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Abstract

Artin braid groups are celebrated objects which appear in and affix several areas of mathemat-
ics and theoretical physics. A geometric interpretation given by Artin in his pioneering work
in the 1920s, which captures the behaviour of intertwined strings in the Euclidean 3-space,
has led to a deeply rooted connection with links in the 3-space. Since then the theory has been
ramified by topologists and algebraists both. This naturally leads to a question of how the
strings would intertwine if considered on a plane, and how it can be signified algebraically.
The thesis explores this direction and presents a detailed investigation of structural aspects of
planar braid groups and their (higher genus) virtual analogues.
Study of certain isotopy classes of a finite collection of immersed circles (called doodles on
surfaces) without triple or higher intersections on closed oriented surfaces is considered as a
planar analogue of virtual knot theory with the genus zero case corresponding to the classical
knot theory. In the case of doodles on the 2-sphere, the role of groups is played by a class
of right-angled Coxeter groups called twin groups. For the higher genus case in the virtual
setting, the role of groups is played by a new class of groups called virtual twin groups.
We give a topological description of virtual twin groups and establish Alexander and Markov
theorems for oriented virtual doodles. This paves a way for constructing invariants for
doodles on surfaces. We investigate structural aspects of (pure) virtual twin groups in detail.
More precisely, we obtain a presentation of the pure virtual twin group and deduce that it is
an irreducible right-angled Artin group. We then prove that pure virtual twin groups can be
written as iterated semidirect products of infinite rank free groups. Consequently, it follows
that pure virtual twin groups have trivial centers, which confirms a well-known conjecture
about triviality of centers of irreducible non-spherical Artin groups. We also compute the
automorphism group of pure virtual twin groups in full generality and give applications to
twisted conjugacy.
We investigate the conjugacy problem in twin groups and derive a formula for the number
of conjugacy classes of involutions, which, quite interestingly, is related to the well-known
Fibonacci sequence. We also investigate z-classes in twin groups and derive a recursive
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formula for the number of z-classes of involutions. Finally, we determine automorphism
groups of twin groups and give applications to twisted conjugacy.
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Chapter 1

Introduction

Artin braid groups are celebrated objects which appear in and affix various areas of mathe-
matics and theoretical physics. One of the notable features of these groups is their deeply
rooted connection with classical links which are defined as embeddings of 1-dimensional
closed manifolds (disjoint union of circles) into the 3-sphere. An explicit geometric account
revolving around the behaviour of interlinked strings with crossing information in the 3-
space was given by Artin in the 1920s. Since then it has been ramified by topologists and
algebraists both. This naturally leads to a question of how the strings would intertwine if
considered on a plane, and that how can it be signified algebraically. In this direction, Fenn
and Taylor [27] introduced doodles on the 2-sphere as finite collections of Jordan curves
lying on the 2-sphere which are required not to have triple intersections. They focused on
three components doodles and studied relations between doodles and commutator identities
in free groups using a certain type of intersection number of components. Two doodles are
equivalent if one can be obtained from the other by a finite sequence of the move called a
Whitney move. Khovanov [52] then considered a finite collection of immersed circles on
any fixed closed oriented surface in his definition of a doodle. This further allowed him to
consider a move which adds or removes a kink in a doodle, and therefore the equivalence
relation on a set of doodles with a fixed number of components was refined accordingly. By
considering the definition given by Khovanov [52] and extending the idea of Fenn and Taylor
[27], it has been proved recently by Bartholomew-Fenn-Kamada-Kamada [8] that there is a
bijection between cobordism classes of coloured doodles and weak equivalence classes of
elementary commutator identities. More interestingly, these objects can be viewed as planar
analogues of links in the Euclidean 3-space. Consequently, the role of groups in the theory of
doodles can be contemplated. As a matter of course, Khovanov considered abstract groups Tn

which he called twin groups, and gave a geometric interpretation similar to the one for Artin
braid groups. He considered configurations of n arcs in the infinite strip R× [0,1] connecting
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n marked points on each of the parallel lines R×{1} and R×{0} such that each arc is
monotonic and no three arcs have a point in common. Two such configurations are equivalent
if one can be deformed into the other by a homotopy of such configurations in R× [0,1]
keeping the end points of arcs fixed. An equivalence class under this equivalence is called a
twin. The product of two twins can be defined by the juxtaposition of one twin on top of the
other and shrinking the interval back to [0,1]. The collection of all twins with n arcs under
this operation forms a group isomorphic to the twin group Tn. Taking the one-point compact-
ification of the plane, one can define the closure of a twin on the 2-sphere, in resemblance to
the operation defined for geometric braids in the 3-space. Evidently, closure of a twin gives
a doodle on the 2-sphere. In fact, Khovanov [52] proved that every oriented doodle on the
2-sphere is the closure of some twin. Recently, Gotin [37] established the relation between
twins with equivalent closures and doodles on the 2-sphere, that is, the Markov description
of oriented doodles on the 2-sphere in terms of Markov equivalence classes of twins. To
classify doodles on the 2-sphere, following the work of Burau to construct link invariants
via representations, an Alexander type invariant for oriented doodles has been constructed
in a recent work [18]. Twin groups, being right-angled Coxeter groups, are known to be
linear groups via the well-known Tits representation [15, p.96]. Using a deformation of
this faithful representation, a polynomial invariant has been constructed which vanishes on
unlinked doodles with more than one component.
Even before this interpretation, twin groups appeared in the work of Shabat and Voevodsky
[81] in the context of curves over number fields, who referred them as Grothendieck carto-
graphical groups. Later, these groups appeared in the work of Khovanov [51] on real K(π,1)
arrangements. These groups are also referred as traid groups or planar braid groups in the
literature [36, 39, 63, 64].
There is a natural surjection of Tn onto the symmetric group on n symbols trailing how the
end points of the strands are connected, whose kernel is known as the pure twin group and is
denoted by PTn. It is well-known that the pure Artin braid group Pn is the fundamental group
of the configuration space of ordered n-tuples of distinct points in R2. Björner and Welker
[12, 14] considered a more general class of manifolds to which the space

Xn = Rn \{(x1,x2, . . . ,xn) ∈ Rn | xi = x j = xk = xi, i ̸= j ̸= k ̸= i}

belongs. They studied the cohomology of these spaces and proved that H i(Xn,Z) is free for
all i. Through their works, a lower bound of an exponential order to the rank of pure twin
groups has been estimated. Further, in [12] it was conjectured whether the space Xn is a
K(π,1), which was later dealt by Khovanov [51] in his work on real K(π,1) arrangements.
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He proved that the conjecture holds and that the fundamental group of the space Xn is
isomorphic to the pure twin group on n strands.
Recently, the algebraic perspective of these groups has gained much attention. Bardakov-
Singh-Vesnin [4] gave an upper bound to the rank of PTn and proved that PTn is free for
n = 3,4 and not free for n≥ 6. It was also proved that PTn is torsion-free for every n≥ 3.
Further, it was conjectured that PT5 is also a free group of rank 31, and the same has been
established recently by González-León-Medina-Roque [36]. It has been proven in [63]
that PT6 is a free product of the free group F71 and 20 copies of the free abelian group
Z⊕Z. A description of a presentation of PTn for all n ≥ 3 has been given in a recent
work by Mostovoy [64]. González-León-Medina-Roque [36] also computed the Lusternik-
Schnirelmann category and the higher topological complexity of PTn. These groups also
belong to the class of so called diagram groups [30, 38].
Even with a slightly simpler presentation than classical Artin braid groups and a resembling
geometric interpretation, it is interesting to understand how the twin groups differ alge-
braically. A part of this thesis concentrate on algebraic aspects of these groups. In particular,
we explore conjugacy classes of involutions, centralisers, automorphisms, representations,
R∞-property and (co)-Hopfianity of twin groups.
From ramifications of links and braids, arose virtual knots which were later shown to be
links in closed oriented thickened surfaces with a slightly more robust notion of equivalence.
One can think of the study of isotopy classes of immersed circles without triple or higher
intersection points on closed oriented surfaces as a planar analogue of virtual knot theory.
Bartholomew-Fenn-Kamada-Kamada [9] extended the study of doodles to immersed circles
on closed oriented surfaces of any genus and called them doodles on surfaces. Then, they
introduced the notion of a virtual doodle which is a generic immersion of a closed one-
dimensional manifold (disjoint union of circles) on the plane with finitely many real or virtual
crossings such that there are no triple or higher real intersection points. With the aim of
classifying these geometric objects, coloring of diagrams using a special type of algebra called
doodle switch, has been established to construct an invariant for virtual doodles [7]. They also
discussed Gauss codes for virtual doodles and defined left canonical Gauss codes which turns
out to be a complete invariant for oriented virtual doodles. More precisely, they proved that
virtual doodles are uniquely represented by left canonical Gauss codes [10]. Through their
works [9], classes of doodles on surfaces can uniquely be captured into diagrammatic study
of classes of virtual doodles on the plane. In this thesis, we characterise Alexander-Markov
description of doodles on surfaces, which captures the information about these objects into
the algebraic perspective. In other words, we give a one to one correspondence between
equivalence classes of doodles on surfaces and Markov equivalence classes of virtual twins
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(possibly with different number of strands). From a wider perspective, a recent work of
Bartholomew and Fenn [5] look at which Alexander and Markov theories can be defined for
generalised knot theories.
For constructing algebraic counterparts for doodles on surfaces, we examine an abstract
generalisation of twin groups called virtual twin groups defined in [4] and denoted by V Tn.
In this thesis, we give a topological interpretation of the group V Tn as group of classes of
configurations called virtual twins of n arcs with real or virtual crossings satisfying suitable
conditions. Once this is established, we prove Alexander and Markov theorems for oriented
virtual doodles on the plane which completely classify them in terms of virtual twins with
possibly different number of strands. This opens up the possibility of constructing algebraic
invariants to classify virtual doodles on the plane. There is a natural surjection of V Tn onto
the symmetric group on n symbols which traces the end points of n strands and whose
kernel PV Tn is called the pure virtual twin group. We then focus on examining the structural
properties of virtual twin groups and pure virtual twin groups.
The following subsections give a brief outline of the thesis.

1.1 Structural properties of twin groups

For an integer n≥ 2, the twin group Tn is defined as the group with a presentation〈
s1,s2, . . . ,sn−1 | s2

i = 1 for 1≤ i≤ n−1 and sis j = s jsi for |i− j| ≥ 2
〉
.

Let Sn be the symmetric group on n symbols. Then there is a natural homomorphism from
Tn onto Sn, which maps each generator si to the transposition (i, i+1). The kernel of this
map is defined as the pure twin group and is denoted by PTn.
We derive a formula for the number of conjugacy classes of involutions in Tn. Quite interest-
ingly, it is closely related to the well-known Fibonacci sequence.

Theorem 1.1.1. Let ρn denote the number of conjugacy classes of involutions in Tn. Then

ρn = 1+ρn−1 +ρn−2

for all n≥ 4, where ρ2 = 1 and ρ3 = 2.
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Corollary 1.1.2. For each n≥ 2, ρn+1 = Fn+1, where (Fn)n≥1 is the well-known Fibonacci
sequence with F1 = F2 = 1. In particular,

ρn =
⌊ n

2 ⌋
∑
k=1

(
n− k

k

)
.

Two elements x,y of a group G are said to be z-equivalent if their centralisers CG(x) and
CG(y) are conjugates in G. A z-equivalence class is called a z-class. We compute the number
of z-classes of involutions in Tn for n≥ 2, and we have the following results.

Proposition 1.1.3. Tn has finitely many z-classes if and only if n = 2 or 3.

Theorem 1.1.4. Let λn denote the number of z-classes of involutions in Tn, n≥ 2. Then, for
n≥ 7,

λn =
(n−2

∑
i=3

λi
)
−λn−4 +n−2,

where λ2 = 1, λ3 = 2, λ4 = 2, λ5 = 5 and λ6 = 8.

We compute the group of automorphisms for Tn in full generality. Note that the automorphism
group of T3 ∼= Z2 ∗Z2 is well-known.

Theorem 1.1.5. Let Tn be the twin group with n≥ 3. Then the following hold:

(1) Aut(T3)∼= T3 ⋊Z2.

(2) Aut(T4)∼= T4 ⋊S3.

(3) Aut(Tn)∼= Tn ⋊D8 for n≥ 5, where D8 is the dihedral group of order 8.

Using the structure of the group Aut(Tn), we study the R∞-property of Tn. Let G be a group
and φ an automorphism of G. Two elements x,y ∈ G are said to be (φ -twisted conjugate)
φ -conjugate if there exists an element g ∈ G such that x = gyφ(g)−1. The relation of φ -
conjugation is an equivalence relation and divides the group into φ -conjugacy classes. Taking
φ to be the identity automorphism gives the usual conjugacy classes. The number of φ -
conjugacy classes R(φ) ∈ N∪{∞} is called the Reidemeister number of the automorphism
φ . We say that a group G has R∞-property if R(φ) = ∞ for each φ ∈ Aut(G).

Theorem 1.1.6. Tn satisfy R∞-property for all n≥ 3.

Residual properties of groups are of great interest to combinatorial group theorists. Twin
groups belong to the special class of right-angled Coxeter groups which are known to be



6 Introduction

linear, and hence residually finite and Hopfian. A group is said to be co-Hopfian (respectively
Hopfian) if every injective (respectively surjective) endomorphism is an automorphism. For
twin groups we have the following result.

Theorem 1.1.7. Tn is not co-Hopfian for n≥ 3.

1.2 Virtual twin groups and doodles on surfaces

The virtual twin group V Tn is presented by generators {s1,s2, . . . ,sn−1,ρ1,ρ2, . . . ,ρn−1} and
following defining relations

• relations of the twin group:

s2
i = 1 for i = 1,2, . . . ,n−1,

sis j = s jsi for |i− j| ≥ 2,

• relations of the symmetric group:

ρ
2
i = 1 for i = 1,2, . . . ,n−1,

ρiρ j = ρ jρi for |i− j| ≥ 2,

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1,2, . . . ,n−2,

• mixed relations:

ρis j = s jρi for |i− j| ≥ 2,

ρiρi+1si = si+1ρiρi+1 for i = 1,2, . . . ,n−2.

In this thesis, we give a topological interpretation of these groups. Consider a set Qn of n
points in R. A virtual twin diagram on n strands is a subset D of R× [0,1] which consists
of n intervals called strands such that ∂D = Qn×{0,1} and the following conditions are
satisfied:

1. the natural projection R× [0,1]→ [0,1] maps each strand homeomorphically onto the
unit interval [0,1],

2. the set V (D) of all crossings of the diagram D consists of transverse double points of
D where each crossing has the pre-assigned information of being a real or a virtual
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crossing as depicted in Figure 1.1. A virtual crossing is depicted by a crossing encircled
with a small circle.

Fig. 1.1. Real and virtual crossing

We say that the two virtual twin diagrams on n strands are equivalent if one can be obtained
from the other by a finite sequence of isotopies of the plane and the moves as in Figure 1.2.
Such an equivalence class is called a virtual twin. We prove that the set of virtual twins on n
strands forms a group under the operation of concatenation, isomorphic to the group V Tn.

Fig. 1.2. Reidemeister moves for virtual twin diagrams

A virtual doodle diagram is a generic immersion of disjoint union of finitely many circles
on the plane R2 with finite number of real and virtual crossings such that there are no triple
or higher real intersection points. Two virtual doodle diagrams are equivalent if they are
related by a finite sequence of R1, R2, V R1, V R2, V R3, M moves as shown in Figure 1.3 and
isotopies of the plane.
With the preceding setup, we have the following results.

Theorem 1.2.1. Every oriented virtual doodle on the plane is equivalent to closure of a
virtual twin diagram.

We now consider the following moves:

(M0) Defining relations of V Tn,
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R1 VR1

VR2

MVR3

R2

Fig. 1.3. Reidemeister moves for virtual doodle diagrams

(M1) Conjugation: α−1βα ∼ β ,

(M2) Right stabilisation of real or virtual type: β sn ∼ β or βρn ∼ β ,

(M3) Left stabilisation of real type: (1⊗β )s1 ∼ β ,

(M4) Right exchange: β1snβ2sn ∼ β1ρnβ2ρn,

(M5) Left exchange: s1(1⊗β1)s1(1⊗β2)∼ ρ1(1⊗β1)ρ1(1⊗β2),

for α,β ,β1,β2 ∈V Tn, n≥ 2 and 1⊗β ∈V Tn+1 the virtual twin obtained by putting a trivial
strand on the left of β .

Theorem 1.2.2. Two virtual twin diagrams on the plane (possibly on different number of
strands) have equivalent closures if and only if they are related by a finite sequence of moves
(M0)− (M5).

1.3 Structural properties of pure virtual twin groups

The kernel of the natural surjection from V Tn onto Sn is called the pure virtual twin group
and is denoted by PV Tn. We determine the presentation of PV Tn which, quite interestingly,
turns out to be an irreducible right-angled Artin group.
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Theorem 1.3.1. The pure virtual twin group PV Tn on n≥ 2 strands has the presentation〈
λi, j, 1≤ i < j ≤ n | λi, jλk,l = λk,lλi, j for distinct integers i, j,k, l

〉
,

where λi, j is shown in Figure 1.4.

Fig. 1.4. The generator λi, j of pure virtual twin group

As a result, we get significant information about the groups V Tn and PV Tn.

Corollary 1.3.2. The virtual twin group V Tn is residually finite and Hopfian for each n≥ 2.

We also show that PV Tn is isomorphic to an iterated semidirect product of infinite rank free
groups, through which we deduce that the center of V Tn and PV Tn is trivial for n≥ 2 and
n≥ 3, respectively. Next, in the direction of examining the group of automorphisms of PV Tn,
we have the following results.

Theorem 1.3.3. Let n≥ 5. Then

Aut(PV Tn)∼= PV Tn ⋊ (Zn(n−1)/2
2 ⋊Sn).

Since PV T2 ∼= Z and PV T3 ∼= F3, their automorphism groups are well-known. The case n = 4
is exotic and the following result describes the structure of the group of automorphisms in
this case.

Theorem 1.3.4. Let PV T4 be the pure virtual twin group on 4 strands. Then

Aut(PV T4)∼= ((Z2 ∗Z2 ∗Z2)⋊ (Z2 ∗Z2 ∗Z2))⋊
(
(GL2(Z)×GL2(Z)×GL2(Z))⋊S3

)
.

As an application, we deduce the following result.
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Theorem 1.3.5. PV Tn has R∞-property if and only if n≥ 3.

Throughout the thesis, we consider doodles on 2-sphere as defined by Khovanov, unless
specified. Only for the purpose of illustration, the diagrams are shown as piecewise linear.

The thesis is organised as follows. In Chapter 2, we develop necessary background required
for the subsequent chapters. In Chapter 3, we give a topological description of virtual twin
groups. We state and prove Alexander and Markov theorems for oriented virtual doodles
on the plane. In Chapter 4, we investigate the conjugacy problem in twin groups and derive
a formula for the number of conjugacy classes of involutions in Tn. We also investigate
z-classes (conjugacy classes of centralisers of elements) in twin groups and derive a recursive
formula for the number of z-classes of involutions. We conclude the chapter by addressing
algebraic link problem for doodles on the 2-sphere. In Chapter 5, we determine the group
of automorphisms Aut(Tn) for all n≥ 3 and give applications of the same. In particular, we
show that twin groups satisfy the R∞-property. Furthermore, we construct a representation
of Tn into Aut(Fn). We also prove that Tn is not co-Hopfian for n ≥ 3. In Chapter 6, we
investigate structural aspects of (pure) virtual twin groups in detail. More precisely, we obtain
a presentation of the pure virtual twin group PV Tn, which proves that it is an irreducible
right-angled Artin group. We then prove that PV Tn can be written as an iterated semidirect
product of infinite rank free groups, as a consequence of which it follows that both PV Tn and
V Tn have trivial center. In Chapter 7, we compute the automorphism group of PV Tn in full
generality. Finally, in Chapter 8, we give a reduced presentation of V Tn and use it to compute
the commutator subgroup of V Tn. We also prove that V Tn is residually nilpotent if and only
if n = 2.



Chapter 2

Preliminaries

In this chapter, we establish preliminaries which will be used in subsequent chapters. The
results can be found in [9, 52, 60].

2.1 Twin and pure twin groups

Let us consider the infinite strip R× [0,1] and n marked points on lines R×{0} and R×{1},
respectively. Let us fix the points say {(1,0),(2,0), . . . ,(n,0),(1,1),(2,1), . . . ,(n,1)}, for
convenience. We consider configurations of n strands connecting points (1,0), . . . ,(n,0) and
(1,1), . . . ,(n,1) in some permutation such that the following conditions hold.

(i) Each strand maps homeomorphically onto the interval [0,1]. In other words, the strands
are monotonic.

(ii) No three or more arcs have a common intersection point.

Fig. 2.1. Example of a twin on four strands
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Figure 2.1 gives an example of such a configuration of 4 strands. We say that two configura-
tions are equivalent if one can be obtained from the other by a homotopy of arcs in R× [0,1]
such that conditions (i) and (ii) hold and endpoints are fixed throughout the homotopy. It is
not difficult to see that this is an equivalence relation on the set of configurations of n strands.

Definition 2.1.1. A twin is an equivalence class of configurations of n strands.

Consider the set of twins on n strands. The product C1C2 of two configurations C1 and C2 is
defined by placing C1 on top of C2 and then shrinking the interval to [0,1]. It is clear that
if C1 is equivalent to C′1 and C2 is equivalent to C′2 , then C1C2 is equivalent to C′1C′2. Thus,
there is a well-defined binary operation on the set of twins with fixed number of strands. It
is easy to see that this operation is indeed associative. Note that the twin represented by a
configuration of n strands with no crossings is the identity element with respect to the binary
operation.

1 i− 1 i i+ 1 i+ 2 n ni+ 2i+ 1ii− 11

si ρ̃i

Fig. 2.2. The twin si

Fig. 2.3. Equivalence of configurations of n arcs

Also, any twin can be represented by a configuration such that each intersection point is
at a distinct level, when mapped onto the interval [0,1]. Thus, any twin is a composition
of some basic twins s1,s2, . . . ,sn−1, where si is depicted in Figure 2.2. By the definition of
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equivalence of configurations (see Figure 2.3), we see that

s2
i = 1, i = 1,2, . . . ,n−1,

sis j = s jsi, |i− j|> 1.

We also note that due to the restriction that no three or more arcs have a common intersection
point, the move shown in Figure 2.4 is forbidden. Khovanov [52] showed that the set of
twins on a fixed number of strands with the operation of concatenation forms a group. The
following result gives a presentation for the same.

Fig. 2.4. Forbidden move for twins

Proposition 2.1.2 ([52], Proposition 1.1). The group of twins on n strands is isomorphic to
the group Tn with presentation〈

s1,s2, . . . ,sn−1 | s2
i = 1 for 1≤ i≤ n−1 and sis j = s jsi for |i− j| ≥ 2

〉
.

From now on, the notation Tn is interchangeably used for diagrammatic group of twins on n
strands and abstract group defined in Proposition 2.1.2.

Definition 2.1.3. The pure twin group PTn is the subgroup of Tn consisting of twins with
strands connecting pairs (i,0) with (i,1) for all i = 1,2, . . . ,n−1.

In other words, there is a natural surjection of Tn onto the symmetric group Sn on n symbols
by sending each generator si to the transposition (i, i+1). The kernel of this map is the pure
twin group PTn. Figure 2.5 depicts an example of a pure twin on four strands.
Consider the following space

Xn = Rn \{(x1,x2, . . . ,xn) ∈ Rn | xi = x j = xk = xi, i ̸= j ̸= k ̸= i}.

Björner and Welker [12, 14] studied the cohomology of these spaces. They proved that
H i(Xn,Z) is free for all i, H i(Xn,Z) ̸= 1 if and only if 1 ≤ i ≤ n/3 and that the rank of
H i(Xn,Z) is ∑

n
i=3

(n
i

)(i−1
2

)
. It was also conjectured in [12] whether the space Xn is Eilenberg-

MacLane space K(π,1). Khovanov [51] proved that the conjecture holds and that PTn is the
fundamental group of Xn.
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Fig. 2.5. Example of a pure twin on four strands

It is shown in [4] that PT3 is the infinite cyclic group generated by (s1s2)
3, whereas PT4 is a

free group generated by

(s1s2)
3,((s1s2)

3)s3,((s1s2)
3)s3s2,((s1s2)

3)s3s2s1,

(s2s3)
3,((s2s3)

3)s1,((s2s3)
3)s1s2.

It was conjectured in [4] that PT5 is a free group of rank 31 which has been recently proved
in [36]. The group PT6 is not free as (s1s2)

3 and (s4s5)
3 commutes in PT6, and it is proved

in [63] that PT6 is isomorphic to the free product of the free group F71 and 20 copies of the
free abelian group Z⊕Z. A minimal presentation of PTn is described in a recent work [64].

2.2 Doodles on 2-sphere

Definition 2.2.1. A doodle is a finite collection of immersed circles on a fixed closed oriented
surface without any triple intersections.

A doodle is oriented if the underlying 1-dimensional manifold has an orientation. Two
(oriented) doodles D0 = (D1

0, . . . ,D
n
0) and D1 = (D1

1, . . . ,D
n
1) are said to be equivalent if

there exists (an orientation preserving) a continuous one parameter family of doodles {Dt =

(D1
t , . . . ,D

t
n)} joining D0 and D1. Two doodles are equivalent if and only if they are related

to each other by a finite sequence of local moves shown in Figure 2.6.
It should be noted that by picking a point ∞ disjoint from a doodle on 2-sphere, the doodle can
be represented in the Euclidean plane R2. For the sake of convenience, we draw doodles on
a plane. Also, we assume that all the components meet transversely so that each component
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Fig. 2.6. Reidemeister moves for doodles

is well distinguished. Figure 2.7 shows some examples of doodles with different number of
components.

one component one component three components four components

Fig. 2.7. Doodles on different number of components

We now define an operation crucial for building a bridge between twins and doodles. Consider
a twin β ∈ Tn represented by a configuration C of n strands. Let cl(C) be the doodle obtained
by joining each pairs (i,0) and (i,1) on the plane, disjoint from the configuration, with non-
intersecting arcs shown in Figure 3.7. We note that if C′ is another configuration representing
β , then cl(C) is equivalent to cl(C′). Consequently, the equivalence class of cl(C) depends
only on the equivalence class of β .
This equivalence class of doodle is called the closure of twin β and is denoted by cl(β ). The
orientation of β induces an orientation on its closure. The following result is an analogue of
the classical Alexander theorem for oriented links [47, Chapter 2, Theorem 2.3].

Theorem 2.2.2 ([51], Theorem 2.1). Every oriented doodle on 2-sphere is the closure of a
twin.

The above theorem gives us the existence of a twin for each doodle on 2-sphere. The natural
question that arises here is that if two twins have equivalent closures on the 2-sphere, then
how are they related? For instance, it is not difficult to check that for twins α,β ∈ Tn, the
doodles cl(α−1βα) and cl(β ) are equivalent. This was answered by Gotin [37] who proved
an analogue of Markov theorem [47] for oriented doodles on 2-sphere.
Let m⊗β (similarly, β ⊗m) be the twin obtained by adding m strands to the left (right) of
the diagram of β , for a twin β with possibly different number of strands. For any positive
integer n and α,β ∈ Tn, define the following moves:
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M1 : β ⊗1→ 1⊗ β ,

M2 : β → α−1βα ,

M3 : β → (β ⊗1)snsn−1 . . .si+1sisi+1 . . .sn−1sn,

M4 : β → (1⊗β )s1s2 . . .si−1sisi−1 . . .s2s1,

where si ∈ Tn+1.

Definition 2.2.3. Two twins are said to be M-equivalent if one can be obtained from the
other by a finite sequence of moves M1−M4 and their inverses.

If Mi(β ) is the twin obtained from β by applying the Mi-move, then it is not difficult to
prove that cl(Mi(β )) is equivalent to cl(β ). For example, the closure of (s1s2)

3 ∈ T3 and the
closure of (s2s3)

3s1s2s1 ∈ T4 are equivalent by M4-move as shown in Figure 2.8. We have
the following result.

Theorem 2.2.4 ([37], Theorem 4.1). Any two twins with equivalent closures are M-equivalent.

Fig. 2.8. The closures of (s1s2)
3 and (s2s3)

3s1s2s1 being equivalent as doodles.

2.3 Doodles on surfaces

In the previous section, we considered doodles on a fixed closed oriented surface, in particular
on the 2-sphere. We now extend the range of doodles to immersed circles on closed oriented
surfaces of any genus defined in [9].
A representative of a doodle is defined by a pair ( f ,Σ) consisting of a smooth map

f : ⊔nS1→ Σ
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from n disjoint circles to a closed oriented surface Σ such that | f−1 f (x)| < 3 for every
x ∈ ⊔nS1. The condition | f−1 f (x)|< 3 means that there are no triple or higher intersection
points. The image of f on Σ is called a doodle diagram on the surface Σ. We assume that
the doodle diagram intersects with each connected component of Σ. By orientation of a
doodle diagram, we mean an orientation of underlying disjoint n circles. Two representatives
are said to be equivalent if one can be obtained from the other by equivalence generated by
(1)− (3) defined as follows.

(1) Homeomorphic equivalence. Two representatives ( f ,Σ) and ( f ′,Σ′) are homeomor-
phic equivalent if there exists homeomorphisms s : ⊔nS1→⊔nS1 and S : Σ→ Σ′ such
that the following diagram commutes.

⊔nS1 Σ

⊔nS1 Σ′

s

f

S

f ′

If we consider oriented doodle diagrams, then the maps s and S respect orientations of
circles and Σ, respectively.

(2) Homotopic equivalence. For a fixed surface Σ, two representatives ( f ,Σ) and ( f ′,Σ)
with same number of components are homotopic equivalent if their images are related
to each by a finite sequence of moves shown in Figure 2.9, that is the moves which
generate and delete curls and bigons.

Fig. 2.9. Moves for homotopy equivalence of representatives of doodles

(3) Surface surgery. Surface surgery involves a finite sequence of addition and removal
of handles disjoint from doodle diagrams. Consider two closed discs on the surface
disjoint from the diagram. First we remove the interior of the two discs, and replace
it with annulus S1× [0,1] by glueing the boundary of annulus to the boundary of two
discs (see Figure 2.10). This procedure is known as handle addition. The removal of
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the handle is the reversal of handle addition. Two representatives are ( f ,Σ) and ( f ,Σ′)
are equivalent if Σ′ is obtained from Σ by a sequence of handle additions and removal
of handles disjoint from the doodle diagram.

Fig. 2.10. Handle addition on surface Σ

Definition 2.3.1. An equivalence class of a doodle diagram is called doodle on a surface.

Figure 2.11 shows an example of a doodle diagram on the surface of genus two.

Fig. 2.11. Kishino doodle on the surface of genus two

Example 2.3.2. Figure 2.12 illustrates the equivalence of doodle diagrams through an
example. The first homeomorphism follows from the fact that if α and β are any two
nonseperating simple closed curves in a surface Σ, then there exists a homeomorphism
of the surface Σ sending α to β . In other words, upto homeomorphism, there exists a
unique nonseperating simple closed curve in a fixed surface [23, Section 1.3.1]. The second
equivalence involves removal of handle disjoint from the curve, whereas the third equivalence
is due to the homeomorphism between the 2-sphere and a closed cylinder.

2.4 Virtual doodles

In this section, we define virtual doodles which have resemblance with doodles on the
2-sphere having additional crossings. The role of virtual doodles is crucial in capturing the
information of doodles on surfaces in a diagrammatic manner. The results of this section can
be found in [9].
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Fig. 2.12. Doodle on torus being equivalent to trivial doodle on the 2-sphere

Definition 2.4.1. A virtual doodle diagram is a generic immersion of a closed one-dimensional
manifold (disjoint union of circles) on the plane R2 with finitely many real or virtual crossings
(as in Figure 2.13) such that there are no triple or higher real intersection points.

By the term generic, we mean that all the crossings are transversal.

Fig. 2.13. Real and virtual crossings

Example 2.4.2. An example of a virtual doodle is shown in Figure 2.14. The figure represents
a flat virtual knot called the flat Kishino knot which was proved to be non-trivial as a flat
virtual knot in [28, 44]. Thus, the flat Kishino knot is also non-trivial as a virtual doodle.
The nomenclature is motivated by the Kishino knot diagram which is a diagram of a virtual
knot whose non-triviality as a virtual knot is proven, for example, in [6, 53].

Fig. 2.14. Flat Kishino knot as virtual doodle
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Two virtual doodle diagrams are said to be equivalent if they are related by a finite sequence
of isotopies of the plane and R1, R2, V R1, V R2, V R3, M moves as shown in Figure 2.15. Note
that V R1, V R2, V R3 and M are flat versions of virtual Reidemeister moves in virtual knot
theory [48]. The moves R1 and R2 are also referred as flat versions of Reidemeister moves
for classical knots.

R1 VR1

VR2

MVR3

R2

Fig. 2.15. Moves for virtual doodle diagrams

An oriented virtual doodle diagram is a doodle diagram with an orientation on each com-
ponent of the underlying immersion. It is easy to see that there are a total of 28 moves for
oriented virtual doodle diagrams. Further, any oriented move can be obtained as a composi-
tion of moves in Figure 2.16 and planar isotopies. From now on, by a virtual doodle diagram
we mean an oriented virtual doodle diagram unless stated otherwise.

Definition 2.4.3. A virtual doodle on the plane R2 is an equivalence class of a virtual doodle
diagram.

Remark 2.4.4. Every classical link diagram can be regarded as an immersion of circles
in the plane with an extra structure (of over/under crossing) at double points. If we take a
diagram without this extra structure, then it is simply a shadow of some link in R3 and such
crossings are called flat crossings in the literature [48]. An easy check shows that if one
is allowed to apply the classical Reidemeister moves to such a diagram, then the diagram
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Fig. 2.16. Moves for oriented virtual doodle diagrams

can be reduced to a disjoint union of circles. However, this does not happen in flat virtual
diagrams, that is, diagrams which have both flat and virtual crossings. It is worth noting that
if we include the first forbidden move in the moves for virtual doodle diagrams, then we get
precisely the theory of flat virtual knots initiated in [48].

The following result relates doodles on surfaces with virtual doodles on the plane.

Theorem 2.4.5 ([9], Theorem 6.4). There is a bijection from the family of oriented (or
unoriented) virtual doodles to the family of oriented (or unoriented) doodles on surfaces.

2.5 Gauss data

The Gauss data plays a major role in the proof of Theorem 2.4.5. Let K be a virtual
doodle diagram on the plane with n real crossings. Let N1,N2, . . . ,Nn be closed 2-disks each
enclosing exactly one real crossing of the diagram K and W (K) the closure of R2 \∪n

i=1Ni

in the plane. Note that W (K) consists of immersed arcs and loops in the plane where the
intersection points are precisely the virtual crossings. Let VR(K) be the set of real crossings
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of K. Since we are considering oriented virtual doodle diagrams, for each real crossing ci,
the set ∂Ni∩ ci consists of four points and are assigned symbols as in Figure 2.17.

c1i c2i

c3i c4i

Fig. 2.17. Labelling at real crossing

Define
V∂ (K) =

{
c j

i | i = 1,2, . . . ,n and j = 1,2,3,4
}

and

X(K) =
{
(a,b) ∈V∂ (K)×V∂ (K) | there is an arc in K∩W (K) starting

at a and ending at b
}
.

Definition 2.5.1. The pair
(
VR(K),X(K)

)
is called the Gauss data of a virtual doodle

diagram K.

Let K and K′ be two virtual doodle diagrams each with n real crossings. We say that K and
K′ have the same Gauss data if there is a bijection σ : VR(K)→VR(K′) such that whenever
(a,b) ∈ X(K), then

(
σ̄(a), σ̄(b)

)
∈ X(K′), where σ̄ : V∂ (K)→V∂ (K′) is defined as

σ̄(c j
i ) = σ(ci)

j.

The following result is proved in [9, Lemma 6.1].

Lemma 2.5.2. Let K and K′ be virtual doodle diagrams with the same number of real
crossings. Then the following are equivalent:

(i) K and K′ have the same Gauss data with respect to a bijection between their real
crossings,

(ii) K and K′ are related by a finite sequence of moves V R1, V R2, V R3 and M modulo
isotopies of the plane,

(iii) K and K′ are related by a finite sequence of Kauffman’s detour moves (shown in Figure
2.18) modulo isotopies of the plane.
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Fig. 2.18. Kauffman’s detour move

The Gauss data will be crucial in establishing Alexander and Markov theorems for virtual
doodles which we prove in the subsequent chapter.

2.6 Reidemeister-Schreier theorem

Reidemeister-Schreier method is one of the most applicable algorithms in combinatorial
group theory, named after Kurt Reidemeister and Otto Schreier, which is used to compute
presentations of subgroups of a group. This algorithm has been used at a few instances in
the succeeding chapters. We refer the reader to [60, Theorem 2.6] for more details. The
algorithm works even for groups with infinite presentations and subgroups of infinite index.
However, we assume that the groups are finitely presented and that the index of the subgroup
is finite. Let G be a group with presentation

⟨x1,x2, . . . ,xn | R1,R2, . . . ,Rm⟩,

and that the subgroup H of G is of finite index say t.
In this section, we recall the required terminologies and results which are fruitful in deter-
mining an explicit presentation of a subgroup H of G.
We begin by considering a full set of right coset representatives of H in G in which all
the words are written in letters xi’s. Given any element g ∈ G, there exists a right coset
representative which corresponds to the coset Hg. Let Λ = {λ1,λ2, . . . ,λt} be a complete set
of right coset representatives of H in G. Then we know that every λi can be expressed as

λi = xε1
i1 xε2

i2 . . .x
εk
ik ,

for εi =±1 and some positive integer k.
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Definition 2.6.1. The set Λ = {λ1,λ2, . . . ,λt} is said to be a Schreier system if for each
λi = xε1

i1 xε2
i2 . . .x

εk
ik , the initial expressions

xε1
i1 , xε1

i1 xε2
i2 , . . . , xε1

i1 xε2
i2 . . .x

εk−1
ik−1

also belong to the set Λ.

For every element g ∈ G, let g be the right coset representative of Hg in Λ. The following
result gives the generators of the subgroup H in terms of words in letters xi’s.

Theorem 2.6.2 ([69], Proposition 6.2). (1) For g ∈ G and λi ∈ Λ, the element

γ(λi,g) = (λig)(λig)−1

belongs to the subgroup H.

(2) The subgroup H of G is generated by

S = {γ(λi,x j) = (λix j)(λix j)
−1 | i = 1,2, . . . , t and j = 1,2, . . . ,n}.

Next, to find the defining relations for the presentation of H with generating set S, we
consider a word xε1

i1 xε2
i2 . . .x

εk
ik in H. Note that xε1

i1 xε2
i2 . . .x

εk
ik = 1. We consider the following

transformation which expresses an element of H written as a word in generators xi’s into a
word in generators of H mentioned in the preceding theorem.

τ(xε1
i1 xε2

i2 . . .x
εk
ik ) = γ(1,xε1

i1 )γ(x
ε1
i1 ,x

ε2
i2 ) · · ·γ(x

ε1
i1 xε2

i2 . . .x
εk−1
ik−1

,xεk
ik ).

This transformation τ is commonly known as a rewriting process.
The following result gives the full set of generators and relations for the subgroup H of group
G.

Theorem 2.6.3 ([69], Theorem, 6.3). Let Λ = {λ1,λ2, . . . ,λt} be a Schreier system. Then
the subgroup H of G has a presentation H = ⟨S | R⟩, where

R = {τ(λiRlλ
−1
i ) | i = 1,2, . . . , t and l = 1,2, . . . ,m⟩.



Chapter 3

Alexander and Markov theorems for
doodles on surfaces

The virtual twin group V Tn was introduced in [4, Section 5] as an abstract generalisation
of the twin group Tn. The group V Tn has generators {s1,s2, . . . ,sn−1,ρ1,ρ2, . . . ,ρn−1} and
defining relations

s2
i = 1 for i = 1,2, . . . ,n−1, (3.1)

sis j = s jsi for |i− j| ≥ 2,

ρ
2
i = 1 for i = 1,2, . . . ,n−1,

ρiρ j = ρ jρi for |i− j| ≥ 2,

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1,2, . . . ,n−2,

ρis j = s jρi for |i− j| ≥ 2,

ρiρi+1si = si+1ρiρi+1 for i = 1,2, . . . ,n−2.

The kernel of the natural surjection from V Tn onto Sn, which sends each generator si and ρi

to the transposition (i, i+1), is called the pure virtual twin group and is denoted by V PTn.
In this chapter, we show that virtual twin groups play the role of groups in the theory of
virtual doodles. We then establish the Alexander-Markov relation of oriented doodles on
surfaces with certain classes of virtual twins on the plane.
The chapter is organised as follows. In Section 3.1, we give a topological interpretation of
virtual twin groups. In Section 3.2, we define closed virtual twin diagrams of fixed degree
and prove Alexander theorem for oriented virtual doodles. Lastly, in Section 3.3, we prove
Markov theorem for oriented virtual doodles. The results are from the work [72].
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3.1 Topological interpretation of virtual twin groups

Consider a set Qn of n points in R. A virtual twin diagram on n strands is a subset D of
R× [0,1] consisting of n intervals called strands with ∂D = Qn×{0,1} and satisfying the
following conditions.

(1) The natural projection R× [0,1]→ [0,1] maps each strand homeomorphically onto the
unit interval [0,1], that is, each strand is monotonic.

(2) The set V (D) of all crossings of the diagram D consists of transverse double points of
D, where each crossing has the pre-assigned information of being a real or a virtual
crossing as depicted in Figure 3.1. A virtual crossing is depicted by a crossing encircled
with a small circle.

Fig. 3.1. Real and virtual crossings

Two virtual twin diagrams D1 and D2 on n strands are said to be equivalent if one can be
obtained from the other by a finite sequence of moves as shown in Figure 3.2 and isotopies of
the plane. We define a virtual twin to be an equivalence class of such virtual twin diagrams.
Figure 3.3 shows an example of a virtual twin diagram on four strands.
Let VT n denote the set of all virtual twins on n strands. The product D1D2 of two virtual
twin diagrams D1 and D2 is defined by placing D1 on top of D2 and then shrinking the
interval to [0,1]. It is clear that if D1 is equivalent to D′1 and D2 is equivalent to D′2 , then
D1D2 is equivalent to D′1D′2. Thus, the binary operation makes VT n a semigroup.

Remark 3.1.1. It is worth noting that the moves in Figure 3.4 are forbidden and cannot be
obtained from moves in Figure 3.2 (see Proposition 5.4.4).

Lemma 3.1.2. For each n≥ 2, the set VT n of virtual twins forms a group under the operation
defined above.

Proof. We begin by noting that the virtual twin represented by a diagram of n strands with
no crossings is the identity element with respect to the binary operation on the set VT n of
virtual twins. Let us define s̃i and ρ̃i, i = 1,2, . . . ,n−1, to be the virtual twins represented
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Fig. 3.2. Moves for virtual twin diagrams

Fig. 3.3. Example of a virtual twin diagram on four strands

Fig. 3.4. Forbidden Moves
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by diagrams as in Figure 3.5. Let β be any arbitrary element in VT n. Then after applying
isotopies of the plane, β can be represented by a diagram D ⊂ R× [0,1] such that the
projection R× [0,1]→ [0,1] restricted to the set V (D) of all crossings is injective, that is,
each crossing is at a distinct level. Further, it follows from the moves given in Figure 3.2
that s̃2

i = 1 and ρ̃2
i = 1 for all i = 1,2, . . . ,n− 1. Thus, we can write β = s̃ε1

i1 ρ̃
ε2
i2 . . . s̃εk

ik for
some k, where εi ∈ {0,1}. Since s̃i and ρ̃i are self inverses, the element β has the inverse
s̃εk

ik . . . ρ̃
ε2
i2 s̃ε1

i1 .

1 i− 1 i i+ 1 i+ 2 n ni+ 2i+ 1ii− 11

s̃i ρ̃i

Fig. 3.5. Generators s̃i and ρ̃i

Proposition 3.1.3. The diagrammatic group VT n and the abstract group V Tn are isomorphic
for all n≥ 2.

Proof. It follows from the definition of equivalence of two virtual twin diagrams on n strands
that the generators s̃i and ρ̃i satisfy the following relations.

s̃2
i = 1 for i = 1,2, . . . ,n−1,

s̃is̃ j = s̃ j s̃i for |i− j| ≥ 2,

ρ̃
2
i = 1 for i = 1,2, . . . ,n−1,

ρ̃iρ̃ j = ρ̃ jρ̃i for |i− j| ≥ 2,

ρ̃iρ̃i+1ρ̃i = ρ̃i+1ρ̃iρ̃i+1 for i = 1,2, . . . ,n−2,

ρ̃is̃ j = s̃ jρ̃i for |i− j| ≥ 2,

ρ̃iρ̃i+1s̃i = s̃i+1ρ̃iρ̃i+1 for i = 1,2, . . . ,n−2.

Thus, there exists a unique group homomorphism

fn : V Tn→ VT n

given by fn(si) = s̃i and fn(ρi) = ρ̃i for i = 1,2, . . . ,n− 1. Since every β ∈ VT n can be
written as a product of s̃i and ρ̃i, the map fn is surjective. For an element s̃ε1

i1 ρ̃
ε2
i2 . . . s̃εk

ik ∈ VT n,
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where εi ∈ {0,1}, define
gn : VT n→V Tn

by gn
(
s̃ε1

i1 ρ̃
ε2
i2 . . . s̃εk

ik

)
= sε1

i1 ρ
ε2
i2 . . .sεk

ik . We prove that gn is well-defined. Let D be a virtual twin
diagram representing the element s̃ε1

i1 ρ̃
ε2
i2 . . . s̃εk

ik . A diagram obtained by a planar isotopy on D
that does not change the order of the image of V (D) in [0,1] under the projection map R×
[0,1]→ [0,1] is again represented by the element s̃ε1

i1 ρ̃
ε2
i2 . . . s̃εk

ik . Any move that interchanges
two points in the image of V (D) under the projection R× [0,1]→ [0,1] exchanges the
subwords s̃is̃ j and s̃ j s̃i, s̃iρ̃ j and ρ̃ j s̃i or ρ̃iρ̃ j and ρ̃ jρ̃i in the word s̃ε1

i1 ρ̃
ε2
i2 . . . s̃εk

ik for some
|i− j| ≥ 2. Under each of these cases, the images of the corresponding words under gn are
the same element in V Tn. The move that adds (respectively, removes) two points in V (D)

adds (respectively, removes) subwords of the form s̃is̃i or ρ̃iρ̃i in the word s̃ε1
i1 ρ̃

ε2
i2 . . . s̃εk

ik . But
s2

i = 1 = ρ2
i in V Tn, and hence both the words are mapped to same element under gn. The

third move interchanges the subwords ρ̃iρ̃i+1ρ̃i and ρ̃i+1ρ̃iρ̃i+1 in the word s̃ε1
i1 ρ̃

ε2
i2 . . . s̃εk

ik . But
V Tn has the relation ρiρi+1ρi = ρi+1ρiρi+1. Finally, the last move replaces the subwords
ρ̃iρ̃i+1s̃i and s̃i+1ρ̃iρ̃i+1, but V Tn has the relation ρiρi+1si = si+1ρiρi+1, and hence gn is
well-defined. Since gn ◦ fn = id, fn is injective and the proof is complete.

Since the diagrammatic group VT n and the abstract group V Tn have been identified, from
now onwards, the generators si and ρi will be represented geometrically as in Figure 3.5.

3.2 Alexander Theorem for virtual doodles

Consider the space R2 \D◦, where D◦ is the interior of the closed unit 2-disk D centred at
the origin. Let K be an oriented virtual doodle diagram on the plane satisfying the following:

(1) K is contained in R2 \D◦.

(2) If π : R2 \D◦ → S1 is the radial projection and k : ⊔ S1 → R2 \D◦ the underlying
immersion of K, then

π ◦ k : ⊔ S1→ S1

is an n-fold covering, where S1 is the boundary of D and we assume it to be oriented
counterclockwise.

(3) The map π restricted to V (K), the set of all crossings of K, is injective.

(4) The orientation of K is compatible with a fixed orientation of S1.

Definition 3.2.1. A closed virtual twin diagram of degree n is an oriented virtual doodle
diagram satisfying conditions (1)-(4) defined above.
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Figure 3.6 shows an example of a closed virtual twin diagram of degree 3. Consider a point
p ∈ S1 such that π−1(p)∩V (K) = φ . Then cutting along the ray emanating from the origin
and passing through p gives a virtual twin diagram on n strands.

Fig. 3.6. Closed virtual twin diagram of degree 3

Definition 3.2.2. The closure of a virtual twin diagram on the plane is defined to be the
doodle obtained from the diagram by joining the end points with non-intersecting curves as
shown in Figure 3.7.

β ββ

β

Fig. 3.7. Different closures of a virtual twin diagram

We observe that in the case of classical twins, due to forbidden move sisi+1si ̸= si+1sisi+1,
taking closure of a twin diagram on a plane is not well-defined. Note that there are many ways
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of taking closure of a virtual twin diagram. The following result shows that the operation of
taking closure on a plane in the virtual setting is well-defined.

Lemma 3.2.3. Any two closures of a virtual twin diagram on the plane gives equivalent
virtual doodle diagrams on the plane.

Proof. Let β be a virtual twin diagram and K and K′ two different closures of β . Note that
VR(K) = VR(K′). Taking σ = id we see that whenever (a,b) ∈ X(K), then (a,b) ∈ X(K′).
Thus, K and K′ have the same Gauss data. By Lemma 2.5.2, K and K′ are related by a finite
sequence of V R1, V R2, V R3 and M moves. Consequently, K and K′ are equivalent virtual
doodle diagrams on the plane. It can also be observed that K′ can be obtained from K by a
finite sequence of Kauffman’s detour move depicted in Figure 2.18.

We now prove Alexander Theorem for virtual doodles.

Theorem 3.2.4. Every oriented virtual doodle on the plane is equivalent to closure of a
virtual twin diagram.

Proof. Let K be a virtual doodle diagram with n real crossings. The idea is to construct a
closed virtual twin diagram with the same Gauss data as that of K. The proof then follows
from Lemma 2.5.2. We label each real crossing of K as in Figure 2.17. Next, we consider
R2 \D◦ and orient the boundary S1 of D, say, counterclockwise. Considering the real
crossings of K with the information assigned as in Figure 2.17, we place them in R2 \D such
that π(ci)∩π(c j) = φ for all i ̸= j and the orientation is compatible with the orientation of S1.
Next, we join these crossings in R2\D according to the Gauss data such that each intersection
of arcs is marked as a virtual crossing and the orientation of arcs/loops are compatible with
the orientation of S1, as illustrated in Figure 3.8. In other words, for each (a,b) ∈ X(K) the
orientation of the arc joining a to b should be compatible with the orientation of S1, that
is, there is a possibility that we will have to wind the arc around S1 to join a and b. Also,
whenever it intersects with some other arc, then the intersection point should be marked as a
virtual crossing. Note that this process is well defined upto detour moves shown in Figure
2.18, and virtual doodle so obtained is a closed virtual twin diagram which has the same
Gauss data as that of K. Finally, cutting along π−1(p) for a point p ∈ S1 such that π−1(p)
does not pass through any crossing gives the desired virtual twin diagram whose closure is
K.

Following [46], for convenience in writing, we refer the process of construction of a virtual
twin in Theorem 3.2.4 as the braiding process, which is illustrated for the virtual Kishino
doodle in Figure 3.9.
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Fig. 3.8

Fig. 3.9. Application of braiding process on virtual Kishino doodle
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3.3 Markov Theorem for virtual doodles

For β ∈V Tn, let m⊗β ∈V Tn+m denote the virtual twin obtained by putting trivial m strands
on the left of β as shown in Figure 3.10.

Fig. 3.10. The virtual twin m⊗β

For n≥ 2 and virtual twins α,β ,β1,β2 ∈V Tn, consider the following moves as illustrated in
Figures 3.11 and 3.12:

(M0) Defining relations 3.1 in V Tn (cf. Figure 3.2).

(M1) Conjugation: α−1βα ∼ β .

(M2) Right stabilisation of real or virtual type: β sn ∼ β or βρn ∼ β .

(M3) Left stabilisation of real type: (1⊗β )s1 ∼ β .

(M4) Right exchange: β1snβ2sn ∼ β1ρnβ2ρn.

(M5) Left exchange: s1(1⊗β1)s1(1⊗β2)∼ ρ1(1⊗β1)ρ1(1⊗β2).

We observe that the left stabilisation of virtual type (1⊗β )ρ1 ∼ β is a consequence of the
other moves as shown in Figure 3.13.
The following results are crucial in the proof of Markov theorem for oriented virtual doodles.

Lemma 3.3.1. Let n ≥ 2 and 1 ≤ i ≤ n. Under the assumption of moves M0−M5, the
following hold:

(1) β snsn−1 . . .si+1sisi+1 . . .sn−1sn ∼ β , where β ∈V Tn.

(2) snsn−1 . . .si+1siβ1sisi+1 . . .snβ2 ∼ ρnρn−1 . . .ρi+1ρiβ1ρiρi+1 . . .ρnβ2, where β1 ∈ V Ti

and β2 ∈V Tn.
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ββ

β β

β β

ββ

Fig. 3.11. Left and right stabilisation of real and virtual type

β2β2

β1β1

β1β1

β2 β2

Fig. 3.12. Left and right exchange

β M1 β M0 β M0

β M0 β M0,M2
β

Fig. 3.13. Left stabilisation of virtual type as a consequence of M0−M5
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(3) τnτn−1 . . .τi+1τiβ1τiτi+1 . . .τn−1τnβ2 ∼ ρnρn−1 . . .ρi+1ρiβ1ρiρi+1 . . .ρnβ2, where β1 ∈
V Ti, β2 ∈V Tn and τ j = s j or ρ j for each j.

(4) βτnτn−1 . . .τiτi−1τi . . .τn−1τn ∼ β , where β ∈V Tn and τ j = s j or ρ j for each j.

Proof. We begin by observing that the case i = n holds due to move M2. Also, for i = n−1,
we have

β snsn−1sn
M4∼ βρnsn−1ρn

M0∼ βρn−1snρn−1

M1∼ ρn−1βρn−1sn

M2∼ ρn−1βρn−1

M1∼ β .

Let us suppose that
β snsn−1 . . .si+2si+1si+2 . . .sn−1sn ∼ β (3.2)

for 1≤ i≤ n−2 and for any β ∈V Tn. Then, we have

β snsn−1 . . .si+1sisi+1 . . .sn−1sn

M4∼ βρnsn−1sn−2 . . .si+1sisi+1 . . .sn−2sn−1ρn

M0∼ βρnsn−1ρn . . .si+1sisi+1 . . .ρnsn−1ρn

M0∼ βρn−1snρn−1sn−2 . . .si+1sisi+1 . . .sn−2ρn−1snρn−1

M0∼ βρn−1snρn−1sn−2ρn−1 . . .si+1sisi+1 . . .ρn−1sn−2ρn−1snρn−1

M0∼ βρn−1snρn−2sn−1ρn−2 . . .si+1sisi+1 . . .ρn−2sn−1ρn−2snρn−1

M0∼ βρn−1ρn−2snsn−1ρn−2 . . .si+1sisi+1 . . .ρn−2sn−1snρn−2ρn−1.

Repeating the above steps give

β snsn−1 . . .si+1sisi+1 . . .sn−1sn

∼ βρn−1ρn−2 . . .ρi+1snsn−1 . . .si+2ρi+1siρi+1si+2 . . .sn−1snρi+1 . . .ρn−2ρn−1

M0∼ βρn−1ρn−2 . . .ρi+1snsn−1 . . .si+2ρisi+1ρisi+2 . . .sn−1snρi+1 . . .ρn−2ρn−1

M0∼ βρn−1ρn−2 . . .ρisnsn−1 . . .si+2si+1si+2 . . .sn−1snρi . . .ρn−2ρn−1

M1∼ ρi . . .ρn−2ρn−1βρn−1ρn−2 . . .ρisnsn−1 . . .si+2si+1si+2 . . .sn−1sn.
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Since ρi . . .ρn−2ρn−1βρn−1ρn−2 . . .ρi ∈V Tn, by (3.2) and move M1, we get

β snsn−1 . . .si+1sisi+1 . . .sn−1sn∼ρi . . .ρn−2ρn−1βρn−1ρn−2 . . .ρi
M1∼ β .

This proves assertion (1).
For assertion (2), note that the case i = n follows from moves M1 and M4. Let us suppose
that for any β1 ∈V Ti+1 and β2 ∈V Tn, we have

snsn−1 . . .si+2si+1β1si+1si+2 . . .snβ2 ∼ ρnρn−1 . . .ρi+2ρi+1β1ρi+1ρi+2 . . .ρnβ2. (3.3)

We claim that

snsn−1 . . .si+1siβ1sisi+1 . . .sn−1snβ2 ∼ ρnρn−1 . . .ρi+1ρiβ1ρiρi+1 . . .ρn−1ρnβ2

for β1 ∈V Ti and β2 ∈V Tn. For 1≤ i≤ n−1, we have

snsn−1 . . .si+1siβ1sisi+1 . . .sn−1snβ2

M1∼ β2snsn−1 . . .si+1siβ1sisi+1 . . .sn−1sn

M4∼ β2ρnsn−1 . . .si+1siβ1sisi+1 . . .sn−1ρn

M1∼ ρnsn−1sn−2 . . .si+1siβ1sisi+1 . . .sn−2sn−1ρnβ2

M0∼ ρnsn−1ρn . . .si+1siβ1sisi+1 . . .ρnsn−1ρnβ2

M0∼ ρn−1snρn−1 . . .si+1siβ1sisi+1 . . .ρn−1snρn−1β2
M0∼ ρn−1snρn−1sn−2ρn−1 . . .siβ1si . . .ρn−1sn−2ρn−1snρn−1β2

M0∼ ρn−1snρn−2sn−1ρn−2 . . .siβ1si . . .ρn−2sn−1ρn−2snρn−1β2

M0∼ ρn−1ρn−2snsn−1ρn−2 . . .siβ1si . . .ρn−2sn−1snρn−2ρn−1β2.

Repeating the preceding process yields

snsn−1 . . .si+1siβ1sisi+1 . . .sn−1snβ2

∼ ρn−1ρn−2 . . .ρisnsn−1 . . .si+1ρiβ1ρisi+1 . . .sn−1snρi . . .ρn−2ρn−1β2.
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Notice that ρiβ1ρi ∈ V Ti+1 and ρi . . .ρn−2ρn−1β2ρn−1ρn−2 . . .ρi ∈ V Tn. By (3.3) and M1,
we get

snsn−1 . . .si+1siβ1sisi+1 . . .sn−1snβ2

∼ ρn−1ρn−2 . . .ρisnsn−1 . . .si+1ρiβ1ρisi+1 . . .sn−1snρi . . .ρn−2ρn−1β2

M1∼ (snsn−1 . . .si+1)(ρiβ1ρi)(si+1 . . .sn−1sn)(ρi . . .ρn−2ρn−1β2ρn−1ρn−2 . . .ρi)

∼ (ρnρn−1 . . .ρi+1)(ρiβ1ρi)(ρi+1 . . .ρn−1ρn)(ρi . . .ρn−2ρn−1β2ρn−1ρn−2 . . .ρi)

M1∼ ρn−1ρn−2 . . .ρiρnρn−1 . . .ρi+1ρiβ1ρiρi+1 . . .ρn−1ρnρi . . .ρn−2ρn−1β2

M0∼ ρn−1ρn−2 . . .ρi+1ρnρn−1 . . .ρiρi+1ρiβ1ρiρi+1ρi . . .ρn−1ρnρi+1 . . .ρn−2ρn−1β2

M0∼ ρn−1ρn−2 . . .ρi+1ρnρn−1 . . .ρi+1ρiρi+1β1ρi+1ρiρi+1 . . .ρn−1ρnρi+1 . . .ρn−1β2

∼ ρn−1 . . .ρi+1ρnρn−1 . . .ρi+1ρiβ1ρiρi+1 . . .ρn−1ρnρi+1 . . .ρn−1β2,

(ρi+1’s gets canceled as β1 ∈V Ti).

Repeating the above steps finally gives

snsn−1 . . .si+1siβ1sisi+1 . . .sn−1snβ2 ∼ ρnρn−1 . . .ρi+1ρiβ1ρiρi+1 . . .ρn−1ρnβ2,

which proves assertion (2).
Repeatedly applying (2) on the expression τnτn−1 . . .τi+1τiβ1τiτi+1 . . .τn−1τnβ2 yields asser-
tion (3). For example,

snρn−1sn−2ρn−3β1ρn−3sn−2ρn−1snβ2

∼ ρnρn−1sn−2ρn−3β1ρn−3sn−2ρn−1ρnβ2

∼ snsn−1sn−2ρn−3β1ρn−3sn−2sn−1snβ2

∼ ρnρn−1ρn−2ρn−3β1ρn−3ρn−2ρn−1ρnβ2.

For assertion (4), if we put β1 = τi−1 and β2 = β in assertion (3), then we get

τnτn−1 . . .τi+1τiτi−1τiτi+1 . . .τn−1τnβ

M1∼ βτnτn−1 . . .τi+1τiτi−1τiτi+1 . . .τn−1τn

∼ βρnρn−1 . . .ρi+1ρiτi−1ρiρi+1 . . .ρn−1ρn
(
by taking β1 = τi−1 and β2 = β in (3)

)
.
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If τ = ρ , then

βρnρn−1 . . .ρiρi−1ρi . . .ρn−1ρn

∼ βρnρn−1 . . .ρi−1ρiρi+2ρi+1ρi+2ρiρi−1 . . .ρn−1ρn (by repeated application of M0)

∼ βρi−1ρi . . .ρn−1ρnρn−1 . . .ρiρi−1 (by repeated application of the preceding step)
M1∼ ρn−1 . . .ρiρi−1βρi−1ρi . . .ρn−1ρn

M2∼ ρn−1 . . .ρiρi−1βρi−1ρi . . .ρn−1

M1∼ β .

Finally if τ = s, then we get

βρnρn−1 . . .ρisi−1ρi . . .ρn−1ρn

(2)∼ β snsn−1 . . .sisi−1si . . .sn−1sn

(1)∼ β ,

which completes the proof.

Recall that for β ∈V Tn, m⊗β ∈V Tn+m denotes the virtual twin obtained by putting trivial
m strands on the left of β .

Lemma 3.3.2. Let n ≥ 2 and 1 ≤ i ≤ n. Under the assumption of moves M0−M5, the
following hold:

1. (1⊗β )s1s2 . . .si−1sisi−1 . . .s2s1 ∼ β , where β ∈V Tn.

2. s1s2 . . .si−1si(i⊗β1)sisi−1 . . .s2s1(1⊗β2)∼
ρ1ρ2 . . .ρi−1ρi(i⊗β1)ρiρi−1 . . .ρ2ρ1(1⊗β2), where β1 ∈V Tn+1−i and β2 ∈V Tn.

3. τ1τ2 . . .τi−1τi(i⊗β1)τiτi−1 . . .τ2τ1(1⊗β2)∼
ρ1ρ2 . . .ρi−1ρi(i⊗β1)ρiρi−1 . . .ρ2ρ1(1⊗β2), where β1 ∈V Tn+1−i, β2 ∈V Tn and τ j =

s j or ρ j for each j.

4. (1⊗β )τ1τ2 . . .τi−1τiτi−1 . . .τ2τ1 ∼ β , where β ∈V Tn and τ j = s j or ρ j for each j.

Proof. The proof is similar to that of Lemma 3.3.1.

Recall that for a virtual doodle diagram K on the plane, W (K) denotes the closure of the
complement of union of closed disk neighbourhoods of real crossings of K. The proofs of
the following two lemmas are similar to [46, Lemma 5 and Lemma 6]. We give proofs in our
setting for the sake of completeness.
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Lemma 3.3.3. Let K and K′ be two closed virtual twin diagrams such that K′ is obtained
from K by replacing K∩W (K) by K′∩W (K′). Then K and K′ are related by a finite sequence
of M0 and M2 moves.

Proof. We use notation from sections 2.5 and 3.2. Let π be the radial projection. Let
N1,N2, . . . ,Nn be closed 2-disks enclosing real crossings of K and hence of K′ such that
π(Ni)∩π(N j) = φ for all i ̸= j, that is, real crossings lie at separate levels. Let a1,a2, . . . ,as

be arcs/loops in K∩W (K) and a′1,a
′
2, . . . ,a

′
s be the corresponding arcs/loops in K′∩W (K′).

Consider a point p ∈ S1 such that π−1(p) does not intersect either of the crossing sets
V (K) and V (K′). If there exists some arc/loop ai and its corresponding arc/loop a′i such
that |ai∩π−1(p)| ̸= |a′i∩π−1(p)|, then we bring a segment of ai or a′i closer to the origin
by repeated use of ρ2

i = 1 and some M2 moves of virtual type such that |ai ∩π−1(p)| =
|a′i∩π−1(p)|. Thus, we can assume that |ai∩π−1(p)|= |a′i∩π−1(p)| for all i.
Let k and k′ be the underlying immersions ⊔ S1→ R2 \D◦ of K and K′, respectively, such
that they are identical in preimage of each Ni. Let I1, I2, . . . , Is be intervals/circles in ⊔ S1

such that k(Ii) = ai and k′(Ii) = a′i. We note that π ◦k|Ii and π ◦k′|Ii are orientation preserving
immersions with π ◦ k|∂ Ii = π ◦ k′|∂ Ii . Since |ai∩π−1(p)| = |a′i∩π−1(p)| for any i, there
exists a homotopy kt

i : Ii→ R2 \D◦ relative to boundary ∂ Ii such that k0
i = k|Ii and k1

i = k′|Ii

and π ◦ kt
i is an orientation preserving immersion. If we take the homotopy generically with

respect to K∩W (K), K′∩W (K′) and the 2-disks N j, we see that a′i can be transformed to ai

by a sequence of V R2, V R3 and M moves in R2 \D◦. Consequently, K and K′ are related by
a finite sequence of M0 and M2 moves.

Lemma 3.3.4. Let K and K′ be closed virtual twin diagrams having the same Gauss data.
Then K and K′ are related by a finite sequence of M0 and M2 moves.

Proof. Let N1,N2, . . . ,Nn be closed 2-disks enclosing real crossings of K and N′1,N
′
2, . . . ,N

′
n

be the corresponding closed 2-disks enclosing real crossings of K′. We consider two cases
depending on the position of Ni and N′j with respect to the map π .
Case I. Suppose that π(N1),π(N2), . . . ,π(Nn) and π(N′1),π(N

′
2), . . . ,π(N

′
n) appear in the

same cyclic order on boundary S1. Then we deform K by isotopies of the plane such that
Ni = N′i for all i and diagrams of K and K′ are identical in Ni for all i. Thus, K′ can be
obtained from K by replacing K∩W (K) by K′∩W (K′), and we are done by Lemma 3.3.3.
Case II. Suppose that π(N1),π(N2), . . . ,π(Nn) and π(N′1),π(N

′
2), . . . ,π(N

′
n) do not appear

in the same cyclic order on S1. Without loss of generality, we may assume that the two
sequences of sets appear in the same order except π(N1) and π(N2). Notice that the diagram
K looks as shown in the leftmost part in Figure 3.14, where β1 is a virtual twin diagram
with no real crossing and β2 a virtual twin diagram. As shown in Figure 3.14, we can make
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π(N1),π(N2), . . . ,π(Nn) and π(N′1),π(N
′
2), . . . ,π(N

′
n) to appear in the same cyclic order on

S1 using M0 and M2 moves. Thus, we get back to Case I and we are done.

N1

N2

N1

N2

N1

N2

N1 N1 N1 N2

N2 N2 N2

β1 β1

β1

β2 β2
β2

β1

β2 β2

β1 β1

β2 β2

β1

M0 M0 M2

M0 M2 M0

N1

Fig. 3.14

Corollary 3.3.5. A closed virtual twin diagram for any oriented virtual doodle is uniquely
determined upto M0 and M2 moves.

Proof. It follows from the fact that any two closed virtual twin diagrams for a virtual doodle
have the same Gauss data (as in the proof of Theorem 3.2.4). The result then follows from
Lemma 3.3.4.

We now state and prove Markov Theorem for virtual doodles.

Theorem 3.3.6. Two virtual twin diagrams on the plane (possibly on different number of
strands) have equivalent closures if and only if they are related by a finite sequence of moves
M0−M5.

Proof. The proof of the converse implication is immediate. For the forward implication, let
K and K′ be two closed virtual twin diagrams which are equivalent as virtual doodles. That
is, there is a finite sequence of virtual doodle diagrams, say, K = K0,K1, . . . ,Kn = K′ such
that Ki is obtained from Ki−1 by one of the moves as shown in Figure 3.15. Note that the
virtual doodle diagrams obtained in the intermediate steps may not be closed virtual twin
diagrams. Let K̃i be a closed virtual twin diagram for Ki obtained by the braiding process as
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Fig. 3.15. Moves for oriented virtual doodle diagrams

in the proof of Theorem 3.2.4. Without loss of generality, we can assume that K̃0 = K0 and
K̃n = Kn. By Corollary 3.3.5, we know that each K̃i is uniquely determined up to M0 and
M2 moves. Thus, it suffices to prove that K̃i−1 and K̃i are related by M0−M5 moves. We
proceed by considering each move in Figure 3.15.
Case I. Let Ki be obtained from Ki−1 by applying any one of the V R1, V R2, V R3 or M moves.
Then Ki and Ki−1 have the same Gauss data, which means that K̃i and K̃i−1 also have the
same Gauss data. Then, by Lemma 3.3.4, K̃i−1 and K̃i are related by M0 and M2 moves.
Case II. If Ki is obtained from Ki−1 by an R2 move, then K̃i−1 and K̃i are related by a M0
move and we are done.

For the remaining moves, let D to be the closed 2-disk in the plane where one of the remaining
moves is applied so that Ki−1∩ (R2 \D) = Ki∩ (R2 \D). We apply the braiding process to
Ki−1∩ (R2 \D) = Ki∩ (R2 \D) to get diagrams K̃′i−1 and K̃′i such that K̃′i−1∩D= Ki−1∩D,
K̃′i ∩D= Ki∩D and K̃′i−1∩ (R2 \D) = K̃′i ∩ (R2 \D).

Case III. If Ki is obtained from Ki−1 by an R1a or R1b move, then after the braiding process,
the diagrams K̃′i−1 and K̃′i looks like as in Figure 3.16. Note that up to conjugation, virtual
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twins obtained from K̃′i−1 and K̃′i are either of the following forms

β and βτnτn−1 . . .τiτi−1τi . . .τn−1τn

or
β and (1⊗β )τ1τ2 . . .τi−1τiτi−1 . . .τ2τ1,

where β ∈V Tn, τ j = s j or ρ j and 1≤ i≤ n. In each case, both the virtual twins are equivalent
to each other by Lemma 3.3.1 or Lemma 3.3.2. Thus, K̃i−1 and K̃i are related by M0−M5
moves.

β ββ

Fig. 3.16. K̃′i−1 and K̃′i corresponding to R1a or R1b move

β1 β1

β2 β2

Fig. 3.17. K̃′i−1 and K̃′i corresponding to MV R1 move

Case IV. If Ki is obtained from Ki−1 by an MV R1 move, then after braiding process, the
diagrams K̃′i−1 and K̃′i looks as in Figure 3.17. The virtual twins obtained from K̃′i−1 and K̃′i
are of the form

τnτn−1 . . .τi+1siβ1siτi+1 . . .τn−1τnβ2

and
τnτn−1 . . .τi+1ρiβ1ρiτi+1 . . .τn−1τnβ2,
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β1 β1

β2 β2

Fig. 3.18. K̃′i−1 and K̃′i corresponding to MV R2 move

respectively. By Lemma 3.3.1, both these virtual twins are equivalent, and hence K̃i−1 and K̃i

are related by M0−M5 moves.
Case V. If the move applied is MV R2, then after the braiding process, the diagrams K̃′i−1 and
K̃′i looks as in Figure 3.18. The virtual twins obtained from K̃′i−1 and K̃′i are of the form

τ1τ2 . . .τi−1si(i⊗β1)siτi−1 . . .τ2τ1(1⊗β2)

and
τ1τ2 . . .τi−1ρi(i⊗β1)ρiτi−1 . . .τ2τ1(1⊗β2),

respectively. By Lemma 3.3.2, both of these virtual twins are equivalent, and hence K̃i−1 and
K̃i are related by M0−M5 moves.





Chapter 4

Conjugacy classes in twin groups

This chapter focuses on conjugacy classes of involutions and centralisers in twin groups.
We note that the conjugacy problem for Coxeter groups is already solved in the thesis of
Moussong [65]. See also [54]. We derive a recursive formula for the number of conjugacy
classes of involutions, which relates to the well-known Fibonacci sequence. We also derive a
recursive formula for the number of z-classes of involutions in twin groups [70]. We conclude
the chapter by addressing the algebraic doodle problem [71].

4.1 Conjugacy problem in twin groups

It is evident from the presentation of Tn that an element of Tn can have more than one
expression. For example, the words s1,s5s1s5 and s1s3s5s3s5 represent the same element in
Tn. In this section, we recall some ideas from combinatorial group theory that would be
needed to ease our computations throughout the thesis. The preliminaries in this section are
motivated from [58, Chapter 1].

Elementary transformations

We define three elementary transformations of a word w ∈ Tn as follows:

(i) Deletion. Replace the word w by deleting a subword of the form sisi in w.

(ii) Insertion. Replace the word w by inserting a word of the form sisi in w.

(iii) Flip. Replace a subword of w of the form sis j by s jsi whenever | i− j |≥ 2.
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Word equivalence and length

We say that two words w1 and w2 are equivalent, written as w1 ∼ w2, if there is a finite
sequence of elementary transformations turning w1 into w2. It is easy to check that ∼ is an
equivalence relation on Tn. Obviously, two words are equivalent if and only if both of them
represent the same element of Tn.
For a given word w = si1si2 . . .sik , let ℓ(w) = k be the length of w. For 1 ≤ i ≤ n− 1, we
define ηi(w) := number of si’s present in the expression w. Note that

ℓ(w) =
n−1

∑
i=1

ηi(w).

If w1 ∼w2, then ηi(w1)≡ ηi(w2) (mod 2) for each 1≤ i≤ n−1, and subsequently ℓ(w1)≡
ℓ(w2) (mod 2).

Reduced words

We say that a word w ∈ Tn is reduced if ℓ(w) ≤ ℓ(w′) for all w′ ∼ w. The existence of a
reduced word in an equivalence class of a word follows from the well-ordering Principle. It
is possible to have more than one reduced word representing the same element. Moreover,
two reduced words represent the same element if and only if one can be obtained from the
other by finitely many flip transformations, for example, s1s3 and s3s1. Obviously, any two
reduced words in the same equivalence class have the same length. This allows us to define
the length of an element w ∈ Tn as the length of a reduced word representing w.

For each 1≤ i≤ n−1, we define the following subset of S:

s∗i = {s j | [si, s j] ̸= 1}.

More precisely, it is easy to check that s∗1 = {s2}, s∗2 = {s1,s3}, . . . ,s∗n−2 = {sn−3,sn−1} and
s∗n−1 = {sn−2}. Then the following are easy observations:

(i) si ∈ s∗j if and only if s j ∈ s∗i .

(ii) [si, s j] = 1 if and only if s j /∈ s∗i .

Below is an easy characterisation of a reduced word in Tn.

Lemma 4.1.1. A word w is reduced if and only if w satisfies the property that whenever two
si’s appear in w for some 1≤ i≤ n−1, there always exists an s j ∈ s∗i in between them.
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Proof. Suppose that w is a reduced word and that there exist two si’s in w such no s j ∈ s∗i
appears in between them. Then, by successive application of the flip transformation, we can
bring the two si’s together, and then delete them by the deletion transformation. Thus, the
resulting word, which is equivalent to w, has length strictly less than ℓ(w), contradicting the
fact that w is reduced.
Conversely, suppose that the word w satisfies the desired property. We note that a word
obtained by flip transformations on w also satisfies the desired property. Since deletion
cannot be performed on words with this property, it follows that w must be reduced.

Cyclic permutation

A cyclic permutation of a word w = si1si2 . . .sik (not necessarily reduced) is a word w′ (not
necessarily distinct from w) of the form sit sit+1sit+2 . . .siksi1si2 · · ·sit−1 for some 1≤ t ≤ k. If
t = 1, then w′ = w. It is easy to see that w′ = (si1si2 . . .sit−1)

−1w(si1si2 . . .sit−1), that is, w and
w′ are conjugates of each other in Tn.

Cyclically reduced words

A word w is called cyclically reduced if each cyclic permutation of w is reduced. It is
immediate that a cyclically reduced word is reduced, but the converse is not true. For
example, s2s1s2 is reduced but not cyclically reduced.

Lemma 4.1.2. If w is a cyclically reduced word and w′ is a word obtained from w by finitely
many flip transformations, then w′ is also cyclically reduced.

Proof. By induction, it suffices to prove the assertion for only one flip transformation
on w. We begin by noting that any cyclic permutation of a cyclically reduced word is
again a cyclically reduced word. Thus, without loss of generality, we can assume that
w = si1si2si3 . . .sik and w′ = si2si1si3 . . .sik . We observe that except the word si1si3 . . .siksi2 , all
other cyclic permutations of w′ differ by a flip transformation from some cyclic permutation
of w, and hence are reduced. Thus, it only remains to show that the word si1si3 . . .siksi2 is
reduced. Since w′ is reduced, so are all its subwords, in particular, si1si3 . . .sik and si3 . . .sik

are reduced. If si1si3 . . .siksi2 is not reduced, then the only reduction possible is in its subword
si3 . . .siksi2 , but then the word si3 . . .siksi2si1 is not reduced, which is a contradiction.

The following is an analogue of Lemma 4.1.1 for cyclically reduced words.

Lemma 4.1.3. A reduced word w is cyclically reduced if and only if we cannot obtain a word
of the form siw′si from w by applying finitely many flip transformations on w.
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Proof. Suppose that w is a cyclically reduced word and siw′si is obtained from w by applying
finitely many flip transformations. Then, by Lemma 4.1.2, siw′si is also cyclically reduced.
Since a cyclic permutation of a cyclically reduced word is cyclically reduced, it follows that
w′sisi is cyclically reduced, which is a contradiction.
Conversely, suppose that a reduced word w is not cyclically reduced. That is, some cyclic
permutation of w is not reduced. We may assume that w is of the form w1w2 so that
its cyclic permutation w2w1 is not reduced. Since w is reduced, both of its subwords
w1 and w2 are also reduced. On the other hand, the word w2w1 is not reduced. This is
possible only if, by applying finitely many flip transformations, w1 and w2 can be written
in the form siw′1 and w′2si, respectively, for some 1≤ i≤ n−1. Thus, by applying finitely
many flip transformations on the word w = w1w2, we obtain the word siw′1w′2si, which is a
contradiction.

Corollary 4.1.4. Each word in Tn is conjugate to some cyclically reduced word.

We now investigate conjugacy problem in twin groups. In view of Corollary 4.1.4, it is
enough to focus on cyclically reduced words to study conjugacy problem in Tn. The following
is the main result of this section.

Theorem 4.1.5. Suppose w1,w2 are two cyclically reduced words in Tn. Then w1 is conjugate
to w2 if and only if they are cyclic permutation of each other modulo finitely many flip
transformations.

Proof. The converse is obvious. Let us assume that w1,w2 ∈ Tn are two cyclically reduced
conjugate words. Let w1 = w−1w2w, where w is a reduced word. We need to show that w1

and w2 are cyclic permutation of each other modulo finitely many flip transformations. We
proceed using induction on ℓ(w).
Suppose ℓ(w) = 1, that is, w = si for some i = 1,2, . . . ,n−1. Then w1 = siw2si. Since w1 is
cyclically reduced, the two si’s should get cancelled. The following are the three possibilities:

(i) There is cancellation in the subword w2si.

(ii) There is cancellation in the subword siw2.

(iii) Both the rightmost and the leftmost si cancel each other after finitely many flip trans-
formations.

In Case (iii), w1 = w2 and we are done. In Case (i), by successive application of flip
transformations on w2, we obtain w′2si. This implies that by successive application of flip
transformations on the word siw2si, we get siw′2sisi. By deletion transformation this gives
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w1 = siw2si = siw′2. Note that it is a cyclic permutation of w′2si, which we obtained by flip
transformations on w2. Case (ii) can be treated in the same manner.
Now suppose that ℓ(w) = k > 1, where w = si1si2 . . .sik . Then we can write

w1 = (si1si2 . . .sik)
−1w2(si1si2 . . .sik) = siksik−1 . . .si2si1w2si1si2 . . .sik .

Since w1 is cyclically reduced, sik should get cancelled. Following the steps of the case k = 1,
we have the following possibilities:

(i′) There is cancellation of rightmost sik in the word w2si1si2 . . .sik .

(ii′) There is cancellation of leftmost sik in the word siksik−1 . . .si2si1w2.

(iii′) Both the rightmost and the leftmost sik cancel each other after finitely many flip
transformations.

In Case (iii′) it is easy to see that w1 = sik−1sik−2 · · ·si2si1w2si1si2 · · ·sik−1 modulo finitely many
flip transformations. Thus, we are done by induction hypothesis. For Case (ii′), by successive
application of flip transformations on w2, siksik−1 . . .si2si1 and si1si2 . . .sik , we obtain subwords
sikw′2, sik−1sik−2 . . .si2si1sik and siksi1si2 . . .sik−1 , respectively. Thus, after finitely many flip
transformations, we get

w1 = sik−1sik−2 . . .si2si1siksikw′2siksi1si2 . . .sik−1.

Consequently, by deletion transformation, we have

w1 = sik−1sik−2 . . .si2si1w′2siksi1si2 . . .sik−1 = (si1si2 . . .sik−1)
−1w′2sik(si1si2 . . .sik−1).

Thus, by induction hypothesis, w′2sik (and hence sikw′2) is a cyclic permutation of w1 modulo
finitely many flip transformations. Since sikw′2 is obtained from w2 by finitely many flip
transformations, the proof of the assertion follows. Case (i′) can be dealt with along similar
lines.

Corollary 4.1.6. A word w ∈ Tn is cyclically reduced if and only if ℓ(w) is minimal in its
conjugacy class.

4.2 Conjugacy classes of involutions in twin groups

In this section, we study conjugacy classes of involutions in Tn. Since conjugate elements
have the same order, in view of Corollary 4.1.4, it suffices to study cyclically reduced
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involutions in Tn. Specifically, we derive a formula for the number of conjugacy classes
of involutions in Tn. Quite interestingly, it is closely related to the well-known Fibonacci
sequence.

Proposition 4.2.1. Let w = si1si2 . . .sik be a cyclically reduced word in Tn. Then w is an
involution if and only if [si j ,sil ] = 1 for all 1≤ j, l ≤ k.

Proof. Let us suppose that w is an involution and that it does not satisfy the desired condition.
Since w is cyclically reduced, without loss of generality, we may assume that w can be written
as w = siw1si+1w2 such that ηi(w1) = ηi+1(w1) = 0 for some 1≤ i≤ n−2. Since w is an
involution, we have

w2 = siw1si+1w2siw1si+1w2 = 1.

Thus, every letter (in particular, si and si+1) on the left hand side of the preceding expression
should get cancelled by a finite sequence of flip and deletion transformations. But, as
w = siw1si+1w2 is reduced, we cannot use deletion transformation on w. Hence, cancellation
of leftmost si in the expression of w2 is possible only with the other si appearing in the
expression of w2 by repeated application of the flip transformation. This happens only if
the leftmost si+1 occuring between the two si’s in the expression of w2 cancel. But that is
not possible since there is a si between the two si+1’s. Thus, siw1si+1w2siw1si+1w2 ̸= 1, a
contradiction. The proof of the converse is immediate.

As a consequence of Corollary 4.1.4 and Proposition 4.2.1, we obtain the following result.

Corollary 4.2.2. Let w be an element of Tn. Then w is an involution if and only if w
is conjugate to a cyclically reduced word of the form si1si2 . . .sik such that it+1− it ≥ 2.
Furthermore, any two distinct cyclically reduced words of this form are not conjugates.

Note that a cyclically reduced word w is an involution if and only if it can be written in the
form si1si2 . . .sik such that it+1− it ≥ 2. Set

An =
{

si1si2 . . .sik | 1≤ it ≤ n−1, it+1− it ≥ 2
}

(4.1)

and recall
s∗i = {s j | [si, s j] ̸= 1}.

The following result, whose proof is immediate from the presentation of Tn, gives ranks of
the centralisers of cyclically reduced involutions.

Lemma 4.2.3. Let w = si1si2 . . .sik be an involution in Tn, where it+1− it ≥ 2 for all 1≤ t ≤
k−1. Then CTn(w) =

〈
S\

k⋃
t=1

s∗it
〉
, and consequently rank(CTn(w)) = (n−1)−|

k⋃
t=1

s∗it |.
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We now state and prove the main result of this section.

Theorem 4.2.4. Let ρn denote the number of conjugacy classes of involutions in Tn. Then

ρn = 1+ρn−1 +ρn−2

for all n≥ 4, where ρ2 = 1 and ρ3 = 2.

Proof. Consider the set An as defined in (4.1). Then, by Corollary 4.2.2, we have ρn = |An|.
Note that A2 = {s1} and A3 = {s1,s2}, which implies that ρ2 = 1 and ρ3 = 2. We now
proceed to compute ρn for n≥ 4. We define three mutually disjoint subsets of An as follows:

(i) Bn = {sn−1}.

(ii) Cn = {si1si2 . . .sik | k > 1, ik = n−1}.

(iii) Dn = {si1si2 · · ·sik | ik < n−1}.

It is easy to see that An = Bn⊔Cn⊔Dn, and hence

|An|= |Bn|+ |Cn|+ |Dn|= 1+ |Cn|+ |Dn|.

Now, the map sending si1si2 . . .sik to si1si2 . . .sik−1 gives a bijection between the sets Cn and
An−2, and hence |Cn|= |An−2|. Also, note that Dn =An−1. Thus, we have

|An|= 1+ |An−1|+ |An−2|,

which implies that
ρn = 1+ρn−1 +ρn−2.

Corollary 4.2.5. For each n≥ 2, ρn+1 = Fn+1, where (Fn)n≥1 is the well-known Fibonacci
sequence with F1 = F2 = 1. In particular,

ρn =
⌊ n

2 ⌋
∑
k=1

(
n− k

k

)
.

Proof. Observe that ρn + 1 = (ρn−1 + 1) + (ρn−2 + 1). The first assertion is clear from
Theorem 4.2.4. The formula for ρn can be derived from the well-known value of (n+1)-term
of the Fibonacci sequence [79, Chapter 3, Section 3.1.2].
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4.3 z-classes of involutions in twin groups

Two elements x,y of a group G are said to be z-equivalent if their centralisers CG(x) and
CG(y) are conjugates in G. A z-equivalence class is called a z-class. These classes also
appear naturally in geometry and topology. We refer the reader to [55] for a quick review of
the same.
It is clear that conjugate elements are z-equivalent and the converse is not true. For example,
CT4(s1s3) =CT4(s3), but s1s3 and s3 are not conjugate. Thus, to investigate z-classes in Tn, it
is sufficient to study centralisers of cyclically reduced words (by Corollary 4.1.4). Note that
every element of Tn is either torsion-free or of order 2. We first show that only T2 and T3 have
finitely many z-classes, and then compute number of z-classes of involutions in Tn for n≥ 2.

Proposition 4.3.1. Tn has finitely many z-classes if and only if n = 2 or 3.

Proof. Since T2 ∼= Z2, there are two conjugacy classes and only one z-class. In T3, there are
infinitely many conjugacy classes, namely, sT3

1 ,sT3
2 ,(s1s2)

T3,((s1s2)
2)T3,((s1s2)

3)T3, and so
on. We note that

CT3(s1) = ⟨s1⟩,
CT3(s2) = ⟨s2⟩,

CT3(s1s2) = ⟨s1s2⟩=CT3((s1s2)
m), m≥ 2.

By Theorem 4.1.5, it follows that CT3(s1), CT3(s2) and CT3(s1s2) are pairwise not conjugate.
Therefore, there are three z-classes in T3.
Now, we proceed to prove that Tn has infinitely many z-classes for n ≥ 4. It suffices to
construct an infinite sequence of cyclically reduced words in Tn such that their centralisers are
not pairwise conjugate in Tn. We define X1 = s1s2, X2 = s1s2s3, X3 = s1s2s3s2, X2i = X2i−1s3,
X2i+1 = X2is2 for i≥ 2. It is easy to check that CTn(X1) = ⟨X1⟩×H and CTn(X j) = ⟨X j⟩×K
for j ≥ 2, where H = ⟨s4,s5, . . . ,sn−1⟩ and K = ⟨s5,s6, . . . ,sn−1⟩. It can be easily deduced
that if CTn(Xi) is conjugate to CTn(X j) for some i ̸= j, then Xi is conjugate to X j. But this is
not possible due to Theorem 4.1.5.

Now, we proceed to compute the number of z-classes of involutions in Tn. As mentioned
earlier, it is sufficient to consider centralisers of cyclically reduced involutions in Tn. Thus,
for the rest of this section, by an involution, we mean a cyclically reduced involution, that is,
an element ofAn =

{
si1si2 . . .sik | 1≤ it ≤ n−1, it+1− it ≥ 2

}
. We begin with the following

observation.
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Lemma 4.3.2. Let w1 and w2 be two involutions in Tn. Then either CTn(w1) =CTn(w2) or
CTn(w1) and CTn(w2) are not conjugates of each other.

Proof. Let us suppose CTn(w1) ̸=CTn(w2). Then, without loss of generality, we can assume
that there exists some s j ∈CTn(w1)\CTn(w2). Thus, we can write CTn(w2) = ⟨si1,si2, . . . ,sik⟩
such that j /∈ {i1, i2, . . . , ik}. Consequently, for each g ∈ Tn, CTn(w2)

g = ⟨sg
i1,s

g
i2, . . . ,s

g
ik⟩,

where sg
i j
= g−1si jg. Thus, each word in CTn(w2)

g contains s j even number of times, and
hence s j /∈CTn(w2)

g for any g ∈ Tn. Therefore, CTn(w1) and CTn(w2) are not conjugates of
each other.

By virtue of the preceding lemma, the number of z-classes of involutions in Tn is equal to the
number of distinct centralisers of cyclically reduced involutions in Tn.
Let λn denote the number of distinct centralisers of involutions in Tn, n ≥ 2. A direct
computation yields λ2 = 1, λ3 = 2, λ4 = 2, λ5 = 5 and λ6 = 8. The following main result of
this section gives a recursive formula for λn, n≥ 7.

Theorem 4.3.3. Let λn be as defined above. Then, for n≥ 7,

λn =
(n−2

∑
i=3

λi
)
−λn−4 +n−2.

We establish the preceding theorem through a sequence of lemmas.

Lemma 4.3.4. The number of distinct centralisers of involutions ending with si in Tn is equal
to number of distinct centralisers of involutions ending with si in Tm, for all n,m≥ i+1.

Proof. It is sufficient to prove the assertion for n = i+1 and m≥ n. Let wsi be an involution
ending with si. Then

CTm(wsi) =

CTn(wsi), if m = n+1 = i+2,

⟨CTn(wsi),sn+1,sn+2, . . . ,sm−1⟩, if m≥ n+2 = i+3.

Hence CTm(w1si) = CTm(w2si) if and only if CTn(w1si) = CTn(w2si). This completes the
proof.

The preceding lemma allows us to define αi as the number of distinct centralisers of involu-
tions ending with si in Tn for all n≥ i+1.

Lemma 4.3.5. In Tn, the centralizer of an involution ending with si is not equal to the
centraliser of an involution ending with s j, for i < j, unless i = n−3 and j = n−1. Moreover,
the centraliser of an involution ending with sn−3 is equal to the centraliser of some involution
ending with sn−1.
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Proof. Let w1si and w2s j be two involutions ending with si and s j, respectively, such that
i < j. If j ≤ n− 2, then s j+1 ∈CTn(w1si), but s j+1 /∈CTn(w2s j). If j = n− 1, then unless
i= n−3, sn−2 ∈CTn(w1si), but sn−2 /∈CTn(w2s j). This proves the first assertion of the lemma.
For the second assertion, if wsn−3 be an involution ending with sn−3, then CTn(wsn−3) =

CTn(wsn−3sn−1).

Lemma 4.3.6. For n≥ 4,

λn =
(n−1

∑
i=1

αi
)
−αn−3.

Proof. From the preceding lemma, we see that

λn =
n−1

∑
i=1

(
number of distinct centralisers of involutions ending with si

)
−number of distinct centralisers of involutions ending with sn−3

=
(n−1

∑
i=1

αi
)
−αn−3,

which is desired.

Lemma 4.3.7. In Tn, the centralizer of an involution ending with sisn−1 is not equal to the
centraliser of any involution ending with s jsn−1, for 1≤ i < j ≤ n−3, unless i = n−5 and
j = n−3. Moreover, the centraliser of an involution ending with sn−5sn−1 is equal to the
centraliser of some involution ending with sn−3sn−1.

Proof. Let w1sisn−1 and w2s jsn−1 be two involutions ending with sisn−1 and s jsn−1, re-
spectively, with 1 ≤ i < j ≤ n− 3. If j ≤ n− 4, then s j+1 ∈ CTn(w1sisn−1), but s j+1 /∈
CTn(w2s jsn−1). If j = n− 3, then unless i = n− 5, sn−4 ∈ CTn(w1sisn−1), but sn−4 /∈
CTn(w2s jsn−1). This proves the first part of the lemma. For the second assertion, if wsn−5sn−1

is an involution ending with sn−5sn−1, then CTn(wsn−5sn−1) =CTn(wsn−5sn−3sn−1).

Lemma 4.3.8. For all i ≤ n−3, the number of distinct centralisers of involutions ending
with sisn−1 is equal to the number of distinct centralisers of involutions ending with si in Tn.

Proof. Note that CTn(wsn−3)=CTn(wsn−3sn−1). But for i≤ n−4, we have sn−2 /∈CTn(wsisn−1)

and CTn(wsi) = ⟨CTn(wsisn−1),sn−2⟩ . Thus, CTn(w1sisn−1) = CTn(w2sisn−1) if and only if
CTn(w1si) =CTn(w2si).

Lemma 4.3.9. For n≥ 5,

αn−1 = 1+(
n−3

∑
i=1

αi)−αn−5.
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Proof. The set of centralisers of involutions ending with sn−1 in Tn can be divided into two
disjoint subsets, namely, {CTn(sn−1)} and the set of centralisers of involutions ending with
sn−1 and of length strictly greater than 1. The proof now follows from lemmas 4.3.7 and
4.3.8.

Proof of Theorem 4.3.3. Replacing n by n+2 in the preceding result and using Lemma 4.3.6,
we get αn+1 = 1+λn for n≥ 3. A repeated use of this identity in Lemma 4.3.6 and some
simplifications yields

λn =
(n−2

∑
i=3

λi
)
−λn−4 +n−2

for n≥ 7, which is the desired formula. □

4.4 Algebraic doodle problem

In case of classical links and braids, the algebraic link problem asks whether given two braids
are equivalent under the classical Markov moves. The algebraic doodle problem can be
formulated along the similar lines, that is, to determine whether two twins are equivalent
under the Markov moves M1−M4.

M1 : β ⊗1→ 1⊗ β ,

M2 : β → α−1βα ,

M3 : β → (β ⊗1)snsn−1 . . .si+1sisi+1 . . .sn−1sn,

M4 : β → (1⊗β )s1s2 . . .si−1sisi−1 . . .s2s1,

where si ∈ Tn+1. We use the previous setup to address the algebraic doodle problem. We
first note that the M1-move is equivalent to saying that whenever the reduced expression of
α = si1si2 . . .sik ∈ Tn+1 does not contain sn, we can replace α by 1⊗α = si1+1si2+1 . . .sik+1.
Next, checking the equivalence of twins under the M2-move is same as the conjugacy problem
which is solvable in Tn ( see [54, 65] and Section 4.1). Thus, we consider the moves M3 and
M4 and prove the following result.

Theorem 4.4.1. Given a twin α ∈ Tn+1, there is an algorithm to determine whether

(i) α can be written as (β ⊗1)snsn−1 . . .si+1sisi+1 . . .sn−1sn,

(ii) α can be written as (1⊗β )s1s2 . . .si−1sisi−1 . . .s2s1,
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for some β ∈ Tn and 1≤ i≤ n.

Proof. Case (i). We need to determine whether an element α ∈ Tn+1 can be written as
(β ⊗1)snsn−1 . . .si+1sisi+1 . . .sn−1sn, for some β ∈ Tn and 1≤ i≤ n. Upon applying Lemma
4.1.1, we get a reduced word equivalent to α and have the following possibilities:

(a) If there is only one sn present in the reduced expression of α , then we can write α as
α ′snα ′′, where α ′,α ′′ ∈ Tn. Such an α can be written in the desired form if and only if
there is no sn−1 present in α ′′.

(b) Suppose that there are two sn’s present in the reduced expression of α . If the expression
does not have a subword of the form snsn−1 . . .si+1sisi+1 . . .sn−1sn for any 1≤ i≤ n−1,
then we cannot write α in the desired form. On the other hand, if the reduced expression
of α can be written as α ′snsn−1 . . .si+1sisi+1 . . .sn−1snα ′′, then α has the desired form
if and only if α ′′ is a word in s j for 1≤ j ≤ i−2.

(c) If the number of sn’s present in the expression is greater than equal to 3, then
we cannot write α in the desired form. For, if we get a subword of the form
snsn−1 . . .si+1sisi+1 . . .sn−1sn for some i and we move this subword to the rightmost
position in the reduced expression of α by flip transformations, there will be an sn

present in the expression of β which is not possible since β ∈ Tn.

Case (ii). It is easy to note that if β ∈ Tn is written as si1si2 . . .sik , then 1⊗β which is a twin
obtained by putting a trivial strand on the left of β , can be written as si1+1si2+1 . . .sik+1 ∈ Tn+1.
We determine whether α ∈ Tn+1 can be written as α = (1⊗β )s1s2 . . .si−1sisi−1 . . .s2s1, for
some β ∈ Tn and 1≤ i≤ n. On applying Lemma 4.1.1, we get a reduced word equivalent to
α and have the following possibilities:

(a) If there is only one s1 present in the reduced expression of α , then we can write α as
α ′s1α ′′, where α ′,α ′′ ∈ Tn+1. Such an α can be written in the desired form if and only
if there is no s2 present in the expression of α ′′.

(b) Suppose that there are two s1’s present in the reduced expression of α . If the expression
does not have a subword of the form s1s2 . . .si−1sisi−1 . . .s2s1 for any 2≤ i≤ n, then
we cannot write α in the desired form. On the other hand, if we can write reduced
expression of α as α ′s1s2 . . .si−1sisi−1 . . .s2s1α ′′, then α has the desired form if and
only if α ′′ is a word in s j for i+2≤ j ≤ n.

(c) If number of s1’s present in the expression is greater than equal to 3, then we cannot
write α in the desired form. For, if we get a subword of the form s1s2 . . .si−1sisi−1 . . .s2s1
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for some i, there will be an s1 present in the expression of 1⊗β which is not possible,
since it is an expression in s2,s3, . . . ,sn.

We now define split doodles and split twins analogous to split links and braids. A doodle on
a 2-sphere is said to be split if it contains two disjoint open disks each containing at least
one component of the doodle. We define a twin to be split if its closure is a split doodle on a
2-sphere. The following figure is an example of a split doodle which is the closure of a twin
(s1s2)

3(s4s5)
4.

Fig. 4.1. A split doodle

For each 1≤ i≤ n−1, let T i
n be the subgroup of Tn generated by {s1,s2, . . . ,si−1,si+1, . . . ,sn−1}.

We conclude this chapter by stating the following proposition, whose proof is immediate,
which gives sufficient conditions for a twin to be split.

Proposition 4.4.2. If α ∈ Tn satisfy one of the following conditions:

(i) α is conjugate to a word in T i
n for some 1≤ i≤ n−1,

(ii) α = (β ⊗ 1)sn−1sn−2 . . .s j+1s js j+1 . . .sn−2sn−1, where β is conjugate of a word in
T i

n−1, 1≤ i≤ n−2 and 1≤ j ≤ n−1,

(iii) α = (1⊗β )s1s2 . . .s j−1s js j−1 . . .s2s1, where β is conjugate of a word in T i
n−1, 1≤ i≤

n−2 and 1≤ j ≤ n−1,

then α is a split twin.





Chapter 5

Automorphism groups of twin groups

Using the set up built in the preceding chapter, we determine automorphism groups of twin
groups in full generality. Note that, the automorphism group of T3 ∼= Z2 ∗Z2 is well-known,
and structure of Aut(Tn) is determined in [42] for n≥ 4. However, our approach is elementary
and yields an alternate proof for all n≥ 3 which can be found in [70]. The following is the
main result of this chapter.

Theorem 5.0.1. Let Tn be the twin group with n≥ 3. Then the following hold:

(1) Aut(T3)∼= T3 ⋊Z2.

(2) Aut(T4)∼= T4 ⋊S3.

(3) Aut(Tn)∼= Tn ⋊D8 for n≥ 5, where D8 is the dihedral group of order 8.

Our plan is to prove Theorem 5.2.8 in two parts. In the Section 5.1, we show that any
automorphism that preserves conjugacy classes of generators is an inner automorphism. It is
well-known that the center Z(Tn) = 1, and hence Inn(Tn) ∼= Tn. We then determine all the
non-inner automorphisms of Tn in Section 5.2, and show that Out(T3)∼= Z2, Out(T4)∼= S3

and Out(Tn)∼= D8 for n≥ 5.

5.1 Characterisation of inner automorphisms of twin groups

In this section, we characterise inner automorphisms of twin groups.

Proposition 5.1.1. Let φ be an automorphism of Tn for n≥ 3. Then φ is inner if and only if
φ(si) ∈ sTn

i for all 1≤ i≤ n−1.
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Proof. The forward implication is obvious. For the converse, suppose that φ(si) ∈ sTn
i for all

1≤ i≤ n−1. We complete the proof in the following steps:

Step 1: There exists some u ∈ Tn such that ûφ(s2i−1) = s2i−1 for all 1≤ i≤ ⌊n/2⌋, where
⌊.⌋ is the floor function.

We begin by setting φ1 := φ . Without loss of generality, we may assume that φ1(s1) = s1.
Let us suppose that φ1(s3) = w−1

3 s3w3, where w3 is a reduced word. We claim that w3

does not contain s2. Let us, on the contrary, suppose that w3 contains s2. Then s1 does not
commute with w−1

3 s3w3, but s1 commutes with s3. This is a contradiction to the fact that
automorphisms preserve commuting relations. Thus, our claim is true. Next, we define
φ3 := ŵ3

−1
φ1. Note that φ3(s1) = s1 and φ3(s3) = s3.

Let us now suppose that φ3(s5) = w−1
5 s5w5, where w5 is a reduced word. Suppose that the

word w5 contains s2 or s4 or both. Then s3 and s5 commute but their images do not commute
under the automorphism φ3, leading to a contradiction. Hence, w5 contains neither s2 nor s4.
Now, we define φ5 = ŵ5

−1
φ3. Note that φ5(s1) = s1, φ5(s3) = s3 and φ5(s5) = s5.

Again, suppose φ5(s7) = w−1
7 s7w7, where w7 is a reduced word. Repeating the argument,

we can show that w7 does not contain s2, s4 and s6. Define φ7 := ŵ7
−1

φ5. Note that
φ7(s1) = s1, φ7(s3) = s3, φ7(s5) = s5 and φ7(s7) = s7. Continuing this process, we finally
get φ2k−1(s2i−1) = s2i−1, for all 1≤ i≤ ⌊n/2⌋ and k = ⌊n/2⌋. This completes Step 1.

Step 2: There exists some v ∈ Tn such that v̂φ(s2i) = s2i for all 1≤ i≤ ⌊n−1/2⌋.

Proof of this step goes along the same lines as that of Step 1.

Step 3: Without loss of generality, we can assume that there exists a reduced word w∈ Tn such
that φ(s2i−1) = s2i−1 for all 1≤ i≤ ⌊n/2⌋ and φ(s2i) = w−1s2iw for all 1≤ i≤ ⌊n−1/2⌋.

This follows immediately from steps 1 and 2.

Step 4: If w is the reduced word as in Step 3, then φ is an inner automorphism induced by
some subword of w.

For a word w = si1si2 . . .sik , if i1 is even, then w−1s2iw = w′−1s2iw′ for all 1≤ i≤ ⌊n−1/2⌋,
where w′ = si2si3 . . .sik . On the other hand, if ik is odd, then ŝik

−1
φ(s2i−1) = s2i−1 for all 1≤

i≤ ⌊n/2⌋ and ŝik
−1

φ(s2i) = w′′−1s2iw′′ for all 1≤ i≤ ⌊n−1/2⌋, where w′′ = si1si2 . . .sik−1.
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It follows from the preceding observation that if sit ’s, 1≤ t ≤ k are all even indexed, then φ is
the identity automorphism. Similarly, if sit ’s, 1≤ t ≤ k are all odd indexed, then φ is the inner
automorphism induced by w. Further, if by applying finitely many flip transformations, we
can write w = w1w2, where w1 is subword with even indexed generators and w2 a subword
with odd indexed generators, then φ is the inner automorphism induced by w2.
Now suppose that i1 is odd, ik is even and that we cannot bring an even indexed generator to
the leftmost position and an odd indexed generator to rightmost position in the expression of
w by finitely many flip transformations on w. . We would derive a contradiction by proving
that φ is not surjective in this case.
We note that sik ̸= φ(s j) for all j ̸= ik. Suppose sik = φ(sik) = siksik−1 . . .si1siksi1si2 . . .sik . This
implies sik−1 . . .si1siksi1si2 . . .sik = 1. Thus, every generator (in particular sik) appearing in the
expression sik−1 . . .si1siksi1si2 . . .sik should get cancelled by some elementary transformation.
But as w = si1si2 . . .sik is a reduced word, deletion of sik is only possible if we can bring the
sik to the leftmost position in the expression of w by some flip transformations. But this is
not possible, and hence sik ̸= φ(sik).
Now suppose that sik = φ(x) for some reduced word x = s j1s j2 . . .s jt of length greater than 1,
i.e., t > 1. There are four possibilities on the choice of indices of s j1 and s jt to be even or odd.
Here, we consider one case, i.e. j1 is odd and jt is even. Rest of the cases follow similarly.
Now, we can write x = x1x2 . . .x2l , where 2 ≤ 2l ≤ t, the odd indexed subwords (i.e. x1,
x3, . . . ,x2l−1) contain generators of odd index (s1,s3, . . . , etc.) and even indexed subwords
(i.e. x2, x4, . . . ,x2l) contain generators of even index (s2,s4, . . . , etc.). We have

sik = φ(x1x2 . . .x2l) = x1(w−1x2w)x3(w−1x4w) . . .x2l−1(w−1x2lw).

Note that no deletion is possible in the expression x1(w−1x2w)x3(w−1x4w) . . .x2l−1(w−1x2lw),
because of the assumption that i1 is odd, ik is even and that we cannot bring an even indexed
generator to the leftmost position and an odd indexed generator to rightmost position in the
expression of w by finitely many flip transformations on w. Thus,

ℓ(sik) = 1 < 2≤ ℓ
(
x1(w−1x2w)x3(w−1x4w) . . .x2l−1(w−1x2lw)

)
,

and hence sik ̸= φ(x1x2 . . .x2l) showing that φ is not surjective. This completes the proof of
the proposition.
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5.2 Outer automorphisms of twin groups

In this section, we describe the group of automorphisms of Tn in full generality. As a
consequence, we get an explicit description of outer automorphisms of Tn.

Proposition 5.2.1. The map ψ : Tn→ Tn given by ψ(si) = sn−i, 1≤ i≤ n−1, extends to an
order 2 non-inner automorphism of Tn for all n≥ 3.

Proof. The proof follows from the definition of ψ .

Proposition 5.2.2. The following hold in T4:

(i) The map τ : T4→ T4 given by τ(s1) = s1s3, τ(s2) = s2 and τ(s3) = s1, extends to an
order 3 non-inner automorphism of T4.

(ii) The subgroup generated by τ and ψ is isomorphic to S3.

Proof. That τ is a non-inner automorphism of order 3 is obvious. Since τ satisfies the relation

ψτψ = τ
2,

we have ⟨ψ,τ⟩ ∼= S3.

Proposition 5.2.3. The following hold in Tn for n≥ 5:

(i) The map κ : Tn→ Tn given by κ(s3) = sn−3sn−1 and κ(si) = sn−i for i ̸= 3 extends to
an order 4 non-inner automorphism of Tn.

(ii) The subgroup generated by κ and ψ is isomorphic to D8.

Proof. It is easy to check that κ extends to a non-inner automorphism of order 4. Since κ

satisfies the relation
ψκψ = κ

−1,

it follows that ⟨ψ,κ⟩ ∼= D8.

Lemma 5.2.4. Let φ be an automorphism of T4. Then φ(s1),φ(s3) ∈ sT4
1 ,sT4

3 or (s1s3)
T4 and

φ(s2) ∈ sT4
2 .

Proof. It follows from Corollary 4.2.3 that s1, s3 and s1s3 are the only involutions (upto
conjugation) with centralisers of rank 2 and s2 is the only involution (upto conjugation) with
centraliser of rank 1. The result follows since their images under any automorphism should
again be involutions with centralisers of the same rank.
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Lemma 5.2.5. Let φ be an automorphism of Tn for n≥ 3 and n ̸= 4. Then either φ(s1) ∈ sTn
1

and φ(sn−1) ∈ sTn
n−1 or ψφ(s1) ∈ sTn

1 and ψφ(sn−1) ∈ sTn
n−1.

Proof. It follows from Corollary 4.2.3 that s1 and sn−1 are the only involutions with cen-
tralisers (upto conjugation) of rank n−2 in Tn. The result follows since their images under
any automorphism should again be involutions with centralisers of the same rank n−2.

Lemma 5.2.6. Let n≥ 5 and φ ∈ Aut(Tn). Then for all 2≤ i≤ n−2, φ(si) ∈ sTn
j for some

2≤ j ≤ n−2 or φ(si) ∈ (s1s3)
Tn or (sn−3sn−1)

Tn .

Proof. Fix an i such that 2≤ i≤ n−2. We observe that si is an involution and its centraliser
has rank n−3. From Corollary 4.2.3, it is clear that only s2,s3, . . . ,sn−2 and s1sn−1, s1s3 and
sn−3sn−1 are cyclically reduced involutions whose centralisers have rank n−3. Further, from
Lemma 5.2.5, it follows that φ(si) /∈ (s1sn−1)

Tn for 2≤ i≤ n−2.

Lemma 5.2.7. Let n≥ 5 and φ ∈ Aut(Tn) be an automorphism such that φ(s1) ∈ sTn
1 . Then

the following hold:

(i) φ(si) ∈ sTn
i for all 2≤ i≤ n−2 and 3 ̸= i ̸= n−3.

(ii) φ(s3) ∈ sTn
3 or (s1s3)

Tn .

(iii) φ(sn−3) ∈ sTn
n−3 or (sn−3sn−1)

Tn .

Proof. Suppose φ(s2) ∈ gTn for some g ∈ {s2,s3, . . . ,sn−2,s1s3,sn−3sn−1}. Choosing an
appropriate inner automorphism say ŵ and a reduced word w′, we get ŵ(φ(s2)) = g and
ŵ(φ(w′−1s1w′)) = s1. We note that w′−1s1w′ and s2 do not commute. Since automorphisms
preserve commuting relations, s1 and g also should not commute, and hence g = s2. The
proof can now be completed by repeating the argument.

We now state and prove the main result of this chapter.

Theorem 5.2.8. Let Tn be the twin group with n≥ 3. Then the following hold:

(1) Aut(T3)∼= T3 ⋊Z2.

(2) Aut(T4)∼= T4 ⋊S3.

(3) Aut(Tn)∼= Tn ⋊D8 for n≥ 5, where D8 is the dihedral group of order 8.

Recall from propositions 5.2.2 and 5.2.3 that ⟨ψ,τ⟩ ∼= S3 and ⟨ψ,κ⟩ ∼= D8. We observe that
Inn(T3)∩⟨ψ⟩, Inn(T4)∩⟨ψ,τ⟩ and Inn(Tn)∩⟨ψ,κ⟩, n≥ 5, are all trivial. Thus, Inn(T3)⋊
⟨ψ⟩ ≤ Aut(T3), Inn(T4)⋊ ⟨ψ,τ⟩ ≤ Aut(T4) and Inn(Tn)⋊ ⟨ψ,κ⟩ ≤ Aut(Tn) for n ≥ 5. It
now remains to prove the reverse inclusions. Let φ be an automorphism of Tn. It follows
from Proposition 5.1.1 and lemmas 5.2.4, 5.2.5, 5.2.6, 5.2.7 that
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(a) ψ tφ ∈ Inn(T3) for some 0≤ t ≤ 1,

(b) ψm1τm2φ ∈ Inn(T4) for some 0≤ m1 ≤ 1 and 0≤ m2 ≤ 2,

(c) ψn1κn2φ ∈ Inn(Tn) for some 0≤ n1 ≤ 1 and 0≤ n2 ≤ 3, where n≥ 5.

This completes the proof of the theorem. □

Corollary 5.2.9. The following hold in Tn:

(i) Out(T3)∼= Z2 ∼= ⟨ψ⟩.

(ii) Out(T4)∼= S3 ∼= ⟨ψ,τ⟩.

(iii) Out(Tn)∼= D8 ∼= ⟨ψ,κ⟩ for n≥ 5.

A consequence of our preceding analysis is the following result.

Proposition 5.2.10. PTn is characteristic in Tn if and only if n = 2,3.

Proof. PT2 being trivial is obviously characteristic in T2. We observe that PTn is invariant
under ψ . This follows since the set {((sisi+1)

3)g | 1≤ i≤ n−2, g ∈ Tn} generates PTn ([4,
Theorem 4]) and ψ(((sisi+1)

3)g) = ((sn−isn−i−1)
3)ψ(g) ∈ PTn. This together with Theorem

5.2.8(1) implies that PT3 is characteristic in T3.
For the reverse implication, first consider the element (s1s2)

3 ∈ PT4. Then τ
(
(s1s2)

3) =
(s1s3s2)

3 /∈ PT4 (since π((s1s3s2)
3) ̸= 1), and hence PT4 is not invariant under τ . Similarly,

κ((s2s3)
3) = (sn−2sn−3sn−1)

3 /∈ PTn for n≥ 5, and we are done.

An IA automorphism of a group is an automorphism that acts as identity on the abelianisation
of the group. Note that inner automorphisms are IA automorphisms. It is easy to check that
non-inner automorphisms of Tn for n≥ 3 are not IA automorphisms. Therefore, we have the
following result.

Proposition 5.2.11. Every IA automorphism of Tn is inner for n≥ 3.

An automorphism of a group is said to be normal if it maps every normal subgroup onto
itself. The following is an analogue of a similar result of Neshchadim for braid groups [76].

Proposition 5.2.12. Every normal automorphism of Tn is inner for n≥ 3.

Proof. Note that every inner automorphism is a normal automorphism. Thus, in view of
Theorem 5.2.8, it suffices to prove that no automorphism in the sets {ψ}, {ψ,τ,τ2,τψ,τ2ψ}
and {ψ,κ,κ2,κ3,κψ,κ2ψ,κ3ψ} is normal for n = 3, n = 4 and n≥ 5, respectively.
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We first prove that ψ is not a normal automorphism of Tn for all n ≥ 3. Take N to be the
normal closure of s1 in Tn. Note that for each element g ∈ N and each generator si, i ≥ 2,
number of si’s present in the expression of g is even. This implies that s1 ∈ N whereas
ψ(s1) = sn−1 ̸∈ N, and hence ψ is not normal.
It follows from the proof of Proposition 5.2.10 that PT4 is not invariant under τ , and so
under its inverse τ2. Hence, both τ and τ2 are not normal. Similarly, by Proposition
5.2.10, it follows that κ and its inverse κ3 are not normal. Further, κ2 is not normal, since
(s2s3)

3 ∈ PTn whereas κ2((s2s3)
3) = (s2s4s3s1)

3 for n = 5, κ2((s2s3)
3) = (s2s3s5s1)

3 for
n = 6 and κ2((s2s3)

3) = (s2s3s1)
3 for n≥ 7. In each of these cases, κ2((s2s3)

3) ̸∈ PTn.
For the remaining cases, we recall that PTn is invariant under ψ . Consequently, if PT4

is invariant under τ iψ , then it is so under τ i, a contradiction. Similarly, if PTn, n ≥ 5, is
invariant under κ jψ , then it is so under κ j, again a contradiction. Thus, the only normal
automorphisms of Tn are the inner automorphisms.

5.3 R∞-property for twin groups

For any group G and an automorphism φ of G, we say that two elements x,y ∈ G are
(φ -twisted conjugate) φ -conjugate if there exists an element g ∈ G such that

x = gyφ(g)−1.

It can be easily verified that the relation of φ -conjugation is an equivalence relation which
divides the group into φ -conjugacy classes. In particular, if φ is the identity automorphism,
then we get the usual conjugacy classes. The number of φ -conjugacy classes R(φ)∈N∪{∞}
is called the Reidemeister number of the automorphism φ . We say that a group G has
R∞-property if R(φ) = ∞ for each φ ∈ Aut(G). Obviously, finite groups (in particular T2) do
not satisfy R∞-property.
It is known that braid groups Bn [24] and pure braid groups Pn [21] have the R∞-property
for all n≥ 3. We refer the reader to [19, 20, 22, 34, 35, 43, 66, 67, 74, 75] for some recent
works on the topic. Since we established a complete description of Aut(Tn) in the previous
section, we now investigate twisted conjugacy classes of Tn for n≥ 3. More precisely, we
prove that twin groups Tn have R∞-property for each n≥ 3. The results of this section are
from the work [71].
Firstly, recall a basic result on twisted conjugacy classes [25, Corollary 3.2].

Lemma 5.3.1. Let φ be an automorphism and ĝ an inner automorphism of a group G. Then
R(ĝφ) = R(φ).
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The following result relates twisted conjugacy with usual conjugacy.

Lemma 5.3.2. Let G be a group and φ an order k automorphism of G. If x,y ∈ G are
φ -conjugates, then the elements xφ(x)φ 2(x) · · ·φ k−1(x) and yφ(y)φ 2(y) · · ·φ k−1(y) are con-
jugates (in the usual sense). The converse is not true in general.

Proof. Since x,y ∈ G are φ -conjugates, there exists z ∈ G such that x = zyφ(z−1). Applying
φ i, 1≤ i≤ k−1, to this equality gives

φ(x) = φ(z)φ(y)φ 2(z−1),

φ
2(x) = φ

2(z)φ 2(y)φ 3(z−1),

...

φ
k−1(x) = φ

k−1(z)φ k−1(y)φ k(z−1) = φ
k−1(z)φ k−1(y)z−1.

Multiplying all the preceding equalities gives

xφ(x)φ 2(x) · · ·φ k−1(x) = z
(
yφ(y)φ 2(y) · · ·φ k−1(y)

)
z−1,

which is the first assertion.
For the second assertion, consider the extra-special p-group

G =
〈
a,b,c | ap = bp = cp = 1,ab = bac,ac = ca,bc = cb

〉
of order p3 and exponent p, where p is an odd prime. Note that G ′ = Z(G) = ⟨c⟩ is of
order p. It is easy to check that the map φ : G → G given by φ(a) = ac and φ(b) = bc
extends to an order p automorphism of G. Then, we have aφ(a)φ 2(a) · · ·φ p−1(a) = 1 =

bφ(b)φ 2(b) · · ·φ p−1(b). Suppose that there exists g ∈ G such that a = gbφ(g−1). This gives
a = gbg−1cl for some l ∈ Z. Thus, a = bb−1gbg−1cl = b[b,g−1]cl ∈ bG ′, which is not
possible. Hence, a cannot be φ -conjugate to b.

Recall from Theorem 5.2.8 that

(i) Aut(T3) = Inn(T3)⋊ ⟨ψ⟩ ∼= Inn(T3)⋊Z2,

(ii) Aut(T4) = Inn(T4)⋊ ⟨ψ,τ⟩ ∼= Inn(T4)⋊S3,

(iii) Aut(Tn) = Inn(Tn)⋊ ⟨ψ,κ⟩ ∼= Inn(Tn)⋊D8 for n≥ 5,

where

D8 is the dihedral group of order 8,
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ψ : Tn→ Tn is given by ψ(si) = sn−i for each 1≤ i≤ n−1,

τ : T4→ T4 is given by τ(s1) = s1s3, τ(s2) = s2 and τ(s3) = s1,

κ : Tn→ Tn is given by κ(s3) = sn−3sn−1 and κ(si) = sn−i for i ̸= 3.

We now proceed to prove the main theorem of this section.

Theorem 5.3.3. Tn satisfy R∞-property for all n≥ 3.

Proof. It follows from Proposition 4.3.1 that Tn has infinitely many conjugacy classes for
all n ≥ 3. Hence, due to Lemma 5.3.1, it is enough to show that Tn has infinitely many
φ -conjugacy classes for automorphisms φ in the groups ⟨ψ⟩, ⟨ψ,τ⟩ and ⟨ψ,κ⟩, which are
all finite. Our plan is to use Lemma 5.3.2. We divide the proof into four cases, namely, n≥ 6,
n = 5, n = 4 and n = 3.
Case n ≥ 6. Consider the sequence of elements xi = (s1s2)

i, i ≥ 1. We claim that for
any automorphism φ ∈ ⟨ψ,κ⟩, xi is not φ -conjugate to x j whenever i ̸= j. Let us, on
the contrary, suppose that xi is φ -conjugate to x j for some i ̸= j. Then, by Lemma 5.3.2,
xiφ(xi)φ

2(xi) · · ·φ k−1(xi) and x jφ(x j)φ
2(x j) · · ·φ k−1(x j) are conjugates, where k is the order

of the automorphism φ .
Note that the subgroup H = ⟨s1,s2,sn−2,sn−1⟩ of Tn is invariant under all automorphisms
in ⟨ψ,κ⟩. In fact, ψ(x) = κ(x) for all x ∈ H. Thus, it is sufficient to show that xiψ(xi) and
x jψ(x j) are not conjugates in Tn. Observe that xiψ(xi) = (s1s2)

i(sn−1sn−2)
i and x jψ(x j) =

(s1s2)
j(sn−1sn−2)

j. It is easy to see that the words (s1s2)
i(sn−1sn−2)

i and (s1s2)
j(sn−1sn−2)

j

are cyclically reduced, and hence by Theorem 4.1.5 they are not conjugates of each other for
i ̸= j. Thus, we have infinitely many φ -conjugacy classes in Tn, n≥ 6, for any automorphism
φ of Tn.
Case n = 5. For this case we consider the sequence of elements xi = (s1s2)

2i, i≥ 1. We claim
that for any automorphism φ ∈ ⟨ψ,κ⟩, xi is not φ -conjugate to x j for i ̸= j. Note that there
are two automorphisms of order 4, namely κ and κ3, and five automorphisms of order 2,
namely κ2, ψκ , ψκ2, ψκ3 and ψ .
Direct computations give

xiκ(xi)κ
2(xi)κ

3(xi) = (s1s2)
2i(s4s3)

2i(s1s2s4)
2i(s4s1s3)

2i

= (s1s2)
2i(s4s3)

2i(s1s2)
2i(s4s3)

2i.

Again, by Theorem 4.1.5, we note that the elements (s1s2)
2i(s4s3)

2i(s1s2)
2i(s4s3)

2i and
(s1s2)

2 j(s4s3)
2 j(s1s2)

2 j(s4s3)
2 j are not conjugate for i ̸= j. Similarly, notice that xiψκ2(xi)=

(s1s2)
2i(s4s1s3)

2i = (s1s2)
2i(s4s3)

2i. As before, xiψκ2(xi) is not conjugate to x jψκ2(x j) for
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i ̸= j. The remaining automorphisms can be considered in the same manner, and hence there
are infinitely many φ -conjugacy classes in T5 for any automorphism φ .
Case n = 4. We again consider the sequence of elements xi = (s1s2)

i, i≥ 1, and prove that
for any automorphism φ ∈ ⟨ψ,τ⟩, xi is not φ -conjugate to x j whenever i ̸= j. Note that there
are two automorphisms of order 3, namely τ and τ2, and three automorphisms of order 2,
namely ψτ , ψτ2 and ψ . Direct computations yield xiτ(xi)τ

2(xi) = (s1s2)
i(s1s3s2)

i(s3s2)
i.

Again by Theorem 4.1.5, xiτ(xi)τ
2(xi) is not conjugate to x jτ(x j)τ

2(x j) whenever i ̸= j. The
remaining automorphisms can be dealt with similarly, and the assertion follows.
Case n = 3. Unlike the earlier cases, here we consider the sequence of elements xi = (s1s2)

is1,
i≥ 1. In this case we need to consider only one automorphism ψ which is of order 2. We
have xiψ(xi) = (s1s2)

is1(s2s1)
is2 = (s1s2)

2i+1. By Theorem 4.1.5, xiψ(xi) is not conjugate
to x jψ(x j) whenever i ̸= j, and hence there are infinitely many ψ-conjugacy classes in T3.
This completes the proof of the theorem.

Remark 5.3.4. It is interesting to see whether the pure twin group PTn has R∞-property. It
is known that PT3 ∼= Z, PT4 ∼= F7 and PT5 ∼= F31 [4, 36]. It follows from [20, Theorem 2.1]
and [67, Lemma 2.1] that non-abelian free groups of finite rank have R∞-property. Thus,
PT4 and PT5 have R∞-property. A precise description of PT6 has been obtained recently
in [63, Theorem 2] where it is proved that PT6 ∼= F71 ∗ (∗20(Z⊕Z)). On the other hand, a
complete presentation of PTn is still unknown for n≥ 7. Thus, determining whether PTn has
R∞-property for n≥ 6 remains an open problem.

5.4 Representations of twin groups by automorphisms

Since PTn is normal in Tn and center of Tn is trivial for n≥ 3, there is a natural homomorphism

φn : Tn ∼= Inn(Tn)→ Aut(PTn),

obtained by restricting the inner automorphisms on PTn. It is proved in [4] that Ker(φ3) ̸= 1
and φ4 is injective. We show that this is the case for all n≥ 4.

Proposition 5.4.1. The homomorphism φn : Tn→ Aut(PTn) is injective if and only if n≥ 4.

Proof. Note that Ker(φn) =CTn(PTn). It is easy to check that

CTn((sisi+1)
3) = ⟨s1,s2, . . . ,si−2,sisi+1,si+3,si+4, . . . ,sn−1⟩,
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and

CTn(PTn)≤
n−2⋂
i=1

CTn((sisi+1)
3) = 1.

Therefore, it follows that for n = 4,5,6 we have faithful representations

T4 ↪→ Aut(F7),

T5 ↪→ Aut(F31),

and
T6 ↪→ Aut

(
F71 ∗ (∗20(Z⊕Z))

)
.

We do not know whether there exists a faithful representation of Tn into Aut(Fn) analogous
to the classical Artin representation of the braid group. However, we have the following
representation.

Theorem 5.4.2. The map µn : Tn→ Aut(Fn) defined by the action of generators of Tn by

µn(si) :


xi 7→ xixi+1,

xi+1 7→ x−1
i+1,

x j 7→ x j, j ̸= i, i+1,

is a representation of Tn. Moreover, µn is faithful if and only if n = 2,3.

Proof. We begin by proving that µn is a representation. Clearly, s2
i act as identity automor-

phism of Fn. Moreover, the action of µn(si)µn(s j) and µn(s j)µn(si) on generators x1, . . . ,xn

is

µn(si)µn(s j) :


xi 7→ xixi+1,

xi+1 7→ x−1
i+1,

x j 7→ x jx j+1,

x j+1 7→ x−1
j+1,

µn(s j)µn(si) :


xi 7→ xixi+1,

xi+1 7→ x−1
i+1,

x j 7→ x jx j+1,

x j+1 7→ x−1
j+1,

for all |i− j| ≥ 2.
Faithfulness for n = 2 is obvious. For the case n = 3, we know that any arbitrary element of
T3 is of the form (s1s2)

m or (s1s2)
ms1 or s2(s1s2)

m for some integer m. If Ker(µ3) ̸= 1, then
there exists a non-trivial element s ∈ T3 such that µ3(s)(xi) = xi for i = 1,2,3. We show that
no such element exists. We first consider elements of the form (s1s2)

m. It is easy to see that
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the action of all odd powers of s1s2 gives a non-identity automorphism of F3, since it sends
x3 to x−1

3 . On the other hand, for even powers of s1s2, we have

µ3((s1s2)
2k) :


x1 7→ x1xk

3,

x2 7→ x−k
3 x2x−k

3 ,

x3 7→ x3,

for all integer k. Next we consider (s1s2)
ms1. Again, if m is odd, the action is non-trivial and

if m = 2k, then we have

µ3((s1s2)
2ks1) :


x1 7→ x1x2x−k

3 ,

x2 7→ xk
3x−1

2 xk
3,

x3 7→ x3.

Similarly, for s2(s1s2)
m, we have a non-trivial action if m is even. If m = 2k−1, then we

have

µ3(s2(s1s2)
2k−1) :


x1 7→ x1x2xk

3,

x2 7→ x−k
3 x−1

2 x−k
3 ,

x3 7→ x3.

Thus, µ3 : T3→ Aut(F3) is faithful.
Finally, we show that µn is not faithful for n≥ 4. Consider the element

x = (s2s3)
−2s1(s2s3)

2s1(s2s3)
2s1(s2s3)

−2s1 ∈ Tn, n≥ 4.

Since π(x) ̸= 1, it follows that x ̸= 1. It is easy to check that

µn((s2s3)
2) :


x1 7→ x1,

x2 7→ x2x4,

x3 7→ x−1
4 x3x−1

4 ,

x j 7→ x j , j ≥ 4,
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µn((s2s3)
−2) :


x1 7→ x1,

x2 7→ x2x−1
4 ,

x3 7→ x4x3x4,

x j 7→ x j , j ≥ 4,

µn((s2s3)
2s1(s2s3)

−2) :


x1 7→ x1x2x4,

x2 7→ x−1
4 x−1

2 x−1
4 ,

x j 7→ x j , j ≥ 3,

(5.1)

and

µn((s2s3)
−2s1(s2s3)

2) :


x1 7→ x1x2x−1

4 ,

x2 7→ x4x−1
2 x4,

x j 7→ x j , j ≥ 3.

(5.2)

Using 5.1, 5.2 and action of s1, we conclude that x ∈ Ker(µn).

We note that µn extends easily to a representation of the virtual twin group V Tn.

Proposition 5.4.3. The map µn : V Tn→ Aut(Fn) defined by the action of generators of V Tn

by

µn(si) :


xi 7→ xixi+1,

xi+1 7→ x−1
i+1,

x j 7→ x j, j ̸= i, i+1,

µn(ρi) :


xi 7→ xi+1,

xi+1 7→ xi

x j 7→ x j, j ̸= i, i+1,

is a representation of V Tn.

As a consequence of Proposition 5.4.3, it follows that the forbidden moves in Figure 3.4
cannot be obtained from the moves in Figure 3.2.

Proposition 5.4.4. The following holds in V Tn:

1. sisi+1si ̸= si+1sisi+1.

2. ρisi+1si ̸= si+1siρi+1.
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Proof. An easy check gives

µn(sisi+1si)(xi) ̸= µn(si+1sisi+1)(xi)

and
µn(ρisi+1si)(xi) ̸= µn(si+1siρi+1)(xi)

for each i.

5.5 (Co-)Hopfian property for twin groups

A group is said to be co-Hopfian (respectively Hopfian) if every injective (respectively
surjective) endomorphism is an automorphism. For example, the infinite cyclic group is not
co-Hopfian whereas all finite groups (in particular T2) are Hopfian as well as co-Hopfian.
The investigation of residual properties of groups is an active area of research. In particular,
considering the fact that Coxeter groups are linear [13], and hence residually finite [84],
implies that Tn is residually finite. These groups, being finitely generated residually finite, are
Hopfian [58, Chapter 4, Theorem 4.10]. The property of co-Hopfianity cannot be inherited
from this fact.
These properties are closely related to R∞-property, see, for example [67, Lemma 2.3]. The
classical Artin braid groups Bn are known to be Hopfian being residually finite [47, Chapter
I, Corollary 1.22] and are not co-Hopfian for n≥ 2 [11]. In fact, the map which sends each
standard generator of Bn to itself times a fixed power of the central element extends to an
injective endomorphism which is not surjective. For twin groups Tn with n≥ 3, we have the
following result which is proved in [71].

Theorem 5.5.1. Tn is not co-Hopfian for n≥ 3.

Proof. We construct a map ψn : Tn→ Tn, n≥ 3, by setting

ψn(si) =

si for i ̸= 2,

s2s1s2 for i = 2.

It is easy to check that ψn is a group homomorphism. It is evident from the definition of ψn

that for any element w ∈ Tn, the expression ψn(w) contains an even number of s2. Hence,
s2 /∈ ψn(Tn) and the map ψn is not surjective. We now proceed to prove that ψn is injective
by induction on n.
We note that T3 can be generated by elements s1 and s1s2. Since the cyclic subgroup ⟨s1s2⟩
is normal in T3, any element of T3 is of the form either (s1s2)

m or (s1s2)
ms1 for some integer
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m. The images of these elements under ψ3 are:

ψ3((s1s2)
m) = (s1s2s1s2)

m = (s1s2)
2m,

ψ3((s1s2)
ms1) = (s1s2s1s2)

ms1 = (s1s2)
2ms1,

It is clear that none of the non-trivial elements of T3 belong to Ker(ψ3), and hence ψ3 is
injective.
Suppose that 1 ̸= w∈Ker(ψ4). Without loss of generality we may assume that w is a reduced
word. Suppose that w = w1s3w2s3 · · ·wks3wk+1, where wi’s are words in T3. Then, we have

ψ4(w) = ψ4(w1)s3ψ4(w2)s3 · · ·ψ4(wk)s3ψ4(wk+1) = 1.

Notice that all the wi’s are non-trivial words in T3, since w is a reduced word. Also, the map
ψ4 restricted to T3 is ψ3 which is injective. Thus, ψ4(wi) = ψ3(wi) ̸= 1 for all 1≤ i≤ k+1.
For ψ4(w) = 1 to be true, all the s3’s must get cancelled. But there will always be at least
one s2 in between any two s3’s, which is a contradiction. Therefore, the map ψ4 is injective.
Let us now assume that ψn−1 is injective for n≥ 5. Consider a non-trivial reduced word w in
Ker(ψn). Let w = w1sn−1w2sn−1 · · ·wksn−1wk+1, where wi ∈ Tn−1 for all 1≤ i≤ k+1. This
implies that

ψn(w) = ψn−1(w1)sn−1ψn−1(w2)sn−1 · · ·ψn−1(wk)sn−1ψn−1(wk+1) = 1.

For the above equality to be true, all the sn−1’s must get cancelled. In particular, the two
sn−1’s in the subword sn−1ψn−1(w j)sn−1 must get cancelled. This implies that ψn−1(w j)

does not have sn−2, which means that w j does not have sn−2, which contradicts the fact that
w is reduced. Hence, ψn is injective.

Remark 5.5.2. Note that the infinite cyclic group and a free product of any two non-trivial
groups is not co-Hopfian. Thus, PTn is not co-Hopfian for 3 ≤ n ≤ 6. Whether PTn is
co-Hopfian for n≥ 7 remains unknown.

Remark 5.5.3. It is well-known that the braid group Bn is not co-Hopfian for n≥ 2 [11]. In
fact, the map φn : Bn→ Bn, n≥ 2, defined on the standard generators by

φn(σi) = σiz,

where ⟨z⟩ = Z(Bn), is an injective homomorphism which is not surjective. Let Pn be the
pure braid group on n strands. Since φn(Pn) ⊂ Pn and z ∈ Z(Bn) = Z(Pn) does not have a
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preimage under φn, it follows that the restriction of φn on Pn is injective but not surjective,
and hence Pn is not co-Hopfian for n≥ 2.



Chapter 6

Structure of pure virtual twin groups

The kernel of the natural surjection of V Tn onto Sn which trails the end points of the strands
of virtual twins, is known as pure virtual twin group PV Tn. In this chapter, we give a precise
presentation of PV Tn, which in turn proves that it is an irreducible right-angled Artin group
[73]. Furthermore, we describe these groups as iterated semidirect product of infinitely
generated free groups, which is crucial in proving the triviality of centers of V Tn and PV Tn.

6.1 Presentation of pure virtual twin groups

In this section, we give a presentation of PV Tn. We show that the rank of PV Tn is n(n−1)/2,
which, interestingly, coincides with the rank of the pure braid group Pn.

We shall use the standard presentation of V Tn and the Reidemeister-Schreier method described
in Section 2.6. We also set some notations for this section. We begin by recalling the defining
relations in the presentation of V Tn.

s2
i = 1 for i = 1,2, . . . ,n−1, (6.1)

sis j = s jsi for |i− j| ≥ 2, (6.2)

ρ
2
i = 1 for i = 1,2, . . . ,n−1, (6.3)

ρiρ j = ρ jρi for |i− j| ≥ 2, (6.4)

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1,2, . . . ,n−2, (6.5)

ρis j = s jρi for |i− j| ≥ 2, (6.6)

ρiρi+1si = si+1ρiρi+1 for i = 1,2, . . . ,n−2. (6.7)
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Let us take the set

Mn =
{

m1,i1m2,i2 . . .mn−1,in−1 |mk,ik = ρkρk−1 . . .ρik+1 for each 1≤ k≤ n−1 and 0≤ ik < k
}

as the Schreier system of coset representatives of PV Tn in V Tn. We set mkk = 1 for 1≤ k ≤
n−1. For an element w ∈V Tn, recall that w denote the unique coset representative of the
coset of w in the Schreier set Mn. By Reidemeister-Schreier method, the group PV Tn is
generated by the set{

γ(µ,a) = (µa)(µa)−1 | µ ∈Mn and a ∈ {s1, . . . ,sn−1,ρ1, . . . ,ρn−1}
}
.

with defining relations{
τ(µrµ

−1) | µ ∈Mn and r is a defining relation in V Tn
}
,

where τ is the rewriting process. We set

λi,i+1 = siρi

for each 1≤ i≤ n−1 and

λi, j = ρ j−1ρ j−2 . . .ρi+1λi,i+1ρi+1 . . .ρ j−2ρ j−1

for each 1≤ i < j ≤ n and j ̸= i+1.

Theorem 6.1.1. The pure virtual twin group PV Tn on n≥ 2 strands is generated by

S =
{

λi, j | 1≤ i < j ≤ n
}
.

Proof. The case n= 2 is immediate, and hence we assume n≥ 3. Note that PV Tn is generated
by the elements γ(µ,a), where µ ∈Mn and a ∈ {s1, . . . ,sn−1,ρ1, . . . ,ρn−1}. We observe that

α = α,

α1si1 . . .αksik = α1ρi1 . . .αkρik

in V Tn for words α,α j in the generators {ρ1, . . . ,ρn−1}. Therefore, we have

γ(µ,ρi) = (µρi)(µρi)
−1 = 1 (6.8)
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and
γ(µ,si) = (µsi)(µρi)

−1 = µsiρiµ
−1 = µλi,i+1µ

−1

for each µ ∈Mn and i = 1,2, . . . ,n−1. Let S ⊔S−1 = {λ±1
i, j | λi, j ∈ S}. We claim that each

γ(µ,si) lie in S ⊔S−1. For this, we analyse the conjugation action of Sn = ⟨ρ1, . . . ,ρn−1⟩ on
the set S .

First consider λi,i+1 for i = 1,2, . . . ,n−1.

(i) If 1≤ k ≤ i−2 or i+2≤ k ≤ n−1, then

ρkλi,i+1ρk = λi,i+1.

(ii) If k = i−1, then

ρkλi,i+1ρk = ρi−1λi,i+1ρi−1

= ρi−1siρiρi−1

= ρi−1siρi−1ρi−1ρiρi−1

= ρisi−1ρiρi−1ρiρi−1

= ρisi−1ρi−1ρiρi−1ρi−1

= ρi(si−1ρi−1)ρi

= λi−1,i+1.

(iii) If k = i, then
ρkλi,i+1ρk = λ

−1
i,i+1.

(iii) If k = i+1, then
ρkλi,i+1ρk = λi,i+2.

Next, we consider λi, j for each 1≤ i < j ≤ n and j ̸= i+1.

(i) If 1≤ k ≤ i−2 or j+1≤ k ≤ n−1, then

ρkλi, jρk = λi, j.
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(ii) For k = i−1, we have ρi−1λi, jρi−1 = λi−1, j since

ρi−1λi, jρi−1 = ρi−1ρ j−1ρ j−2 . . .ρi+1λi,i+1ρi+1 . . .ρ j−2ρ j−1ρi−1

= ρ j−1ρ j−2 . . .ρi+1ρi−1λi,i+1ρi−1ρi+1 . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρi+1ρi−1siρiρi−1ρi+1 . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρi+1ρiρiρi−1siρiρi−1ρi+1 . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρi+1ρisi−1ρiρi−1ρiρi−1ρi+1 . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρi+1ρisi−1ρiρiρi−1ρiρi+1 . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρi+1ρi(si−1ρi−1)ρiρi+1 . . .ρ j−2ρ j−1

= λi−1, j.

(iii) For k = i, we have ρiλi, jρi = λi+1, j, since

ρiλi, jρi = ρiρ j−1ρ j−2 . . .ρi+1λi,i+1ρi+1 . . .ρ j−2ρ j−1ρi

= ρ j−1ρ j−2 . . .ρiρi+1λi,i+1ρi+1ρi . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρiρi+1siρiρi+1ρi . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρi+2si+1ρiρi+1ρiρi+1ρi . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρi+2si+1ρiρiρi+1ρiρi . . .ρ j−2ρ j−1

= ρ j−1ρ j−2 . . .ρi+2(si+1ρi+1)ρi+2 . . .ρ j−2ρ j−1

= λi+1, j.

(iv) If i+1≤ k ≤ j−2, then

ρkλi, jρk = ρkρ j−1 . . .ρk+1ρk . . .ρi+1λi,i+1ρi+1 . . .ρkρk+1 . . .ρ j−1ρk

= ρ j−1 . . .ρkρk+1ρk . . .ρi+1λi,i+1ρi+1 . . .ρkρk+1ρk . . .ρ j−1

= ρ j−1 . . .ρk+1ρkρk+1ρk−1 . . .ρi+1λi,i+1ρi+1 . . .ρk−1ρk+1ρkρk+1 . . .ρ j−1

= ρ j−1 . . .ρk+1ρkρk−1 . . .ρi+1λi,i+1ρi+1 . . .ρk−1ρkρk+1 . . .ρ j−1

= λi, j.

(v) If k = j−1, then
ρkλi, jρk = λi, j−1.

(vi) If k = j, then
ρkλi, jρk = λi, j+1.
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Hence, each generator γ(µ,si) lie in the set S ⊔S−1. Conversely, if λi, j ∈ S is an arbitrary
element, then we see that conjugation by (ρi−1ρi−2 . . .ρ2ρ1)(ρ j−1ρ j−2 . . .ρ3ρ2) maps λ1,2

to λi, j, whereas conjugation by (ρi−1ρi−2 . . .ρ2ρ1)(ρ j−1ρ j−2 . . .ρ3ρ2ρ1) maps λ1,2 to λ
−1
i, j .

That is, each λi, j = µλ1,2µ−1 = γ(µ,s1) for some µ ∈Mn, and hence S generates the group
PV Tn.

Remark 6.1.2. We can summarise the action of Sn on the set S ⊔S−1 as

ρi :


λi,i+1←→ λ

−1
i,i+1,

λi, j←→ λi+1, j for all i+2≤ j ≤ n,

λ j,i←→ λ j,i+1 for all 1≤ j < i,

λk,l ←→ λk,l otherwise, i.e., k ≥ i+2,or k < i and i ̸= l ̸= i+1.

The action can be further simplified as

ρi :

λi,i+1←→ λ
−1
i,i+1,

λk,l ←→ λk′,l′ for all (k, l) ̸= (i, i+1),

where the transposition (k′, l′) equals (i, i+1)(k, l)(i, i+1) and k′ < l′. As seen in the proof
of Theorem 6.1.1, the action of Sn on the set S ⊔S−1 is transitive.

We now prove the main result of this section.

Theorem 6.1.3. The pure virtual twin group PV Tn on n≥ 2 strands has the presentation〈
λi, j, 1≤ i < j ≤ n | λi, jλk,l = λk,lλi, j for distinct integers i, j,k, l

〉
.

Proof. Theorem 6.1.1 already gives a generating set S for PV Tn. Geometrically, a generator
λi, j looks as in Figure 6.1.
The defining relations are given by

τ(µrµ
−1),

where τ is the rewriting process, µ ∈Mn and r is a defining relation in V Tn. Let us take

µ = ρi1ρi2 . . .ρik ∈Mn .

Recall that by (6.8), γ(µ,ρi) = 1 for all i. Thus, no non-trivial relations for PV Tn can be
obtained from the relations (6.3)–(6.5) of V Tn. We consider the remaining relations one by
one.
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Fig. 6.1. The generator λi, j

(i) First consider the relations s2
i = 1, 1≤ i≤ n−1, of V Tn. Then we have

τ(µs2
i µ
−1) = γ(ρi1 . . .ρiksisiρik . . .ρi1)

= γ(1,ρi1)γ(ρi1,ρi2) . . .γ(µ,si)γ(µsi,si) . . .γ(µsisiρik . . .ρi2 ,ρi1)

= γ(µ,si)γ(µsi,si)

= γ(µ,si)γ(µρi,si)

= (µsiρiµ
−1)(µρisiµ

−1)

= (µsiρiµ
−1)(µsiρiµ

−1)−1,

which does not yield any non-trivial relation in PV Tn.

(ii) Next we consider the relations (siρ j)
2 = 1 for |i− j|> 1. Then we have

τ(µsiρ jsiρ jµ
−1) = γ(µ,si)γ(µsi,ρ j)γ(µsiρ j,si)γ(µsiρ jsi,ρ j)

= γ(µ,si)γ(µsiρ j,si)

= γ(µ,si)γ(µρiρ j,si)

= (µsiρiµ
−1)(µρiρ jsiρiρ jρiµ

−1)

= (µsiρiµ
−1)(µρisiµ

−1)

= (µsiρiµ
−1)(µsiρiµ

−1)−1,

which gives a trivial relation in PV Tn.
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(iii) Now we consider the relations ρisi+1ρiρi+1siρi+1 = 1, where 1≤ i≤ n−2. Computing

τ(µρisi+1ρiρi+1siρi+1µ
−1) = γ(µρi,si+1)γ(µρisi+1ρiρi+1,si)

= γ(µρi,si+1)γ(µρiρi+1ρiρi+1,si)

= (µρisi+1ρi+1ρiµ
−1)(µρi+1ρisiρiρiρi+1µ

−1)

= (µρisi+1ρi+1ρiµ
−1)(µρi+1ρisiρi+1µ

−1)

= (µρisi+1ρi+1ρiµ
−1)(µρi+1ρiρi+1ρi+1siρi+1µ

−1)

= (µρisi+1ρi+1ρiµ
−1)(µρi+1ρiρi+1ρisi+1ρiµ

−1)

= (µρisi+1ρi+1ρiµ
−1)(µρi+1ρi+1ρiρi+1si+1ρiµ

−1)

= (µρisi+1ρi+1ρiµ
−1)(µρiρi+1si+1ρiµ

−1)

= (µρisi+1ρi+1ρiµ
−1)(µρisi+1ρi+1ρiµ

−1)−1

gives only trivial relations in PV Tn.

(iv) Finally we consider the relations (sis j)
2 = 1 for |i− j|> 1. If µ = 1, then we get

τ(sis jsis j) = γ(1,si)γ(si,s j)γ(sis j,si)γ(sis jsi,s j)

= γ(1,si)γ(ρi,s j)γ(ρiρ j,si)γ(ρiρ jρi,s j)

= (siρi)(s jρ j)(ρisi)(ρ js j)

= λi,i+1λ j, j+1λ
−1
i,i+1λ

−1
j, j+1.

For µ ̸= 1, we have

τ(µsis jsis jµ
−1) = γ(µ,si)γ(µsi,s j)γ(µsis j,si)γ(µsis jsi,s j)

= γ(µ,si)γ(µρi,s j)γ(µρiρ j,si)γ(µρiρ jρi,s j)

= (µsiρiµ
−1)(µs jρ jµ

−1)(µρisiµ
−1)(µρ js jµ

−1)

= (µsiρiµ
−1)(µs jρ jµ

−1)(µsiρiµ
−1)−1(µs jρ jµ

−1)−1

= (µλi,i+1µ
−1)(µλ j, j+1µ

−1)(µλi,i+1µ
−1)−1(µλ j, j+1µ

−1)−1.

(6.9)

For n≥ 4, we set

T =
{
(λ ε

i, j,λ
ε ′
k,l) | i, j,k, l are distinct integers with 1≤ i< j≤ n, 1≤ k< l≤ n and ε,ε ′ ∈{1,−1}

}
.
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If ρ ∈ Sn and (λi, j,λk,l) ∈ T , then Remark 6.1.2 implies that

ρλi, jρ
−1 = λ

ε

i′, j′

and
ρλk,lρ

−1 = λ
ε ′
k′,l′

for some ε,ε ′ ∈{1,−1} and distinct integers i′, j′,k′, l′ with 1≤ i′< j′≤ n and 1≤ k′< l′≤ n.
Thus, there is an induced diagonal action of Sn on T given as

ρ · (λ ε
i, j, λ

ε ′
k,l) := (ρλ

ε
i, jρ
−1, ρλ

ε ′
k,lρ
−1).

We claim that this action is transitive. Since | T |= n(n−1)(n−2)(n−3), it is enough to show
that the stabiliser of some element of T has (n−4)! elements. In fact, the stabiliser of the
element (λ1,2, λn−1,n) equals ⟨ρ3,ρ4, . . . ,ρn−1⟩ ∩ ⟨ρ1,ρ2, . . . ,ρn−3⟩ = ⟨ρ3,ρ4, . . . ,ρn−3⟩ ∼=
Sn−4, which is of order (n−4)!. Thus, the action is transitive and the defining relations of
PV Tn obtained from (6.9) are precisely of the form

λi, jλk,l = λk,lλi, j

for distinct integers i, j,k, l with 1≤ i < j ≤ n and 1≤ k < l ≤ n. This completes the proof
of the theorem.

Recall that, a group is called a right-angled Artin group if it has a presentation in which the
only relations are the commuting relations among the generators. Further, a right-angled
Artin group is called irreducible if it cannot be written as a direct product of two non-trivial
subgroups.

Corollary 6.1.4. The pure virtual twin group PV Tn is an irreducible right-angled Artin
group for each n≥ 2.

Proof. That PV Tn is a right-angled Artin group follows from Theorem 6.1.3. Since PV T2∼=Z
and PV T3 ∼= F3, they are irreducible. Let n ≥ 4 and suppose that PV Tn = A×B for non-
trivial subgroups A and B of PV Tn. Assume that λ1,2 ∈ A. Since [λ1,2,λ1, j] ̸= 1 for all
3≤ j ≤ n, it follows that λ1, j ∈ A for all 2≤ j ≤ n. Consider an arbitrary generator λi, j of
PV Tn with 1 < i < j ≤ n. Since [λ1,i,λi, j] ̸= 1, it follows that λi, j ∈ A, and hence B = 1, a
contradiction.

Corollary 6.1.5. The virtual twin group V Tn is residually finite and Hopfian for each n≥ 2.
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Proof. It is well-known that a right-angled Artin group is linear [40, Corollary 3.6] and that
a finitely generated linear group is residually finite [61]. Thus, PV Tn is linear, and hence
residually finite. Since any extension of a residually finite group by a finite group is residually
finite, it follows that V Tn is residually finite. The second assertion follows from the fact that
every finitely generated residually finite group is Hopfian [61].

The conjugation action of Sn on PV Tn gives a group homomorphism φ : Sn→ Aut(PV Tn).
We conclude the section with the following observation.

Proposition 6.1.6. The homomorphism φ : Sn→ Aut(PV Tn) is injective for each n≥ 2.

Proof. The assertion is immediate for the case n = 2. First suppose that n ≥ 3 and n ̸= 4.
Recall that the only normal subgroups of Sn are 1, An and Sn. Note that the automorphisms
φ(ρ1), φ(ρ2) and φ(ρ1ρ2) are all distinct. Thus, order of Im(φ) is strictly greater than 2, and
hence Ker(φ) must be trivial.
Now suppose that n = 4. In this case, the normal subgroups of S4 are 1, S4, A4 and K4 =

{1,(1, 2)(3, 4) = ρ1ρ3,(1, 3)(2, 4),(1, 4)(2, 3)} (the Klein four group). As in the previous
case, Im(φ) has more than two elements, and hence Ker(φ) is either trivial or K4. Since
φ(ρ1ρ3)(λ1,2) = λ

−1
1,2 ̸= 1, we have ρ1ρ3 ̸∈ Ker(φ). Hence, Ker(φ) must be trivial in this

case as well.

6.2 Decomposition of pure virtual twin groups

Let in : PV Tn−1→ PV Tn be the natural inclusion obtained by adding a strand to the rightmost
side of the diagram of an element of PV Tn−1. In the reverse direction, we have a well-defined
homomorphism fn : PV Tn→ PV Tn−1 obtained by removing the rightmost strand from the
diagram of an element of PV Tn. Algebraically, fn is defined on generators of PV Tn by

fn(λi, j) =

λi, j if j ̸= n,

1 if j = n.

Furthermore, we have fn ◦ in = idPV Tn−1 , and hence fn is surjective. For each n≥ 2, let Un

denotes Ker( fn). Then we have the split short exact sequence

1 Un PV Tn PV Tn−1 1,
fn

in

that is,
PV Tn ∼=Un ⋊PV Tn−1.
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Theorem 6.2.1. For n≥ 2, we have

PV Tn ∼=Un ⋊ (Un−1 ⋊ (· · ·⋊ (U4 ⋊ (U3 ⋊U2)) · · ·)),

where U2 =PV T2∼=Z and Ui =Ker( fi : PV Ti→PV Ti−1) are infinitely generated free groups
for i≥ 3.

Proof. It is clear that U2 = PV T2 ∼= Z. We use the Reidemeister-Schreier method for n≥ 3,
for which we take the Schreier system to be PV Tn−1. Note that for µ ∈ PV Tn−1 and λi, j ∈ S ,
we have

γ(µ,λi, j) =

1 if j ̸= n,

µλi, jµ
−1 if j = n.

This implies that Un is generated by the set

X = {µλi,nµ
−1 | µ ∈ PV Tn−1 and i = 1,2, . . . ,n−1}.

Since PV T3 ∼= F3, it follows that U3 is an infinitely generated free group with generators

{µλ1,3µ
−1, µλ2,3µ

−1 | µ ∈ PV T2}.

For n≥ 4, in PV Tn we have relations of the form

λi, jλk,lλ
−1
i, j λ

−1
k,l = 1,

where i, j,k, l are distinct integers with i < j and k < l. First, consider the case when none of
i, j,k, l is equal to n. Since γ(µ,λi, j) = 1 for µ ∈ PV Tn−1 and λi, j ∈ S with j ̸= n, we have

τ(µλi, jλk,lλ
−1
i, j λ

−1
k,l µ

−1) = 1,

and hence there is no non-trivial relation in this case. Next, we consider the case when
exactly one of i, j,k, l is equal to n. Without loss of generality, we can assume that j = n.
Applying the rewriting process to the relations λi,nλk,lλ

−1
i,n λ

−1
k,l = 1 of PV Tn gives

τ(µλi,nλk,lλ
−1
i,n λ

−1
k,l µ

−1) = γ(µ,λi,n)γ(µλi,n,λk,l)γ(µλi,nλk,l,λ
−1
i,n )γ(µλi,nλk,lλ

−1
i,n ,λ−1

k,l )

= γ(µ,λi,n)γ(µλi,nλk,l,λ
−1
i,n )

= γ(µ,λi,n)γ(µλk,l,λ
−1
i,n )

= λ
µ−1

i,n
(
λ

λ
−1
k,l µ−1

i,n
)−1

.
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This gives the relations
µλi,nµ

−1 = µλk,lλi,nλ
−1
k,l µ

−1

in Un, which simply identifies two generators of Un. Finally, to prove that there are still
infinitely many distinct generators in the set X , we consider the sequence of elements

αε = λ
−ε

n−2,n−1λn−1,nλ
ε
n−2,n−1

in X . Notice that αε ̸= αε ′ for ε ̸= ε ′. Hence, Un is an infinite rank free group for each
n≥ 3.

Corollary 6.2.2. Z(PV Tn) = 1 for n≥ 3 and Z(V Tn) = 1 for n≥ 2.

Proof. We use the elementary fact that if G = N ⋊H is an internal semidirect product
with Z(H) = 1, then Z(G) ≤ Z(N). Recall that PV T2 ∼= Z and PV T3 ∼= F3. Since PV T4 =

U4 ⋊PV T3, we have
Z(PV T4)≤ Z(U4).

By Theorem 6.2.1, Z(U4)= 1, and hence Z(PV T4)= 1. An easy induction gives Z(PV Tn)= 1
for all n≥ 4.
Since V T2 ∼=Z2 ∗Z2, we have Z(V T2) = 1. For n≥ 3, since Z(Sn) = 1 and V Tn = PV Tn⋊Sn,
we have Z(V Tn)≤ Z(PV Tn) = 1.

A right-angled Artin group is called spherical if its corresponding Coxeter group is finite.
PV Tn is clearly non-spherical for n≥ 3. It is a well-known conjecture that every irreducible
non-spherical Artin group has trivial center [31, Conjecture B]. In view of Corollary 6.1.4,
PV Tn is irreducible and non-spherical. Hence, by Corollary 6.2.2, PV Tn satisfies the conjec-
ture for n≥ 3.





Chapter 7

Automorphism groups of pure virtual
twin groups

In this chapter, we compute automorphism groups of pure virtual twin groups. The results
are from [73].

7.1 Graphs of pure virtual twin groups

Given a graph Γ with the vertex set V , the right-angled Artin group associated to Γ is the
group

AΓ =
〈
V | [v, w] = 1 if v,w ∈V are joined by an edge in Γ

〉
.

Conversely, each right-angled Artin group gives a graph whose vertex set is the set of
generators of the group and there is an edge between the two vertices if and only if the two
generators commute. It is easy to see that the right-angled Artin group corresponding to the
complete graph on n vertices is the free abelian group Zn and the group corresponding to the
edgeless graph on n vertices is the free group Fn.
The generating set S = {λi, j | 1 ≤ i < j ≤ n} is the vertex set of the associated graph of
PV Tn for n≥ 2. Note that PV T2 ∼= Z, PV T3 ∼= F3 and PV T4 ∼= (Z×Z)∗ (Z×Z)∗ (Z×Z).
While the graphs of PV T2 and PV T3 are edgeless graphs on 1 and 3 vertices, respectively;
the graphs of PV T4 and PV T5 are shown in figures 7.1 and 7.2, respectively. It is interesting
to note that the graph of PV Tn is the Kneser graph K(n,2), which is same as the commuting
graph of the conjugacy class of transpositions in the symmetric group Sn.
The link lk(v) of a vertex v ∈V is defined as the set of all vertices that are connected to v by
an edge. The star st(v) of v is defined as lk(v)∪{v}. If v ̸= w are vertices, then we say that
w dominates v, written v≤ w, if lk(v)⊆ st(w).
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For each λi, j ∈ S , let

Ni, j = S \ st(λi, j) =
{

λk,l | [λi, j, λk,l] ̸= 1
}

be the set of vertices that are not connected to λi, j by an edge.

Fig. 7.1. The graph of PV T4

Fig. 7.2. The graph of PV T5

Proposition 7.1.1. The following hold for each λi, j ∈ S:

1. |Ni, j|= 2n−4.

2. |st(λi, j)|=
(n−2)(n−4)+n

2
. In particular, the graph of PV Tn is regular.
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Proof. Note that the set Ni, j can be written as a union of four disjoint subsets as follows

Ni, j ={λi,k | i+1≤ k ≤ n, k ̸= j}∪{λ j,k | j+1≤ k ≤ n}
∪{λk,i | 1≤ k ≤ i−1}∪{λk, j | 1≤ k ≤ j−1, k ̸= i}.

Observe that

|{λi,k | i+1≤ k ≤ n, k ̸= j}|+ |{λk,i | 1≤ k ≤ i−1}|= n−2,

|{λ j,k | j+1≤ k ≤ n}|+ |{λk, j | 1≤ k ≤ j−1, k ̸= i}|= n−2,

and hence |Ni, j|= 2n−4. The second assertion is immediate.

It is well-known (see, for example, [57, 80]) that the automorphism group Aut(AΓ) of a
right-angled Artin group AΓ is generated by the following four types of automorphisms.

1. Graph automorphism: Automorphism of AΓ induced by an automorphism of the graph
Γ.

2. Inversion ιa: Sends a generator a to its inverse and leaves all other generators fixed.

3. Transvection τab: Sends a generator a to ab and leaves all other generators fixed, where
b is another generator with a≤ b.

4. Partial conjugation pb,C: If b is a generator and C is a union of connected components
of Γ \ Γ(st(b)), then pb,C sends each generator a in C to ab and leaves the other
generators fixed. It follows that if Γ\Γ(st(b)) is connected or C = Γ\Γ(st(b)), then
the partial conjugation pb,C is simply the inner automorphism induced by b.

We set the following notations for the subgroups of the automorphism group Aut(PV Tn) of
PV Tn for n≥ 2.

• Autgr(PV Tn): The subgroup generated by all graph automorphisms.

• Autinv(PV Tn): The subgroup generated by all inversions.

• Auttr(PV T4): The subgroup generated by all transvections.

• Autpc(PV Tn): The subgroup generated by all partial conjugations.

• Inn(PV Tn): The subgroup of all inner automorphisms.
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7.2 Automorphism group of PV Tn,n ̸= 4

In this section, we compute the automorphism group of PV Tn for n ̸= 4. The case n = 4 is
exotic and will be dealt separately in the subsequent section. The following result is the main
theorem of this section.

Theorem 7.2.1. Let n≥ 5. Then there exist split exact sequences

1→ Autinv(PV Tn)→ ⟨Autgr(PV Tn),Autinv(PV Tn)⟩ → Autgr(PV Tn)→ 1 (7.1)

and
1→ Inn(PV Tn)→ Aut(PV Tn)→ ⟨Autgr(PV Tn),Autinv(PV Tn)⟩ → 1. (7.2)

In particular,
⟨Autgr(PV Tn),Autinv(PV Tn)⟩ ∼= Zn(n−1)/2

2 ⋊Sn

and
Aut(PV Tn)∼= PV Tn ⋊ (Zn(n−1)/2

2 ⋊Sn).

We begin by computing the structure of Autinv(PV Tn), which follows immediately as conse-
quence of the definition.

Lemma 7.2.2. Autinv(PV Tn)∼= Zn(n−1)/2
2 for all n≥ 2.

Next we compute the group Autgr(PV Tn). Since the graph of PV Tn is the Kneser graph
K(n,2), its group of graph automorphisms is well-known [32, Corollary 7.8.2]. However, we
give a direct computation of Autgr(PV Tn) in our set-up. For n = 2, there is only one vertex,
and hence Autgr(PV T2) = 1. Assume that n≥ 3. For each 1≤ k ≤ n−1, define

θk := ιλk,k+1
◦φ(ρk),

where φ : Sn→ Aut(PV Tn) is the map from Proposition 6.1.6. The action of θk on the set S
of generators is described explicitly as follows:

θk :



λk,k+1 −→ λk,k+1,

λk, j −→ λk+1, j for all k+2≤ j ≤ n,

λk+1, j −→ λk, j for all k+2≤ j ≤ n,

λi,k −→ λi,k+1 for all 1≤ i < k,

λi,k+1 −→ λi,k for all 1≤ i < k,

λi, j −→ λi, j else, i.e., i≥ k+2, or i < k and k ̸= j ̸= k+1.
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Since each automorphism θk keeps the set S invariant, we have

⟨θ1,θ2, . . . ,θn−1⟩ ≤ Autgr(PV Tn). (7.3)

Note that this action of ⟨θ1,θ2, . . . ,θn−1⟩ on S is transitive. In fact, given any generator
λi, j ∈ S , the automorphism (θi−1θi−2 · · ·θ2θ1)(θ j−1θ j−2 · · ·θ3θ2) maps λ1,2 onto λi, j.

Lemma 7.2.3. ⟨θ1,θ2, . . . ,θn−1⟩ ∼= Sn for all n≥ 3.

Proof. Note that θi is an involution for each 1≤ i≤ n−1. It follows from the construction
that [θi, θ j] = 1 for all |i− j| ≥ 2. We now claim that (θiθi+1)

3 = 1 for all 1≤ i≤ n−2. We
verify this for i = 1 and other cases will follow similarly. Consider

θ1 :


λ1,2 −→ λ1,2,

λ1, j −→ λ2, j for all 3≤ j ≤ n,
λ2, j −→ λ1, j for all 3≤ j ≤ n,
λi, j −→ λi, j otherwise, i.e., i≥ 3,

θ2 :



λ1,2 −→ λ1,3,

λ1,3 −→ λ1,2,

λ2,3 −→ λ2,3,

λ2, j −→ λ3, j for all 4≤ j ≤ n,
λ3, j −→ λ2, j for all 4≤ j ≤ n,
λi, j −→ λi, j i≥ 4, or i = 1 and

4≤ j ≤ n.

Note that θ1θ2 fixes the generators λi, j for all i ≥ 4. Thus, we need to check only for λi, j

with 1≤ i≤ 3. We see that

θ1θ2 :



λ1,2 −→ λ2,3,

λ1,3 −→ λ1,2,

λ1, j −→ λ2, j for all 4≤ j ≤ n,

λ2,3 −→ λ1,3,

λ2, j −→ λ3, j for all 4≤ j ≤ n,

λ3, j −→ λ1, j for all 4≤ j ≤ n,

λi, j −→ λi, j otherwise, i.e., i≥ 4,

and it can be easily checked that (θ1θ2)
3 = 1. Thus, sending ρk to θk gives a surjective

homomorphism from Sn onto ⟨θ1,θ2, . . . ,θn−1⟩. We claim that this homomorphism is in-
jective as well. Note that the only normal subgroups of Sn are 1, An and Sn, n ≥ 3 and
n ̸= 4. We know ρ1ρ2 ∈ An. From preceding computation we have θ1θ2 ̸= 1. Thus ρ1ρ2

does not belong to the kernel and consequently An and Sn cannot be the kernel. So we are
done for the case n ≥ 3 and n ̸= 4. For n = 4, we have an extra normal subgroup of S4,
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namely the Klein four-subgroup, K4 = {1,ρ1ρ3 = (1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}. Like
previous case, we can check that θ1θ3 ̸= 1. Thus ρ1ρ3 does not belong to the kernel and
consequently K4 cannot be the kernel. Thus, the kernel of the homomorphism must be trivial
and ⟨θ1,θ2, . . . ,θn−1⟩ ∼= Sn.

We refer the set {λk,l | k < l ≤ n} as the kth column of the graph of PV Tn.

Lemma 7.2.4. Let φ ∈ Autgr(PV Tn) such that φ(λ1, j) = λ1, j for all 2 ≤ j ≤ n. Then φ is
the identity automorphism.

Proof. We begin by noting that if φ(λi, j) = λi, j for some i, j, then being a graph automor-
phism, φ keeps the set Ni, j invariant. For 1≤ i≤ n−1, we have

(i+1)th column ⊆ Ni,i+1 ⊆
i+1⋃
k=1

kth column.

We now proceed to the main part of the proof. Since φ(λ1,2) = λ1,2, φ keeps N1,2, i.e., first
two columns invariant. As the first column is already fixed pointwise, φ keeps the second
column invariant. Now suppose that φ(λ2,3) = λ2, j for some 4 ≤ j ≤ n. Now we have
two elements λ1,3 and λ2,3 who do not commutes, but their images (λ1,3 and λ2, j, j ≥ 4
respectively) under φ commutes. This contradicts the hypothesis that φ is an automorphism.
Thus φ(λ2,3) = λ2,3, and similarly we can show that φ(λ2, j) = λ2, j, for all 4≤ j ≤ n. Now
consider the element λ2,3. As φ fixes λ2,3, it should keep N2,3 invariant. But φ already fixes
first two columns pointwise. Thus φ keeps the third column invariant. By repeated use of
above arguments we get the desired result.

Theorem 7.2.5. If n≥ 3 and n ̸= 4, then Autgr(PV Tn) = ⟨θ1,θ2, . . . ,θn−1⟩ ∼= Sn.

Proof. Since the graph of PV Tn has n(n−1)/2 vertices, it follows that

Sn ∼= ⟨θ1,θ2, . . . ,θn−1⟩ ≤ Autgr(PV Tn)≤ Sn(n−1)/2.

Thus, we have Autgr(PV T3) ∼= S3. For n ≥ 5, it is sufficient to prove Autgr(PV Tn) ≤
⟨θ1,θ2, . . . ,θn−1⟩. Consider an arbitrary automorphism φ ∈ Autgr(PV Tn). Our plan is to
compose φ with finitely many automorphism of ⟨θ1,θ2, . . . ,θn−1⟩ and obtain the identity
automorphism.
As the automorphism group ⟨θ1,θ2, . . . ,θn−1⟩ acts transitively on the generating set S , there
exists φ1 ∈ ⟨θ1,θ2, . . . ,θn−1⟩ such that φ1φ(λ1,2) = λ1,2. Thus, the set N1,2 = {λi, j | 1≤ i≤
2, 3≤ j ≤ n} should be invariant under φ1φ . Now set
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φ2 :


1 if φ1φ(λ1,3) = λ1,3,

θ1 if φ1φ(λ1,3) = λ2,3,

θ3θ4 · · ·θ j−1 if φ1φ(λ1,3) = λ1, j, j ≥ 4,

θ3θ4 · · ·θ j−1θ1 if φ1φ(λ1,3) = λ2, j, j ≥ 4.

Note that φ2φ1φ(λ1,2) = λ1,2 and φ2φ1φ(λ1,3) = λ1,3. Now φ2φ1φ keeps the sets N1,2 and
lk(1,3) invariant and thus keeps there intersection also invariant. Note that

N1,2∩ lk(λ1,3) =
{

λ2, j | 4≤ j ≤ n
}
.

We claim that there exists φ3 ∈ ⟨θ4,θ5, . . . ,θn−1⟩ such that φ3φ2φ1φ(λ2, j) = λ2, j for all
4≤ j ≤ n. Suppose that φ2φ1φ(λ2,4) = λ2, j for some 4≤ j ≤ n. Take ψ4 = θ4θ5 . . .θ j−1 ∈
⟨θ4,θ5, . . . ,θn−1⟩. Note that ψ4φ2φ1φ(λ2,4) = ψ4(λ2, j) = λ2,4 and ψ4φ2φ1φ keeps the set
{λ2, j | 5≤ j ≤ n} invariant. Now suppose that φ2φ1φ(λ2,5) = λ2, j for some 5≤ j ≤ n. Take
ψ5 = θ5θ6 . . .θ j−1 ∈ ⟨θ5,θ6, . . . ,θn−1⟩ ⊆ ⟨θ4,θ5, . . . ,θn−1⟩. Repeating the argument we can
take φ3 = ψnψn−1 . . .ψ4 ∈ ⟨θ4,θ5, . . . ,θn−1⟩.
Note that, by the choice of φ3, we also have φ3φ2φ1φ(λ1,2) = λ1,2 and φ3φ2φ1φ(λ1,3) = λ1,3.
We claim that φ3φ2φ1φ(λ2,3) = λ2,3 and φ3φ2φ1φ(λ1, j) = λ1, j for all 4 ≤ j ≤ n. We use
the commuting relations among elements of N1,2 and the hypothesis that n≥ 5. There are
two cases here. First, if φ3φ2φ1φ(λ2,3) = λ1, j for some j ≥ 4, then φ3φ2φ1φ(λ1,k) = λ2,3

and φ3φ2φ1φ(λ1, j) = λ1,l for some k, l ≥ 4. Notice that λ2,3 and λ1, j commute but not their
images. Thus, this case does not arise. Secondly, suppose that φ3φ2φ1φ(λ2,3) = λ2,3, but
φ3φ2φ1φ(λ1, j) = λ1,k for some j,k≥ 4 with j ̸= k. Then, the elements λ1, j and λ2,k commute,
but not their images. Since the first two columns are fixed pointwise, we are done by Lemma
7.2.4.

Theorem 7.2.6. Aut(PV Tn) =
〈

Autgr(PV Tn),Autinv(PV Tn), Inn(PV Tn)
〉

for all n≥ 5.

Proof. Our first claim is that PV Tn does not admit any automorphism of transvection type.
Equivalently, if λi, j ̸= λk, l , then neither λi, j ≤ λk, l nor λk, l ≤ λi, j. Suppose that λi, j ̸= λk, l .
That means either {i, j}∩{k, l} is empty or a singleton set. Let us first suppose that the
intersection is empty. Since n ≥ 5, we can choose 1 ≤ q ≤ n such that q /∈ {i, j,k, l}. Set
x = λi,q (if i < q) or x = λq,i (if i > q) and y = λk,q (if k < q) or y = λq,k (if k > q). Observe
that x ∈ lk(λk,l)\ st(λi, j) and y ∈ lk(λi, j)\ st(λk,l). Thus, neither λk,l ≤ λi, j nor λi, j ≤ λk,l .
Now we suppose that the intersection is a singleton set. Without loss of generality, we may
assume that i = k. Since n≥ 5, choose m /∈ {i, j,k} and set x = λm,l (if m < l) or x = λl,m (if
m > l) and y = λm, j (if m < j) or y = λ j,m (if m > j). Observe that x ∈ lk(λi, j)\ st(λk,l) and
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y ∈ lk(λk,l)\ st(λi, j). Thus, PV Tn does not admit any automorphism of transvection type for
n≥ 5.
Our second claim is that Autpc(PV Tn)= Inn(PV Tn). Equivalently, the subgraph Γ\Γ(st(λi, j))

is connected for each λi, j. Note that the action of Autgr(PV Tn) = ⟨θ1,θ2, . . . ,θn−1⟩ on S is
transitive. In fact, given any generator λi, j ∈ S , the automorphism

(θi−1θi−2 · · ·θ2θ1)(θ j−1θ j−2 · · ·θ3θ2)

maps λ1,2 onto λi, j. Thus, it suffices to prove the claim for λ1,2. Note that the vertex set of
Γ\Γ(st(λ1,2)) is {λ1,i,λ2, j | 3≤ i, j ≤ n}. Let v1,v2 be two vertices of Γ\Γ(st(λ1,2)). We
find a path joining these two vertices as per the following cases:

1. v1 = λ1,i,v2 = λ1, j, i ̸= j: Choose an integer k such that 3≤ k ≤ n and i ̸= k ̸= j. This
is possible since n≥ 5. We see that there is an edge joining λ1,i and λ2,k and an edge
joining λ2,k and λ1, j.

2. v1 = λ2,i,v2 = λ2, j, i ̸= j: This is analogous to the previous case.

3. v1 = λ1,i,v2 = λ2, j, i ̸= j: Clearly there is an edge joining λ1,i and λ2, j.

4. v1 = λ1,i,v2 = λ2,i: Choose two integers j,k such that 3≤ j,k ≤ n and j ̸= i ̸= k ̸= j.
We can see that there are edges from λ1,i to λ2, j, from λ2, j to λ1,k, and from λ1,k to
λ2,i.

Hence, the subgraph Γ\Γ(st(λ1,2)) is connected. Thus, Autpc(PV Tn) = Inn(PV Tn) for n≥ 5.
Finally, by [57, 80], we have Aut(PV Tn) =

〈
Autgr(PV Tn),Autinv(PV Tn), Inn(PV Tn)

〉
.

We now state and prove the main theorem of this section.

Theorem 7.2.7. Let n≥ 5. Then there exist split exact sequences

1→ Autinv(PV Tn)→ ⟨Autgr(PV Tn),Autinv(PV Tn)⟩ → Autgr(PV Tn)→ 1 (7.4)

and
1→ Inn(PV Tn)→ Aut(PV Tn)→ ⟨Autgr(PV Tn),Autinv(PV Tn)⟩ → 1. (7.5)

In particular,
⟨Autgr(PV Tn),Autinv(PV Tn)⟩ ∼= Zn(n−1)/2

2 ⋊Sn

and
Aut(PV Tn)∼= PV Tn ⋊ (Zn(n−1)/2

2 ⋊Sn).
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Proof. It follows from the construction of graph automorphisms that Autgr(PV Tn) normalises
Autinv(PV Tn). Further, since Autgr(PV Tn)∩Autinv(PV Tn) = 1, the short exact sequence (7.4)
splits.
Recall from Theorem 7.2.6 that Aut(PV Tn) = ⟨Autgr(PV Tn),Autinv(PV Tn), Inn(PV Tn)⟩.
Note that any automorphism φ ∈ ⟨Autgr(PV Tn),Autinv(PV Tn)⟩ keeps the set S ∪S−1 invari-
ant. Since two distinct elements of S ∪S−1 are not conjugates of each other in PV Tn, it
follows that

Inn(PV Tn)∩⟨Autgr(PV Tn),Autinv(PV Tn)⟩= 1.

This gives the split sequence (7.5). The remaining two assertions are immediate.

Recall that PV T2 ∼= Z and PV T3 ∼= F3. While Aut(PV T2)∼= Z2, the structure of Aut(F3) is
well-known, see, for example, [1, Corollary 1]. The case n = 4 is exotic and will be dealt
with separately in Subsection 7.3.
Recall that a group G is said to have R∞-property if it has infinitely many φ -twisted conjugacy
classes for each automorphism φ of G, where two elements x,y ∈ G are said to lie in the
same φ -twisted conjugacy class if there exists g ∈ G such that x = gyφ(g)−1.

Theorem 7.2.8. PV Tn has R∞-property if and only if n≥ 3.

Proof. Clearly, PV T2 does not have R∞-property. Since the graphs of PV T3 and PV T4 are
non-complete graphs on at most 7 vertices, it follows from [22, Theorem 7.1.1] that these
groups have R∞-property. For n ≥ 5, Theorem 7.2.6 gives the structure of Aut(PV Tn) as
Aut(PV Tn) =

〈
Autgr(PV Tn),Autinv(PV Tn), Inn(PV Tn)

〉
. Since the graph of PV Tn is not

complete, the result now follows from [22, Theorem 3.3.3].

7.3 Automorphism group of PV T4

Recall that PV T4 ∼= (Z×Z) ∗ (Z×Z) ∗ (Z×Z). For 1 ≤ i ≤ 3, let Hi denote the i-th free
abelian factor in the free product decomposition of PV T4. For simplicity of notation, we set

Hi = ⟨xi, yi | [xi, yi] = 1⟩.

Recall that the automorphism group of a right-angled Artin group is generated by graph
automorphisms, inversions, transvections and partial conjugations. By looking at the graph
of PV T4 (see Figure 7.1) one can easily see that | Autgr(PV T4) |= 48. In fact, Autgr(PV T4)

is generated by the following five graph automorphisms:
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σ1 :


x1←→ y1,

xi←→ xi if i = 2,3,
y j←→ y j if j = 2,3,

σ2 :


x2←→ y2,

xi←→ xi if i = 1,3,
y j←→ y j if j = 1,3,

σ3 :


x3←→ y3,

xi←→ xi if i = 1,2,
y j←→ y j if j = 1,2,

ψ1 :


x1←→ x2,

y1←→ y2,

x3←→ x3,

y3←→ y3,

and ψ2 :


x1←→ x1,

y1←→ y1,

x2←→ x3,

y2←→ y3.

Let ιxi and ιyi denote the inversion automorphisms that invert the generators xi and yi,
respectively, and fix all other generators. Let τx1y1 , τy1x1 , τx2y2 , τy2x2 , τx3y3 and τy3x3 be the
transvection automorphisms that generate Auttr(PV T4).
Let Ci denote the connected component of the graph Γ of PV T4 corresponding to the subgroup
Hi or equivalently to the vertex set {xi,yi}. Then, for the generator x1 of PV T4, there are
three choices for a union C of connected components of Γ\Γ(st(x1)). Thus, there are 18
partial conjugations that generate Autpc(PV T4). The partial conjugations corresponding to
the generator x1 are as follows:

px1,C2 :


x2→ x−1

1 x2x1,

y2→ x−1
1 y2x1,

x j→ x j if j = 1,3,
yk→ yk if k = 1,3,

px1,C3 :


x3→ x−1

1 x3x1,

y3→ x−1
1 y3x1,

x j→ x j if j = 1,2,
yk→ yk if k = 1,2,

px1,C2∪C3 :


xi→ x−1

1 xix1 if i = 2,3,

yi→ x−1
1 yix1 if i = 2,3,

x1→ x1,

y1→ y1.

Notice that px1,C2 px1,C3 = px1,C2∪C3 = px1,C3 px1,C2 . Moreover, px1,C2∪C3 is the inner auto-
morphism induced by x1. By symmetry, the remaining 15 generating partial conjugations
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can be defined analogously, and we have

Autpc(PV T4) =
〈

Inn(PV T4),⟨px1,C2, py1,C2, px2,C3, py2,C3, px3,C1, py3,C1⟩
〉
.

Since Aut(Hi) ∼= Aut(Z×Z) ∼= GL2(Z), it follows that Aut(PV T4) contains a subgroup
isomorphic to GL2(Z)×GL2(Z)×GL2(Z).

Lemma 7.3.1.

⟨Autinv(PV T4),Auttr(PV T4)⟩ ∼= GL2(Z)×GL2(Z)×GL2(Z).

Proof. Recall that

⟨Autinv(PV T4),Auttr(PV T4)⟩= ⟨ιx1 , ιx2 , ιx3, ιy1, ιy2, ιy3,τx1y1,τy1x1 ,τx2y2,τy2x2,τx3y3,τy3x3⟩.

Let us set

K1 = ⟨τx1y1,τy1x1 , ιx1 , ιy1⟩,
K2 = ⟨τx2y2,τy2x2, ιx2 , ιy2⟩,
K3 = ⟨τx3y3,τy3x3, ιx3, ιy3 ,⟩.

Notice that K1,K2,K3 act trivially on H2 ∗H3, H1 ∗H3 and H1 ∗H2, respectively. Further,
[K1, K2] = [K2, K3] = [K3, K1] = 1 and K1 ∼= K2 ∼= K3. Thus, it suffices to prove that
K1 ∼= GL2(Z). But, this follows by recalling that

GL2(Z) =
〈[1 1

0 1

]
,

[
1 0
1 1

]
,

[
−1 0
0 1

]〉
and identifying generators of K1 with matrices in GL2(Z) as

τx1y1 →
[

1 0
1 1

]
,τy1x1 →

[
1 1
0 1

]
, ιx1 →

[
−1 0
0 1

]
and ιy1 →

[
1 0
0 −1

]
.

Lemma 7.3.2.

Autgr(PV T4)∩⟨Autinv(PV T4),Auttr(PV T4)⟩= ⟨σ1,σ2,σ3⟩ ∼= Z2×Z2×Z2
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and

⟨Autgr(PV T4),Autinv(PV T4),Auttr(PV T4)⟩= ⟨Autinv(PV T4),Auttr(PV T4)⟩⋊ ⟨ψ1,ψ2⟩
∼=
(

GL2(Z)×GL2(Z)×GL2(Z)
)
⋊S3.

Proof. Notice that ψ1,ψ2 permutes Hi’s non-trivially, and hence ⟨Autinv(PV T4),Auttr(PV T4)⟩∩
⟨ψ1,ψ2⟩ = 1. On the other hand σ1,σ2,σ3 ∈ ⟨Autinv(PV T4),Auttr(PV T4)⟩, and hence the
first assertion follows.
For the second assertion notice that ⟨ψ1,ψ2⟩ ∼= S3 and ψ2

1 = 1 = ψ2
2 . It suffices to show that

⟨ψ1,ψ2⟩ normalises ⟨Autinv(PV T4),Auttr(PV T4)⟩. A direct check shows that

ψ1τx1y1ψ1 = τx2y2, ψ1τy1x1ψ1 = τy2x2, ψ1τx3y3ψ1 = τx3y3, ψ1τy3x3ψ1 = τy3x3,

ψ1ιx1ψ1 = ιx2, ψ1ιy1ψ1 = ιy2, ψ1ιx3ψ1 = ιx3 , ψ1ιy3ψ1 = ιy3,

and hence ψ1 normalises ⟨Autinv(PV T4),Auttr(PV T4)⟩. By symmetry, the same assertion
holds for ψ2, and we get the desired result.

Lemma 7.3.3. Autpc(PV T4) is normal in Aut(PV T4).

Proof. Note that Inn(PV T4)≤Autpc(PV T4). Set M = ⟨px1,C2 , py1,C2, px2,C3, py2,C3, px3,C1, py3,C1⟩.
It suffices to show that φ−1Mφ ≤Autpc(PV T4) for all φ ∈ ⟨Autgr(PV T4),Autinv(PV T4),Auttr(PV T4)⟩.
If φ = ψ1, then

ψ1 px1,C2ψ1 = px2,C1 , ψ1 py1,C2ψ1 = py2,C1, ψ1 px2,C3ψ1 = px1,C3,

ψ1 py2,C3ψ1 = py1,C3 , ψ1 px3,C1ψ1 = px3,C2, ψ1 py3,C1ψ1 = py3,C2.

Thus, ψ1 normalises Autpc(PV T4). By symmetry, ψ2 and hence ⟨ψ1,ψ2⟩ normalises Autpc(PV T4).
By Lemma 7.3.2, it remains to show that ⟨Autinv(PV T4),Auttr(PV T4)⟩ normalises Autpc(PV T4).
If φ = ιx1 , then

ιx1 px1,C2ιx1 = p−1
x1,C2

, ιx1 py1,C2ιx1 = py1,C2, ιx1 px2,C3ιx1 = px2,C3 ,

ιx1 py2,C3ιx1 = py2,C3, ιx1 px3,C1ιx1 = px3,C1, ιx1 py3,C1ιx1 = py3,C1 .

Thus, ιx1 normalises Autpc(PV T4). By symmetry, all the other inversions also normalise
Autpc(PV T4), and consequently Autinv(PV T4) normalises Autpc(PV T4).

If φ = τx1y1 , then

τ−1
x1y1

px1,C2τx1y1 = p−1
y1,C2

px1,C2, τ−1
x1y1

py1,C2τx1y1 = py1,C2, τ−1
x1y1

px2,C3τx1y1 = px2,C3,

τ−1
x1y1

py2,C3τx1y1 = py2,C3, τ−1
x1y1

px3,C1τx1y1 = px3,C1, τ−1
x1y1

py3,C1τx1y1 = py3,C1.
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Thus, τx1y1 normalises Autpc(PV T4). Similarly, one can show that all other transvections also

normalise Autpc(PV T4), which completes the proof of the lemma.

Finally, we determine the structure of Autpc(PV T4). A presentation of the group of partial
conjugations of a right-angled Artin group has been constructed in [83, Theorem 3.1].

Lemma 7.3.4. The group Autpc(PV T4) has a presentation with generating set

{pxi,C j , pyi,C j | i ̸= j and i, j = 1,2,3}

and following defining relations:

1. [pxi,C j , pxi,Ck ] = [pyi,C j , pyi,Ck ] = [pxi,C j , pyi,Ck ] = [pxi,C j , pyi,C j ] = 1 for i = 1,2,3 with
i ̸= j ̸= k ̸= i.

2. [pxi,C j pxi,Ck , px j,Ck ] = [pyi,C j pyi,Ck , py j,Ck ] = [pxi,C j pxi,Ck , py j,Ck ] = [pyi,C j pyi,Ck , px j,Ck ] =

1 for i, j,k = 1,2,3 with i ̸= j ̸= k ̸= i.

In particular,
Autpc(PV T4)∼= (Z2 ∗Z2 ∗Z2)⋊ (Z2 ∗Z2 ∗Z2).

Proof. Relations in (1) and (2) follow by direct computations together with [83, Theorem
3.1]. Note that

Inn(PV T4) =
〈

pxi,C j pxi,Ck , pyi,C j pyi,Ck | i ̸= j ̸= k ̸= i, j < k and i, j,k = 1,2,3
〉
.

Setting
Autpc\inn(PV T4) =

〈
px1,C2, py1,C2, px2,C3, py2,C3, px3,C1 , py3,C1

〉
,

we see that

• Autpc\inn(PV T4)∼= Z2 ∗Z2 ∗Z2.

• Autpc(PV T4) = Inn(PV T4)Autpc\inn(PV T4).

Consider the surjective homomorphism g : Autpc(PV T4)→ Autpc\inn(PV T4) defined on
generators as

g :


px1,C2 7→ px1,C2,

px1,C3 7→ p−1
x1,C2

,

py1,C2 7→ py1,C2,

py1,C3 7→ p−1
y1,C2

,

g :


px2,C1 7→ p−1

x2,C3
,

px2,C3 7→ px2,C3,

py2,C1 7→ p−1
y2,C3

,

py2,C3 7→ py2,C3,

g :


px3,C1 7→ px3,C1,

px3,C2 7→ p−1
x3,C1

,

py3,C1 7→ py3,C1,

py3,C2 7→ p−1
y3,C1

.
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Note that Inn(PV T4) ⊆ Ker(g). Let w ∈ Ker(g) and write w = xy for some x ∈ Inn(PV T4)

and y ∈ Autpc\inn(PV T4). Then we have

1 = g(w) = g(x)g(y) = y,

and hence Ker(g) = Inn(PV T4). This implies that

Autpc(PV T4) = Inn(PV T4)⋊Autpc\inn(PV T4), (7.6)

and hence
Autpc(PV T4)∼= (Z2 ∗Z2 ∗Z2)⋊ (Z2 ∗Z2 ∗Z2).

This completes the proof.

Combining the preceding lemmas yield the following theorem.

Theorem 7.3.5. There exists a split exact sequence

1→ Autpc(PV T4)→ Aut(PV T4)→
〈

Autgr(PV T4),Autinv(PV T4),Auttr(PV T4)
〉
→ 1.

In particular,

Aut(PV T4) = Autpc(PV T4)⋊
〈

Autgr(PV T4),Autinv(PV T4),Auttr(PV T4)
〉

∼= ((Z2 ∗Z2 ∗Z2)⋊ (Z2 ∗Z2 ∗Z2))⋊
(
(GL2(Z)×GL2(Z)×GL2(Z))⋊S3

)
.

Proof. Note that each automorphism in Autpc(PV T4) preserves conjugacy classes of genera-
tors. But, the only automorphism in ⟨Autgr,Autinv,Auttr⟩ which preserves conjugacy classes
of generators is the identity automorphism. Hence

Autpc(PV T4)∩
〈

Autgr(PV T4),Autinv(PV T4),Auttr(PV T4)
〉
= 1,

and the assertion follows.

Recall that an automorphism of a group is called an IA automorphism if it acts as identity on
the abelianisation of the group. Note that inner automorphisms are IA automorphisms.

Corollary 7.3.6. Each IA automorphism of PV Tn is inner if and only if n = 2 or n≥ 5.

Proof. Note that the IA automorphism group of PV T2 is obviously trivial. Magnus [59] gave
generators of the group of IA automorphisms of F3 ∼= PV T3 and showed that it contains non-
inner automorphisms. Clearly, Autpc(PV T4) is a subgroup of the group of IA automorphisms
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of PV T4. It follows from (7.6) that Autpc(PV T4) contains non-inner automorphisms as well.
For n≥ 5, a direct check using the description of Aut(PV Tn) in Theorem 7.2.7 shows that
the only IA automorphisms of PV Tn are the inner automorphisms.





Chapter 8

Commutator subgroups of virtual twin
groups

This final chapter deals with commutator subgroups of V Tn and PV Tn [73]. We begin by
giving a reduced presentation of V Tn for n≥ 3, which we will use in finding a presentation
of the commutator subgroup γ2(V Tn) of V Tn. We will also show that the lower central series
of V Tn stabilises at the second term.

8.1 A reduced presentation of virtual twin groups

For the sake of convenience, we recall the defining relations in the standard presentation of
V Tn.

s2
i = 1 for i = 1,2, . . . ,n−1, (8.1)

sis j = s jsi for |i− j| ≥ 2, (8.2)

ρ
2
i = 1 for i = 1,2, . . . ,n−1, (8.3)

ρiρ j = ρ jρi for |i− j| ≥ 2, (8.4)

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1,2, . . . ,n−2, (8.5)

ρis j = s jρi for |i− j| ≥ 2, (8.6)

ρiρi+1si = si+1ρiρi+1 for i = 1,2, . . . ,n−2. (8.7)

Theorem 8.1.1. The virtual twin group has the following reduced presentation:

1. V T3 = ⟨s1,ρ1,ρ2 | s2
1 = ρ2

1 = ρ2
2 = (ρ1ρ2)

3 = 1⟩.
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2. For n≥ 4, V Tn is generated by {s1,ρ1,ρ2, . . . ,ρn−1} with following defining relations

s2
1 = 1, (8.8)

ρ
2
i = 1 for i = 1,2, . . . ,n−1, (8.9)

ρiρ j = ρ jρi for |i− j| ≥ 2, (8.10)

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1,2, . . . ,n−2, (8.11)

ρis1 = s1ρi for i≥ 3, (8.12)

(s1ρ2ρ1ρ3ρ2)
4 = 1. (8.13)

Proof. The case n = 3 is immediate. We first use the relation (8.7) to eliminate a few
generators and then we show that the rest of the relations in first presentation can be derived
from relations (8.8)–(8.13). We prove the desired result in the following three steps.

Claim 1. We claim that

si+1 = (ρiρi−1 . . .ρ2ρ1)(ρi+1ρi . . .ρ3ρ2)s1(ρ2ρ3 . . .ρiρi+1)(ρ1ρ2 . . .ρi−1ρi)

for i≥ 2.

We note that the case i = 2 follows from relation in (8.7). Let us suppose that the claim holds
for i and we prove it for i+1. For i+1, we have

si+1 = ρiρi+1siρi+1ρi.

Substituting the value of si from our assumption gives

si+1 = ρiρi+1(ρi−1ρi−2 . . .ρ2ρ1)(ρiρi−1 . . .ρ3ρ2)s1(ρ2ρ3 . . .ρi−1ρi)(ρ1ρ2 . . .ρi−2ρi−1)ρi+1ρi.

By using relation in (8.10), we get

si+1 = (ρiρi−1 . . .ρ2ρ1)(ρi+1ρi . . .ρ3ρ2)s1(ρ2ρ3 . . .ρiρi+1)(ρ1ρ2 . . .ρi−1ρi).

Using Claim 1, we can express si, i≥ 2, in terms of s1 and ρ j’s. This means we can eliminate
the generators si, i≥ 2.

Claim 2. The relation
siρ j = ρ jsi, |i− j| ≥ 2

is a consequence of Claim 1 and relations in equations 8.10, 8.11 and 8.12.
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Claim 1 gives

siρ j = (ρi−1ρi−2 . . .ρ2ρ1)(ρiρi−1 . . .ρ3ρ2)s1(ρ2ρ3 . . .ρi−1ρi)(ρ1ρ2 . . .ρi−2ρi−1)ρ j.

If j≥ i+2, then we are done by relations 8.10 and 8.12. Next, we consider the case j≤ i−2.

siρ j = (ρi−1ρi−2 . . .ρ2ρ1)(ρiρi−1 . . .ρ3ρ2)s1(ρ2ρ3 . . .ρi−1ρi)(ρ1ρ2 . . .ρi−2ρi−1)ρ j
(8.10)
= (ρi−1ρi−2 . . .ρ1)(ρiρi−1 . . .ρ3ρ2)s1(ρ2 . . .ρi−1ρi)(ρ1ρ2 . . .ρ jρ j+1ρ j . . .ρi−1)

(8.11)
= (ρi−1ρi−2 . . .ρ1)(ρiρi−1 . . .ρ3ρ2)s1(ρ2 . . .ρi−1ρi)(ρ1 . . .ρ j+1ρ jρ j+1 . . .ρi−1)

(8.10)
= (ρi−1ρi−2 . . .ρ1)(ρiρi−1 . . .ρ3ρ2)s1(ρ2 . . .ρ j+1ρ j+2ρ j+1 . . .ρi)(ρ1 . . .ρi−1)

(8.11)
= (ρi−1ρi−2 . . .ρ1)(ρiρi−1 . . .ρ3ρ2)s1(ρ2 . . .ρ j+2ρ j+1ρ j+2 . . .ρi)(ρ1 . . .ρi−1)

(8.12)
= (ρi−1ρi−2 . . .ρ1)(ρi . . .ρ j+2ρ j+1ρ j+2 . . .ρ2)s1(ρ2 . . .ρi)(ρ1 . . .ρi−1)

(8.11)
= (ρi−1ρi−2 . . .ρ1)(ρi . . .ρ j+1ρ j+2ρ j+1 . . .ρ2)s1(ρ2 . . .ρi)(ρ1 . . .ρi−1)

(8.10)
= (ρi−1 . . .ρ j+1ρ jρ j+1 . . .ρ1)(ρi . . .ρ2)s1(ρ2 . . .ρi)(ρ1 . . .ρi−1)

(8.11)
= (ρi−1 . . .ρ jρ j+1ρ j . . .ρ1)(ρi . . .ρ2)s1(ρ2 . . .ρi)(ρ1 . . .ρi−1)

(8.10)
= ρ j(ρi−1 . . .ρ1)(ρi . . .ρ2)s1(ρ2 . . .ρi)(ρ1 . . .ρi−1)

= ρ jsi.

Claim 3. The relation
sis j = s jsi, |i− j| ≥ 2

is a consequence of Claim 1 and relations in equations (8.8) – (8.13). The proof of this claim
is along the similar lines as [49, Lemma 3].

8.2 Presentation of commutator subgroups of virtual twin
groups

The lower central series of a group G is defined as

G = γ1(G)≥ γ2(G)≥ . . .≥ γi(G)≥ γi+1(G)≥ . . . ,

where
γα+1(G) = ⟨[gα ,g] | gα ∈ γα(G),g ∈ G⟩.
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In particular, γ2(G) is the commutator subgroup of G. The group G is said to be residually
nilpotent if

γω(G) =
∞⋂

i=1

γi(G) = 1.

We now give a presentation of γ2(V Tn).

Theorem 8.2.1. The commutator subgroup of the virtual twin group has the following
presentation:

1. γ2(V T2) =
〈
(ρ1s1)

2〉∼= Z.

2. γ2(V T3) =
〈
ρ2ρ1,s1ρ2ρ1s1,(ρ1s1)

2 | (ρ2ρ1)
3 = 1 = (s1ρ2ρ1s1)

3〉∼= Z3 ∗Z3 ∗Z.

3. For n≥ 4, γ2(V Tn) is generated by{
xi,y,z | i = 2,3, . . . ,n−1

}
.

The set {x2, . . . ,xn−1} generate a subgroup isomorphic to the alternating group An and
has relations

x3
2 = 1,

x2
j = 1 for 3≤ j ≤ n−1,

(xix−1
i+1)

3 = 1 for 2≤ i≤ n−2,

(xix−1
j )2 = 1 for 2≤ i≤ n−2 and j ≥ i+2.

The other defining relations in γ2(V Tn) are the following mixed relations:

y3 = 1,

(x jz)2 = 1 for 3≤ j ≤ n−1,

(yz−1x−1
3 )3 = 1,

(yz−1x−1
j )2 = 1 for 4≤ j ≤ n−1,

(yz−1x−1
3 y−1x2x3x−1

2 )2 = 1,

(zy−1x3zyz−1x−1
2 x−1

3 x2)
2 = 1.

Proof. We use Theorem 8.1.1 and Reidemeister-Schreier method to give a presentation of
γ2(V Tn). Since the abelianisation of V Tn is isomorphic to the elementary abelian 2-group of
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order 4, we can take a Schreier system to be

M = {1,s1,ρ1,s1ρ1}.

In view of Theorem 8.1.1, we take the generating set for V Tn to be S = {s1,ρ1,ρ2, . . . ,ρn−1}.

Generators of γ2(V Tn)

We compute the generators γ(µ,a), µ ∈M, a ∈ S explicitly.

γ(1,s1) = s1(s1)
−1 = s1s1 = 1,

γ(1,ρ1) = ρ1(ρ1)
−1 = ρ1ρ1 = 1,

γ(1,ρi) = ρi(ρi)
−1 = ρiρ1, i≥ 2,

γ(s1,s1) = s1s1(s1s1)
−1 = 1,

γ(s1,ρ1) = s1ρ1(s1ρ1)
−1 = s1ρ1ρ1s1 = 1,

γ(s1,ρi) = s1ρi(s1ρi)
−1 = s1ρiρ1s1, i≥ 2,

γ(ρ1,s1) = ρ1s1(ρ1s1)
−1 = (ρ1s1)

2,

γ(ρ1,ρ1) = ρ1ρ1(ρ1ρ1)
−1 = 1,

γ(ρ1,ρi) = ρ1ρi(ρ1ρi)
−1 = ρ1ρi, i≥ 2,

γ(s1ρ1,s1) = s1ρ1s1(s1ρ1s1)
−1 = (s1ρ1)

2,

γ(s1ρ1,ρ1) = s1ρ1ρ1(s1ρ1ρ1)
−1 = 1,

γ(s1ρ1,ρi) = s1ρ1ρi(s1ρ1ρi)
−1 = s1ρ1ρis1 = (s1ρiρ1s1)

−1, i≥ 2.

For i = 2,3, . . . ,n−1, define

xi := ρiρ1,

yi := s1ρiρ1s1,

z := (ρ1s1)
2.
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Then the preceding computations show that γ2(V Tn) is generated by the set{
xi,yi,z | i = 2,3, . . . ,n−1

}
.

Relations in γ2(V Tn)

We begin by finding relations in γ2(V Tn) corresponding to the relation s2
1 = 1 in V Tn.

τ(1s1s11) = γ(1,s1)γ(s1,s1) = γ(1,s1)γ(s1,s1) = 1,

τ(s1s1s1s1) = (γ(1,s1)γ(s1,s1))
2 = 1,

τ(ρ1s1s1ρ1) = γ(1,ρ1)γ(ρ1,s1)γ(s1ρ1,s1)γ(ρ1,ρ1) = 1,

τ(s1ρ1(s1s1)ρ1s1) = γ(1,s1)γ(s1,ρ1)γ(s1ρ1,s1)γ(ρ1,s1)γ(s1ρ1,ρ1)γ(s1,s1) = 1.

Next, we find relations in γ2(V Tn) corresponding to relations ρ2
i = 1, i = 1,2, . . . ,n−1.

τ(1ρiρi1) = γ(1,ρi)γ(ρi,ρi) = γ(1,ρi)γ(ρ1,ρi) = 1,

τ(s1ρiρis1) = γ(1,s1)γ(s1,ρi)γ(s1ρ1,ρi)γ(s1,s1) = 1,

τ(ρ1ρiρiρ1) = γ(1,ρ1)γ(ρ1,ρi)γ(1,ρi)γ(ρ1,ρ1) = 1,

τ(s1ρ1(ρ1ρ1)ρ1s1) = γ(1,s1)γ(s1,ρ1)γ(s1ρ1,ρ1)γ(s1,ρ1)γ(s1ρ1,ρ1)γ(s1,s1) = 1,

τ(s1ρ1(ρiρi)ρ1s1) = γ(1,s1)γ(s1,ρ1)γ(s1ρ1,ρi)γ(s1,ρi)γ(s1ρ1,ρ1)γ(s1,s1) = y−1
i yi = 1, i≥ 2.

Relations in γ2(V Tn) corresponding to relations (ρiρi+1)
3 = 1, i = 1,2, . . . ,n−2, are given

by

τ(1(ρiρi+1)
31) =

(
γ(1,ρi)γ(ρ1,ρi+1)

)3

=

x−3
2 for i = 1,

(xix−1
i+1)

3 for 2≤ i≤ n−2,

τ(s1(ρiρi+1)
3s1) = γ(1,s1)

(
γ(s1,ρi)γ(s1ρ1,ρi+1)

)3
γ(s1,s1)

=
(
γ(s1,ρi)γ(ρ1s1,ρi+1)

)3

=

y−3
2 for i = 1,

(yiy−1
i+1)

3 for 2≤ i≤ n−2,
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τ(ρ1(ρiρi+1)
3
ρ1) =

(
γ(ρ1,ρi)γ(1,ρi+1)

)3

=

x3
2 for i = 1,

(x−1
i xi+1)

3 for 2≤ i≤ n−2.

τ(s1ρ1(ρiρi+1)
3
ρ1s1) = γ(1,s1)γ(s1,ρ1)

(
γ(s1ρ1,ρi)γ(s1,ρi+1)

)3
γ(s1ρ1,ρ1)γ(s1,s1)

=
(
γ(s1ρ1,ρi)γ(s1,ρi+1)

)3

=

y3
2 for i = 1,

(y−1
i yi+1)

3 for 2≤ i≤ n−2.

The preceding computations give the following non-trivial relations

x3
2 = 1,

y3
2 = 1,

(xix−1
i+1)

3 = 1 for 2≤ i≤ n−2,

(yiy−1
i+1)

3 = 1 for 2≤ i≤ n−2.

Next, we find relations in γ2(V Tn) corresponding to relations (ρiρ j)
2 = 1, |i− j| ≥ 2.

τ(1(ρiρ j)
21) = (γ(1,ρi)γ(ρ1,ρ j))

2

=

x−2
j for j ≥ 3,

(xix−1
j )2 for i≥ 2 and i+2≤ j ≤ n−1,

τ(s1(ρiρ j)
2s1) = γ(1,s1)(γ(s1,ρi)γ(s1ρ1,ρ j))

2
γ(s1,s1)

=

y−2
j for 3≤ j ≤ n−1,

(yiy−1
j )2 for 2≤ i≤ n−2 and j ≥ i+2,

τ(ρ1(ρiρ j)
2
ρ1) = γ(1,ρ1)(γ(ρ1,ρi)γ(1,ρ j))

2
γ(ρ1,ρ1)

=

x2
j for 3≤ j ≤ n−1,

(x−1
i x j)

2 for i≥ 2 and i+2≤ j ≤ n−1,
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τ(s1ρ1(ρiρ j)
2
ρ1s1) = γ(1,s1)γ(s1,ρ1)(γ(s1ρ1,ρi)γ(s1,ρ j))

2
γ(s1ρ1,ρ1)γ(s1,s1)

= (γ(s1ρ1,ρi)γ(s1,ρ j))
2

=

y2
j for j ≥ 3,

(y−1
i y j)

2 for i≥ 2 and i+2≤ j ≤ n−1.

Thus, the non-trivial relations are

x2
j = 1 for 3≤ j ≤ n−1,

y2
j = 1 for 3≤ j ≤ n−1,

(xix−1
j )2 = 1 for 2≤ i≤ n−2 and j ≥ i+2,

(yiy−1
j )2 = 1 for 2≤ i≤ n−2 and j ≥ i+2.

Next, consider relations (ρis1)
2 = 1, 3≤ i≤ n−1.

τ(1(ρis1)
21) = γ(1,ρi)γ(ρ1,s1)γ(s1ρ1,ρi)γ(s1,s1)

= xizy−1
i for i≥ 3,

τ(s1(ρis1)
2s1) = γ(1,s1)γ(s1,ρi)γ(s1ρ1,s1)γ(ρ1,ρi)γ(1,s1)γ(s1,s1)

= yiz−1x−1
i for i≥ 3,

τ(ρ1(ρis1)
2
ρ1) = γ(1,ρ1)γ(ρ1,ρi)γ(1,s1)γ(s1,ρi)γ(s1ρ1,s1)γ(ρ1,ρ1)

= x−1
i yiz−1 for i≥ 3,

τ(s1ρ1(ρis1)
2
ρ1s1) = γ(1,s1)γ(s1,ρ1)γ(s1ρ1,ρi)γ(s1,s1)γ(1,ρi)γ(ρ1,s1)γ(s1ρ1,ρ1)γ(s1,s1)

= y−1
i xiz for i≥ 3.

This gives the non-trivial relations

yi = xiz for 3≤ i≤ n−1.

Finally, we consider the relation (s1ρ2ρ1ρ3ρ2)
4 = 1.

τ(1(s1ρ2ρ3ρ1ρ2s1ρ2ρ1ρ3ρ2)
21) = (γ(1,s1)γ(s1,ρ2)γ(s1ρ1,ρ3)γ(s1,ρ1)γ(s1ρ1,ρ2)

γ(s1,s1)γ(1,ρ2)γ(ρ1,ρ1)γ(1,ρ3)γ(ρ1,ρ2))
2

= (y2y−1
3 y−1

2 x2x3x−1
2 )2,
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τ(s1(s1ρ2ρ3ρ1ρ2s1ρ2ρ1ρ3ρ2)
2s1) = γ(1,s1)(γ(s1,s1)γ(1,ρ2)γ(ρ1,ρ3)γ(1,ρ1)γ(ρ1,ρ2)

γ(1,s1)γ(s1,ρ2)γ(s1ρ1,ρ1)γ(s1,ρ3)γ(s1ρ1,ρ2))
2
γ(s1,s1)

= (x2x−1
3 x−1

2 y2y3y−1
2 )2,

τ(ρ1(s1ρ2ρ3ρ1ρ2s1ρ2ρ1ρ3ρ2)
2
ρ1) = γ(1,ρ1)(γ(ρ1,s1)γ(s1ρ1,ρ2)γ(s1,ρ3)γ(s1ρ1,ρ1)γ(s1,ρ2)

γ(s1ρ1,s1)γ(ρ1,ρ2)γ(1,ρ1)γ(ρ1,ρ3)γ(1,ρ2))
2
γ(ρ1,ρ1)

= (zy−1
2 y3y2z−1x−1

2 x−1
3 x2)

2,

τ(s1ρ1(s1ρ2ρ3ρ1ρ2s1ρ2ρ1ρ3ρ2)
2
ρ1s1) = γ(1,s1)γ(s1,ρ1)(γ(s1ρ1,s1)γ(ρ1,ρ2)

γ(1,ρ3)γ(ρ1,ρ1)γ(1,ρ2)

γ(s1ρ1,ρ1)γ(s1,s1)γ(ρ1,s1)γ(s1ρ1,ρ2)

γ(s1,ρ1)γ(s1ρ1,ρ3)γ(s1,ρ2))
2

= (z−1x−1
2 x3x2zy−1

2 y−1
3 y2)

2.

We get two non-trivial relations

(y2y−1
3 y−1

2 x2x3x−1
2 )2 = 1,

(zy−1
2 y3y2z−1x−1

2 x−1
3 x2)

2 = 1.

Using the relation yi = xiz, we eliminate yi for 3≤ i≤ n−1 and we put y2 = y, so we get the
following relations.

x3
2 = 1,

x2
j = 1 for 3≤ j ≤ n−1,

y3 = 1,

(xix−1
i+1)

3 = 1 for 2≤ i≤ n−2,

(xix−1
j )2 = 1 for 2≤ i≤ n−2 and j ≥ i+2,

(x jz)2 = 1 for 3≤ j ≤ n−1,

(yz−1x−1
3 )3 = 1,

(yz−1x−1
j )2 = 1 for 4≤ j ≤ n−1,

(yz−1x−1
3 y−1x2x3x−1

2 )2 = 1,

(zy−1x3zyz−1x−1
2 x−1

3 x2)
2 = 1.
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We see that
γ2(V T2) = ⟨(ρ1s1)

2⟩ ∼= Z

and

γ2(V T3) =
〈
ρ2ρ1,s1ρ2ρ1s1,(ρ1s1)

2 | (ρ2ρ1)
3 = 1 = (s1ρ2ρ1s1)

3〉∼= Z3 ∗Z3 ∗Z.

For n ≥ 4, γ2(V Tn) is generated by
{

xi,y,z | i = 2,3, . . . ,n−1
}

. The set {x2,x3, . . . ,xn−1}
generate a subgroup isomorphic to An and has relations

x3
2 = 1,

x2
j = 1 for 3≤ j ≤ n−1,

(xix−1
i+1)

3 = 1 for 2≤ i≤ n−2,

(xix−1
j )2 = 1 for 2≤ i≤ n−2 and j ≥ i+2.

In addition, γ2(V Tn) has the following mixed relations

y3 = 1,

(x jz)2 = 1 for 3≤ j ≤ n−1,

(yz−1x−1
3 )3 = 1,

(yz−1x−1
j )2 = 1 for 4≤ j ≤ n−1,

(yz−1x−1
3 y−1x2x3x−1

2 )2 = 1,

(zy−1x3zyz−1x−1
2 x−1

3 x2)
2 = 1.

This completes the proof.

It is known that the second and the third term of the lower central series of the braid group
Bn and virtual braid group V Bn coincide for n≥ 3 and n≥ 4, respectively. It turns out that
the same holds for V Tn.

Proposition 8.2.2. γ2(V Tn) = γ3(V Tn) for n≥ 3.

Proof. We need to show that γ2(V Tn)⊆ γ3(V Tn) or equivalently that V Tn/γ3(V Tn) is abelian.
The group V Tn/γ3(V Tn) is generated by

si = siγ3(V Tn)

and
ρ i = ρiγ3(V Tn)
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for all i = 1,2, . . . ,n−1. It is easy to check that

ρi+1 = ρi[ρi, [ρi,ρi+1]]

and
si+1 = si[[ρi+1, [ρi+1,ρi]],si]

−1.

This gives

ρ i+1 = ρi+1γ3(V Tn) = ρi[ρi, [ρi,ρi+1]]γ3(V Tn) = ρiγ3(V Tn) = ρ i

and
si+1 = si+1γ3(V Tn) = si[[ρi+1, [ρi+1,ρi]],si]

−1
γ3(V Tn) = siγ3(V Tn) = si.

Thus, we have
ρ i = ρ i+1 and si = si+1

for all i = 1,2, . . .n−2. Since

ρ1s1 = ρ3s1 = s1ρ3 = s1ρ1,

the assertion follows.

Corollary 8.2.3. V Tn is residually nilpotent if and only if n = 2.

We conclude with a result on freeness of commutator subgroup of PV Tn. A graph is called
chordal if each of its cycles with more than three vertices has a chord (an edge joining two
vertices that are not adjacent in the cycle). A clique (or a complete subgraph) of a graph
is a subset C of vertices such that every two vertices in C are connected by an edge. It is
well-known that a graph is chordal if and only if its vertices can be ordered in such a way
that the lesser neighbours of each vertex form a clique.
We conclude the thesis with the following result.

Theorem 8.2.4. The commutator subgroup of PV Tn is free if and only if n≤ 4.

Proof. The assertion is immediate for n = 2,3. The graph of PV T4 (see Figure 7.1) is
vacuously chordal. By [77, Corollary 4.4], the commutator subgroup of a right-angled Artin
group is free if and only if its associated graph is chordal, and hence PV T4 is free.
For n ≥ 5, fix an ordering on the vertex set of the graph, for example, it could be the
lexicographic ordering in our case. Let λi, j be a maximal vertex and p,q,r ∈ {1,2, . . . ,n}\
{i, j} be three distinct integers. Then both λp,q and λp,r are lesser neighbours of λi, j, but
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there cannot be an edge between λp,q and λp,r. Thus, lesser neighbours of the vertex λi, j do
not form a clique, and hence the graph is not chordal.
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