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Abstract

Collective behaviour of large number of interacting particles results in fascinating phe-

nomena ranging from as simple as freezing of water to as complex as appearance of su-

perconductivity. Magnetism is a remarkable example of how quantum physics can spring

up new surprises even in cases where relevant particles remain immobile. It covers wide

scale of complexity, from magnets sticking to our household fridges to the exotic quantum

spin liquid phases that define the forefront of current research in quantum magnetism.

Low dimensional spin-1/2 magnetic systems are ideal candidates for observing and un-

covering mysteries of quantum physics as the combination of low dimensionality and low

spin quantum number enhances quantum fluctuations. Motivated by their importance in

understanding fundamental aspect of quantum mechanics and potential applications, a

plethora of low dimensional magnetic materials have been discovered and studied experi-

mentally. However, strictly 1D or 2D magnets are almost never realized in real materials,

as contribution from spins in neighboring chains or planes affect the magnetic ordering.

This often leads to unexpected ordering and phase transitions. This thesis attempts to

understand such low temperature behaviour of real materials, in terms of quasi-1D and

2D model spin Hamiltonians studied using cluster mean field theory (CMFT). The key

idea of CMFT is to treat all interaction links located within the cluster exactly, and to

make use of the conventional mean field decoupling for interaction links connecting the

cluster and the environment. The approach allows for an accurate treatment of short

range spatial correlations, as well as thermodynamic behavior, in the mean field spirit.

The technique captures the subtle competition between different possibilities of magnetic

ordering at the level of finite-size calculations. CMFT successfully explains the origin

of low-temperature peak observed in specific heat data reported in the experiments per-

formed on CuInVO5. For the frustrated ferromagnet β−TeVO4, CMFT is able to uncover

multiple phase transitions in the absence of applied field. In presence of field, it identifies

complex orders such as quadrupolar and vector chiral orders along with specific anomalies

like re-entrant transition similar to experimental observations. Furthermore, a problem of

disordered antiferromagnetic spin chain with anisotropic impurities is explored. CMFT

analysis reveals that a fraction of anisotropic impurities is capable of inducing a Néel

type ordering. In addition to providing a satisfactory understanding of observations on

CuInVO5 and β-TeVO4, this thesis highlights that CMFT can become a powerful tool in

understanding the nature of magnetic order emerging at low temperatures in frustrated

as well as disordered magnets.
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Chapter 1

Introduction

Collective behavior of many interacting quantum particles is full of surprises. The prop-

erties of the phases appearing due to interactions bear little resemblance to those of

the independent degrees of freedom. Many fascinating phenomena such as fractional

quantum Hall effect, Kondo effect, high-temperature superconductivity, etc. [1, 2] are

a result of strongly correlated electrons. Interestingly, even strongly insulating systems

where itinerancy aspect of electrons is inactive, manifest various surprises of quantum

physics. They host a rich variety of phenomena ranging from conventional ordered mag-

netic states to exotic magnetic states and disordered states such as spin glass. In recent

years quantum spin liquid states have emerged as a new state of quantum matter where

spins neither order nor freeze down to very low temperatures. Theoretical and experi-

mental investigations on low dimensional (D) spin systems have attracted considerable

attention recently [3], due to the desire to understand fundamental concepts as well to

investigate the relevance of the materials to possible technological applications. Low

dimensional magnets exhibit stronger quantum fluctuations compared to their higher

dimensional analogues [4]. These systems host a rich variety of phases arising as a com-

bination of lower dimensionality, interactions, effective masses, orbital overlap and spin

sizes [3, 5]. Various low dimensional materials with strong frustrating effects have poten-

tial use in nano-technologies [6], quantum computing [7], refrigerating due to enhanced

magneto-caloric effect [8, 9] etc. Spin chains offer an intriguing solid-state alternative for

short-range quantum communication [10]. In addition to being of fundamental interest

in their own right, spin systems also describe parent states of many important phases.

Lanthanum cuprates (La2−xSrxCuO4) turned out to be an ideal platform for exploring

quantum effects like destruction of Néel order on introduction of holes in planar spin-1/2

antiferromagnets with isotropic nearest-neighbor coupling [11].
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Theoretically, the phenomena of magnetism is studied utilizing model Hamiltonians of

atomic sized magnets (spins) localized on lattice and interacting via mechanics governed

by quantum principles. The topic of lattice quantum spin systems, in itself is a fascinat-

ing branch of theoretical physics [12]. Not only do these constitute the basic models of

quantum magnetic insulators relevant to many magnetic materials, but also serve as pro-

totypical models of quantum systems as they are conceptually simple, yet demonstrates

surprisingly rich physics. The field can be traced back to 1925 when Ernst Ising fol-

lowed a suggestion of his academic teacher Lenz to investigate the one-dimensional (1D)

version of the model which is now well known by his name [13]. Using analytical and

computational techniques, magnetic models are investigated to study critical and scaling

phenomena. Exact (analytical) solutions of the low dimensional models are available for

very few magnetic models. Therefore, sophisticated computational approaches are often

employed to solve variety of magnetic models.

The field of quantum many body physics is characterized by fruitful interplay be-

tween theory and experiments. One of the aims of this research field is to build realistic

models of physical processes often driven by experimental findings. Magnetic properties

observed in naturally occurring magnetite (commonly known as Lodestone) marks the

beginning of magnetic materials [14]. It exhibited the remarkable property to attract

metals without external influence, the phenomenon was later understood as spontaneous

alignment of magnetic moments into finite sized domain. Absence of such a magnetic or-

der was the reason why the discovery of antiferromagnets was delayed. During the period

of seventies and eighties, interests in low dimensional models gained practical relevance

as real materials appeared which resembled the behaviour predicted by theoretical 1D

and 2D models [15]. Magnets in restricted dimensions exist as real bulk crystals with

exchange interactions resulting in magnetic coupling much stronger only in one or two

spatial directions. Therefore, low-dimensional magnets often have all the advantages of

bulk materials in providing sufficient experiments investigating thermal properties (e.g.

specific heat), as well as dynamical properties [16]. In addition, experimental techniques,

such as, Nuclear Magnetic Resonance (NMR) and Neutron scattering directly couple to

magnetic order parameter and are employed to study spatial or temporal correlations

[17]. Magnetic insulators can often be described by simple spin Hamiltonians with few

experimentally measurable parameters, which allows for a quantitative comparison of ex-

perimental data with theory and numerical simulations. In the following section a brief

overview of theoretical models relevant for magnetic ordering arising in the material is

presented.
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1.1 Magnetic Interactions

One of the profound “Surprises in Theoretical Physics” [18] is that magnetism is a quan-

tum mechanical effect. From a classical perspective, magnetic moments originate from

electric currents, which interact via dipole interaction. The magnetostatic interaction

energy of two moments µ1 and µ2 separated by a distance r is

U ∝ µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂)

r3
. (1.1)

Magnetostatic energy of two atomic moments of the order of µB = e~/mc at distances

of the order of Bohr radius r ∼ a0 = ~2/me2, is U h 10−4eV (∼ 1K). This long range

interaction is too weak and only allows for magnetic orders at very low temperatures.

Since, magnetic ordering observed in real materials, e.g. in magnetite (Fe3O4) persist till

about 860K, the phenomenon has to be other than magnetostatic interaction of dipoles.

Nevertheless, magnetic dipolar interaction can be significant to the properties of materials

ordering at milliKelvin temperatures.

Heisenberg Model:

Heisenberg model is an interaction model discovered by Werner Heisenberg in 1926 [19].

He correctly identified that interaction between magnetic moments arises due to Coulomb

repulsion and is therefore, electrostatic in nature. To understand the origin of interaction

we consider two isolated electrons. Following Heitler-London theory, orbital wave func-

tions of two single electron system can be constructed from the linear combinations of

ψi(r1)ψj(r2), ψi(r2)ψj(r1), where r1, r2 are the locations of the two electrons in space. In

addition to the orbital part, it is important to consider the spin part of the wave function

which can be either ↑ or ↓. The total wave function of this two-electron system, which is a

combination of the orbital and spin wave functions, must obey Pauli exclusion principle.

Pauli exclusion principle imposes that the wave function of two electron system to vanish

if both the electrons are in same state. As a consequence, the possible wave functions

are:

ψ1(r1, r2) = ψ−(r1, r2)ST (1.2)

ψ2(r1, r2) = ψ+(r1, r2)SS (1.3)

where ψ− (ψ+) is the anti-symmetrical (symmetrical) combination of orbital wave func-

tion, and ST (SS) is the symmetrical triplet state (anti-symmetrical singlet state). Eigenen-

ergies corresponding to ψ1, ψ2 can be obtained by solving the Schrodinger equation.

3



Heisenberg pointed out that the exchange integral (Jij) appearing in the eigen energy

for the singlet and triplet state of two-electron system is the origin of magnetic phenom-

ena [20]. The integral reads as,

Jij =

∫
d3r1d

3r2ψ
∗
i (r1)ψ

∗
j (r2)V (r1, r2)ψj(r1)ψi(r2) (1.4)

where V represents the Coulomb interactions between the particles. Notice that ψ∗i (r1)

couples to ψj(r1) while ψ∗j (r2) couples to ψi(r2), this is of purely quantum mechanical

origin and has no classical analogue. Strength of the interaction is governed by this ex-

change integral which decays exponentially with distance. This direct overlap of wave

functions results in magnetic interaction leading to spontaneously orientation of neigh-

boring magnetic dipoles at temperatures significantly higher than the dipole interaction.

Heisenberg model can also be arrived at as a limiting case of a well known Hubbard

model, which was presented in the early 1960s by J. Hubbard [21]. Hubbard model is

the most fundamental model to study strongly correlated electron systems, it describes

the basic competition of the kinetic energy as well as the electrostatic repulsion energy

of many electron system. Heisenberg model is an effective low-energy description of the

half-filled Hubbard model for U >> t. In this limit, the interaction energy is minimized

thereafter treating kinetic energy as a perturbation. Interaction energy can be reduced

to zero by restricting doubly occupied sites, which can be achieved exactly at half-filling.

Interaction energy remains unaffected by the spin arrangement of the electrons. Now

any hopping of electron will be energetically costly (∼ U). If the neighbouring electrons

have opposite spins then electron can virtually hop to neighbouring site and back. This

virtual delocalization treated in the sense of 2nd order perturbation theory reduces the

kinetic energy. However, if the neighbouring spins are parallel, then such a hopping will

be forbidden by Pauli exclusion principle. This results in an effective interaction which

favours antiparallel orientation of electrons on nearest neighbours. Therefore, exactly at

half filling the charge fluctuations cease to exist, and the model maps onto a pure spin

model described by the isotropic Heisenberg Hamiltonian. Using perturbation theory,

the resultant Hamiltonian for spin-1/2 quantum Heisenberg antiferromagnet reads as,

H =
∑
〈i,j〉

4t2ij
|U |Si · Sj ≡

∑
〈i,j〉

JijSi · Sj (1.5)

Therefore, the underlying mechanisms that gives rise to magnetic order are based on

pure quantum mechanical effects [22]. The exchange interaction J is a cumulative effect

of of the delocalization energy, electron spin, Heisenberg’s uncertainty principle, Pauli’s
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exclusion principle, and the Coulomb repulsion between electrons. Since forces of elec-

trical origin are much stronger than those of magnetic origin, this explains the existence

of room temperature magnetism. Magnetic properties of many insulating crystals can be

quite well described by Heisenberg-type models of interacting spins

A general Heisenberg model for spins in zero field can be written as :

H =
∑
〈i,j〉

JαSi · Sj (1.6)

=
∑
〈i,j〉

JxSxi S
x
j + JySyi S

y
j + JzSzi S

z
j (1.7)

where Sαi are the components of quantum spin operators S with spin S at site i. Jα

describes the magnetic coupling between the α−component of the spin. The sign of

the exchange coupling governs the nature of order, for antiferromagnetic (ferromagnetic)

coupling J is positive (negative). 〈i, j〉 indicates the summation over nearest-neighbour

pairs of spin. Ground state order further depends on dimensionality and the geometry of

lattice. The operator S2 have eigenvalue S(S + 1) = S2(1 + 1
S

), where (1 + 1
S

) is taken

as the correction factor due to quantum nature of the spins. In the limit S → ∞, the

quantum correction factor becomes 1, hence the large spin-S limit allows for a classical

treatment of spins. In this limit, the spins can be considered as three dimensional vectors.

To understand the Hamiltonian clearly, consider two atoms with spin-1/2 interacting with

an isotropic exchange interaction J is

H = JS1 · S2 (1.8)

Classically, the spins are treated as angular momentum vectors and the energy of the

system depends on the angle between them

Eclass =
1

4
J cos θ. (1.9)

All the energies between +1
4
J and −1

4
J are possible since −1 ≤ cos θ ≤ 1.

Quantum mechanically all the eigenstates of the system have to be found by diag-

onalizing H matrix, which is written using a complete set of orthonormal basis. Basis

vectors can be chose as : | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉, where ↑ (↓) stands for m = +1/2(−1/2).

5



It is useful to rewrite the Hamiltonian as follows

H = J(Sx1S
x
2 + Sy1S

y
2 + Sz1S

z
2) (1.10)

= J

(
Sz1S

z
2 +

1

2

(
S+
1 S
−
2 + S−1 S

+
2

))
where S± = Sx ± iSy. After diagonalization, eigenspectrum of the Hamiltonian is:

E1,2,3 =
J

4
: |E1〉 = | ↑↑〉, (1.11)

|E2〉 =
1√
2

(| ↑↓〉+ | ↓↑〉),

|E3〉 = | ↓↓〉,

E4 = −3J

4
: |E4〉 =

1√
2

(| ↑↓〉 − | ↓↑〉)

The maximum eigenvalue is J
4
, but the minimum eigenvalue is −3J

4
, which is much

lower than the classical counterpart. For J < 0 the system is ferromagnetic with three-

fold degenerate ground state that correspond to three possible orientations of total spin

Stot = S1 + S2 = 1. In a ferromagnet, because all the individual moments are aligned in

the same direction, there is a net total moment even in the absence of a magnetic field.

For J > 0, alternating spin orientations on neighboring sites would minimize the total

energy to −|JS2| per spin, the state is called Néel state, named after Louis Néel. The

antiferromagnetic state consists of two sublattices, where the ions of the nearest neigh-

bors have antiparallel spin having mutually compensating magnetic moments. Thus, the

net magnetic moment of such type of solids is zero. The simplest examples of ferromag-

netically ordered crystals are Fe, Ni and Co; on the other hand for antiferromagnets, the

prominent examples are the transition metal oxides and fluorides.

When spins are treated quantum mechanically, it turns out Néel state is not the

eigenstate of the Hamiltonian (see E4 in 1.11). Instead spins would form a many body

analogue of the spin singlet state, known as a valence bond, with no orientation (Stot =

S1−S2 = 0). The exact analytic result of a general S = 1/2 antiferromagnetic Heisenberg

models is not yet known. Néel state has been found as true order of spins in neutron

diffraction experiments in a wide range of three-dimensional antiferromagnetic materials.

However, the magnitude of the ordered magnetic moment is less than
√
S(S + 1) Bohr

magneton. The reduction in the ordered magnetic moment is understood as a result

of zero-point fluctuations, which is a consequence of quantum mechanical nature of the

ground state.
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Ising Model:

Ising model is the first well studied model to study ferromagnetism. It was first studied

in 1925 by Lenz and Ising, who showed that in dimension, D = 1 the model does not

show a phase transition for T > 0. In Ising model, the local magnetic moment on each

lattice site can take two discrete values, i.e. σi = ±1, corresponding to spin pointing

either up or down. Hamiltonian of Ising model with general interactions Jij between all

spins on an arbitrary lattice with an uniform external field h is:

H = −1

2

N∑
i=1

M∑
j=1,j 6=i

Jijσiσj − h
N∑
i=1

σi (1.12)

The factor of 1/2 compensates for over counting of interacting pairs in the sum. Although

the model was introduced to study ferromagnetism and phase transitions [23], it has

been very useful in describing the essential features of real systems where strong uniaxial

anisotropy locks magnetic moments along one crystallographic axis (usually the z-axis).

[24].

A completely isotropic Heisenberg model 1.7 with Jx = Jy = Jz is referred as XXX

model. For Jx = Jy = 0 the model reduces to Ising model, the opposite limit of dom-

inating transverse components (Jz = 0) leads to XY model relevant for materials with

strong easy-plane anisotropy. Isotropic Heisenberg model is an ideal model to describe

magnetically ordered solids. However, exchange interactions in real materials depends on

orbital overlap of magnetic ions. Due to the highly complex structure of these overlaps

or other stronger couplings such as spin-orbit coupling, real materials usually do not pos-

sess continuous symmetry. In real materials, various other antisymmetric exchanges are

observed such as Dzyaloshinskii-Moriya Dij · (Si × Sj) [25] and Biquadratic interactions

Biquadratic Kij(Si · Sj)2. Furthermore, presence of magnetic anisotropy in the Hamilto-

nian has a potential to alter the state of the system completely. It can aid in development

of long range order or introduce frustration to an otherwise unfrustrated isotropic system.

Anisotropic XXZ model with Jx = Jy 6= Jz = ∆ is a classic example of one-dimensional

integrable quantum spin systems. The XXZ model with periodic boundary conditions

(PBC) and in a pure longitudinal magnetic field is known to be exactly solvable by the

Bethe ansatz [26].

Usually, short-range interactions, e.g., nearest neighbor and next nearest neighbor

interactions, are sufficient for appropriate descriptions of the major magnetic properties

of real materials. Presence of further neighbor interactions modifies the energy spectrum

of the system, for instance it opens a spin gap in an otherwise gapless spin-1/2 chain
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system. Competition arises when both nearest neighbor Jnn and next-nearest neighbor

Jnnn interactions are active. In 1D, for Jnnn/Jnn = 0.5 the model is known as Majum-

dar–Ghosh model [27]. This is a special model as the ground state of this model is exactly

known as the product of singlet pairs on even and odd sites [28].

Heisenberg model in principle can be studied for any spin value. It was pointed

out by Haldane in 1983 that the phenomena by which magnetic spins order can be

dependent on the spin value [29]. He conjectured that the ground state of integer differ

from half-integer spin chains. It has been very well established theoretically [30] as

well as experimentally [31] that spin-1/2 antiferromagnetic Heisenberg chain is gapless

with fractionalized excitations (spinons) carrying spin S = 1/2. However, integer spin

chains have a non-degenerate singlet ground state with a triplet state at finite excitation

gap, named after him, Haldane gap, above the ground state [32]. Furthermore, the spin

correlation function quickly decays exponentially unlike spin-1/2 chain where correlations

decay with power law. Experimentally, the Haldane phase was most comprehensively

studied in the S = 1 chain material Ni(C2H8N2)2NO2ClO4 (NENP), confirming the

theoretical predictions [33, 34].

1.2 Magnetic ordering

A collection of spins are considered magnetically ordered if the interaction among mag-

netic spins separated by distance become correlated resulting in a pattern. Correlation

among magnetic spins in this ordered arrangement may be long range or limited to short

distances. Some of the conventional orders appearing in magnetic systems are ferro-

magnets (FM) where all magnetic moments spontaneously align in the same direction

(see Fig. 1.1(a)). Other types of orders are antiferromagnets (AFM) with antiparal-

lel arrangements of spins on neighboring sites (see Fig. 1.1(d)). While magnitude of

spontaneous magnetization on such a bipartite lattice remains same in AFM, the case

of unequal magnetic moments with anti-parallel orientation is known as ferrimagnets

(see Fig. 1.1(b)). Magnetic orders possible in a lattice are not limited to the conven-

tional ordered patterns [35]. A rich variety of magnetic orders are possible where the

angle between the neighboring magnetic moments are allowed to vary between zero and

π known as spiral orders (see Fig. 1.1(c)). Furthermore, there exists highly correlated

exotic states, such as spin ice, spin liquid, unusual partial orders, which do not posses

a finite magnetic moment even at zero temperature. These interesting states arise when

competing forces in a system are not simultaneously satisfied, the phenomena is known
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Figure 1.1: A schematic diagram representing various magnetic orders:(a) ferromagnetic,
(b) ferrimagnetic, (c) spiral (d) antiferromagnetic and (e) valence bond solid.

as frustration [36, 37]. Antiferromagnet on a 2D triangular plaquette with Ising spins is

a prototype of frustration as, three spins on a triangle cannot all be anti-parallel (see Fig.

1.2(a)). This is referred to as geometric frustration as the frustration is of geometric ori-

gin. This phenomena can be observed in other lattice geometries with triangular motifs

such as, kagome, Shastry-Sutherland and pyrochlore lattices.

It was pointed out by Wannier in 1950 [38], that this model possess a macroscopic

number of degenerate states with ground state entropy equal to 0.323 kBN where kB is the

Boltzmann constant and N is the number of spins. As a result, spins continue to fluctuate

at low temperatures, however in a correlated manner. The state is called as ’spin liquid’

or cooperative paramagnet, analogous to the ordinary liquid where molecules form highly

correlated state with no static order. The spatially anisotropic triangular antiferromagnet

Cs2CuCl4 is extensively studied for its rich behavior due to frustration. Experiments have

revealed exotic magnetic phases and quasi particle excitations [39, 40] in this material.

In addition to geometry, frustration can also be realized on unfrustrated lattices with

a mixture of AF and FM interactions with nearest or next nearest neighbor (NNN) spins.

A situation with AF interaction bonds on nearest and next nearest neighbor results in a

frustrated spin system similar to the case in geometric frustration with triangular motifs.

Model describing such type of interactions are J1−J2 models with both interactions being

AFM have been extensively studied on 1D chain (see Fig. 1.2(c)) and various geometries
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Figure 1.2: (a) Ising spins on a triangular lattice interacting via antiferromagnetic inter-
action (J). Frustrated spins with both nearest neighbor (J1) and next nearest neighbor
(J2)interactions on (b) a square lattice and (c) one-dimensional chain.

in 2D like square (see Fig. 1.2(c)), honeycomb, etc. In some cases, valence bond solid

(VBS) (see Fig. 1.1) may emerge as a ground state of spin-1/2 antiferromagnetic model

on square lattice with frustrating further neighbor interactions. A VBS state is a product

of singlets where each site participates in one and only one singlet and which leads to

a lack of magnetic order. Materials hosting such type of interactions are of particular

interest as they might show spin liquid orders.

While low dimensional Hamiltonians are very interesting from a theoretical perspec-

tive, truly 1D or 2D materials are almost never realised. Weak inter-chain or inter-plane

interactions are always present which may either spoil the order by introducing compet-

ing interactions or they may aid in stabilizing orders. Progress of material science has

further allowed to study spin ladders which are objects staying in between one and two

dimensions [41]. Presence of magnetic field further leads to a number of ground states,

for example, spin-spiral states, the spin multi-polar phases (spin nematic phases), etc.

which are observed in models with competing interaction [42, 43].

1.3 Phase Transitions

The phenomena by which collective behavior of large number of interacting particles

change their certain properties when subjected to an external influence, such as tem-

perature or pressure, is known as phase transitions. These are frequently observed in

nature, ranging from freezing of water into ice to the development of superconductivity

[44]. A phase is usually associated with an order parameter that allows a distinction

between an ordered and a disordered phase. A first (second) order phase transition is
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characterized by an observable changing discontinuously (continuously) in the vicinity

of the critical point. The order parameter associated to transitions like melting of ice

or boiling of water is density of the system. They involves phase coexistence and latent

heat, therefore are categorized as first-order phase transitions. Other types of transitions

are characterized as continuous, their signature is reflected as power-law decay of corre-

lations, divergences in the susceptibility and specific heat near criticality. Second order

phase transitions are observed in magnetic phase transitions. The hallmark of magnetism

is the existence of an ordered arrangement of magnetic moments over macroscopic length

scales, this spontaneous magnetization is considered as the order parameter for magnetic

systems. Long range magnetic orders such as ferromagnets and antiferromagnets exists

below certain temperature known as the Curie temperature (TC) [45] and Néel temper-

ature (TN) respectively. Above these temperatures, thermal fluctuations with energy

scale kBT , overwhelm the spin-spin exchange energy J leading to a paramagnetic state,

through a second order phase transition.

The properties of magnetic systems are usually associated with their symmetry and

dimensionality D of the Hamiltonian. For example, ground state of a uniform S=1/2

chain for Ising model and Heisenberg model are different. Ising model with discrete

symmetry becomes ordered at T = 0 in D = 1 while the symmetry cannot be broken

at finite T . On the other hand, Heisenberg model posses continuous symmetry (SU(2)),

which cannot be broken in D = 1 even at T = 0 but for D = 2 the system spontaneously

orders at T = 0. The interplay of symmetry breaking and dimensionality is governed

by Mermin Wagner theorem. The theorem was formulated in 1966, it states no one-

dimensional or two-dimensional isotropic Heisenberg spin system can order at non zero

temperatures [46]. However, at zero temperature magnetic long range order may still be

allowed depending on the strength of quantum fluctuations.

Unlike classical transitions, where destruction of the order is driven by thermal fluc-

tuations, phase transitions can also be observed at T → 0 upon changing parameters

like magnetic field, chemical doping and pressure. These zero temperature, second-order

phase transitions are driven by quantum fluctuations arising due to non-commuting terms

in the Hamiltonian, which are mandated by the Heisenberg uncertainty principle. At zero

temperature, the system prefers a ground state dictated by the parameters of the Hamil-

tonian describing the system. The system can be driven to another phase by tuning the

control parameter which regulates the amplitudes of quantum fluctuations. One might

think that such phase transitions are not relevant to the real world due to the unattain-

ability of zero temperature. However, it has been found that many finite temperature

properties of a system can be explained by understanding its quantum critical point
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(QCP) [47, 48]. This is because, unlike classical finite-temperature phase transitions,

their dynamic and static critical behaviors are intimately intertwined [49]. Quantum

mechanical aspects are important as long as ~ωc >> kBT , where ωc is the frequency as-

sociated with the relaxation time required to decay to ground state from an excited state.

One of the prototypical models capturing the essence of quantum phase transitions is the

transverse field Ising model (TFIM). The well known mapping to a D + 1 dimensional

classical statistical mechanics problem allows the study of this model. The model is also

referred to as Quantum Ising Model, its Hamiltonian is written as :

H = −J
N∑
〈i,j〉

σzi σ
z
i − Γ

N∑
i=1

σxi (1.13)

where Γ is the transverse magnetic field. Transverse magnetic field, induces quantum

fluctuations between up and down state. At Γ = J , the model exhibits phase transition

from a polarized state (Γ > J) to a symmetry broken ground state (Γ < J). Experimental

evidences of quantum phase transitions have been reported in low dimensional magnets

such as LiHoF4, TlCuCl3 , KCuCl3 , LiCuVO4 , CoNb2O6, etc.

1.4 Thesis Overview

A comprehensive introduction of various magnetic orders and phase transition phenomena

observed in the field motivates to study of the underline concept behind them. However,

the central challenge in the field of strongly correlated electron systems is solving the

problem of thermodynamically large number of spins. Due to lack of analytical tools

and computational limitations of numerical methods, often approximate methods are

employed to understand the effects of correlations in many body systems. Mean field

theory serves as a starting point for understanding the behavior of large number of inter-

acting particles. More accurate description of correlations in an interacting system can

be achieved by retaining the quantum nature of the coupling. Based on this concept, a

method known as Cluster mean field theory (CMFT) is designed which treats interactions

in a cluster exactly while taking into account effect of interactions outside the cluster the

via mean fields. In Chapter 2, a brief account of mean field theory and its extensions

are provided. A detailed comparison of CMFT with other methods are also discussed,

justifying the utilization of CMFT as the main method of calculation.

Quasi-1D magnets are very interesting as they can host highly correlated phases such
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as quantum spin liquids and non-trivial excitations such as spinons and longitudinal ex-

citations. Experimental studies on various materials show unusual magnetic orders at

low temperatures. Thermodynamic measurements on CuInVO5 is a spin-1/2 tetramer

compound, hints the presence of a long range ordered antiferromagnetic state below 2.7K.

However, prototypical isotropic Heisenberg model on a 1D chain will not order at finite

temperature. Presence of a long range order at low temperature in CuInVO5 hints the

presence of inevitable weak inter-chain couplings. Motivated by this material, CMFT is

applied to a quasi-1D model spin Hamiltonian of weakly interacting tetramers. For the

material specific choice of interaction parameters, CMFT is put to test to check if it can

explain the results obtained experimentally. The most important experimental observa-

tion being the presence of low temperature peak in specific heat results. A microscopic

picture of the ordered state and its evolution with magnetic field and temperature is

discussed in chapter 3.

Frustrated low-dimensional spin systems are the centre of research in the field of

strongly correlated systems, theoretical as well as experimental techniques are constantly

developing to identify highly frustrated phases. J1-J2 Heisenberg model on a chain is the

simplest model with frustrating interactions which has been extensively studied numeri-

cally. Interests in systems with one of the interaction in the above model being FM gained

interest with the discovery of materials hosting exotic phenomena where NN interaction

is FM and the NNN is AFM. β−TeVO4 is a material belonging to the family of mate-

rials hosting frustrated ferromagnetic interactions. Experimental reports on β−TeVO4

reveals the presence of exotic phases like, vector chiral, spin density wave, spin stripe

and quadrupolar orders. In chapter 4, CMFT is implemented to a minimal anisotropic

Heisenberg model for coupled zigzag chains in two dimensions aiming to capture the

dominating interactions in β−TeVO4. We calculate temperature and field dependent ob-

servables and lookout for features observed experimentally which has been captured by

CMFT.

Presence of impurities in materials are known to alter qualitative behaviour such as

conductivity of a material. In insulators impurities can affect the ground state proper-

ties as well as the excitation spectrum [50]. Furthermore, impurity induced effects gets

enhanced in low-D systems as the interplay of strong quantum effects and the disorder

physics. Recently, a number of studies have focused on embedding magnetic and non-

magnetic impurities in spin-1/2 chain materials like Sr2CuO3 [51]. In chapter 5, we study

impurity effects in an isotropic Heisenberg model on a chain. The impurity introduced

has an unusual effect of modifying the anisotropy of the neighboring bonds. We utilize

CMFT to understand the resultant ground state of such a system and its dependence on
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impurity density and anisotropy strength. Moreover, signatures of ordering and phase

transitions at finite temperatures in presence of magnetic field are also explored.
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Chapter 2

Methods

Once, the relevant interactions in the system are known, the challenge is to solve the

model Hamiltonian. The first breakthrough towards solving the Heisenberg model was

introduced by Hans Bethe [52] in 1931 to find exact quantum mechanical ground state

of one-dimensional antiferromagnetic Heisenberg model. The method is now known as

”Bethe ansatz”. Since then the method has been extended to other models in one di-

mension like the anisotropic Heisenberg chain (XXZ model), the Hubbard model, the

Kondo model, the Anderson impurity model, etc. Exact solution of the 2D Ising model

by Onsager in 1944 represents as another landmark in theoretical physics. He showed,

unlike 1D, Ising model in 2D did exhibit spontaneous order below a finite temperature

comparable to the value of exchange interaction parameter J . While analytic solutions of

low dimensional systems are very appealing, however, except for a few cases, it is difficult

to find the exact solution of an interacting many-body system (MBS) [12, 53]. Therefore,

to provide a better understanding of main features of MBS, computational approaches

are constantly developed.

Numerical approaches are often limited to the finite number of particles and in many

cases they are not sufficient to allow inference of thermodynamic limit behavior, which

plays a central role in the development of collective phenomena. One of the most fre-

quently adopted method to study MBS is Monte Carlo [54]. They have been proven

successful in the classical limit, i.e. when spins are large enough to be considered as

classical vectors. They can also provide correct solutions in higher dimensions for which

analytical solutions are not available. For instance, numerical solutions based on Monte-

Carlo simulations for 3D Ising model are available but the analytical solution for the

same doesn’t exist. For accurate description of physics of low spin at low temperatures,
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the most promising technique is Quantum Monte Carlo method. It uses the mapping of

D-dimensional quantum system to its (D+ 1) dimensional classical counterpart [55, 56].

However, it fails for many frustrated systems of interest, due to the infamous ”sign-

problem” [57, 58]. The most powerful tool available to study the ground state physics of

low dimensional systems is the Density Matrix Renormalization Group (DMRG)[59, 60].

The method is applicable for frustrated systems however, it is limited to low lying ex-

citations above ground state physics. Various other theoretical techniques like matrix

product states [61], cluster variational method [62], projected entangled pair states [63]

and series expansion method [64] are developed to extract finite temperature correlations.

While sophisticate mathematical and computational methods are constantly developed,

mean field theory (MFT) has been frequently adopted as a starting point for the inves-

tigations of MBS [65, 66, 67]. MFT is capable of describing the qualitative behavior

of macroscopically large systems despite its limitations. In the following sections, a de-

tailed introduction to the mean field approach and some recent developments aimed at

improving the treatment of quantum correlations will be discussed.

2.1 Exact Diagonalization

A complete knowledge of a quantum system can be obtained by exactly diagonalizing the

full Hamiltonian. In principle, all eigenstates can be computed exactly for a finite system

by numerically diagonalizing the Hamiltonian. However, in practice such studies are

limited to small system sizes consisting of few tens of spins. This limitation is due to large

Hilbert space of quantum many-body systems. For spin Hamiltonians, the dimension of

Hilbert space scales exponentially with the number of particles, for e.g., Hilbert space

dimension for N spin-1/2 is 2N . For a quantitative idea, consider N ∼ 1023 (of the order

of the Avogadro number) spins, then the number of basis states in the Hilbert space is

((2S + 1)10
23

). Therefore, the brute force exact diagonalization (ED) is computationally

limited and not enough to fully understand long range orders. Drawing conclusions about

thermodynamic limit from ED on small clusters is rather tricky. However, insights gained

from ED are useful to complement other calculations.

For a given Hamiltonian, the first step for exact diagonalization is to chose the basis

states. Basis for spin-1/2 system consist of single spin state ↑i and ↓i with the quantization

axes assumed to be z direction. For computational generation of the basis of spin-1/2

Hamiltonian matrix (2N×2N), bit values (0 or 1) of numbers a = 0,1,... 2N−1 corresponds

to the spin states. This can be understood as a decimal to binary (base 2) number system
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conversion. Similarly for higher spin state, decimal to general base conversion can be used

to construct the basis. Bit operations are implemented to construct the Hamiltonian and

other operator matrix [68].

Symmetries of the Hamiltonian are utilized to reduce the dimension of Hilbert space.

One of the symmetries that can be easily taken advantage of is conservation of magneti-

zation. Other symmetries like transnational invariance, spin rotational invariance, parity

symmetry, spin-inversion symmetry, etc. may lead to complicated basis state. With total

spin conserved ([H, Sz] = 0), the Hamiltonian breaks into blocks labelled by quantum

numbers (S,mz) where mz ∈ {−S,−S+1, ...S} is the total magnetization in the direction

of quantization axis. Block Hamiltonians are created by sorting the original Hilbert space

with given mz = (n↑−n↓)/2 with dimension M = N !/(n↑!n↓!). The block diagonalization

method, reduces the dimension of matrix to be diagonalized considerably. Blocks can be

further block diagonalized by utilizing other symmetries. Even the block diagonalization

of the Hamiltonian is restricted to ≈ 20 spins for S=1/2, which is lesser for higher S.

Problems where only low lying excitations above ground state are of relevance, Lanczos

diagonalization techniques can be implemented which can access to larger system sizes.

2.2 Mean Field Theory

Mean field theory (MFT) is an approximate treatment, which reduces the problem of

macroscopically large number of interacting particles to an an effective one-body prob-

lem. The system is divided into an environment and a subsystem, where the environment

is then replaced by an effective field representing the average interaction between sub-

system and the environment. Molecular mean field approach was originally utilized by

Pierre Weiss, he showed a transition to magnetically ordered state for Heisenberg and

Ising models at non zero temperature [69]. The mean-field approximation is at the heart

of understanding of many complex systems, for instance, it is the basis of the Hartree-Fock

approximation in electronic structure calculations and the BCS theory of superconduc-

tivity [70].

Following the treatment of Weiss MFT, phase transition in Ising model is discussed to

illustrate the effectiveness of the MFT [71]. To distinguish between magnetically ordered

state from a non-magnetic disordered phase, local magnetization, mi = 〈σi〉, is considered

as the order parameter for Ising model. Within MFT, all the spins are considered identical

therefore, mi ≡ m. Now, spin value at each site, σi can be written as the sum of the mean
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value, m and fluctuations around it. Using this approximation, the interaction term of

the Hamiltonian 1.12 becomes,

σiσj = (m+ δσi)(m+ δσj) (2.1)

= m2 +m(δσi + δσj) + δσiδσj (2.2)

The fundamental idea in mean-field approximation is to replace the fluctuating fields

from the inter- and intra-particle interactions by a non-fluctuating mean field. Since

fluctuations around the order parameter are considered small, δσiδσj which is quadratic

in fluctuations can be ignored.

σiσj = m2 +m(δσi + δσj) (2.3)

= m2 +m[(σi −m) + (σj −m)]

= −m2 +m(σi + σj) (2.4)

Within mean-field approximation, the Hamiltonian 1.12 becomes

HMF = J
∑
〈ij〉

m2 − Jm
∑
〈ij〉

(σi + σj)− h
∑
i

σi (2.5)

Total number of bonds in a lattice consisting of N spins with coordination number z are

Nz/2.

HMF = J
Nz

2
m2 − (h+ zJm)

∑
i

σi (2.6)

Hamiltonian for N interacting spins in Ising model is now reduced to a non-interacting

spin interacting with an ”effective magnetic field”, heff = zJm + h. Using HMF , the

partition function can be simply written as:

Z = e−βJm
2Nz/2

{
2 cosh[β(h+ Jmz)]}N (2.7)

Calculating magnetization of Ising model from partition function results in a transcen-

dental equation:

m = tanh β(h+ zJm), (2.8)

known as Curie-Weiss equation. The equation is solved self-consistently for m. For

h = 0, in the limit when m is very small,

m ' βzJm− (βJzm)3

3
. (2.9)
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Real solutions for this equation are m = 0 and

kBTC = zJ (2.10)

From 2.10, it can be inferred that the critical temperature increases with interaction

constant J , which can be understood as stronger interaction leads to higher resistance to

thermal fluctuations. Result obtained via MFT overlooks the geometry of lattice as TC

is only dependent on coordination number and it increases with the dimension of system.

The two point correlation function is

〈σiσi+r〉 = 〈(m+ σi)(m+ σi+r)〉 ' m2 (2.11)

which shows that correlation between spins is independent of distance and are completely

ignored.

Single spin interacting with an average field generated by the system, completely

neglects the correlations between its elementary constituents. Consequently, MFT breaks

down in presence of strong fluctuations such as, critical points. Moreover, exact solution

of Ising model in one 1D exhibits no phase transitions at a non zero temperature, while

MFT predicts a phase transition at finite temperature. Remarkably, even though the

predictions of MFT are quantitatively incorrect, it correctly predicts the Ising model’s

qualitative behaviour for 2D and higher. This is because fluctuations are more important

in lower dimensions, so the MFT approximation is less accurate in lower dimensions.

Furthermore, it is expected to be exact for D > 4 and in presence of strong long-range

interactions . Despite its limitations, the MFT is often adopted as the starting point to get

insights into properties and behaviour of enormous class of problems. They are capable

of predicting behaviour of the system over a wide range of parameters (e.g. temperature,

field) at relatively low cost.

2.3 Bethe-Peierls-Weiss approximation

Original MFT completely ignores any fluctuations among strongly interacting spins. Hans

Bethe improved it qualitatively and quantitatively by systematically including local cor-

relations [72]. The method was originally developed for an order-disorder model, it was

later applied to the Ising model by Peierls and the Heisenberg model by Weiss. The

Bethe-Peierls-Weiss (BPW) approach treats all the interactions of a central spin with its

neighboring spin exactly, while the subsequent interactions of neighboring spins is ap-
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proximated via mean field. This method includes local spin correlations and fluctuations,

it also takes into account the effect of lattice geometry beyond coordination number, z.

Figure 2.1: Schematic representation of a cluster (shaded region) used for a square lattice
where σ0 is the central site and σi (σj) is the nearest (next nearest) neighbor.

In the lowest approximation, spin σ0 together with its z nearest neighbors σj are

considered, hence a cluster of z + 1 spins. For instance a cluster of 5 spins on a square

lattice (see Fig. 2.1). The Hamiltonian for the cluster can be written as:

Hc = −Jσ0
z∑
i=1

σi − hσ0 − h′
z∑
i=1

σi (2.12)

where the first sum considers the interaction of σ0 with its nearest neighbors coupled

by interaction strength J and h is the external field applied. The last term contains

the effective field h′ acting on the neighbor spins of σ0. It consists of the external field

h, and the effective field of the surrounding spins. It can be noted that interaction of

σ0 (central spin) with its neighbors is treated exactly in comparison to the interaction

of its neighboring spins with their corresponding neighbors. The correlations will be

strongest between spins that are within each others immediate vicinity. However, due

to translational invariance of system all spins must be identical and a self consistent

condition can be imposed,

〈σ0〉 = 〈σi〉 (2.13)

To calculate the magnetization,

Zc =
∑
{σi}

∑
σ0=±1

eβhσ0eβJσ0
∑
i σieβh

′∑
i σi (2.14)

= eβh(2 cosh β(J + h′))z + e−βh(2 cosh β(J − h′))z

Calculating 〈σ0〉 and 〈σi〉 results in

coth βCJ = z − 1. (2.15)
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For a 1D chain (z = 2), unlike simple MFT, this approximation correctly predicts absence

of phase transition at a finite temperature, Tc = 0. For 2D square lattice (z = 4 in

2.15) , kBTc/J = 2.885, which is an improvement over to MF result, kBTc/J = 4 (2.10).

However, it is still far from the exact result 2.269 given by Onsager’s equation sinh 2βc = 1

[73]. It suggests that certain features of mean-field theory are independent of the precise

details of approximation.

2.4 Cluster Mean Field Theory

A natural improvement over standard MFT, as suggested by Bethe, was systematic in-

clusion of interactions. Similar to the treatment in BPW approximation, in cluster mean

field theory (CMFT), lattice is divided into small clusters within which interactions be-

tween the spins are treated exactly. Oguchi’s method [74] is another simple way to

extend the MFT to clusters. He studied ferromagnetism and antiferromagnetism of the

low-dimensional Heisenberg model by using a cluster of up to three spins to include the

short-range correlations between the spins. CMF approach studied in this thesis is an

extension of Oguchi’s method to larger-size clusters.

The model is approximated by dividing the lattice into identical clusters consisting

of Nc spins. The shape of the cluster is selected such that the symmetry of the original

lattice is preserved. CMFT can be thought of as an ED of a finite cluster with periodic

boundary conditions (PBC), where across the boundary, interactions are replaced by

mean fields. In contrast to ED analysis with PBC, the existence of mean fields, whose

values are self-consistently determined, approximates the effect of spontaneous symmetry

breaking expected to take place in thermodynamic limit. Decoupling of a random bond

within a cluster instead of the edge boundaries are also other ways to implement CMFT

[75]. Similar treatments with the same key concepts are utilized to study weakly coupled

chains keeping interchain interactions at level of mean field [76, 77].

Using this approximation, Hamiltonian for the Ising model can be written as :

Hc = −J
Nc∑
〈i,j〉

σiσj −
Nc∑
i

heffσi (2.16)

The first sum represents intra-cluster interactions where the sum runs over all nearest-

neighbor pairs within the cluster C. Inter-cluster interactions are included in the second

sum where interactions are approximated by effective fields, heff acting on the boundary
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spins of the cluster (see Fig. 2.2). This method reduces to the conventional MF (Weiss’s

molecular-field) theory for Nc = 1, and becomes exact in the limit Nc →∞.

Figure 2.2: A schematic representation of cluster mean field theory (CMFT) for the
square lattice. The arrows indicate the effective fields acting on the boundary sites of
cluster C.

For self-consistency, a randomly chosen mean field values are selected and 〈σi〉 is

computed at every site i using 2.17, which are then fed back to Hc until all the field

values are converged.

m = 〈σi〉 =
Tr(σie

−βHC )

Tr(e−βHC )
(2.17)

This method can be extended to other spin models like Heisenberg model where mean

fields will have three components. For computation of higher cluster sizes, block diagonal-

ization can be implemented isotropic spin Hamiltonians. However, in case of anisotropic

Hamiltonians or in presence of magnetic field, block diagonalization cannot be imple-

mented in order to incorporate mean fields in transverse directions.

The technique is useful in distinctly characterizing the ground states at the level of

finite-size calculations. Similar to BPW, CMFT includes the effects of geometry of the

lattice. The approximate error caused by finite size effects and mean-field decoupling

can in principle be reduced by performing cluster size scaling Nc → ∞. However, there

is a practical limitation on cluster size that can be numerically diagonalized. Another

shortcoming of the method is the system looses equivalence of all sites or periodicity of

the system as it gets divided into finite sized clusters.
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2.5 Self Consistent Correlated Mean-Field Theory

Motivated by Onsager reaction field idea [78], a simpler improvement over the standard

MFT for Ising model was suggested in [79], where the central spin directly influences the

mean-value of nearest neighbors. In this approach, the correlated MF Hamiltonian is

written as an effective field heff acting on the central spin, σi,

HMF = −σiheff (2.18)

heff = zJ(δσi,1m
+ + δσi,−1m

−).

Two different mean-field values are introduced in effective field (heff ) m
+ and m−, de-

pending on whether the state of central site (σi) has value +1 or −1, respectively. Using

this average σi can be written as,

m ≡ 〈σi〉 =
eβzm

+ − e−βzm−

eβzm+ + e−βzm−
(2.19)

Now the average value of the neighboring spin, σj depends on the state of σi. Similarly,

the (z − 1) neighbors of the site j (next nearest neighbor to site i), assumes m+ or m−

based on the state of σj. Therefore, 〈σj〉 can be written as:

m+ = 〈σj〉|σi=+1 =
eβ(z−1)m

++1 − e−β(z−1)m−+1

eβ(z−1)m++1 + e−β(z−1)m−+1
(2.20)

m− = 〈σj〉|σi=−1 =
eβ(z−1)m

+−1 − e−β(z−1)m−−1
eβ(z−1)m+−1 + e−β(z−1)m−−1

(2.21)

As T → Tc, mean magnetization m in 2.19 goes to zero, while local fields m+ and m−

are non-zero. However, algebraic average ∆ must go zero at Tc.

∆ ≡ m+ +m−

2
(2.22)

Rewriting m,m+,m− in terms of ∆ and expanding for ∆� 1,

m = tanh zβ∆, (2.23)

m± = tanh β[(z − 1)∆± 1], (2.24)

Using 2.22, 2.24, ∆ can be written as:

2∆ = tanh β[1 + (z − 1)∆]− tanh β[1− (z − 1)∆] (2.25)
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Expanding 2.25 around ∆ = 0 and keeping only linear terms leads to

cosh2 βc = (z − 1)βc. (2.26)

This self consistent correlated field (SCCF) approximation includes local fluctuations

near Tc as the central site and its neighboring sites interacts with a self consistently

determined fluctuating molecular field (m+ & m−), rather than a single-valued mean

field. It is able to provide a more accurate estimates of TC for the Ising model than

obtained from BPW approximation. However, unlike BPW, this method only depends

on coordination number, z thus missing out the lattice dependence. Furthermore, this

approximation does not predict a phase transition for z < 4 (for example, honeycomb

lattice).

2.6 Correlated cluster mean-field theory

Correlated cluster mean-field theory (CCMFT) combines the idea of CMFT approxima-

tion and SCCF theory. Using the concept of CMFT, this method deals with clusters

consisting of Nc number of spins where, inter cluster interactions are approximated using

correlated fields which, unlike CMFT, depend on the state of the central cluster.

Figure 2.3: A schematic representation of correlated cluster mean field theory (CCMFT)
for the square lattice. The arrows indicate the effective fields acting on the boundary sites
of cluster C, which depend on the state of the spin as well as the state of its neighboring
spin along the boundary.

Hamiltonian for the Ising model using this approximation is same as CMFT with heff

in 2.16 replaced by a correlated field h
{s}
eff acting on the boundary sites. Effective field
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h
{s}
eff = Jm{s} acting on σi (∈ C) from neighboring spins, depends on state of spin i and

of its neighbors ({s}) belonging to same cluster boundary (see Fig. 2.3). To calculate

h
{s}
eff , neighboring cluster C ′ is considered where all the sites couple to an effective field

with an exception to the set of spins connected to the central cluster C. Then the fields

are computed self consistently depending on the state of C.

For Honeycomb lattice, {s} consist only of one spin σi since there is only one bond

connecting a spin in the central cluster to neighboring cluster (C ′) (see Fig. 2.4).

m± = 〈σ4′〉|σ1=±1 =
Tr(σ4′e

−βH±
C′ )

Tr(e−βH
±
C′ )

(2.27)

H±C′ = −J
nc∑

〈i,j〉∈C′
σiσj −

nc∑
i′

hσieffσi ∓ Jσ4′ (2.28)

Whereas for square lattice, {s} has two spins including σi itself (see Fig. 2.3). Effective

mean fields acting on site 1 and site 2 in cluster C, depend on the state of both the sites.

For square lattice, there are m++, m+−, m−+ and m−−

mss′ = 〈σ4′〉|σ1=s,σ2=s′ =
Tr(σ4′e

−βHss′
C′ )

Tr(e−βH
ss′
C′ )

(2.29)

Hss′

C′ = −J∑nc
〈i,j〉∈C′ σiσj −

∑nc
i,i∈C′ h

σi,σi
eff σi − Js′σ3′ − Jsσ4′ (2.30)

= −J(σ1′σ2′ + σ2′σ3′ + σ3′σ4′ + σ4′σ1′)− J(mσ1′σ2′ + σ1′σ4′)σ1′ (2.31)

−J(mσ2′σ3′ + σ2′σ1′)σ2′ − J(mσ3′σ2′ + s′)σ3′ − J(mσ4′σ1′ + s)σ4′ (2.32)

The treatment, in principal, can be extended to any lattice geometry. This method is

an improvement over both SCCMF and CMFT as unlike SCCMF, this method incorpo-

rates the dependence on lattice geometry while also improving TC . CCMFT has been

successfully adopted to analyze several classical spin-1/2 interacting systems with inter-

actions up to the next-nearest neighbors [80], including disordered [81] and geometrically

frustrated lattices.

2.7 Quantum correlated cluster mean-field theory

CCMFT proved effective for classical spin systems however, it shows inconsistent results

in presence of quantum fluctuations as it restricted the states to classical quantization
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axes. In order to make CCMFT useful for quantum models, a more general state is

allowed in quantum version of the CCMFT (QCCMFT) [82]. Following the approach

of CCMFT, spins at boundary of central cluster interacts with expected value of the

magnetic moment of neighboring site for two general orthogonal states:

|Φ±〉 = cos(θ/2)| ↑〉 ± eiφsin(θ/2)| ↓〉, (2.33)

where the angles θ ∈ [0, π] and φ ∈ [0, 2π] have to determined self-consistently. For

transverse field Ising model, there exists an easy axis for exchange interaction therefore,

only z component of the magnetic moment is relevant.

〈Φ±|σzi |Φ±〉 = ± cos θ (2.34)

Where φ is set to zero. Using the approximation, Hamiltonian can be written as:

H±C′ = −J
nc∑

〈i,j〉∈C′
σiσj −

nc∑
i′

hσieffσi − Jσ4′s cos θ (2.35)

which is similar to 2.28 with an additional parameter θ. Notice for θ = 0, QCCMFT

reduces to CCMFT. Imaginary time spin self-interaction, q is evaluated to find the value

of θ,

q =

〈
1

β

∫ β

0

dτσzi σ
z
i (τ)

〉
ρB(H)

= Tr

(
1

β

∫ β

0

dτσzi σ
z
i (τ)ρB(H)

)
(2.36)

τ is the imaginary time evolution operator leading to σzi (τ) = e−τHσzi e
−τH. Considering

eigenstates |n〉 with associated eigenvalues En,

q =

∑
n,m

∫ β
0
dτ〈n|σzi |m〉〈m|σzi |n〉eτ(En−Em)e−βEn

β
∑

n e
−βEn (2.37)

=

∑
n e
−βEn|〈n|σzi |n〉|2∑

n e
−βEn −

∑
n6=m

e−βEm−e−βEn
Em−En |〈m|σzi |n〉|2
β
∑

n e
−βEn (2.38)

Spin self-interaction for eigenstates 〈Φ±〉 with eigenvalues E± is,

q = cos2 θ + sin2 θ
tanh β∆E/2

β∆E/2
(2.39)

where ∆E = E+ − E−. In the limit where thermal fluctuations are small compared to

energy gaps, θ = cos−1
√
q. Using this in 2.35, magnetization is computed self-consistently

in the manner exactly similar to CCMFT.
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2.8 Comparing different mean field approximations

Having discussed the details of various mean field approximations, in this section compar-

isons of the methods for Ising, transverse-field Ising and Heisenberg models for different

lattices namely, square and honeycomb will be discussed. The honeycomb lattice is di-

vided into topologically equivalent clusters of the shape of smallest honeycomb unit (see

Fig 2.4), which consist of six sites each (ns = 6). In this scenario, there is only one spin

in the cluster which interacts with another spin in neighboring cluster. Similarly, the

square lattice is divided into clusters with (ns = 4) sites where each spin in the cluster

has two spin interactions in the neighboring cluster (see Fig 2.3).

Figure 2.4: A schematic representation of correlated cluster mean field theory (CCMFT)
for honeycomb lattice. The arrows indicate the effective fields acting on the boundary
sites of cluster C which depends on the state of the spin itself.

For Ising model on honeycomb lattice, when the temperature decreases, the system

presents spontaneous magnetization mz below the critical temperature Tc. In Fig. 2.5, we

show a comparison of magnetization as obtained from all the methods. CMFT over esti-

mates the transition temperature in comparison to CCMFT. Variation in mz is sharper

in CCMFT as it includes more accurate correlation effects compared to CMFT. It should

be noted that for a classical Ising model (Γ = 0), QCCMFT reduces to CCMFT due

to absence of quantum fluctuations which consequently sets q = 1. Transition temper-

atures obtained from simple MFT (red square in Fig 2.5) and BPW (blue circle in Fig

2.5) approximation over estimates the transition temperature in comparison to CCMFT.

Unfortunately, SCCMF does not have a solution for z = 3 (2.26). Cluster considered in
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Figure 2.5: Temperature dependence of magnetization of Ising model on honeycomb
lattice using various approximation schemes. Blue circle (red square) is the transition
temperature obtained from BPW (MFT) approximation.

this analysis consists of ns = 6, in principle estimates can be improved by considering

larger cluster size for cluster analysis.

The idea of cluster mean field models is to incorporate quantum fluctuations near

transition points to give a more accurate description. The effectiveness of all the models

in capturing quantum fluctuations can be put to test by utilizing the methods for the

simplest model describing quantum phase transition, transverse field Ising model (TFIM)

(discussed in previous chapter 1.13). Fig. 2.6 depicts the quantum phase transition driven

by transverse field (Γ) in TFIM on honeycomb lattice computed using various mean field

methods. When Γ > 0, mz gradually decreases as quantum fluctuations increase. On

further increasing Γ, the system leads to a quantum critical point (QCP) Γc where mz

becomes zero. In contrast to QCCMFT and CMFT, CCMFT leads to a discontinuity in

magnetization close to QCP.

QCCMFT seems to capture the most accurate description of thermal as well as quan-

tum fluctuations. Using the details of correlation functions, a comparison between QC-

CMFT and CMFT is discussed for TFIM on a square lattice. Fig. 2.7 shows the lon-

gitudinal correlation functions, Czz and the corrected one Czz − (mz)2, between nearest

neighbor spin pairs for a 4 spin square plaquette, therefore all the bonds are equiva-

lent. For Γ = 0, TFIM becomes a classical Ising model, where correlation between its

constituents are maximum in the ordered phase. As thermal fluctuations in the system

increase, Czz reduce, becoming totally uncorrelated at higher temperatures. At the crit-

ical point, thermal fluctuations diverge in the thermodynamic limit, resulting as peak in
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Figure 2.6: Variation of magnetization (mz) as function transverse field (Γ) of transverse
field Ising model on honeycomb lattice for different mean field approximations.

corrected correlations. Since CMFT and QCCMFT are approximations to finite lattices

aiming to capture this effect, the expected divergence is related to the peak shown in

(2.7 (a)). For a quatum phase transition driven by quantum fluctuations at T = 0, the

corrected correlation function shows a maximum at Γc. Maximum obtained in quantum

fluctuations is lower than thermal fluctuations (2.7 (b)).

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25 1.5

Czz

T/Tc

Czz

Czz − (mz)2

(a)

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25 1.5

Czz

Γ/Γc

Czz

Czz − (mz)2

(b)

Figure 2.7: Correlation as a function of (a) reduced temperature at Γ = 0 and (b) reduced
transverse field T = 0 for TFIM on the square lattice obtained using CMFT (solid lines)
and QCCMFT (dashed lines).

This peak can be made sharper with larger cluster size, however the exponents would

still remain classical like due to the semi-classical nature of the method. As QCCMFT
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(dashed lines) incorporates more details of correlations among spins in comparison to

CMFT (solid lines), the peak of corrected correlations is higher in both quantum and

thermal fluctuations. Another interesting feature is the correlations are finite in the

classical or quantum paramagnetic regime unlike simple MFT. It is interesting to note

that CMFT being simpler in comparison to other correlated methods yields qualitatively

correct physics.
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Figure 2.8: Temperature dependence of magnetization (mz) of an isotropic Heisenberg
ferromagnet on a square lattice at h/J = 0.1. Comparison of results obtained from MFT,
CMFT and CCMFT approach are illustrated.

Ising model discussed above posses a discrete symmetry, Heisenberg model on other

hand obeys rotational symmetry. Isotropic Heisenberg model in 2D is known to not

show a finite temperature phase transition due to Mermin-Wagner theorem. However, a

presence of a small magnetic field destroys the symmetry of the Hamiltonian, therefore

the system can spontaneously order which can be continuously destroyed with increase

in temperature. Fig. 2.8 shows the results for Heisenberg ferromagnetic system, on a

square lattice in presence of a finite magnetic field (h/J = 0.1), as obtained from MFT,

CMFT and CCMFT. Due to presence of applied field, mz does not vanish completely

even after transition temperature. Remarkably, MFT is also able to capture the phase

transition qualitatively. Since CCMFT incorporates more local quantum correlations, it

shows faster convergence when compared to other methods.
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2.9 Cluster size scaling

As suggested by Bethe, critical points can be further improved quantitatively with in-

creasing the number of interactions that are treated exactly. In this section, a series

of clusters are used upto Nc = 16 (for which the Hamiltonian is block diagonalized) to

illustrate the scaling of transition temperatures for a ferromagnetic Heisenberg model

on a square lattice via CMFT (see Fig. 5.4). A scaling parameter [83] is defined for

quantitative dependence,

λ =
NB

Nc ∗ z/2
(2.40)

where NB is the number of bonds with in the cluster, the denominator means the number

of bonds of the original lattice (with coordination number, z) for Nc number of spins in

the cluster. The scaling parameter λ provides a quantitative measure of the amount of

correlation effects are account using the cluster. For λ = 0, CMFT reduces to simple

Weiss MFT, where as λ = 1 is the infinite size limit with exact result. Note for two

different clusters, 2X2 and 1X4, λ is different even though number of spins considered is

same. λ is higher of 2X2 since the number of bonds that are treated exactly is higher.

It is also interesting to note that Tc obtained from 1D clusters are higher than for ones

where cluster respects the symmetry of the lattice. Fit to the data shows that Tc in the

infinite limit is still finite owing to the mean-field nature of calculation.
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Figure 2.9: Cluster size scaling of transition temperature of ferromagnetic Heisenberg
model on a square lattice with the scaling parameter λ. Straight line is a fit to the data
points obtained from different cluster.
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2.10 Dependence on cluster shape

Previous section emphasize on the dependence of critical points on lattice geometry and

cluster size. Fig. 5.4 points out the difference in the Tc when the shape of cluster is

different even though the number of interacting spins remain same. Magnetic phases

obtained within CMFT also depends on the shape of the cluster considered as a conse-

quence of finite size. To illustrate this, Heisenberg Hamiltonian on a honeycomb lattice

is considered,

H = J1
∑
〈ij〉

Si · Sj + J2
∑
〈〈ij〉〉

Si · Sj + J3
∑
〈〈〈ij〉〉〉

Si · Sj (2.41)

where J1, J2 , J3 (Ja ≥ 0) are first, second and third nearest neighbor interactions.

This frustrated spin model has been explored previously using various techniques like

spin-wave theory [84], Schwinger boson approaches [85] and exact diagonalization [86].

Competition between various spin pairs gives rise to a rich phase diagram shown in [86]

using exact diagonalization up to 42 spins. The spin model hosts various phases like,

a Néel ordered phase (I), a collinear magnetically ordered phase (II, IV), short ranged

spiral state (III) (which is also connected to a state which decoupled into two triangular

lattices exhibiting 120 deg order) and a magnetically disordered state forming valence

bond crystal (V). The article also compliments its extensive ED results with CMFT

using two different cluster shapes. The two clusters selected vary in the number of spins

considered as well as symmetry, 6-site cluster is a honeycomb plaquette which respects

the lattice properties completely. Where as the other cluster considered was a slightly

non-trivial 8-site cluster (see Fig 3(a) in [86]). It was shown that not all the phases are

compatible with the two cluster shapes selected, phase III was not obtained for 8-site

cluster where as phases II and IV were missing from the computation of 6-site cluster. In

an attempt to obtain all the phases within CMF another 8-site cluster is proposed here,

and the obtained phase diagram is compared with 6-site cluster.

Phase diagram obtained from a 6-site cluster (Fig 2.10 (a)) shows are broad range

of disordered phase with Néel order and spiral order. However other collinear orders are

not obtained in this calculations. In addition, a collinear phase (III’) is also obtained in

the region, however it seems to be a meta-stable state which would eventually lead to a

proper spiral state with proper scaling. Region supporting Néel order is reduced in 6-site

cluster and the parameter space resulting in a disordered region is increased compared

to the 8-site cluster considered in the said article. With the 8-site cluster (Fig 2.10 (b)),

Néel state is stabilized in a larger parameter space, disordered phase (V) is stable in a

reduced parameter region reduced giving rise to other collinear phase III’. Phase III’ is
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Figure 2.10: Clusters (a), (b) employed for CMFT calculations consisting of N = 6 and
N = 8 spins. Thick(thin) lines connecting the circles in the shaded area are intra-cluster
(inter-cluster) couplings, J1 (black), J2 (blue) and J3 (red). Phase diagrams (c)((d))
obtained from CMFT as applied to the N=6 cluster (a) (N= 8 cluster (b)).

a meta-stable state which will be replaced by the spiral phase obtained in 42 spin ED if

larger clusters were considered. It should be noted that unlike cluster (a), all the sites are

not equivalent in this cluster, due to this in-equivalence, Néel order is obtained for larger

J2 and J3. With this analysis it is safe to conclude the shape of the cluster considered

for the calculation controls the resulting phase diagram obtained. It is very important to

find a cluster which is compatible with most of the magnetic phases.

2.11 Effective in Frustrated systems

Frustration in magnetic systems has attracted much attention in last few decades as it

results in non-trivial phases by weakening conventional magnetic order. However, it adds

enormous complexity in determining the properties of such exotic physics. Various sophis-
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ticated numerical approaches like quantum Monte Carlo fail in correctly understanding

such systems. In this context, approximate approaches like CMFT are valuable as it

goes beyond a single site mean field classical theory and results in the symmetry-broken

states partially accounting for local quantum fluctuations. This treatment may allow for

disordered states in cases when frustration of interactions dominates, such as highly frus-

trating models like Kitaev-Heisenberg model. Kitaev Heisenberg model on honeycomb

lattice holds a lot of importance as it is motivated by the family of iridates, candidate

material to host Kitaev physics. CMFT has been employed for KH model on honeycomb

[87] as well as Kagome lattice [88] with large clusters using Lanczos diagonalization. It

correctly predicts all the phases with qualitatively accurate phase boundaries. It has also

been utilized as a starting point to understand ground states of various frustrating mod-

els like, J1 − J2 − J3 Heisenberg model on a honeycomb lattice as discussed in previous

section [86]. It gives surprisingly accurate ground state phase boundaries for the frus-

trated quantum magnetic model, spin-1/2 J1−J2 Heisenberg model in a two-dimensional

square lattice [89]. CMFT with proper scaling analysis quantitatively reproduced the

magnetization curve, including the stabilization of the one-third magnetization plateau

in antiferromagnetic model on triangular lattice in magnetic field [90, 91]. The effects

of inter-chain/layer coupling, which are unavoidable in real low-D materials can also be

demonstrated using the method. This technique has been shown to improve upon conven-

tional mean-field approaches for the case of hard-core bosons on the triangular lattice [92]

and when applied to an effective model for a frustrated antiferromagnet bilayer square

lattice [93, 83]. Recently, CMFT has also been applied to study electron-hole pair (or ex-

citonic) condensation in the extended Falicov-Kimball model at finite temperatures [94].

The method has been proven effective to study Kugel-Khomskii type superexchange in-

teractions with finite spin-orbit couplings [95, 96] as well as to study spin crossover in

strongly correlated electron systems[97]. It has also been used to study magnetic effects of

electron doping in molecular magnets [98]. In this thesis, CMFT will be utilized to under-

stand not only ground state, but also the temperature and field dependent experimental

results of real materials possessing frustrating interactions.

2.12 Ground state of AF spin chain

Antiferromagnetic spin-1/2 chains are model systems for realizing a wide range of inter-

esting quantum many-body ground states. For a classical antiferromagnetic system the

ground state for any dimensional lattice will be a state with alternating spin on adjacent

lattice site but when quantum nature of the spins is included, ideally the spins would like
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form valence bond states where nearest neighbor spins form a singlet pair. However, it is

well known that AFM Heisenberg magnet on a 2D and 3D lattice results is a Néel AFM

and not a valence bond state. The ground state of spin-1/2 Heisenberg antiferromagnetic

chain (HAFC) model is characterized as a quantum critical spin liquid in which the spin

correlations decay as a power law [4]. However, despite the absence of static long-range

order, the model exhibits well-defined spin-1/2 excitations called spinons. The spinons

are created in pairs leading to a quantum continuum of gapless two-spinons states [30].

In systems where the spin-1/2 HAFC model can be realized, the presence of interchain

coupling, disorder, spin frustration, or applied magnetic field brings about novel and un-

expected changes to the low-energy properties [50]. The question addressed here is what

will be the ground state of an antiferromagnetic spin chain using CMFT?

Fig. 2.11 shows the variation staggered magnetization with increasing length of spin

chain. The value of staggered magnetization obtained is less than 10% of the spin magni-

tude. Its reduction with increasing chain length suggests that Néel order induced in the

system is the artefact of mean field character. CMFT is an iterative method where the

self-consistency loop runs until the mean field values are converged. Mean fields consid-

ered converged when the difference between mean fields in each iteration is less than the

a fixed value, known as tolerance factor.

Here we show that staggered magnetization is further reduced with stronger tolerance

factor. Within CMFT, ground state of antiferromagnet Heisenberg model on a chain is

a mixed stated forming valence bonds on alternate sites. However, the true valence bond

with (Crr′ = −0.75) is disturbed due to mean fields at the edge of the spin chain which

leads to the appearance of a Néel type order with very small staggered magnetization.
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Figure 2.11: Variation of staggered magnetization with different chain lengths and toler-
ance error for an antiferromagnetic Heisenberg chain calculated using CMFT.
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In conclusion, we have demonstrated that CMFT is capable of qualitatively describing

classical and quantum phase transitions in an important class of spin Hamiltonians by

considering thermal and quantum effects within the same framework. Despite the short-

comings related to estimations of ordering temperatures, etc. the method holds a great

promise as it provides a qualitative picture of thermodynamic behaviour owing to an ac-

curate treatment of short range spatial correlations. In the rest of the thesis, CMFT will

be utilized as the main tool to capture the subtle competition between different possibilities

of magnetic ordering in complex Hamiltonians motivated by real magnetic materials.
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Chapter 3

Cluster mean-field study of the

Heisenberg model for CuInVO5

Adapted from the work :

Singhania, A., Kumar, S., “Cluster mean-field study of the Heisenberg model for

CuInVO5”, Phys. Rev. B 98, (2018) 104429
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3.1 Introduction

Spin-1/2 quasi-one-dimensional (Q1D) magnets are ideal candidates for observing fun-

damental quantum phenomena as the combination of low dimensionality and small spin-

magnitude maximizes quantum fluctuations [3, 48]. This has motivated experimentalists

for many decades to realize one dimensional quantum magnets [99, 100]. These efforts

have led to the discovery of many Q1D magnets and to the experimental verifications of

various quantum phenomena [101]. Indeed, quantum phase transitions driven by mag-

netic field or external pressure have been reported in low dimensional magnets such as

TlCuCl3, KCuCl3, LiCuVO4, CoNb2O6, etc. [102, 103, 104, 105, 106, 107, 108, 109].

Certain low-dimensional magnets have also been identified as being close to a quantum

critical point [110, 111]. Presence of extended quantum critical region has been inferred

from the magnetic field dependence of excitations in copper pyrazine dinitrate [112].

Due to enhanced quantum fluctuations, Q1D magnets are also considered strong candi-

dates for hosting quantum spin liquid states [113, 106, 114, 115]. Another aspect that

makes low-dimensional magnets very interesting is the possibility of qualitatively new

type of excitations [116, 117, 118]. A classic example is that of spinon excitations in

one-dimensional antiferromagnets [119, 120]. More recently a realization of longitudinal

spin excitations, the so called Higgs mode, in certain Q1D magnets has been proposed

[121, 122, 123, 124, 125, 126, 127].

Recent experimental studies on spin-1/2 tetramer compound CuInVO5 show unusual

magnetism at low temperatures [126]. Thermodynamic measurements, such as specific

heat and magnetic susceptibility, show that a long-range ordered antiferromagnetic state

exists below 2.7K. There are two inequivalent Cu sites and the size of the ordered mo-

ment strongly differs at these two sites. This leads to a magnetization plateau in the

magnetic field dependence at nearly half the saturation magnetization. While some of

the features observed in CuInVO5 can be explained within a simple mean-field approach,

the presence of two peaks in the low-temperature specific heat and the presence of a cusp

in the magnetic susceptibility remain as two of the unexplained features in the data [126].

Furthermore, a microscopic picture of the ordered state and its evolution with magnetic

field and temperature has been lacking.

Motivated by these puzzles in the experimental data on CuInVO5, we present a com-

prehensive analysis of a four-sublattice one-dimensional Heisenberg model with three dif-

ferent nn exchange couplings. We make use of cluster mean-field (CMF) approach where

intra-cluster interactions are treated exactly while inter-cluster interactions are treated at
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the mean-field level. The approach is well justified in the context of CuInVO5 due to the

existence of a hierarchy of coupling strengths as inferred from the experimental results

[126]. We find that treating inter-tetramer coupling beyond mean-field, which requires

a minimum of 8 sites in the cluster for the CMF study, brings out a subtle competition

between two different spin-spin correlations. This emphasizes the presence of two distinct

limiting phases in the model, and the ground state in CuInVO5 is best understood as

a compromise of these two competing tendencies. Interestingly, the temperature depen-

dence of the correlations is non-monotonic with certain spin-spin correlations strength-

ening with increasing temperature. Such effects are typically encountered in frustrated

magnets where entropic effects at higher temperatures can help in enhancement of order

[128, 129, 130]. We also identify multiple spin-flop transitions in the presence of external

field which highlight the inequivalence of spins within a tetramer. Most importantly, the

subtle interplay between different spin-spin correlations accounts for the presence of an

extra peak in the magnetic specific heat and a cusp in the magnetic susceptibility at low

temperatures, in excellent agreement with the experimental data on CuInVO5 [126].

The remainder of the paper is organized as follows. In Section 3.2 we define the model

and discuss the CMF approach used for the study. Results are discussed in Section

3.3 where we begin by discussing the phase diagrams for the general choice of model

parameters. This is followed by a discussion of various observables calculated for the

parameters specific to CuInVO5. For a clear understanding of the microscopic details we

analyse the longitudinal and transverse spin-spin correlations between different pairs of

spins. Summary and conclusions are presented in Section 3.4.

3.2 Model

We begin with a Heisenberg model on a 1D chain of spin-1/2 tetramers in the presence

of an external magnetic field. The model is described by the Hamiltonian,

H =
Nt∑
i=1

[J2(S4i−3 · S4i−2 + S4i−1 · S4i) + J1S4i−2 · S4i−1

+J3S4i · S4i+1]− hz
Nt∑
i=1

3∑
j=0

Sz4i−j. (3.1)

Here, S4i−j with j = 0, 1, 2, 3 are the Heisenberg spin operators belonging to the ith

tetramer. J1 > 0, J2 < 0, J3 > 0 are the Heisenberg exchange constants and hz is the
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Figure 3.1: A schematic picture of the coupled tetramer model. Each dot represents a
spin-1/2 and the nearest-neighbor couplings are indicated by double (J1), solid (J2) and
dotted (J3) lines.

magnitude of the applied magnetic field. Nt is the total number of tetramers, and periodic

boundary condition is imposed via the identification S4Nt+1 ≡ S1. For the analysis of

the model Hamiltonian we will use J1 = 1 as the elementary energy scale. This leaves us

with J2, J3 and hz as free model parameters. The inter-tetramer exchange J3 is inferred

to be much smaller than the intra-tetramer couplings J1 and J2 in CuInVO5.

In order to understand the nature of long-range magnetic order in the model Hamil-

tonian Eq. (3.1), we employ the CMF approach. CMF method is an extension of the

single-site Weiss mean-field approximation, and has been very successful in studying the

competition between different ordered states even in low dimensions [89, 131, 87]. It is

well know that the Mermin-Wagner theorem prohibits the presence of any long range

order at non-zero temperatures for isotropic spin Hamiltonians in dimensions d ≤ 2 [46].

However, most low-dimensional magnets exhibit long-range order at small but finite tem-

peratures [100, 132, 41]. CuInVO5 is no exception to this trend as a long-range order

sets in at 2.7K. This apparent violation of Mermin-Wagner theorem can be understood

in terms of the presence of magnetic anisotropies and/or the role of weaker inter-chain or

inter-layer coupling. The importance of quantum effects in low-dimensional ordered mag-

nets is typically reflected in the suppression of the ordered moment [133]. The existence

of long-range magnetic order in CuInVO5 further justifies the use of CMF approach for

describing low-temperature magnetism. One can argue that the mean-field aspect of the

method is taking into account the three dimensional character of the magnetic system.

Hence, the feature that CMF calculations lead to an ordered state at low enough tem-

peratures is consistent with the experimental results. Although the CMF approach has

been extensively discussed in literature [131, 87], for completeness, we briefly introduce

the method here. Specifically, let us consider a one-dimensional system which can be

thought of as repeated structure of clusters containing linear segments of Nc spins. We

want to treat the interactions within the cluster exactly while inter-cluster interactions

will be treated approximately. In a one dimensional system there are two edge spins, S1
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and SNc that couple the central cluster to two adjacent clusters (see Fig 3.1). These two

inter-cluster coupling terms can be approximated via the standard mean-field decoupling

where Si ·Si+1 is replaced by 〈Si〉 ·Si+1 + Si · 〈Si+1〉− 〈Si〉 · 〈Si+1〉 by ignoring the higher

order fluctuation terms. Therefore, the original Hamiltonian reduces to a cluster Hamil-

tonian in the presence of mean-fields that are experienced by the edge spins. The mean

fields acting on spins S1 and SNc are then calculated self-consistently. For a cluster with

Nc spins of magnitude 1/2, the size of the Hilbert space for the cluster Hamiltonian is

2Nc , and therefore the cluster Hamiltonian can be easily diagonalized exactly for Nc ≤ 12.

Note that in the general case where the mean fields are allowed to have components along

x and y directions, the resulting mean-field Hamiltonian does not possess many of the

symmetries of the full interacting Hamiltonian. Therefore, it is not generally possible

to make use of symmetries to achieve diagonalizations of larger clusters. The quantum

expectation values of the spin operators 〈Sαi 〉 where i denotes the site and α the spin

component, can be computed following the standard quantum statistical mechanics. The

angular bracket denotes the quantum statistical average of the operator, and is defined

for any operator O as

〈O〉 =
1

Z Tr [O e−βHc ], (3.2)

where β is the inverse temperature, Hc is the cluster Hamiltonian, and Z = Tr e−βHc is

the partition function. The process is repeated until a self-consistent solution is obtained

upto a desired tolerance factor. In our calculations we take 10−5 as tolerance factor for

convergence. As with all self-consistent approaches, we begin with a variety of initial

mean-field configurations to ensure that the resulting self-consistent solution corresponds

to a global minimum.

3.3 Results and Discussions

Before we consider the model parameters relevant to CuInVO5, it is useful to explore

the ground state phase diagram of the model in the parameter space |J2|/J1, J3/J1 and

hz/J1. To obtain these CMF phase diagrams we work with an 8-site cluster containing

two tetramers. The justification for this choice will become clear in Sections 3.3.2 and

3.3.3. where we will present a comparison between results obtained using 4-site and 8-site

clusters.
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3.3.1 Spin-spin correlations in the ground state

In order to characterize the ordered states at low temperature, we compute the transverse

and longitudinal components of the spin-spin correlations defined by,

C⊥ij =
1

2
〈S+

i S
−
j + S−i S

+
j 〉,

Czz
ij = 〈Szi Szj 〉. (3.3)

The total spin-spin correlations Cij can be obtained by adding the transverse and longitu-

dinal components, Cij = C⊥ij +Czz
ij . In the absence of external magnetic field, we present

the evolution of total spin-spin correlations as a function of |J2| and J3, keeping J1 = 1 as

the strongest exchange parameter. As expected, we find that C23 retains its singlet-like

character across the entire parameter regime covered in Fig. 3.12 (see Appendix 3.5.1).

Similarly, C12 and C34 (see Fig. 3.2(c)) remain ferromagnetic in nature, except in the

vicinity of the J2 = 0 line where these correlations become vanishingly small. The be-

havior of C23(C12/C34) is not at all surprising since these spins are directly coupled via

antiferromagnetic (ferromagnetic) interactions. Most interesting variation is noticed in

C14 and C45. C45 begins with a perfect singlet nature (C45 ≈ −0.75) along J2 = 0 line

and the correlations diminish gradually as we move towards J3 = 0 line. The behavior of

C14 is complementary to that of C45. This can be easily understood as S4 can participate

in only one perfect singlet, either with S1 or with S5. The tendency for singlet formation

between S4 and S5 is easy to understand as these two spins are directly coupled via J3.

On the other hand, the singlet between S1 and S4 is mediated via an antiferromagnetic

exchange J1 and a ferromagnetic exchange J2. The perfect singlet character for either

pairs is disturbed when all the interaction strengths are finite. Instead, a compromise

state with AFM correlations between both S1-S4 and S4-S5 pairs is preferred. It is im-

portant to note that this subtle competition is not captured in calculations that limit

the cluster size to 4-sites (single tetramer), as in that case C45 cannot be distinguished

from C14. The correlation C18 originates from the inter-cluster couplings where S1 and

S8 belonging to the central cluster are coupled to mean-fields of S8 and S1, respectively.

As expected, we find that this mean-field treatment restricts the correlation strengths to

classical value of −0.25 (see Fig. 3.2(b)). The behavior of correlations between different

spin pairs in the cluster points to the following three distinct ground states: (i) The

simplest limit corresponds to J3 → 0 and J2 → 0 where the system is a collection of

S2-S3 singlets and isolated spins S1 and S4. (ii) If J3 dominates over J2, then the system

can be considered close to a valance bond solid limit where two different type of singlets,

one due to J1 coupling and other due to J3 coupling, are formed (see schematic picture
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Figure 3.2: Variation of different spin-spin correlations with |J2|/J1 and J3/J1 for hz = 0:
(a) C45, (b) C18, (c) C12 and (d) C14. Cij are computed within CMF approach using 8-site
cluster. The dot indicates the location of the magnetic model for CuInVO5 in the |J2|-J3
plane. The dashed line is an estimate for the path in parameter space where two different
tendencies for singlet formation strongly compete (see text). In panel (c) we show the
schematic picture of two limiting states. The long-dashed line marks the separation
between Néel-type long-range ordered state and the state consisting of non-interacting
tetramers.

near top-left corner in Fig. 3.2(c)). Of course, the exact singlet correlations are spoiled

by the presence of the ferromagnetic J2 coupling and also by the CMF treatment. As a

consequence, an ↑↑↓↓ type antiferromagnetic ordering with reduced magnetic moments

emerges. Finally, (iii) in the case of |J2| dominating over J3, the C14 correlation achieve

values close to that of perfect singlet, i.e., −0.75, while C45 is almost uncorrelated (com-

pare Figs. 3.2(a),(d), and see schematic picture near bottom-right corner in Fig. 3.2(c)).

By plotting the change in the self-consistent mean fields 〈Sz1〉 and 〈Sz8〉 as a function of

|J2| for fixed values of J3 (see Appendix 3.5.2), we identify this limit in terms of the

inequality |J2| > 8J3, marked as long-dashed line in Fig. 3.2. The ground state in the

region |J2| > 8J3 corresponds to that of an isolated 4-site cluster. The magnetic phase

diagram as inferred from the Cij, therefore, consists of three qualitatively distinct regimes

discussed above which are connected to each other continuously.

It is instructive to quantify the competition between different limiting cases. Fig.

3.2(a), (d) suggest that the key competition is between the singlet correlations C14 and
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C45. Solving the isolated 8-site cluster with open boundary conditions, we find that the

ground state energy is given by,

E1 = −1

4
(J1 + 2J2 + 2

√
J2
1 − 2J1J2 + 4J2

2 ). (3.4)

On the other hand, the state in the limit J2 = 0 is a collection of alternating singlets

having energy per tetramer,

E2 = −3

4
(J1 + J3). (3.5)

Therefore, the competition between these two tendencies is strongest when the two energy

contributions are equal. This gives us a relation between J2 and J3 which is obtained

by numerically solving equations (3.4) and (3.5). The result is plotted as a dashed line

in Fig. 3.2(a) and 3.2(d). Exchange parameters obtained by fitting susceptibility and

magnetization data for CuInVO5 are J1 = 240K, J2 = −142K and J3 = 30K [126].

The dot in Fig. 3.2 represents the location of the magnetic model for CuInVO5 in

the parameter space of the model Eq. (3.1). We note that CuInVO5 is not far from

this strongly competing regime, therefore, treating the C45 correlations exactly is very

important to capture the important aspects of magnetism in CuInVO5.

Next, we took at the dependence of spin-spin correlations on external magnetic field.

In this case we discuss both the longitudinal and the transverse components of the cor-

relations. For this purpose we fix the value of the inter-tetramer exchange J3 = 0.125

and explore the phases in hz − J2 plane. The specific choice of the J3 value is relevant

to CuInVO5 where J1 and J3 are estimated to be 240K and 30K, respectively [126]. For

small values of J2, the longitudinal and transverse components of C23 are close to −0.25

and −0.50, respectively. These singlet-like correlations for C23 remain unaffected by the

external magnetic field in the regime |J2| < 1. Interesting conclusions can be drawn by

comparing the field dependence of component resolved C18 and C45. For small J2, C18

starts off with AFM correlations in the z-component and no correlations in the trans-

verse direction, i.e., Czz
18 = −0.25 and C⊥18 = 0 (See Figs. 3.3(c) and 3.4(c)). A sharp

change in these correlations is found near hz = 0.01 where the longitudinal component

becomes close to zero and transverse component rises to −0.25. This is a clear signature

of the spin-flop state involving a flopping of S1 and S8. The longitudinal component

then gradually increases to positive values at the cost of reduction in transverse corre-

lations in accordance with the standard picture of a spin-flop state evolving towards a

canted state. Following the change in components of C45 (say, at J2 = −0.58 which is

relevant for CuInVO5) upon varying magnetic field highlights a similar effect for S4-S5
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Figure 3.3: Variation of longitudinal component of spin-spin correlations with |J2|/J1
and hz/J1 for J3/J1 = 0.125: (a) Czz

45 , (b) Czz
18 , (c) Czz

23 and (d) Czz
14 . Dashed horizontal

lines correspond to the |J2|/J1 ratio estimated for CuInVO5.

pair. The transverse correlations reduce sharply near hz = 0.08, and the longitudinal

correlations vanish and then rapidly rise to positive values. Thus a clear picture emerges

for the presence of two spin-flop transitions in this spin-1/2 tetramer model – the first

one corresponding to a flopping of edge spins and the second one to that of the central

pair of spins. For still larger values of hz, another spin-flop corresponding to S2-S3 pair is

present. Note that the anti-correlation between C14 and C45 is also present for finite mag-

netic fields (see panels (a) and (d) in Fig. 3.3 and Fig. 3.4). Having discussed the broad

picture for different spin-spin correlations and their component resolved evolution with

magnetic field, we now focus on the parameter values considered relevant for CuInVO5.

We begin by discussing results for a 4-site cluster.

3.3.2 Single-tetramer cluster

In this section, we will discuss results obtained via the CMF approach using a 4-site

cluster. We begin by comparing the temperature dependence of spin-spin correlations

obtained for an isolated tetramer and those via CMF with a 4-site cluster. In the case of

isolated tetramer, cluster is treated exactly with open boundary conditions where as in
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Figure 3.4: Variation of transverse component of spin-spin correlations with |J2|/J1 and
hz/J1 for J3/J1 = 0.125: (a) C⊥45, (b) C⊥18, (c) C⊥23 and (d) C⊥14. Dashed horizontal lines
correspond to the |J2|/J1 ratio estimated for CuInVO5.

case of CMF, edge spins S1 and S4 couple to average fields 〈S4〉, 〈S1〉 respectively, via

J3. Difference in the two sets of correlation functions vanish above ∼ 8K. This indicates

that the self-consistent mean-fields vanish above 8K and the long-range order, which

can be captured via CMF approach, is present below 8K. Indeed, the main advantage

of using a mean-field approach is to obtain results in thermodynamic limit. However,

we point out a crucial shortcoming of the CMF approach applied to this system. The

correlation C14 for the two edge spins of a tetramer are treated better in an isolated

tetramer. These correlation have a value, C14 ≈ −0.68, close to that of a perfect singlet.

In the mean-field approach the edge-spins are coupled to average fields due to finite 〈S1〉
and 〈S4〉, and therefore the correlations are strongly reduced. This can be observed for

all the correlations involving the edge spins (see Fig. 3.5). The correlation of the central

spin-pair C23 is identical in the two calculations, as expected. In addition to computing

spin-spin correlation functions defined in Eq. (3.3), we also compute quantities that can

be compared directly with the experiments. To this end, we compute the specific heat

and the magnetic susceptibility using the standard definitions,

CV (T ) =
d〈H〉
dT

, χ(T ) =
d〈Mz〉
dh

. (3.6)
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Figure 3.5: Spin-spin correlations Cij as a function of temperature for an isolated tetramer
(dashed lines) and within CMF approach using a 4-site cluster (solid lines). Variation of
C23 over larger T scale is shown in the inset.

We now present the comparison of specific heat calculations for isolated cluster and for

the 4-site CMF approximation. For an isolated cluster the ground state belongs to the

ST = 0 sector and is characterized by singlet correlations between spin pairs S1-S4 and

S2-S3. This is indeed reflected in Fig. 3.5 where the pair correlations C23 and C14 are

found to be close to perfect singlet type. Treating the inter-tetramer interactions at the

mean-field level spoils the singlet correlation C14 as the edge spins now experience classical

mean fields. The specific heat for an isolated cluster shows two broad peaks which can be

naively associated with the loss of correlations C14 at around 10K, and the breaking of

the stronger singlet between the central Cu spins at around 100K. The CMF results lead

to a sharp peak in CV , signifying the on-set of long-range order below ∼ 8K. In order

to confirm the simple picture proposed from the spin-spin correlation and the specific

heat calculations, we now show the magnetic susceptibility results. If the simple picture

of two-step loss of correlations is indeed true then it should have specific consequences

for the behavior of magnetic susceptibility. To verify this, we plot the inverse magnetic

susceptibility obtained for an isolated cluster in Fig. 3.7. Given the tendency for singlet

formation at low temperatures, we fit the magnetic susceptibility differently in three

temperature regimes. In the range 0K < T < 40K, we fit the susceptibility via the

following behavior for singlets [134] (see Appendix 3.5.3),

χ(T ) =
a1
T

e(−b1/T )

1 + 3e(−b1/T )
. (3.7)
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Figure 3.6: Specific heat as a function of temperature for isolated tetramer (dashed line)
and for CMF approximation with 4-site cluster (solid line). The inset shows the behavior
over wider temperature scale for the CMF approximation.

In the above, the fitting parameter a1 contains information about number of singlets, and

b1 is related to the excitation gap. In the regime 40K < T < 300K, the system should

display a mixed behavior since the weaker singlets cease to exit and the participating spins

will now contribute as free paramagnetic moments. Therefore, we fit the susceptibility

via,

χ(T ) =
a2
T

e(−b2/T )

1 + 3e(−b2/T )
+

c2
T − d2

. (3.8)

The second term is simply Curie-Weiss behavior and the two fitting parameters contain

information regarding the total number of paramagnetic moments and the Curie-Weiss

temperature. In the high-temperature regime, one expects a total Curie-Weiss behav-

ior for all the constituent spins. Therefore, a Curie-Weiss fit, χ(T ) = c3
T−d3 , is used in

the range 300K < T < 600K. The actual χ−1(T ) and the three fits discussed above are

shown in Fig. 3.7. From the quality of the fit the following simple picture is reconfirmed.

At low temperature, the magnetic susceptibility fits very well to a singlet behavior. At

intermediate temperatures, two of the spins get free and contribute to Curie-Weiss suscep-

tibility. Finally a paramagnetic behavior emerges at high temperatures. The obtained

fit parameters differ slightly from the above picture in terms of number of spins con-

tributing to susceptibility as singlets or paramagnetic moments at different temperatures

(see Appendix 3.5.3). We find that while the tendency for singlet formation below 100K

between S2 and S3 and the long-range order to a Néel state with ↑↑↓↓ pattern below

about 10K is obtained within the 4-site CMF approach, the experimental observation of

a second peak in the specific heat at about 2.7K is not consistent with the CMF results.
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Figure 3.7: Inverse magnetic susceptibility, χ−1, as a function of temperature for an
isolated tetramer. The dashed lines are the best fits corresponding to three different tem-
perature regimes (see text). Inset shows the result for χ(T ) within CMF approximation
using 4-site and 8-site clusters.

We argue that treating inter-tetramer interactions beyond mean-field is the key to un-

derstanding the magnetism of CuInVO5. We discuss the 8-site CMF results in the next

section. Nevertheless, we already find that 8-site CMF results for magnetic susceptibility

are qualitatively different from those obtained for 4-site CMF (see inset in Fig. 3.7). A

cusp-like feature followed by a broad hump is reported in the experiments which seems

to be captured within 8-site CMF calculations. Clearly, if the interaction J3 happens to

be stronger than the ferromagnetic interaction J2 then the system would prefer to form

singlets between S2 and S3 and S4 and S5 instead of a pair of singlets within a tetramer.

In fact, even if J3 is much smaller than J2, since J3 is antiferromagnetic in nature it may

be important to retain the correlations in the inter-tetramer interaction. The simplest

way to achieve this is to increase the cluster size to 8-spins (two-tetramers) where one

central inter-tetramer exchange term will be treated exactly. Next, we present results on

CMF using two- and three-tetramer units as the cluster.
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3.3.3 Beyond single-tetramer cluster

We begin by presenting the spin-spin correlation functions for different pairs as a function

of temperature. Note that the most important correlation that was missing in the 4-site

cluster treatment is C45. Exact solution of the isolated 8-site cluster shows that at T = 0,

C14 is antiferromagnetic in nature and larger in magnitude than C45. With increasing

temperature |C14| reduces rapidly (see Fig. 3.8). Interestingly, this decrease of |C14| is

accompanied by an increase of |C45|. Note that it is rather unusual to find an increase in

the magnitude of correlations as a function of temperature. This hints towards competing

tendencies for order in the ground state. We can comprehend this finding as follows.

Spin S4 can have singlet type correlations with S5 due to the antiferromagnetic exchange

constant J3. However, it can also have quantum antiferromagnetic correlations with spin

S1 due to combined effect of an antiferromagnetic J1 and ferromagnetic J2. These two

tendencies for singlet correlations are competing in the ground state, and for the material-

specific values of the exchange parameters a dominant antiferromagnetic correlations with

spin S1 is energetically favoured With increasing temperature, a weakening of longer-

range correlations (C14) allows for strengthening of C45. This intriguing interplay of two

competing tendencies for singlet formation is apparent in our discussion of the model

for generic parameter values (compare Fig. 3.2(a) and Fig. 3.2(d)). Interestingly, this

competition between different singlet choices is also at play when temperature varies, and

has consequences for physical observables. The fact that different spin-spin correlations

are being affected at different temperatures should be reflected in specific heat results.

To verify this we plot in Fig. 3.9 the specific heat calculated within the CMF approach

using 4, 8, 12 and 16 site clusters. In contrast to the results for 4 site cluster, two peaks

at low temperatures are found in the 8, 12 and 16 site CMF calculations.

The results suggest that the most important improvement to the 4-site CMF results

already occurs when we use 8 site cluster and hence treat inter-tetramer interaction

exactly. The relative strength and position of the two low-temperature peaks in CV

change as we increase the cluster size (see Fig. 3.10). The first peak which is related

to the long-range order reduces with increasing system size. Although, the scaling based

on 3 data points is not conclusive, the estimates for the peak locations Tp obtained

from the extrapolated data are in very good agreement with the experiments with an

overestimations of about 1.5K.

More importantly, it is ruled out that any new peaks in the specific heat arise with

adding more tetramers to the cluster used in the CMF approach. Note that the experi-

mental plot for CV also contains contribution from phonons which needs to be subtracted
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Figure 3.8: Spin-spin correlations, Cij, as a function of temperature for an isolated 8-site
cluster (dashed lines) and within the CMF approach using an 8-site cluster (solid lines).
Variations in C23 and C45 over a wider T range is shown in the inset.

in order to identify the pure magnetic contribution. While the phonon contribution will

mask the high temperature peak around 90K (see inset in Fig. 3.9), the two lower tem-

perature peaks are easily identified in the experimental data [126]. The magnetic field

dependence of the spin-spin correlations is already discussed in Figs. 3.3 and 3.4 for

generic choice of model parameters. In order to obtain the results specific to CuInVO5

we simply need to find the appropriate values of model parameters. These results were

obtained for J3/J1 = 0.125, a ratio motivated from the estimated values of J1 and J3

in CuInVO5. In the material, |J2|/J1 is estimated to be 0.58 and we can focus on the

|J2| = 0.58 line to discuss the field dependence of correlations in CuInVO5. A partial

spin-flop is present at low magnetic fields which leads to a magnetization plateau at

hz = 0.08J1 which turns out to be around 30T when appropriate conversion factors are

included. This coincides very well with the presence of the plateau in the field dependence

of magnetization (see Fig. 5 in [126]). If the simple picture of partial spin-flop transition

is valid, then we should see further increase in magnetization at yet higher magnetic fields.

Indeed, we obtain saturation magnetization at about 145T (see supplemental material).

Combining the results on temperature and magnetic field dependence of mean-field

parameters and spin-spin correlations, we present a hz − T phase diagram in Fig. 3.11.

The dot product of mean fields 〈S1〉 · 〈S8〉 is a measure of the long-range order in the
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shown in Fig. 3.9 with inverse cluster size.

.

system. As we can clearly see in Fig. 3.11(b), for small values of field there is a transition

close to 5K from a long-range ordered to disordered state. However, even in the disordered

state there are certain short-range correlations that remain finite. The most important

of these is C45 which is shown in Fig. 3.10(a). These correlations remain finite upto

larger temperatures and show a significant variation near T = 10K. This variation is the

underlying reason for a broad peak in the specific heat near 10K. The evolution of mean-

field variables with magnetic field shows that the edge spins gradually approach an aligned
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Figure 3.11: Temperature and field dependence of, (a) spin-spin correlations C45 and (b)
product of mean-field variables, 〈S1〉·〈S8〉 , for the parameter values specific to CuInVO5.
Temperature (magnetic field) axis is in the physical unit Kelvin (Tesla). Note that the
quantity plotted in (b) is finite for a long-range ordered magnetic state.

state starting with an anti-aligned state. The saturation alignment is achieved at about

30T. Note that while the edge spins are aligned, the central spins still retain considerable

singlet correlations and therefore the contribution to magnetization is from these edge

spins leading to the magnetization plateau in the experimental data [126]. It is possible

to further improve the mean-field description of the model by using different extensions

of CMF approach. Two such extensions are correlated CMFT and quantum correlated

CMFT [135, 136, 137]. However, the most important aspect of the magnetic model

for CuInVO5 is already captured by our minimal description where the inter-tetramer

interaction is included in exact manner. While some of the quantitative details, such as

the relative magnitude of the low-temperature peaks, the exact location in temperature

of the peaks, etc., are likely to change in a more accurate treatment of the model, the

qualitative character is well described in our CMF approach.

3.4 Summary and Conclusion

We have performed cluster mean field analysis of a one-dimensional Heisenberg model

with alternating signs of exchange constants. The choice of the model is motivated by the

unusual low-temperature magnetism in CuInVO5 [126]. We map out the nature of spin-

spin correlations as a function of different model parameters. The results are obtained

via CMF approach with an 8-site cluster which, in contrast to the 4-site cluster study

[126], captures the effect of the inter-tetramer coupling beyond mean-field. It turns out

to be an essential ingredient for understanding some of the experimental observations, in
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particular, multiple peaks in the low-temperature specific heat. Due to a better treat-

ment of quantum correlations of the inter-tetramer coupling, an interesting competition

between two qualitatively different ground states is uncovered. These ground states are

best understood in the limiting cases J3 → 0, and J2 → 0. In the limit J3 → 0 the

system is a collection of isolated tetramers and the ground state for an isolated tetramer

is characterized in terms of quantum antiferromagnetic correlations between spins S2

and S3 and those between S1 and S4. The latter of these relies on the ferromagnetic

exchange J2 as a mediator. On the other hand, in the limit J2 → 0 the ground state

becomes a collection of alternating singlets, one mediated by exchange J1 and other by

J3. However, this state is only accessible when quantum correlations of the inter-tetramer

interactions are retained. When J2 and J3 are both finite, a competition between these

qualitatively distinct states is realized. Our study shows that the ground state of the

CuInVO5 emerges out of this competition. The above description of the low-temperature

magnetism in CuInVO5 is inferred from our analysis of the model for material-specific

values of the parameters. We show that an interesting evolution of the competition be-

tween different spin-spin correlations exists not only with variation of model parameters

but also with increasing temperature. Correlations for certain pair of spins even increase

with increasing temperature which is contrary to the general expectations that thermal

effects reduce the correlations. Magnetic susceptibility calculations further allow us to

identify three distinct regimes in temperature corresponding to a complete paramagnetic

behavior at high temperature, a singlet-like behavior at low-temperatures, and a mixed

behavior at intermediate temperatures. At intermediate temperatures some of the spins

get free from singlets while other retain strong singlet correlations. This is consistent

with the experimental finding of the magnetization plateau at nearly half the saturation

magnetization. By tracking transverse and longitudinal spin-spin correlations, we observe

a two-step spin-flop transition in the model. The most important implication of this com-

petition of correlations captured in our CMF study is the existence of multiple peaks in

the specific heat – a puzzling feature reported in the experimental data on CuInVO5

[126].
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3.5 Appendix

3.5.1 Spin-spin correlations
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Figure 3.12: Variation of different spin pair correlations (Cij) with |J2|/J1 and J3/J1 for
hz = 0 computed within CMF for 8-site cluster: (a) C23, (b) C13, (c) C15 and (d) C35.
The dashed and long-dashed lines are identical to those shown in Fig. 3.2. The dot
represents the location on CuInVO5 in the parameter space.

In continuation of the discussion in Section 3.3.1 about three different limiting states in

J2 − J3 parameter space, we present other relevant spin pair correlations in Fig. S1. J1

being the strongest exchange parameter, S2-S3 pair retains its strong-singlet character

throughout the parameter space (see Fig. 3.12 (a)). However, as expected, the correlation

begins to weaken as |J2|/J1 approaches 1. Correlation between S1 and S3 increases with

increasing |J2| (see Fig. 3.12 (b)), which is also related to the weakening of S2 − S3

singlet. This is where J2 starts competing with J1. Ordering of spins is largely controlled

by C45 correlation (see Fig. 3.2), its affect can also be seen in C15 and C35 (see Fig.

3.12 (c)-(d)). Correlation between S1 and S5 cease to exist in J3 ⇒ 0 and J2 ⇒ 0,

however it changes continuously in the intervening region. This correlation is mediated

via J3, as singlet strength begins to increase C35 decreases. A strong crossover is observed

around J3 ∼ 0.2|J2| for C35, this is the region when C45 varies from classical anti-parallel

correlation to quantum mechanical singlet-like bond characterized by values less than

−0.25. We also show the evolution of correlation functions and self-consistent mean field

mz
1 in the limit |J2| >> J3 in Fig. 3.13. The mean field vanishes beyond |J2| ∼ 0.8,

where the 8-site cluster behaves like two weakly coupled tetramers (see C45 in Fig. 3.13).
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for J3 = 0.1.

For |J2| < 0.8, S4 continuously forms strong antiferromagnetic correlation with S1 at the

cost of the singlet bond with S5. Similar calculations for other values of J3 show that

one can define |J2| = 8J3 as the line separating the Neel-type long-range ordered states

from that consisting of weakly coupled tetramers schematically shown in Fig. 3.2

3.5.2 Response to magnetic field

Multiple spin flops are inferred from hz − J2 phase diagram of 8-site cluster, as discussed

Figs. . For the material specific value of J2, we observe a spin flop at around hz ∼ 0.08

and a final re-orientation of spins at higher fields. Figs. S3(a), S3(b) show a compo-

nent resolved magnetic moment variation with applied field. For CMF results using a

single tetramer cluster, we find a two step saturation of magnetic moments. A spin flop

transition to a direction perpendicular to applied field is observed, which is followed by

the first magnetization (M = gµB〈S〉) plateau around ∼ 30T (follow the black dashed

lines Fig. S3). The first plateau is related to the loss of C14 correlation whereas the

full saturation of magnetic moments takes place when the singlet between S2 and S3

breaks, which is clearly visible in the correlation plot. Two-step saturation of magnetiza-

tion is also consistent in 8-site (two tetramer) cluster calculations. However, the details

of the field dependence are slightly different. In Fig. S3(b), average moments show a

non-linear increase below the first magnetization plateau. This is different from single

tetramer results where average magnetic moment in the direction of field shows a linear

increase. The non-linear increase in directly related to the loss of C14 and C18 correla-
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Figure 3.14: Average spin magnetic moment (upper panels) as a function of applied
magnetic field and corresponding behaviour of correlations (lower panels) computed using
CMF at T = 0.01K for (a) single tetramer and (b) two-tetramer cluster.

tions. The experimentally observed behavior is indeed non-linear and is consistent with

the results obtained using two-tetramer CMF. This further highlights the importance of

treating the inter-tetramer coupling beyond mean-field for an improved description of the

experimental data.

3.5.3 Fitting details of susceptibility for single-cluster

Susceptibility of a dimer spin system is give by [134],

χD(T ) =
NDg

2µ2
B

kBT

e−J/KBT

1 + 3e−J/kBT
. (3.9)

Susceptibility for antiferromagnetically or ferromagnetically correlated spins is given by

the standard Curie-Weiss formula:

χCW (T ) =
NCWg

2µ2
BS(S + 1)

3kB

1

T − TCW
. (3.10)
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Figure 3.15: Magnetic susceptibility for a isolated tetramer. The dashed lines are best
fits when number of spins are fixed in different regimes.

In the above, ND is the number of spins forming singlets and NCW is the number of

spins, g is Lande g factor , kB is Boltzmann constant, µB is Bohr magneton and J is

singlet-triplet energy gap.

Susceptibility of an isolated tetramer is fitted using a combination of above two sus-

ceptibilities in different temperature regimes (see Table 1). Fitting parameters being

ai =
NDg

2µ2B
kB

, bi = J
kB

, ci =
NCW g2µ2BS(S+1)

3kB
and di = TCW . For temperature region 1

(0K < T < 40K), where the spins are expected to form a singlet. Fitting parameters

reveal ND ∼ 1.61 and J
kB
∼ 16.79. It is interesting to note that even though the system

contains 4 spins the fit suggests the presence of a single dimer. This is because edge spins

are strongly ferromagnetically coupled to the central spins that form a singlet, and hence

the tetramer effectively behaves like a singlet. Energy gap J/kB found from the fit also

matches very well with first energy gap obtained from exact diagonalization. Fig. S4 (fit

1) highlights that the nature of system qualitatively remains same even if we set ND = 2

for temperature range 0K < T < 40K.

A combination of dimer and Curie-Weiss susceptibility was used in region 2 (40K <

T < 300K), with an expectation that the ferromagnetic coupling reduces, leaving a pure

S2 − S3 singlet and two free spins. Number of free spins and spins involved in a dimer

obtained from the fit confirms this picture. In Fig. S4, we illustrate that the fit is also

reasonably good if we use ND = 2 and NCW = 2. For the higher temperature region

300K < T < 600K fit to Curie -Weiss susceptibility affirms the presence of free spins.

Note the number of spins don’t perfectly match due to the presence of finite but small

coupling between all the spins, description in terms of these regions is only a simplified

picture. Once again, if we use the simplified picture that all 4 spins in a tetramer con-

tribute to Curie-Weiss behavior, the quality of the fit does not detriate much. Therefore,
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Fit Formula Fitting
parameters

Inferences

fit 1
T=[0:40]

χ(T ) = a1
T

e−b1/T

1+3e−b1/T
a1 = 4.02
b1 = 16.79

ND = 1.61
J/kB = 16.79

fit 2
T=[40:300]

χ(T ) = a2
T

e−b2/T

1+3e−b2/T
+ c2

T−d2

a2 = 5.24
b2 = 188.60
c2 = 0.86
d2 = 0.32

ND = 2.1
J/kB = 188.60
NCW = 1.38
TCW = 0.32

fit 3
T=[300:600]

χ(T ) = c3
T−d3

c3 = 2.06
d3 = −21.19

NCW = 3.31
TCW = −21.19

Table 3.1: Fitting parameters of susceptibility for isolated tetramer.

although in the main text we discuss an accurate fitting of the susceptibility data to a

mixed dimer and Curie-Weiss behavior and identify three distinct regimes in tempera-

ture, here we show that even fixing ND and NCW to the naively expected values leads to

good fits.

3.5.4 Details of calculations for Nc = 16

The size of the Hilbert space for cluster Hamiltonian of a 16 spin cluster (four tetramers)

is 2N ∼ 65000. A brute force diagonalization of such large matrix multiple times to

reach self consistency requires enormous computational time. Moreover, it turns out that

if we allow for an unrestricted self-consistency approach wherein the mean-field vectors

can point in any direction then the cluster Hamiltonian lacks many of the symmetries

that are present in the full interacting Hamiltonian. For example, the bulk spins are not

equivalent to edge spins and hence the translation symmetry is lost. The mean fields are

not restricted to point along z axis, leading to coupling terms of the form S+
1 B

−
Nc

+S−1 B
+
Nc

where BNc contain x and y components of mean fields. The presence of these terms spoil

conservation of total Sz. Therefore, the conservation of z-component of total spin does

not hold in the general case. For hz = 0, to apply conservation of total spin (Sztot)

we restrict mean fields to be in z direction. We divide the matrix into block diagonals

with Sztot = 0, 1, 2...8 sectors. To further speed up calculation we only compute lowest

500 eigenstates in every sector. In order to justify this cut-off we show the comparison

between the full eigen-spectrum and the truncated low-energy spectrum. The low energy

eigen-spectrum is unaffected by the truncation (see Figure 3.16).
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3.5.5 Dynamical structure factor

Dynamic structure factor is the Fourier transform of the time dependent pair correlation

function [138]. It is analogous to the cross section for scattering measured in neutron

scattering experiments. Dynamical structure factor can be calculated if the full eigen-

spectrum corresponding to the Hamiltonian is known. Then the Fourier transform of the

two spin correlation function reads as,

Sαβ(q, ω) =
1

N

∑
l,R

eiqR
∫ +∞

−∞
dt eiωt 〈sαl (t)sβl+R〉 (3.11)

=
2π

Z

∑
n,m

e−βEn 〈n|Sαq |m〉 〈m|Sβ−q|n〉 δ(ω + En − Em)

where Z is the partition function, En are the eigenvalues corresponding to eigenvectors

|n〉 and

Sαq =
1√
N

∑
l

e−iqlSαl (3.12)

Using symmetry properties of Hamiltonian, dynamical structure factor at T = 0 is re-

duced to

Sαα(q, ω) =
∑
n

2π |〈G|Sαq |n〉|2 δ(ω + EG − En) (3.13)
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where EG is the energy of the ground state |G〉.
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Figure 3.17: Dynamical structure factor (a) Sxx(q, ω), (b) Szz(q, ω) at T = 0 and h = 0
for 1D Heisenberg ferromagnetic chain calculated using CMFT for a cluster of Nc = 8.

We calculate component dependent dynamical structure factor (3.13) from the eigen-

spectrum obtained using CMFT. In order to understand the results in more detail, we

also compute the results for a system of ferromagnetic and antiferromagnet Heisenberg

chain. The disturbances or excitations of the ferromagnetic order are spin waves, these

low energy excitations are quantized and known as magnons [139]. The ground state of

the Hamiltonian for ferromagnetic Heisenberg chain obtained using CMFT is an ordered

state, where all the spins point in same direction. This is reflected as the sharp peaks at

q = 0, 2π in Szz(q, ω) (see Fig. 3.17(b)). However, the transverse component, Sxx(q, ω)

shows the spectrum expected from the linear spin wave theory.
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Figure 3.18: Dynamical structure factor (a) Sxx(q, ω) (b) Szz(q, ω) at T = 0 and h = 0 for
1D Heisenberg antiferromagnetic chain calculated using CMFT for a cluster of Nc = 8.

The ground state of the antiferromagnetic Heisenberg spin chain obtained using

CMFT is a Néel type antiferromagnetic order with staggered magnetization of the order

of 10−2. The anti-ferromagnetic nature is reflected as very sharp peak in dynamical struc-

ture factor at q = π (see Fig. 3.18). Excitations in spin-1/2 AFM chain are fractionalized

each of them carrying S = 1/2, known as spinons [140]. It is interesting to note that

the spinon spectrum is obtained in the eigenspectrum obtained by CMFT. The discrete

points in the dynamical structure factor is consequence of finiteness of the cluster.
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Figure 3.19: Dynamical structure factor (a) Sxx(q, ω) (b) Szz(q, ω) at T = 0 and h = 0
for 1D Heisenberg model for tetramer compound, CuInVO5 calculated using CMFT for
a cluster Nc = 8.
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In Fig. 3.19, we show the component dependent dynamical structure factor obtained

from the CMFT results for two-tetramer cluster. For the present calculation we have

used J1 = 1, J2 = −(142.0/240.0), J3 = (30.0/240.0). We find a gap above the ground

state, which is understood as the order with q ∼ π/2. This closing of gap may be reflected

in the peak observed in low temperature specific heat. However, computation of larger

cluster is required for conclusive result on the gap above ground state.
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Chapter 4

Multiple phase transitions and

high-field quadrupolar order in a

model for β-TeVO4

Adapted from the work published in :

Singhania, A., Kumar, S., “Multiple phase transitions and high-field quadrupolar

order in a model for β-TeVO4”, Phys. Rev. B 101, (2020) 064403
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4.1 Introduction

Interacting spin systems realized in condensed matter are well known for manifesting

the surprises of quantum physics [141, 142]. A microscopic understanding of quantum

spin systems not only enriches us with new fundamental concepts useful across disci-

plines, but also opens up possibilities for next-generation technologies [143, 144, 145].

Quantum effects come to the fore at low temperatures in low-spin systems. Lower di-

mensionality and frustrating interactions further reduce the tendency of spin systems

to acquire conventional magnetic order, thereby promoting exotic quantum phenomena

[143, 146, 147, 148, 149, 150]. Often, the interplay among frustrating interactions, lower

dimensionality and the intrinsic quantum nature of the degrees of freedom results in

unexpected states and complex magnetic phase diagrams [3, 5].

Weakly coupled frustrated spin-1/2 chains represent a class of systems possessing all

of the above ingredients. These are realized in various quasi-one-dimensional magnets,

such as, linarite [151, 152], NaCuMoO4(OH) [153], and LiCuVO4 [154, 155]. In recent

years, β-TeVO4 (βTVO) has emerged as another model magnetic material for studying

coupled frustrated spin chains. Low-temperature magnetic phases and phase transitions

in βTVO are uncovered via a combination of thermodynamic measurements, as well as

neutron scattering and NMR experiments [156, 157, 158, 159, 160]. Three magnetic

transitions upon cooling, (i) paramagnet to spin density wave (SDW) at TN1 = 4.65 K,

(ii) SDW to spin-stripe at TN2 = 3.28 K, and (iii) spin-stripe to an elliptical-spiral or

vector chiral (VC) order at TN3 = 2.28 K, are reported. Applied field versus temper-

ature phase diagrams were obtained via a combination of specific heat, magnetization

and magnetostriction measurements [159]. Discontinuous changes in magnetization with

applied field close to saturation were reported [159, 157]. These discontinuities have been

proposed as a realization of theoretically predicted spin-nematic or quadrupolar phase.

Recent investigations report that the high-field phase is magnetically ordered with ne-

matic order possibly present in a very narrow range of applied field [161]. Experiments

have reported that the intermediate spin-stripe phase hosts unusual elementary excita-

tions called wigglons [162] whereas at lower temperatures a coexistence of spinons and

magnons is expected [160].

Motivated by the rich magnetic behavior of βTVO, we study a minimal anisotropic

Heisenberg model for coupled zigzag chains in two dimensions. In order to capture

magnetic field and temperature dependence of various thermodynamic quantities, we

make use of the cluster mean field (CMF) approach for our investigations. Using model

66



parameters reported in ab-initio study of the material, we find: (i) a partially ordered

state with zero ordered moments on alternate sites, (ii) a collinear antiferromagnet, (iii) an

elliptical spiral state with finite vector chirality, and (iv) unusual metamagnetic behavior

close to saturation magnetization. Some of these features, e.g., the VC ground state,

the SDW order and the metamagnetic jumps in magnetization are consistent with the

experimental data.

In order to place our results in a proper context, we summarize the existing theoretical

work that aims to understand the frustrated spin-1/2 chain magnets in general, and

βTVO in particular. Isolated zig-zag spin chains with nearest neighbor (nn) FM and

next nn (nnn) AFM interactions have been studied using DMRG, exact diagonalization,

effective field theories, and coupled cluster methods [163, 164, 165, 166, 167, 168, 169, 170].

Transition from helical to SDW state driven by applied magnetic field in linarite has also

been accurately described via a purely classical spin model [151]. Most of these studies

focus on ground state phase diagrams in the plane of interaction strength ratio and applied

field. Spiral phases and nematic states close to saturation field have been reported in

these theoretical investigations [168, 169, 171]. The temperature dependence in the two

dimensional model has remained unexplored due to the lack of suitable methods. Classical

approximation for spin operators can be invoked with the argument that thermal effects

take over at finite temperatures [172]. This approach can work, with the understanding

that the transition temperatures and the size of ordered moments will be overestimated, in

systems that show a single phase transition. However, for a system that displays multiple

transitions with changing temperature a careful treatment of quantum effects becomes

most important. Since the CMF approach retains quantum correlations while allowing for

thermodynamic-limit calculations of various order parameters in the mean field spirit, the

method is well suited for describing temperature and magnetic field dependence within

a single framework.

4.2 Model and Method

We begin with anisotropic Heisenberg model on coupled zigzag spin-1/2 chains in the

presence of an external magnetic field. The model is described by the Hamiltonian,

H =
∑
n,j

[J1(Sj,n · Sj+1,n) + J2(Sj,n · Sj+2,n + δ2S
z
j,nS

z
j+2,n)

+J2b(Sj,n · Sj−1,n+1)− hzSzj,n]. (4.1)
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Figure 4.1: A schematic picture of the magnetic model for β−TeVO4. The shaded area
highlights the cluster within which interactions are treated exactly. The chain and site
indices for each spin inside the cluster are specified. The dot-dashed lines represent
connectivity due to periodic boundary condition in the b direction.

Here, Sj,n represents the spin-1/2 operator located at nth chain and jth site. J1 is the nn

ferromagnetic (FM) interaction, J2 is the nnn antiferromagnetic (AFM) interaction and

J2b is the AFM interchain coupling. Strength of anisotropy and applied magnetic field are

denoted by δ2 and hz, respectively. The parameters used in our work, following a Density

Functional Theory study for β−TeVO4, are: J1 = −26.2K, J2 = 24.6K, and J2b = 7.3K

[173, 159]. The anisotropy value is fixed to δ2 = −0.2 throughout the study, except for

results discussed in Fig. 4.4. We show in Section 4.3.1. that exact diagonalization (ED)

calculations on small clusters miss out on most features related to conventional magnetic

order. Therefore, in this work, CMF is used as the main method to understand the nature

of magnetic order and the magnetic transitions. The CMF has proven extremely useful

for investigating spin models possessing magnetic frustrations of geometrical or Kitaev

nature [136, 89, 137, 87, 174]. The key idea of the method is to treat all interaction

links located within the cluster exactly, and to make use of the conventional mean field

decoupling, Si · Sj ≈ 〈Si〉 · Sj + Si · 〈Sj〉 − 〈Si〉 · 〈Sj〉, for interaction links connecting the

cluster and the environment. Applying this approximation to the Hamiltonian Eq. (4.1)

leads to the cluster Hamiltonian,

Hc =
′∑
n,j

[J1(Sj,n · Sj+1,n) + J2(Sj,n · Sj+2,n

+δ2S
z
j,nS

z
j+2,n) + J2b(Sj,n · Sj−1,n+1)− hzSzj,n]

+
′′∑
n,j

Mj,n · Sj,n, (4.2)

where the prime over the summation sign refers to all the links contained inside the cluster,

and the double-primed sum is over all those spins that have at least one interaction

link outside the cluster. For our choice of cluster shown in Fig. 4.1, all eight spins

contribute to the double-primed summation. Mj,n denotes the effective mean field vector
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that couples to the spin Sj,n. The mean field vector is defined as an appropriate vector

sum Mj,n =
∑
Jp〈Sj′,n′〉, where the sum is over all spins Sj′,n′ that are located outside

the cluster and are coupled to spin Sj,n via coupling parameter Jp, with p = 1, 2, 2b.

Setting up the equivalence between environment and cluster sites, in the spirit of a mean

field theory, enables the closing of a self-consistency loop. We impose periodic boundary

conditions perpendicular to the chain direction (b-direction in Fig. 4.1), and couple the

spins to mean fields along the chain (c-direction in Fig. 4.1). Note that the intra-cluster

interaction between S3,1 and S2,2 is a consequence of periodic boundary condition along

the b direction. Average of a general operator Ô is computed, following the standard

quantum statistical approach, as,

〈Ô〉 =
Tr Ô e−βHc

Tr e−βHc
, (4.3)

where Hc is the cluster Hamiltonian defined in Eq. (4.2), and the trace is over all states

of the Hc with converged values of the mean field parameters. Further details of the

method and its extensions are available in some recent papers [136, 89, 137, 87, 174].

4.3 Results and Discussions

4.3.1 Exact diagonalization

We begin by discussing specific heat and magnetization obtained via ED calculations on

finite clusters. We present results of ED for an 8-site cluster where two zigzag chains of 4

spins each are coupled, and a 16-site cluster where four zigzag chains are coupled. Periodic

boundary conditions (PBC) in both directions are imposed. Details of the calculations are

similar to those presented in a recent study [174]. In Fig. 4.2 (a), we show the temperature

dependence of specific heat, CV = 1
Nc
d〈H〉/dT , where Nc denotes the number of spins

in the cluster. In the same panel we plot the variations of spin-spin correlations, Cpq =

〈Sj,n ·Sj′,n′〉 where p = 4(n−1)+j and q = 4(n′−1)+j′ for different spin pairs. Within ED

a dimer state comprising of perfect singlets on nnn sites, characterized by C13 = −0.75,

emerges as the ground state. These singlet correlations gradually decrease upon increasing

temperature leading to a characteristic hump in specific heat [175, 176]. We conclude that

for the Hamiltonian under consideration, ED calculations on small clusters do not support

the existence of a conventional ordered magnetic state. Consequently, stand alone ED
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Figure 4.2: Solid lines display the variation of, (a) specific heat with temperature, and (b)
magnetization with applied field for 8-site and 16-site clusters with PBC calculated using
exact diagonalization. The broken lines represent variations of correlations for different
spin pairs with, (a) temperature and (b) applied magnetic field for 16-site cluster. Results
in panel (a) are at hz = 0, and those in panel (b) are at T = 0. The results for spin-spin
correlations for 8-site cluster are almost identical to those for 16-site cluster.

calculations are unable to provide any hint of multiple phase transitions that are observed

in the experiments on βTVO. Similarly, the field dependence of magnetization displays

large jumps coinciding with discontinuities in the correlation functions (see Fig. 4.2(b)).

Such discontinuities associated with level crossings in the spectrum of a finite cluster

will not be present in a larger system. Since ED calculations on very large systems are

extremely difficult, we take an alternate approach of capturing thermodynamic limit with

the help of mean field scheme. In next subsections we discuss the results obtained via

CMF approach and present a comparison with available experimental data.
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4.3.2 Cluster Mean Field: Temperature Dependence

In Fig. 4.3 we show the temperature dependence of specific heat CV , the VC order param-

eter 〈κz〉, and the magnitude 〈S1,1〉 and 〈S1,2〉 of local spin averages at two inequivalent

sites. The VC order parameter is defined as,

〈κz〉 =
1

Nc

′∑
(Sj,n × Sj+1,n)z (4.4)

=
1

Nc

′∑
(Sxj,nS

y
j+1,n − Syj,nSxj+1,n)

=
1

Nc

′∑
Im[〈S+

j,nS
−
j+1,n〉 − 〈S+

j,n〉〈S−j+1,n〉]

As we will discuss below in detail, there are three distinct features in CV (T ) which have an

associated feature in one of the three order parameters mentioned above. Upon reducing

T , one of the mean-fields, 〈S1,1〉, becomes non-zero at T = 7.2 K while the other remains

zero. This is an unusual partially ordered state where alternate sites remain quantum-

disordered and are unable to develop finite magnetic moments (see Fig. 4.3(b)). Such

partially ordered states have also been reported in Kondo systems where they can be

understood as arising out of the competing tendencies of Kondo screening and ordering

of magnetic moments [177]. PO state can be viewed as an extreme case of a SDW order

where difference between magnitude of ordered local moments on neighboring sites is

maximum. Indeed, the magnetic order reported in experiments on βTVO below 4.65 K

is SDW with weaker moment-size modulation and larger wavelength. The onset of the

PO state is accompanied by a ‘shoulder’ feature in CV exactly at T = 7.2 K. The second

mean field parameter, 〈S1,2〉, becomes finite at T = 6.8 K leading to a conventional

magnetic order. Indeed, this is accompanied by a sharp peak in specific heat signifying a

conventional long-range order (see Fig. 4.3(c)). Upon further lowering the temperature

these mean-fields approach towards their saturation values. However, a discontinuous

change in both 〈S1,1〉 and 〈S1,2〉 occurs at 4 K, exactly at the temperature at which

vector-chiral order parameter becomes finite confirming a change in the nature of the

magnetic order. This first order phase transition manifest itself in the specific heat

through a discontinuity exactly at T = 4 K. The ground state is therefore characterized

by a finite vector chirality and unequal magnitude of magnetic moments on alternate

sites (see Fig. 4.3(d)), describing an elliptical spiral state similar to the ground state

reported in experimental studies on βTVO [159]. While the magnitude and locations of

the specific-heat anomalies discussed above are likely to depend on the cluster size, the
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Figure 4.3: (a) Specific heat, CV , vector chiral order parameter 〈κz〉, and magnitudes of
self-consistent mean fields 〈S1,1〉 and 〈S1,2〉 as a function of temperature. The right y-axis
is for specific heat and the left y-axis is for all other quantities. The vector chiral order
parameter is scaled up by a factor of 10 for clarity. Three distinct magnetically ordered
states can be clearly identified with the help of these thermodynamic observables. (b)-(d)
Real-space patterns of mean-field spin vectors in the three phases.

number of such anomalies remain independent of Nc [174].

While the similarities with the experimental data [157, 159] in terms of multiple

phase transitions and the VC ground state become clear from the above discussion, it is

important to point out the key experimental features of βTVO that are not captured in

our study. We find that the ordered phase between the PO and the VC is a collinear

antiferromagnet with varying moment size on alternate sites. Experiments, on the other

hand, report a peculiar stripe phase with two orthogonally oriented sublattices in this

regime [158]. Stabilizing such a phase may require inclusion of Dzyaloshinskii-Moriya

interactions as well as the inter-layer coupling which we have not included in our present

model Hamiltonian study. The appearance of VC phase as the ground state of the

Hamiltonian considered in this work strongly depends on anisotropy parameter δ2. In

Fig. 4.4 we show specific heat as a function of temperature for different values of δ2. The

discontinuity in the specific heat at low temperatures is absent for a fully isotropic, δ2 = 0,

model, and becomes prominent only for |δ2| ≥ 0.2. A further increase in the strength of

anisotropy parameter leads to an increase in the size of the discontinuity, as well as the

value of the temperature at which the discontinuity occurs. We simultaneously track the

VC order parameter. Indeed, the location of discontinuity in specific heat is correlated

perfectly with the on-set of vector chirality. Therefore, we conclude that anisotropy is

crucial not only to obtain the vector chiral ground state but also for the correct ordering
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Figure 4.4: Specific heat (solid lines) and vector chiral order parameter (dotted lines) as
a function of temperature for different values of the anisotropy parameter δ2. Note that
a significant amplitude for vector chirality appears only for |δ2| ≥ 0.2.

temperature. Note that in general anisotropy in other interactions may also be present

in the real material [158].

We also note that for the choice of parameters used for calculations, the range of

stability for the partially ordered state was found to be rather narrow. To show that this

state is not a result of fine tuning of parameters of the Hamiltonian, we check if the range

of stability can be increased by at least one of the model parameters. In Fig. 4.5, we plot

specific heat as a function of temperature for different values of the inter-chain coupling

parameter J2b. The presence of partially ordered phase is indicated by the difference

between the size of local moments on two inequivalent sites. Therefore, we also show in

Fig. 4.5 the temperature dependence of 〈S1,1〉 − 〈S1,2〉. Increasing the value of J2b leads

to an increase in the window over which the specific heat displays the unusual shoulder

feature. This is also followed by the large values of the moment difference 〈S1,1〉 − 〈S1,2〉.
However, for large values of inter-chain coupling, partially ordered state destabilizes the

vector chiral ground state. Therefore, only a suitable combination of J2b and δ2 allows

for the appearance of both the vector chiral and the partially ordered phases.
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Figure 4.5: Specific heat (solid lines) and the difference in the magnitude of two ordered
moments (dotted lines) as a function of temperature for different values of the inter-chain
coupling parameter J2b.

4.3.3 CMF: Magnetic Field Dependence

Having discussed the temperature dependence of various physical quantities in the ab-

sence of external magnetic field, we now focus on the magnetic field dependence in the

low-T regime. The component along external field of local magnetizations on two in-

equivalent sites, 〈Sz1,1〉 and 〈Sz2,1〉, are plotted in Fig. 4.6. Note that conversion factor

of kB/µB ≈ 1.5 T/K is used throughout to represent the applied magnetic field values

in units of Tesla. We find a metamagnetic response in terms of discontinuities in mag-

netization close to saturation. We also show the field dependence of vector chiral order

parameter 〈κz〉, with appropriate scale factor, in the same figure. The first jump in mag-

netization coincided with abrupt vanishing of VC order parameter, and the second jump

takes the system to the fully saturated FM state(Fig 6.). Therefore, we infer the existence

of a new magnetic phase bounded between a fully saturated FM and the vector chiral

state. These results match remarkably well with those reported in the experiments. Re-

cent theoretical studies based on spin-wave approach about the fully saturated FM state

have suggested the presence of quadrupolar order in the metamagnetic regime. In order

to verify these predictions, we explicitly calculate quadrupolar order parameter (QOP),

Qx2−y2 = 1
Nc

∑′Re[〈S+
j,nS

+
j+1,n〉 − 〈S+

j,n〉〈S+
j+1,n〉], as a function of applied field. The out-

come of these calculations at different temperatures are plotted in Fig. 4.6. Indeed, the

QOP becomes finite in the metamagnetic regime (see Fig. 4.6(a)-(b)). Therefore, our

explicit calculations support the existing theoretical proposals regarding the presence of
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Figure 4.6: Component along applied field of local magnetizations, 〈Sz1,1〉 and 〈Sz2,1〉, on
two inequivalent sites as a function of applied magnetic field for different temperatures.
Magnetic field dependence of the vector chiral order parameter, 〈κz〉 and quadrupolar
order parameter, Qx2−y2 , is also shown. The factor kB/µB ≈ 1.5 T/K is used to express
hz in physical units of Tesla.

a quadrupolar order close to saturation magnetization [150, 178, 179]. Upon increas-

ing temperature the discontinuities in magnetization become weaker in magnitude and

their locations shift to lower magnetic fields and (see Fig. 4.6 (b)-(d)). The QOP also

tracks these evolution of magnetization jumps. However, we also note that the QOP also

becomes finite in the low-field regime for larger temperatures (see Fig. 4.6(c)-(d)) For

T = 4.5 K, an additional discontinuity is obtained at the on-set of the vector chiral order.

This is indicative of a re-entrant behavior which becomes more clear as we discuss the

complete phase diagram below. Comparing our results with the experimental data, we

note that the transition to a PM state occurs at 7.2 K whereas the corresponding exper-

imental value is 4.6 K. On the other hand, the magnetic field required to obtain a fully

saturated FM state, hsatz , is 20 T in our study compared to 22 T reported in experiments

[159]. It is interesting to note that while the transition temperature is significantly over-
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Figure 4.7: A schematic energy versus applied field plot demonstrating how mean field, or
any approximate method, always underestimates saturation field. The lower curve is the
energy obtained from exact calculations and the upper curve represents the approximate
energy. The linear part is the energy of fully saturated state which is accurately captured
in the mean field scheme as well. The intersection of the linear part with the exact (mean
field) energy defines hexactsat (hmfsat ).

estimated in the CMF approach, the saturation field is only slightly underestimated. We

present a simple argument to justify these findings. In general, any mean field approx-

imation suppresses thermal as well as quantum fluctuations. While both thermal and

quantum fluctuations play an important role in determining the temperature at which

the magnetic order is lost, only quantum fluctuations are responsible for transition to a

saturated FM state at zero temperature. A more accurate estimate of hsatz reflects the

fact that CMF approach captures quantum fluctuations well. Furthermore, it can be

shown that mean field approximations will always underestimate hsatz . The argument,

presented with reference to the schematic Fig. 4.7, is as follows: the energy of a sat-

urated FM state is a linear decreasing function of applied field. This estimate can be

accurately obtained in any approximate scheme as well. For non-saturated states, on

the other hand, the ground state energy obtained via any approximate method is always

higher than the exact energy. By definition, the saturation field, hsatz , is the value of

applied field at which the energy curves for the saturated FM state (linear part in Fig.

4.7) crosses the energy of the non saturated state. Therefore, this crossing will neces-

sarily occur at a lower value of magnetic field for any approximate method. Note that

in the schematic Fig. 4.7, hmfsat < hexactsat . The magnetic susceptibility is calculated as

χ(T )|hz = (dMz/dhz)|hz for different values of applied field hz. Results are shown in Fig.

4.8. We find that the magnetic susceptibility shows a clear indication of the transition to

the vector chiral state. However, the presence of two other transitions at higher temper-
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Figure 4.8: Magnetic susceptibility as a function of temperature for various field strengths.
Inset shows susceptibility over a wider range of temperature for hz = 1.5T.

atures is not very apparent looking at the magnetic susceptibility results. Interestingly,

even this situation is similar to that found in experiments. The experimental susceptibil-

ity data does not provide conclusive evidence for the presence of transitions. On the other

hand, the specific heat data shows clear anomalies [157]. For the vector chiral order, the

non-monotonic evolution of the transition temperature with increasing magnetic field is

correctly captured.

4.3.4 hz − T Phase Diagram

Finally we discuss the complete hz−T phase diagram obtained in our CMF study of the

anisotropic Heisenberg model. As discussed so far, in addition to the trivial paramagnet

and fully saturated ferromagnet, we have identified four qualitatively distinct magnetic

phases with varying temperature and magnetic field. These are, (i) VC, (ii) collinear-

AF, (iii) PO, and (iv) quadrupolar (Q) (see Fig. 4.9(a)). The boundaries between

these phases are extracted from the changes in order parameters which also coincide

with the anomalies in the specific heat. Intra-chain and inter-chain spin-spin correlations

carry important information about the competition between different magnetic phases

and provide additional insights regarding the phase boundaries. We show the color map

in hz − T plane for the nn inter-chain correlation C36 (Fig. 4.9(b)) and nn intra-chain

correlation C23 (Fig. 4.9(c)). The definition of the correlation functions as well as the site

indices are as given in Section 4.3.1. Qualitative changes in the inter-chain and the intra-
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Figure 4.9: (a) The hz − T phase diagram inferred from the variations in different or-
der parameters and the anomalies in specific heat. The color map in the background
represents the value of quadrupolar order parameter Qx2−y2 . (b)-(c) The color map in
hz−T plane of the, (b) inter-chain 〈S3,1 ·S2,2〉 (C36), and (c) intra-chain 〈S2,1 ·S3,1〉 (C23),
spin-spin correlations. Since dipolar correlations become vanishingly small in the region
above the dotted line in (a), a pure quadrupolar order exists.

chain correlations across different phase boundaries are clearly visible from Fig. 4.9(b)

and Fig. 4.9(c). In addition, we display the color map corresponding to the value of the

QOP, Qx2−y2 . The resulting phase diagram is shown in Fig. 4.9. Interestingly, the region

of finite Qx2−y2 is bounded between two phase boundaries. What still remains puzzling

is the finiteness of QOP at low fields for which there is no support in the experimental

data. We provide a resolution of this with the help of inter- and intra-chain spin-spin

correlation maps. It is interesting to note that the CMF approach allows access to

both thermodynamic behavior, in the mean field spirit, as well as short range spatial

correlations. This is an advantage of the CMF method over both, a fully microscopic

approach such as quantum Monte Carlo, and a simple mean field approach which totally

misses out on spatial correlations. It would be interesting to check if the short range

spatial correlations can provide us with additional insights regarding the behavior of the

system. In particular, one may ask if the information regarding change of magnetic phases

is encoded in short-range spin-spin correlations. To this end, we show in Fig. 4.9(b)-(c)

the map of correlations in the hz − T space for selected spin pairs. The intra-cluster

spin-spin correlations display significant changes across various phase boundaries. The

inter-chain correlations, 〈S3,1 · S2,2〉, become vanishingly small in the low-temperature

high-field region (see Fig. 4.9(b)). Therefore, this can be seen as an effective decoupling

of chains leading to destabilization of the VC order [160]. Furthermore, the effective
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Figure 4.10: (a)-(d) Color map representing the value of spin-spin correlations Cpq for
different spin pairs in the hz − T plane.

reduction in dimensionality also implies a loss of long range dipolar order. Hence, this

region of vanishingly small inter-chain correlations should be seen as supporting pure

quadrupolar order. Similarly, intra-chain correlation 〈S2,1 · S3,1〉 display a change of sign

(see Fig. 4.9(c)). If the nn links in a zigzag chain get decoupled then the chain can be

viewed as consisting of two inter-twined decoupled sublattices, and does not support long

range dipolar order. Therefore, the region of finite QOP can be qualitatively divided into

two parts with the help of the discussion above. One with coexisting long-range dipolar

order and other with pure quadrupolar order. The boundary between these two regions is

the dotted line in Fig. 4.9(a), which is the line of vanishing spin-spin correlations in Fig.

4.9(c). This displays a better correspondence with the experimentally reported phase

diagrams where only the high-field phase is marked as quadrupolar. Importantly, this is

also consistent with the discontinuities in the magnetization which are thermodynamic

signatures for the existence of an unusual, such as quadrupolar, order. It is important

to note that experimental phase diagrams show appreciable dependence on the direction

of applied field. Our results correspond to field applied along b axis. We believe that

the inter-layer couplings become essential for capturing the experimental phase diagram

corresponding to the field in a− c plane. We also display the behavior of other spin spin

correlation functions in Fig. 4.10. Since |J1| ∼ J2 for β− TVO, nnn spin correlations are

strongest owing to their antiferromagnetic nature (see Fig. 4.10 (c)). The nnn correlation

C68 gradually decreases with increasing temperature due to thermal fluctuations. Upon
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increasing applied field a region with vanishingly small C68 is indicative of complete

absence of dipolar order. Finally, C68 = 0.25 characterizes a field induced saturated FM

state. Panels (a), (b) and (d) in Fig. 4.10 display the variations of nn correlations C67,

C34 and C78 in that order. Given that the nn interactions are FM, these correlations

have a positive value over most of the parameter regime. The re-entrant behavior as a

function of applied magnetic field can also be noticed from the color maps of these nn

correlation functions.

4.4 Summary and Conclusion

With the aim to describe complex magnetic phase diagram of β-TVO, we have investi-

gated anisotropic Heisenberg model with nn FM and nnn AFM interactions on weakly

coupled zigzag spin-1/2 chains. The CMF approach utilized in our study allows for an

accurate treatment of short range spatial correlations, and therefore, captures the subtle

competition between different possibilities of magnetic ordering. The results are obtained

using realistic values of interaction parameters taken from ab-initio studies for β-TVO.

We find, (i) a sequence of three phase transitions upon reducing temperature, (ii) vec-

tor chiral ground state, (iii) quadrupolar order close to saturation field accompanied by

metamagnetic response, and (iv) re-entrant behavior as a function of applied field. While

some of these features are consistent with the experimental data, our analysis does not

capture the unusual spin-stripe state existing in the intermediate temperature regime.

Additional anisotropic terms, such as Dzyaloshinskii-Moriya interaction, may be impor-

tant for stabilizing the spin stripe state. Furthermore, the anisotropy of the hz−T phase

diagram may crucially depend on the inter-chain couplings along the a axis which is not

included in the present study [159]. We have also shown that the relative locations of

the transition temperatures can be tuned by varying the relative strengths of the cou-

pling parameters. Nevertheless, the transition temperatures are overestimated due to the

mean field nature of the method. To conclude, in addition to capturing certain general

features of the complex magnetic phase diagram for β-TVO, our results highlight how

the CMF approach can become a powerful tool in understanding the nature of magnetic

order emerging at low temperatures in frustrated magnets.
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Chapter 5

Effect of XXZ anisotropies on a

spin-1/2 Heisenberg chain
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5.1 Introduction

It is well known that the presence of impurities in solids can lead to quantitative changes

in their properties. For example, a disordered metal is expected to have higher resistivity

compared to a defect-free metal [180], transition temperature to superconducting order

can be altered by the presence of impurities [181], etc. However, in some cases the

presence of impurities can even modify the qualitative behaviour of the system. For

instance, metals can turn into insulators due to the disorder-induced phenomenon known

as Anderson localization [182, 183]. Such qualitative change of behaviour can also occur

in magnets. A famous example is the disorder-induced change in the order of phase

transitions [184]. Defects in magnetic materials can modify, not only the ground state

properties but also the excitation spectrum [50]. Substitution of a magnetic ion by a

different ion with the same or different spin, or a magnetic ion coupled to random spin

in a lattice, corresponds to presence of defects [185]. Low dimensional systems are very

sensitive to disorder and often display dramatic effects in presence of impurities due to

the interplay between quantum effects, strong correlations and disorder [41].

Some of the observations of impurity-induced effects in spin systems are emergence

of S = 1/2 degrees of freedom at the edges, when Cu is doped in a Haldane material

[186]. A low concentration of non-magnetic impurities induce a long range magnetic order

in spin-Peierls material CuGeO3 [187, 188]. Similar observations have been made for a

two-leg spin-1/2 ladder compound SrCu2O3, where doping of as low as 1% Zn (Simp = 0)

resulted in antiferromagnetic behaviour. Furthermore, it was shown that corresponding

Néel temperature can be increased with increase in concentration of impurities [189].

Several experimental studies have been performed on Sr2CuO3 and SrCuO2, spin-1/2

materials which are considered good realizations of 1D Heisenberg model [190]. Experi-

mental investigations reveal reduction in TN , on introduction of non-magnetic impurity

(Simp = 0) in SrCuO2 (zig-zag chain) and Sr2CuO3 (linear chain)[191]. On the other

hand, substitution of (Simp = 1) impurity in a spin-1/2 Heisenberg chain is known to

result in a Kondo-singlet where the impurity spin is Kondo screened by the two neigh-

boring spins of the chain. Similar to non-magnetic substitution, formation of singlets at

(Simp = 1) impurity site disrupts the translational invariance of the chain breaking it into

finite lengths. This leads to confinement of spinons and results in emergence of a spin gap

in low-lying excitations. This has been confirmed experimentally for low concentration

of Ni (Simp = 1) doping in SrCuO2, where sizeable spin pseudogap appears as a conse-

quence of impurities [192]. While experimental results reveal that doping Simp = 0, 1 in

spin chain materials suppress long range magnetic ordering temperature [193]. Investi-

82



gations of replacing a spin-1/2 magnetic ion (Cu2+) with another spin-1/2 ion (Co2+) in

spin chain material SrCuO2, reveal that the bulk behaviour switches from Heisenberg to

Ising-like. Due to this induced Ising-like anisotropy, magnetic ordering temperature is

enhanced, however gapless nature of the spin excitations are not disturbed [51]. Similar

behaviours of Néel-type ordering appears in Co based spin-1/2 Ising chain compounds

BaCo2V2O8 [194] and SrCo2V2O8 [195].

Theoretical efforts using field theory, renormalization arguments [185, 196] and nu-

merical methods like quantum Monte Carlo [197, 198] have been successfully employed

to investigate properties of low dimensional materials when doped with magnetic (specif-

ically Simp = 1) and non-magnetic impurities. Field theoretical and numerical studies

using DMRG of isotropic spin-1/2 impurity coupled to spin-1/2 chain expects the im-

purity spin to be over-screened in analogy to Kondo effect [196, 199, 200]. However,

experimental results with Simp = 1/2 embedded in the chain stresses the importance of

anisotropic effects. Motivated by this interesting effect, the model system employed in

the following investigations are the spin-1/2 Heisenberg antiferromagnetic model with

anisotropic impurities. We have shown in previous chapters that CMF approach suc-

cessfully captures a number of experimentally observed features by a simple inclusion of

short-range spatial correlation, we test this method further by applying it to a model of

1D disordered quantum magnet.

5.2 Model and Method

In order to investigate the effect of anisotropic impurities in magnetic materials, we

consider a spin model where a fraction nimp of the randomly selected spin-1/2 sites are

replaced by impurity sites. The model considers that the presence of an impurity in the

chain induces an anisotropy δ = ∆ − 1 in Heisenberg exchange between impurity sites

and its nearest neighbors. The resulting disordered Hamiltonian reads,

H =
∑

i,i+1/∈imp.

Si · Si+1 +
∑
j∈imp.

[(S−j−1 + S−j+1)S
+
imp,j + H.c.+ ∆(Szj−1 + Szj+1)S

z
imp,j], (5.1)

where Si is spin-1/2 operator at non-impurity site i and Simp,j is a spin-S operator at

impurity site j. For the present study, spin of the impurity site is restricted to Simp = 1/2.

Note that in the absence of impurities (either nimp = 0 or ∆ = 1), the Hamiltonian reduces

to an isotropic spin-1/2 Heisenberg chain. The impurity density, nimp is defined as the

ratio of (Nimp/Nc) where Nimp is number of impurities embedded in the chain consisting
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of Nc spins.

S=1/2 S=1/2 S=1/2S=1/2 S=1/2 S=1/2

S=1/2 impurity

(a)

S=1/2 S=1/2 S=1/2S=1/2 S=1/2

S=1/2 impurities

(b)

Figure 5.1: A schematic view of spin-1/2 Heisenberg chain with (a) single and (b) two
spin-1/2 impurities (filled circle) sitting on adjacent sites. The exchange interaction on
the original chain is isotropic (solid line) and that between the magnetic impurity and its
neighboring sites is of the XXZ-type.

We utilize cluster mean field approach to study the Hamiltonian with spin-1/2 im-

purities on one dimensional cluster. As already discussed in previous chapters, CMFT

is an extension of a single-site Weiss mean field theory, where instead of a single site we

consider a cluster comprising of Nc spins. For one- dimensional system, the edge spins S1

and SNc couple to neighboring cluster via standard mean-field decoupling. Since, there

are numerous ways in which impurity sites can be distributed, we average observables

over various random configurations Nav for a fixed number of impure sites. The edge

spins are forced to remain pure in a random configuration to avoid explicit dependence

of anisotropy due to the mean field decoupling. As a result the impurity density, nimp

can reach a maximum of (Nc − 2)/Nc. We present results computed for a cluster of 10

spins (unless specified otherwise). Calculations are also performed for larger cluster sizes

for scaling analysis. The nature of interaction is antiferromagnetic therefore, the order

parameter, staggered magnetization is defined as:

mz
st =

1

Nav

∑
p

1

Nc

|
Nc∑
i=1

(−1)i〈Szi 〉p| (5.2)

For the effect in presence of applied field, net magnetization is calculated which is defined

as:

mz =
1

Nav

∑
p

1

Nc

Nc∑
i=1

〈Szi 〉p (5.3)

For temperature dependent calculations, specific heat and susceptibility are calculated
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using:

Cv =
1

Nav

∑
p

1

Nc

d〈H〉p
dT

;χ =
1

Nav

∑
p

d〈mz〉p
dh

(5.4)

5.3 Results

We begin by discussing the results obtained via CMFT for XXZ impurity spin chain.

Some of the results are compared with DMRG results (not shown here).

5.3.1 Ground state properties

The ground state of an antiferromagnetic spin chain as obtained by CMFT is a mixed

state forming valence bonds on alternate sites with presence of very small yet finite (less

than 10% of the spin magnitude) staggered magnetization. The presence of an impurity

introduces an anisotropy ∆ in the bonds connecting the impurity (see Fig. 5.1). In

Fig 5.2 (a) we show the variation of mz
st with nimp for Nc=10 (solid lines), 12 (dashed

lines) averaged over 20 random configurations. For a particular ∆, increase in number

of anisotropic bonds, increases mz
st indicating the formation of stronger Néel order. It is

interesting to note that anisotropic strength as low as δ = 0.1 is able induce an ordered

state. Since, calculations performed on larger cluster size of Nc = 12 (dashed lines), do

not show any qualitative difference in the results, most of the analysis will be restricted

to a cluster of 10 sites. Fig 5.2 (b) shows the evolution of mz
st for different nimp with

increasing the anisotropy strength. It suggests that introducing a single impurity spin

(nimp = 0.1) in a spin chain of Nc = 10 (nimp=0.08 in a spin chain of Nc = 12), affects the

overall order of the chain. This effect can be further increased by increasing the strength

of anisotropy.
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Figure 5.2: Variation of staggered magnetization mz
st with (a) impurity density nimp for

different values of ∆ and (b) ∆ for fixed nimp. CMFT approach is utilized for a clusters
of 10 (solid lines) and 12 (dashed lines) spins where average in each case is taken for 20
random configurations of impurity distribution.

Staggered magnetization is averaged over various random distribution of impure bonds

for a fixed number of impurities. Fig. 5.3 shows the dependence of the mz
st with increasing

number of random configurations considered for averaging. Due to small cluster sizes, the

number of configurations for nimp = 0.1, 0.8 cannot be increased. It is evident from Fig.

5.3 (a) that the fluctuations appearing in mz
st can be minimized by increasing the number

of configurations. Fig. 5.3 (b) depicts the dependence of number of configurations for

different ∆. It suggests that the dependence of mz
st on Nav is more significant lower

nimp = 0.2, 0.4.
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Figure 5.3: (a) Variation of mz
st with nimp for averaging over different number of random

configurations for ∆ = 1.2 (dot-dashed lines),∆ = 1.5 (dashed lines), ∆ = 2.0 (solid
lines). (b) Variation of mz

st with ∆ with increasing Nav for nimp = 0.2, 0.4, 0.6.

While the qualitative behaviour of mz
st calculated using CMFT matches very well with
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that obtained via DMRG, results obtained using CMFT suffer from finite size mean field

effects. The finite size effect leads to higher mz
st in comparison to DMRG. This effect is

more pronounced for small nimp, as for low nimp the number of Heisenberg bonds is larger

and CMFT breaks the rotational symmetry of the Hamiltonian. CMFT results can be

further improved by increasing the cluster size, Fig. 5.4 shows mz
st for number impurities

(Ni) fixed to Nc/2 and Nc−2 for respective cluster sizes. Fluctuations for the case of Ni =

Nc/2 appear as the average is taken for very less number of random configurations (Nav =

10). We observe that mz
st increases with increasing cluster size upto a certain cluster size,

after which it starts to decrease. Power law fits to the data suggests that on further

increasing the size, mz
st will reach the value closer to the one obtained by DMRG (solid

circles in 5.4). For Ni = Nc − 2, finite size scaling analysis show an increase in mz
st with

increasing Nc. This is counter-intuitive as for completely Ising(∆ → ∞) or Heisenberg

(∆ = 1) spin chain, mz
st decreases with system size. However in our approach, the MF

bond remains Heisenberg-like while the impure bonds are XXZ-type or the extreme case

Ising type. For Nc = 4, the number of impure bonds within the cluster is 3, while there

are 2 mean field decoupled Heisenberg bonds. With increasing number of spins in a

cluster, the ratio of impure bonds to pure bonds keep on increasing as the number of

isotropic MF bonds remain the same. Due to this competition among Heisenberg bonds

and Ising-type (XXZ-type) bonds, mz
st increases with system size, eventually saturating

towards its maximum value possible value. Solid circles in Fig. 5.4 (b) shows the results

obtained by DMRG corresponding to nimp = 0.8. Power law fits of CMFT cluster size

scaling show that the agreement with DMRG results is higher for larger anisotropy in

comparison to ∆ = 1.1.
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Figure 5.4: Cluster size scaling of mz
st for various ∆ with number of impurities (a) Ni =

Nc/2 and (b) Ni = Nc − 2. Average is taken for maximum of 10 random configurations.
Dot-dashed lines are power law fits. Solid circles are the results computed using DMRG
for corresponding ∆ and nimp.
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5.3.2 Temperature dependence

In previous section, we have established that antiferromagnetic order is induced in an

isotropic spin chain on substitution of a spin-1/2 magnetic impurity resulting in anisotropic

neighboring bonds. We now discuss, signatures of phase transition in specific heat (Cv)

and susceptibility (χ) with increasing temperature for different values of impurity den-

sity nimp and ∆. Fig. 5.5 (a) shows variation of Cv with temperature for different nimp

with ∆ = 2.0. For a completely isotropic spin chain (nimp = 0.0), specific heat changes

smoothly with broadened peak near T = 0.4. For impurity density as low as nimp = 0.1,

a small peak emerges as a consequence of phase transition from a Néel phase to a para-

magnet. The peak in Cv sharpens when nimp increases. The huge bump in Cv for higher

temperature is a consequence of continuously decreasing correlations among spins. The

origin of this behaviour is discussed in detail in Section 3.3.2. Fig. 5.5 (b) shows that

χ decreases with increase in impurity density. Susceptibility results in the completely

Heisenberg limit show an unusual curvature in T < 0.25. Susceptibility results differ

from the behaviour expected from the ideal 1D antiferromagnetic Heisenberg chain. The

result shown here is a consequence of the mixed Néel order with dimer correlations as

obtained using CMFT. The susceptibility matches with the one expected from an al-

ternating exchange antiferromagnetic chain (weakly coupled dimers) [201]. A significant

deviation appears for high nimp in lower temperature region while the behavior qualita-

tively remains same in higher T limit.
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Figure 5.5: Variation of (a) specific heat and (b) susceptibility with temperature for
different values of impurity density while the anisotropy strength is fixed to ∆ = 2.0.

In Fig. 5.6, we show the dependence of ∆ on specific heat and susceptibility for

different impurity densities. Specific heat results reveal that increase in the anisotropy

strength (∆), increases the transition temperature as well as the specific heat peak. This
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effect is consistent for all impurity densities nimp = 0.1, 0.4, 0.8 shown in Fig. 5.6 (a-c).

Susceptibility results of a completely isotropic case (nimp = 0.0) calculated using CMFT

is similar to that of χ obtained for antiferromagnetic dimer chain [201]. For nimp = 0.1

no significant change in susceptibility is identified on increasing ∆. Further increase in

impurity density, leads to decrease in χ which is prominent for higher ∆.
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Figure 5.6: Variation of specific heat and susceptibility for different values of ∆. The
results are obtained for (a,d) nimp = 0.1, (b,e) nimp = 0.4 and (c,f) nimp = 0.8.

Presence of impurity bonds induce a Néel order which melts to a disordered state with

increase in temperature. As this effect is more significant in low temperature regime, Fig

5.7 and 5.8 shows the variation of Cv and χ with temperature for different nimp with fixed

∆ = 2.0. Transition temperature increases with increase in nimp. For high nimp, the peak

in specific heat is very sharp owing to the Ising like nature of most of the bonds. For

intermediate values of impurity densities, number of possible random distribution of the

impure spins is huge leading to difference in magnetic order. Different colours in Fig. 5.7

corresponds to different Nav. For intermediate values of nimp, specific heat show a broad

peak which becomes smooth with further increase in Nav. Non-monotonic behaviour in

Cv for intermediate nimp are a direct consequence of the distribution of impure spins.

We believe these peculiarities might be a finite size effect and will lead to a clear phase

transition in thermodynamic limit.
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Figure 5.7: Variation of specific heat (solid lines) and staggered magnetization (dashed
lines) with temperature obtained using CMFT on a cluster size consisting of 10 spins.
Dependence on nimp is shown for various number of random configurations, Nav)= 10
(yellow), 20(blue), 40 (red).

Fig. 5.8 shows dependence of χ with increasing number of random configurations

used for averaging. It is interesting to note that susceptibility decreases with increase in

impurity density. Impurity effects in susceptibility are more prevalent for higher nimp,

where it shows a discontinuity T ∼ 0.25 (see Fig. 5.8 (g)-(i)). Susceptibility results on

SrCo2V2O8 [195] show a signature similar to χ obtained for higher nimp. SrCo2V2O8 is

expected be described by XXZ model, however inter-chain interactions induce an order in

the material at low temperatures. The discontinuity identified in χ is a result of vanishing

of Néel order.

90



2
6

10
14

2
4
6
8

10

0
2
4
6
8

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

χ
×
10

−
2

nimp = 0.0

(a)

nimp = 0.1

(b)

nimp = 0.2

(c)

χ
×
10

−
2

nimp = 0.3

(d)

nimp = 0.4

(e)

nimp = 0.5

(f)

χ
×
10

−
2

T

nimp = 0.6

(g)

T

nimp = 0.7

(h)

T

nimp = 0.8

(i)

Figure 5.8: Variation of susceptibility with temperature obtained using CMFT on a
cluster size consisting of 10 spins (∆ = 2.0). Dependence on nimp is shown for various
number of random configurations = 10 (yellow), 20(blue), 40 (red). (update the figure
with label a,b,c)

5.3.3 Magnetic Field Dependence

In this section, we discuss the dependence of magnetization as a function of applied mag-

netic field. We calculate staggered magnetization (mz
st) as well as total magnetization

(mz) for different values of impurity densities. In the absence of impurities (nimp = 0),

the Hamiltonian Eq. 5.1 reduces to an isotropic Heisenberg model on a 1D chain, while

nimp = 1 corresponds to the XXZ model. For nimp = 0, total magnetization continuously

increases with applied field until saturation where all the spins align in the direction of

field (see Fig 5.9 (a)). Small step like features obtained in net magnetization is a conse-

quence of finite size effects in CMFT which can be reduced with increasing cluster size.

Numerically exact results obtained from DMRG, begins from zero magnetization owing

to gapless nature of 1D Heisenberg AFM and continuously increases uptil saturation

field. While the intermediate behaviour of mz obtained by CMFT do not match with the

results of DMRG, it is interesting to note that value the saturation field matches very

well. Néel order is formed on substitution of impurities, which vanishes above a finite

magnetic field. This critical value of field above which Néel order vanishes increases with

increase in nimp. This is understood as the closing of the gap existing above the ground
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state. This feature is reflected in mz remaining zero upto a finite strength of magnetic

field which is equal to the energy gap above the ground state. In the XXZ limit, this

gap is related to the anisotropy in Hamiltonian [202, 203]. Note that results for some

field values are omitted as for those applied field values, mean fields did not converge

for some random configurations. It is interesting as mean fields converged for all other

values of applied field with the same set of random configurations. Further increasing

the impurity density, increases the saturation magnetic field strength. For the extreme

case, when nimp = 0.8, all the bonds except mean field decoupled ones are anisotropic

in nature. Disregarding the field values of non-convergence, the behaviour of net mag-

netization and staggered magnetization reveal formation of Néel order in low fields and

fully saturated state in high field limit. The results of mz with applied field matches

with those obtained in BaCo2V2O8 [204]. This material is expected to be explained by

a quasi-1D XXZ model with ∆ = 2. An ideal XXZ chain model will show a quantum

phase transition from the Néel ordered phase to Tomonaga Luttinger liquid to saturated

state at high fields. Further investigations are required to understand this intermediate

order appearing in presence of field using CMFT.
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Figure 5.9: Variation of total magnetization, mz (pink) and staggered magnetization mz
st

(purple) with increasing applied magnetic field for different values of nimp as indicated in
the panels. ∆ is fixed to 2 and Nav is set to 10.
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5.4 Conclusions

We study a disordered spin chain model using CMFT where a fraction of spin-1/2 mag-

netic sites are replaced with Simp = 1/2 impurities. The effect of the impurity is to

introduce an XXZ-type anisotropy in the neighboring bonds. Ground state properties

of the model are evaluated for different impurity density and anisotropy strength. We

conclude that Néel type magnetic order is induced in the spin chain even in the presence

of a single impurity. Staggered magnetization increases with increase in the impurity

density as well as the anisotropy strength. Temperature dependence of specific heat and

susceptibility reveal a phase transition from a Néel order to a paramagnet. The transition

temperature to a paramagnet and the size of peak in specific heat increases with increase

in nimp and ∆. In presence of magnetic field, total magnetization remains zero for low

values of applied field. This pertains to the spin gap present above the ground state of

the XXZ impurity chain. Preliminary calculations using DMRG (not part of this thesis)

confirm that the results presented here within CMFT are qualitatively consistent with

those of DMRG. One can, therefore, conclude that CMFT approach can prove to be the

simplest method of choice for gaining insights into the physics of disordered magnetic

systems.
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Chapter 6

Summary and Outlook

Understanding the phenomena associated with a large number of interacting quantum

particles is challenging as the exact solutions are rarely available and the brute force

numerical exact diagonalization of Hamiltonians are practically restricted to few tens

of spins. Therefore, various approximate methods are constantly developed in order

to make progress towards understanding the physics of such Hamiltonians. Mean field

theory is the simplest approximation which ignores spatial and quantum fluctuations

among particles. Despite its limitations, it is frequently adopted as a starting point to

get qualitative insights about any complex model. Over the years, this approach has

been systematically improved by including local correlations. Cluster mean field theory

(CMFT), is an extension of Weiss mean field theory which attempts to capture quantum

correlations which are otherwise ignored in simple MFT. It treats interactions located

within the cluster exactly, while using conventional mean field decoupling interactions

among different clusters. The thesis focuses on capturing the magnetic orders and phase

transitions appearing in Heisenberg models motivated by low dimensional real materials

using CMFT.

We test the applicability of CMFT to Heisenberg model written for quasi-1D tetramer

compound CuInVO5. We find that CMFT is able to qualitatively identify the origin of an

extra peak observed in low temperature experimental results of specific heat. The careful

analysis is performed using correlations of different spin pairs in the parameter space.

It reveals an unexpected competition between inter-tetramer and intra-tetramer interac-

tions. Material specific choice of parameter suggests that it lies in the strongly competing

regime, therefore, treating inter-tetramer interaction exactly is important to capture the

relevant aspects of this system. Magnetic susceptibility calculations confirmed the pres-
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ence of three distinct regimes in temperature corresponding to a systematic melting of

singlet order. Furthermore, multiple spin-flop transitions are identified in the presence

of field which matches with experimental observation of magnetic plateaus. These find-

ings emphasize on the relevance of considering weak (inter-tetramer) interactions in low

dimensional systems realized in real magnetic materials.

In the second problem, the CMF approach is utilized to understand experimental

results for a frustrated ferromagnetic compound β-TeVO4. With the aim to capture

the important features observed in the material, an anisotropic Heisenberg model with

nn FM and nnn AFM interactions on weakly coupled zig-zag spin-1/2 chains is investi-

gated. While some of the sophisticated computational approaches like QMC fail in this

regime, CMFT is able to identify the series of phase transitions reported experimentally.

A detailed analysis on the dependence on anisotropy and inter-chain coupling strength

concludes that an appropriate combination of inter-chain coupling and anisotropy in nnn

interaction is required in obtaining long range orders relevant for this frustrated sys-

tem. CMFT was able to uncover complex phases like vector chiral ground state and

quadrupolar phases in the presence of magnetic field. Moreover, a specific anomaly of

re-entrant transition is also found similar to experimental observations. It is remarkable

that some of the experimentally observed features are captured by CMFT, however a

complete understanding of this complex material require a 3-dimensional cluster with

anisotropic interactions. To this end, we highlight the similarities as well as differences

between experimental results and cluster mean field calculations.

The last project discusses the effects of anisotropic impurities in an isotropic spin-1/2

Heisenberg chain system. We conclude that a fraction of impure sites, which modify

the anisotropy of interaction with neighboring sites, is able to induce a Néel order. We

also discuss the dependence of transition temperature on impurity density as well as

anisotropy strength.

While CMFT emerges as a tool to understand experimental features appearing in low

dimensional magnets, some interesting inferences drawn from our calculations can moti-

vate experimental studies in future. For instance, experimentally observing the crossover

between two distinct singlet orders identified in the tetramer model. Further work on the

material suggests that CuInVO5 lies close to the quantum critical point. These features

may be studied by applying pressure or synthesizing materials with specific interaction

constants. We have studied the dependency of anisotropic strength and interchain cou-

pling in stabilizing vector chiral orders for the problem of coupled zig-zag chains. The

competition of the same emerges as signatures in specific heat, which can also be studied
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in experiments with an appropriate control parameter. The last problem in the thesis

gives a detailed analysis for an impurity problem with variations in impurity density

and anisotropy strength. As experimental studies of anisotropic impurities are limited,

verification of the results (such as mz, Cv and χ) obtained numerically should motivate

further studies.

In conclusion, the thesis highlights that the CMF approach can become a powerful

tool in understanding the nature of magnetic order emerging at low temperatures. CMFT

recovers the correlations important for the long range orders which are otherwise lost in

computationally possible exact diagonalization results. The technique is useful for frus-

trated magnets as it can capture subtle competition between different magnetic ordering.

In the mean field spirit, the approach allows access to both thermal as well as quantum

fluctuations at level of finite-size calculations.
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of the low-dimensional antiferromagnets nita2o6 and CoSb2O6. Phys. Rev. B,

90(10):224423, 2014.

[107] M.G. Banks, F. Heidrich-Meisner, A. Honecker, H. Rakoto, J.M. Broto, and R.K.

Kremer. High field magnetization of the frustrated one-dimensional quantum an-

tiferromagnet LiCuVO4. Journal of Physics: Condensed Matter, 19(14):145227,

2007.

[108] I. Cabrera, J. D. Thompson, R. Coldea, D. Prabhakaran, R. I. Bewley, T. Guidi,

J. A. Rodriguez-Rivera, and C. Stock. Excitations in the quantum paramag-

netic phase of the quasi-one-dimensional ising magnet CoNb2O6 in a transverse

field: Geometric frustration and quantum renormalization effects. Phys. Rev. B,

90(10):014418, 2014.

107



[109] J. Ma, C. D. Dela Cruz, Tao Hong, W. Tian, A. A. Aczel, Songxue Chi, J.-Q.

Yan, Z. L. Dun, H. D. Zhou, and M. Matsuda. Magnetic phase transition in the

low-dimensional compound BaMn2Si2O7. Phys. Rev. B, 88(8):144405, 2013.

[110] J. L. Gavilano, E. Felder, D. Rau, H. R. Ott, P. Millet, F. Mila, T. Cichorek, and

A. C. Mota. Unusual magnetic properties of the low-dimensional quantum magnet

Na2V3O7. Phys. Rev. B, 72(10):064431, 2005.

[111] Bella Lake, D. Alan Tennant, Chris D. Frost, and Stephen E. Nagler. Quantum

criticality and universal scaling of a quantum antiferromagnet. Nature materials,

4(4):329–334, 2005.

[112] M. B. Stone, D. H. Reich, C. Broholm, K. Lefmann, C. Rischel, C. P. Landee,

and M. M. Turnbull. Extended quantum critical phase in a magnetized spin-1
2

antiferromagnetic chain. Phys. Rev. Lett., 91(4):037205, 2003.

[113] A. A. Nersesyan and A. M. Tsvelik. One-dimensional spin-liquid without magnon

excitations. Phys. Rev. Lett., 78(0):3939–3942, 1997.

[114] Yukihiro Yoshida, Hiroshi Ito, Mitsuhiko Maesato, Yasuhiro Shimizu, Hiromi

Hayama, Takaaki Hiramatsu, Yuto Nakamura, Hideo Kishida, Takashi Koretsune,

Chisa Hotta, et al. Spin-disordered quantum phases in a quasi-one-dimensional

triangular lattice. Nature Physics, 11(8):679–683, 2015.

[115] P. Lecheminant. One-dimensional quantum spin liquids. In Frustrated spin systems,

pages 321–381. World Scientific, 2013.

[116] Masanori Kohno, Oleg A. Starykh, and Leon Balents. Spinons and triplons in

spatially anisotropic frustrated antiferromagnets. Nature Physics, 3(11):790–795,

2007.
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