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Foreword

This book may well be the most concise and pedagogical introduction to Monte
Carlo methods in Quantum Field Theory available in the market today. Beginning
with simple examples of how to numerically integrate ordinary functions in a small
number of dimensions, the book gradually warms up the reader to the idea of using
random numbers to estimate integrals. These ‘Monte Carlo’ ideas are easily tested
in low-dimensional cases, but they stand without competition when the dimen-
sionality becomes large.

Quantum Field Theory in its path-integral formulation is an example of where
even infinitely-dimensional integrals can be needed in order to compute. The trick is
to return to the very definition of the path integral, chop up space and time in small
discretized intervals and enclose everything in a finite volume. The result is very
large-dimensional integral that can be evaluated approximately by Monte Carlo
techniques. This sounds simple, but the reader is warned along the way regarding
potential difficulties or even misleading estimates. Methods are tested in great detail
on analytically solvable cases, drawing on modern examples that also include
supersymmetry. The book ends with the most important example for relativistic
field theories: that of gauge fields defined on a space-time lattice. In an outlook, the
reader is given a peek at what may lie ahead of new developments based on
machine learning. Finally, a full set of C++ programs are included so that no
student will be lost.

Anosh Joseph has the advantage of coming from the main analytical approach to
Quantum Field Theory while having continually worked hand in hand with
numerical techniques. This gives him a fresh look on the matter and it enables him
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to draw on example that standard practitioners of Monte Carlo methods in, say,
lattice gauge theory may not be aware of. The book is delightfully well written and
is bound to please students who would like to learn the subject from the scratch.

Copenhagen, Denmark
March 2020

Poul H. Damgaard
Professor Theoretical Physics, Niels
Bohr Institute, Director, Niels Bohr

International Academy
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Preface

Quantum field theory is a tool to understand a vast array of perturbative and
non-perturbative phenomena found in physical systems. Some of the most inter-
esting features of quantum field theories, such as spontaneous symmetry breaking,
phase transitions, and bound states of particles, demand computational tools beyond
the machinery of ordinary perturbation theory. Monte Carlo methods using Markov
chain based sampling algorithms provide powerful tools for carrying out such
explorations.

We can use lattice regularized quantum field theories and simulation algorithms
based on Monte Carlo methods to reveal the non-perturbative structure of many
interesting quantum field theories, including Quantum Chromodynamics (QCD),
the theory of strong interactions. The rapidly developing field of Machine Learning
could provide novel tools to find phase structures and order parameters of systems
where they are hard to identify.

This book contains 9 chapters. In Chap. 1 we discuss various simple methods of
numerical integration, including the rectangle rule, midpoint rule, trapezoidal rule,
and Simpson’s rule. Random numbers are introduced next. We discuss
pseudo-random numbers and how they can be generated on a computer using a seed
number. After that, we move on to discuss the Monte Carlo method for numerical
integration. We also discuss how to compute the error in Monte Carlo integration,
the questions on when Monte Carlo is useful for integration and when it can fail. In
Chap. 2 we discuss Monte Carlo with importance sampling and how it reduces the
variance of the Monte Carlo estimate of the given integral. In Chap. 3 we introduce
Markov chains and discuss their properties and convergence to the unique equi-
librium distribution when the chain is irreducible and aperiodic. In Chap. 4 we
introduce Markov chain Monte Carlo. Concepts such as Metropolis algorithm and
thermalization of Markov chains are introduced. In Chap. 5 we discuss the con-
nection between Markov chain Monte Carlo and Feynman path integrals of
Euclidean quantum field theories. We also numerically study a zero-dimensional
quantum field theory that undergoes dynamical supersymmetry breaking,
one-dimensional simple harmonic oscillator, and a unitary matrix model that
undergoes Gross-Witten-Wadia phase transition. In Chap. 6 we discuss the
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reliability of Monte Carlo simulations and introduce the idea of auto-correlation
time in the observables. The method of Hybrid (Hamiltonian) Monte Carlo is
discussed next in Chap. 7. There, we look at the properties of Hamiltonian
dynamics and how the Leapfrog integration method can be used to evolve the
system in simulation time. We then apply Hamiltonian Monte Carlo to a Gaussian
model and a zero-dimensional supersymmetric model. In Chap. 8 we briefly discuss
how Markov chain Monte Carlo can be used to extract physics from quantum field
theories formulated on a spacetime lattice. In Chap. 9 we discuss how Machine
Learning and quantum field theory can work together to further our understanding
of the nature of the physical systems we are interested in. This book ends with
several appendices containing various C++ programs that were used to generate
data and numerical results provided in this book.

Mohali, India
February 2020

Anosh Joseph
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