in Figure 4.2.

1234

1 234

2

3 4

34

Σ4(S1)

12

13

14

1

23

34

4

24

2 3

Σ4(S2)
14

13

12

1

24

34

4

23

2 3

Σ4(S3)

Figure 4.2: Hasse diagram for Σ4(S1), Σ4(S2) and Σ4(S3).

Proposition 4.3.2. (i). The ideal I [n]
Sa is an order monomial ideal for 1 ≤

a ≤ 3.

(ii). The free complex F∗(∆(Σn(Sa))) is a cellular resolution of I [n]
Sa supported

on the order complex ∆(Σn(Sa)) for 1 ≤ a ≤ 3.

Proof. Given the poset structure on Σn(Sa) as above, it can be directly ver-

ified that I [n]
Sa is an order monomial ideal. We show for example, that I [n]

S2 is

an order monomial ideal (cf. Definition 4.2.3).

Let P = Σn(S2). If v1, v2 ∈ P such that v1 � v2, then we take v = v2 so

that mv divides lcm(mv1 ,mv2). Let v1, v2 ∈ P such that v1 and v2 are not

comparable. The following three cases arise:
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(a) v1 = {i, j} and v2 = {r, s}, where i < j, i < r < j and r < s ≤ n. In

this case take v = {i, r} so that mv divides lcm(mv1 ,mv2).

(b) v1 = {i, j} and v2 = {r}, where i < j and i, j 6= r < n. In this case

take v = {i, r} so that mv divides lcm(mv1 ,mv2).

(c) v1 = {i} and v2 = {j}, where i < j. In this case take v = {i, j} so that

mv divides lcm(mv1 ,mv2).

Thus I [n]
S2 is an order monomial ideal.

In view of Theorem 4.2.4 we see that the free complex F∗(∆(P )) is a

cellular resolution of the order monomial ideal I = 〈ωu : u ∈ P 〉 (see Theorem

4.2.4), where P is Σn(Sa) for 1 ≤ a ≤ 3.

Remark 4. The cellular resolution F∗(∆(Σn(Sa))) is minimal for a = 1,

but nonminimal for a = 2, 3. Also, the rth Betti number βr(I [n]
S1 ) is given by

(see [31, Theorem 2.7])

βr(I [n]
S1 ) =

r+1∑
s=0

(
n− 1
s

)(
n− s

r + 1− s

)
; (0 ≤ r ≤ n− 1).

We now identify standard monomials of R

I
[n]
Sa

. Consider the following sub-

sets of the set PFn of parking functions p = (p1, . . . , pn) of length n.

(i) PF1
n = {p ∈ PFn : pt ≤ t, for all t and if pi = i, then pj =

0 for some j ∈ [i, n]}.

(ii) PF2
n = {p ∈ PFn : if pi ≥ i, then pj < j − 1 for all j ∈ [i+ 1, n]}.

(iii) PF3
n = {p ∈ PFn : if pi ≥ i, then pj < n− (j − i) for all j ∈ [i+ 1, n]}.

In view of Lemma 4.3.1, xp /∈ I
[n]
Sa if and only if p ∈ PFan for 1 ≤ a ≤

3. Thus (fine) Hilbert series H
(

R

I
[n]
Sa

,x
)

of R

I
[n]
Sa

is given by H
(

R

I
[n]
Sa

,x
)

=∑
p∈PFan xp. In particular, |PFan| = dimK

(
R

I
[n]
Sa

)
= H

(
R

I
[n]
Sa

,1
)
, where 1 =
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(1, . . . , 1). Using the cellular resolution F∗(∆(Σn(Sa))) supported on the

order complex ∆(Σn(Sa)), the (fine) Hilbert series H
(

R

I
[n]
Sa

,x
)
is given by

H

 R

I
[n]
Sa

,x

 =

∑n
i=0(−1)i∑(C1,...,Ci)∈Fai−1

∏i
q=1

(∏
j∈Cq\Cq−1 x

µaj,Cq
j

)
(1− x1) · · · (1− xn) , (4.5)

where Fai−1 is the set of i− 1-dimensional faces of ∆(Σn(Sa)), (C1, . . . , Ci) ∈

Fai−1 is a (strict) chain C1 ≺ . . . ≺ Ci of length i − 1, C0 = ∅ and µaj,C is as

in the definition of poset Σn(Sa).

Proposition 4.3.3. The number of standard monomials of R

I
[n]
Sa

is given by

dimK

 R

I
[n]
Sa

 =
n∑
i=1

(−1)n−i
∑

(C1,...,Ci)∈Fai−1
C1∪···∪Ci=[n]

i∏
q=1

 ∏
j∈Cq\Cq−1

µaj,Cq

 ,

where summation is carried over all (i− 1)-dimensional faces (C1, . . . , Ci) ∈
Fai−1 of ∆(Σn(Sa)) with C1 ∪ · · · ∪ Ci = [n] and C0 = ∅. Also,

dimK

 R

I
[n]
Sa

 =
∑

0≤i≤n;
(C1,...,Ci)∈Fai−1

(−1)i
 i∏
q=1

(
∏

j∈Cq\Cq−1

(µaj,{j} − µ
a
j,Cq))

∏
l /∈Ci

µal,{l}

 ,

where summation is carried over all faces (C1, . . . , Ci) ∈ Fai−1 including the

empty face C0 = ∅.

Proof. As |PFan| = dimK

(
R

I
[n]
Sa

)
= H

(
R

I
[n]
Sa

,1
)
, letting x → 1 in the ratio-

nal function expression (4.5) of H
(

R

I
[n]
Sa

,x
)
, and applying L’Hospital’s rule,

we get the first formula. For more details, see the proof of [29, Proposi-

tion 4.5]. In order to get the second formula, put yj = 1
xj

in (4.5) to get

a rational function, say H̃
(

R

I
[n]
Sa

,y
)
. Now letting y → 1 in the product(∏n

j=1 y
µa
j,{j}−1
j

)
H̃
(

R

I
[n]
Sa

,y
)
, we get the second formula, which is due to Post-

nikov and Shapiro [45, Proposition 8.4].
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Theorem 4.3.4. The number of standard monomials of R

I
[n]
Sa

is given by

dimK

 R

I
[n]
Sa

 = |PFan| =
(n+ 1)!

2 , (1 ≤ a ≤ 3).

Proof. As dimK

(
R

I
[n]
Sa

)
= 1 for n = 1, we assume that n > 1. The cases

a ∈ {1, 2, 3} are treated separately as follows:
(i) Let a = 1. Using the second formula

dimK

 R

I
[n]
S1

 =
∑

0≤i≤n;
(C1,...,Ci)∈F1

i−1

(−1)i
 i∏
q=1

(
∏

j∈Cq\Cq−1

(µ1
j,{j} − µ

1
j,Cq))

∏
l /∈Ci

µ1
l,{l}



in Proposition 4.3.3, we shall show that

dimK

 R

I
[n]
S1

 = n(n!) + (n− 1)((n− 1)!)
∑

1≤i≤n;
0=j0<j1<···<ji<n

(−1)i 1∏i
q=2 jq

. (4.6)

The term corresponding to the empty chain is n(n!). Also, for a (strict) chain
C1 ≺ · · · ≺ Ci in F1

i−1, the corresponding term in the second formula is zero
if the chain has a singleton member. Thus surviving terms are of the form
Cl = [ji−l+1, n] for some sequence 0 = j0 < j1 < · · · < ji < n. Note that
the term corresponding to such a chain is precisely, (−1)i (n−1)((n−1)!)∏i

q=2 jq
. This

proves (4.6). Let αn = ∑
i≥1(−1)i+1∑

0=j0<j1<...<ji<n
1∏i

q=2 jq
. Clearly, α1 = 0.

For n > 1, we claim that αn = n
2 . We have,

αn =
∑
i≥1

(−1)i+1
∑

0=j0<j1<···<ji<n−1

1∏i
q=2 jq

+
∑
i≥1

(−1)i+1
∑

0=j0<j1<···<ji=n−1

1∏i
q=2 jq

= αn−1 + 1
n− 1

∑
i≥2

(−1)i+1
∑

0=j0<j1<···<ji−1<n−1

1∏i−1
q=2 jq

+ 1

= αn−1 −
1

n− 1αn−1 + 1 = n− 2
n− 1αn−1 + 1.

On solving this recurrence relation, we get αn = n
2 for n > 1. Now in view
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of (4.6),

dimK

 R

I
[n]
S1

 = n(n!) + (n− 1)((n− 1)!)
(−n

2

)
= (n+ 1)!

2 .

(ii) Let a = 2. Since dimK

(
R

I
[n]
Sa

)
= 1 or 3 for n = 1 or 2, respectively, we

assume that n > 2. Suppose F2[n] = ∪ni=1{(C1, . . . , Ci) ∈ F2
i−1 : ∪ij=1Cj =

[n]}. For C = (C1, . . . , Ci) ∈ F2[n], we write µ2(C) = ∏i
q=1

(∏
j∈Cq\Cq−1 µ

2
j,Cq

)
.

In view of the first formula in Proposition 4.3.3, we have

α̃n = dimK

 R

I
[n]
S2

 =
∑

C∈F2[n]
(−1)n−`(C)−1µ2(C).

Now decompose F2[n] = F2[n]′∐F2[n]′′, where C = (C1, . . . , Ci) ∈ F2[n]′ if

|C1| = 1 and C ∈ F2[n]′′ if |C1| = 2. Then α̃n = α̃′n + α̃′′n, where

α̃′n =
∑

C∈F2[n]′
(−1)n−`(C)−1µ2(C) and α̃′′n =

∑
C∈F2[n]′′

(−1)n−`(C)−1µ2(C).

A chain C = (C1, . . . , Ci) ∈ F2[n]′ is called a Type-I, Type-II or Type-III

chain, if (C1, C2) = ({i}, {i, n}) for i < n, (C1, C2) = ({n}, {i, n}) for i < n

or (C1, C2) = ({n}, {i, n− 1}) for i < n− 1, respectively. Now

α̃′n =

 ∑
C∈F2[n]′;
Type−I

+
∑

C∈F2[n]′;
Type−II

+
∑

C∈F2[n]′;
Type−III

 (−1)n−`(C)−1 µ2(C)

= nα̃′n−1 −
n

n− 1 α̃
′′
n + nα̃′′n−1 = nα̃n−1 −

n

n− 1 α̃
′′
n.

Claim : α̃′′n = − (n−1)(n!)
2 .

For 1 ≤ t ≤ n− 1, consider saturated chains C(t) in F2[n]′′ of the form

C(t) : {t, n} ≺ {t, n− 1} ≺ · · · ≺ {t, t+ 1} ≺ {t− 1, t} ≺ · · · ≺ {1, 2}.
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Then µ2(C(t)) = t((n− 1)!). Any other chain in F2[n]′′ is either of the form

C : {r, n} ≺ · · · ≺ {r, r + 1} ≺ · · · ≺ {s− 1, s} ≺ {l, s− 1} ≺ {l, s− 2} ≺ · · ·

or

C′ : {r, n} ≺ · · · ≺ {r, r + 1} ≺ · · · ≺ {s′ − 1, s′} ≺ {l′,s′ − 2} ≺ · · · ≺ · · · ,

(for 3 ≤ r ≤ n− 1),

where s (or s′) is the largest integer such that {l, s − 1} covers {s − 1, s}
in C (or {l′, s′ − 1} is not in C′) for some l < s − 2 (or l′ < s′ − 2). Let
C̃ = C\{{l, s−1}} be the chain obtained from C by deleting {l, s−1} and C̃′ =
C′ ∪ {{l′, s′− 1}} be the chain obtained from C′ on adjoining {l′, s′− 1}. We
see that, µ2(C) = µ2(C̃) and µ2(C′) = µ2(C̃′). As length `(C) = `(C̃) + 1 and
`(C′) = `(C̃′)−1, the terms in α̃′′n = ∑

C∈F2[n]′′(−1)n−`(C)−1µ2(C) corresponding
to chains C ∈ F2[n]′′ different from C(t) cancel out. Thus

α̃′′n =
n−1∑
t=1

(−1)n−`(C(t))−1 µ2(C(t)) =
n−1∑
t=1

(−1)n−(n−2)−1 t((n− 1)!) = −(n− 1)(n!)
2 .

Now α̃n = α̃′n + α̃′′n = nα̃n−1 − n
n−1 α̃

′′
n + α̃′′n = nα̃n−1 + n!

2 . On solving this

recurrence, we get α̃n = (n+1)!
2 , as desired.

(iii) Let a = 3 and assume that n > 2. Proceeding as in part (ii), we write

dimK

 R

I
[n]
S3

 =
∑

C∈F3[n]
(−1)n−`(C)−1µ3(C),

where F3[n] is the collection of all chains C̄ = (C1, . . . , Ci) in F3
i−1 (for some

i) with ∪ij=1Cj = [n] and µ3(C̄) = ∏i
q=1

(∏
j∈Cq\Cq−1 µ

3
j,Cq

)
. For 1 ≤ t ≤ n−1,

let C̄(t) be the chain in F3[n] of the form

C̄(t) : {t} ≺ {t, t+ 1} ≺ · · · ≺ {t, n− 1} ≺ {t, n} ≺ {t− 1, n} ≺ · · · ≺ {1, n}
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and C̄(t) \ {{t}} is the chain obtained from C̄(t) by deleting the first element

{t}. Now µ3(C̄(t)) = n! and µ3(C̄(t) \ {{t}}) = t((n− 1)!). There is one more

chain C̄ : {n} ≺ {n − 1, n} ≺ . . . ≺ {1, n} in F3[n], with µ3(C̄) = n!. As in

part (ii), it can be shown that the terms corresponding to remaining chains

cancel out. Thus

dimK

 R

I
[n]
S3

 = n(n!)− (1 + 2 + · · ·+ (n− 1))((n− 1)!) = (n+ 1)!
2 .

Theorem 4.3.4 shows that the integer sequence
{

dimK

(
R

I
[n]
Sa

)
= (n+1)!

2

}∞
n=1

for 1 ≤ a ≤ 3 is the integer sequence (A001710) in OEIS [48]. As |PFan| =
(n+1)!

2 , it is expected that the set PFan could be easily enumerated. Let p ∈

PF1
n. Then pt ≤ t; for all t and pi = i implies that pj = 0 for some j ∈

[i + 1, n]. We count p ∈ PF1
n according to the value s of the largest t ∈ [n]

with pt = t. If pt < t; for all t ∈ [n], then we take s = 0. As pn < n,

we have 0 ≤ s ≤ n − 1. For s = 0, any p = (p1, . . . , pn) ∈ Nn such that

pt < t; for all t is a parking function and number of such p ∈ PF1
n is precisely∏n

t=1(t) = n!. Now let s ≥ 1. Any sequence p = (p1, . . . , pn) ∈ Nn satisfying

the following conditions

pt ≤ t for all t < s, ps = s, and pj < j for all j > s,with at least one pj = 0,

(4.7)

is always a parking function. The number of p satisfying conditions (4.7) is

s−1∏
t=1

(t+ 1)
 n∏
j=s+1

j −
n∏

j′=s+1
(j′ − 1)

 = (n− s)((n− 1)!).

This shows that |PF1
n| = ∑n−1

s=0 (n − s)((n − 1)!) = (n+1)!
2 . Similarly, PFan for

a = 2, 3 can also be enumerated. However, it is still an interesting problem
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to construct an (explicit) bijection φ : PFan −→ Fn+1(21), where Fn+1(21) is

the set of rooted-labeled increasing forests on [n+ 1].

Case-2 : To monomial ideals I [n]
T1 and I

[n]
T2 , we associate finite posets

Σn(T1) and Σn(T2) respectively, as below.

(i) Let Σn(T1) = {{`}, {i, n} : 1 ≤ ` ≤ n − 1; 1 ≤ i ≤ n}, where

{n, n} = {n}. We define a poset structure on Σn(T1) by describing

cover relations. For `, `′ ∈ [n − 1] and i, i′ ∈ [n], {`} covers {`′},

if `′ = ` + 1. Also, {i, n} covers {`′} (or {i′, n}) if i = `′ (respec-

tively, i′ = i + 1). The monomial labels ω{`} = x`+1
` , ω{n} = xnn and

ω{i,n} = xiix
i
n for `, i ∈ [n − 1]. Set µ̂1

j,C for C ∈ Σn(T1) so that

ωC = ∏
j∈C x

µ̂1
j,C

j .

(ii) Let Σn(T2) = Σn(T1). But the poset structure on Σn(T2) is obtained

by interchanging {i} with {n− i} (and also, {i, n} with {n− i, n})(for

1 ≤ i < n) in the poset Σn(T1). The cover relations of the poset

Σn(T2) are given as follows. For `, `′, i, i′ ∈ [n − 1], {`} covers {`′},

if `′ = ` − 1 and {i, n} covers {`′} (or {i′, n}) if i = `′ (respectively,

i′ = i − 1). In addition, {1, n} covers {n}. The monomial labels

ω{`} = xn−`+1
` , ω{n} = xnn and ω{i,n} = xn−ii xn−in for `, i ∈ [n − 1]. Set

µ̂2
j,C for C ∈ Σn(T1) so that ωC = ∏

j∈C x
µ̂2
j,C

j .

The Hasse diagram of Σ4(T1) and Σ4(T2) are given in Figure 4.3.

Proposition 4.3.5. (i). The ideals I [n]
T1 and I [n]

T2 are order monomial ideals.

(ii). The free complex F∗(∆(Σn(Tb))) is the minimal cellular resolution of I [n]
Sa

supported on the order complex ∆(Σn(Tb)) for 1 ≤ b ≤ 2. Thus the rth Betti

number βr(I [n]
Tb

) is given by

βr(I [n]
Tb

) =
(

n

r + 1

)
+ (r + 1)

(
n− 1
r + 1

)
+ r

(
n− 1
r

)
, (0 ≤ r ≤ n− 1).
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14

1 24

2

3 4

34

Σ4(T1)

34

3 24

2

1 4

14

Σ4(T2)

Figure 4.3: Hasse diagram for Σ4(T1) and Σ4(T2).

Proof. From the definitions of the poset Σn(Tb), it is clear that the ideal I [n]
Tb

is

an order monomial ideal. Further, the cellular resolution F∗(∆(Σn(Tb))) is the

minimal resolution of I [n]
Sa supported on the order complex ∆(Σn(Tb)) because

monomial label on any face of ∆(Σn(Tb)) is different from the monomial label

on subfaces. Thus the rth Betti number βr(I [n]
Tb

) equals the number of (strict)

chains of length r in the poset Σn(Tb). Since Σn(T2) is obtained from Σn(T1)

by changing i to n − i for i ∈ [n], number of chains of length r in both the

posets are same. We count chains of length r in Σn(T1) for 0 ≤ r ≤ n − 1.

Consider a (strict) chain

C : C1 ≺ C2 ≺ . . . ≺ Cs ≺ Cs+1 ≺ . . . ≺ Cr+1.

If all Cj are of the form {tj, n} for tj ∈ [n], then the chain C can be identified

with an (r+1)-subset {t1, . . . , tr+1} of [n]. Thus the number of such chains is(
n
r+1

)
. If Cs = {ts} and Cs+1 = {ts+1, n} for some s with ts+1 < ts, then the

chain C can be identified with an (r+ 1)-subset {t1, . . . , tr+1} of [n− 1] with

a chosen element ts. Any j ∈ {t1, . . . , tr+1} represents singleton {j} if j ≥ ts,

while it represents {j, n} for j < ts. The number of such chains is precisely

(r + 1)
(
n−1
r+1

)
. Now we count chains C with Cs = {ts} and Cs+1 = {ts, n}
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(i.e., ts = ts+1). In this case, chain C can be identified with an r-subset

{t1, . . . , ts = ts+1, . . . , tr+1} of [n − 1] with a chosen element ts. Thus the

number of such chains is r
(
n−1
r

)
. Since any r-chain C in Σn(T1) is a chain

of one of the three types, we get the desired result.

Consider the following subsets of PFn of parking function p = (p1, . . . , pn).

(i) P̂F
1
n = {p ∈ PFn : pt ≤ t, for all t and if pi = i, then pn < i}.

(ii) P̂F
2
n = {p ∈ PFn : pn−t ≤ t, for all t and if pn−i = i, then pn < i}.

In view of Lemma 4.2.8, xp /∈ I
[n]
Tb

if and only if p ∈ P̂F
b

n for b = 1, 2.

Thus, |P̂F
b

n| = dimK

(
R

I
[n]
Tb

)
. Also, the mapping (p1, p2, . . . , pn−1, pn) 7→

(pn−1, pn−2, . . . , p1, pn) induces a bijection between P̂F
1
n and P̂F

2
n.

Theorem 4.3.6. The number of standard monomials of R

I
[n]
Tb

is given by

|P̂F
b

n| = dimK

 R

I
[n]
Tb

 = s(n+ 1, 2); (b = 1, 2),

where s(n+ 1, 2) is the (signless) Stirling number of the first kind.

Proof. We take b = 1. Proceeding as in Proposition 4.3.3, we get

dimK

 R

I
[n]
T1

 =
∑

C∈F̂1[n]

(−1)n−`(C)−1 µ̂1(C),

where F̂1[n] is the collection of all chains C = (C1, . . . , Ci) in Σn(T1) such
that C1 ∪ · · · ∪Ci = [n] and µ̂1(C) = ∏i

q=1

(∏
j∈Cq\Cq−1 µ̂

1
j,Cq

)
. For 1 ≤ t ≤ n,

let Ĉ(n) : {n} ≺ {n− 1, n} ≺ · · · ≺ {1, n},

Ĉ(t) : {n− 1} ≺ · · · ≺ {t} ≺ {t, n} ≺ {t− 1, n} ≺ · · · ≺ {1, n}; (1 ≤ t ≤ n− 1)

and Ĉ′(t) be the chain obtained from Ĉ(t) by deleting {t, n}. For t = n, we

have {n, n} = {n}. It is clear that F̂1[n] = {Ĉ(t), Ĉ′(t) : 1 ≤ t ≤ n}. Also,
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µ̂1(Ĉ(t)) = n! and µ̂1(Ĉ′(t)) = t−1
t

(n!) for 1 ≤ t ≤ n. As `(Ĉ(t)) = `(Ĉ′(t)) + 1 =

n− 1, we see that

dimK

 R

I
[n]
T1

 =
n∑
t=1

(
µ̂1(Ĉ(t))− µ̂1(Ĉ′(t))

)
=

n∑
t=1

(
n!− t− 1

t
n!
)

=
n∑
t=1

n!
t

=
(

1 + 1
2 + · · ·+ 1

n

)
n! = s(n+ 1, 2).

A nice formula |P̂F
1
n| = |P̂F

2
n| = s(n + 1, 2), deserves a combinatorial

proof. We count parking functions p = (p1, . . . , pn) in P̂F
1
n according to the

value of pn. Clearly, 0 ≤ pn ≤ n−1. For any 0 ≤ t ≤ n−1, we see that pn = t

implies that pi < i for all i ≤ t and pj ≤ j for j > t. Also, any (p1, . . . , pn)

with pn = t and pi < i for all i ≤ t, while pj ≤ j for all t < j ≤ n−1 is always

a parking function of length n. Thus the number of p = (p1, . . . , pn) ∈ P̂F
1
n

with pn = t is
(∏t

i=1 i
) (∏n−1

j=t+1(j + 1)
)

= n!
t+1 . Hence, |P̂F

1
n| =

∑n−1
t=0

n!
t+1 .

By Theorem 4.3.6 we see that the integer sequence (A000254) in OEIS [48]

is the integer sequence
{

dimK

(
R

I
[n]
Tb

)
= s(n+ 1, 2)

}∞
n=1

for b = 1, 2.

Case-3 : We finally consider the monomial ideal I [n]
U . The minimal

generators ∏j∈A x
νj,A
j of I [n]

U are parametrized by the poset Σn. Again, it

can be directly verified that the ideal I [n]
U is an order monomial ideal and

the cellular resolution F∗(∆(Σn)) supported on the order complex ∆(Σn) is

the minimal free resolution of I [n]
U . Thus the rth Betti number βr(I [n]

U ) =

(r!)S(n+ 1, r + 1) for 0 ≤ r ≤ n− 1.

Now we describe standard monomials of R

I
[n]
U

. Let PFn = {p ∈ PFn : xp /∈

I
[n]
U }.

Lemma 4.3.7. Let p = (p1, . . . , pn) ∈ PFn. Then p ∈ PFn if and only if

there exists a permutation α ∈ Sn such that pαi < ναi,Ti for all i, where

αi = α(i), T1 = [n] and Tj = [n] \ {α1, . . . , αj−1} for j ≥ 2. Also, νj,T is in
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the Lemma 4.3.1.

Proof. The proof can be obtained by proceeding along the same lines as [29,

Theorem 4.3].

Proceeding as in Proposition 4.3.3, we get a combinatorial formula for

the number of standard monomials of R

I
[n]
U

.

Proposition 4.3.8. The number of standard monomials of R

I
[n]
U

is given by

|PFn| = dimK

(
R

I
[n]
U

)
=

n∑
i=1

(−1)n−i
∑

∅=C0(C1(···(Ci=[n]

i∏
q=1

 ∏
j∈Cq\Cq−1

νj,Cq

 ,
where summation is carried over all strict chains ∅ = C0 ( C1 ( · · · ( Ci =

[n].

Neither using Proposition 4.3.8, nor by any combinatorial tricks, we could

determine the |PFn| = dimK

(
R

I
[n]
U

)
. Computations for smaller values of

n suggest that
{

dimK

(
R

I
[n]
U

)}∞
n=1

could be the combinatorially interesting

integer sequence (A003319) in OEIS [48].
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Chapter 5

Edge ideals of some circulant

graphs

In this chapter we consider the edge ideals of three families of circu-

lant graphs Cn(1, 2, . . . , ĵ, . . . , bn2 c), Clm(1, 2, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c) and

Clm(1, 2, . . . , l̂, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c). We explicitly compute all the N-

graded Betti numbers as well as the Castelnuovo-Mumford regularity of these

ideals. Other algebraic and combinatorial properties like regularity, projec-

tive dimension, induced matching number and when such graphs are well-

covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum and S2

are also discussed. The results in this chapter are based on a joint work with

S. Anand [2].

5.1 Circulant graph and its edge ideal

Let n ≥ 1 be a positive integer and S ⊆ {1, 2, . . . , bn2 c}. The circulant graph

G = Cn(S) is a finite simple graph (i.e., a subgraph of the complete simple

graph Kn) with vertex set V (G) = {0, 1, . . . , n − 1} and edge set E(G) =

{{i, j}||i − j|n ∈ S}, where |i|n = min{|i|, n − |i|} is the circular distance

101
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modulo n. For S = {a1, a2, . . . , as} we write Cn(a1, a2, . . . , as) instead of

Cn({a1, a2, . . . , as}). Circulant graphs are examples of undirected Cayley

graphs [18].

Example 5.1.1. Let S = {1, 2, . . . , bn2 c}. Then Cn(S) is the complete simple

graph Kn. Note that Cn(1) is just the cycle. In fact, Cn(i) is a cycle whenever

gcd(n, i) = 1. Circulant graphs are considered to be a generalization of cycles.

Given a circulant graph G = Cn(S) we can associate it with a square-free

monomial ideal in the polynomial ring R = K[x1, . . . , xn]. More generally,

let G = (V (G), E(G)) denote a finite simple graph with vertex set V (G) =

{x1, x2, . . . , xn} and edge set E(G). By identifying the vertices of G with the

indeterminates in the polynomial ring R = K[x1, x2, . . . , xn], we can associate

G to the quadratic square-free monomial ideal

I(G) = 〈xixj | {xi, xj} ∈ E(G)〉 ⊆ R,

called the edge ideal of G. Edge ideals were first introduced by Villarreal [56].

They are mainly studied to investigate relations between algebraic properties

of the ideals and combinatorial properties of the corresponding graphs. The

main focus is on describing invariants of I(G) in terms of G. For the edge

ideal I(G) in R = K[x1, x2, . . . , xn] there exists an N-graded minimal free

resolution

F : 0→ Fp → Fp−1 → · · · → F0 → R/I(G)→ 0,

where p ≤ n (by Hilbert’s syzygy theorem; see Section 2.1) and Fi =

⊕jR(−j)βi,j . The numbers βi,j are the ith N-graded Betti numbers of R/I(G)

in degree j and we write βi,j(G) for βi,j(R/I(G)). Also, the length p of the

resolution is the projective dimension of R/I(G) as an R-module and is de-
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noted by pd(R/I(G)) (we write pd(G) for pd(R/I(G))), i.e.,

pd(G) = max{i | βi,j(G) 6= 0 for some j}.

Betti numbers and projective dimension are among the most important in-

variants in a graded minimal free resolution. Moreover, the Castelnuovo-

Mumford regularity (or simply the regularity) of R/I(G) is another impor-

tant invariant encoded in the minimal free resolution of R/I(G). Denoted by

reg(R/I(G)) (or simply reg(G)), the regularity of R/I(G) (see also Definition

2.1.5) is defined as

reg(G) = max{j − i | βi,j(G) 6= 0}.

The edge ideal I(G) is said to have a linear resolution if for all i ≥ 0,

βi,j = 0 for all j 6= i + 2. Thus I(G) has a linear resolution if and only if

reg(I(G)) = 2.

Let G = (V (G), E(G)) be a finite simple graph. The complement of

G, denoted by Gc, is the graph (V (Gc), E(Gc)) where V (Gc) = V (G) and

E(Gc) = {{x, y} | {x, y} /∈ E(G)}. The neighborhood of x ∈ V (G) is the

set NG(x) = {y | {x, y} ∈ E(G)}. The closed neighborhood of x is NG[x] =

NG(x) ∪ {x}. The degree (or valency) of x is deg(x) = |NG(x)|. A graph

H = (V (H), E(H)) is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

For W ⊆ V (G), the induced subgraph of G on the vertex set W , denoted by

GW , is the graph whose edge set consists of all the edges in G that have both

endpoints in W (i.e., E(GW ) = {{x, y} ∈ E(G) | x, y ∈ W}). Let G and

H be two simple graphs with disjoint set of vertices, i.e., V (G) ∩ V (H) = ∅.

The join of G and H, denoted by G ∗ H, is the graph on the vertex set

V (G) ∪ V (H) with edge set given by E(G ∗H) = E(G) ∪ E(H) ∪ {{x, y} |

x ∈ V (G) and y ∈ V (H)}. If t ≥ 2 is an integer, then for a graph G, the
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t-times join G ∗ · · · ∗G︸ ︷︷ ︸
t-times

is denoted as G∗(t).

Suppose G and H are two simple graphs on disjoint vertex sets and G∗H

is their join. Mousivand [40] has given a formula to compute all the N-graded

Betti numbers of G ∗H in terms of G and H.

Proposition 5.1.2. [40, Corollary 3.4] Let G and H be two simple graphs

with disjoint vertex sets having m and n vertices, respectively. Then the

N-graded Betti numbers βi,d(G ∗H) may be expressed as


∑d−2
j=0

{(
n
j

)
βi−j,d−j(G) +

(
m
j

)
βi−j,d−j(H)

}
if d 6= i+ 1,∑d−2

j=0

{(
n
j

)
βi−j,d−j(G) +

(
m
j

)
βi−j,d−j(H)

}
+∑d−1

j=1

(
m
j

)(
n
d−j

)
if d = i+ 1.

This, in particular, determines the regularity of G ∗H.

Proposition 5.1.3. [40, Proposition 3.12] Let G and H be two simple graphs

on disjoint vertex sets with one of them having at least one edge. Then

reg(G ∗H) = max{reg(G), reg(H)}.

A multipartite graph G is a simple graph such that V (G) = tdi=0Vi and

for each i there is no edge between any two vertices in Vi. If G and H are

two discrete graphs, i.e., both G and H do not have any edge, then G ∗ H

is a complete bipartite graph. The Betti numbers of a complete bipartite

graph are known. In fact, Betti numbers of a complete multipartite graph

and hence, its regularity is also known.

Theorem 5.1.4. [24, Theorem 5.3.8] The N-graded Betti numbers of the

complete multipartite graph Kn1,...,nt are independent of the characteristic of
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the field K and may be written as

βi,d(Kn1,...,nt) =



∑t
l=2(l − 1)∑α1+···+αl=d,

j1<···<jl,
α1,...,αl≥1

(
nj1
α1

)
· · ·

(
njl
αl

)
if d = i+ 1,

0 if d 6= i+ 1.

Given a graph G, an induced matching of G is an induced subgraph con-

sisting of pairwise disjoint edges. The maximum number of edges in an

induced matching is called the induced matching number of G, and is de-

noted by ν(G). We say that a subset W ⊂ V (G) is a vertex cover of G if

e∩W 6= ∅ for all edges e ∈ E(G). The complement of a vertex cover is an in-

dependent set. A graph G is called well-covered if every minimal vertex cover

(with respect to the partial order of inclusion) has the same cardinality. Via

the duality between vertex covers and independent sets, being well-covered is

equivalent to the property that every maximal independent set has the same

cardinality. The cardinality of a largest independent set in G is denoted by

α(G). The family of all independent sets of G is a simplicial complex on the

vertex set V (G), called the independence complex of G, and is denoted by

∆G.

∆G = {W ⊂ V (G) |W is an independent set of G}.

Note that dim ∆G = α(G) − 1. A graph is well-covered if and only if ∆G is

a pure simplicial complex (see Section 2.3.1).

Various algebraic properties of the graph G is defined in terms of its

independence complex. Recall that, a simplicial complex ∆ is called Cohen-

Macaulay/sequentially Cohen-Macaulay/Buchsbaum or it satisfies Serre’s

condition S2 if the Stanley-Reisner ring K[∆] has the corresponding prop-

erty (cf. Section 2.3.1). We say a graph G is Cohen-Macaulay/sequentially

Cohen-Macaulay/Buchsbaum or it satisfies Serre’s condition S2 if its indepen-

dence complex ∆G satisfies the corresponding property. Further recall that
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a simplicial complex ∆ is called a Buchsbaum simplicial complex if lk∆(x)

is Cohen-Macaulay for all x ∈ V (∆). Since lk∆G
(x) = ∆G\NG[x], a graph G

is Buchsbaum if G \ NG[x] is Cohen-Macaulay for all x ∈ V (G). A graph

G is said to be vertex decomposable (respectively, shellable) if ∆G is vertex

decomposable (respectively, shellable) (see Section 2.3.1). Since ∆G is pure

if and only if G is well-covered, we remark that in order for a graph G to

be vertex decomposable/shellable/Cohen-Macaulay/Buchsbaum or to satisfy

Serre’s condition S2, it must be a well-covered graph.

5.2 Betti numbers and regularity

In this section we study the following three families of circulant graphs.

• Cn(1, 2, . . . , ĵ, . . . , bn2 c),

• Clm(1, 2, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c),

• Clm(1, 2, . . . , l̂, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c).

We compute all the N-graded Betti numbers of edge ideals for these graphs.

This, in turn, gives the Castelnuovo-Mumford regularity for these graphs.

Various other algebraic and combinatorial properties are also determined in

the next Section 5.3.

Let H1 be the circulant graph Cn(1, . . . , ĵ, . . . , bn2 c), where 1 ≤ j ≤ bn2 c.

We begin with the observation that H1 can be written as joins of comple-

ment of cycles (see Lemma 5.2.1). Then we compute the Betti numbers and

regularity using Propositions 5.1.2 and 5.1.3, respectively.

Lemma 5.2.1. Let H1 = Cn(1, . . . , ĵ, . . . , bn2 c) and d = gcd(j, n). Then

H1 = G
∗(d)
1 ,where G1 is a graph on n

d
number of vertices with Gc

1 = Cn
d
, the

cycle of length n
d
(if n

d
= 2, then C2 denotes the complete graph on 2 vertices).
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Proof. Suppose the vertices of H1 are labeled as {0, 1, . . . , n− 1}. We parti-

tion the set V (H1) into d components Vi = {i, j + i, 2j + i, . . . , (n
d
− 1)j + i}

for 0 ≤ i < d, where the indices of vertices are computed modulo n. Note

that for each r 6= s, there is an edge from every vertex of H1Vr to the vertices

of H1Vs . In other words, H1 = H1V0
∗ · · · ∗ H1Vd−1

. Also, if we consider the

complement graph Hc
1Vi

on the vertex set Vi, then Hc
1Vi

is a cycle of length
n
d
for each i. Therefore, H1Vi = G1 for 0 ≤ i < d, and this proves the

statement.

Example 5.2.2. The graph C12(1, 2̂, 3, 4, 5, 6) is isomorphic to Cc
6 ∗ Cc

6 in

Figure 5.1.

0 1
2
3
4

5
67

8
9

10
11

∼=

0 2

4
68

10

1 3

5
79

11∗

Figure 5.1: C12(1, 2̂, 3, 4, 5, 6) ∼= Cc
6 ∗ Cc

6

Let n
d

= k. As j ≤ n
2 , we have d < n and hence, k ≥ 2. Recall that,

reg(R/I(H1)) is also denoted as reg(H1). By Proposition 5.1.3, in order to

determine reg(H1), it is enough to find reg(G1), where G1 is a graph on k

vertices with Gc
1 = Ck, the cycle of length k. We compute reg(G1) by using

the Hochster’s formula (2.1).

Theorem 5.2.3. Let G1 be a graph on k number of vertices such that Gc
1 is

a cycle of length k ≥ 4. Then reg (R/I(G1)) = 2.

Proof. Let ∆G1 be the independence complex of G1 on the vertex set

{0, 1, . . . , k− 1}. Then the Stanley-Reisner ideal I∆G1
= I(G1), where I(G1)
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is the edge ideal of G1. For each k ≥ 4, the facets of ∆G1 are

{0, 1}, {1, 2}, . . . , {k − 2, k − 1}, {k − 1, 0}.

Recall that the Betti numbers βi,j(R/I(G1)) are also denoted by βi,j(G1).

By Hochster’s formula (see (2.1)),

βi,r (G1) =
∑

V⊆{0,1,...,k−1}
|V |=r

dimK H̃|V |−i−1(∆[V ];K), (5.1)

where ∆[V ] = {τ ∈ ∆G1 | τ ⊆ V } is a subcomplex of ∆G1 . Since ∆G1

is a one dimensional simplicial complex, H̃|V |−i−1 is possibly non-zero for

the cases |V | = i + 1 and |V | = i + 2, i.e., r = i + 1 and r = i + 2,

respectively. Therefore, we have possibly non-zero Betti numbers βi,i+1 for

i = 0, 1, . . . , k − 1, and βi,i+2 for i = 0, 1, . . . , k − 2.

Claim: βi,i+2(G1) =


1 if i = k − 2,

0 otherwise.
Proof of the claim: Note that by Hochster’s formula

βi,i+2 (G1) =
∑

V⊆{0,1,...,k−1}
|V |=i+2

dimK H̃1(∆[V ];K).

We have H̃1(∆[V ];K) = 0 if |V | 6= k as in this case the connected components

of ∆[V ] are contractible. Now, if |V | = k, i.e., i + 2 = k, then ∆[V ] =

∆G1 . The claim now follows by noting that ∆G1 is a triangulation of the

1-dimensional sphere S1. Consequently, reg(R/I(G1)) = 2 for k ≥ 4.

Corollary 5.2.4. Let H1 = Cn(1, . . . , ĵ, . . . , bn2 c) and d = gcd(j, n). Then

reg
(

R

I(H1)

)
=


1 if n = 2j or n = 3d,

2 otherwise.
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Proof. If n
d

= 2 or 3, then n = 2j or n = 3d, respectively and in these

cases, by Lemma 5.2.1, the graph H1 is a multipartite (d-partite) graph

with each partition set having n
d
number of vertices. By Theorem 5.1.4,

reg(R/I(H1)) = 1 if n = 2j or n = 3d. If k = n
d
≥ 4, then reg(R/I(H1)) = 2,

by Lemma 5.2.1, Proposition 5.1.3 and Theorem 5.2.3.

Remark 5. Since reg(I(H1)) = reg(R/I(H1)) + 1, Corollary 5.2.4 and [54,

Theorem 3.3] are essentially equivalent. Here we give a slightly different

proof. Of course, the formula for regularity can be deduced once we give all

the Betti numbers for R/I(H1) (see Theorem 5.2.8).

A sequence of real numbers {a1, a2, . . . , ar} is said to be palindromic if

ai = ar−i+1 for 1 ≤ i ≤ r. In the next proposition we show that the Betti

numbers βi,i+1(G1) are palindromic in the following sense:

Proposition 5.2.5. For k ≥ 4, we have βi,i+1(G1) = 0 if i /∈ {1, 2, . . . , k−3},

and βi,i+1(G1) = βk−i−2,k−i−1(G1) for 1 ≤ i ≤ k − 3.

Proof. We make use of the (Hochster’s) formula (5.1) once again. Clearly,

β0,1(G1) = 0. If i ≥ k − 2, then |V | ≥ k − 1 and hence, ∆[V ] has only one

connected component. Therefore,

βi,i+1 (G1) = 0 for i ≥ k − 2,

and this proves the first part of the proposition. For the second part, by

Hochster’s formula,

βi,i+1 (G1) =
∑

V⊆{0,1,...,k−1}
|V |=i+1

dimK H̃0(∆[V ];K)

and,

βk−i−2,k−i−1 (G1) =
∑

V⊆{0,1,...,k−1}
|V |=k−i−1

dimK H̃0(∆[V ];K),
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for 1 ≤ i ≤ k−3. Note that if |V | = i+1, then |V c| = k−i−1 and vice-versa.

Since dimK H̃0(∆[V ];K) = (number of connected components of ∆[V ]) − 1,

we just need to show that number of connected components of ∆[V ] with

|V | = i + 1 is same as number of connected components of ∆[V c], and this

follows by a close inspection of the structure of ∆ = ∆G1 .

Remark 6. It can be checked that the rings R/I(G1) are Gorenstein of di-

mension 2. The total Betti numbers of R/I(G1) are palindromic (see [43,

Theorem 25.6]). Here we have shown the palindromicity by using Hochster’s

formula.

Our aim now is to explicitly calculate the Betti numbers of the circulant

graph H1 in Lemma 5.2.1. But first we state below the Betti numbers for the

graph G1. Note that all the Betti numbers of G1 has already been calculated

by Dochtermann [13] which we indicate in the proof.

Proposition 5.2.6. For k ≥ 2, the nonzero Betti numbers of R/I(G1) are

given by

βi,i+1(G1) =


(
k
i+1

)
i(k−i−2)
k−1 + 1 if i = k − 1,(

k
i+1

)
i(k−i−2)
k−1 otherwise,

(5.2)

and,

βi,i+2(G1) =


1 if k ≥ 4 and i = k − 2,

0 otherwise.
(5.3)

Proof. First observe that the ideal I(G1) is the zero ideal, when k = 2 or 3.

Thus the above formulas are valid in this case. For k ≥ 4 the Betti numbers

βi,i+2 are computed in the above claim (in proof of Theorem 5.2.3). When
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k ≥ 5 the formulas for Betti numbers βi,i+1 are given in [13, Remark 7].

Using Macaulay2 [19] we can directly check βi,i+1 for the case k = 4.

Our aim now is to compute all the Betti numbers of the joins G∗(d)
1 . We

will essentially use the formula of Betti numbers of G1 given by Dochtermann

and the formula to calculate Betti numbers of join of graphs in terms of the

Betti numbers of the original graph given by Mousivand. This will enable us

to find the Betti numbers of the graph H1 since H1 = G
∗(d)
1 , where G1 is the

complement of the cycle of length k = n
d
.

Theorem 5.2.7. Let G1 be the complement of a cycle of length k ≥ 2. For

d ≥ 2,

βi,i+1(G∗(d)
1 ) =

(
dk

i+ 1

)
i(dk − i− 2)

dk − 1 + d

(
(d− 1)k
i− k + 1

)
(5.4)

and,

βi,i+2(G∗(d)
1 ) =


d
(

(d−1)k
i−k+2

)
if k ≥ 4,

0 otherwise.
(5.5)

Proof. The following two identities can be verified directly.

t∑
j=0

(
u

j

)(
v

t− j

)
=
(
u+ v

t

)
(5.6)

and,

(
m

i+ 1

)
i(m− i− 2)

m− 1 = m

(
m− 1
i

)
−m

(
m− 2
i− 1

)
−
(
m

i+ 1

)
. (5.7)

We prove the formulas of Betti numbers by induction on d. Using the
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formula of Mousivand [40] (see Proposition 5.1.2) we have,

βi,i+1(G1 ∗G1)

= 2
i−1∑
j=0

(
k

j

)
βi−j,i−j+1(G1) +

i∑
j=1

(
k

j

)(
k

i− j + 1

)

= 2
i−1∑
j=0

(
k

j

)(
k

i− j + 1

)
(i− j)(k − i+ j − 2)

k − 1 + 2
(

k

i− k + 1

)

+
i∑

j=1

(
k

j

)(
k

i− j + 1

)
(by (5.2))

= 2
i−1∑
j=0

(
k

j

)[
k

(
k − 1
i− j

)
− k
(

k − 2
i− j − 1

)
−
(

k

i− j + 1

)]

+ 2
(

k

i− k + 1

)
+

i∑
j=1

(
k

j

)(
k

i− j + 1

)
(by (5.7)).

Using Equation (5.6), we get the following:

• ∑i−1
j=0

(
k
j

)(
k−1
i−j

)
=
(

2k−1
i

)
−
(
k
i

)
.

• ∑i−1
j=0

(
k
j

)(
k−2
i−j−1

)
=
(

2k−2
i−1

)
.

• ∑i−1
j=0

(
k
j

)(
k

i−j+1

)
=
(

2k
i+1

)
− k

(
k
i

)
−
(
k
i+1

)
.

• ∑i
j=1

(
k
j

)(
k

i−j+1

)
=
(

2k
i+1

)
− 2

(
k
i+1

)
.

Hence,

βi,i+1(G1 ∗G1) = 2k
(

2k − 1
i

)
− 2k

(
2k − 2
i− 1

)
−
(

2k
i+ 1

)
+ 2

(
k

i− k + 1

)

=
(

2k
i+ 1

)
i(2k − i− 2)

2k − 1 + 2
(

k

i− k + 1

)
(by (5.7)).

Therefore, Equation (5.4) is valid for d = 2. Assuming the formula is true
for d ≥ 2, we verify it for d + 1. Once again, the formula of Mousivand [40]
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(see Proposition 5.1.2) gives

βi,i+1

(
G

∗(d+1)
1

)
=

i−1∑
j=0

(
k

j

)
βi−j,i−j+1

(
G

∗(d)
1

)
+

i−1∑
j=0

(
dk

j

)
βi−j,i−j+1(G1) +

i∑
j=1

(
dk

j

)(
k

i− j + 1

)

=
i−1∑
j=0

(
k

j

)[(
dk

i− j + 1

)
(i− j)(dk − i+ j − 2)

dk − 1 + d

(
(d− 1)k

i− j − k + 1

)]

+
i−1∑
j=0

(
dk

j

)(
k

i− j + 1

)
(i− j)(k − i+ j − 2)

k − 1 +
(

dk

i− k + 1

)

+
i∑

j=1

(
dk

j

)(
k

i− j + 1

)
.

By using Equations (5.7) and (5.6) in a similar way as for the d = 2 case,

we see that

βi,i+1
(
G
∗(d+1)
1

)
=
(

(d+ 1)k
i+ 1

)
i((d+ 1)k − i− 2)

(d+ 1)k − 1 + (d+ 1)
(

dk

i− k + 1

)
.

This completes the induction. Equation (5.5) can also be verified by induc-

tion in a similar way.

Lemma 5.2.1, Corollary 5.2.4, Proposition 5.2.6, and Theorem 5.2.7 all

together yield the following result.

Theorem 5.2.8. Suppose n ≥ 5 is an integer. Let H1 be the circulant graph

Cn(1, . . . , ĵ, . . . , bn2 c) with d = gcd(j, n) and k = n
d
.

Case I: For d = 1,

βi,i+1(H1) =


(
n
i+1

)
i(n−i−2)
n−1 for 1 ≤ i ≤ n− 2,

0 otherwise.

βi,i+2(H1) =


1 if i = n− 2,

0 otherwise.
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Case II: For d ≥ 2,

βi,i+1(H1) =
(

n

i+ 1

)
i(n− i− 2)

n− 1 + d

(
n− k

i− k + 1

)
for 1 ≤ i ≤ n− 1,

βi,i+2(H1) =


d
(
n−k
i−k+2

)
if n ≥ 4d and 1 ≤ i ≤ n− 2,

0 otherwise.

Proof. We have G = G
∗(d)
1 , where G1 is a graph on k number of vertices with

Gc
1 = Ck. If d = 1, then the result follows from Proposition 5.2.6. Therefore,

we can assume that d ≥ 2. But in that case, the formulas are proved in

Theorem 5.2.7. Note here that k = n
d
.

We now focus on the graph H2 = Clm(1, . . . , {îl}i≥2, . . . , b lm2 c). which we

simply write it as Clm(1, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c) throughout the rest of the

chapter. We first show that this circulant graph can be written as a join of

cycles. More generally, we determine when a join (also called as product) of

cycles is a circulant graph. Using this structure result we compute all the

Betti numbers of the circulant graph H2.

Lemma 5.2.9. Let m1, . . . ,ml ≥ 3 be integers. Then the join Cm1 ∗ · · · ∗Cml
is a circulant graph if and only if mi = m for some m ≥ 3, and for all i. In

addition, if this is the case, then C∗(l)m = Clm(1, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c).

Proof. First notice that, if mi 6= mj for some i 6= j, then Cm1 ∗ · · · ∗ Cml
is not a regular graph (in regular graph all vertices have same degree) and

hence, cannot be a circulant graph. Now we show that C∗(l)m is the circulant

graph H2 = Clm(1, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c). We partition the set V (H2) into

l components: Vi = {i, l + i, . . . , (m− 1)l + i}, for 0 ≤ i < l. Note that, the

induced subgraphs H2Vi are the cycles Cm for all i. Also, for all i 6= j, there

is an edge between each vertex of Vi to the vertices of Vj, thus proving the

statement.
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Example 5.2.10. The circulant graph C18(1, 2, 3, 4, 5, 6̂, 7, 8, 9̂) is isomorphic

to C6 ∗ C6 ∗ C6 in Figure 5.2.

0 1
2

3

4

5

6
7

8910
11

12

13

14

15
16

17

∼=
0 3

6

912

15 ∗
1 4

7

1013

16 ∗
2 5

8

1114

17

Figure 5.2: C18(1, 2, 3, 4, 5, 6̂, 7, 8, 9̂) ∼= C6 ∗ C6 ∗ C6.

We remark that the following lemma is entirely a collection of results by

other authors which we indicate in the proof.

Lemma 5.2.11. Let m ≥ 5 be an integer. Then

(i) pd(Cm) = b2m+1
3 c and reg(Cm) = bm+1

3 c so that pd(Cm) + reg(Cm) =

m.

(ii) The initial Betti numbers

βi,i+1(Cm) =


m if i = 1, 2,

0 if i > 2.

(iii) For 2 ≤ r < reg(Cm), the nonzero Betti numbers

βi,i+r(Cm) = m

m− 2r

(
r

i− r

)(
m− 2r

r

)
.

(iv) Let r = reg(Cm) and p = pd(Cm).
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(a) For m ≡ 0 (mod 3) the nonzero Betti numbers

βi,i+r(Cm) =


3
(
r
i−r

)
if i 6= p,

3
(
r
i−r

)
− 1 otherwise.

(b) For m ≡ 1 (mod 3) the nonzero Betti numbers

βi,i+r(Cm) =


m
(
r
i−r

)
if i 6= p,

m
(
r
i−r

)
+ 1 otherwise.

(c) For m ≡ 2 (mod 3) the nonzero Betti numbers

βi,i+r(Cm) =


1 if i = p,

0 otherwise.

Proof. The proof follows from [24, Theorem 7.6.28]. See also [1, Corollary

4.4] for (i) and (iii). For (ii) see [1, Lemma 4.7]. The formulas in (iv) can

be deduced by a close inspection of [1, Corollary 4.4]. For example, when

m ≡ 0 (mod 3) we can assume that m = 3t for some t ≥ 1 and then, p = 2t

and r = t. By [1, Corollary 4.4],

βi,i+r(Cm) = m

m− 2r

(
r

i− r

)(
m− 2r

r

)
(for i < p)

= 3
(

r

i− r

)
.

Also, for i = p, we have i + r = m and as 3
(
r
i−r

)
= 3 in this case, we see

that βp,p+r(Cm) = 3
(
r
i−r

)
− 1. The formulas for m ≡ 1 (mod 3) and m ≡ 2

(mod 3) can be deduced in a similar way.

We proceed to compute the initial Betti numbers βi,i+1(H2).
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Theorem 5.2.12. Let m ≥ 5 and l ≥ 2 be integers. Then for 1 ≤ i ≤ lm−1,

βi,i+1(H2) = lm

(
(l − 1)m+ 1

i− 1

)
+ (l − 1)

(
lm

i+ 1

)
− l
(

(l − 1)m
i+ 1

)
.

Proof. Note that Clm(1, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c) = C∗(l)m . The following iden-

tity can be verified directly:

(
u

t

)
+
(

u

t− 1

)
=
(
u+ 1
t

)
. (5.8)

We prove the above expression of βi,i+1(H2) by induction on l. For l = 2,

βi,i+1(Cm ∗ Cm)

= 2
i−1∑
j=0

(
m

j

)
βi−j,i−j+1(Cm) +

i∑
j=1

(
m

j

)(
m

i− j + 1

)
(by Proposition 5.1.2)

= 2m
[(

m

i− 1

)
+
(

m

i− 2

)]
+

i+1∑
j=0

(
m

j

)(
m

i+ 1− j

)
− 2
(

m

i+ 1

)
(by Lemma 5.2.11 (ii))

= 2m
(
m+ 1
i− 1

)
+
(

2m
i+ 1

)
− 2
(

m

i+ 1

)
(by (5.8) and (5.6)).

Therefore, the statement is true for l = 2. Assuming it is true for l ≥ 2, we

prove it for l+ 1. Now the formula of Mousivand [40] (see Proposition 5.1.2)

yields

βi,i+1(C∗(l+1)
m )

=
i−1∑
j=0

[(
m

j

)
βi−j,i−j+1(C∗(l)m ) +

(
lm

j

)
βi−j,i−j+1(Cm)

]
+

i∑
j=1

(
lm

j

)(
m

i− j + 1

)

=
i−1∑
j=0

(
m

j

)[
lm

(
(l − 1)m+ 1
i− j − 1

)
+ (l − 1)

(
lm

i− j + 1

)
− l
(

(l − 1)m
i− j + 1

)]

+m

[(
lm

i− 1

)
+
(
lm

i− 2

)]
+

i+1∑
j=0

(
lm

j

)(
m

i− j + 1

)

−
(
m

i+ 1

)
−
(
lm

i+ 1

)
(by Lemma 5.2.11(ii)).
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The induction is completed by applying the identities (5.8) and (5.6) in the

same way as for the l = 2 case.

We next determine the nonlinear Betti numbers βi,i+r(H2), where 2 ≤

r < reg(H2). Note that, by Lemma 5.2.9 and Proposition 5.1.3, reg(H2) =

reg(Cm).

Theorem 5.2.13. Let m ≥ 5 and l ≥ 2 be integers. Then for 2 ≤ r <

reg(H2),

βi,i+r(H2) = lm

m− 2r

(
m− 2r

r

)(
(l − 1)m+ r

i− r

)
.

Proof. We prove this again by induction on l. For l = 2, we use the formula
of Mousivand [40] (see Proposition 5.1.2) to get

βi,i+r(Cm ∗ Cm) = 2
i+r−2∑

j=0

(
m

j

)
βi−j,i−j+r(Cm)

= 2
i−r∑
j=0

(
m

j

)
m

m− 2r

(
r

i− j − r

)(
m− 2r
r

)
(by Lemma 5.2.11, (iii))

= 2m
m− 2r

(
m− 2r
r

)(
m+ r

i− r

)
(by (5.6)).

Assuming the formula is true for l ≥ 2, we calculate it for l + 1. Using the

formula of Mousivand [40] (see Proposition 5.1.2) again we get

βi,i+r(C∗(l+1)
m )

=
i+r−2∑
j=0

[(
m

j

)
βi−j,i−j+r(C∗(l)m ) +

(
lm

j

)
βi−j,i−j+r(Cm)

]

=
i+r−2∑
j=0

(
m

j

)
lm

m− 2r

(
m− 2r

r

)(
(l − 1)m+ r

i− j − r

)

+
i+r−2∑
j=0

(
lm

j

)
m

m− 2r

(
r

i− j − r

)(
m− 2r

r

)

= m

m− 2r

(
m− 2r

r

)l i−r∑
j=0

(
m

j

)(
(l − 1)m+ r

i− r − j

)
+

i−r∑
j=0

(
lm

j

)(
r

i− j − r

)
= (l + 1)m

m− 2r

(
m− 2r

r

)(
lm+ r

i− r

)
(by (5.6)).
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Finally, we would like to calculate βi,i+r(H2), where r = reg(R/I(H2)).

By Proposition 5.1.2 we see that r = reg(R/I(H2)) = reg(R/I(Cm)) since

H2 = C∗(l)m . There are three cases depending on the value of m modulo 3.

Theorem 5.2.14. Let m ≥ 5 be an integer and r = reg(R/I(H2)) =

reg(R/I(Cm)). Then for l ≥ 2 and 1 ≤ i ≤ lm− 1,

βi,i+r(H2) =



3l
(

(l−1)m+r
i−r

)
− l
(

(l−1)m
i−m+r

)
for m ≡ 0 (mod 3),

lm
(

(l−1)m+r
i−r

)
+ l
(

(l−1)m
i−m+r

)
for m ≡ 1 (mod 3),

l
(

(l−1)m
i−m+r

)
for m ≡ 2 (mod 3).

Proof. We prove this by induction on l. Let p = pd(Cm) and r = reg(Cm)
so that p + r = m. Assume that m ≡ 0 (mod 3), i.e., m = 3k for some
k ≥ 2. First we check the formula for l = 2. We have by the formula of
Mousivand [40] (see Proposition 5.1.2),

βi,i+r(Cm ∗ Cm) = 2
i+r−2∑

j=0

(
m

j

)
βi−j,i−j+r(Cm)

= 2
i+r−2∑

j=0
3
(
m

j

)(
r

i− j − r

)
− 2
(

m

i− p

)
(by Lemma 5.2.11 (iv) (a))

= 6
(
m+ r

i− r

)
− 2
(

m

i−m+ r

)
(by Lemma 5.2.11 (i)).

We now verify the formula for l + 1 assuming it is true for l ≥ 2.

βi,i+r(C∗(l+1)
m )

=
i+r−2∑

j=0

(
m

j

)
βi−j,i−j+r(C∗(l)

m ) +
i+r−2∑

j=0

(
lm

j

)
βi−j,i−j+r(Cm) (by Proposition 5.1.2)

=
i−r∑
j=0

(
m

j

)
3l
(

(l − 1)m+ r

i− j − r

)
−

i−p∑
j=0

(
m

j

)
l

(
(l − 1)m
i− j − p

)
+

i−r∑
j=0

3
(
lm

j

)(
r

i− j − r

)

−
(
lm

i− p

)
(by Lemma 5.2.11, (iv)(a)).

The induction is completed by using Equation (5.6) and the fact that p+r =
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m.

The formulas for the cases m ≡ 1 (mod 3) and m ≡ 2 (mod 3) can be

verified similarly using Lemma 5.2.11 (iv) (b) and (c), respectively.

Remark 7. The formulas for βi,i+j(Cm ∗ Cm) are obtained in [1], which is

the l = 2 case in Lemma 5.2.9. Our formulas in Theorem 5.2.14 for l = 2

are slightly different than theirs. The calculations done here are inspired by

those in [1].

Remark 8. For calculating Betti numbers we have assumed that m ≥ 5.

However, for m = 3 we have G = K3l, the complete graph on 3l vertices and

hence it has a linear resolution. For m = 4, we see that G = C4l(1, 2, . . . , 2l−

1, 2̂l) and thus Betti numbers of R/I(G) can be calculated using Theorem

5.2.8.

We now consider the graph H3 = Cn(1, . . . , l̂, . . . , 2̂l, . . . , 3̂l, . . . , bn2 c),

where n = lm is any composite number. We show that H3 is a multipartite

graph. Moreover, we determine which multipartite graphs are circulant.

Lemma 5.2.15. Let l ≥ 2 and m1, . . . ,ml ≥ 2 be integers. The complete

multipartite graph Km1,...,ml is a circulant graph if and only if mi = m

for 1 ≤ i ≤ l. In addition, if this is the case, then Km,m, . . . ,m︸ ︷︷ ︸
l-times

=

Clm(1, . . . , l̂, . . . , 2̂l, . . . , b lm2 c).

Proof. If mi 6= mj for some i 6= j, then Km1,...,ml is not a regular graph

and hence, cannot be a circulant graph. To prove the second statement, we

partition the set V (H3) into l components: Vi = {i, l + i, . . . , (m − 1)l + i},

for 0 ≤ i < l. Note that, the induced subgraphs H3Vi consists of only isolated

vertices. Also, for all i 6= j there is an edge between each vertex of Vi and

Vj, thus proving the statement.
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Example 5.2.16. The circulant graph C12(1, 2̂, 3, 4̂, 5, 6̂) is isomorphic to

K6,6 in Figure 5.3.

0 1
2
3
4

5
67

8
9

10
11

∼=

0
2
4
6
8
10

1
3
5
7
9
11

Figure 5.3: C12(1, 2̂, 3, 4̂, 5, 6̂)

Theorem 5.2.17. The N-graded Betti numbers of R/I(H3) can be written

as

βi,i+1(H3) =
l∑

r=2
(r − 1)

∑
α1+···+αr=i+1,

1≤α1,...,αr≤m

(
l

r

)(
m

α1

)
. . .

(
m

αr

)
,

and βi,d(H3) = 0 for d 6= i+ 1.

Proof. By Lemma 5.2.15, the circulant graph H3 is the complete multipar-

tite graph Km,m, . . . ,m︸ ︷︷ ︸
l-times

and hence, ∆H3 is a disjoint union of l number of

simplices each of dimension m. The proof now follows by applying Theorem

5.1.4.

Remark 9. As we can write H3 = G
∗(l)
2 , where G2 is a graph consisting of m

number of isolated vertices, the result in Theorem 5.2.17 can also be deduced

by applying the formula of Mousivand [40] (see Proposition 5.1.2).

5.3 Other algebraic and combinatorial prop-

erties

In this section we determine when the graphs H1, H2 and H3 from Section 5.2

are vertex decomposable, shellable, well-covered, Cohen-Macaulay, sequen-
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tially Cohen-Macaulay, Buchsbaum and S2. We also calculate the induced

matching number and projective dimension of these graphs. Moreover it is

shown that if a graph G can be written as G1 ∗ · · · ∗ Gd, then the above

mentioned properties of G can be described in terms of Gi’s.

First, we state some known results in this direction.

Theorem 5.3.1. [15, Theorem 2.3] Let ∆ be a pure simplicial complex on

the vertex set V = {x1, . . . , xn}.

(i) The following implications hold for ∆ :

vertex decomposable =⇒ shellable =⇒ Cohen-Macaulay

=⇒ Buchsbaum.

(ii) If dim ∆ = 0, then ∆ is vertex decomposable (and thus, shellable,

Cohen-Macaulay, and Buchsbaum).

(iii) If dim ∆ = 1, then ∆ is vertex decomposable/shellable/Cohen-Macaulay

if and only if ∆ is connected. If ∆ is not connected, then ∆ is Buchs-

baum but not Cohen-Macaulay.

(iv) If dim ∆ ≥ 2 and ∆ is Cohen-Macaulay, then ∆ is connected.

Recall that for a graph G, the projective dimension of R/I(G) is denoted

by pd(G).

Theorem 5.3.2. [24, Theorem 4.2.6] If G is a graph such that Gc is dis-

connected then

pd(G) = |V (G)| − 1.

In the following proposition we record a number of properties for the cycle

graphs Cm. We remark that the following proposition is entirely a collection

of results by other authors which we indicate in the proof.
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Proposition 5.3.3. Let m ≥ 3 be an integer and Cm denote the cycle of

length m. Then

(i) Cm is well-covered/Buchsbaum if and only if m ≤ 5 or m = 7.

(ii) Cm is vertex decomposable/shellable/Cohen-Macaulay or sequentially

Cohen-Macaulay if and only if m ∈ {3, 5}.

(iii) Cm satisfies Serre’s condition S2 if and only if m ∈ {3, 5, 7}.

Proof. The statements regarding when Cm is well-covered, Buchsbaum or

sequentially Cohen-Macaulay can be deduced from the proof of [1, Proposi-

tion 3.2]. Statements regarding Cohen-Macaulay and S2 properties are the

content of [57, Corollary 7.3.19] and [21, Proposition 1.6], respectively. The

criteria for vertex decomposability and shellability can be deduced from [55,

Theorem 3.4].

Let G1, . . . , Gd are finite simple graphs on disjoint set of vertices for d ≥ 2,

and G = G1 ∗ · · · ∗ Gd. In the following two propositions we describe some

properties of G in terms of Gi’s.

Proposition 5.3.4. Let d ≥ 2 be an integer and G1, . . . , Gd are finite simple

graphs with disjoint vertex sets. If G = G1 ∗ · · · ∗Gd, then

(i) the induced matching number

ν(G) =


maxi{ν(Gi)} if ν(Gi) 6= 0 for some i,

1 otherwise.

(ii) G is well-covered if and only if all Gj’s are well-covered and for each

i 6= j, α(Gi) = α(Gj).
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(iii) G is vertex decomposable/shellable/Cohen-Macaulay (or S2) if and only

if Gj’s are complete graphs for all j and this is equivalent to dim ∆Gj =

0 for all j, where ∆Gj is the independence complex of the graph Gj.

(iv) G is sequentially Cohen-Macaulay if and only if Gt is sequentially

Cohen-Macaulay for some 1 ≤ t ≤ d and Gj’s are complete for all

j 6= t.

(v) G is Buchsbaum if and only if each Gi is Buchsbaum for 1 ≤ i ≤ d.

Proof. We see that ∆G = tdi=1∆Gi , where ∆G is the independence complex

of G.

(i) Note that ν(Gi) = 0 if and only if Gi consists of isolated vertices. Thus,

if ν(Gi) = 0 for all i, then G is a complete multipartite graph. In that

case, we have ν(G) = 1. Therefore, we can assume that ν(Gi) 6= 0

for some i. Since every induced matching of G is an induced subgraph

of G, we see that for each i the maximal (with respect to inclusion)

induced matchings of Gi are also maximal induced matchings of G.

Hence, if ν(G) = 1 then ν(Gi) ≤ 1 for all i and consequently, ν(G) =

maxi{ν(Gi)}. Therefore, assume that ν(G) ≥ 2. In that case, we see

that every maximal induced matching of G is an induced matching of

Gi for some i. The statement now follows.

(ii) Let G be a well-covered graph. Suppose A ⊆ V (Gi) is a maximal inde-

pendent set of Gi. Then observe that A is also a maximal independent

set in G. Thus |A| = α(G). Hence each Gi is well-covered and for each

i 6= j, α(Gi) = α(Gj) = α(G). The converse part follows easily by

observing that if A ⊆ V (G) is a maximal independent set of G, then

A ⊆ V (Gi) for some i.

(iii) First note that, for S2 property the statement directly follows from The-

orem 2.3.8 since lk∆G
(∅) = ∆G. Now we consider the Cohen-Macaulay
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property. If Gi is not complete for some i, then dim ∆Gi ≥ 1 and con-

sequently, dim ∆G ≥ 1. Since Cohen-Macaulay simplicial complexes

of positive dimension are connected, we have that G is not Cohen-

Macaulay. The converse follows from the fact that all 0-dimensional

simplicial complexes are Cohen-Macaulay (see Theorem 5.3.1). The

statement about vertex-decomposability and shellability follows from

the fact that all 0-dimensional simplicial complexes are vertex decom-

posable/shellable and also from the well-known hierarchy of conditions:

vertex decomposable =⇒ shellable =⇒ Cohen-Macaulay.

(iv) Let G be a sequentially Cohen-Macaulay graph. Suppose Gr and Gs

are not complete for some r 6= s. Then ∆[1]
G is 1-dimensional and

disconnected and hence, not Cohen-Macaulay, which is a contradiction.

Therefore, we must have at most one Gj that is not complete. In

that case, ∆[l]
G = ∆[l]

Gj
for all l > 0. Hence, Gj is sequentially Cohen-

Macaulay. Converse part follows from the fact that ∆[l]
G = ∆[l]

Gj
for all

l > 0.

(v) Let G be a Buchsbaum graph. Let x ∈ V (Gi) for some i. Then G \

NG[x] = Gi \ NGi [x] and hence, Gi \ NGi [x] is Cohen-Macaulay for

all x ∈ V (Gi). Thus Gi is Buchsbaum for each i. Conversely, take

x ∈ V (G), then x ∈ V (Gi) for some i. Since G \ NG[x] = Gi \ NGi [x],

we have that G \NG[x] is Cohen-Macaulay. Hence G is Buchsbaum.

We remark that, for d = 2, some of the properties in the above proposition

are proved in [1, Proposition 3.2]. Our proof is inspired by the proof of that

proposition.
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Proposition 5.3.5. Let t ≥ 2 and n1, . . . , nt ≥ 2 be integers. If G denotes

the complete multipartite graph Kn1,...,nt, then

(i) reg(R/I(G)) = 1, pd(R/I(G)) = ∑t
i=1 ni − 1 and ν(G) = 1.

(ii) G is a Buchsbaum graph. Moreover, G is well-covered if and only if

ni = nj for all i and j.

(iii) G does not satisfy any of the following properties: vertex decompos-

ability, shellability, Cohen-Macaulayness, sequentially Cohen-Macaulay

property and Serre’s condition S2.

Proof. For (i), note that the statement about regularity follows from Theo-

rem 5.1.4. Since Gc is disjoint union of complete graphs Kni , pd(R/I(G)) =∑t
i=1 ni − 1 (see Theorem 5.3.2). Also, ν(G) = 1 follows from the definition.

As for (ii) and (iii), note that G = G1 ∗ · · · ∗Gt, where Gi’s are graphs con-

sisting of ni number of isolated vertices. Now the statements quickly follow

from Proposition 5.3.4.

In the next theorem we calculate projective dimension and induced match-

ing number of H1. Further, we describe other combinatorial properties such

as when H1 is Cohen-Macaulay, well-covered, Buchsbaum etc.

Theorem 5.3.6. Let n ≥ 4 be an integer and H1 = Cn(1, . . . , ĵ, . . . , bn2 c).

Then

(i) pd(H1) =


n− 2 if gcd(j, n) = 1,

n− 1 otherwise.

(ii) The induced matching number ν(H1) =


2 when k = 4,

1 otherwise,
where k = n

gcd(j,n) .

(iii) H1 is well-covered as well as a Buchsbaum graph.
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(iv) H1 is vertex decomposable/shellable/Cohen-Macaulay or sequentially

Cohen-Macaulay or S2 if and only if gcd(j, n) = 1.

Proof. Let gcd(j, n) = d and k = n
d
≥ 2. Recall that by Lemma 5.2.1,

H1 = G
∗(d)
1 , where G1 is a graph on k number of vertices with Gc

1 = Ck, the

cycle of length k. First consider the case d = 1. In that case, n = k and

H1 = G1. Let V (G1) = {0, 1, . . . , k − 1}. Then the facets of the simplicial

complex ∆G1 are {0, 1}, {1, 2}, . . . , {k − 1, 0}.

(i) This follows from Theorem 5.2.8.

(ii) When n = 4, we have ν(H1) = ν(Cc
4) = 2. For n ≥ 5, recall that

an induced matching is an induced subgraph of H1. Hence the fact

ν(H1) = ν(Cc
n) = 1 follows from a direct inspection of the structure of

Cc
n.

(iii) G1 is well-covered as all maximal independent sets have cardinality 2.

Also, for x ∈ V (G1), G1 \ NG1 [x] is the complete graph on 2 vertices

and hence, Cohen-Macaulay. Therefore, G1 is Buchsbaum.

(iv) G1 is vertex decomposable, shellable and Cohen-Macaulay as ∆G1 is a

pure 1-dimensional connected simplicial complex (see Theorem 5.3.1).

Since Cohen-Macaulay simplicial complexes of dimension 1 are also

sequentially Cohen-Macaulay, G1 is sequentially Cohen-Macaulay. The

S2 property follows from Theorem 2.3.8.

We now consider the case d ≥ 2. Then by Theorem 5.3.2, pd(H1) = n−1

(it can also be checked by Theorem 5.2.8). If k = 2 or 3, H1 is a multipartite

graph and hence ν(H1) = 1. For k ≥ 4, the statement in (ii) is deduced

by applying Proposition 5.3.4. Also by Proposition 5.3.4, H1 is well-covered

(resp. Buchsbaum) if and only if G1 is well-covered (resp. Buchsbaum).

Recall that Gc
1 is a cycle of length k. If k ≥ 4 then the statement in (iii)
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follows from the d = 1 case. For k = 2 and 3, G1 consists of isolated vertices

and hence G1 is well-covered as well as Buchsbaum.

For H1 to be vertex decomposable/shellable/Cohen-Macaulay or sequen-

tially Cohen-Macaulay or S2, G1 needs to be a complete graph (by Proposi-

tion 5.3.4). But G1 can never be complete and this completes the proof of

the proposition.

Remark 10. For S2 and the Cohen-Macaulay properties the statements in

Proposition 5.3.6 are proved in [41, Theorem 4.1]. Also, except the projec-

tive dimension, induced matching number, the S2 and sequentially Cohen-

Macaulay properties, the statements for all other properties have been proved

in [15, Theorem 4.2]. Here we give an alternative proof using Proposition

5.3.4 and Lemma 5.2.1.

In the next theorem we determine projective dimension and the induced

matching number of H2 as well as when the graph H2 is well-covered, Buchs-

baum, vertex-decomposable, shellable, Cohen-Macaulay, sequentially Cohen-

Macaulay or S2.

Theorem 5.3.7. Let l ≥ 1 and m ≥ 3 be integers. Suppose H2 =

Clm(1, . . . , 2̂l, . . . , 3̂l, . . . , b lm2 c). Then

(i) pd(H2) = b2m+1
3 c when l = 1, and pd(H2) = lm− 1 when l ≥ 2. Also,

the induced matching number ν(H2) = bm3 c.

(ii) H2 is well-covered/Buchsbaum if and only if m ∈ {3, 4, 5, 7}.

(iii) H2 is vertex decomposable/shellable/Cohen-Macaulay or sequentially

Cohen-Macaulay if and only if either l = 1 and m ∈ {3, 5} or l ≥ 2 and

m = 3.

(iv) H2 satisfies Serre’s condition S2 if and only if either l = 1 and m ∈

{3, 5, 7} or l ≥ 2 and m = 3.
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Proof. By Lemma 5.2.9, the circulant graphH2 = C∗(l)m . Statement regarding

the projective dimension follows from Theorem 5.3.2 and Lemma 5.2.11. For

the induced matching number, note that if l = 1, then ν(H2) = ν(Cm) = bm3 c.

When l ≥ 2, by Proposition 5.3.4, ν(H2) = ν(Cm) = bm3 c. For the remaining

statements we may subdivide the proof into two cases: l = 1 and l ≥ 2. The

case of l = 1 can be deduced from Proposition 5.3.3 and the l ≥ 2 case is

obtained by applying Proposition 5.3.4.

The following theorem is a direct application of Proposition 5.3.5.

Theorem 5.3.8. For the graph H3 = Cn(1, . . . , l̂, . . . , 2̂l, . . . , 3̂l, . . . , bn2 c),

(i) reg(R/I(H3)) = 1, pd(R/I(H3)) = n− 1 and ν(H3) = 1.

(ii) H3 is well-covered and Buchsbaum.

(iii) H3 does not satisfy any of the following properties: vertex decompos-

ability, shellability, Cohen-Macaulayness, sequentially Cohen-Macaulay

property or Serre’s condition S2.
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