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Abstract

This thesis deals with foundational concepts of quantum theory including contextu-
ality and Bell non-locality, and their applications in quantum key distribution (QKD)
protocols.

We provide a generalization of the standard notion of quantum contextuality and
show that it encompasses a broader range of scenarios which can be deemed (non-
)contextual. This generalization is then used to depict a violation of a new non-
contextual inequality developed by us. The violation so exhibited can be achieved by
a single measurement device, which implements a positive operator valued measure
(POVM). This number is significantly smaller than in the current contextual scenarios
and is optimal as no further reductions are possible. The new non-contextual (NC)
inequalities so developed can be easily generalised further for n-cycle scenarios and
any number of sequential measurements.

We then develop a QKD protocol which is based on the principle of contextual-
ity monogamy and show that it is unconditionally secure for individual attacks by an
eavesdropper. We use the Klyachko-Can-Binicioglu-Shumovsky (KCBS) scenario to
share a secure key among two parties via a prepare and measure QKD scheme. Our
protocol does not require the use of entanglement, which is a costly resource to pro-
duce, while also allowing a security check via a NC inequality like in the case of Bell
inequalities. This is achieved by the principle of contextuality monogamy which for-
bids an eavesdropper to attain information about the secure key without disturbing the
correlations among the parties.

We then apply the same strategy to entropic NC inequalities to show that they can
also be used to perform secure QKD. We show when an entropic NC scenario can
have a monogamous relationship and how it can be derived using a graph theoretic
approach. We apply the principle of monogamy along similar lines as before to show
that a device independent security proof of the the protocol is possible. This is unlike
the previous approach.

We then analyse the role of Bell-CHSH inequality in entanglement based QKD.
More specifically, we show that violation of Bell-CHSH is not a sufficient criteria for
security, while it is a necessary one. We construct a geometrical representation of
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0. Abstract

correlations for two qubits from which it is quite easy to infer the usefulness of various
states for QKD. We also analyse the role of local filtering in QKD. States which do
not violate the Bell-CHSH inequality can be made useful for QKD after local filtering.
However, not all states can be made useful including useless Bell diagonal states.

We finally analyse quantum contextuality in pre- and post-selection scenarios which
have gained a lot of traction in recent years. Statistics of various outcomes in these sce-
narios is determined by the Aharanov-Bergmann-Lebowitz (ABL) rule. We show that
this rule is non-contextual in non-paradoxical situations, thereby indicating that it does
not entirely capture the essence of quantum theory. We further show that by removing
post-selection, it is possible to achieve the maximum violation of KCBS inequality
as dictated by quantum theory. This indicates that post-selection is a root cause for
paradoxical situations.

The thesis is divided into 7 chapters and is organized as follows. Chapter 2 general-
izes the traditional assumption of measurement non-contextuality to encompass more
exotic scenarios than what was possible earlier. We detail an operational signature of
the same from a single measurement device. Chapter 3 deals with a prepare and mea-
sure QKD scheme based on the KCBS inequality and the security of the protocol is
proven by the use of contextuality monogamy. In Chapter 4 we analyse application
of entropic inequalities in QKD protocols. We provide a graph theoretic formalism
to derive their monogamous relationships and then use them to show security of these
protocols. In Chapter 5 we examine the role of the Bell-CHSH violation in entangle-
ment based QKD protocols and provide a geometrical representation of all two qubit
states with regards to their usefulness in QKD. We also show that only in certain cases
local filtering operations can be advantageous in transforming useless states to useful
in QKD. In Chapter 6 we investigate the role of contextuality in pre- and post-selection
scenarios and show that the famous ABL rule is unable to predict contextual correla-
tions, thereby indicating that it cannot simulate the statistics of quantum theory. In
Chapter 7 we offer some concluding remarks and possible future directions of our
results.
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Chapter 1
Introduction

Quantum theory has been a prime example of being the most experimentally verified
theory, while also lacking a clear cut interpretation. Fundamental concepts like the
Heisenberg uncertainity principle, Bell non-locality and contextuality are still bewil-
dering to many researchers, whereas the concept of measurement itself is still not well
defined. Several attempts have been made to describe these phenomena leading to nu-
merous applications of the same in various information processing tasks. It has been
found that these phenomena, although perplexing allow for certain tasks which are
either impossible or cannot be implemented with as much efficiency by using classi-
cal theory. Furthermore, these applications have also provided much needed hindsight
into the corresponding fundamental concepts. It is along these lines that we focus our
work.

This thesis deals with novel operational signatures of quantum contextuality and
Bell non-locality in newly developed scenarios while also analysing applications of
these standard concepts in various quantum key distribution protocols. We provide
an innovative approach to generalize the traditional assumption of measurement non-
contextuality to include more situations which can be deemed non-contextual. An
interesting example of the same is developed in the form of a single measurement
device capable of revealing quantum contextuality, which is hitherto an unexplored
concept. In subsequent chapters we apply the traditional notion of measurement non-
contextuality, entropic non-contextuality and Bell non-locality to analyse security of
various quantum key distribution protocols. It is found that contextuality monogamy
plays an important role in proving security of the protocols and not all Bell non-local
states are useful for key distribution. Finally we analyse pre and post selection scenar-
ios from the persepective of quantum contextuality and find that the famous ABL rule
cannot predict the statistics of a contextual scenario.

In this chapter we introduce the various concepts mentioned above by providing a



1. Introduction

technical background to the same. We provide a brief introduction to quantum contex-
tuality, Bell non-locality and quantum key distribution in the subsequent sections.

1.1 Quantum contextuality and Bell’s inequalities

In this section we review quantum contextuality and Bell’s theorems which are the
basic concepts used in the thesis. Specifically, we are interested in different formula-
tions and interpretations of quantum contextuality which include the Kochen-Specker
(KS) theorem [} 2} 3], state independent [4), 5] and state dependent proofs [6] of con-
textuality and finally Spekkens reformulation of the same [7]. We also take a look at
entropic versions of quantum contextuality [8, 9] and finally conclude with a review of
the Bell-CHSH inequality [10].

1.1.1 Kochen-Specker theorem

Developed in 1967, the Kochen Specker (KS) theorem [1, 3] states that in a Hilbert
space of dimension greater than or equal to 3 it is not always possible to associate
definite results to outcomes of projective measurements. Specifically, it is not possible
to associate the numerical values 0 or 1 to a certain set of commuting projectors {II,}
which satisfies ) . II; = 1. The outcomes associated with the projectors, v(1I;) = 0
or 1 must also satisfy the condition ) . v(II;) = 1.

The above statements are an integral part of the KS theorem and can be derived by
assuming functional consistency of results of measurements which is stated as follows.
Consider two operators A and B which commute and therefore can be co-measured.
Let the system be prepared in some state [¢)), such that

Alp) = al)  and
Bly) = bly),

where a and b are the eigenvalues of A and B respectively. Since A and B commute it
is also possible to measure any function f(A, B) of the two, such that

(1.1)

f(A, B)[¢) = f(a,b)[¢)). (1.2)

In fact, the above property holds even when A and B do not commute but merely
share a simultaneous eigenket |¢)). Therefore, functional consistency requires that if a
set of projectors follow . II; = 1, the outcomes themselves must also sum to unity.

The proof of the original KS theorem [1] requires use of 117 different projectors
in a three dimensional Hilbert space. The essence of the proof requires the projectors
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to appear in more than one contexts, where the context of an observable is defined as
the set of observables being co-measured with it. For each of these defined contexts,
the projectors satisfy the function ), II; = 1. Consequently, a numerical value of 1
can be associated to any arbitrary projector in the context, while the rest are assigned
the value 0 satisfying functional consistency. The next step in the proof follows when
it is assumed that numerical values assigned to the projectors do not depend on the
context in which they appear. This is the non-contextuality hypothesis. Following this
assumption, one arrives at a contradiction of assignment of numerical values to all
projectors according to functional consistency.

A simple and elegant example of the KS theorem can be constructed in a Hilbert
space of dimension 4 [3]. Let us consider the example of Peres-Mermin square in
which operators are arranged in a square array,

I1®o, 0,1 0,0,
o, 1 1R0, o0,R0, (1.3)
0: R0, 0,80, 0y,

where each of the operators has eigenvalues 4-1. It can be seen that the operators in
each row and column commute and each is a product of the other two (except in the
third column which is missing a negative sign).

It is a simple exercise to see that it is not possible to assign each operator a definite
outcome of +1 which also follows functional consistency, which in this case is the
product of two operators. A contradiction of definite outcome assignment arises for
the last operator of the third column. This can be seen for the following assignment of
outcomes

+1 +1 +1
+1 +1 +1 (1.4)
+1 41 +1?

In fact it is seen that any possible assignment of the values 41 following functional
consistency runs into a contradiction for at least one observable. This indicates that the
assumption of non-contextuality does not hold for quantum observables in general.

It is interesting to note that certain models constructed using the quantum formal-
ism have also been analysed for being contextual. Specifically, the pre- and post-
selection models in which a quantum state is pre-selected before performing a coun-
terfactual or non-counterfactual measurement of an observable A followed by a post-
selection of another quantum state is seen to have context dependency in the form of
pre- and post-selection [[11]]. The probability distribution for the observable A is calcu-
lated using a rule eponymously named as the ABL rule and is given in detail in chapter
6.
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Figure 1.1: The KCBS orthogonality graph as well as the exclusivity graph. Each vertex
corresponds to a projector and the edge linking two projectors indicates their orthogonality

relationship. The orthogonality relationship for projectors also implies exclusivity.

1.1.2 State dependent proofs of quantum contextuality: KCBS in-
equality

The KS theorem deals with scenarios in which it is impossible to assign definite out-
comes to observables. As such it is based on counterfactual arguments in which the
observables are not necessarily measured and the outcomes are assigned counterfactu-
ally. It can be argued that the KS theorem is a logical proof of contextuality of quantum
theory and is not possible to implement in the lab.

For an experimental proof of contextuality of quantum theory, it is required to
develop a scenario for which non-contextual statistical predictions are not satisfied
by quantum theory. Such a scenario was first constructed by Klyachko, Can, Bini-
cioglu and Shumovsky and is eponymously known as the KCBS scenario [6]. This
scenario deals with observables which can be assigned definite outcomes following
proper functional consistency and without encountering any contradiction. However,
statistical predictions following such a value assignment are not satisfied by consider-
ing outcomes from a particular quantum state for the same set of observables. There-
fore, quantum theory is deemed to be contextual. Since KCBS inequality is utilized
extensively in the present thesis, we detail the scenario in detail below. The KCBS
inequality is a test for quantum contextuality in systems with Hilbert space dimension
three or more. We review two equivalent formulations of the inequality.

Consider a set of five projectors in a 3-dimensional Hilbert space. The scenario
is depicted via an orthogonality graph as given in Figure [[.I} The vertices represent
projectors, and two orthogonal projectors are connected by an edge. A pairwise set
of projectors, which are mutually orthogonal also commute pairwise. Therefore they
can be measured jointly. Such a set of co-measurable observables is called a context.
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Therefore, as can be seen in the KCBS scenario, every edge between two projectors
represents a measurement context and each projector appears in two different contexts.
However, a non-contextual model does not differentiate between different contexts of
a measurement and deterministically assigns values to the vertices in a context inde-
pendent fashion.

A deterministic non-contextual model assigns a value 0 or 1 to the i*" vertex. The
probability that the vertex is assigned a value 1 (0) is denoted by P; (1 — F;). Each P,
can take values either O or 1. Further, at most one of the vertices connected by an edge
can be assigned the value 1 as constrained by the orthogonality relationship which
follows from our requirement of functional consistency. For such a non-contextual
assignment of outcomes the maximum number of vertices that can be assigned the
probability P; = 1 is 2 irrespective of the underlying state. Therefore,

1< 9
K=-N"P<Z 15
SR 15

This is the KCBS inequality [6], which is a state-dependent test of contextuality
and is satisfied by all non-contextual deterministic models. In a quantum mechanical
description, given a quantum state |¢)) and the projectors II;, the probabilities P; can
be readily calculated. It turns out that the KCBS inequality (I.5) can take values up
to \/—55 > %, with the maximum value attained for a particular pure state. Therefore,
quantum theory does not allow non-contextual value assignments and is therefore con-
textual. A particular choice of projectors as in Eq. acting on a system in pure
state |¢0) = (0,0,1)7 does not satisfy the KCBS inequality and attains the maximum
quantum bound.

In a more general scenario, where the only functional constraint is the exclusivity
principle [12} [13] - that the sum of probabilities for two mutually exclusive events
cannot be greater than unity - it is possible to reach the algebraic maximum of the

inequality namely,
Max (L3 R) - L (1.6)
ax | — [ = — .
P} \ 9= 2

and its attainment goes beyond quantum theory. Unlike inequality (I.3)), for a general-
ized scenario, P;s are allowed to take continuous values in the interval [0, 1].

The correlation can be further analyzed if the observables take values X; € {—1,+1}
and are related to the aforementioned projectors as

Reformulating Eq. (L.5)) in terms of anti-correlations between two observables, we
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get [14],
1 3
K=< ;ZO:P(Xi # Xin) < 7, (1.8)

where i + 1 is taken modulo 5 and P(X; # X;,1) denotes the probability that a joint
measurement of X; and X;,; yields anti-correlated outcomes. As before, Eq. (I.8)
is obeyed by all deterministic non-contextual models. However, quantum theory can
exhibit a violation up to a maximum value,

45 -5

3
—. 1.9
- (1.9)

4
1
g ZPQM<X1‘ #* Xi+1) =
i=0
It should be noted that the maximum algebraic value of the expression on the left
hand side of the KCBS inequality as formulated in Eq. (I.§) is 1.

1.1.3 State independent proofs of quantum contextuality

Formulation of state dependent proofs of quantum contextuality allowed experimental
verifications of the same [[15} (16} [17]. Such state dependent scenarios are reminiscent
of Bell inequalities which show violation for a particular choice of observables and
quantum state. However, quantum contextuality allows for something far different.
Following the construction of state dependent proofs of quantum contextuality in
which observables can be assigned definite value assignments, it is possible to con-
struct state independent proofs which do not satisfy the statistical predictions of a non-
contextual theory for all possible quantum states. The scenario for the same is con-
structed in a similar fashion as state dependent proofs, in which a set of observables
is considered and each observable is a part of more than one context of commuting
observables. A definite outcome is assigned to each observable non-contextually ac-
cording to functional consistency without any contradiction. However, statistical pre-
dictions by quantum theory exhibit higher correlations than the non-contextual ones for
all possible quantum states [4} |18}, [19]. A particularly important proof of the same is
by Yu and Oh [5] in a Hilbert space of dimension at least 3 with 13 different projectors.

1.1.4 Graph theoretic approach to quantum contextuality

An extremely useful way of visualizing non-contextual, quantum and generalized cor-
relations was developed by A. Cabello, S. Severini and A. Winters [20]. For this ap-
proach they consider only those theories that assign probabilities to events. These
events could comprise of projectors, measurements, classical value assignments or any
other experiment. To any experiment, a graph GG can be associated in which events
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Figure 1.2: Exclusivity graph for the Bell-CHSH inequality. Each vertex represents an
event i, j|x,y which in this case corresponds to outcomes i, j of measurements x, y re-

spectively. Two vertices are connected by an edge if they are exclusive to each other.

are represented by vertices and two exclusive vertices are connected by an edge. All
vertices connected by an edge are called as adjacent vertices. Such a graph is termed
as an exclusivity graph. Any possible experiment can be represented by an exclusiv-
ity graph. The graph corresponding to KCBS scenario is similar to the one given in
Fig. [I.T] while the graph corresponding to the CHSH inequality is given in[[.2] Us-
ing graphs to visualize outcomes of experiments and their correlations makes it easier
to analyse whether a particular experiment is capable of revealing contextual or Bell
non-local correlations. The result is as follows:

Theorem: Given a correlation experiment with a computable non-contextual or
Bell inequality S, the maximum value it takes is given as

LHV,NCHV Q Bl
< a(G,w) <I(G,w) < o (G,w), (1.10)

where LHV, NCHV, () and E1 denote local hidden variable, non-contextual
hidden variable, quantum and exclusivity bounds respectively. The graph theoretic
constants a(G, w), 9(G,w) and o* (G, w) are termed as independence number, Lovasz
theta number and fractional packing number respectively and can be calculated for a
given graph GG with weights w assigned to each vertex [12]. The independence number
is defined as the maximum number of pairwise vertices which are not connected by an
edge, while the fractional packing number is defined as

o (G,w) = maXZvav st.p, >0Vv eV, va < 1V CliquesC' C 'V, (1.11)

veV veC

where V is the set of all vertices and C' is the set of all cliques of the graph. A clique
is defined as a set of vertices which are all connected to each other by an edge.
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The Lovasz theta number can be calculated as,

9(G,w) =max > w,|(¥]¢) |, (1.12)

veV

where |1)) is called the handle and |¢;) are the projectors assigned to the vertices of the
complement of the graph G, denoted by G. The complementary graph G is defined as
the graph in which all vertices 4, j not adjacent in G are adjacent in G.

The constants a(G, w) and o (G, w) are NP hard to solve, while J(G, w) can be
computed in polynomial time. However, if the complete list of cliques of G are known,
then calculating the fractional packing number is as such efficiently computable.

From Eq. it is easy to see that any experiment with the property o(G,w) =
Y(G, w) is uninteresting as it will not show any quantum advantage over classical cor-
relations. Therefore, it is desirable to identify experiments whose graph theoretic con-
stants follow the relation a(G, w) < ¥(G, w).

Well known scenarios including the KCBS and Bell-CHSH inequalities can be for-
mulated by constructing their exclusivity graph and calculating the various constants
which yield the correct bounds for LHV, NCHV, () and E1.

Using graph theory it is also possible to analyse other interesting properties of vari-
ous experiments. This includes analysing and designing monogamy relations between
different inequalities. This has been achieved in [21) 22] and the general idea is as
follows. Consider a commutativity graph in which each vertex is connected to every
other vertex with an edge, as in a clique. As shown in [21], cliques in which each
vertex corresponds to an observable admit a joint probability distribution over them.
Therefore, cliques are incapable of revealing any non-classicality. Another interesting
class of graphs is one which there are no cycles of length greater than 3. Such graphs
are known as chordal graphs. It can be shown that chordal graphs also admit a joint
probability distribution, thereby making them unable to reveal any quantum advantage.

A monogamy relationship between n contextual or Bell like inequalities exists if
and only if its vertex clique cover number is na, where the vertex clique cover num-
ber is defined as the minimum number of cliques required to cover all the vertices of
the graph. The monogamy relationship can be derived by identifying m chordal sub-
graphs of the joint commutation graph of all the observables such that the sum of their
non-contextual or Bell non-local bounds is na. A more detailed analysis is given in

Sec.3. 1.1

1.1.5 Bell-CHSH inequality

Much like quantum contextuality, which deals with non-classical features for single
indivisible systems, Bell’s inequalities deal with non-classical features of systems with
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tensor product Hilbert spaces. Moreover, it answers a much more fundamental ques-
tion of whether the statistics observed in a quantum experiment can be simulated by a
classical and local ontological models [23} 24} 25, 26, 277, 28]. Unlike the Bell-KS the-
orem there is no constraint of having only projective valued measures (PVMs) [29,30].

According to Einstein et. al. [23]], the completeness of quantum mechanical de-
scription of reality should be put under scrutiny. They provided a scenario where two
spatially separated observers are able to assign outcomes to two non-commuting ob-
servables in a counterfactual manner, thereby indicating a paradoxical nature of quan-
tum theory and opening several new avenues of questioning and interpretation of the
theory. Their scenario was based on the assumption of an underlying reality that is
able to explain the probablistic nature of quantum theory, while a notion of locality
was implicitly assumed in the calculations.

In 1964, John Bell’s eponymous inequality concluded that one of the aforemen-
tioned assumptions has to be wrong and therefore has to be dropped. Traditionally,
the assumption of reality is dropped giving rise to the standard interpretations of quan-
tum theory. However, the assumption of locality can also be dropped as is evident in
Bohmian mechanics or pilot wave theories [31].

The results of John Bell in the form of a theorem show that nature is inherently
probablistic and no local realistic model is able to simulate it. More technicaly, Bell’s
theorem [24] states that no ontological model which assigns outcomes to measure-
ments in a local manner can reproduce the statistics of quantum theory. A local ontic
model assigns measurement outcomes the probability distribution

p(x.y|A, B) = / HNplalA. oy, AN (1.13)
(S

where x, y are the outcomes to observables A and B respectively and A, () are the
ontic variables and ontic state respectively as introduced in Sec. It is assumed
that observables are measured on spatially separated systems and therefore cannot
influence the outcomes of each other, according to the assumption of locality. The
Eq. (I.13) implies that the joint probability distribution p(z, y| A, B) can be factorized
into local distributions over the observables A and B given the probability distribution
over the ontic variables \.

The most popular and well studied Bell’s inequality is the Bell-CHSH inequal-
ity [10] which is defined for the scenario with two parties A and B each having access
to two measurement basis. Each of the measurements are assumed to have two out-
comes. The scenario is detailed as follows.

The Bell-CHSH inequality quantifies the correlations arising from measurements
on two-qubit states. All correlations which violate the inequality are termed as non-
local as they defy explanation by any local realistic hidden variable model (LRHVM).
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The Bell-CHSH inequality involves two spatially separated parties Alice and Bob
sharing an entangled state p. Each party performs two measurements, having two out-
comes +1 on their respective subsystem. Let Aj, A; be the measurements performed
on Alice’s particle and By, B; be the measurements performed on Bob’s particle. We
can define a joint operator B = Ay ® By + Ao ® B; + A1 ® By — Ay ® By which is
called the Bell operator. The Bell-CHSH inequality states that the expectation value .S
of the Bell operator B for the classical situations describable by LRHVM is bounded
between 2 and —2, i.e.,

S=|B| <2 (1.14)

However, some quantum states violate this bound implying that there is no LRHVM
for the corresponding physical situations.
An arbitrary two-qubit state p can be written in the Hilbert-Schmidt form as [32]]

3
1
p:Z[]l@]l—kr-a’@]l—l—]l@s-a—l—Zﬂjaﬂgaj], (1.15)
ij=1
where r and s are three-dimensional real vectors characterizing the reduced density
matrices of the first and the second qubit respectively and 7" is a 3 X 3 real matrix
representing the correlations between the two qubits. The state p can also be parame-

terized linearly with real parameters as
13
P=1 > Mjoi® 0y, (1.16)
i,j=0

where oy is the 2 x 2 identity matrix and M;; is the Mueller matrix [33]], with My, =
Tr(p), Mo; = sj, My = r; and M;; = T;; Vi, j € {1,2,3}. This representation turns
out to be quite useful as will become evident.

The measurement operators { Ay, A;} and { By, B, } are defined as

where a; and b; are normalized three-dimensional real vectors Vi € {0, 1}. In this new
notation, we can calculate the expectation value of the Bell operator as

S = alThy+ aTh, + a' Tby — a'Th,. (1.18)

Simple algebra shows that for a given two-qubit state p the maximum value of S that
can be achieved for optimal measurements is [34]]

max{S} = 24/A + A3, (1.19)

10
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where \; and \, are the two largest singular values of the correlation matrix 7" each of
which is bounded from above by 1. Therefore, the maximum Bell violation is achieved
when S = 2v/2 [34].

An interesting point to note is that the violation of the Bell-CHSH inequality does
not depend on the Bloch vectors r and s, but only on the correlation matrix 7". There-
fore, different states with the same correlation matrix result in the same value of S
which itself is determined by the two parameters \; and A\, only.

Therefore, if we fix the optimized Bell violation parameter S we obtain a relation
between \; and \, giving us a way to describe the family of states with this particular
value of Bell violation by only one effective parameter.

1.2 Quantum key distribution

One of the major applications of foundational aspects of quantum theory have been in
quantum key distribution (QKD) protocols. Fundamental issues like Bell-nonlocality,
contextuality, Heisenberg uncertainty, no cloning theorem, to name a few are found to
be extensively useful in quantum key distribution schemes.

A typical cryptographic scheme entails encoding and decoding of secret messages
between at least two parties. This encoding and decoding of messages is done via a
"key" shared between the parties prior to the relay of messages. However, the dis-
tribution of the key is in itself a cryptographic task and is typically known as a key
distribution scheme. The communication between parties is deemed secure so long as
the key is not known to any adversary. Having knowledge of the key, the adversary
can encode or decode the messages being transmitted, thereby compromising the se-
curity. Thus, the problem of secure communication can be tackled to a large extent if
the parties are able to share a secure key.

Classical key distribution schemes utilize computationally hard to solve mathemat-
ical problems like prime factorization. Many of these problems are known to be NP
hard, meaning the time required to solve them grows exponentially with the size of the
problem. However, a particular solution can be easily verified to be correct or not. The
application of these difficult problems for security of key distribution protocols is only
valid if an eavesdropper is assumed to have limited computational power.

However, with the advent of quantum computation, some of these hard to solve
problems can now be easily addressed on quantum information processors. Therefore,
an eavesdropper with access to the same could, in principle, break the prevalent key
distribution schemes quite easily.

On the other hand QKD protocols are based on fundamental physical principles
which cannot be violated, rather than on difficulty of some computational problem.

11
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This removes the possibility of achieving a possible solution to the problem by using
better algorithms, technology or higher computational power. These physical prin-
ciples place a constraint on the information about the key that can be gained by an
eavesdropper and the noise that is introduced in the system as a consequence of it. By
measuring the signal to noise ratio, it is thus possible to check for the existence of an
eavesdropper.

QKD protocols fall into three major categories:

e Prepare and measure schemes: In these schemes one of the parties encodes the
key by preparing one of several pre-defined quantum states. The state is then
transmitted to the other party. The recipient party performs one of several pre-
defined measurements on the state and the outcomes of these measurements are
used to decode the key.

e Entanglement based schemes: These schemes are similar to prepare and measure
in that one of the two parties prepares a two qubit entangled state, one of which is
retained and the other is transmitted to the other party. It can also be the case that
a third party prepares the quantum state and distributes it among the interested
parties. Both the interested parties then perform one of the several pre-defined
measurements on their respective subsystems. Using the outcomes they share a
key.

e Device independent schemes: These schemes are similar to the entanglement
based schemes with the difference that no assumptions are made regarding either
the preparation or measurement devices with the parties. These protocols are
more resilient to several eavesdropping attacks, but offer lower secure keyrates.
If no assumption is made only on the measurement devices while the preparation
devices are fully characterized, the protocol is termed as measurement device
independent. Protocols in which measurement devices are fully characterized
while no assumptions are made on the preparation devices are known as semi-
device independent. The third category is fully device independent protocols in
which no assumption is made on either preparation or measurement devices.

A brief summary of all these protocols which have been studied during this thesis are
given in the subsequent sections.

1.2.1 Prepare and measure schemes

The most simple prepare and measure scheme is the famous BB84 protocol, which is
also the most widely commercially used QKD scheme. It consists of two interested
parties, Alice and Bob, with the former party preparing states in either the Z basis,

12
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{10} ,]1)} or the X basis, {|+) ,|—)} with equal probability. Alice assigns a value 0 to
the states |0) and |+) and the value 1 to the states |1) and |—). She transmits the states
via a quantum channel to Bob. The non-orthogonality of the states ensures that a third
untrusted party, Eve, cannot infer the value assigned by Alice to the transmitted state
without disturbing it. This is ensured by the Heisenberg uncertainty principle. After
receiving the states from Alice, Bob performs a measurement in either X or Z basis
with equal probability. His choice of basis used is publicly declared.

In a noise free scenario without the presence of an eavesdropper, Bob would per-
form a measurement in the same basis as Alice’s preparation half of the times. When-
ever that happens he would observe the same state that Alice transmitted. Therefore,
with probability half, Alice and Bob’s assignments would be perfectly correlated.

The presence of an eavesdropper Eve can be determined by evaluating the quantum
bit error rate (QBER) of the protocol. QBER is defined as the average number of
times Alice and Bob performed the protocol correctly, but still observed anti-correlated
outcomes instead of correlated. QBER is dependent on the strategy employed by Eve
and security of the protocol is determined by the best strategy that can be employed by
her.

One of the strategies that can be employed by Eve is to attach an ancillary system to
Alice’s qubit. Let the ancilla be in the state |¢). In order to gain some information about
Alice’s system, Eve unitarily evolves the ancilla coupled with Alice’s state, thereby
entangling them. The total operation is represented as

Ul |€) = v/Pa la) [€aa) + v/ Qa |0™) €aat) | (1.20)

where o) € {|0),[1),]+),|—)} and (a |a*) = 0, p, denotes the probability for Bob
to observe the correct outcome when measuring in the correct basis, while (), denotes
the probability of getting an erroneous outcome when measuring in the correct basis.
The states |¢;;) denote the possible ancillary states of Eve’s system. For our purposes,
we assume that (), = ) Va. This is the case when Eve introduces the same error in
the Z and X measurements by Bob and is known as a symmetric attack.

The amount of secure key that can be distilled from the protocol is known as the
secret key rate and for the BB84 protocol it is given as

R=1-2H,(Q), (1.21)

where Hy(z) = —xlogyx — (1 — x)logy(1 — x) is the binary entropy. It is a routine
calculation to see that a non-negative keyrate can be obtained for () > 11% and has
been shown to be the maximum error rate tolerable by BB&84.

13
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1.2.2 [Entanglement based schemes

Entanglement based QKD protocols are somewhat similar to prepare and measure
schemes. One of the most prominent and easy to understand protocol is the E91 pro-
tocol developed by Ekert in 1991. It can be understood as follows.

Two parties Alice and Bob share a maximally entangled two qubit state, for ex-
ample the Bell singlet state 1)) = \/Li (J01) —|10)). The state could be prepared by
one of the parties with one of the subsystems transmitted to the other. Unlike in pre-
pare and measure schemes, Alice and Bob have a choice of randomly performing a

measurement in three basis. Alice has the choice: X, Z and \/Li (X + Z) basis, while

Bob has the choice: X, \/Li (X 4 Z) and \/LQ (X — Z) basis. As in BB84, Bob publicly
reveals his choice of basis used. For the case when both the parties measured in the
same basis, they keep the outcomes as part of the key. In order to check for the pres-
ence of an eavesdropper the parties publicly evaluate the Bell-CHSH inequality given
by the Bell operator B in Sec. with measurement settings {X, Z} with Alice and
{\/% (X+72), \/% (X — Z)} with Bob. If the Bell-CHSH inequality is observed to be
maximally violated, i.e. |S| = 2v/2 (I.19), then the parties can be assured that an
eavesdropper could not have gleamed any information about the key. In contrast, if
the Bell-CHSH inequality is satisfied, an eavesdropper could have been present in the
channel.

1.2.3 Measurement device independent schemes

The above mentioned QKD protocols provide excellent key rates with some caveats.
In order for the protocols to be secure, it is necessary that the state preparation and
measurement devices be fully characterized. For example BB84 protocol is deemed
insecure if the states prepared are not single qubits. Furthermore, if the measurement
devices are coupled to an ancillary system with the eavesdropper, the security of the
protocol may also be compromised. To address some of these various security issues a
new and radically different scheme was proposed.

Measurement device independent (MDI) QKD protocols were proposed to bypass
the requirement of fully characterizing the measuring devices with Alice and Bob,
while the preparation devices still have to be characterized. This limits the possibility
of Eve being correlated to the measurement devices to gain information about the secret
key.

A general MDI QKD protocol for continuous variable systems proceeds as follows.
Two parties Alice and Bob each prepare a two mode squeezed vacuum (TMSV) state
with quadrature variances V4 and V. For simplicity we assume that V4 = V.

The pairs of modes are labelled as A;, A, and B, Bs respectively for Alice and

14
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Bob. Alice and Bob both transmit one of their modes, A, and Bs, to a third untrusted
party Charlie via quantum channels with lengths L4c and Lpc respectively, while
retaining the modes A; and B; with themselves. The total transmission length is L =
Lac + Lpe. Charlie interferes the two modes with the help of a beam splitter (BS)
which has two output modes C' and D. He then performs a homodyne measurement of
x quadrature on mode C' with outcome X and p quadrature on mode D with outcome
Pp, and publicly announces the obtained outcomes { X¢, Pp}.

With the publicly available knowledge of { X, Pp}, Bob transforms his retained
mode B; to Bj by a displacement operation D(«), where o« = g(X¢ + iPp) and g is
the gain factor. Consequently, the modes A; and B’ become entangled. Later, Alice
and Bob both perform a heterodyne measurement on the modes A; and Bj to obtain
the outcomes {X 4, P4} and {Xp, Pg} respectively, which end up being correlated.
Finally both the parties perform information reconciliation and privacy amplification
to obtain the secret key.

1.3 Organization of the thesis

The thesis deals with analysis of operational signatures of quantum contextuality and
Bell non-locality and their applications in QKD protocols. It is divided into 7 chapters.
A brief introduction to the work presented in them follows as:

Chapter 1

This chapter provides a technical background to the various concepts used in the thesis.
This includes introduction to the various formalisms of quantum contextuality, Bell
non-locality and quantum key distribution.

Chapter 2

This chapter deals with our result on generalization of the assumption of measurement
non-contextuality. We then apply this generalization to show that a single measure-
ment device implementing a positive operator valued measure can exhibit quantum
contextuality. This also brings down the number of measurements required.

Chapter 3

In this chapter we provide a quantum key distribution protocol based on the monogamy
of KCBS correlations. We quantitatively show that violation of KCBS inequality can

15



1. Introduction

lead to sharing of secure quantum correlations. This is the first known information
theoretic application of KCBS inequality and its monogamy relationship.

Chapter 4

In this chapter we develop a quantum key distribution protocol whose security is
proven via an evaluation of a entropic non-contextuality inequality. This is done in
a similar vein as our earlier result in chapter 3. We show when an entropic monoga-
mous relationship exists and derive it using graph theoretic formalism. We then show
that monogamy can be used to prove security of the protocol.

Chapter 5

In this chapter we analyse the role of Bell-CHSH violation in entanglement based
quantum key distribution protocols. We find that while it is a necessary condition, it
is not a sufficient one for security. We also develop a geometrical representation of all
two qubit states with respect to their usefulness for key distribution. Finally, we also
analyse the importance of local filtering operations in key distribution scenarios and
find that they are useful in certain cases only.

Chapter 6

In this chapter we analyse pre- and post-selection scenarios from the perspective of
quantum contextuality. We show that the famous ABL rule to calculate probabilities
in these scenarios leads to non-contextual correlations only. However, we find that if
post-selection is removed, then the statistics can exhibit contextual behaviour. This
indicates that post-selection might be the root of all paradoxes in such scenarios.

Chapter 7

In this chapter we provide a summary of the work done in the thesis and offer some
concluding remarks and future directions that can be taken up.
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Chapter 2

Revealing quantum contextuality
using a single measurement device

2.1 Introduction

Quantum theory is contextual as the outcomes of measurements depend on the context
of measurement, namely the set of commuting observables being measured along with
the desired measurement [1, [14]. Unlike quantumness of composite systems revealed
via Bell type inequalities [10, 25, [35], quantum contextuality can be demonstrated
on single indivisible systems and the simplest such scenario involves a three dimen-
sional quantum system and five different projective measurements [6]. While the first
proof that quantum theory is contextual was provided by Kochen and Specker [1]],
involving 117 different projectors in a three dimensional Hilbert space, over time
a number of simpler and more systematic ways of revealing quantum contextual-
ity particular the ones based on graph theory have become available [12, 20]. The
graph theoretic approach has been successful in identifying new contextual scenar-
ios [4, 15 13} 136, 137, 38, 139, 40, 41}, 42], simplifying formulations of contextuality
monogamy [21], contextuality non-locality relationship [22] developing robust self
tests [43] and information theoretic applications of contextuality [44, 45, 46].

While most of the analysis in quantum contextuality has been focused on projec-
tive measurements, the approach developed by Spekkens [7] generalizes the same to
positive-operator-valued measures (POVMs), as well as provides a notion of contextu-
ality for preparations and transformations. With the use of this generalized approach it
was possible to bring down the number of measurements required to exhibit contextual
behavior to just 3 on a single qubit [47]. Furthermore, this generalization provides a
technique for noise-robust experimental verifications of contextuality [47, 48, 49] and
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information theoretic applications of quantum situations involving preparation contex-
tuality [50, 51}152].

While the minimum number of measurements required to reveal quantum contex-
tuality so far is three [47], no physical principle prohibits a smaller number. Could
a more generalised approach involving analysis based on sequential applications of
POVMs be used to reveal contextuality of quantum situations? Is it possible to gen-
eralize Spekkens assumptions to sharpen the contextual non-contextual divide? We
take up these questions and show how such generalizations lead to the unearthing of
quantum contextuality in more general situations.

In this chapter we propose a notion of measurement non-contextuality (NC) which
is a generalization of and is motivated by the assumption of measurement NC devel-
oped by Spekkens [7]]. As an application of our generalized assumption, we formulate
a new experimentally verifiable NC inequality which involves use of a single measure-
ment device that is applied twice sequentially as a signature of quantum contextuality.
We show that this inequality is violated by certain quantum scenarios, one of which is
explicitly derived. This implies that the underlying ontic models based on our assump-
tion of measurement NC cannot reproduce the statistics of even a single measurement
device. Our generalized notion opens up several new and interesting scenarios which
are capable of exhibiting correlations that cannot arise from non-contextual or classical
ontic models.

2.2 Quantum measurement contextuality

2.2.1 Spekken’s approach to quantum contextuality

The traditional notion of quantum contextuality as developed by Kochen and Specker
(as detailed in Chapter 1) deals only with assignment of outcomes to projectors in a
projective measurement. This approach was considered to be too restricting and is not
applicable to various other operations that can be performed in quantum theory. These
operations include preparations, transformations and generalized measurements. A
much more generalized definition of contextuality was developed by R. Spekkens [7],
which we discuss below in brief.

For a generalized definition of contextuality we consider an operational definition
of a physical theory, which is defined in terms of preparations, transformations and
measurements. The only information that can be inferred from the theory is a proba-
bility distribution p(k|P, T, M) of various outcomes k for a given preparation P, trans-
formation 7" and measurement M.

A notion of equivalence can be defined between the various experimental proce-
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dures. Specifically two preparation procedures P and P’ are deemed equivalent if
p(k|P,M) = p(k|P', M) VM. (2.1)
Similarly, two measurement procedures M and M’ are deemed equivalent if
p(k|P, M) = p(k|P,M') VP. (2.2)

Another similar definition can be made for two transformation procedures 7" and
T’ to be deemed equivalent if

p(k|P, T, M) = p(k|P,T', M) VP, M. (2.3)

All procedures that are equivalent are said to belong to that particular equivalence
class. Using the above definitions, it is possible to differentiate between various ex-
perimental procedures by two features. The first of these features is characterized
by defining the equivalence class of the procedure and the second is characterized by
properties other than the equivalence class. The second set of features is defined as
the context of the experimental procedure. It should be noted that by an additional
information of the context of the experiment does not correspond to a better prediction
of the experimental outcomes.

Using the definition of a context it is now possible to define a non-contextual on-
tological theory. An ontological theory is one which attempts to explain the predic-
tions of the physical theory by assuming that all experimental tests have pre-defined
attributes regardless of whether they are being measured or not. These attributes are
known as ontic states and can be fully specified by assuming some ontic variables
A € A, which also describe the real state of affairs. In many cases it is not possible to
measure the ontic variables and they are aptly named as hidden variables. As a trivial
example, quantum states can be assumed to be their own ontic states without any ontic
variables .

In an ontological model, preparation procedures are defined as preparations of the
ontic state of the system. It is possible that the ontic variables might only define a prob-
ability distribution over the various ontic states for the physical system to be in. Thus
the preparation procedure is then given by a distribution zp(A), such that up(X) > 0
VA € A and f/\eA pp(A)dA = 1VP.

In a similar fashion, a measurement procedure is defined as a measurement of the
ontic state of the system in an ontological model. As before, it might only be possible
to infer a probability distribution over the ontic states for the physical system to be in.
Thus measurement procedures are given by an indicator function & 5/(A), which is a
function of )\ depending upon the outcome k£ and measurement procedure M, such that

S &) = 1VA € AL
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2. Revealing quantum contextuality using a single measurement device

It is required that the predictions of the ontological model must align with those of
the operational model. Therefore, we have

p(k|P, M) = / (Nt (N)dN - VP, M. (2.4)
AEA
In an ontological model an assumption of non-contextuality based on an opera-
tional definition can be made for preparation, transformations and measurements. An
ontological model is said to be preparation non-contextual if the representation of ev-
ery preparation procedure is independent of the context, and instead only depends on
the corresponding equivalence class. Specifically,

p(k|P, M) = p(k|P’, M) VM,

2.5
— up(\) = (N YA €A (23)

This implication is known as the assumption of preparation non-contextuality. In a
similar fashion, the assumption of measurement non-contextuality states that

p(k|P, M) = p(k|P,M") VP,

2.6
= &ou(N) =& m(N) YAeA (2.6)

An ontological model which follows any or both of the assumptions of preparation
and measurement non-contextuality is termed as non-contextual with respect to that
particular experimental procedure. Such an operational definition of non-contextuality
allows for testing non-contextuality in many more scenarios [48, |49]and the subse-
quent tests are found to be robust against noise [S3]].

2.2.2 Generalized assumption of measurement non-contextuality

We provide a slightly weaker assumption of measurement non-contextuality which
leads to several interesting scenarios not possible under the generalized assumption
of non-contextuality as conceived by Spekkens. Firstly, we define two measurement
procedures, M and M’ to be similar if

p(k|M, P) = s.p(k|M', P) VP, (2.7)

where s is a known probability distribution independent of M, M’ or P. In this case,
both the measurement procedures can be clearly distinguished. Based on the notion
of similar measurement procedures we define our weaker assumption of measurement
non-contextuality as,

p(k’|M, P) = S.p(k’|M,, P) - SM,k(A) = S.gjv{/,k(/\), (28)
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2.2 Quantum measurement contextuality

which states that the ontic response functions corresponding to similar measurement
outcomes must be the same up to factor s, which is a known probability distribution.
We utilize this assumption in the following sections to exemplify a situation where
measurement non-contextuality can be revealed using a single measurement, albeit
applied twice sequentially.

As an example consider the following situation. Consider two different projective
measurements on a single spin-1/2 system given as

My = ) (L [ (=1
where |0) and |1) are the eigenkets of Pauli spin-Z, and |+) and |—) are the eigenkets

of Pauli spin- X operator.
We define another POVM measurement M x as,

(2.9)

Max = {s10)(0] s]) (1], (1 = )0+, (L= )| =)=}, (2.10)

where s € § is sampled from some known classical probability distribution 8. The
above measurement can be thought of as performing the M, measurement with proba-
bility s and M x with probability (1—s) on some state p while ignoring the information
about which measurement was performed at each instant.

Spekkens’ notion of the assumption of non-contextuality cannot be applied here
because the outcomes |i) (i|, Vi € {0,1,+,—} are clearly distinguishable from the
outcomes s |7) (i| due to the factor of s. Therefore, according to the traditional notion
Mz and Myx are not two different "contexts’ of the outcomes |0) (0| (or any other
outcome respectively).

However, our generalized assumption of measurement non-contextuality for the
measurements can be applied to the scenario. Let §; ;, denote the ontic response func-
tion assigned to the outcome & for measurement i € {Z, X, ZX }, where,

&k >0,
Y-t 2.11)
%

Consider the outcome |0)(0| appearing in the measurements My and Myx. We
see that for all possible preparations P,

p(|0)(0[[Mz, P) = s.p(|0)(0[|Mzx, P) VP, (2.12)
which implies according to our assumption of measurement non-contextuality as

§z,10y0] = S5-£2x,0)(0|- (2.13)
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2. Revealing quantum contextuality using a single measurement device
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Figure 2.1: A schematic diagram of the two configurations of the measurement device M.

In the first configuration, the device samples the measurements M; from a random number
generator (RNG) with probability p; and final outcomes F; and X, while in the second

configuration, each measurement M; can be performed independently.

A similar analysis holds for all the outcomes for M, M x and My x

According to our definition even when outcomes are perfectly distinguishable, a
notion of ’context’ can still be defined. This can be achieved only when the statistics
of the outcomes are similar to each other according to Eq. (2.8). This identifies a larger
set of contexts for measurements which was not possible earlier. It should be noted that
for s = 1, our condition transforms into the condition. by Spekkens.

2.2.3 Measurement setup

In this section we describe a measurement procedure able to function in two different
configurations. We also formulate an ontologically non-contextual model in order to
explain the statistics of both the configurations.

Consider a measurement device which can be made to function in two configura-
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2.2 Quantum measurement contextuality

tions as shown in Fig[2.1}

Cl:

C2:

The projectors {II; } are sampled from a probability distribution {p;}, i € {0, 1,2, 3,4},
and the device implements the projective measurements {I1;, I1;5;, K}, where

K is taken to complete the measurement and 7 & 1 is taken modulo 5. The pro-
jectors {II;} also share the relationship Tr(II;I1;5;) = 0. It is quite easily seen

that these projectors are the same as the ones used in the derivation of KCBS
inequality. The resultant measurement is then a POVM M with outcomes,

M: {E07E17E27E37E47:K:}7 (214)

where E; = (p; + pis1)1l; and X = 2" p, K; with

4

> (pi+ pie)L < 1, (2.15)

=0
which is a consequence of completeness of measurement.
By choosing a particular setting 7, a projective measurement

M = 1L, Wigy, K}, (2.16)

can also be implemented by the device. This is akin to blocking all measurement
outcomes j # 7. From completeness we again have

I, + ey <1 Vi (2.17)

There will be 5 such settings corresponding to the projective measurements de-
tailed above.

2.2.4 Ontological description

We now formulate an ontological description of the aforementioned measurement de-
vice. For each measurement outcome II; from the measurement M;, there corresponds
a response function &;(\), where As are the ontic variables. Therefore an ontological
description of M; will have the form

Mm : {in‘)a 5@1()\)7 99 ()‘)} (2.18)

From the generalized assumption of measurement non-contextuality, an ontolog-

ical model of the measurement device in C1 configuration will have the following
description,

M = {€0(A), §1(N), €2(A), €5(A), E4(N), €x (M)}, (2.19)
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2. Revealing quantum contextuality using a single measurement device

where &i(A) = (pi + pie1)&i(A) such that {£;(A), §(A), £x(A)} € [0, 1] and,

4 4

Z(pi + Pis1)&i(A) = ZSZ/()\) <1, (2.20)

=0 =0

which is a consequence of Eq. (2.15). Furthermore, by construction, the projectors II;
and II;s, are orthogonal, we have,

&N o1 (V)dA = 0, (2.21)
AEA

which states that the overlap between the two response functions &;(\) and ;g1 () is
zero.

2.2.5 Quantum signature of measurement contextuality using a

single measurement device

In this section we first propose an inequality to be tested by sequential measurements
and explicitly derive its maximum non-contextual value. We then show that a quantum
description of the same leads to a violation.

Proposition 2.2.1. The sum of probabilities for obtaining outcomes E; given the out-
come E; when measurement M is performed twice sequentially for p; = % is bounded

by a non-contextual ontological model as,
4 NC
C= p(ElE;) < 3.20, (2.22)
i,j=0

where p(E;|E;) denotes the conditional probability of obtaining outcome E; given E;
when measurement M is performed sequentially and NC represents the maximum non-

contextual bound.

Proof. In an ontological non-contextual model the probability of obtaining sequential

outcomes E; given £ represented by response functions &;(\) and &;(\) is given as

(BB =2 [ PENG (2.23)
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2.2 Quantum measurement contextuality

where the ontic state after first measurement is represented by the response function
€;(A). Using Eqn. (2.21)) and (2.23) we have,

@)

I
F
-

2 (0 () + 2 (pi&i(A )&@2@)))] A

=0
4

(60 + 260 )&@2()\)))] d)\

§o(A) [E2(N) + &(N)]
[E3(A) +E&(N)] | | dA (2.24)

where for the third inequality we have used [ ven §i(A)dX = 1 and for last inequality
we have used the fact that overlap between two non-orthogonal states as appearing in
the scenario cannot be more than % This can be motivated as follows: If the overlap is
1, then &;(\) = &ao(N), which further implies &;(\) is orthogonal to &;43()), which is
not allowed. Furthermore, due to symmetry of the problem &;(\) must have an equal

overlap with &;g2(\) and &;¢3(\). This concludes the proof. O

In order to show that aforementioned non-contextual ontological models is unable
to describe quantum statistics, it is enough to provide a single counter-example which
violates the inequality (2.22). We explicitly provide the projectors II; = |v;) (v;| which
will maximally violate the inequality (2.22)) and the corresponding violation as follows:
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2. Revealing quantum contextuality using a single measurement device

2r . 2m T
(vg| = | cos s,y fcos 5) ) (2.25)
2m .27 T
(v3| = cos —=, —sin -, 4 fcos & |,
dm . 4m T
(vg] = [ cos —,sin —, 4 [cos — | .
5 5 5

The inequality € then takes on the value,

4
C=2 Z (pi|<Ui|Ui>|2 + 2p;| (Vi |via2) 2)

=0 (2.26)
= 2(143—/5)

which is greater than the predicted value for an ontologically non-contextual model.
Therefore, such models are unable to predict statistics for even single measurements.

2.3 Conclusions

In this paper we considered a generalizaton of the notion of measurement NC pro-
posed by Spekkens. Such a generalization opens several new interesting scenarios
which exhibit a quantum advantage over classical correlations. We have detailed one
such scenario in which the statistics of outcomes from a single measurement device is
not reproducible from an NC ontic model. Such a scenario has been unearth for the
first time to the best of our knowledge. Our results pave the way for future theoretical
as well as experimental work to unearth the contextuality of quantum situations. A
straightforward extension of our work would entail generalization of the single mea-
surement device scenario to incorporate multiple sequential measurements of the same
or different NC scenarios involving n-outcomes and will be taken up elsewhere.
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Chapter 3

A quantum key distribution protocol
based on contextuality monogamy

3.1 Introduction

Since the advent of quantum theory the existence of pre-defined outcomes for observ-
ables has been a matter of heated debate. While Einstein provided a paradox that
apparantly showed quantum mechanics to be incomplete [23], it was John Bell who
showed that no local ontological model can be compatible with it [24]. This points
towards a fundamental departure of the behaviour of quantum correlations from the
ones that can be accommodated within classical descriptions. As shown in chapter 1,
the contradiction between assignment of predefined measurement-independent values
to observables and quantum mechanics was brought forth by Bell’s inequalities, which
requires composite quantum systems and the assumption of locality, while for single
indivisible systems we have the notion of quantum contextuality [1]. The assump-
tion of non-contextuality states that a joint probability distribution over the outcomes
of several different measurements on the system exists independently of any possi-
ble realisation of the measurements which is also known as the context. However, in
the quantum description, there exists contexts corresponding to various different re-
alisations of the measurements and the outcomes in each different context may differ,
thereby leading to correlations which cannot be explained by a non-contextual assump-
tion.

A minimal set of 5 observables for a qutrit system was found by Klyachko et. al.
for which the theoretical value of quantum correlation exceeds the bound (the KCBS
inequality) imposed by non-contextual deterministic models [6]] as shown in chapter 1.
The violation so observed depends on the underlying state on which the measurements
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3. A quantum Kkey distribution protocol based on contextuality monogamy

are performed and such models are therefore known as state dependent contextual
inequalities.

While at the level of individual measurements quantum mechanics is contextual,
the probability distribution for an observable A does not depend upon the context and
is not disturbed by other compatible observables being measured. This phenomenon
is called the ‘no-disturbance’ principle and leads to interesting monogamy relations
for contextual inequalities [21] which are quite similar to those obeyed by Bell in-
equalities [54]. These contextual monogamy relations impose constraints on quantum
correlations without involving a tensor product structure, which we show to be quite
advantageous.

Several non-trivial features of quantum theory play an important role in quantum
information processing [S5)]. In particular, quantum key distribution (QKD) proto-
cols [56]] are shown to be fundamentally secure as opposed to their classical coun-
terparts [57, 158, 159, 160, 161}, 162, 163, 164, 165, 166]] using Bell’s inequalities, Heisenberg
uncertainity relationship and no cloning theorem.

In this chapter we focus on the prepare and measure class of QKD protocols. One
of the prime examples of this scheme is the BB84 [60] protocol which utilizes prepa-
ration of 4 different qubit states and measurements in any 2 mutually unbiased bases.
However, it has also been shown that prepare and measure QKD protocols can be con-
structed using any two non-orthogonal qubit states [62]. An extension of the same idea
to qutrits [63] to allow four mutually unbiased bases for QKD has also been formulated.
On the other hand, the entanglement assisted protocols employ shared entanglement
between two parties with the advantage that it is possible to check for security of the
protocol based on correlations between the parties via Bell’s inequalities which is not
possible in the former class of QKD protocols.

While in chapter 2 we explored novel signatures of quantum contextuality, our fo-
cus in this chapter is to explore contextual correlations as a resource for QKD. While
it has already been exploited for QKD [45], we propose a new protocol based on
the KCBS scenario, which is the simplest contextual scenario, and its corresponding
monogamy relationships [6, 21]. One of the main advantage of our protocol is that it
is a ‘prepare and measure scheme’ which are experimentally easier to implement, but
still allows for a security check based on constraints on correlations shared between
the two parties. In fact in our protocol it is the monogamous relationship of the KCBS
inequality which is responsible for unconditional security.

We first devise a QKD protocol to share a key between Alice and Bob. We use
the KCBS scenario as a resource with post-processing of outcomes allowed on Al-
ice’s site. We then derive an appropriate monogamy relation between Alice-Bob and
Alice-Eve correlations for the optimal settings of an eavesdropper Eve using the novel
graph theoretic approach [20, 21] . From this monogamy relationship, we then explic-
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3.1 Introduction

itly derive a bound on the correlations between Alice and Bob to distill a secure key.
Our protocol enjoys a distinct advantage of not employing entanglement as a resource
which is experimentally difficult to prepare, while still allowing for a security check
based on the KCBS inequality. Such a security check is analogous to Bell-type test for
security employed in entanglement based protocols. Further, our protocol can be trans-
formed into an entanglement assisted QKD protocol by making suitable adjustments.
Although our protocol is not device independent, it adds a new perspective to QKD.

3.1.1 Contextuality monogamy

Given 3 observables A, B and C, such that A can be jointly measured both with B
and C (i.e. it is compatible with both). In quantum theory the marginal probability
distribution of the observable A given by P(A) calculated from the joint probability
distributions P(A, B) and P(A, C) is the same:

Y P(A=a,B=b)=) P(A=a,C=c)=P(A=a), (3.1)
b c

where a, b and c are the outcomes of the measurements corresponding to the observ-
ables A, B and C respectively. This is called the ‘no-disturbance’ principle and it
reduces to the ‘no-signaling’ principle when an additional assumption is made on the
measurements 53 and C' to be performed on spatially separated systems.

The ‘no-disturbance’ principle can be used to construct contextuality monogamy
relationships of a set of observables. This can be achieved if they can be partitioned
into disjoint subsets such that each of them is capable of revealing contextuality by
themselves but not together. We use graph theoretic approach to derive the monog-
amous relationships. For KCBS type inequalities, we identify a joint commutation
graph representing a set of n KCBS-type inequalities each of which has a non-contextual
bound «. This scenario will give rise to a monogamous relationship between the n
KCBS inequalities if and only if its vertex clique cover number is na. The vertex
clique cover number is defined as the minimum number of cliques required to cover all
the vertices of the graph. A clique is a type of graph in which all vertices are connected
by an edge.

In order to derive the monogamy relationship we need to identify m chordal sub-
graphs of the joint commutation graph such that the sum of their non-contextual bounds
is na. A chordal graph is a type of graph which does not contain induced cycles
of length greater than 3. As is shown in Ref. [21]] a chordal graph admits a joint
probability distribution and is therefore non-contextual.
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Figure 3.1: Alice and Bob are trying to violate the KCBS inequality [K (A, B)], while

Eve in her attempts to gain information is trying to violate the same inequality with Alice
[K(A, E)].

3.2 Quantum key distribution protocol

A typical QKD protocol consists of two interested parties, namely Alice and Bob. We
present a QKD protocol based on monogamy of contextuality. Our protocol does not
necessarily require entanglement as an initial resource and falls in the purview of pre-
pare and measure schemes. We first derive a monogamous relationship between Alice-
Bob and Alice-Eve contextual correlations which we then use to derive a condition for
security of the protocol.

3.2.1 Protocol

In a typical key distribution scheme, there are two separated parties Alice and Bob
who wish to share a secret key. We assume that both the parties have access to the
five projective measurements appearing in the KCBS scenario. From the KCBS graph,
Alice randomly selects a vertex ¢ and prepares the corresponding pure state II; by
performing the respective projective measurement and post-selecting the outcome. She
transmits the prepared state to Bob, who also randomly selects a vertex j and performs
a measurement {II;, 1 — II,;} on it. The measurement settings of Alice and Bob are
denoted by 7 and j respectively. We assign the outcome II; a value 1 and the other
outcome / — II; as the value 0. After performing the measurement, Bob publicly
announces his setting j. Three distinct cases arise for Bob’s outcomes:

C1: ¢+ = j: By definition Bob is assured to get the outcome value 1 and so records
it as such. Alice however notes down the value 0 with herself and publicly
announces that the transmission was successful. Thus both the parties share an
anticorrelated bit.
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C2: 1,7 are in context but not equal: In this case Bob’s setting is in context of Alice’s.
Since Alice’s transmitted state is orthogonal to Bob’s chosen projector, he is
assured to get the outcome 0 which he notes down as his value. Therefore, Alice
notes down the value 1 with herself and publicly announces that the transmission
was successful. Thus both the parties again share an anti-correlated bit.

C3: 7,7 are not in context: In this case Bob’s setting does not lie in the context
of Alice’s. After the public announcement of the setting by Bob, Alice also
announces that the transmission was unsuccessful and they try again.

Using the aforementioned protocol, both the parties can securely share a random
binary key. Their success probability depends on the chances that Bob’s measurements
are made in the context or equal to that of Alice’s chosen setting. It is seen that they
are successful % of the times. Whenever Bob uses the correct setting, Alice is able
to ensure that they have an anti-correlated key bit. When Bob measures in the same
context (but not the same setting as Alice’s), Alice notes down the value 1 with herself.
In the other case when Bob uses the same setting as Alice’s, she notes down the value
0 with herself. This way they always share an anticorrelated bit. At no stage Alice
reveals her state. The QKD scenario is depicted in Figure [3.1]

In the ideal scenario without any eavesdropper and noise, Alice and Bob will al-
ways get an anti-correlated pair of outcomes whenever they are successful and will
therefore violate the KCBS inequality to its algebraic maximum value. It should be
noted that they are able to achieve this bound because of post-processing on Alice’s
side. Whenever, Bob ends up using the measurement settings as Alice, she notes down
the value 0 which is not equal to the value assigned to her measurement outcome. Thus,
this in no way is a demonstration that quantum theory reaches the algebraic bound of
KCBS inequality which in fact it does not.

In the presence of an eavesdropper the violation of the KCBS inequality can be used
as a test for security. The presence of Eve decreases the strength of anticorrelations
between Alice and Bob. This decrease can be detected by publically sacrificing part of
the key for a security check.

In the ideal case the secure key as generated by our protocol is completely anti-
correlated but is not completely random. Therefore, the effective length of the key
is smaller than the number of successful transmissions. To calculate the actual key
rate we compute the Shannon information of the transmitted string. By definition of
the protocol, we have F, = % and P, = % for the string generated out of successful
transmissions. The Shannon information for the same turns out be

S = —P() 10g2 PO — P1 10g2 P1 = 0.9183. (32)

Below we detail a particular choice of vectors |v;) (un-normalized) corresponding
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QKD protocol | Success proba- | Av. key rate in
bility bits
(per transmis- | (per transmis-
sion) sion)

BB84 (2 basis) 1/2 0.50

BB84 (3 basis) 1/3 0.50

Ekert(EPR 1/2 0.50

pairs)

3-State [63]] 1/4 0.50

KCBS 3/5 0.55

Table 3.1: The key rate for various QKD protocols in the absence of an eavesdropper.
As can be seen the KCBS protocol offers a little higher key rate compared to the other

protocols.

to the projectors II;, which can be used for the protocol.

T
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The probability that Bob chooses his measurement setting in the context of Alice’s

is % as stated earlier. Thus, the average key rate generation can be calculated as %S =

0.55. We tabulate the average key rate of a few QKD protocols in the absence of an
eavesdropper in Table 3.1}

It is instructive to note that our proposed prepare and measure QKD protocol can

be transformed into an entanglement assisted protocol. In this case let Alice and Bob

32



3.2 Quantum key distribution protocol

Figure 3.2: Joint commutation graph (top) of Alice-Bob KCBS test (Thin-red) and Alice-
Eve KCBS test (Thick-blue) and its decomposition into two chordal subgraphs (below).
Dotted edges indicate commutation relation between two projectors belonging to the two
different KCBS tests. (color online)

share an isotropic two-qutrit maximally entangled state:

1 2
= — kEk). 3.5
) ﬁkZ:O\ ) (3.5)

Alice randomly chooses a measurement setting ¢ and implements the measurement
{I1;, I —11;} on her part of the entangled state. For the cases when her states collapses
to II;, Bob’s reduced state is II;. This is equivalent to the situation where Alice prepares
the state II; and transmits it to Bob. Bob also randomly selects a measurement setting
J to implement the corresponding measurement. The rest of the protocol proceeds
exactly as in the case of prepare and measure scenario as detailed above. We have
provided this mapping for the sake of completeness and in our further discussions will
continue to consider the prepare and measure scheme.

3.2.2 Derivation of monogamous relationship

Let Alice and Bob be different parties who perform preparations and measurements
as detailed in Section We consider the possibility of a third untrusted party, Eve,
who tries to eavesdrop on the key sharing between them. As will be detailed in Sec-
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tion [3.2.3] Eve will have to violate the KCBS inequality with Alice to gain substantial
information about the key.

Let us denote the Alice-Bob KCBS test by K (A, B) with projectors {II;} and
Alice-Eve KCBS test by K (A, E) with the projectors {II¥}. For simplicity we have
assumed different projectors for the two KCBS tests in order to derive a monogamy re-
lationship, but essentially the measurements by Eve would have to be the same as that
of Bob to mimic Alice and Bob’s KCBS scenario. In this joint scenario consisting of
Alice, Bob and Eve the Hﬁh projector is connected by an edge to I, 1, HZ-EH, 0,4, 117,
and Hf , where 7+ 1 and 2 — 1 are taken modulo 5. The edges in this case denote a com-
mutativity relationship between the two connected vertices. These relationships exist
because the projectors used by Eve will follow the same commutation relationships
as the original KCBS scenario. By introducing herself in the channel, Eve has cre-
ated an extended scenario which will have to obey contextuality monogamy due to the
no-disturbance principle. The no-disturbance principle guarantees that the marginals
calculated from the joint probability distribution are independent of the choice of the
joint probability distribution used.

We follow the graph theoretic approach developed to derive generalized monogamy
relationships based only on the no-disturbance principle in Ref. [21]].

From Fig. [3.2]it can be seen that the joint commutation graph of the QKD protocol
satisfies the conditions required for a monogamy relationship to exist between Alice-
Bob and Alice-Eve. To derive the relationship we first identify a decomposition of the
joint commutation graph into two chordal subgraphs such that each vertex appears at
most once in both the subgraphs, as shown in Fig.[3.2] Their maximum non-contextual
bound is then be given by the independence number of the subgraph. Therefore,

pIIF) + p(Ily) + p(I17) + p(ILy) + p(117) < 2, (3.6)
p(Io) + p(Ils) + p(I1F) + p(ILy) + p(I1}) < 2. (3.7)

Adding and grouping the terms according to their respective inequalities (Eqn.(I.3))
and normalizing, we get

K(A,B) + K(A,E) < (3.8)

(SR

If the projectors involved in the KCBS tests are transformed according to Eqn. (1.7)),
then the monogamy relationship reads as

K(A.B) + K(A,B) < ¢ (3.9)

where the monogamous relationship so derived follows directly from the no-disturbance
principle and therefore cannot be violated. In other words, the correlations between Al-
ice and Eve are complementary to the correlations between Alice and Bob. If one of
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them increases the other correspondingly decreases. One can thus use this to derive
conditions for unconditional security as will be shown in the next section.

3.2.3 Secure keyrate analysis

We now prove that our QKD protocol is secure against individual attacks by an eaves-
dropper limited only by the no-disturbance principle. The best strategy available to
Eve would dictate the optimal settings to be used in order to maximize the information
gained by Eve about the key. Using the optimal strategy we then prove unconditional
security of the protocol which is based on monogamy of the KCBS inequality. The
analysis is analogous to the security proof for QKD protocols based on the monogamy
of violations of Bell’s inequality [39].

Alice and Bob perform the protocol a large number of times. Consequently they
share the joint probability distribution P(a, b|i, j), which denotes the probability of
Alice and Bob obtaining outcomes a,b € {0, 1} conditioned that their settings are
i,j € {0,1,2,3,4} respectively. In the ideal case they obtain a # b when j = i + 1,
where addition is taken modulo 5. However in the presence of Eve, the secrecy of cor-
relations shared between Alice and Bob has to be ensured even if Eve is distributing
the same between them. It is the aim of Eve to obtain as much information about the
correlation between Alice and Bob. Eve can accomplish this in several ways includ-
ing intercepting the information from Alice and re-sending to Bob after performing
suitable measurements to gaining knowledge about the key. It is also possible that she
is correlated to Alice’s preparation device or to Bob’s measurement devices. Techni-
cally, Eve can have access to a tripartite probability distribution P(a, b, |, j, k), where
Alice, Bob and Eve obtain outcomes a, b and e when their settings are ¢, j and k respec-
tively. It is required for of this probability distribution to correspond to the observed
correlations between Alice and Bob. In general it is difficult to characterize the optimal
strategy of Eve without placing some constraints on her.

For the following security analysis we impose minimal restrictions on Eve. We
only assume that she obey the no-disturbance principle and as a consequence her cor-
relations with Alice will be limited by monogamy relations (3.9). Such a constraint
is physically well motivated as it is a fundamental law of nature and is obeyed at all
times.

We assume that the correlations as observed by Alice and Bob, P(a,bli, j), is
a consequence of marginalizing over the extended tripartite probability distribution
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3. A quantum Kkey distribution protocol based on contextuality monogamy

P(a,b,eli, j, k). This probability distribution is assumed to be distributed by Eve as:
P(a,bli,j) = ZPabehj,)

(3.10)
:ZP elk)P(a,bli, j, k,e),

where the second equality is a consequence of the no-disturbance principle: Eve’s
outcome is independent of the measurement settings used by Alice and Bob. We can
also analyze the correlations between Alice and Eve in a similar manner:

P(a,eli, k) = ZP@behy,)

(3.11)
:ZP blj)P(a,eli, j, k),
b

where the second equality is also a consequence of the no-disturbance principle. This
implies that Eve can decide on her outcome based on the settings disclosed by Bob.
However, Bob’s outcome cannot be used as it is never disclosed in the protocol. A
natural question that can be asked now is how strong does the correlations between
Alice and Bob need to be such that the protocol is deemed secure.

The QKD scenario involving the eavesdropper now is as follows: Alice and Bob
perform the preparations and measurements as detailed in Section (3.2.1] while Eve,
constrained only by the no-disturbance principle is assumed to distribute the corre-
lations between them. Whenever Eve distributes the correlation between herself and
Alice she uses the same measurement settings as Bob to gain knowledge about the
bit of Alice. However, contextuality monogamy limits correlations between Alice and
Eve without disturbing the correlations between Alice and Bob significantly as shown
in Section

We assume that Eve is able to perform individual attacks only with no access to
quantum or classical memory. Under this paradigm, Eve is only able to attack a single
run of the protocol at any time and must perform her operations before the subsequent
run. The condition for a secure key distribution between Alice and Bob in terms of
Alice-Bob mutual information /(A : B) and Alice-Eve mutual information (A : E)
is given as [67]:

I(A:B)>I1(A: E). (3.12)

For individual attacks and binary outputs of Alice it reduces to the fact that the
probability for Bob to guess the bit of Alice, denoted by Py, should be greater than
the probability, for Eve to correctly guess the bit of Alice, denoted by Pz. The above
condition reduces to
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3.2 Quantum key distribution protocol

From the protocol it is seen that Bob can correctly guess the bit of Alice with
probability P = K (A, B). For K(A, B) = 1 Bob has perfect knowledge about the
bit of Alice while for K (A, B) = 0 he has no knowledge. For any other values of
K (A, B) they may have to perform a security check.

We assume that Eve is in possession of a procedure that enables her to distribute
correlations according to Eqns. (3.10)-(3.11)). The procedure takes as an input £ among
the five possible settings according to the KCBS scenario and outputs a binary value e.
She uses this outcome to determine the bit of Alice when Alice’s measurement setting
is 7. Let the probability that Eve correctly guesses the bit of Alice be denoted by P
Since there are 5 possible settings for Alice and Eve each, the average probability for
Eve to be successful Fk is,

&
P = G (Pi + Piiy1 + Pii-1)
=0

< max{Py, P, Pi—1|Vi}. (3.14)

The terms in the above equation denote the success probability of Eve when she
uses the same setting as Alice and when she measures in the context of Alice, respec-
tively. For all other cases she is unable to gain any useful information. Without loss
of generality let us assume that Py, is the greatest term appearing in Eqn (3.14). This
term corresponds to the success probability of Eve when her setting is 1 and Alice’s is
0. However, Alice’s setting is unknown to Eve as it is never disclosed in the protocol.
Therefore, in this case Eve’s best strategy is to always choose her setting to be 1 irre-
spective of Alice’s settings and subsequently try to violate the KCBS inequality with
her. The probabilities that appear in the KCBS inequality would then be,

Pla#eli=0,k=1) = Py = Py,

Pla#eli=1,k=1) P =1- Py,
Pla#eli=2k=1) = Py < Py,

Pla#eli=3,k=1) = Py < Py,

Plateli=4k=1) = Py <Py (3.15)

The probability for Eve to get a particular outcome is independent of Alice’s choice
of settings. Her best strategy to eavesdrop can at most yield all the preceding proba-
bilities to be equal (except the second term which will show a correlation instead of
the required anti-correlation) which will maximize K (A, F). Evaluating the KCBS
violation for Alice and Eve, we get,

3 1 3 1
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3. A quantum Kkey distribution protocol based on contextuality monogamy

Using the monogamy relationship given by Eqn. (3.9), we get,

3 1 6

—Pe+-< - — F;. 3.17

5IE + 555 B (3.17)
For the protocol to be secure, Eqn. (3.13) must hold and using the condition (3.17)

implies that it happens only if
5

K(A,B) > 3 (3.18)

Therefore the protocol is unconditionally secure if Alice and Bob share KCBS
correlation greater than %. It is worthwhile to mention that the value g is lesser than
the maximum violation of the KCBS inequality as allowed in quantum theory.

As shown in reference [21]] the monogamy relation is an optimal condition
in the sense that no other stronger conditions exist. This implies that for any QKD
protocol (based on violation of KCBS inequality) to be secure, the condition given
in Eqn. (3.18) must be satisfied. This quantifies the minimum amount of correlations
required for unconditional security. We conjecture that no key distribution scheme
based on the violation of the KCBS inequality can perform better than our protocol
since we utilize post-processing on Alice’s side to extend the violation of the KCBS
inequality up to its algebraic maximum.

3.3 Conclusions

In this chapter we presented a QKD protocol which is a direct application of the sim-
plest known test of contextuality namely, the KCBS inequality. The protocol requires
for Alice and Bob to achieve the maximum possible anti-correlation amongst them-
selves in the KCBS scenario. They can achieve the algebraic maximum of the KCBS
inequality by allowing Alice to perform post-processing on her recorded bit values af-
ter Bob publically declares his measurement setting. We then show that any eavesdrop-
per will have to share a monogamous relationship with Alice and Bob. This severely
limits her eavesdropping. For this purpose we derive a monogamy relationship for the
optimized settings of Eve which allow her to gain maximum information about the
key. We find that the maximum information gained by Eve does not even correspond
to the maximum violation of the KCBS inequality as allowed in quantum theory. This
unconditional security provides a significant advantage to our protocol since it does
not utilize the costly resource of entanglement. Furthermore, unlike other prepare and
measure QKD schemes it also allows for a check of security by the violation of the
KCBS inequality. This makes our protocol similar to the ones which are based on the
violation of Bell’s inequalities. Finally, we note that the security of our protocol is a
consequence of contextuality monogamy, which is expected to play an interesting role
in quantum information processing.
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Chapter 4

From entropic inequalities to secure
quantum key distribution

4.1 Introduction

It is well known that measurements on quantum states exhibit correlations which defy
explanation by a classical theory. The outcomes of measurements performed on spa-
tially separated or even on single indivisible systems may exhibit correlations greater
than their apparent classically allowed values. These correlations are termed as Bell
non-local [10, 25} 135, 168] or contextual [, [12} |13} 20, 136]], respectively and are stud-
ied by means of certain inequalities, a violation [15} 169, 70, [71} [72]] of which im-
plies non-classical behavior. The most widely studied inequalities in this context are
the Bell-CHSH [10] and KCBS inequality [6], quantifying Bell non-local and contex-
tual correlations, respectively. Quantum correlations have found immense application
in quantum information processing tasks including self-testing [73) [74], QKD [75],
DIQKD [38, [76] and randomness certification [77]. One of the major advantages of
using quantum correlations over their classical counterparts is apparent in QKD where
it is shown that the exchanged key can be deemed secure if the correlations violate
a Bell’s or a non-contextuality inequality [44, |58, |59]. Furthermore, correlations vi-
olating a variant of the Bell’s inequality, namely Bell-CHSH, are known to provide
security independently of the operations of the devices being used to exchange the
key. Such type of key distribution schemes are termed as DIQKD [59, [78]] and have
no analogue in classical theory. Such DIQKD protocols are even secure against an
eavesdropper who might have access to correlations stronger than quantum theory, but
still limited by the no-signalling principle. These protocols are the pinnacle in secure
key distribution schemes made possible by quantum correlations.
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4. From entropic inequalities to secure quantum key distribution

Offering a different perspective on quantum correlations, Braunstein and Caves
introduced an information theoretic approach to understand non-local correlations [,
/9]. In this formalism, the joint Shannon entropies carried by measurements must sat-
isfy an inequality in order to have a local description of correlations. Subsequently,
the work was extended to include non-contextual scenarios [9, |80] as well, and the
inequalities are termed as entropic non-contextuality (ENC) inequalities. Since their
inception, these inequalities have been studied extensively and have also been realised
experimentally [81]. Entropic inequalities offer the added advantage of being indepen-
dent of the number of outcomes in a measurement. This property makes them suitable
candidates for applications in non-locality distillation [80]], bilocality scenarios and
QKD, the latter of which we explore in this chapter.

The main aim of this chapter is to analyse whether the set of non-local correla-
tions identified for DI security in [58}159] is unique with respect to different notions of
non-locality. To that end we devise a QKD protocol centered around information the-
oretic Bell’s inequalities or ENC inequalities with even number of observables, which
we term as entropic key distribution (EKD). Since these inequalities are more strict
and fundamentally distinct from standard Bell inequalities, it is expected that a dis-
tinct set of correlations should be observed for DI security. However, our results state
otherwise.

We analyse the connection between violation of the entropic inequality and correla-
tions between two parties Alice and Bob for increasing number of observables. Using
graph theoretic formalism we show that if the correlations between Alice and Bob vio-
late an ENC inequality, then an eavesdropper, Eve, cannot be correlated to Alice (Bob).
This leads to the emergence of monogamy relations between the three parties, which
we again achieve from a graph theoretic perspective. Using the monogamy relations
so derived and the assumption of individual attacks we show that the EKD protocol is
secure even against a supraquantum Eve limited only by the no-signalling principle.
In effect we derive a simple information theoretic condition to check for DI security,
which surprisingly also reproduces the set of correlations as derived in [58,59]] for DI
security in the case of Bell-CHSH. Our results show that ENC inequalities can also be
applied to QKD in a DI manner.

4.2 n-cycle entropic non-contextuality inequalities

In this section we provide a concise review of entropic inequalities as conceived by
Braunstein and Caves [8]. We then provide a brief analysis of the same by way of PR
boxes.

Consider an n-cycle commutation graph for which the n vertices and edges repre-
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4.2 n-cycle entropic non-contextuality inequalities

sent observables X; and their commutation relationship respectively. We assume that
a non-contextual joint probability distribution exists over the entire set of observables
considered, even though most of them do not commute. It is our aim to construct a
condition based on the preceding assumption for which a violation would indicate that
such a non-contextual joint probability distribution model does not exist.

The existence of a non-contextual joint probability distribution over the observables
X; implies that it is possible to define a joint Shannon entropy H (Xo, ..., X,,—1) of
them. We can then write

H<X07Xn—1) S H(X07"‘7Xn—1)7 (41)

where the relationship H(X) < H(X,Y') is physically motivated by the fact that two
random variables cannot contain less information than a single one of them. Further-
more, with repeated application of the chainrule H(X,Y) = H(X|Y)+ H(Y'), where
H(X|Y) denotes the conditional entropy of observable X given information about ob-
servable Y, the right hand side of the inequality can be re-written as,

H(Xo| X1, oo, Xpo1) + H(X1| Xa, oo Xn1) + ...
+ H(Xn—2|Xn—1) + H(Xn—l)
< H(Xo|X1) + H(X1|X2) + oo + H(Xp—2| Xn_1) + H(Xp_1).
4.2)
The second inequality in Eq. (4.2) is a consequence of the relationship H (X |Y") <

H(X), which implies that conditioning cannot increase the information content of a
random variable. Plugging Eq. (4.2) in Eq. (4.1) and using

H(Xg, s Xn_1) <

H(Xo|Xp—1) = H(Xo, Xp—1) — H(X;-1), (4.3)
we finally get the required entropic non-contextuality inequality,
Hy, : HXo|Xn1) < H(Xo|X1) + ... H(X 2| X 1). 4.4)

A violation of Eq. would then indicate that a non-contextual joint probability
distribution over the corresponding set of observables does not exist.

It should be noted that no assumptions have been made regarding the nature of
the observables X;. For all intents and purposes they can correspond to projective
measurements or POVMs with any number of outcomes. Furthermore, the observables
could correspond to local scenarios or non-local, in which case the entropic inequality
would be termed as non-contextual or Bell non-local. Since we consider generalized
scenarios, we term all entropic inequalities as non-contextual as it subsumes the non-
local scenarios as well.

41



4. From entropic inequalities to secure quantum key distribution

The violation of entropic inequalities (#.4)) can also be studied by non-signalling
Popescu-Rohrlich (PR) boxes [82]. A PR box is a non-signalling probability distri-
bution that can violate a Bell’s inequality up to its algebraic bound. For the CHSH
inequality, given by,

<S> - <AoB()> + <AoBl> + <AlBo> - <A1B1>7 (45)

with maximum classical and quantum bounds equal to 2 and 2+/2 respectively, the PR
box that achieves the maximum algebraic value of 4 is given by,

1
Ppr(a,blA,, B,) = 1 (14 (—1)&bew) (4.6)

where Ppg(a,b|z,y) denotes the probability to obtain outcomes a and b when mea-
surements A, and B, are performed and @ denotes addition modulo 2. For n = 4 and
X; = A, fori =odd and X; = B, fori = even, it can be seen that the resultant entropic
inequality (4.4)), which is analogous to CHSH, does not show a violation for the CHSH
PR box. Furthermore, as seen from an entropic point of view, the CHSH PR box is
found to be equivalent to the classical probability distribution P which saturates the
classical bound of the CHSH inequality (4.5), given as,

Pc(a,b|A,, By) = 411 (14 (=1)*®). 4.7)
This interesting behavior of entropic inequalities is due to the fact that they cannot dis-
tinguish between perfect correlations and anticorrelations of A; and B; as they appear
in Po(a,blA1, By) and Ppg(a,b|A, By) respectively. Entropically, both the proba-
bility distributions are equivalent. The maximum possible violation of the entropic
inequality (4.4)) is then achieved by the non-signalling entropic box Py [79]], given by

1
Pgp(a,blA,, By) = §(PPR + Fe), (4.8)

which is an equal mixture of the PR box and classical correlations. This probability dis-
tribution can be understood as having perfect correlations between the pairs (A, By),
(Ao, B1), (A1, By) while the last pair (A, B;) is as uncorrelated as possible. It is
therefore the case that some scenarios which exhibit a violation of the Bell-CHSH
inequality do not show a violation of corresponding entropic CHSH inequality.

The maximum quantum violation can also be analyzed in terms of entropic boxes.
We consider a mixture of entropic box defined in Eq. (#.8) with weight v and white
noise as,
1—wv

(2+(_1)a@b+<_1)a@b@xy) + 7 ] (49)

v

P(a,blA;, By) = 3
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4.3 Entropic key distribution protocol

The entropic inequality .4 for n = 4 then takes on the value

1+wv 1+wv
1—w 1—w
+3( 5 )logQ( 1 )

It is seen that for v > 0.877 a violation of the above inequality is observed. This indi-
cates that a very small set of two qubit correlations exist for which entropic CHSH in-
equality is violated, in contrast to the comparatively bigger set of two qubit correlations
for Bell-CHSH inequality. In the following sections we show that these correlations
are capable of providing a secure key rate.

(4.10)

4.3 Entropic key distribution protocol

In this section we develop the entropic QKD protocol which is based on ENC inequal-
ities (4.4). We first consider a specific case of n = 4 observables, which is analogous
to the CHSH inequality and then generalize the developed protocol for arbitrary n.

Consider two parties, Alice and Bob, each having two observables each, labelled
{Ao, A1} and { By, B, }, respectively. The choice is such that observables of any one
party do not commute. It is also assumed that a measurement of any observable can
have arbitrary, but known number of outcomes. In order to share a secure key, it
is required that the obtained correlations violate the entropic version of the CHSH
inequality which is obtained by taking n = 4 in Eq. and X; = A, for i = odd and
X, = B, for i = even,

Hy, : H(A1|B1) — H(A1|By) — H(By|Ag) — H(Ao|By) < 0. 4.11)

A violation of the above inequality implies non-existence of a joint probability distri-
bution over all the observables A, and B,,.
We assume that Alice and Bob share the maximally entangled pure singlet state

1

V2

In order to maximize the violation of the inequality (4.11)), the observables of Alice and
Bob are assumed to lie in the X-Z plane and correspond to Pauli spin measurements
along the unit vectors a, a’, b and b’ respectively. The vectors a, b’, a’, b are succes-
sively separated by an angle 6/3. The corresponding value of the inequality is

[¥) (101) — [10)) . (4.12)

43



4. From entropic inequalities to secure quantum key distribution
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Figure 4.1: The behavior of entropic inequality Hp, li with respect to the angle 6

(taken in radians).

then computed as

=200
Hi, = 2+ 3sin? <Q> log, <Sm (3>)
3 2
.2 2 (0
— sin? #log, (SH; 9) + 3 cos® <Q> log, <C082(3)> (4.13)
2
— cos® 0 log, <COZ 9> .

The maximum violation, Hg, = 0.237 bits is found to occur at f = 0.457 rads and
the corresponding behavior is plotted in Fig. .1}

To perform key distribution both the parties choose their state and measurements
corresponding to maximum violation as above and then keep their outcomes as part
of the raw key. After performing measurements one of the parties, say Bob, publicly
announces his choice of basis. It should be noted that even in the ideal noise free case,
the parties do not share perfectly correlated outcomes.

The total correlations between Alice and Bob can be analysed by re-writing the
inequality (4.11) in terms of mutual information as

w

HK1 ZI(AO . Bo) + [(AO : Bl)

4.14
—l—I(AlBo)—](AlBl)—H<A0)—H(Bo)§O, ( )

where I(A, : B,) denotes the mutual information between the observables A, and B,
The total correlations between Alice and Bob is then given by I(A : B) = I(Ay :
By) + I(Ag : By) + I(A; : By) + I(A; : By). We can now define Alice and Bob’s
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total correlations in terms of the entropic inequality, Hg as
I(A:B)=Hg, + H(Ay) + H(By) + 21(A; : By). (4.15)

For the case when Alice and Bob share perfect correlations, e.g. in E91 protocol,
then /(A : B) = 4 bits. However, in our case due to imperfect correlations, the key
rate between Alice and Bob in the absence of any external noise or eavesdropper is
I(A : B) = 2.83 bits. The loss in total correlations can be explained by noting that a
violation of inequality requires minimizing the correlations between A; and B;
while maximizing between the rest of the combinations.

The aforementioned protocol can be easily generalized to any even number of ob-
servables. It is however, easier to visualise the generalized version in the form of
commutativity graphs. In a commutativity graph, each vertex represents an observ-
able, and vertices connected by an edge commute. For the case of even n observables,
the graph takes the form of an n-cycle graph with additional edges which connect all
of Alice’s observables to Bob’s observables (due to spatial separation) and each alter-
nate vertex corresponds to an observable with Alice or Bob. As an example consider
the graph in Fig. d.3| for n = 4 which represents the entropic CHSH inequality with
the addition of an eavesdropper Eve. The protocol remains the same as above, where
Alice and Bob select the observables which maximize the violation of the correspond-
ing entropic inequality and randomly perform their respective measurements and store
outcomes as part of raw key. In order to perform a security check, they observe the
value of the corresponding ENC inequality. The violation and the raw key rate for
various values of n are plotted in Fig.[4.2] It is seen that the key rate increases with the
number of observables, while also offering a larger region for observing violation of
ENC inequality.

4.4 Monogamy of entropic inequalities

In this section we firstly show that the correlations between Alice and Bob violating
Eq. (4.11) cannot arise as marginals of a tripartite probability distribution, as conceived
by an eavesdropper Eve where she is directly correlated to Alice (Bob). We then go on
to show that Alice-Bob and Alice-Eve correlations must follow a monogamous rela-
tionship which arises as a consequence of no-signalling principle. We devise necessary
conditions for a monogamy relation to exist and elucidate the mechanism to derive the
same for a given scenario from a graph theoretic perspective.

A violation of the inequality (4.11)) implies that a joint probability distribution
cannot exist over the given observables. It can also be shown that a violation of en-
tropic CHSH inequality excludes any tripartite (or n-partite) probability distribution
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Figure 4.2: (a) Violation of n cycle entropic inequalities for increasing number (even) of

observables and (b) raw key rate for increasing number (even) of observables.

P(a,b,e|A;, By, E), in which Eve is directly correlated to Alice, with marginals

P(a,b|A,, B,) = > P(a,b,e|A,, B, E)

(4.16)
=" P(e|E)P(a,b|A,. B, E.e),

where P(a, b|A,, B,) denotes the joint probability distribution of obtaining outcome a
and b when observables A, and B, are measured. The second equality arises from the
fact that Alice and Bob’s inputs cannot influence the outcomes of Eve. We can now
prove the following proposition:

Proposition 4.4.1. A violation of inequality implies that a tripartite joint prob-
ability distribution, as conceived by Eve to distribute correlations between Alice and
Bob and still be correlated with them, cannot exist and for which the observed joint

statistics of Alice and Bob arise as marginals.

Proof. We use graph theoretic framework and a result proven in [21]] to elucidate the
proof. We consider the commutation graph of the entropic CHSH scenario represented
by solid lines in Fig. [4.3] In this graph vertices represent the observables A; and Bj,
and two vertices connected by an edge commute. In order to distribute the correlations
between Alice and Bob and satisfying Eq. (4.16), Eve’s device or observable(s) must
commute with both Alice and Bob’s measurements. The resultant graph is found to

be chordal. As shown in [21] all chordal graphs admit a joint probability distribution.
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B() Al

Ap By

Figure 4.3: A joint commutation graph of Alice-Bob-Eve scenario where Eve uses a
procedure E' to distribute the required correlations between Alice and Bob. Solid lines
represent the CHSH commutation graph between Alice and Bob in which observables are
represented with vertices and commuting vertices are connected by an edge. The dashed

lines indicate commutativity with an eavesdropper Eve.

Since 3-cycle graphs are chordal, we write down the ENC inequalities over all such
subgraphs appearing in the chordal graph in Fig. .3}

H(Ao|Bo) — H(Ao|E) — H(E|By) <0, (4.17)
H(Ao|E) — H(Ao|B1) — H(B1|E) <0, (4.18)
H(B\|E) — H(Bi|A)) — H(A|E) <0, (4.19)
H(A|E) — H(A1|Bo) — H(Bo|E) < 0. (4.20)

All the above inequalities are always satisfied (because they belong to a chordal graph)
and can thus be added to give

Hy, — H(E|By) — H(By|) < Hy, +2I(E : By) < 0, 4.21)

where we have used the inequality —H (By|FE) — H(E|By) < 2I(E : By). For a
violation, Hg, > 0, the above inequality can never be satisfied, thereby contradicting
our original assumption about Eve distributing the correlations according to Eq. (4.16).
Therefore, whenever Alice and Bob observe a violation, they can be assured that their

outcomes could not have been correlated to any third party. [

Proposition 4.4.1| implies that since the required tripartite probability distribution
as given in (4.16) cannot exist when Alice and Bob are violating the inequality, any
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4. From entropic inequalities to secure quantum key distribution

strategy by Eve must be of the form

P(a,b,e|A;, By, E) = vPag(a,blA,;, By)

4.22
+ (1 —v)Pap(a,e|A,, E), ( )

where e is an outcome to a procedure [ used by an eavesdropper Eve to guess the bit
of Alice, Pag(a, b|A,, B,) denotes the probability distribution over the observables A,
and B, with Alice and Bob and P4g(a, e|A,, E) represents the probability distribution
over the observable A, with Alice and the procedure £ with Eve. The maximal en-
tropic correlations, given by the entropic box (4.8) are distributed between Alice-Bob
and Alice-Eve with probability v and 1 — ~, corresponding to P4p(a,b|A,, B,) and
Pagp(a,e|A,, E) respectively. This way she tries to be correlated with Alice with a
probability 1 — ~. The above strategy is therefore seen to be the optimal one for Eve,
only in the case when Alice and Bob are observing a violation. This point is essen-
tial and its importance will be shown when we derive the condition of DI security in
Sec.[.5] However, as we next show, her violation is further bounded by monogamy of
entropic non-contextuality inequalities.

Proposition 4.4.2. A monogamous relationship for a set of observables, X; corre-
sponding to m non-contextuality scenarios exists if their joint commutation graph can
be vertex decomposed into m chordal subgraphs such that all edges appearing in the

original m non-contextuality graphs must appear at least once in the decomposition.

Proof. We prove the above proposition for n = 4 and m = 2, while providing a
mechanism to derive a monogamous relationship for arbitrary values of » and m. A
standard monogamous relationship between two entropic non-contextuality scenarios,
K, and K5 should be of the form of

Hy, + Hg, <0, (4.23)

where Hg,,, < 0 denotes the existence of a joint probability distribution over the n

observables.)The Eq. (4.23)) then physically implies the existence of a joint probability
distribution over all the observables appearing in K; and K.

To that end, each term appearing in Eq. (4.4) corresponds to an edge in the com-
mutativity graph. It follows that to achieve the form of Eq. (4.23) the joint graph of the
non-contextuality scenarios must be decomposable into chordal graphs (which admit a
joint probability distribution) with the additional feature that all edges of the individ-
ual non-contextuality graphs must appear at least once. Missing even one edge would

make one of the non-contextuality inequalities incomplete and Eq. (4.23)) unachievable.
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4.4 Monogamy of entropic inequalities

Figure 4.4: The joint commutation graph of Alice-Bob-Eve (top) and its chordal decom-
position (below) according to Proposition [#.4.2] where solid lines indicate commutativity
between observables of Alice and Bob, while dashed lines indicate commutativity between
Alice(bob) and Eve.

Decomposition of the joint graph into chordal graphs enables one to write down
the entropic inequalities of all the 3-cycle subgraphs appearing in each chordal graph.
Lastly, adding all the entropic inequalities obtained in the aforementioned manner

leads to a monogamous relationship between the non-contextuality scenarios.

We now elucidate the proof by deriving a monogamous relationship of the en-
tropic CHSH inequality (@.1T]) from a graph theoretic perspective which we will use
later on, while the mechanism itself is applicable to arbitrary scenarios. Consider the
CHSH scenario in which two parties Alice and Bob can perform a measurement of
the observables Ay, A; and By, B; respectively. We assume a third party Eve with
observables F, and F/;, which commute with the observables of Alice and Bob. The
scenario is illustrated by a joint graph as shown in Fig. (#.4)), where vertices represent
observables and edges indicate the commutation relationship. Without loss of general-
ity we assume that Eve would like to violate the entropic CHSH inequality with Alice.

The two corresponding Alice-Bob and Alice-Eve entropic CHSH inequalities are,

HK1 H(X1|X4> — H(X1|X2)

(4.24)
— H(X5|X3) — H(X3]Xy) <0,

49



4. From entropic inequalities to secure quantum key distribution

HK2 H(X1’X5) — H(X1|X6)
— H(Xe|X3) — H(X3|X5) < 0.

The joint commutation graph is decomposed into two chordal graphs while keeping

(4.25)

the edges appearing in the individual Alice-Bob and Alice-Eve CHSH scenarios intact
in the decomposition, as shown in Fig. (#.4)). The corresponding ENC inequalities for

each 3-cycle graph in every chordal subgraphs are given as,

H(X:1|X5) — H(X1|X2) — H(X2|X5) <0, (4.26)
H(X5|X5) — H(X5|X3) — H(X5|X5) <0, (4.27)
H(X\|Xy) — H(X,|Xs) — H(Xe| X)) <0, (4.28)
H(X|X4) — H(Xs|X3) — H(X3]X4) <0, (4.29)

Being cyclic and chordal, all the above inequalities are a necessary and sufficient con-
dition for a joint probability distribution to exist. Adding the above inequalities and

grouping the terms according to Hy, and Hp,, we obtain
Hy, + Hg, <0, (4.30)

which is the required monogamy relationship. We note that this monogamy relation-
ship was also derived in [79], albeit in a different manner and specifically for the en-
tropic CHSH inequality. The above formalism can be readily generalized to n observ-

ables distributed among m parties. O]

The derived monogamy relationship imposes severe restrictions on the vio-
lation of Alice-Eve entropic CHSH inequality. Qualitatively, it is clear that if Alice and
Bob share correlations that violate an entropic inequality (4.1T)), Eve cannot gain much
information of Alice’s bits by being correlated with her. In subsequent sections we use
the above monogamy relationship and its generalization to n observables to provide
a detailed quantitative analysis of minimum required correlations between Alice and
Bob such that a secure key can be distilled.

4.5 Security

In this section we provide a quantitative analysis of the required minimum correlations
between Alice and Bob to achieve secure key distribution. We first analyse the case for
entropic CHSH and relate the derived condition for security to violation of Bell-CHSH.
In later subsections we generalize the derived condition for even n observables.
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4.5 Security

Table 4.1: Correlations between Alice and Eve for different measurement settings (hori-

zontal rows) and outcomes (vertical columns)

S0 01 10 11
a, e
00 1;7 1;’7 1;7 1;’7
01 : 3 1 B
11 1;7 1;7 1;’7 1;7

4.5.1 Security from entropic CHSH inequality

We assume that the eavesdropper, Eve, is able to distribute the correlations between
Alice, Bob and herself with the help of the no-signalling probability distribution (4.22)
as detailed above. The correlations as observed by Eve are given in Table #.1] These
correlations are a classical mixture of the Alice-Eve entropic box and perfect anticor-
relations and are given as

P(a,elA,, E.) = (1 —~v)Pag(a,e|A, E.,)

4.31
‘|—’7PC/(CL,€’AI,EZ), ( )

where Poi(a,e|A,, E.) = 1 (14 (—1)*®"®1) is just a classical box with perfect anti-
correlations instead of correlations.

The entropic CHSH inequality, H g, for Alice-Eve correlations can then be evalu-
ated as

Hy, =31(Ay: E)) — (A1 : By) — 2, (4.32)

where we have used the fact [(Ay : Ey) = I(Ag : E1) = I(A; : Ey) as evaluated
from Table [@ Therefore, given the correlations as in Table [@ and the fact that
Alice’s input is never known, the best strategy for Eve would be to always input 0 as a
setting in her device. This way she can maximize the violation of the inequality (.32).
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4. From entropic inequalities to secure quantum key distribution

Therefore, her violation would be lower bounded as

From monogamy of entropic CHSH inequality we have Hp+H}, < 0. Applying
this in Eq. (4.33)), we get the upper bound on the violation of the inequality between
Alice and Bob as

Hyg, <2—2I(Aq: Ey). (4.34)

In order to obtain a positive secure key, it is required that
I(A:B)>I1(A:FE). (4.35)

Since the best strategy of Eve dictates using only the measurement setting 0, her mutual
correlations with Alice translate to I(A : E) = I(Aq : Eo)+I1(A; : Ey) = 21(Ag : Ep)
which, after substitution in Eq. (4.35)) gives

Hy, +2I(Ay : By) +2 > 2I(Ay : Ey). (4.36)

The intersection of the solutions to the two Egs. (4.34) and (.36) defines the region
of obtaining a secure quantum key. It is seen that there exists a region of security for

HK1 > —I(Al : Bl) 4.37)

From the above condition it seems that one need not even violate the ENC inequality
for DI security. However, as shown above, the strategy of Eve (#.22)) is optimal only
for the region Hg, > 0. For the negative region, she can always distribute a classical
box being correlated to Alice (Bob) and still gain information on the key. There-
fore, the condition which identifies security for the optimal strategy of Eve is found to

be a subset of Eq. (4.37), given as
Hy, > 0. (4.38)

However, we do not completely discard the condition (4.37)), which we will use to
relate with DI security obtained in the case of Bell-CHSH violation in the following
subsection.

4.5.2 Relation with DIQKD using Bell-CHSH

In this subsection we show an unexpected relationship between the correlations offer-
ing DIQKD as obtained from Bell-CHSH and those offering DIQKD from ENC as
derived above.
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Before elucidating the result we provide a qualitative proof. It is important to
note that (noisy) correlations between Alice and Bob could arise from various factors
including presence of noise in the channel, eavesdropper, misalignment of reference
frames, noisy measurements etc. For a DI approach, no aforementioned constraints
are put on the channel or devices with Alice and Bob; one is only concerned with the
observed correlations between them and not how they arose. Therefore, without loss of
generality, the condition (4.37) can be compared with the one derived in [39] by eval-
uating the basis of measurements which saturate the inequality and calculating
the Bell CHSH violation for the same. The required measurement basis can be evalu-
ated by using Eq. (4.13) and (@.37)), which corresponds to # = 0.50 rads. The violation
of CHSH inequality evaluated for this basis turns out to be equal to 0.83 which is the
same as in [39] up to some numerical errors. Therefore, correlations not exhibiting a
violation of the entropic CHSH inequality are still secure as they lie in the region of
security as dictated from violation of CHSH inequality.

We now provide a quantitative analysis of the same. Before proceeding, it should
be noted that the DI correlations as obtained from the negative region of Eq.
include correlations which are entropically classical and local as well as which are
entropically classical and non-local. In order to make a concrete connection with DI
correlations obtained from Bell-CHSH, we only consider those correlations following
the optimal strategy of Eve and declared non-local by Bell-CHSH inequality.

From Eq. (4.22), the correlations as observed by Alice and Bob under the strategy
so dictated for Eve are as given in Table[4.2] These correlations are derived in a manner
similar to Eq. (#¢.31)). From Eq. and Table the value of ~ for which DI can
be achieved is evaluated to be v = 0.938. For the same value of + it is a routine
calculation to evaluate the Bell-CHSH violation [[59] which is found to be 0.836, which
are the same as derived in [38} 59]] up to numerical errors. Therefore it is found that
the correlations which offer device independence security for entropic inequalities are
the same as the ones offering the DI security for Bell-CHSH inequalities. This result is
surprising as such a region is not expected a priori. Furthermore, the condition (4.37))
singles out all the correlations which will offer DI security, irrespective of the form of
non-locality used (standard or information theoretic).

4.6 Conclusion

In this chapter we devised a DIQKD protocol based on entropic correlations, which we
term as entropic key distribution (EKD) protocol. Although the protocol is generalized
for even n number of observables, we explicitly provided the relevant measurements
basis for 4 observables to be chosen by Alice and Bob to maximize their correlations.
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4. From entropic inequalities to secure quantum key distribution

Table 4.2: Correlations between Alice and Bob for different measurement settings (hori-

zontal rows) and outcomes (vertical columns) under an optimal strategy of Eve.

» Y00 01 100 11
00 3 3 3 1
or |5 5 5 57
L e Al i Rl
11 i 3 3 1

These correlations correspond to a violation of the ENC inequality and the entire sce-
nario is reminiscent of the CHSH inequality. We then showed that a supraquantum
eavesdropper, Eve, limited only by the no-signalling principle cannot be correlated to
either Alice or Bob, if their correlations violate an ENC inequality. This lead to the
emergence of monogamy relations between Alice, Bob and Eve, which we showed
by a graph theoretic analysis. Our strategy to check for the existence and derivation
of monogamies using graph theory can be applied to arbitrary scenarios of ENC in-
equalities. Furthermore, the optimal strategy of Eve is also discussed against which
the protocol is shown secure. Using the derived monogamy relations we showed that
Eve’s optimal information about the key is upper bounded and the key can be deemed
secure if Alice and Bob’s correlations violate the ENC inequality. From our approach
we also identified a set of correlations deemed secure in DI manner to be exactly the
ones as derived in [538) 59]] necessary for DI security in the case of Bell-CHSH in-
equality. Unlike DI security based on Bell’s inequalities our condition can be easily
generalized to even n observables, which we also show. Furthermore, since our EKD
protocol requires evaluation of Shannon entropies, it is also possible to implement it
using current experimental techniques.
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Chapter 5

Role of Bell violation and local
filtering in quantum key distribution

5.1 Introduction

Quantum information theory has been instrumental in the development of quantum key
distribution (QKD) protocols in which two parties, namely Alice and Bob establish a
secret key for secure communication [44} 56, 57,160, 83]]. They are majorly classified
in two different classes, namely, prepare and measure and entanglement based.

QKD Protocols in both the classes as mentioned above are proven to be robust
against eavesdropping [38, 159, 64, 165, 66] and have been shown to be fundamentally
secure as opposed to the classical key distribution protocols.

It has been shown that a violation of a Bell type inequality is necessary for the
security of an entanglement based QKD protocol [84, |85], even though the security
of the protocol can be shown by comparing the information content of the eavesdrop-
per to the information content of the two involved parties [86]. It is also known that
entanglement is necessary but not sufficient to violate a Bell’s inequality [87]. From
these arguments, a huge class of entangled states is rendered unusable for entangle-
ment based QKD. Furthermore, the question whether Bell violation is also a sufficient
condition for the security of QKD is also not definitely settled and has been a matter
of debate [58]]. Since entanglement is an expensive resource, it is important to charac-
terize such states and explore if it is possible to carry out QKD with states which are
entangled but do not violate any Bell’s inequalities.

Any Bell type inequality [23}135] such as the CHSH inequality [10], I3322 inequal-
ity [88,189]], and the CGLMP inequality [68]], characterizes the non-classicality or non-
locality of correlations. Due to a lack of analytical results of Bell violation for more
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than two measurement on each parties, we consider only the Bell-CHSH inequality in
this chapter. However, it is worthwhile to mention that there exist states that do not vi-
olate the Bell-CHSH inequality but may violate some other Bell inequality with higher
number of measurement settings. A particular example for the same can be found in
Ref. [89].

While in the previous chapters we focussed on standard and entropic contextual
and Bell inequalities, in this chapter we target the standard Bell-CHSH inequality for
QKD. Specifically, we propose a geometrical representation of correlations and relate
the Bell-CHSH violation with the secure key rate specifically for the protocols for
which the secure key rate is a function of the error rate only. Such a representation
allows direct inference of the quantum bit error rate alongwith Bell-CHSH violation.
It is extremely helpful in identifying states offering optimal security. Using this rep-
resentation we also identify a class of states showing Bell-CHSH violation but which
do not offer any secure key. These states are therefore unusable for QKD as they lead
to a higher error rate. We also show that using local filtering operations some of the
states which initially showed no Bell-CHSH violation can be made to provide non-zero
secure key rate. Hence, we conclusively prove that Bell-CHSH violation as an initial
resource is neither necessary nor sufficient for the security of QKD protocols, thereby
proving a conjecture put forward by Acin et. al. [38]. To that effect, we propose a
modified QKD protocol which uses local filtering to acquire higher secure key rate.

In this chapter we derive our results based only on two assumptions: i) We consider
those entanglement based protocols for which the secure key rate is a function of the
quantum bit error rate only, and ii) Bell-CHSH violation is necessary to ensure that
the correlations shared by the parties are secure. The protocols we consider also en-
compass one way, two way or n-way communication schemes for entanglement based
QKD and are therefore more general.

Various methods to improve the secure key rate have been considered in the lit-
erature, many of them focussing on classical post processing schemes like advantage
distillation [90]. It has also been shown that there exist bipartite bound entangled states
which initially do not violate any known Bell’s inequalities, but can be transformed us-
ing local operations and classical communications to states from which a secure key
can be distilled [91]]. However, there also exist states that violate the Bell-CHSH in-
equality and still cannot be transformed into states useful for QKD, examples of which
we provide in this chapter.

Here we use local quantum filtering to alter the secure key rate and Bell-CHSH vi-
olation. Local filtering operations allow states to reveal hidden Bell non-locality [92]
and can therefore increase the secure key rate. Local filtering is a special class of
entanglement distillation and is generally applied on single copies. Moreover, since
QKD protocols are typically implemented on photonic systems, single copy operations
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prove to be more practical than multicopy operations. Therefore, from an experimen-
tal point of view, local filtering is far more accessible than multicopy entanglement
distillation [93]].

5.2 Background

In this section we describe a general entanglement assisted QKD protocol and discuss
many of its features including the quantum bit error rate and secure key rate.

5.2.1 Entanglement assisted QKD protocols

In this chapter, we are interested in only those entanglement assisted QKD protocols
in which the secure key rate is a function of quantum bit error rate (QBER). This
assumption also encompasses any n-way communication scheme. Here, we define the
QBER and the minimum secure key rate ,,,;, for the simple entanglement based BB84
protocol.

Consider two parties Alice and Bob who wish to share a secure key. Initially they
share a bipartite entangled state p. Each of them have a choice of L number of d-
outcome mutually unbiased measurement bases (MUBs), where d is the dimension of
each of the subsystems. They randomly choose and perform a measurement from the
aforementioned set of L observables on their respective subsystems and keep a record
of the outcomes. Afterwards, they publicly compare their measurement bases and keep
only those outcomes for which their bases matched. The correlations so shared form
the raw key. After sharing a raw key, the parties can perform information reconciliation
and privacy amplification protocols to share a fully secure key. These protocols utilize
classical algorithms and only enhance the raw key. Therefore, if there is no raw key,
the protocols will not provide a secure key. Since they are classical in nature we do not
consider them in our analysis, but rather focus on the raw key itself.

In the ideal scenario, after basis reconciliation Alice and Bob are left with perfectly
identical keys. However, in a pragmatic scenario, imperfections in preparation of the
state, its transmission and the subsequent measurement processes can yield differences
in their key strings. Therefore, they may be not perfectly correlated. Alice and Bob
can estimate the average error in their correlations by calculating the QBER () after
comparing a small portion of their secret key. Formally, the QBER () for a given
state p is defined as the average mismatch between the outcomes of Alice and Bob
when they perform measurements in the correct basis. If Alice has L number of MUB
denoted by {|¢¢)}2; (for 1 < o < L) which are correlated to Bob’s MUB {|¢%)}9_,,
then a perfect correlation between the parties would imply that whenever they perform
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5. Role of Bell violation and local filtering in quantum key distribution

measurements in the -th basis and Alice’s outcome is %) then Bob’s outcome must
be |¢$). In a realistic scenario, there can be some probability of observing |¢f*) for
Alice’s measurement and |gb§‘> for Bob’s where i # j. Hence, the QBER which is an
average of all these mismatch probabilities and can be expressed as: [86]

Q:l

ll

L d
DO W lpluses). (5.1)
a=1i#j=1

The expression for QBER in Eq. (5.1)) holds for any L < d + 1 number of MUBs.
For the purpose of this chapter we restrict our analysis to qubits only, i.e., d = 2. In
this scenario and for the case of two mutually unbiased measurement basis with each
party, QBER can be calculated using Eq. (5.1)) as

Q= 1 (2 - wBT?Jo - w'iTyl) )
1

7 2= Ml =), (5.2)
where x; and y; are the Bloch vectors of the measurement basis with Alice and Bob,
respectively, and 7" is the correlation matrix obtained from the two qubit state p and A\,
and )\, are the two largest singular values of the matrix 7. It should be noted and as is
also intuitive that minimization of the QBER will maximize the secure key rate 7,,;,.

In a similar fashion, it is possible to analyse the case of L = 3, in which both the
parties have a choice of three mutually unbiased measurement basis. For this case, the
QBER can be calculated as,

1
Q= 6(3 —xiTyy — ¢\ Ty, — x5 Ty»)
1 (5.3)
= 5(3 — (M| = A2 = [As)).

Due to a lack of complete analytical understanding of Bell inequalities which use
more than two measurement basis, we focus our work on L = 2 case. This corresponds
to the well known Bell-CHSH inequality. The minimum secure key rate r,,;, is defined
as the average number of secret bits that can be distilled from each run of the protocol
when both the parties peform measurements in the basis as dictated by the protocol.
The secure keyrate r,,;, depends on a number of factors including the strategy incor-
porated by the eavesdropper and the QBER (). Hence there is no general expression
for calculating r,,;, for a given value (). For some special cases, it is possible to esti-
mate 7,,;, and arrive at an expression. As an example, consider the case of symmetric
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attacks by Eve (as presented in Ref. [86]) in entanglement assisted protocols for qubits
with two measurement settings, the secure key rate is given as [86]]

Tmin = 1+ 2(1 — Q) log, (1 — Q) + 2Q log, Q. (5.4)

It should be noted that only when 7,,,;,, > 0, is it possible to distill a secure key from
the correlations between the parties. This condition constraints the maximum QBER
to @ ~ 11% for the symmetric attacks. However, for other protocols it might be more
or less than 11%.

From the above it is seen that QBER and the expectation value S of the Bell op-
erator are both functions of the singular values A;, Ao of the correlation matrix 7.
Therefore, we now have two separate conditions for the security of a QKD protocol.
The first one being 7,,,;,, > 0 for a secure key to be distilled while the second dictates
that the underlying entangled state must necessarily violate the CHSH inequality.

5.2.2 Local filtering

In this subsection, we present a special class of local quantum operations which we
show to be useful for concentrating entanglement and Bell-CHSH correlations in two-
qubit systems. These operations are termed as local filtering operations.

Local filtering operations transform a state p to p/, the latter of which has a higher
concentration of entanglement and Bell non-local correlations. Consider single-qubit
measurements acting locally on a two-qubit system where the measurement operators
My, M, act on the first qubit and Ny, N, act on the second qubit. For completeness of

measurement outcomes, we have My = /1 — MlTMl and Ny = /1 — NlTNl. The
state after measuring M, and N; on their local subsystems is given by,

, (My @ Ny)p(My @ Nyt
 Tr(My @ Ni)p(My @ Ny))'

(5.5)
The entanglement content, denoted by concurrence, in the state p’ is related to the
entanglement content in p as [94, 93],

|det(M, )]|det(N, )|
tr((M{ M1 ® N{N1)p)

C(p') = C(p) (5.6)

As can be seen the entanglement content in the latter state can be made to increase if we
consider operations with |det(M;)| # 0 and |det(Ny)| # 0 and |det(M;)||det(Ny)| >
Tr((M] M, ® N{Ny)p). 1t should be noted that a higher entanglement content does not
necessarily imply higher Bell-CHSH violation. However, it can be shown that for a
certain class of states, Bell-CHSH violation can also be made to increase [96] by local
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filtering. Specifically, the state p can be filtered to a state p’ which is Bell diagonal
or a special form of the ‘X state [33, [92] and subsequently has higher entanglement
content and higher Bell non-local correlations.

Following Ref. [92]], we briefly illustrate the method to obtain a two-qubit filtered
state.

Any valid operations on the state p can be seen as a proper orthochronous Lorentz
transformations on the Mueller matrix M [Eq. (1.16)] as

M' = Ly, ML}, . (5.7)

The Lorentz transformations, L,;, and Ly, are given in terms of the measurement

operators as:
T(M, ® My)T?

Ly —
" [det(My)]
T(Ny @ N7)T'T
LN1 = )
|det(NN1)] (5.8)
10 0 1
: rf{fo1 1 o0
10 0 -1

Further, the Mueller matrix M can be brought to a diagonal or a special form by
Lorentz transformations L, and L as

M = LxLY, (5.9)

where Y is a diagonal Mueller matrix corresponding to a Bell diagonal state or of the
form

a 0 0 b
0 d 0 0
Y= 00 —d 0 , (5.10)

c 0 0 a+c—0b

where a, b, ¢, d are real numbers. The latter form can be brought close to a Bell
diagonal state for d # 0 by repeated applications of local filtering operations, while
d = 0 corresponds to a separable initial state [97]]. A closed form solution relating Bell
violation and local filtering can also be found in Ref. [97].

These optimal local filtering operations applied on the corresponding Mueller ma-
trix can be represented as matrices. These matrices can be constructed by considering
its columns as the eigenvectors of M/GMT G and its transposition respectively, where
G = diag(1, —1,—1, —1) is the Minkowski metric. The Mueller matrix M under these
optimal Lorentz transformations then transforms as

M = LTGMGLs,. (5.11)
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Finally, the singular values of the matrix M;;, i, j € {1, 2, 3} are the singular values of
the correlation matrix 7.

It is to be noted that the set of states corresponding to the non-diagonal Mueller ma-
trix X is of measure zero and thus has almost zero probability of occurrence. In some
scenarios these states can be brought to a Bell diagonal form with higher entanglement
content and Bell-CHSH violation.

It is worth noting that local filtering operations for two qubit systems are a special
case of entanglement distillation [94, 95]]. This is the case when the aforementioned
local operations are performed on single copies of the quantum state. In contrast, dis-
tillation requires multiple copies of the quantum state. In the present work we however,
restrict the access of the interested parties to single copies. Under this paradigm we
then calculate the quantum bit error rate after local filtering.

5.3 Results

In this section, we develop a geometrical representation of quantum correlations to
study the Bell-CHSH violation and the QBER for arbitrary two-qubit states. We
achieve this task under the following assumptions:

1. We consider only those entanglement based protocols for which the secure key
rate is a function of QBER only and,

2. Bell-CHSH violation is necessary for security.

Following only these two assumptions, we apply our representation of quantum
correlations to explicitly identify states are optimally secure and states which are not
for the purpose of QKD. This identification is done for a fixed value of Bell-CHSH
violation. Our geometrical representation offers a useful visualization of arbitrary two-
qubit states from the viewpoint of QKD. We then formulate a modified QKD protocol
which involves local filtering to improve the key rate. Finally, we conclude by provid-
ing explicit examples of two qubit states which initially do not exhibit any Bell-CHSH
violation but can be transformed to states with non-zero secure key rate after local
filtering.

5.3.1 Geometrical representation of correlations

As detailed in Sec. [[.1.5] all two-qubit states can be parameterized by the two largest
singular values of the real correlation matrix 7'. This is true if the scenario of interest
is Bell-CHSH inequality. For a bonafide quantum state all the singular values of the
T matrix must satisfy |\;] < 1and > ; A\? < 3. The region outside these constraints
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correspond to unphysical states and are not valid density matrices. For ease of calcu-
lations we only consider the region 0 < A\; < 1 and 0 < Ay < 1 as all the arguments
presented below apply equally well to the other valid regions.

A geometrical representation of all two-qubit states parameterized by their two
largest singular values of the correlation matrix 7" is depicted in Fig. [5.1] In this rep-
resentation all physical states are represented by shaded regions while the unshaded
region corresponds to unphysical states. As can be seen all the physical states with a
fixed value of S of the expectation value of the CHSH operator lie on the circular arc
A2 + A2 = S?/4. Therefore, the set of all physical states that all show a violation of
the Bell-CHSH inequality lie outside the disc of unit radius )\f + )\g < 1, as is evident
from Eq. (I.19). Meanwhile the set of physical states lying outside this region do not
show a violation. Thus, for a given physical state its distance from the origin quantifies
the Bell-CHSH correlation and if this distance is above 1 the state is seen to violate the
Bell-CHSH inequality.

In this geometric representation, the QBER @ (5.2)) is represented by straight lines
with slope —1, i.e, A+ = m (Fig. , where m is the y-intercept. These states offer
the same () = }1 (2 —m). Increasing values of m for the straight lines corresponds to
a decreasing QBER.

5.3.2 Characterization of states based on the geometrical repre-

sentation

Using the geometrical representation of quantum correlations as described above it is
possible to identify states which violate the Bell-CHSH inequality, but still cannot be
used to distill a secure key rate. This technique of recognizing states which are useless
for QKD, is more strict than the one identified earlier [86]. Our representation also
enables identification of a set of states most suitable for experimentally implement-
ing entanglement assisted QKD protocols with a fixed violation of the Bell-CHSH
inequality.

As is evident from Fig. the set of states having the same Bell-CHSH value S do
not necessarily share the same QBER (. Therefore, for the same Bell-CHSH violation,
states might not share the same secure key rate r,,;,. Since quantum entanglement is
an expensive resource to produce, the variation in the QBER for the same value of
Bell-CHSH violation S indicates that some states are more suitable for performing
QKD than others. This further implies that Bell-CHSH violation alone cannot provide
a full characterization of the security of an entanglement assisted QKD protocol.

It should be noted that all states saturating the Bell-CHSH bound lie on the circle
/\f + )2 = 1. However, as is also noted in Sec. all of these states do not share
the same QBER (). The set of states offering the least () for a given value of S lie
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Ao WS<2

States violating CHSH inequality
with @ > Qcrit

States violating CHSH inequality
with Q@ < Qpit

O
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Figure 5.1: A geometrical representation of the Bell-CHSH inequality and the QBER @
parameterized by A; and Ao. The dark grey region corresponds to states which violate the
Bell-CHSH inequality but offer ) > Q.;;. These states are therefore unusable for QKD.
Only the states lying in the light grey region offer a secure key rate while also violating
the Bell-CHSH inequality.
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on the line which is tangent to the circle of radius S/2 satisfying A\; = Ay = 5/2+/2.
Therefore the set of local states saturating the Bell-CHSH inequality and offering the

least QBER correspond to the point <%, \%) (Fig. . These states offer no security
for QKD as we have assumed that the Bell-CHSH violation is necessary for the same.
We define the QBER at for the set of states at this point as the critical error rate given
by Qcrit = % (2 — \/5) ~ (.14, which is the maximum allowed QBER for any QKD
protocol (based on our assumptions) to be secure, irrespective of the type of attacks by
an eavesdropper. All the state on the line \; + A\ = v/2 have the same critical error
rate (Fig.[5.1). Therefore, all valid quantum states lying below this line posses a higher
QBER and therefore can not be used for QKD. To summarize, all the states above
A? + \2 = 1 violate the Bell-CHSH inequality and all the states below \; + Ay = v/2
have QBER more than (). Therefore they are unusable for QKD. The region of
intersection between these two regions contain states which are useless for QKD, even
though they are Bell non-local.

The line corresponding to the critical QBER, \; + Ay = V2 provides the theo-
retically maximum tolerable QBER for carrying out secure QKD using Bell-CHSH
violation as a necessary assumption. It may be the case that for a particular QKD pro-
tocol @).,;+ is smaller than the one we obtained. As an example, ()..;; in the protocol
presented in [86] is ()., = 0.11 which is smaller than the theoretical critical value
calculated from our representation. The reason for this is because ()., is obtained
from a particular form of r,,;, which implicitly depends on the attacks and strategies
chosen by the eavesdropper and the particular communication scheme chosen by Alice
and Bob. For the huge class of attacks detailed in Ref. [86l], 7;,,;,, takes on the form as
given in Eq. (5.4). The value of @)’,.,, = 0.11 has also been shown to be optimal under
two way communication schemes [38} [98]. However, it is possible that there might
exist attacks that may not result in the aforementioned function of secure key rate.
Furthermore, by employing n-way communication schemes, the tolerable QBER may
also be improved. For these schemes the form for secure key rate is also different than
the ones obtained in [86]. However, our results are more general as we do not make
any assumptions on the various forms of attacks and strategies by the eavesdropper or
any communication scheme, but rather that the correlations with Alice and Bob violate

the CHSH inequality.

In order to perform QKD protocols, it is necessary to transmit the quantum sys-
tems through channels which might be noisy. The noise can then affect the state of the
quantum systems. Therefore, it is not always possible to achieve the quantum max-
imum of the Bell-CHSH inequality. In these cases, it is desirable to identify states
most suitable for QKD for a particular value of Bell-CHSH violation. Furthermore,
these states should also have the property of offering the least QBER for a fixed vi-
olation. As detailed in Sec. [5.3.1] these set of states are identified with the points
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Figure 5.2: A schematic diagram to implement the modified QKD protocol using local
filtering operations. Each party shares an initial entangled state p on which they both apply
local filters denoted by F7 and F». Using classical communication, the parties discard the
events when any of the parties observed the outcome Ma or Ny. Only when both the
parties observe M and N7 do they proceed to perform the measurements Ay, A1 and By,
B as dictated by the protocol.

M| = o > 1/V2.

In a non-ideal situation for QKD, the two parties Alice and Bob may share states
violating the Bell-CHSH inequality but with an error rate higher than ).,.;;. It is then
desirable to transform these states such that the QBER is reduced below the critical
value so that a secure key can be distilled. Since, QKD is carried out between remote
locations, such transformations will necessarily have to be local operations performed
by Alice and Bob. However, it is known that local operations in themselves cannot
increase the Bell-CHSH violation unless there is some post-selection performed by the
parties.

5.3.3 QKD protocol using local filtering operations

In a modified version of entanglement assisted QKD, it is assumed that a source is re-
sponsible for generating pairs of qubits in maximally entangled states. These states are
tranmsitted to Alice and Bob through a channel. It may be the case that the source is in
the lab of one of the parties, and the second subsystem is transmitted to the other party
via a quatum channel. This does not change the analysis which we are going to present
below. Due to various noise factors in the quantum channel and a possible presence
of an eavesdropper, the state received by Alice and Bob is generally a mixed state p,
which can be estimated by performing a full state tomography before beginning the
actual QKD protocol. Therefore, we naturally begin our protocol by assuming that Al-
ice and Bob share entangled pairs of qubits in the states p with Bell-CHSH value S. In
order to increase the Bell-CHSH violation and the secure key rate the parties perform
local filtering operations. Let M, and N; be the optimal filtering operators for concen-

trating entanglement in the state p where My = /1 — MlTMl and No = /1 — NlTNl
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5. Role of Bell violation and local filtering in quantum key distribution

(as described in|5.2.2). { Ay, A1} and { By, B; } are the dichotomic observables in Alice
and Bob’s lab, respectively. The modified protocol consists of the following steps:

1. Alice and Bob perform local operations using {}M;} and {/N,} measurement
settings followed by the measurement of { Ay, A;} and { By, B }.

2. Alice and Bob announce the outcome of the measurement in {)/;} and {N;}
measurement settings and the choice of the measurement operators {Ag, A;}
and { By, B, } for each of the qubit pair.

3. They consider only the qubit pairs for which M; and N; coincided, i.e., the pairs
for which local filtering was successful. Then they reconcile their measurement
basis {Ag, A1} and { By, B;} and discard the qubits for which the measurement
was performed in different bases.

Since, generally QKD protocols are implemented on photonic systems any measure-
ment tends to demolish the state. In this case local filtering followed by the mea-
surements in { Ay, A} and { By, B} basis can be implemented by post-selection. In
Fig. [5.2] we outline of the modified QKD protocol using local filtering operations.
Our modified QKD protocol as presented above relies on the fact that it is possible to
successfully filter an ensemble of two qubit partially entangled states into a smaller en-
semble with higher entanglement content. The states with enhanced entanglement are
then used for QKD while the other states are discarded. By using this process it is pos-
sible to transform states useless for QKD into those which are useful for QKD with the
probability of success in the filtering process being Pyee = Tr[(M; @ Ny )p(M] @ N)).

5.3.4 Example of states that do not violate Bell-CHSH inequality
but can be used for QKD

We now illustrate explicitly some examples of states where filtering process is useful
in enhancing the key rate. We begin with the following class of pure two-qubit states:

|1) = a1|00) + ap|11) + a3]01), (5.12)

where it is assumed that o; € R and a3 +a3+a2 = 1and a; < ay < as. Furthermore,
it is to be noted that this example of a set of pure state is to be treated as a theoretical
exercise rather than occuring in a physical experiment. The state [¢)) is maximally
entangled if and only if of = a3 =  and The Bell-CHSH violation for the state can
be calculated readily using the methods described above,

S =24/1+4a2a3, (5.13)

66



5.3 Results

0.8+

@2

0.4r

0.2+

0 L ! ! 1 ! 1
0 0.2 0.4 0.6 0.8 1

@4

Figure 5.3: Contour plot of A\; 4+ Ay as a function of «; and as with A\; + Ao = 1.01
(Red solid), A\; + A2 = 1.1 (Yellow dashed), A1 + A2 = 1.41 (Green large dashed), while
the Black solid line is the boundary for the set of all physical states and corresponds to
a? + a2 = 1. For the purpose of QKD it is required that \; + Ay > 1.41 ~ /2, which
identifies a huge set of states in the parameter space of o; and a to be useless for QKD.

where A\? + A3 = 1 + 4a?a2 and the error rate to be

(1 = 2|as[|azl), (5.14)

NN

Q=

where A\ + Ao = 1 + 2|y || ).

We plot contours of A\; + A, in Fig. [5.3|for this particular class of pure states. From
Fig. it can be inferred that there exist a huge set of states which have () > Q..;1.
As an example, consider the state given by a; = 0.1 and s = 0.2, we have

A1+ Ao = 1.0400 < V2,

5.15
A2 4+ A2 =1.0008, ©-15)

which implies that the state shows very little Bell-CHSH violation and has error rate
higher than the critical value. It is well known that all two qubit entangled states are
distillable an in principle, it is possible to perform entanglement distillation (single-
copy or multi-copy) and distil pure two qubit Bell states. In this case the entanglement
of formation is the same as distillable entanglement which reads,

E(¢) = =Tr(palog, pa) = 0.005, (5.16)
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5. Role of Bell violation and local filtering in quantum key distribution

where p4 is the reduced state of Alice. This gives us a qualitative indication that the
state can be used for QKD. However, the method to harness its usefulness remains to
be seen.

In order to extract some usefulness from these states, the parties perform local fil-
tering operations. Since in general the underlying systems are optical in nature for
the purpose of QKD, it is not clear how multicopy entanglement distillation will be
performed. To that end we focus on local filtering, which is a special case of multi-
copy entanglement distillation dealing only with single copies. After performing local
filtering operations, the state [¢)) can be brought into a Bell-diagonal form with the
following properties (see Sec.[5.2.2)),

N+ Ny = 1.7354 > V2, 517
Mg+ N2 =1.2271, C-17
where )} are the singular values of the correlation matrix for the state transformed after
local filtering.

The above properties state that the filtered state has a higher Bell-CHSH violation
and lower QBER than the critical error rate. Therefore, the states (5.12)) belonging to
the region where Bell-CHSH violation is observed but having ) > @)...;; can be filtered
to the region where a higher Bell-CHSH violation is observed alongwith Q) < Q...
The secure keyrate r of the protocol with these states can be calculated and turns out
to be

T = BauccTmin

i (5.18)
= 0.2565 bits,

where Py, = 0.8638 is the probability of the successful local filtering and 7,,,;,, =
0.2972 bits is the secure bit rate after successful filtering.

It should be noted that any noise acting on the initial state will always yield a
mixed state. The aforementioned example might serve as a theoretical exercise to show
that pure entangled states can also be filtered locally to obtain higher Bell violation.
However, we analyse the properties of the states transformed from Eq. under the
action of white noise.

We now present a family of mixed states which might occur in some physical re-
alisation of entanglement assisted QKD protocols. These states do not show any Bell-
CHSH violation; however, upon local filtering it is possible to distill some non-zero
secure key rate from them. Consider the class of states with a density operator given
by

1
p=-[1@1+Ac?-5)(0.01-1®0,)

4 (5.19)

+(1=2\N)o,®0, — 2 af(o, ® o, + 0, @ 0y) |,
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where a, 8 € R, a?> + 32 = 1and 0 < XA < 1. These states have been studied
extensively under local filtering operations [96]. The behaviour of these states for a
fixed value of Bell-CHSH violation and error rate is as plotted in Fig. [5.4] The dark
grey region depicts the set of states which can filtered to states which can violate the
Bell-CHSH inequality and have ) < Q).,;;. The contour corresponding to ()..;; given
by A1 + X2 = v/2 is given by the black solid line in Fig. and it is seen that there
exist states which violate Bell-CHSH inequality and still have () > @..;;. However,
these states can also be filtered. As an example consider the state p with a = 0.9,
B = 0.4538 and A = 0.85, with the following properties,

A2 4 A2 =0.9347,

(5.20)
A1+ Ay = 1.3669.

This is an example of a state that does not violate Bell-CHSH inequality and is
therefore useless for QKD. The distillable entanglement from this state turns out to be

Vi
E(C(p) =h|—F—
2 (5.21)
= 0.3722,
where C' is the concurrence of the quantum state and h(z) = —xlogyx — (1 —

x) log, (1 — x) is the binary entropy. This again states that the state p considered above
can provide some secure key.

After an application of optimal local filtering operations as detailed above, we get
the state p’ with the following properties:

MNP 4+ \F = 1.3329,

5.22
N+ N, = 1.6327. (5-22)

The resultant state p’ violates the Bell-CHSH inequality with Q < Q..;, indicating
that it is now a useful state for QKD. Consequently, the keyrate r for the transformed
state can be calculated as

r= P@uccrmin

= 0.091 bits,

where Py, = 0.799 and r,,,;, = 0.110 bits.

It should also be noted that at the level of single-copy distillation, the local filtering
operations considered above have been shown to be optimal for concentrating entan-
glement and Bell non-locality [92]]. Therefore the key rates obtained after applying
local filtering, are the best that can be achieved, given access to individual copies only
for the entanglement based QKD protocol.

(5.23)

69



5. Role of Bell violation and local filtering in quantum key distribution

0 O L L L L L
0 0.2 0.4 0.6 0.8 1.

02

Figure 5.4: Contour plot of states with parameters a and A as given in Eq. with
varying values of A2 + A2. In order to exhibit Bell-CHSH violation it is required that
A2+ )\% > 1 (Red dashed). For the purpose of QKD it is required that A\; + Ao > /2
(Black solid). All states lying below this contour exhibit a higher error rate than ()..;+ and
it can be seen that some of them still exhibit Bell-CHSH violation. The set of useless states

that can be made useful by local filtering is given by the region in grey.
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Further, according to [92]], Bell-diagonal states cannot be filtered further. From
Fig. it can be easily seen that there exist such Bell diagonal states which exhibit
Bell-CHSH violation, having () > Q).+ and which cannot be filtered. These states re-
main useless for QKD even after filtering, thereby indicating that Bell-CHSH violation
is not a sufficient condition either.

5.4 Conclusion

We develop a geometrical representation for two-qubit correlations to quantitatively
analyse the relationship between the secure key rate of a QKD protocol and the vio-
lation of the Bell-CHSH inequality. The usefulness of this geometrical representation
is demonstrated by showing that states sharing the same non-local correlations do not
necessarily share the same secure key rate. This leads to an important conclusion that
some states are more apt for performing QKD efficiently than others, even when they
share the same non-local correlations.

For fixed (non-maximal) Bell-CHSH violation the states that are optimally suited
for performing QKD are located, which can be useful when Alice and Bob share a non-
maximally entangled state. We use the threshold error rate requirement for security to
identify a class of states which cannot be used for QKD, even though they exhibit a vi-
olation of the Bell-CHSH inequality. This is an improvement over a previous result and
has profound experimental implications to develop QKD protocols with non-maximal
violation of Bell-CHSH inequality. Such states which are deemed useless for QKD
can be seen as a result of the specificity of the protocol considered or because of errors
arising due to preparation, transmission or measurements. To harness the entanglement
present in states that do not violate Bell-CHSH inequality we employed local filtering
operations and found that the performance of such states can be greatly improved in
terms of providing key rate for QKD. The local filtering operations considered is a
special subclass of entanglement distillation dealing with single copies. Under the
paradigm of single copy distillation not all entangled states can provide a secure key as
compared to multicopy distillation in which all two qubit entangled states can be used
to distill some secure key. However, multicopy distillation is harder to achieve experi-
mentally than local filtering. Further, the protocol for local filtering described has been
shown to be optimal in the case of single copies [92] and the secure key rate obtained
under them is the best that can be achieved. We explicitly provided examples when
the original state exhibits Bell-CHSH violation but has ) > ()..;; and states which do
not violate the Bell-CHSH inequality. It is seen that in both cases local filtering offers
improvement in secure key rate. Our work paves the way for efficient experimental
realization of QKD protocols where Bell-CHSH violation is a necessary resource.
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Chapter 6

Non-paradoxical ABL probabilities
give no contextual advantage

6.1 Introduction

Aharonov, Bergmann, and Lebowitz (ABL), in their seminal work on the time symme-
try in successive quantum measurements [99], introduced a retrodiction formula for
assigning probabilities to outcomes of hypothetical measurements on a pre-and post-
selected (PPS) ensemble at some intermediate time. The counterfactual probability as-
signments using ABL formula has led to various counter-intuitive and apparently para-
doxical results [[100, /101,102, 103]] known as pre-and post-selection (PPS) paradoxes.
The strong connection of ABL formula with weak values has also enabled its propo-
nents to claim experimental validation of these paradoxes [104, 105, 106, 107, [108]].

Contrary to the Born rule, probabilities assigned by ABL formula cannot be de-
termined by only the specification of projectors associated with the measurement out-
comes, they rather also depend on other details of the observable being measured. This
sort of context dependency of measurements led Albert, Aharonov, and D’ Amato [[109]
to draw connection between PPS paradoxes and contextuality: since the probabilities
assigned to measurement outcomes are explicitly context dependent, there is no mo-
tivation to consider a non-contextual hidden variable theory as a realistic extension
of operational quantum theory. Nevertheless, this reasoning has been disputed based
on the fact that Bell-type correlations can be simulated using post-selections in local
hidden variable theories [110]. Therefore, the mere presence of context dependent el-
ements in ABL formula is not sufficient to prove Bell-Kochen-Specker (BKS) theorem
[, 26]]. It is therefore necessary to dive deeper in order to establish a valid connection
between contextuality and ABL retrodiction formula.
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6. Non-paradoxical ABL probabilities give no contextual advantage

Mermin [[111] showed the existence of a strong connection between the two by
illustrating how measurements used in a proof of BKS theorem can give birth to un-
solvable PPS paradoxes indicating a kind of impossibility of non-contextual hidden
variable theories. Leifer and Spekkens [11] later logically showed the converse: for
every PPS paradox with a scenario involving non-orthogonal pre-and post-selection
states, there exists an associated proof of BKS theorem. Their proof is based on the
fact that ABL probability assignments of certain sets of projectors in a variant of 3-box
paradox violate algebraic constraints dictated by classical probability theory. Another
important contribution in this direction was recently made by establishing a connec-
tion between anomalous weak values and contextuality where it has been suggested
that anomalous weak values can be taken as proofs of contextuality [[112, [113]].

So far the studies in this avenue of research have been focused on providing log-
ical proofs of contextuality invoking only the paradoxical nature of ABL probability
assignments. Therefore, it is natural to ask here whether there is any contextual ad-
vantage of non-paradoxical assignments of ABL probabilities, where any ontic model
that can exhibit a violation of a contextual inequality is defined to offer a contex-
tual advantage. In this chapter, by analysing the KCBS [6]] scenario for a statistical
proof of contextuality with ABL formula, we show that non-paradoxical ABL prob-
ability assignments give no contextual advantage. Furthermore, we demonstrate that
non-paradoxical sector of ABL probabilities of KCBS projectors gives contextual ad-
vantage only if the post-selection is lifted. Our result opens serious questions about the
ABL-contextuality connections that have been advocated by previous authors: is this
connection merely an illusion created by post-selection just like the detection efficiency
loophole in Bell non-locality tests? Since non-paradoxical sector of ABL probabilities
can be modelled with a non-contextual hidden variable theory, can ABL retrodiction
be considered a valid description of pre-and post-selected quantum systems at all?

In this chapter we first discuss PPS scenarios and the ABL probability rule in brief
and then use the same to derive (non-)contextual bounds on the KCBS scenario.

6.2 Pre- and post-selected scenarios

A pre- and post-selection scenario deals with statistical assignment of probabilities to
the outcomes of an observable A when the system is selected to be in the state |¢)) prior
to measuring the observable and in the state |¢) after the measurement has occurred.
This selection of states is known as pre- and post-selection respectively. These selec-
tions can be achieved by performing a projective measurement {|¢) (1|, 1 —|¢)) (|} on
the initial state of system (which can be chosen arbitrarily depending on the scenario)
and selecting only the outcomes corresponding to |¢)(1)|. Similarly for post-selection
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one can perform a projective measurement of {|p)(¢|, 1 — |$)(4|} where outcomes
corresponding to |¢)(¢| are selected. The way the assignment of probabilities to the
outcomes of observable A is made leads to two entirely different scenarios.

We describe the two cases below. In the first case, the observable A is actually
measured after performing a pre-selection. Post selection is then performed on the state
after the measurement of observable A. In this case there are a total of three different
sequential measurements being performed. This case is known as non-counterfactual
assignment of probability distribution.

In the second case, the observable A is not actually measured, but rather a prob-
ability distribution over its outcomes is assigned counterfactually depending on the
PPS states. This case is known as counterfactual assignment of probabilities to dif-
ferent possible outcomes of A. For both the case, the rule to evaluate the probability
distribution remains the same and is given as,

_ lmlw)?
>, (@I

where A = > . p;II;. This rule is eponymously known as the ABL rule and is the
same for both the aforementioned cases. However, the interpretation for both the cases
is entirely different and leads to some interesting results, especially when linked to
counterfactual assignments of projectors in the KCBS scenario.

Gi (6.1)

6.3 Results

In this section we apply the ABL rule to counterfactually assign probabilities to the ob-
servables appearing in an operational version of the KCBS scenario. We then analyse
the non-contextual and quantum mechanical test of the same.

An operational version of the KCBS scenario consists of 5 tests e;, i € {0,1,2,3,4}.
A test is an experiment which yields some statistics for a given preparation. These tests
are assumed to be cyclically exclusive, i.e.,

P(e;) + Pleig1) < 1, (6.2)

where 7@ 1 is taken modulo 5. The entire scenario can be represented on an exclusivity
graph, whose vertices correspond to tests and two vertices are connected by an edge if
they are exclusive as given in Fig. [I.T} This scenario is capable of revealing quantum
contextuality if the following inequality is violated as shown in Eq.[I.5]

K=Y Ple) <2, (6.3)
=0
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where the underlying ontic probability distributions, P(e;) are assumed to be non-
contextual. For a more detailed discussion on this we refer the reader to Sec. 1.1.2. Itis
to be noted that this construction of KCBS inequality explicitly refers to the exclusivity
conditions. Therefore any statistical verification of the same must necessarily also obey
the aforementioned conditions.

A valid construction of the KCBS scenario for the quantum case is as follows.
Consider 5 different projective value measurements (PVMs), M; = {II;, 1 — IL;},
i € {0,1,2,3,4}, where P(II; = 1) denotes the probability of obtaining the outcome
I1; in measurement M; and Tr[II;11;;] = 0. Each projector corresponds to a test in
the KCBS scenario and cyclic orthogonality ensures the required exclusivity condi-
tions given in Eqn. (6.2). The maximum value of the KCBS inequality (6.3) for the
aforementioned settings and a state [¢) (I.9) is

Max (%K) := Max (Z P(II; = 1)> =5, (6.4)

which is greater than the non-contextual bound as observed above. This is an indication
of contextual advantage of quantum probability distributions. It is to be noted that any
valid construction of the KCBS scenario in any formalism must necessarily ensure the
exclusivity conditions (6.2)).

Any operational signature of (non-)contextuality from the KCBS inequality must
necessarily satisfy the aforementioned exclusivity conditions. A noncontextual on-
tological model assigns an apriori probability to each of the projectors denoted by a
response function &; () respectively, with A as an ontic variable, such that £;(\) € [0, 1]
and [, dA&;(A)&ig1(X) = 0. The latter condition follows from orthogonality of projec-
tors and together with outcome determinism for PVMs [[7] implies at most one of &;(\)
or ;51 can take on the value 1 and Eqn. subsequently follows. Furthermore, the
exclusivity conditions

Ei(A) + &ier(A) <1 V4, (6.5)

are still satisfied in a noncontextual ontological model. On the other hand by us-
ing carefully constructed PVMs the KCBS inequality can be maximized to the value
max(X) = /5, thereby indicating a contextual advantage.

The foremost requirement to check whether the ABL formalism offers any contex-
tual advantage is to setup the KCBS scenario with the proper exclusivity conditions
given in Eqn. by assigning a probability distribution (; to the projectors under a
pre and post-selection scenario. We choose the pre and post-selected states as 1)) and
|¢) respectively to assign a probability distribution to the projector II; according to the
ABL rule as

(I ]) [

= TR + (oL — )P

(6.6)
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Figure 6.1: A schematic diagram for evaluating the KCBS inequality using the ABL

rule. In the figure (i) denotes a pre-selection of state |¢), (ii) denotes a counterfactual
assignment of projectors II;, (iii) denotes a post-selection of state |¢). After post-selection,
the states are further segregated into ones which obey exclusivity conditions (E) and ones
which do not (N.E.). The KCBS inequality is tested on the states segregated into E.

where we have assumed the measurement to be of the form {II;, 1 — II;}.

We would like to note here that this probability distribution is “counterfactually
assigned" rather than actually performing the measurement. This reasoning is crucial
to the analysis. A non-counterfactual assignment of this probability distribution to the
event e; does not make sense when the question we are interested in is whether such a
distribution exists “prior" to performing an actual measurement. Furthermore, the non-
counterfactual assignment does not lead to any non-trivial results. Therefore, we are
only interested in the case when the ABL rule is used to assign probability distributions
counterfactually, i.e., the projective measurement is not actually performed and the
pre- and post-selected states are assumed to provide a complete description for any
observable.

By careful selection of a pre and post-selected state, such counterfactual assign-
ments can lead to paradoxical situations in which both II; and II;;; are assigned the
probability 1 leading to ¢; + (;o1 > 1, which is a direct violation of the required exclu-
sivity conditions (6.2)).As mentioned above such probability distributions do not fall
under the paradigm of KCBS scenario and have to be excluded. By imposing exclusiv-
ity conditions we are removing all such paradoxes that may arise. We term the resultant
ABL rule to calculate probabilities as non-paradoxical ABL probabilities.

We now propose the following setup to test the KCBS inequality using the ABL
formalism. Without loss of generality we assume a pre-selected state |) as

[¥) = (0,0,1)", 6.7)
and a post-selected state as

|p) = (cos 0, sin @ cos ¢, sin O sin ¢)7 (6.8)
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where 6 € [0, 7] and ¢ € [0, 27]. The projectors II; = |v;)(v;| are of the form,

T
lv) = (1,(), cos7r/5) ,

lv1) = <cos47r/5, —sindn /5, W>T,

l0g) = <cos o /5, sin 27 /5, W)T, 6.9)
lvg) = (cos?w/5, — sin 27 /5, W)T,

lvg) = <cos47r/5,sin47r/5, \/m>T.

We then optimize |¢) for maximum value of K with the exclusivity conditions (6.2
imposed on (; as,
G+ Gen <1Vie{0,1,2,3,4}. (6.10)

The set of post-selected states in the aforementioned optimization giving rise to
probability distributions that do not satisfy Eq. is discarded. We then evaluate
XK using the rule for the measurement {II;, 1 — II;} to assign P(II; = 1) = (;
accordingly. A schematic diagram for the same is given in Fig. [6.1]

It is found that when no exclusivity conditions are imposed on (;, max(X) > 2.25
which falsely indicates a highly contextual behavior while it is known that quantum
theory shows a KCBS violation no greater than 2.25. However, upon proper condi-
tioning we found that no post-selection can lead to a violation of the KCBS inequality.
In Fig[6.2) we plot the intersection of the inequalities (6.2)) and (6.3)) for various min-
imum values of K over the entire region of post-selected states. Incidentally we do
not find any set of states for which KCBS inequality is violated. This provides a clear
evidence of the fact that the ABL formalism does not provide a complete description
under the pre- and post-selection paradigm.

It is also interesting to note that when post-selection is removed, we recover back
the quantum statistics and are once again able to violate the KCBS inequality to its
quantum maximum (6.4). We achieve this by noting that the post-selection is a projec-
tive measurement, M. := {|¢)(¢|, 1 — |¢)(¢|} in which only the outcome |¢)(¢| is
considered. In order to remove the effects of post-selection, it is necessary to consider
all the outcomes of M,,.,;. Therefore, the final state p; after removal of post-selection
is,

pr = pild) (ol + (1 —pi) (1 = [¢)(¢]) , (6.11)

where p; is the conditional probability of obtaining outcome |¢)(¢| given the state
|1)) and is given as

pi = [(¥]9)|*. (6.12)
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Figure 6.2: A region plot corresponding to a set of post-selected states (shaded blue)
for which Eqn. (6.2) is satisfied Vi with (a) KX > 1.4, (b) X > 1.5, (c) K > 1.6 and (d)
X > 1.7. No set of states were found for K > 2.0.

This final state is formed by a convex mixture of two post-selected states, corre-
sponding to |¢){(¢| and 1 — |¢)(¢| and physically implies that all possible outcomes
to M,,s: are now considered to analyse the violation of the KCBS scenario. It is to
be noted that the removal of post-selection via the aforementioned method does not
reduce the ABL rule to the Born rule. The Born rule only depends on the pre-selected
state |1)) and the outcomes of the observable A, while the removal of post-selection in
the ABL depends on the convex mixture of all possible post-selected states as well as
pre-selected state and the outcomes of A. As is evident, the probability assigned to a
particular outcome of A from the Born rule is not the same as assigned from the ABL
rule with post-selection removed.

The final state p; obtained after eliminating the effects of post-selection also de-
pends on the parameters # and ¢. An optimization over these parameters for maxi-
mum value of X under the constraints of exclusivity conditions yields solution up to
K < 2.25, which corresponds to the quantum maximum. The set of all states satisfying
the exclusivity condition (6.10) over the parameter space 6 and ¢ is shown in Fig.

As shown in Fig. [6.2] the ABL rule cannot reproduce contextual correlations,
specifically in the well studied KCBS and n-cycle contextuality scenario. We again
emphasize that only counterfactual assignments of probabilities from the ABL rule
are considered. In Fig. [6.3] we show that it is possible to have a contextual advan-
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Figure 6.3: A region plot corresponding to a set of final states p; (shaded blue) for which
Eqn. (6.2]is satisfied Vi with (a) K > 2.0, (b) KX > 2.1, (¢) X > 2.2 and (d) X > 2.24.
The violation of the KCBS inequality under elimination of post-selection indicates that the

same leads to an incomplete description.
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tage once post-selection is removed, which is exactly the quantum scenario. A single
proof of failure is sufficient to show that the counterfactual ABL rule is in general non-
contextual and cannot capture the complete description of observables in the pre- and
post-selection paradigm.

6.4 Conclusion

In this chapter we have focused on PPS scenarios especially in the case of KCBS
inequality. We show that the ABL rule to evaluate probability distribution over the
outcomes of an observable A in a PPS scenario does not provide a contextual violation
of the KCBS inequality. The ABL rule is applied in a counterfactual manner in which
the observable A is not necessarily measured. In this case, the ABL rule forms an
ontic model of the KCBS inequality with context dependency in the form of pre and
post selected states. Upon proper conditioning of the ABL probabilities in the form of
exclusivity conditions we found that it is not able to reproduce the statistics that are
observed in nature. Essentially, it is found not to violate the KCBS inequality for any
set of pre- and post-selected states.

However, once the post-selection is removed, the ABL rule is able to correctly
assign the probabilities, such that the KCBS inequality is violated. This hints to a
paradoxical nature of post-selection in such scenarios and requires further investiga-
tion.

Our results show that the ABL rule is essentially non-contextual contrary to recent
studies [11, 112} [113]. Most of the recent studies deal with probability assignments
which are not properly conditioned and lead to scenarios where the sum of probabili-
ties of exclusive events can be greater than 1 leading to false signatures of contextuality.
We term such scenarios as paradoxical. Furthermore, all of the aforementioned para-
doxical scenarios show a contextual behaviour via a logical proof of the same. Such
proofs are hard to verify in an experiment. On the other hand we provide a statisti-
cal proof which can be readily verified. Furthermore, it is not clear how weak values
can be interpreted in terms of probabilities and expectation values as they can take on
arbitrary complex numbers.

On the other hand, our results are properly conditioned and explicitly show that
ABL rule is non-contextual.
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Chapter 7
Summary and future outlook

In this thesis we have analysed novel signatures of quantum contextuality and explored
applications of its standard and entropic approaches as well as Bell non-locality in
QKD.

In the first project of this thesis we develop a new generalization of the assump-
tion of measurement non-contextuality, which encompasses a much broader range
of scenarios than the traditional one developed by Spekkens. As a consequence of
this generalization, we find that it is possible to assign a notion of measurement non-
contextuality to a single measurement device which is applied sequentially. This dras-
tically reduces the number of measurements required to reveal quantum contextuality,
which earlier was 5 for PVMs and 3 for POVMs. Our result opens up several new and
interesting scenarios not previously studied and has potential applications in QKD,
parity oblivious multiplexing, quantum computation and in various foundational as-
pects. It is expected that our generalization could lead to robust experimental tests of
contextuality as well as state independent proofs of the same, without the assumption
of outcome determinism.

In the second project we devise a prepare and measure QKD protocol whose secu-
rity is based on the monogamy of contextual correlations. We use the KCBS scenario
to share a secure key between Alice and Bob and derive the monogamy relationship
amongst the three parties including Eve, using a graph theoretic approach. We find
that Alice and Bob can share a secure key if they are able to violate the KCBS inequal-
ity. Our work shows that state dependent quantum contextuality in terms of n-cycle
inequalities can be used to share a secure key. Our work also hints that monogamy
of contextuality is an important resource in information processing tasks and requires
further investigation. An important aspect of our work is that it does not utilize the
costly resource of entanglement and yet provides security via a violation of a funda-
mental inequality. This feature is almost absent in all prepare and measure schemes,
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while being prevalent in entanglement based ones such as E91 and CHSH.

In the third project we apply the idea of monogamy of contextuality to entropic
inequalities. In this case we first demonstrate that a graph theoretic approach can be
used to derive these relations quite easily for entropic contextual inequalities. We
explicitly show when such relationships exist and how they can be derived. We then
proceed to apply these relationships to derive security conditions for protocols based
on entropic inequalities. We particularly focus on the entropic version of the CHSH
inequality which forms a n = 4 cycle graph, while our results can be easily generalized
for all even n cycles. Entropic inequalities subsume both Bell non-local as well as
contextual scenarios, and therefore our results demonstrate how any of these principles
can be used to show security of the QKD protocol. Furthermore, entropic inequalities
are independent of the number of outcomes, thereby indicating that our results can be
easily generalized for all types of measurements with Alice and Bob. Our work acts as
a proof of principle that these entropic inequalities can be used for secure QKD, while
opening up several new research avenues for their application in other information
processing tasks.

For the fourth project we focus on the role of Bell-CHSH violation in entanglement
based QKD protocols. It is well known that Bell non-locality is a necessary resource
for sharing a secure key, while it is still debatable whether it is sufficient as well. We
show that while being a necessary resource it is not sufficient for secure key distribu-
tion. We construct a geometrical representation of all two qubit states parametrised
by their Bell-CHSH violation and QBER. This representation is expected to be advan-
tageous for experimentalists to check which states are optimal for performing QKD
given the two aforementioned parameters in their experiment. From this geometrical
representation we show that there exists states that are not useful for QKD even though
they exhibit a violation of the Bell-CHSH inequality. We further show that local fil-
tering operations can be used to enhance the secure key rate offered by some states,
while transforming some of the useless states for QKD into useful ones. However, not
all useless states can be made useful, most notable being the Bell diagonal states. This
is true even if they violate the Bell-CHSH inequality. Our work is expected to have a
significant impact for experimentalists looking to perform QKD with two qubits.

In the last project we analyse the consequences of applying pre- and post-selection
scenarios as ontic models to describe the contextual behaviour of quantum theory. We
specifically apply the ABL rule in a counterfactual manner to the operational version
of the KCBS inequality and show that it cannot lead to contextual correlations. We
further show that uplifting post-selection leads to a contextual description indicating
that it might be the root cause of all the paradoxes that have plagued PPS scenarios
and weak values. Our work clearly refutes the ABL formalism by providng a simple
counter-example and is expected to open up several discussions.
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In general, the thesis explores the role of foundational aspects of quantum theory
in QKD which can be applied to other communication tasks. In particular, application
of contextuality in device independent scenarios seems a promising avenue while local
filtering operations in the context of entropic inequalities is still an unexplored territory.
Moreover, the connection between non-contextual advantage in PPS scenarios with
post-selection needs to be brought into more focus.
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