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Abstract

In Heavy Ion Collision Quark-Gluon Plasma(QGP) are formed, and at extremely dense

conditions, it behaves like a superfluid, but unfortunately, we do not have complete access

to its properties like temperature, equation of state, transport co-efficient etc., we are only

able to get the information about the spectra of final state particles. QGP is also character-

ized by a very small shear viscosity to entropy density ratio (η/s), which is predicted as a

lower bound with the help of Anti-deSitter space/Conformal Field (Ads/CFT) theory and

it is expected to be within 0.08-0.24 range with different initial conditions. While trying

to reconstruct QGP like phenomena in a lab environment, we will work with relativistic

heavy-ion collision (RHIC) particularly, Pb-Pb collisions in
√
sNN = 2.76 TeV. In the con-

text of RHIC, the study of shear viscosity is significant as it drives a non-equilibrium system

towards its equilibrium. The equilibration of momentum anisotropy, converted from spatial

anisotropy in the nuclear collision, is one of the crucial aspects that govern by shear viscos-

ity co-efficient. In the evolution of RHIC, as the system in QGP state expands and cools

off, it tries to get through a phase transition from quark-gluon to hadronic gas phase with a

rapid increase in η/s. We calculate the quantity - η/s as a function of varying centrality to

verify the lower value predicted for QGP also holds for hadron gas. We also try to observe

if centrality (or impact parameter) for a particular type of collision does have any effect on

η/s value for hadron gas.

ix





Chapter 1

Introduction

What is Quark-Gluon Plasma (QGP)? Before searching for an answer to the above question,

we would like to know what quarks and gluons are. For many decades, right after discov-

ering neutrons in 1932 by James Chadwick, it was assumed that protons, neutrons and

electrons are the fundamental blocks of elementary particles. But in 1964, two physicists,

Murray Gell-Mann and George Zweig independently proposed the quark model where the

protons and neutrons can be further divided into the substructure called quarks. The quark

model was later well established after finding out their physical existence in deep inelastic

electron-proton scattering experiments at the Stanford Linear Accelerator Center in 1968.

So, now quarks are believed to be one of the primary constituents of matter. Quarks have

some intrinsic properties like mass, electric charge, color charge, and spin. They are of six

types, known as flavours - up (u), charm (c), bottom (b), down (d), strange (s), and top (t).

Up and down quarks have lower masses and are generally stable, so they are more com- mon

in nature, whereas strange, charm, bottom, and top quarks are heavier and can only be pro-

duced in very high energy collisions. For every quark flavor, there is an antiparticle of their

corresponding type, known as an antiquark. Protons are made up of two up-quarks and one

down-quark, whereas neutrons are made up of two down-quarks and one up-quark. If these

hadrons are formed by accumulating quarks, then our next question should be how these

hadrons are formed? What forces are involved there? Basically, there are four fundamental

forces - the strong force, the weak force, the electromagnetic force and the gravitational

force. Among all of them in nuclear region, strong force is much more dominant and in the

strong force as force carrier, gluons are introduced. Gluons are another sets of elementary

particles that act as the exchange particle for the strong force between quarks and glue the
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quarks together into hadrons. The experiments find the first direct proof of the existence

of gluons at the DESY laboratory in Germany in 1979. This legendary discovery created a

milestone in the history of particle physics, as it helped to establish the theory of the strong

force, called quantum chromodynamics, very firmly. Quarks and gluons are collectively

called ‘partons’. Because the strong force in the nuclear regime is compelling, it is prac-

tically impossible to separate two quarks. Then does it mean that we can not achieve free

quark? Here comes the importance of QGP. To separate two quarks, we need to create a

state of matter which is called QGP. It has formed in the early universe for few fractions of

a second.

Collins and Perry already discussed the physics of Quark gluon plasma (QGP) at extreme

conditions of temperature and very high density before 1975. But the term ‘QGP’ is coined

by Russian-American physicist E. V. Shuryak in 1980. Quark gluon plasma is a state of

matter which exist at extremely high temperature and density and consists of an extremely

hot and dense soup of quarks (fermions) and gluons (bosons). But before going to QGP

in detail, we need to briefly go through the theory that explains the dynamics of QGP, i.e;

QCD (Quantum Chromo Dynamics).

1.1 Quantum Chromo Dynamics

In QCD, color charge comes into the picture. QCD is the theory that includes the strong in-

teraction between quarks. As leptons do not have color charge, they do not interact through

strong interaction. Quarks can have three type of colors-‘red’, ‘blue’, ‘green’, and their

antiparticles likewise carry anticolors. Gluons are bicolored and carry both positive and

negative color in a set - so there are eight possible combinations of gluons that have been

found. While drawing the Feynman diagram, unlike QED here in each vertex, due to the

change in separation between interacting particles, coupling constant varies and it becomes

an important property of QCD.

1.1.1 Properties of QCD

• Quark Confinement: After being hit by some energetic particles, if a quark starts to

move away from another neighbour quark, the mediating gluons will use the energy

to produce more gluons. The momentum transfer between those quarks by exchang-
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ing more gluons will become high. Thus the strength of the strong force will be

enhanced so that at some time, the energy to produce additional quark-antiquark pair

as a meson or baryon will be achieved before those quarks get separated from their

constituent. Hence we can never get an isolated quark in a normal scenario. This is

‘Quark Confinement’.

• Asymptotic freedom: At very high density or high temperature, when two quarks

are brought so close that they lose their individuality and interact with each other very

weakly, they are treated as quasi-free particles. This property of QCD is ‘Asymptotic

Freedom’. This phenomena is seen in high energy heavy ion collisions.

• Running coupling constant: Above two properties can be well explained by using

another property of QCD -‘Running coupling constant’.

αs(Q
2) =

1

β0ln
(
Q2

Λ2

) (1.1)

where Q2 = available energy, Q = momentum carried by the gluons, Λ = QCD scale

or compared value between QCD predictions and experimental results, β0 = beta

function in QCD.

Figure 1.1: Strong coupling constant as a function of the energy scale [34]
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From fig 1.1 as well as equation 1.1 we can see for low Q, as the momentum transfer

between two quarks become low, the coupling constant becomes higher, strength of

strong force becomes high and results in ‘quark-confinement’.

In high energy for high Q, as the momentum transfer between two quarks become

high, the coupling constant becomes lower, strength of strong force become become

low and results in ‘quark-deconfinement’ and thus ‘asymptotic freedom’ is observed.

We can also explain confinement-deconfinement phase transition or vice-versa through

‘Running Coupling Constant’.

1.2 Conceptual basis for QGP formation

Quark gluon plasma is a state of matter in QCD that exist at extremely high temperature

and density. At high density, the concept of hadronic matter loses its identity, i.e., the

quarks inside a hadron fail to recognize their partner quarks, as, at high density, the distance

between two foreign quarks becomes smaller than the hadronic radius. However, similar

phenomena can happen at high temperature. In this case, as the temperature of the system

increases, more low mass hadrons (primarily pions) are produced so again, the density

goes higher, and confinement to deconfinement phase transition happens- QGP forms. It is

calculated that beyond a definite critical energy density, i.e., ∼ 1 GeV/fm3 or temperature

∼ 200 MeV, matter can exist only as QGP [10].

Figure 1.2: Formation of QGP [20]

1.3 Probing QGP

In the heavy-ion collisions, the final state particles can only be detected then, how can we

certain about whether QGP is formed in the medium or not. At high temperature or density,
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strongly interacting matter will be in a new state (namely QGP) and to study the properties

of this state we can rely on a certain number of indirect signals [13]:

Figure 1.3: An almond shape formation in Pb-Pb non-central collision. Spatial anisotropy

with respect to reaction (x-z) plane leads to momentum anisotropy of the scattered produced

particles [19]

1. Elliptic Flow: Elliptic flow captures the momentum anisotropy in sub-atomic par-

ticles. In non-central collision (where the impact parameter is non-zero), the initial

reaction zone already possesses a spatial anisotropy due to azimuthal anisotropy. In

this situation, when a thermalized system begins to evolve due to the pressure gradi-

ent, the expansion will not be uniform as we can observe in fig 1.3 that particle flow

will be greater along minor axis than major axis, resulting in an unequal distribution

of unequal momentum distribution of the produced particles. The types of anisotropic

flow can be shown by the Fourier expansion of the Lorentz invariant differential yield

distribution [35]:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

(
1 + 2

∞∑
n=1

vn cos (n(φ− ψRPA))

)
(1.2)

where E = energy of the particle, p = momentum of partons, pT = transverse momen-

tum, φ = azimuthal angle, y = rapidity, and ψRPA = reaction plane angle, vn = flow

coefficients. Here v1 = directed flow, v2 = elliptic flow, v3 = triangular flow. Among

all flows, elliptic flow is the strong proof of QGP’s existence.
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2. Jet Quenching: In the heavy-ion collision, the participating partons get highly accel-

erated. When such accelerated parton from a nucleon scatters off parton from another

nucleon, it forms a parton shower which hadronizes and leads to a collimated ray of

hadrons [23]. These collimated beams are jets. Now, when a jet travels through a

QGP medium, it loses its energy - that is called Jet Quenching. Usually, Nuclear

Modification Factor (RAA) measures jet quenching. If RAA = 1 then no quenching

happens; if RAA < 1 then quenching occurs and QGP has formed.

3. Net Charge Fluctuation: It is anticipated that the net charge fluctuation is propor-

tional to the squared value of electric charge that is significantly different for the QGP

phase and hadronic phase [6]. If the unit of charge (Q) is 1, then it is in the hadronic

phase, and if it is 1/3, then it is in the QGP phase. So, while going through a phase

transition, it is expected to see different fluctuations in net charge depending on the

phase.

4. Hadron radiation: As an unknown hot and dense medium radiates, we can study

the emission of hadrons consisting of light (u, d, s) quarks, but as they produced

from transition surface between QGP and physical vacuum, they lost the information

of unknown medium; thus if we want to know we have to allow the medium to ex-

pand freely without any constraints and as it expands and cools down this leads to

hydrodynamic flow that gives an added boost to radiated hadrons and this radial flow

(elliptic flow) will incorporate the initial energy density. In this way, we can get the

information about pre-hadronic phase.

5. Electromagnetic radiation: The unknown hot medium also radiates photons and

dileptons (e+e−, µ+µ−) and as they are produced electromagnetically, they emit im-

mediately after production so, the inspection of their spectra can tell the state of the

unknown medium at the place or the time they were formed. But they also can be

formed anywhere, like cool surface or by the emitted hadrons. So, there is some

uncertainty in this process.

6. Dissociation of a passing quarkonium beam: We expect that the different charmo-

nium states have different “melting temperatures” in a QGP; therefore, shooting the

known charmonium beams inside the medium and collecting the spectra can roughly

estimate its temperature.
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1.4 High Energy Heavy-Ion Collision in QGP

In the early universe, after few microseconds of the Big Bang, it is believed that QGP has

been formed for a few millionths (≈ 10 ps) of a second and froze out into final state particles

after about 10 µs, which are the hadrons that we see now. We can recreate similar phenom-

ena in the lab with the help of powerful accelerators. Suppose beams of two ultrarelativistic

heavy ions, such as gold (Au) or lead (Pb) nuclei, collide with each other at higher relative

velocities and achieve high energy density or high temperature(1012 K). In that case, QGP-

like phenomena (named as little bang) is seen to be formed. The first evidence for jets was

seen in 2003 in the STAR and PHENIX experiments at Brookhaven National Laboratory’s

(BNL) Relativistic Heavy Ion Collider (RHIC) in the US in heavy-ion collisions.

1.4.1 Evolution of Collision

Each incident nucleus is seen as a Lorentz-contracted disc and they collide into each other

- collision can be two type, central (impact parameter, b ∼ 0; here all are participants)

and non-central or peripheral ( impact parameter, 0 < b < 0 diameter of nucleus, if two

colliding nuclei are of same radius; here some are participants).

• Pre-equilibrium: After beams of two heavy-ions collide with each other, the partons

are produced and scattered among each other. In this stage, the higher transverse

momentum (pT ) particles and a large amount and real or virtual photons are produced.

• Thermalization: The partons come to a local thermal equilibrium (thermalized state)

through elastic as well as inelastic collision among each other. New flavour composi-

tions are formed by inelastic collision. In this state, the system has an internal thermal

pressure and outside is the vacuum. Due to the pressure difference between the sys-

tem and outside, the system initially begins to expand. Here some of the partons

convert into hadrons-this is called the ‘mixed phase’.

• Hadronization and Chemical freeze out: As the system evolves, the temperature as

well as the energy density decreases and at a critical temperature (Tcr ≈ 170 MeV) or

critical energy density (εcr ≈ 1 GeV.fm−3), deconfinement-confinement QCD phase

transition [14], [38], [32] happens and new hadrons are formed from partons. When
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all the partons are converted into hadrons or hadronization has been completed - this

is called ‘Chemical Freeze-out’. Here the flavour composition of QGP remains fixed.

• Kinetic Freeze out: The hadrons still interact with each other through elastic colli-

sion and try to achieve local equilibrium. In this stage, the system further expands

and cools down until the mean free path between two hadronic collisions are greater

than the radius of strong interaction. At this moment, elastic collision also cease to

exist, and the hadrons decouple or freeze-out - widely known as ‘Kinetic Freeze-out’.

After that, particles are detected through the detectors.

Figure 1.4: A schematic of evolution stages of RHIC [1]

1.5 Kinematics

We can find the exact parametric solutions for ideal hydrodynamics to describe RHIC. The

exact solution of hadronic observables does not depend on the initial state, rather depends
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on the final state. From the equation, we can extract momentum distribution, elliptic flow

and Bose-Einstein correlation radii and fit it to actual observation; the fitted parameters of

the solution describe the hadronic freeze-out.

1.5.1 Transverse Momentum Distribution

The transverse momentum (pT ) of a particle is defined by:

pT =
√
p2
x + p2

y (1.3)

where px and py are the momentum components in the transverse momentum plane. Trans-

verse momentum spectra of final state particles are the first observation in high energy

experiments. If we fit the observed data to the Tsallis distribution, we can able to final the

freeze-out temperature (T ). Other than the freeze-out temperature, we could extract infor-

mation about radial flow from transverse momentum distribution as in a heavy-ion collision,

radial flow plays an important role in getting to know about the expansion of fireball and the

initial pressure produced just after the collision. Graphically for pT distribution in x-axis

we put pT and in y-axis the Lorentz invariant yield (Ed
3N

d3p
) and it can be expressed as:

E
d3N

dp3
=

d2N

2π| ~pT |dpTdy
(1.4)

where d2N is the number of particles in a particular pT bin in particular rapidity range.

Now pT distribution graphs for charged pion particles are below :

1.5.2 Rapidity Distribution

In relativistic energy rapidity variable is defined by [10]:

y =
1

2
ln(

E + pz
E − pz

)

= tanh−1(
pz
E

)

=
1

2
ln(

√
~p2 +m2 + p cos θ√
~p2 +m2 − p cos θ)

(1.5)

If the particles are boosted along longitudinal direction (z axis or beam axis) and they are

emitted at an angle θ with respect to the beam axis, pz = p cos θ, m,E are respectively

mass and energy of the particle.
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Figure 1.5: Left side plot shows π+ + π− (total) pT distribution and right side plot denotes

pT distribution for π+ and π− separately at
√
sNN = 2.76 TeV for all centralities in Pb-Pb

collisions

At very high energy limit i.e; p >> m, the mass can be neglected:

y =
1

2
ln(

p+ p cos θ

p− p cos θ)

= −ln(tan θ/2)

= η

(1.6)

here η is called pseudorapidity and it is only dependent on angle θ. For unidentified particle

we take η as we do not know its rest-mass, while for identified particles, we always take y

distribution into account. But for both distributions the shape is independent of the frame

of reference.

The distribution of particles as a function of rapidity is related to that of pseudorapidity by

the formula:

dN

dηdpT
=

√
1− m2

mT cosh y

dN

dydpT
(1.7)

where transverse mass (mT ) of a particle is defined by:

mT =
√
m2 + p2

T (1.8)

For y >> 0 region rapidity distribution (dN
dy

, integration over all pT ) and pseudo-rapidity

distribution (dN
dη

, integration over all pT ) are almost same, but in the region y ≈ 0; cosh y →
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Figure 1.6: Left side plot shows π+ + π− (total) pT distribution and right side plot denotes

pT distribution for π+ and π− separately within |η| < 0.8 range at
√
sNN = 2.76 TeV for

all centralities in Pb-Pb collisions

0 the complexity arises. In that region there is a small depression in dN
dη

distribution com-

pared to dN
dy

distribution due to the 1.7 transformation. But for massless particles like pho-

tons the shape of two distributions is expected to be same.

Now for y and η distribution for charged pions and all charged particles respectively are

below:
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Figure 1.7: Left side plot shows π+ + π− (total) y distribution and right side plot denotes

y distribution for π+ and π− separately at
√
sNN = 200 TeV for all centralities in Pb-Pb

collisions
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Figure 1.8: Left side plot shows all charged particles η distribution and right side plot

denotes η distribution for positive and negative charged particles separately at
√
sNN =

2.76 TeV for all centralities in Pb-Pb collisions

1.5.3 Azimuthal Angle Distribution

Figure 1.9: A schematic decomposition of particle momentum ~p into parallel and longitu-

dinal components and angle of emitted particle: i.e polar angle (θ) and azimuthal angle (φ)

[29]
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In a collider two particles or beam collides in the beam axis (mostly z axis) and particles are

emitted from the collision point making a polar angle θ with the beam axis and azimuthal

angle φ in the transverse plane (x-y plane).After getting the information of each momentum

component of produced particle we can write azimuthal angle for each particle as:

φ = tan−1(
px
py

) (1.9)

The azimuthal distribution should be uniform from 0 to 2π range. Now for φ distribution

for charged pions are below:
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Figure 1.10: Left side plot shows π+ + π− (total) φ distribution and right side plot denotes

for π+ and π− separately at
√
sNN=2.76 TeV in Pb-Pb collisions for 0-5 % centrality
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Figure 1.11: Left side plot shows π+ +π− (total) φ distribution and right side plot denotes φ

distribution for π+ and π− separately within |η| < 0.8 range at
√
sNN = 2.76 TeV in Pb-Pb

collisions for 0-5 % centrality
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Figure 1.12: Left side plot shows π+ + π− (total) φ distribution and right side plot denotes

φ distribution for π+ and π− separately at
√
sNN = 2.76 TeV in Pb-Pb collisions for 95-100

% centrality
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Figure 1.13: Left side plot shows π+ +π− (total) φ distribution and right side plot denotes φ

distribution for π+ and π− separately within |η| < 0.8 range at
√
sNN = 2.76 TeV in Pb-Pb

collisions for 95-100 % centrality

1.5.4 Collision Centrality

The nucleus is not a point object, so depending on the impact parameter while colliding,

the collision can be different. When impact parameter (b) = 0; we would expect head-on or

most central collision. In a collision, when the two nuclei touch each other slightly, that is a

peripheral collision. This variation of collision depending on the impact parameter is called

centrality. Centrality can be defined by the number of participating nuclei (Npart) or the

binary nucleon collision number. The Glauber model can calculate the classes of centrality.

In this chapter we learn about the basic constituents of matter in Standard Model, QCD

14



theory and its properties, concepts of QGP, High Energy Heavy-ion collisions, its evolution

and its observables. In the next chapter we will discuss about how we can use Hydrody-

namics as a model to process QGP properties.
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Chapter 2

Hydrodynamics

QGP behaves like a superfluid, and we are supposed to get some fluid-like properties like

pressure, temperature, specific heat, thermal conductivity, transport co-efficient etc. of it,

but unfortunately, we do not have complete access to its properties; rather, we are only

provided with the information about the spectra of final state particles. So, to estimate

QGP properties, we need a theoretical model. Hydrodynamics describes continuous media,

which shows collective behaviour and works in local thermal equilibrium region. For QGP,

only the collective flow of the system as fluid is tractable, and its properties can also be

measured at local equilibrium. To predict its behaviour, we can use hydrodynamics (in the

relativistic region) as a suitable model.

2.1 Formulation of Relativistic Hydrodynamics

2.1.1 Prequistics

When two nuclei-nuclei collsion happens it goes into three stages:

1. Initial state: While after colliding the excited hadrons or partons form fireball and try

to reach a local equilibrium state (Thermalization state).

2. Expansion state: While fireball starts to expand and cools off due to pressure gradient,

After reaching a certain critical temperature (Tcr = 200 MeV), the deconfinement-

confinement phase transition happens until all partons turns into hadronic matter.

3. Freezeout state: In this stage hadronic interaction takes place, but after a while, the

scattering tends to less as the distance between two partons for different hadrons

17



becomes greater than hadronic radius - thus kinetic freezeout happens and all the low

mass particles come out (particle number now become fixed).

In heavy-ion collisions, a hydrodynamic approach can only be applicable during a finite

interval between thermalization and freeze-out. It can never predict the early stages of

collision. So, to obtain a phenomologically suitable result we must include initial, final

conditions and a equation of state in hydrodynamic model.

2.1.2 Relativistic Hydrodynamics from kinetic theory

Kinetic theory describes a medium microscopically, where the evolution of the phase-space

distribution function follows f(x,p,t), lorentz scalar that with four-momentum pµ at space-

time position xµ. When collision comes into picture number of particles changes in ranges

∆3p, ∆4x and it will be ∆3p
p0

∆4xC(x, p). Before solving C(x,p) we assume that only 2 par-

ticles interacts (pµ1 , p
µ
2)→ (p

′µ
1 , p

′µ
2 ) and according to molecular chaos hypothesis, the aver-

age number of collisions in ∆4x is equal to W (pµ1 p
µ
2 |p
′µ
1 p
′µ
2 )

(p01,p
0
2p
′0
1 p
′0
2 )

f(x, p1)f(x, p2)d3p1d
3p2 (where

assume f(x,p) varies slowly in space and time). So after calculating total number of particle

loss and gain we can get the transport equation as:

pµ∂µf(x, p) =
1

2

∫∫∫
d3p2

p0
2

d3p
′
1

p
′0
1

d3p
′
2

p
′0
2

[f
′

1f
′

2W (p
′

1p
′

2|p1p2)− f1f2W (p1p2|p
′

1p
′

2)]

= C[f ]

(2.1)

here C(x, p) is the collision term in which the strength of the interaction enters through

their scattering cross sections. In Boltzmann equation, we can find an important property

of this collision term [10]: ∫
d3p

p0
ψ(x, p)C(x, p) = 0 (2.2)

where ψ(x, p) = a(x) + bµ(x)pµ is summational invariant. Now if ψ(x, p) = a(x) in above

equation : ∫
d3p

p0
a(x)pµ∂µf(x, p) = 0 =⇒ ∂µN

µ = 0 (2.3)

and if ψ(x, p) = bµ(x)pµ it will give :∫
d3p

p0
bµ(x)pµpν∂νf(x, p) = 0 =⇒ ∂µT

µν = 0 (2.4)

Where equations 4.2 and 4.3 are the basic equations of hydrodynamics.
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2.2 Relativistic Hydrodynamics Equation of Motion

In hydrodynamic we introduce flow velocity as uµ = (γ, γ~u) and its projector tensor ∆µν =

(gµν − uµuν) and it holds the properties like ∆µνuν = 0 and uµuµ = 1. Hydrodynamic

flow velocity can be calculated in two different way:

1. Eckart’s flow: It is related to particle flow and defined by:

uµ = Nµ
√
NνNν

; here ∆µνNν = 0

2. Landau and Lifshitz flow: It is related to the energy flow and can be defined by:

uµ = Tµνuν
uρT ρσuσ

; here ∆µνuν = 0

At high energy level, Landau and Lifshitz definition of velocity is applied as mostly in

RHIC, we have energy and momentum distributions as observables.

Hydrodynamics basic equation comes from energy-momentum conservation and current

conservation equations [16], [8]:

∂µT
µν(x) = 0 (2.5)

∂µN
µ
i (x) = 0 ; i = 1, 2, 3..M (2.6)

Along with second thermodynamic law:

∂µS
µ(x) ≥ 0 (2.7)

Energy-momentum tensor T µν = euµuν−p∆µν+[(qµ+h∆µτNτ )u
ν+(qν+h∆ντNτ )u

µ]+

Πµν , charge current Nµ
i = niu

µ + ∆µνNν,i = niu
µ + V µ

i and entropy of the system Sµ =

suµ; where e = energy density, p = hydrostatic pressure, qµ = heat flow, h = enthalpy, Πµν

= viscous pressure tensor, s = entropy density, gµν = (1, ~−1).

However for ideal case, dissipative terms like qµ,Πµν and V µ term goes to zero and in local

rest frame (uµ = γ(1,~0)):

T µν(x) = (e(x) + p(x))uµ(x)uν(x)− p(x)gµν and Nµ(x) = n(x)uµ(x)

It has 7 variables (i.e; e, p, n, uµ) and along with uµuµ = 1 and EOS (p = p(e, n)),

equations 2.5 and 2.6 gives rise to 7 equations which is solvable. If local relaxation rates are

not fast enough to state it as a local thermalization, the dissipative terms includes in energy-

momentum tensor (T µν) and charge current (Nµ). Furthermore these terms are proportional

to transport coefficient for diffusion, heat conductance, bulk and shear viscosity - solving

these kind of equations are quite complicated. We need to introduce relaxation time and

viscous correction term to solve it analytically [11], [31], [24], [9].
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2.3 Applicability and length scale of Hydrodynamics

In equation 2.1, we have describe Boltzmann transport function with C(x, p) and it can be

further simplified in classical kinetic theory as:

C(x, p) =
pµuµ(x)

τrel(x, p)
[feq(x, p)− f(x, p)] (2.8)

where the relaxation time = τrel and it generally depends on position through the local

density and pµ through the local rest frame energy of the particles.

• Classical kinetic theory is valid in the region where mean free path (λmfp =< (p/E)τrel >)

is large so, the particle interaction must not weak.

• Hydrodynamics is valid if the system is close enough to thermal equilibrium that its

local momentum distribution (particle and energy density, pressure, which can all be

expressed as moments of the local momentum distribution) can be characterized by

a small number of thermodynamic and transport parameters. To treat the ensemble

of particles as a single fluid, the mean free path of the particles must be significantly

less than any other length scales of interest to us. So, it is applicable for strongly

interacting constituents.

Based on ratio of the two microscopic length scales (λmfp
λth

(where λth = thermal wavelength)

∼ 1/T or η/s) we can define three regimes of microscopic dynamics:

(here η = shear viscosity, s = entropy density)[16]

1. Dilute Gas regime: Here λmfp
λth
∼ η

s
>> 1;

This is weakly interacted regime and its motion is described by Boltzmann equation.

2. Densed Gas regime: λmfp
λth
∼ η

s
∼ 1;

The interaction can occur in λth scale. Here quantum kinetic approach based on

Wigner distribution is taken.

3. Liquid regime: λmfp
λth
∼ η

s
<< 1;

It is strongly interacted regime, hydrodynamics equation is applicable here.

But rather than simply saying hydrodynamics is only applicable for η
s
<< 1, it is more

appropriate to say that it truly depends on Knudsen number (Kn = η
s
. θ
T

; θ = ∂µu
µ =

inverse of the scalar expansion rate) and that is approximately 0 (ideal fluid) or less than

equal to 1 (viscous fluid). For Kn >> 1, hydrodynamic regime breaks.
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Chapter 3

Various modes for calculating shear

viscosity over entropy density ratio

Viscosity plays an important role in many regimes of physics like- atomic systems, nuclear

matter, neutron star physics, low energy to relativistic energy heavy-ion collisions and at

the extreme end string theory, so understanding it has become an interest of many domains.

In RHIC, viscosity comes into the picture in QGP like phenomena (collective flow phenom-

ena). According to microscopic kinetic theory, shear viscosity (η) describes the momentum

transfer due to the particle thermal motion. It depends on the particle elastic scattering or

interactions through the mean free path. It also gives a better estimate of the strength of

interaction between molecules if their inter-spacing is the same. If the interaction is strong

and the scattering cross-section is big, shear viscosity becomes small like in QGP; due to

strong interaction between quarks and gluons, we expect small shear viscosity. We can call

low viscous fluids, which interact strongly as nearly perfect fluids. If we can verify low vis-

cosity or shear viscosity over entropy density ratio (η/s) in QGP, we can conclude that QGP

is also a nearly perfect fluid. Although through AdS/CFT string theory η/s can have a lower

limit up to ~/(4πkB) [18], [21] where kB = Boltzmann constant, ~ = h/(2π) = Planck’s

constant we need to estimate the value or range of η/s in QGP state experimentally (This

ratio in natural units is dimensionless).
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3.1 UrQMD Box Calcalution

Here we can use the UrQMD model to simulate η for infinite equilibrated hadronic particles.

We confined the particles in a box with a periodic condition where they achieve equilibrium

through only elastic collisions. Here we assume hadronic particles as hard sphere. We

can find shear viscosity coefficient (η) as a function of temperature and baryo-chemical

potential through Green-Kubo formalism [12].

η =
V

T

∫ ∞
0

dt〈πxy(~r, t)πxy(~0, 0)〉equilibrium (3.1)

where T = temperature of the system, t = post-equilibrium time (here t = 0 as the time the

system equilibrates), πxy = shear component of the energy-momentum tensor (T µν). Here

energy-momentum tensor (T µν) defined as:

T µν =

∫
d3p

pµpν

p0
f(x, p) (3.2)

here pµ = energy-momentum four vector, µ = 0,1,2,3, f(x,p) = phase space density of the

particles in the system.

In this case hadrons are treated as point particles uniformly distributed in coordinate space

and thus we can write πxy as [25]:

πxy =
1

V

Npart∑
i=1

px(i)py(i)

p0(i)
(3.3)

where V = volume of the system. 〈πxy(~r, t)πxy(~0, 0)〉 = the correlations of the shear com-

ponent of the energy momentum tensor and it is empirically found to be fitted with decay

function with time [22].

3.2 Viscosity of Gas in Classical Approach

The viscosity for ordinary gases is assumed to depend on number density, mean free path

and average momentum of the distribution [26].

η ≈ nmvthλ ≈ n〈|p|〉λ (3.4)

Here n = number density, m = mass of the particle, λ = mean free path, vth = thermal

velocity , 〈|p|〉 = average momentum of the system.
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3.3 Formulation of Viscosity of Hadron Gas

The viscosity a system of hadrons can be determined in a manner similar to the one carried

out for ordinary gasses and it also depends on similar parameters that are mentioned above

for classical gasses; here the only difference is that it is calculated in the relativistic domain

and the hadron gasses are either fermions or bosons. So, for relativistic hadrons average

momentum of the system (we consider Maxwell-Boltzmann Distribution):

< |p| >=

∫∞
0
dpp3e

−
√
m2+p2

T∫∞
0
dpp2e

−
√
m2+p2

T

(3.5)

We can also rewrite denominator of the above equation i.e; total number of particles as a

form of modified Bessel function of 2nd kind [27]:∫ ∞
0

dpp2e
−
√
m2+p2

T = m3

∫ ∞
0

dx sinh2 x coshxe
−m
T

coshx

= m2TK2(
m

T
)

(3.6)

Now we can also rewrite the numerator of the equation 3.5 as a form of modified Bessel

function of 2nd kind:∫ ∞
0

dpp3e
−
√
m2+p2

T = m4

∫ ∞
0

dx sinh3 x coshxe
−m
T

coshx

= T 4 23/2m5/2√
πT

(
3T

2m
K3/2(

m

T
)−K ′3/2(

m

T
))

= T 4 23/2√
π

(
m

T
)5/2K5/2(

m

T
)

(3.7)

So the equation 3.5 as a form of modified Bessel function of 2nd kind:

< |p| >=

√
8mT

π

K5/2(m
T

)

K2(m
T

)
(3.8)

The final expression for the viscosity of a relativistic gas of identical hadrons (as in the form

of equation 3.4 and assuming λ ∝ 1
r2

) is [26]:

η ≈
5
√
mTK5/2(m

T
)

64
√
πr2K2(m

T
)

(3.9)

where r = radius of a hadron.

For doing more generalization, we can use any distribution function (fi) to equation 3.5

< |p| >=

∫∞
0
dpp3fi∫∞

0
dpp2fi

(3.10)

and without getting into second order modified bessel function we can write the equation

3.9 as:

η ≈ 5

64
√

8r2

∫∞
0
dpp3fi∫∞

0
dpp2fi

(3.11)
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3.4 Formulation of Viscosity from Hydrodynamical Ap-

proach

As we have discussed in the previous section, we can only get transverse momentum spec-

tra by the experiments at RHIC, and we can also observe its finite change from its equi-

librium. In addition, QGP produced in this experiments evolves non-homogeneously (as

we can see elliptical flow as a signature of QGP). Therefore, in this system, spatial inho-

mogeneity persists, and global equilibrium can never be achieved. Due to these reasons,

some thermodynamic observables can become non-extensive. So, we can incorporate non-

extensivity in the relativistic Boltzmann transport equation (BTE) and use it to calculate

transport coefficients such as shear viscosity. Here we assume that the system is in a non-

equilibrium state, which loses its energy and simultaneously produces entropy and goes

to a local q-equilibrium after a certain relaxation time (τ ). Here we are also considering

thermodynamically consistent Tsallis distribution. The BTE is given by [30], [17], [36],

[37]:
∂fp
∂t

+ vip
∂fp
∂xi

+ F i
p

∂fp
∂pi

= I(fp) (3.12)

Besides relaxation time approximation (RTA), with the assumption of no external force, the

collision integral (I(fp)) can be written as:

I(fp) ≈ −
(fp − f 0

p )

τ(Ep)
(3.13)

where vip= velocity of the ith particle, F i
p= external force acting on that particle, τ(Ep)=

relaxation time that can be treated as mean time between two successive collisions. f 0
p=

Tsallis distribution function near local rest frame which is given as:

f 0
p =

[
1 + (q − 1)

(
Ep − ~p · ~u− µ

T

)] −q
q−1

(3.14)

where ~u = fluid velocity, T = temperature, µ = chemical potential, q = extensive parameter.

The stress-energy tensor can further divided into ideal (T µν0 ) and dissipative term (T µνdis).

When we introduce hydrodynamical description to it, we can see both transport coefficients

shear viscosity (η) and bulk viscosity (ζ) already exists in T µνdis term which can expressed in

local lorentz frame as:

T ij = −η
(
∂ui

∂xj
+
∂uj

∂xi

)
−
(
ζ − 2

3
η

)
∂ui

∂xj
δij (3.15)
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In terms of distribution function we can write equation 3.15 as:

T ij =

∫
d3p

(2π)3

pipj

Ep
δfp (3.16)

where δfp denotes deviation from q-equilibrium and can expressed in given way with the

help of equations 3.12 and 3.13:

δfp = −τ(Ep)

(
∂fp
∂t

+ vip
∂fp
∂xi

)
(3.17)

Under the approximation of a steady flow such as ui = (ux(y), 0, 0) and having temperature

to be space-time independent we can write equation 3.15 as T xy = −η∂ux/∂y. So, putting

µ = 0 from equations 3.16 and 3.17 we can further simplify T xy as:

T xy =

(
− 1

T

∫
d3p

(2π)3
τ(Ep)

(
pxpy
Ep

)2

q(f 0
p )

2q−1
q

)
∂ux
∂y

(3.18)

Thus coefficient of shear viscosity (η) for a single component of hadronic matter can be

expressed as:

η =
1

15T

d3p

(2π)3
τ(Ep)

p4q

E2
p

q(f 0
p )

2q−1
q (3.19)

Here relaxation time is expressed by:

τ−1(Ea) =
∑
bcd

∫
d3pbd

3pcd
3pd

(2π)3(2π)3(2π)3
W (a, b→ c, d)f 0

b (3.20)

Where Ea = energy of the ath particle, f 0
b = Tsallis distribution of bth particle and transition

rate from a,b to c,d; W (a, b→ c, d) is given by:

W (a, b→ c, d) =
2π4δ(pa + pb − pc − pd)

2Ea2Eb2Ec2Ed
|M |2 (3.21)

where |M | is transition amplitude and now if we take centre-of-mass frame then the equa-

tion 3.20 becomes:

τ−1(Ea) =
∑
bcd

∫
d3pb
(2π)3

σab

√
s− 4m2

2Ea2Eb
f 0
b

≡
∑
b

∫
d3pb
(2π)3

σabvabf
0
b

(3.22)

where vab = relative velocity, σab = scattering cross section,
√
s = energy of centre-of-mass

frame. If we take the averages relaxation time (τ̃ , averaging over f 0
a ) then equation 3.22
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can be further written as :

τ̃−1
a =

∫
d3pa(2π)3τ−1(Ea)f

0
a∫

d3pa(2π)3f 0
a

=
∑
b

∫
d3pad3pb

(2π)3(2π)3
σabvabf

0
af

0
b∫

d3pa(2π)3f 0
a

=
∑

bnb 〈σabvab〉

(3.23)

where nb = number density of the bth particle. In all above equations have been estimated

using a single hadron. Now if we do a thermal averaging over the scattering of all particles

of same hadron species (〈σabvab〉) with a constant hadron collision cross-section (σ) and

taking µ = 0, we can write it as:

〈σabvab〉 =
σ
∫
d3pad

3pbvabe
−Ea
T

q e
−Eb
T

q∫
d3pad3pbe

−Ea
T

q e
−Eb
T

q

(3.24)

We can further simplify the momentum space volume elements as :

d3pad
3pb = 8π2papbdEadEbd(cos θ) (3.25)

Now with the help of equation 3.25, equation 3.24 can be expressed as:

〈σabvab〉 =
σ
∫

8π2papbdEadEbe
−Ea
T

q e
−Eb
T

q

√
(EaEb−papb cos θ)2−(mamb)2

EaEb−papb cos θ∫
8π2papbdEadEbe

−Ea
T

q e
−Eb
T

q

(3.26)

Therefore equation 3.19 along with equations 3.20 to 3.26 is needed to calculate shear

viscosity of a particular hadron species.

3.5 Entropy Density

According to Boltzmann, entropy can be defined as a measure of the number of possible

microstates of a system in thermodynamic equilibrium. In general we treated entropy as a

measure of randomness in a system and entropy density is an important physical quantity

(intensive quantity) that measures entropy per unit volume of a system. From statistical

thermodynamics (Gibbs formula) we can deduce entropy density (s) as:

s =
ε+ P − µBρB

T
(3.27)

where ε = energy density, P = pressure, T = temperature, V = volume, µB = baryo-chemical

potential, and ρB = number densities of the relevant chemical species at equilibrium system.
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For most of the calculation we take µB as 0 so we can rewrite equation 3.27 as:

s =
ε+ P

T
(3.28)

equation 3.27 can be written as differential form as [33]:

s =

(
∂P

∂T

)
V

(3.29)

Here number density (n), pressure (P), energy density (ε) can be computed in integral form:

n =
g

(2π)3

∫
d3pfi (3.30)

P =
g

(2π)3

∫
d3p|~p|2

p0
fi (3.31)

ε =
g

(2π)3

∫
d3pp0fi (3.32)

g = degeneracy factor

So equation 3.28 can be again rewritten with the help of equation 3.31 and equation 3.32 in

an integral form. Here I have used Tsallis distribution where all fi is practically f qi (I have

use it as I also fitted pT distribution with Tsallis) and defined by :

f qi =

[
1 + (q − 1)

(
E − µ
T

)] −q
q−1

(3.33)

and the average number of particles (N) will be N =
∑

i f
q
i . Using equations 3.11 and

3.28 we can get η/s value for any hadron gas. Equations 3.11, 3.28, 3.30, 3.31, 3.32 can be

written as with Tsallis distribution function of the form equation 3.33.

In this chapter we have discussed about the most possible way to calculate shear viscosity

over entropy density ratio and for simplicity we have used classical formalism mentioned

in equations 3.11 and 3.28. In this next chapters we will discuss about the the results that

has been produced by using the UrQMD event generator [5], [7], [15].
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Chapter 4

Result and Conclusion

Here I have worked with charged pion particles (π±) and kaon particles (K±).

4.1 Charged Pion Characteristics

Pid in UrQMD = 101 [3], [2]

mass = 139.57039 MeV

charge: +1 (π+), -1 (π−)

spin = 0

composition: π+(ud̄), π−(dū)

charged radius: 0.3 fm [28]

4.2 Charged Kaon Characteristics

Pid in UrQMD = 106 (for K+), -106 (for K−)

mass= 493.677 MeV

charge: +1 (K+), -1 (K−)

spin = 0

composition: K+(us̄), K−(sū)

charged radius: 0.3 fm [28]
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4.3 Computation

The expressions for calculating η/s value for any charged pion and kaon gas are equations

3.11 and 3.28. Here we are finding the η/s value in the regime between chemical and

kinetic freeze-out where we are considering pions and kaons as hadron gas molecules which

interact through elastic collision only. The dependency of η/s for various centrality would

be also studied here. Here we are using the values of freeze-out temperature, volume, non-

extensivity parameter (q) after fitting pT distribution with Tsallis distribution. After getting

the required parameters using C++ code and implicating equation 3.11 and 3.28, we have

achieved shear viscosity and entropy density for charged pions and kaons for each centrality

respectively. The results are tabulated in natural units.

Here the taken centralities of UrQMD data [4]:

Centality

(%)

0-5 5-10 10-15 15-20 20-25 25-30 30-35

< Npart > 383.4 331.2 281.2 239.0 202.1 169.5 141.0

Centality

(%)

35-40 40-45 45-50 50-55 55-60 60-65 65-70

< Npart > 116.0 94.11 75.3 59.24 45.58 34.33 25.21

Table 4.1: < Npart > for each centrality class
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Centrality Temperature (T) q Volume (V)

(%) (MeV ) (X105 GeV −3)

0-5 108.849 ± 2.229 1.06944 ± 0.00216 70.1070 ± 5.5020

5-10 107.728 ± 2.210 1.07022 ± 0.00217 58.0405 ± 4.5537

10-15 107.171 ± 2.183 1.07011 ± 0.002169 47.8578 ± 3.7337

15-20 106.709 ± 2.164 1.07009 ± 0.002142 39.4185 ± 3.0634

20-25 105.520 ± 2.135 1.07102 ± 0.00214 32.9415 ± 2.5526

25-30 104.620 ± 2.119 1.07168 ± 0.00215 27.0833 ± 2.09400

30-35 102.894 ± 2.099 1.07317 ± 0.00217 22.5762 ± 1.7485

35-40 103.184 ± 2.075 1.07248 ± 0.00214 17.4662 ± 1.3383

40-45 103.183 ± 2.055 1.07193 ± 0.00212 13.3617 ± 1.0156

45-50 101.900± 2.070 1.07341 ± 0.00216 10.4394 ± 0.8038

50-55 98.794 ± 2.057 1.07749 ± 0.00225 7.2039 ± 0.5599

55-60 98.016 ± 2.052 1.07876 ± 0.00228 4.3300 ± 0.3363

60-65 96.192 ± 2.057 1.08166 ± 0.00234 3.1128 ± 0.2451

Table 4.2: Centrality wise Freeze-out parameters after fitting pT spectra with Tsallis distri-

bution for π± for UrQMD data of Pb-Pb collision at
√
sNN = 2.76 TeV
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centrality Temperature (T) q Volume (V)

(%) (MeV ) (X105 GeV −3)

0-5 163.157 ± 3.936 1.03325 ± 0.00294 3.9921 ± 0.3818

5-10 157.862 ± 3.906 1.03648± 0.00296 3.5537 ± 0.35086

10-15 152.955 ± 3.868 1.03923 ± 0.00295 3.1979 ± 0.3251

15-20 147.318 ± 3.852 1.04313 ± 0.00299 29.439 ± 0.3112

20-25 142.102 ± 3.825 1.04658 ± 0.00300 2.6887 ± 0.2947

25-30 136.621 ± 3.823 1.05064 ± 0.00301 2.46593 ± 0.2826

30-35 132.010 ± 3.774 1.05387 ± 0.00302 2.2022 ± 0.2603

35-40 126.432 ± 3.801 1.0822 ± 0.00310 2.0062 ± 0.2502

40-45 121.59 ± 3.788 1.06172 ± 0.00313 1.7795 ± 0.2318

45-50 115.352 ± 3.855 1.06732 ± 0.00325 1.6236 ± 0.2273

50-55 110.987 ± 3.859 1.07094 ± 0.00328 1.3702 ± 0.2010

55-60 109.549 ± 3.861 1.07211 ± 0.00329 1.0371 ± 0.1547

60-65 107.645 ± 3.819 1.07385 ± 0.00325 0.77416 ± 0.1170

65-70 102.391 ± 3.975 1.07964 ± 0.00347 0.6392 ± 0.1055

Table 4.3: Centrality wise Freeze-out parameters after fitting pT spectra with Tsallis distri-

bution for K± for UrQMD data of Pb-Pb collision at
√
sNN = 2.76 TeV
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Figure 4.1: π+ + π− (total) pT distribution fitted with Tsallis for Pb-Pb collision energy at
√
sNN = 2.76 TeV with |η| ≤ 0.5 for different centrality (for UrQMD data)
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Figure 4.2: K+ + K− (total) pT distribution fitted with Tsallis for Pb-Pb collision energy

at
√
sNN = 2.76 TeV with |η| ≤ 0.5 for different centrality (for UrQMD data)

We have used the centrality data of table 4.1 in our calculation. After fitting the trans-

verse momentum spectra (figures 4.1 and 4.2 for charged pions and kaons respectively

using UrQMD data) to Tsallis-Boltzmann distribution, we tabulated the required parame-

ters like - temperature (T), non-extensive parameter (q) and volume (V). We are dealing

with relatively small number of particles (a few thousands) compare to the system with

Avogadro’s number of particle. Here usual Boltzmann statistics is not quite fruitful. So, to

apply statistical model and get a good approximation of thermodynamical observables in

RHIC experiments, instead of using Boltzmann statistics, Tsallis statistics is a good alter-
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native as the q parameter also take care of the non-extensivity of the system. We can also

observe in tables 4.2 and 4.3 that there is a notable trend in non-extensive parameter (q)

and temperature. As we approach to most central collisions, q decreases to 1 (when q →

1; Tsallis statics and Boltzmann statics become equivalent) and temperature increases for

charged pions as well as kaons. It also seems that there is a mass dependency with how the

temperature increases, as we observe it is steeper for kaons than pions (kaons are heavier

than pions).
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Figure 4.3: shear viscosity as varying < Npart > for π+ + π− (total) pT produced in Pb-Pb

collision at
√
sNN = 2.76 TeV with |η| ≤ 0.5 for UrQMD data
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Figure 4.5: entropy density as varying < Npart > for π+ +π− (total) pT produced in Pb-Pb

collision at
√
sNN = 2.76 TeV with |η| ≤ 0.5
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Figure 4.6: entropy density as varying < Npart > for K+ + K− (total) pT produced in

Pb-Pb collision at
√
sNN = 2.76 TeV with |η| ≤ 0.5 for UrQMD data

We can see from figures 4.3, 4.4 and figures 4.5, 4.6 that for both pions and kaons shear

viscosity and entropy density are subtly increasing for higher Npart i.e; near to most central

values where the particle density is the most. From crude kinetic theory of gas (equation

3.4) we can conclude that if number density of a system increases, momentum transfer due
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to the particle thermal motion increases and ultimately shear viscosity increases. Similar

effect seen in entropy density as particle density increases.
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Figure 4.7: shear viscosity over entropy density ratio as varying < Npart > for π+ + π−

(total) pT produced in Pb-Pb collision at
√
sNN = 2.76 TeV with |η| ≤ 0.5 for UrQMD data
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Figure 4.8: shear viscosity over entropy density ratio as varying < Npart > for K+ + K−

(total) pT produced in Pb-Pb collision at
√
sNN = 2.76 TeV with |η| ≤ 0.5 for UrQMD data

From figures 4.7 and 4.8 we can deduct that shear viscosity over entropy density ratio for

both charged pions and kaons are decreasing towards KSS bound. Although in figures
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4.3, 4.4 and figures 4.5, 4.6; both shear viscosity and entropy density increases in most

central collision, but due to the rapid increase in entropy density, the whole ratio shows

the opposite trend. It can be thought such that as the system comprising of only elastically

interacted hard sphere hadron particles is produced by most central collisions, the particle

density increases and the system behaves like more of a QGP like one. The values of η/s

for these hadron gasses(charged pions and kaons), shown in inlay of figures 4.5 and 4.6

[the blue dashed line is KSS bound] are not in the range of 0.08 to 0.24 (predicted from

AdS/CFT string theory) as we initially assumed only elastic collision where these hadrons

are interacting elastically throughout chemical freeze-out to kinetic freeze-out. So, we

would not expect to get shear viscosity over entropy density ratio to be of QGP’s. But we

can say that compare to kaons, the shear viscosity over entropy density ratio for pions are

more close to the lower bound.
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Chapter 5

Summary and Conclusion

From the beginning, our aim was to study one of the QGP properties like shear viscosity

over entropy density ratio in a model-based system, as we cannot have direct access to

these. So at first, we try to familiarize ourselves with the standard model, quarks, gluons.

Then the concept of QGP comes into the picture. There we study the dynamics of QGP, i.e.,

QCD (Quantum Chromo Dynamics). Next, we focus on creating QGP like phenomena in

a lab environment in Relativistic Heavy-ion collision (RHIC). Then we quickly go through

the evolution of collision in RHIC and its observables. Later, we directly go to the models

from which we can extract shear viscosity over entropy density ratio analytically. We have

been introduced to three different methods- classical approach, UrQMD box model and hy-

drodynamical approach. Here I have used the most simplistic one-classical approach and

studied in Pb-Pb collisions at
√
sNN = 2.76 TeV using UrQMD event generator and ob-

tained a trend in centrality fluctuations. With a significant assumption of only taking elastic

collisions in hadronic particles, which are assumed as hard sphere, we have studied η/s for

charged pions and kaons as they are the most produced final state particles (> 70 − 80%).

We have fitted charged pion and kaon spectra at different centrality with Tsallis-Boltzmann

distribution to extract temperature, non-extensive parameter (q) and volume for our calcula-

tion purpose. Generally, we use Boltzmann statistics to those systems, comprising of a large

number of particles nearly of the order of Avogadro’s number. But in this scenario (RHIC),

we have a few numbers (around some thousands) of particles in the system. Hence, using

Tsallis-Boltzmann distribution seems quite effective as its extensive parameter (q) takes

care of this crisis. We have observed a notable variation in q over centrality as we go to-

wards the most central collisions, q value decreases to 1 for both charged particles; as if
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the system produced by most central collision (they have a significant number of particles

in the system compare to other collisions and nearly close to Avogadro’s number) tries to

achieve thermodynamical equilibrium. For temperature, it exhibits the opposite trend for

both charged particles but for charged kaons; it is slightly steeper than charged pions so,

there might have some mass dependency to it. We have also seen that for both charged par-

ticles, shear viscosity and entropy density increases as we go towards most central collision

whereas shear viscosity over entropy density ratio (η/s) shows the opposite trend. This is

plausible as for most central collisions, hadron particle density increases, creating a more

of a QGP (hot and dense partons) like situation. Although the values are not close to that

of QGP, we can observe that the values for charged pions are closer than that of charged

kaons. For further modification, we can use the relativistic Boltzmann transport equation

to calculate shear viscosity as it includes the principle of relativistic hydrodynamics as well

as dissipation terms.
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Appendix A

Simulating the Events: Technical Part

We have written a set of codes using ’c++’ programming language and which uses ROOT

classes. Following are the main components of this monte carlo simulations.

• 1: The yields of individual particles are estimated from already published pT spectra

of each particle.

• 2: A monte-carlo event generator is written to generate both positive and negative

particles.

• 3: Several parallel jobs are submitted to IISER Mohali HPC facility via a newly

written qsub script

• 4: Further these outputs are collected and fed into a newly written parsing code to

produce the plots.
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