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Abstract

Weak Value Amplification and Post-selection based quantum protocols have been exten-

sively used to enhance the precision of estimating small parameters. However, the benefit

of these protocols are largely constrained by the fact that higher enhancements come with

a cost of very low probability of successful post-selection. Here we propose a geometric

relation between the absolute value of the Weak Value and corresponding probability of

successful post-selection which characterizes the condition to obtain a given amount of

amplification with minimal cost and vice versa. We further implement this relation in the

recently developed method of postselected metrology to find a similar relationship between

the postselected quantum Fisher Information and the postselection probability. Finally

we provide a preparation and postlection procedure in which we obtain the optimally

enhanced postselected quantum Fisher Information using a three level non-degenerate

quantum system.
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Chapter 1

Overview

Information constitutes the foundation of knowledge, which sets the limits of the domain

of our imagination about the physical world. Imagine a blind philosopher, cramped in

a dungeon located in a place he knows nothing about, wakes up in the morning and

was asked whether it will be a rainy day. He answers, the probability distribution of

the day to be a sunny day or rainy day is {1/2, 1/2}. The philosopher imagines he can

be at any space-time point on earth; thus, he can say nothing about the place’s weather

forecast. Theoretically also we can state that the distribution carries no information. The

philosopher just said in a fancy way that he does not know. However, if he is provided with

some information, for example, the dungeon’s location, say somewhere in the Atacama

desert, he would answer differently. Now, his imagination about his location in space

limits within one of the driest places in the world, and he deducts his knowledge that

most likely it will be a sunny day.

In the same way we collect information from nature, then we process it with our

intellect and disposition. After that we draw some inference; many equivalent inferences

from different kind of informations collectively constitute knowledge. Thus knowledge

becomes profound, objective and explicit. On the other hand, imagination is an arbi-

trary entity. One can imagine the earth is flat, universe has no space-time boundary or

Michael Jackson will take rebirth one day. The knowledge bounds the arbitrariness of our

imagination within an accessible region.
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The fundamental laws in physics also constitute some profound knowledge of

the world, which also demarcate the boundary of the domain of our imagination. For

example, the attempt to make a perpetual motion machine led to the discovery of laws

of thermodynamics which negated its possibility[Angrist n]; ”one can not overcome the

speed of light”, constitutes the foundation of the special theory of relativity; Bell’s the-

orems negated the existence of hidden variables[Bell 64], etc. Each of these discoveries

constrained the domain of our imagination. A byproduct of these fundamental ”bounds”

is that, as we recognize our imagination’s boundaries, it sets more physically allowed

goals for technology. Thus, the discovery of laws of thermodynamics shifted the goal of

the technologists from perpetual motion machine to Carnot efficiency[Tsaousis 08].

This thesis also concerns some fundamental ”bounds” in advantage of some

quantum technologies based on the principle of postselection, a classical phenomenon

that becomes interesting when it is associated with Quantum mechanics.

Classically, the postselection is described as conditioning a probability distribu-

tion. For example, when we toss two coins, we can postselect the outcome of the second

coin to ’Heads’, which obtains a conditional probability distribution of the first coin’s out-

comes. In quantum theory, the postselection is modeled as a final projective measurement

performed on the system with some selected orthonormal projectors. The scheme is akin

to selecting the system’s state a posteriori after the operations required for the task are

performed. Multiple lines of research have shown that when a quantum protocol for some

technological task is associated with the postselection of the system, it can surpass the

standard quantum limits for the overall gain of the protocol, set by the fundamental laws

of physics[Hensen 15][Resch 04]. The discourse on this topic began with the discovery

of weak values in weak measurements in 1984[Aharonov 88]. When a system is weakly

measured by a meter via a weak unitary interaction followed by a postselection onto the

system, the meter’s deflection can go way beyond the measurement operator’s eigen spec-

trum. The deflection happens because of the appearance of weak values. weak values

are a kind of average value of some operator measured on a system that is preselected in

a state before and postselected on a state after the measurement, which can lie outside

the operator’s eigenspectrum.The effects of weak values have been observed in many ex-

perimental situations[Hosten 08][Zhou 12][Pfeifer 11a][Dixon 09][Pfeifer 11b][Xu 13]. Al-
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though the physical meaning of the weak values is a point of debate till now[Dressel 14],

the effect of this quantum phenomenon is known to be crucial in the enhancement of

precision in the measurement of small parameters using quantum systems, a field of

quantum technologies widely known as Quantum Metrology. The scheme for weak value

based amplification of small parameters is called the Weak Value Amplification. This

scheme enhances the precision of the parameter estimation enormously via amplifying

the sensitivity of meter deflection on minute changes in the parameter. However this

quantum advantage comes with a cost, with low probability of successful postselection.

It means that the high precision trials are obtained but very rarely. This trade off can

be aided by incorporating quantum resources in the system e.g entanglement[Pang 14],

squeezed quadrature variables[Pang 15a], non-linear Hamiltonian[Vetrivelan 20], etc. In-

corporating unsuccessful postselections into the estimation is also known to be helpful for

this purpose[Dressel 13]. These techniques provides more advantage over using classical

resources to mitigate this trade off.

One of the central quantities in Quantum metrology is Quantum Fisher informa-

tion. This quantity also concerns a fundamental ”bound” called as Quantum Cramer-Rao

lower bound. This bound sets the maximum precision we can obtain using a specific es-

timation protocol. In weak value metrology, the postselection plays a central role in

determining the Fisher information. There the maximum amount of Fisher information

is preserved in the postselections with very low probabilities[Pang 14]. Which is why we

observe the trade off in Weak Value Amplification. The motivation of this thesis stems

from a simple question, that under what condition, this trade off works minimally and

we invest minimum cost in postselection probability and in return we obtain highest gain

in weak value amplification. We address this question by defining a measure of efficiency

which calculates the amount of gain of amplification per unit cost of probability and then

finding a fundamental ”bound” for this efficiency which finally leads us to the conditions

to achieve optimal weak value amplification. As I have discussed earlier, the fundamental

”bounds” sets some practical goals to achieve for technology, here also we obtain such

conditions of optimality in weak value amplification which have great technological sig-

nificance. We also show that the probability in the optimal weak value amplification

represent the ratio of classical Fisher information and the quantum Fisher information

in weak value amplification which quantifies the amount of advantage the postselection
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provides over classical estimation.

The weak value metrology provides significant advantage in quantum estima-

tion process, however it always works within the standard quantum limit of quantum

metrology2.5, this means the Fisher information is always less than certain value fixed

by the limit. However the technique of postselected metrology has the ability to surpass

this bound. This scheme is little different than weak value amplification. In weak value

amplification, after the postselection is performed, the state of the system is completely

discarded. The information of the parameter is imprinted in the meter via the weak

interaction, we do the final processing of information from the meter. However, in post-

selected metrology the system is not discarded after postselection, the final processing

of information is done directly on the system. Here we don’t associate any meter with

the process. In this case the postselected Fisher information can be shown to surpass

standard quantum limit of quantum metrology. This happens if and only if the initial

state of the system exhibit quantum features arising from noncommutativity of observ-

ables. Surprisingly, this advantage also comes with the cost of very low probability of

successful postselection. This indicates that we can implement the similar treatment as

we did with the weak value amplification i.e defining the measure of efficiency and find-

ing out its bound to quantify the conditions of achieving the optimal situation where we

obtain maximum gain with minimum cost. We show that despite the two schemes are

structurally different from one another, there are ontological relations between them. We

don’t obtain the effects of weak values in postselected metrology directly, however we

see their great influence in determining the gain and cost of the protocol. This result

helped us to extend the results we derived for the weak value amplification, to postse-

lected metrology resulting in similar bounds in efficiency of this protocol. We aid this

formulation with a simple preparation-measurement scheme where we obtain the optimal

postselected quantum Fisher information using a three level quantum system.

Finally, we explored the optimal conditions formulated for the two schemes about

what implications they have in the geometry of quantum states.
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1.1 Outline

This thesis presents the results of the following three objectives which are related to each

other.

• To find the general condition for optimal weak value amplification where we obtain

maximum amplification with minimum trade off in postselection probability.

• The effect of weak values in postselected metrology, and the condition to achieve

optimal postselected Fisher information without loss of information due to postse-

lection.

• The geometric interpretation of optimal weak value amplification in terms of Pan-

charatnam phase.

The results of these projects are still unpublished.

Here we give a short summary of the chapters.

• Chapter 1: In this chapter we discuss briefly the theory of classical estimation

theory in a quantum preparation. We introduce some of the fundamental quantities

in estimation theory e.g the likelihood function, unbiased estimator, score function,

Fisher information and the Cramer-Rao bound. Later we discuss the Standard

quantum limit of quantum metrology and it’s significance in estimation theory.

• Chapter 2: Here we introduce the concept of Weak measurement, Weak values

and Weak Value Amplification. We discuss the trade off in probability of successful

postselection to gain high Weak Value Amplification and review the advantage of

using entanglement as a resource to control this trade off.

• Chapter 3: In this chapter we present the quantification of efficiency for a Weak

Value Amplification protocol and the fundamental bound of this efficiency. We point

out the condition to achieve the highest efficiency. We also reproduce the results

entanglement assisted weak value amplification protocol as a special case of this

optimization scheme.
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• Chapter 4: Here we start with a brief review of the scheme of Postselected Metrol-

ogy and how it differs from the technique of Weak Value Amplification. We show

the influence of weak values is postselected Fisher information. Using the results of

optimal weak value amplification we quantify the conditions to achieve the optimal

regime in postselected metrology. We end up with a simple example where we reach

the optimal quantities using a three level quantum system.

• Chapter 5: In this section we briefly introduce the concept of geometric phase in

quantum systems and then we discuss the geometric implication of optimal weak

value amplification in terms of geometric phase.
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Chapter 2

Quantum Metrology

Every system in our world have some physical parameters associated which are used to

quantify the kinematics and dynamics of the system. Metrology is a field where the es-

timation processes of these parameters and their statistical properties are discussed. It

concerns the highest precision limits we can achieve in estimation through a specified class

of measurement settings. Thus it plays a central role in physics and engineering of mea-

surement. In this section, I shall discuss the basic structure of a metrological setting, how

it’s precision is quantified and bounded by Fisher Information, how quantum resources

provide advantage over classical resources in precision. Quantum metrology has been the-

oretically proven supremacy over their classical correspondents in many estimation tasks,

for simplicity here we take the case where small phases in the quantum states are to be

measured.

2.1 Basic protocol

We start with a given quantum system S which is prepared in a state ρ̂(θ) where the

information of the parameter θ is encoded. For example the system is in a thermal state

and the temperature of the system is to be estimated. One way to estimate the parameter

is to do a full tomography of the state ρ̂(θ) and find out the map θ → ρ̂(θ). This will give

us a huge precision in our estimation, however it is an enormously expensive technique

for this task. State tomography itself is a costly task. For each value of θ we have to
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do a full state tomography, which increases the difficulty of the task multiple folds. It

is comparable to estimating the temperature of a system by estimating kinetics of every

atom in the system. A more practicable method for this task is to design a measurement,

whose results are directly dependent upon the parameter. For example here we design an

observable Ê and we get the expectation value of our measurement as follows,

〈Ê〉ρ̂(θ) = tr(Êρ̂(θ)) = f(θ). (2.1)

Now when we invert the function f(θ) we get the information of θ. This is a simpler and

more practicable method to estimate θ[Osborne ]. However, here our precision reduces

significantly since the observable we design will have it’s own variance which will be

associated with the variance of our parameter θ.

2.2 Maximum likelihood estimation (classical estima-

tion theory)

The maximum likelihood estimation is a process of estimating parameter dependence of a

probability distribution of some random variables using optimization of some constructed

function. This sets the theoretical foundation of classical estimation theory. The modern

version of the theory was discovered by R.A Fisher between 1912 and 1922 and extended

further by many well known statisticians like Harald Cramer, C.R Rao. We will look

into the theory of maximum likelihood estimation briefly in a quantum preparation which

later will help us to extend the discussion to the theory of quantum estimation.

So far we have a quantum system prepared in a state ρ̂(θ). Now we design a

complete set of POVMs {ε, Ê(ε)} as our measurement setting where ε is the measurement

outcome and Ê(ε) is the corresponding POVM operator. When we measure the system

with Ê, we obtain a probability distribution of different measurement outcomes depending

upon θ.

This distribution is called the likelihood function. This distribution carries the

information of θ. To decode this information we construct an estimator function Φ(ε)
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Figure 2.1: Schematic diagram of a metrological setting

such that its average with respect to the estimator function obtains the value of θ.

〈Φ〉θ =
∑
ε

p(ε/θ)Φ(ε) = θ. (2.2)

These kind of estimator functions are called unbiased estimators. The terms of these

quantities are directly inherited from classical estimation theory since they play the same

role. This 〈Φ〉θ we can consider as the inverse function of f(θ),

〈Φ〉θ = f−1(θ). (2.3)

p(ε/θ) = tr(ρ̂(θ)Ê(ε)). (2.4)

However the condition in Eq 2.2 is a strong condition for estimators and often

we find it difficult to find such estimators. A weaker notion on this purpose is to find out

a locally unbiased estimator. When we estimate the parameter near a fixed value namely

θ = θ0 in this case, a locally unbiased estimator requires the condition,

d〈Φ〉θ
dθ

∣∣∣∣
θ0

= 1. (2.5)

10



2.3 Score function, Fisher Information and Cramer-

Rao lower bound

Likelihood function is an indicator of the quality of our estimation protocol. The peak

of the likelihood function is the characteristics point of our estimation since that controls

the expectation value of our estimator. A good quality of the likelihood function must

have low variance and high sensitivity on the value of the parameter. The sensitivity of

the likelihood function is represented by the score function which is the derivative of the

log-likelihood function with respect to θ.

S(ε/θ) =
∂L
∂θ
. (2.6)

Where L(ε/θ) = ln(p(ε/θ)) is the log-likelihood function.

The precision in the estimation of θ is determined by the variance of Φ with

respect to the likelihood function since it’s average gives us the result of θ. The value of

this variance is bounded by the Cramer-Rao lower bound.

∆Φ2
θ ≥

1

F(θ)
. (2.7)

Where F(θ) is the Fisher information. This bound limits the amount of precision we can

achieve to estimate θ. Fisher information is actually the variance of the score function

with respect to the likelihood function.

F(θ) =

〈(
∂L
∂θ

)2
〉
. (2.8)

The Fisher Information measures the sensitivity of the likelihood function on changing the

parameter and thus it quantifies the amount of information of θ residing in the likelihood

function.

2.4 Quantum Fisher Information and Quantum Cramer-

Rao lower bound

It is discussed earlier in subsection 2.2 that for each choice of our POVM {ε, Ê(ε)} we get

a specific likelihood function. Specific likelihood functions give specific Fisher information
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which bounds the amount of precision in our choice of estimator(〈Φ〉θ). Now when we

maximize the Fisher information over all available choices of the POVMs, we get the

Quantum Fisher Information(QFI) which is independent of the Likelihood function.

IQ(θ) = max
Ê(ε)
F(θ). (2.9)

The quantum Fisher Information sets the Quantum Cramer-Rao bound. In the following

part, I shall discuss the formula to calculate the Quantum Fisher Information and how it

obtains the Quantum Cramer-Rao bound.

First we have to assume the state evolves with the parameter via a unitary

interaction.

ρ̂(θ) = exp(−iÂθ)ρ̂0exp(iÂθ). (2.10)

where ρ̂0 is the state for θ = 0 and Â is a hermitian operator onto the state space of the

system. The quantum Fisher Information for this setting is as follows,

IQ(ρ̂(θ), Â) = tr
(

Ω−1
ρ

(
(∂θρ̂)†

)
∂θρ̂
)
. (2.11)

Here Ω is a linear super operator on the operator space of the Hilbert space defined as

follows,

ΩX(Y ) =
1

2
(XY + Y X)

where X and Y are two operators.

In appendix 1 we prove that this is the optimized Fisher information over all the

complete POVMs of the system state.

The expression for quantum Fisher information can be written in simple form

when we define the following operation called symmetric logerithmic derrivative (Λθ),

∂θρ̂ =
1

2
(Λθρ̂+ ρ̂Λθ)

We can write the expression for Fisher information simply in terms of the Sym-

metric Logarithmic derivative,

IQ(ρ̂(θ), Â) = tr(ρ̂Λ2
θ) (2.12)
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If we take pure states as the initial state of the system, the QFI can be written in the

following form,

IQ(|ψi〉 , Â) = 4[〈ψ̇θ|ψ̇θ〉 − |〈ψ̇θ|ψθ〉|2] = 4V ar(Â)|ψθ〉 (2.13)

Here |ψi〉 is the initial state of the system, |ψθ〉 = exp(−iθÂ) |ψi〉 is the evolved state.

2.5 Heisenberg scaling of Quantum Fisher Informa-

tion

The result in Eq 2.13 seems to be surprising in the first glance. In order to increase the

precision or to decrease the variance of our parameter we need to increase the variance

of the operator Â and this seems to be counter intuitive in understanding. The reason

behind this dichotomy lies in the algebra of conjugate variables in Quantum mechanics.

We know that generator of continuous symmetry transformations and the operator, whose

eigen-space is where the transformations are performed, act as conjugate variables, or in

other words their eigen-spaces can be written as the Fourier transform of each other.

For example the position and momentum variables act as generator of translation on

the eigen-space of one another and they are conjugate variables. In this case we encode

the information of θ into the system via a unitary transformation generated by Â. And

the estimator Φ act as the operator variable corresponding to θ on average(Eq 2.2).

Thus Â and Φ act here as a set of conjugate variables. That is why their corresponding

uncertainties are bounded by the Heisenberg uncertainty relation. Quantum Cramer-Rao

bound is nothing but a form of Heisenberg uncertainty relation. Thus when we measure

θ precisely the uncertainty of A has to be large.

When we take a combination of N systems and the variable Â is direct sum of

the variables of each subsystem, the maximum variance that we can achieve scales with

N quadratically as N2. That is the maximum scaling of number of subsystem we can

achieve on Quantum Fisher Information and it was widely believed that it is physically

impossible to surpass this bound. This is called as the Heisenberg scaling for QFI. Here

we give an example where this bound is achieved.
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We have a quantum system S which is composed of N number of subsystems

namely Si where i goes from 1 to N . Each of Si has observable Âi = 1⊗ ....⊗ â⊗ ...⊗ 1

where â operates in theith subsystem. â has maximum and minimum eigenvalues λmax

and λmin The global observable of the system is written as follows,

Â = Â1 + Â2 + .....+ ÂN (2.14)

We take the initial state one of the maximally entangled states, as follows,

|ψi〉 =
|λmin〉⊗N + eiχ |λmax〉⊗N√

2
(2.15)

Where χ is an arbitrary phase. The state evolves via the unitary operation exp(−iθÂ).

At the limit θ → 0 the Quantum Fisher Information of this setting can be given as,

IQ(|ψi〉 , Â) = N2(λmax − λmin)2 (2.16)

Thus in this setting we achieve the Heisenberg scaling in quantum Fisher information.

Heisenberg scaling can be achieved by a number of other experimental settings. It can

also be achieved via quantum error correcting codes which makes the system robust in a

noisy environment. This limit concerns the Heisenberg inequality in quantum mechanics,

it is needless to explain how profoundly this bound is associated with our foundational

understanding of quantum mechanics. Any alteration in this bound will lead us to points

of contradictions where we have to reconsider our imagination.
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Chapter 3

Weak Measurement, Weak Values

and Weak Value Amplification

Weak values for some Observable Â with respect to a preselected state |ψi〉 and a posts-

elected state |ψf〉 is defined as follows,

Aw =
〈ψf | Â |ψi〉
〈ψf | ψi〉

(3.1)

Weak values are considered as a different form of average values of the observables which

appear in the meter when a system initially in state |ψi〉 is subjected to a weak measure-

ment and then postselected into a state |ψf〉. The meter of the weak measurement device

deflects according to the weak value.

It is notable that the numerator of the weak value is one of the coherence term of

the measurement operator and denominator is the inner product between the initial and

final state. So basically if we start from a state |ψi〉 and then do a projective measurement

with Â the final state is proportional to Â |ψi〉 and then doing a postselection with state

|ψf〉 basically gives us the modulus square of the coherence term in the numerator as

the probability amplitude for the post-selection. It is because of the weak measurement

that we get the denominator which has tremendous significance in quantum technologies.

Noticeably rather than the ordinary average values of the observables, weak values can be

complex and it can go way beyond the spectrum of the observable. Thus the weak values

carry more information than the average values. Besides, weak values have tremendous
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technological advantage in many arenas e.g Quantum state tomography, Quantum ther-

mometry, parameter estimation etc. In this section we discuss how the weak values are

obtained and how it gives advantage in small parameter estimations.

3.1 Generating weak values via weak measurement

In weak measurement we take a meter(an ancilla) and couple that with the system via a

Von-Neumann type interaction. Then we do a projective measurement on the system or

in other words postselect the system in a particular state. The meter state undergoes a

change to another state state(|φ′〉). After that we do a projective measurement onto the

meter which shows a humongous deflection going beyond the spectrum of the observable

depending upon the weak value. The following is a relatively general framework for weak

value amplification scheme which is based on this reference[Pang 14].

Suppose we have a system with observable Â and a meter with observable F̂ .

System and meter is interacting with a Hamiltonian,

Ĥint = h̄gδ(t− t0)Â⊗ F̂ (3.2)

Here it is an impulsive interaction which happens in a faster time scale than the natural

dynamics of the system and meter. ”g” is the interaction strength. Now suppose the

experimenter prepares the system in state |ψi〉 and the meter in |φ〉 and finally post-

selects the system in state |ψf〉. Then the meter evolves with the Kraus operator

M̂ = 〈ψf | e−igÂ⊗F̂ |ψi〉 (3.3)

So the final meter state will be,

|φ′〉 =
M̂ |φ〉
|| M̂ |φ〉 ||

=
M̂ |φ〉√
〈φ| M̂ †M̂ |φ〉

(3.4)

Now if we do a measurement on the meter with a meter observable R̂ then the expectation

value can be approximated to the second order in g(the coupling constant) as following,

〈R̂〉|φ′〉 ≈
2gIm(αAw) + g2β | Aw |2

1 + g2σ2 | Aw |2
(3.5)
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Here α = 〈R̂F̂ 〉|φ〉, β = 〈F̂ R̂F̂ 〉|φ〉, σ2 = 〈F̂ 2〉|φ〉 are the correlation parameters between

the Initial meter observable F̂ which is used to couple with the system and final meter

observable R̂ which is used to perform the measurement.

We have taken all the initial pointer variables unbiased, thus initial expectation

value of all the pointer variables are zero.

Now usually the amplification experiments are performed in Linear response

region so that we can easily extract out the amplification factor. That allows us to

neglect the second order terms in Eq 3.5. The condition is that g is very small.

Thus we obtain the following,

〈R̂〉|φ′〉 ≈ 2gIm(αAw) = 2g[Re(Aw)Im(α) + Im(Aw)Re(α)] (3.6)

Figure 3.1: Weak Value Amplification schematic diagram

Here we clearly see that the meter result is very much dependent upon the weak

value of the system observable and if the weak value is very high the meter result is also

very high.

In the schematic 3.1 the weak measurement and subsequent appearance of weak

value is shown here for a one qubit system. If we start from |ψi〉 = cos(θ/2) |0〉 +

sin(θ/2) |1〉 and finally post select the state in |0〉 we get meter deflection proportional

to sec(θ/2) due to the weak value and subsequent post-selection probability is cos2(θ/2).

So if θ is close to π then we have tremendous amplification in the meter reading due to

sec(θ/2) this factor. But at the same time post-selection probability is also very low.
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3.2 Weak Value amplification

The significance of the denominator in weak values is that it gives us tremendous ampli-

fication when the initial state and the final state are almost mutually orthogonal. This

was the motivation of the very first article in this field by Aharonov, Albert and Vaidman

which was titled as ”How the result of a measurement of a component of the spin of a

spin-1/2 particle can turn out to be 100”[Aharonov 88]. This article triggered a lot of

discourse on this matter as it was very much counter intuitive. It was argued that the

original PRL paper contains some shortcomings. However a lot of people defended that

despite that the point raised by AAV is true. Sudarshan and his coauthors discussed

the importance of this result and provided the weakness limit of the coupling parameter

where we encounter this effect along with an experimental protocol with Mach-Zehnder

interferometer[Duck 89].

Amidst of this dispute The Quantum metrologists have seen a great possibility

in Weak values. It’s that in parameter estimation protocols using Quantum technologies,

the weak values can be used to avail great amount of amplification.

In practice plenty of classical resources are used in order to amplify the measure-

ment outcomes of Quantum systems to our observation limits. For example to observe

effects in atomic scale huge amount of magnetic field is used to split the quantum states

using Zeeman effect before it is interacted with electromagnetic waves. In weak mea-

surement we obtain the amplifications directly from the system within the framework of

Quantum mechanics without any external classical resource.

3.3 The cost of WVA

So far it is clear that as small as 〈ψf | ψi〉 is, so much amplification we obtain in the weak

value. But it comes with a cost. It is that 〈ψf | ψi〉 this factor also denotes the post

selection probability.

Ps =| 〈ψf | ψi〉 |2 (3.7)
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This means higher the weak value is lower is the post selection probability of the system.

To interpret this fact in practical language we can put it like: if we wish to have a high

weak value deflection in the meter, the meter is less likely to give any reading.

A lot of effort has been made so far to enhance this probability for a fixed weak

value. One of such methods use Quantum resource for this enhancement[Pang 14]. We

are going to look at this method in detail in the following sections.

3.4 Review of the entanglement assisted enhance-

ment of WVA

Here the system is considered to be comprised of n no of subsystems. This opens up access

to a huge Quantum resource encoded into the correlations between the subsystems. Here

I mention that WVA already uses one of the Quantum resources present in unfragmented

Â that is the Coherence. It is the grace of Quantum mechanics that allows superposi-

tion of Quantum states which let us control the orthogonality between the two states to

achieve desired WVA. Allowing the system to have fragments or subsystems let us access

entanglement between the subsystems.

Here the system observable is described by following non interacting variable,

Â =
∑
k

I⊗k−1 ⊗ â⊗ I⊗n−k (3.8)

Where all the subsystem observables of Â have same set of eigenvalues and eigenvectors

but with different support and that is why direct sum sign is used. Now if â is the

subsystem observable having set of eigenvalues and eigenvectors {λ, |λ〉} then we have the

following bound on eigenvalues of Â.

Λmax(min) = n(λmax(min)) (3.9)

|Λmax(min)〉 = |λmax(min)〉⊗n (3.10)

Now with the help of the subsystems we have a bigger set of aspirants of pre-selection

and post-selection states. We have to maximize the post-selection probability as in Eq 3.7
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over these aspirants for a given weak value. So it comes down to an optimization problem

at last. Here we have a very interesting constraint which makes this problem easier. The

constraint is that, |ψf〉 is always orthogonal to |ν〉

|ν〉 = (Â− Aw) |ψi〉 (3.11)

This is quite obvious and comes directly from the definition of the weak value. Although

it is worth great importance since now we can consider |ψf〉 to be in orthogonal subspace

of |ν〉 to have maximum Ps.

The optimization is done first over |ψf〉 and then |ψi〉.

The part of |ψi〉 orthogonal to |ν〉 can be written as follows,

|ψi〉ν⊥ = |ψi〉 −
(Â− Aw) |ψi〉 (〈ψi| (Â− A∗w) |ψi〉)

[〈ψi| (Â− A∗w)(Â− Aw) |ψi〉]
1
2 | 〈ψi| (Â− A∗w) |ψi〉 |

(3.12)

As discussed earlier we can consider |ψf〉 to be parallel to |ψi〉ν⊥ = |ψi〉. After some

simplification we can derive,

|ψf〉 ∝ |ψi〉 −
(Â− Aw) |ψi〉 (〈Â〉 − A∗w)

[〈Â2〉 − 2〈Â〉Re(Aw)+ | Aw |2]
1
2 | 〈Â〉 − A∗w |

(3.13)

Here 〈.〉 = 〈ψi| . |ψi〉.

After some algebra we get the following relation,

Ps ≤
V ar(Â)

〈Â2〉 − 2〈Â〉Re(Aw)+ | A2
w |2

(3.14)

It is interesting that maximum value for Ps is dependent upon the variance of Â. Change in

variance of a joint observable is dependent upon the correlations between the subsystems.

For continuous variables the diffusive velocity or rate of change of variance contributes in

covariance matrix of two particle momentum[Valdés-Hernández 19]. Here[Giovannetti 11]

is shown that V ar(Â) is maximum when |ψi〉 is one of the maximally entangled states.

That’s where the entanglement come into this formalism for the first time. It has been

shown that for the state which maximizes this variance can be written as follows,

|ψi〉 =
1√
2

(|λmax〉⊗n + eiθ |λmin〉⊗n) (3.15)

The maximum value of V ar(Â) that we obtain from this state is,

m
|ψi〉
ax V ar(Â) =

n2

4
(λmax − λmin)2 (3.16)
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Based on this |ψi〉 we get the maximal |ψf〉 using Eq. 3.13

|ψf〉 ∝ −(nλmin − A∗w) |λmax〉⊗n + eiθ(nλmax − A∗w) |λmin〉⊗n (3.17)

So we get the preselection and postselection states maximizing the Ps. Both are

entangled state. It is difficult to prepare and do measurement on maximally entangled

states but given we can do that, we can perform this enhancement.

3.5 The quantum Fisher information of weak value

amplification protocol

In the weak value amplification scheme as soon as the postselection is performed in the

system, the information of the parameter encoded in the system is completely erased

which is why the Fisher information in the system equals zero. But the information of

the parameter θ remains in the meter due to the weak interaction which is associated with

the amplification factor due to the weak value. The meter variable R̂ acts in this process

as an estimator 3.1. Thus we have to calculate the Fisher information in the meter state.

The quantum Fisher information of the final meter state can be approximately written

as[Pang 15b],

IwkQ ≈ 4ps|Aw|2V ar(F̂ )|φ〉. (3.18)

It is interesting to see that the meter variable which is used to generate the weak

interaction must have a large variance in order to have significant amount of Fisher infor-

mation. This Fisher information never exceeds the standard quantum limit of quantum

metrology. However a recently developped postselected metrology scheme can exceed this

limit. We shall discuss this in the next to next chapter. In the following chapter we

discuss the efficiency and optimal weak value amplification regime and how it compart

with other optimization schemes of weak values and corresponding probabilities.
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Optimal weak value amplification
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Chapter 4

Optimal weak value amplification

Large and anomalous weak values provide significant amplification in parameter estima-

tions with the cost of very low probability of successful post-selection. Which is why

it becomes very hard to practically obtain the advantage of this quantum phenomenon.

The question which appears directly from this point is that in this cost-gain dichotomy

where do we get the maximum advantage with minimal cost. To find the answer to that

question, one first needs to define the efficiency of a general weak value amplification

protocol. Now efficiency in general is defined as the rate of gain per unit cost. To increase

the efficiency one needs to maximize the gain and minimize the cost. In this scenario

the gain is quantified as the absolute value of the weak value |Aw|. However ps doesn’t

quantify the cost properly, since the cost here is the low probability. Here we quantify

the cost of WVA as p−1
s which minimizes when the probability is maximized. Thus we

define the efficiency of weak value amplification as follows,

Definition 1. Efficiency of a Weak Value Amplification protocol η with Weak Value Aw

and corresponding postselection probability ps is given by,

η(Aw, ps) = ps|Aw|2. (4.1)

This efficiency quantifies the comparative speed of Weak Value getting large and

the probability getting small. If we break the Aw and ps in terms of the initial state,

postselection state and the operator Â we get the following result,

η(Aw, ps) = |〈ψi|Â|ψf〉|2. (4.2)
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We can presume that this term can not go outside the spectrum of A thus it is bounded

from below and above. In the following theorem we shall see the upper bound and lower

bound of this efficiency and under which condition the efficiency reaches the maximum.

Theorem 1 (Bound in efficiency of Weak Value Amplification). Efficiency of a Weak

Value Amplification protocol is bounded in accordance with the following inequality:

0 ≤ η(Aw, ps) ≤ 〈ψi|Â2|ψi〉, (4.3)

Thus the maximum efficiency that we can achieve in weak value amplification

is 〈ψi|Â2|ψi〉. This is quantified completely by the operator Â and the initial state |psii〉.

Thus the condition to achieve this optimal situation imposes a constraint in the choice

of our final postselection state. We present this condition as a corollary of this theorem.

Before that we give a simple proof of this theorem.

Proof. • First inequality is very evident. It only states that efficiency is a positive

real number.ps ≥ 0 and |Aw| ≥ 0 =⇒ η(Aw, ps) ≥ 0.

• The second inequality is a crucial result of this thesis. To prove this first we write

the efficiency in the following form,

η(Aw, ps) = 〈Ψf |Â|Ψi〉〈Ψi|Â|Ψf〉. (4.4)

Let {|ψk〉} forms a complete ortho-normal basis where |ψi〉 ∈ {|ψk〉}. We can write,

η(Aw, ps) ≤
∑
k

〈ψi|Â|ψk〉〈ψk|Â|ψi〉

≤ 〈ψi|Â
(∑

k

|ψk〉〈ψk|
)
Â|ψi〉

≤ 〈ψi|Â2|ψi〉.

(4.5)

We have proved that the efficiency of the weak value amplification is bounded.

Now we shall derive some important corollaries from this theorem.
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Corollary 1. The efficiency of a Weak Value amplification protocol has a universal bound

which is independent of the initial and final state of the protocol in terms of the operator

norm of the observable Â.

η(Aw, ps) ≤ ||Â2||op. (4.6)

Operator norm of an operator is defined as ||T̂ ||op := sup|φ〉∈H{〈φ| T̂ |φ〉 : 〈φ|φ〉 =

1}. This upper bound is independent of the initial state and the final state of the system,

thus it sets a stronger bound for the efficiency.

Corollary 2. The upper bound of the efficiency of Weak Value Amplification is achieved

when the final state |ψf〉 is parallel to Â |ψi〉.

This corollary states the condition to achieve the optimal weak value amplifi-

cation. The condition imposes a constraint in the choice of the final state. Under this

condition we can write the expression for the optimal weak value and the optimal proba-

bility of successful post selection.

When |ψf〉 is parallel to Â |ψi〉 we can write the final state as follows,

|ψf〉 =
Â |ψi〉√
〈ψi|Â2|ψi〉

. (4.7)

Putting this |ψf〉 in the expression of the weak value and the post selection probability,

we get the following expressions,

Aw =
〈ψi|Â2|ψi〉
〈ψi|Â|ψi〉

. (4.8)

ps =
〈ψi|Â|ψi〉2

〈ψi|Â2|ψi〉
. (4.9)

Evidently in optimal limit the weak value, the postselection probability and the efficiency,

all are independent of the final state. The anomalous weak value amplification condition is

determined by the average value of Â in the initial state. When this average is very small,

we get anomalously large weak values and simultaneously the postselection probability

becomes very small. The weak value is always real in this regime. In the next section we

take an example where we explore how these conditions perform in physical systems.
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4.1 Optimal weak value amplification with an entan-

gled initial state

This example starts with the system constructed in the way same as the section 2.5, where

we have n combined systems with the global variable,

Â =
∑
k

I⊗k−1 ⊗ â⊗ I⊗n−k (4.10)

Where â has eigen spectrum{λi, |λi〉}. We prepare the system in the following pre-selected

state,

|ψi〉 =
|λx〉⊗n + |λy〉⊗n√

2
(4.11)

Where λx and λy are two different eigenvalues of â. Note that each choice of λx and λy

specifies the choice of our initial state.

Now in optimal weak value amplification regime, we get the following expressions

for the optimal weak value and the optimal probability of post selection using Eq 4.8 and

4.9,

ps =
(λx + λy)

2

2(λ2
x + λ2

y)
; (4.12)

Aw =
n(λ2

x + λ2
y)

λx + λy
. (4.13)

Plotting these two functions gives us insight about the choice of the eigenvalues

of â and the choice of the initial state. Now we examine two cases,

• Optimizing the probability for fixed weak value.

• Optimizing the Weak value for fixed probability.

1 The significance of these two cases are, often we are given with a required amount

of amplification to detect the changes in the small parameter within the error range of

the measuring apparatus and we want to find the best situation to avail that amount of

1This graph is plotted in GeoGebra
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Figure 4.1: Weak value and postselection probability for different initial states character-

ized by λx and λy

amplification with minimal cost. We can also encounter the reverse situation where the

cost we can bear is given and we are asked to find the best situation where we get the

best amplification within the cost range.

In our optimization we get a constraint in the choice of the two eigen values λx

and λy in both the situations. This fixes the initial state of the protocol.

4.2 Optimizing probability with fixed weak value

For fixed weak value we get the following constraint in the choice of λx and λy from Eq

4.13.

λy =
Aw ±

√
A2
w − 4n2λ2

x + 4nAwλx
2n

. (4.14)

For large weak values we can approximate this relation as follows,

λy ≈
Aw − nλx

2n
,−λx. (4.15)

Point to mention here is that since in the optimized regime the weak value is always real,

we don’t get any complex valued choices for λy which has to be real by definition.
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Now, the first choice for λy corresponds to non-anomalous weak value ampli-

fication where the eigenvalues of the operator A is of the order of the weak value. In

figure 4.1 the outer region specifies the weak values where λx and λy are large, this region

corresponds to the non-anomalous weak value region where the amplification arise due

to higher eigenvalues of the observable. The second choice of the constraint corresponds

to the anomalous weak value amplification where the average of A in the initial state

becomes close to zero and thus the weak value becomes anomalously large. In the figure

4.1 we have a singularity in the region corresponding to λx = −λy where the probability

is also very low. This region corresponds to the anomalous weak value region where the

amplification arise due to the denominator in weak value. This choice is of our interest

since it gives us quantum advantages in weak value amplification. Thus focusing on the

second choice of the constraint we can derive the following expression for the postselection

probability,

ps =
n2λ2

x

A2
w

. (4.16)

This probability scales with n quadratically. The bet enhancement of the postselection

probability using classical resources yields linear scaling with n. Thus using quantum

resources it gives significant enhancement on this purpose.

4.3 Optimizing the Weak Value with fixed probabil-

ity of successful postslection

In this case we involve Eq 4.12 to get the appropriate constraint on the choice of λx and

λy. Doing this we get the following constraint,

λy =
λx ±

√
λ2
x − (2ps − 1)2λ2

x

2ps − 1
. (4.17)

Now we take low ps approximation. Interesting point here is that, this approximation

leads us to the case of anomalous weak value amplification. We get the same condition

as Eq 4.15.

λy ≈ −λx. (4.18)
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This yields the optimum weak value for a given amount of postselection probability,

|Aw| =
nλx√
ps
. (4.19)

This scales with n linearly. Both of these cases are examined by Shengsi Pang et al obtain-

ing the similar scaling with n. Each of the cases were taken as two different optimization

tasks. However in this work we treat it as two special cases of a single optimization task

which gives the same result for anomalously large weak value limit where the postselection

probability becomes small and weak value becomes very large.

4.4 Discussion

In the optimal regime which we explored in this project obtains only real weak values. A

simple question arises from this point do we loose information because of this restriction?

The whole manifold of possible weak values is larger since it contains imaginary values as

well, thus it has a higher content of information. A simple answer to this question is, as far

as the Weak value amplification is concerned, the information of the coupling parameter

is not encoded in the weak value. Rather it is encoded in the system state and the meter

state after the interaction (Eq 3.2) is performed, and when we postselect the system,

although the information of the parameter in the system is lost, the information in the

meter is not. The weak value brings an amplification factor which enhances the sensitivity

of the meter under small changes in the parameter value. Which is why, whether the weak

value is real or complex is not a concern of weak value amplification, what matters is the

magnitude of the weak value. Thus performing weak value amplification in the optimal

regime don’t loose information of the parameter whatsoever.

Another point to debate is the advantage of our optimization over the approach

of entanglement assisted weak value amplification. We defend this advantage with the

following arguments. Firstly, the approach of entanglement assisted weak value amplifica-

tion treats the two optimization scheme specified in section 4.1 differently, we have shown

the two optimization as a special case of a same optimization. Secondly, the entanglement

assisted weak value amplification approach concerns the very large weak value and very

small postselection probability limit, which basically talks about the anomalous weak

30



value amplification case. However, in our case we can make our choice between these two

according to our requirement. Thirdly, we do our optimization in a more general scenario

by defining a measure of efficiency of Weak value amplification p rotocol. This provides

us with a wide variety of situations where we can achieve this optimality.
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Bounding quantum advantages in

postselected metrology
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Chapter 5

Bounding quantum advantages in

postselected metrology

The scheme for postselected metrology is a little different from the scheme of weak value

metrology. In this case, we prepare the system in a preselected state, then evolve it via

a unitary interaction and up to this point the standard protocol of an estimation task is

followed. After that we postselect the evolved system in a set of projectors and then the

final post processing is done on to the collapsed state. Here, by ”final post-processing”

I mean operating the unbiased estimator to extract the value of the parameter. The

difference of this scheme from the Weak Value metrology is that, there we weakly interact

the system with a meter and after postselecting the system we discard the system and we

do the final post-processing in the meter state where we obtain the amplification due to

the weak value. In this case we don’t discard the postselected system, instead we do the

post-processing on to that postselected state.

In this chapter we first review the idea of ”Quantum advantages in postselected

metrology”[Arvidsson-Shukur 20] and then we shall discuss how the Fisher information

in this scheme is related with the weak values of the evolution generator Â. We shall

also prove that even if the Fisher Information in this case can go way beyond the Heisen-

berg limit using states with nonclassical features[Arvidsson-Shukur 20], this phenomenon

always comes with a cost of low postselection probability as in WVA. We shall extend

our discussion further in order to find the optimal scenario for this purpose as we did in
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the previous chapter and present an example where we can optimally enhance the Fisher

information via nonclassical states using a three level quantum system.

5.1 Review of Postselected quantum metrology

Figure 5.1: Schematic of Postselected metrology

In this section we first give the detailed setting of postselected metrology. We

first prepare the system in a pure state |ψi〉. Then we evolve the state via a unitary

interaction exp(−iθÂ) generated by the operator Â. The evolved state becomes |ψθ〉 =

exp(−iθÂ) |ψi〉. Now we postselect the system with the following projector,

F̂ =
∑
|f〉∈Fps

|f〉 〈f | . (5.1)

Here Fps is a set of orthonormal basis vectors specifying the states allowed by the posts-

election. This gives us the unnormalized postselected state as follows,

|ψpsθ 〉 = F̂ |ψθ〉 . (5.2)

The probability of successful postselection in this case is given by,

ppsθ = Tr(F̂ |ψθ〉 〈ψθ|). (5.3)
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When we normalize this state we get the following postselected state,

|Ψps
θ 〉 =

|ψpsθ 〉√
ppsθ

. (5.4)

On this postselected state we perform the final estimation. Now, one might think on

this point that after the system is postselected it is collapsed into some state; how a

collapsed state can carry information about the parameter. This is a valid point which

gives good insight into this scheme. It so happens that the collapsed state does not

carry any information when the system is post-selected in a rank 1 projector. However

in other cases the state does not discard all the information of θ and gives a non zero

quantum Fisher information. Which is why we have taken a projector for postselection

with arbitrary rank apart from the scheme of weak value measurement scheme. This state

gives us the following Quantum Fisher Information which can be calculated directly using

Eq 2.11.

IQ(θ/ |Ψps
θ 〉) = 4

[
〈 ˙ψpsθ | ˙ψpsθ 〉

1

ppsθ
− |〈 ˙ψpsθ |ψ

ps
θ 〉|

2 1

(ppsθ )2

]
. (5.5)

The formula can be generalized to get the expression of postselected quantum Fisher

Information for a mixed state ρ̂0 as the initial state,

IQ(θ/ρpsθ ) = 4
[Tr(F̂ ÂÛ(θ)ρ̂0Û(θ)†Â)

ppsθ
− |Tr(F̂ Û(θ)ρ̂0Û(θ)†Â)|2

(ppsθ )2

]
. (5.6)

5.1.1 Phase-space quasiprobability distribution

The advantage of the postselected metrology stems from the idea of complex quasiprob-

ability distribution as the phase space representation of quantum states. In classical

mechanics, the state of a point particle is described by it’s position ~x and momentum ~p

at some point of time, thus it is represented by a point in phase space which is spanned

by ~x and ~p. The state of an ensemble of classical point particles are described by a phase

space density function which is a joint probability distribution of ~x and ~p. In quantum

mechanics the position and momentum becomes non-commuting operators and it was

shown by Von-Neumann that we can’t express the quantum states unambiguously with

joint probability distributions of a set of observables. However we can represent the states

by a quasiprobability distribution of a set of noncommuting observables. The quasiprob-

ability distributions are a form of probability distribution functions which does not follow
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the first two Kolmogorov axioms; in other words they can assume negative and complex

values, but they add up to 1 which means the total probability of the distribution is one.

Quasi-probability distribution functions have been widely used in quantum optics. How-

ever the true statistical meaning of these distributions are still an apple of discord. The

quasi-probability distributions are considered as signature for nonclassicality. Whenever

we have such states with quasiprobability distributions, we consider the state posses non-

classical feature which means that the complete statistical description of the state is not

possible within the domain of classical mechanics. These non-trivialities actually comes

from the noncommutativity of proposals in quantum mechanics, where definiteness in one

proposal can hamper the definiteness of another proposal which is practically impossible

to imagine in our classical understanding.

The quasi-probability distribution which we shall use in this case was discovered

by J.G Kirkwood and is called as the Kirkwood distribution. It is a complex quasi-

probability distribution. It contains the same amount of information as the Wigner

quasi-probability distribution, a very popular, well behaved, quasiprobability distribution

which contains the full information of the corresponding quantum state. The Kirkwood

distribution is obtained by a similarity transformation of the phase space variables from

the Wigner quasi-probability distribution. To define the Kirkwood distribution of a state

we first define two set of orthonormal basis states {|am〉} and {|bn〉}.Now the Kirkwood

distribution of the state ρ̂ at the point {am, bn} can be expressed as follows,

Kρ(am, bn) = Tr(ρ̂ |am〉 〈am| |bn〉 〈bn|). (5.7)

After decomposition we get,

Kρ(am, bn) = 〈am| ρ̂ |bn〉 〈bn|.am〉 (5.8)

This can also be expressed as follows,

Kρ(am, bn) =
∑
k

〈am| ρ̂ |ak〉 〈ak|bn〉〈bn|am〉. (5.9)

The distribution inside the summation sign is termed as the doubly extended Kirkwood

distribution[Arvidsson-Shukur 20].

Kd
ρ (am, ak, bn) = 〈am| ρ̂ |ak〉 〈ak|bn〉〈bn|am〉. (5.10)
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Figure 5.2: Real and Imaginary part of Kirkwood distribution in |x〉 and |p〉 basis for n=1

Fock state which is a nonclassical state in position-momentum basis

The state can be expressed in terms of the doubly extended Kirkwood distribution as

follows,

ρ̂ =
∑
m,k,n

Kd
ρ (am, ak, bn)

|am〉 〈bn|
〈bn|am〉

. (5.11)

Now we go back to our discussion on the postselected Fisher information. In our

scheme we have two set of orthonormal basis, one is the eigen basis of Â {|a〉} and the

other one is the orthonormal basis set {|f〉} where we do the postselection. Which means

Fps ⊂ {|f〉}. We express the state ρ̂ in this doubly extended Kirkwood distribution as

follows,

ρ̂ =
∑
a,a′,f

Kd
ρ (a, a′, f)

|a〉 〈f |
〈f |a〉

. (5.12)

Here ρ̂ is the updated system state after evolution. At the points where Â and F̂ do

not commute, the doubly kirkwood distribution gives complex values, otherwise it gives

values within 0 and 1.

Now when we put this form of ρ̂ in Eq 5.6, we get the form of the Fisher
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information in terms of the Kirkwood distribution,

IQ(θ/ρpsθ ) = 4
[ ∑

a,a′,
f∈Fps

Kd
ρ (a, a′, f)

aa′

ppsθ
−
∣∣∣ ∑
a,a′,
f∈Fps

Kd
ρ (a, a′, f)

a

ppsθ

∣∣∣2]. (5.13)

When we have a classically commuting theory which means Â and F̂ commutes at every

point in the phase space, the postselected Fisher information does not exceed the stan-

dard quantum limit, set by the Heisenberg limit as discussed in section 2.5. However,

when we access the quantum states where Â and F̂ don’t commute, we have complex

nonclassical values of the doubly extended Kirkwood distribution, the postselected Fisher

information may exceed the Heisenberg limit. The statement can be proved via examples

[Arvidsson-Shukur 20]. Here the negativity of the nonclassical kirkwood distribution is

used as a resource to enhance the precision of the estimation. Only the selected initial

states which does not commute with the projectors for postselection and the operator Â

at every point in phase space, shows this effect. Another point to mention is that the

selected postselections where this enhancement is obtained have very low probability for

successful postselection, this behaviour coincides with the behaviour of the Weak value

amplification. This happens because the bulk of the information is preserved in some of

the postselected states with very low postselection probability. Which means that the

postselection probability has to become very small in order to enhance the precision of

the estimation significantly. The part of the information in the discarded states of post-

selection is lost. This situation can be overcome by introducing some degeneracy into

the generator of evolution Â. However this brings some non-trivialities in the estimation

process since preparing a degenerate operator is a difficult task because in a noisy environ-

ment the degeneracy of the operator breaks and the estimation process becomes clumsy.

Our treatment of this protocol of postselected metrology yields an example where we can

perform the information preserving parameter estimation using a three level quantum

system with no degeneracy. In the next section we shall look into these matters in detail.
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5.2 Significance of weak values in postselected metrol-

ogy

Although the schemes of Weak value amplification and Postselected metrology are very

much different from each other there are ontological relations between them. We will

show that the postselected quantum Fisher information is related with different weak

values of the generator observable Â. Which indirectly shows that their existence is

intertwined. The weak values and the postselected quantum metrology, despite being

structurally different from one another, they have one thing in common, both of them

breaks our standard understanding of quantum mechanics and by extension, the whole

physical world itself. One shows that the expectation values of the observables can go

way beyond the spectrum of the observable, the other one shows the precision can go

beyond the standard Heisenberg limit set by the Heisenberg uncertainty relation. Thus

understanding the meaning of both of these techniques means a great deal in formulating

the philosophical and operational foundation of quantum physics.

We start with a pure state as the initial state, ρ̂0 = |ψi〉 〈ψi|. Let us first assume

that the postselection is done in a rank two projector F̂ = |f1〉 〈f1| + |f2〉 〈f2|. The

updated system state after the evolution is ρ̂θ = Û(θ)ρ̂0Û(θ)†. Û(θ) = exp(−iθÂ). After

the postselection is performed on ρ̂θ the probability for successful postselection can be

calculated using Eq 5.3,

ppsθ = |〈ψθ|f1〉|2 + |〈ψθ|f2〉|2. (5.14)

This is basically the total of the two probabilities corresponding the two ends of the

postselection. Let us denote the probability of successful postselection corresponding to

ith measurement projector with ppsθk := |〈ψθ|fk〉|2. Now we put these quantities in Eq

5.6 and after some algebra we derive the following relation. See the appendix 9.2 for a

detailed derivation.

IQ(θ/ρpsθ ) = 4

(
ppsθ1p

ps
θ2

(ppsθ )2

)∣∣Awθ1 − Awθ2∣∣2. (5.15)

Awθk =
〈ψθ|A|fk〉
〈ψθ|fk〉

Awθk is the weak value of the observable Â between the preselected state |ψθ〉 and

the postselected state |fk〉. In Eq 5.15, the probability factors inside the big bracket, the
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numerator and the denominator are in quadratic order of the probabilities for successful

postselection. Since they are of the same order, they does not actually contribute much

to determine the magnitude of Fisher information in this setting. Thus the determining

factors for the Fisher information in this case are the weak values. Thus, in order to

obtain significant amount of Fisher information out of this protocol we need to look into

the cases where we get anomalous weak values.

It is interesting to notice that despite being so different in structure, without

introducing any meter and weak interaction in the preparation, we get significant influ-

ence of weak values in postselected metrology. The theoretical reason why we get no

enhancement from postselection metrology when we postselect the system in a rank one

projector, can be drawn from this result. Postselecting in a rank one projector means we

put the condition |f1〉 = |f2〉. This implies that Awθ1 = Awθ2 . When we put this condition

in Eq 5.15, we end up getting zero quantum Fisher information. This coincides with our

expectations from physical understanding as mentioned earlier in section 5.1. When we

postselect the system in a rank one projector, the state of the system collapses and the

information of θ in the system is lost.

When we do the postselection in an arbitrary rank projector, the expression for

the postselection becomes,

IQ(θ/ρpsθ ) =
4

(ppsθ )2

∑
m<n

ppsθmp
ps
θn

∣∣Awθm − Awθn∣∣2 (5.16)

The derivation is given in appendix 9.3.

5.3 Optimal quantum enhancement in postselected

metrology

As we optimized the weak value amplification protocol, we can also find the optimization

conditions for postselected metrology. We have already established the relation between

the postselected metrology and the weak values. This helps us to link the results we have

derived in the chapter of optimal weak value amplification with this scheme. Before that

we have to quantify the efficiency of postselected metrology. So far it is clear that the
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cost incurred against the enhancement of precision in postselected metrology is same as

the weak value amplification, the low postselection probability. Which is why we define

the efficiency in this case, in the same manner.

Definition 2. Efficiency of a postselected metrology protocol ξ with postselected Fisher

information IQ and total probability of successful postselection ppsθ is defined as follows,

ξ(IQ; ppsθ ) = ppsθ IQ (5.17)

At this point a question arises that why in this definition the postselection prob-

ability is taken in linear order. In reality, we quantify the efficiency in order to find a

bound for the advantages these protocols provide. Efficiency is a quantity which quantifies

the amount of gain and advantage per unit cost. Furthermore, it is always bounded for

any protocol, be it in thermodynamics or in advantages of quantum resources. All these

bounds provide profound understanding of our physical world, for example the bound

in efficiency of heat engines establish the second law of thermodynamics. Here we also

get a fundamental bound on the efficiency of a postselected metrology protocol which is

presented in the following theorem.

Theorem 2 (Bound in efficiency of postselected metrology). The efficiency of a protocol

for postselected metrology is bounded according to the following inequality.

0 ≤ ξ(IQ; ppsθ ) ≤ 4||Â2||op. (5.18)

Proof. We start with the result is Eq 5.15

IQ(ppsθ )2 = 4ppsθ1p
ps
θ2

∣∣Awθ1 − Awθ2∣∣2. (5.19)

Now after decomposing the terms inside modulus square we get the following result,∣∣Awθ1 − Awθ2∣∣2 ≤ (∣∣Awθ1∣∣2 +
∣∣Awθ2∣∣2). (5.20)

1.
[
In this case the = is achieved under the condition: Re(Awθ1(A

w
θ2

)∗) = 0
]
.

Now we apply the corollary 1 of the theorem of bounded efficiency in weak value

amplification (theorem 1) for our two weak values and we get the following result,

ppsθ1
∣∣Awθ1∣∣2 ≤ ||Â2||op , ppsθ2

∣∣Awθ2∣∣2 ≤ ||Â2||op. (5.21)

41



Putting these two results in Eq 5.19 we obtain the following result,

IQ(ppsθ )2 ≤ 4
(
ppsθ2 ||Â

2||op + ppsθ1 ||Â
2||op

)
= 4||Â2||op(ppsθ2 + ppsθ1).

(5.22)

2.
[
The equality condition holds when 〈f1|Â2|f1〉 = 〈f2|Â2|f2〉 = ||Â2||op and one of the

postselection states are parallel to Â |ψθ〉
]

Now ppsθ = ppsθ2 + ppsθ1 . So we get,

IQ ppsθ ≤ 4||Â2||op =⇒ ξ(IQ; ppsθ ) ≤ 4||Â||2op (5.23)

We can see, that the optimal bound of this efficiency only depends upon the

observable Â. It is interesting to notice that this is the optimal standard quantum limit

for the quantum Fisher information (Eq 2.13) which is achieved when the average of the

observable becomes zero and the state of the system at that instance obtains the operator

norm of the operator Â2 when it is averaged over the state. At that point the variance

of Â equals the operator norm of Â2. What we can infer from this observation is that

although the standard quantum limit does not work for QFI in postselected metrology, it

works at the level of efficiency of the protocol. Thus we see that this measure of efficiency

plays a central role in postselected metrology.

Now we point out the conditions to achieve this optimal bound,

1. We have to take one of the weak values zero, say Awθ2 . This implies that |f2〉 becomes

orthogonal to Â |ψθ〉. This condition ensures the first equality condition in the proof

of previous theorem is satisfied.

2. |f1〉 obtains the operator norm of Â2 and |ψθ〉 becomes parallel to Â |f1〉 asymptot-

ically. This choice ensures the condition in second equality condition of the proof.

3. The probability of postselection of the other weak value, here ppsθ1 tends to zero

asymptotically. This choice obtains the maximal efficiency.
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These conditions are the direct consequence of the proof of Theorem 2. In the next part

we give an example where we satisfy all these conditions and show how we achieve optimal

quantum enhancement in this postselected metrology.

5.3.1 Information preserving postselected metrology using a three

level quantum system

The state space of our system is spanned by the basis set {|λ〉 , |λ̃〉 , |−λ〉}. They are the

eigen-kets of Â with respective eigenvalues {λ, λ̃,−λ}. We do the parameter estimation

of θ in a close proximity region around θ = θ0 where θ − θ0 = δθ and |δθ| << 1.

Now we prepare our system in the following preselected state,

|ψi〉 =
1√
2
Û †(θ0)[(cos(φ) + sin(φ)) |λ〉 − (cos(φ)− sin(φ)) |−λ〉], (5.24)

where φ is a real parameter and Û(θ) = exp(−iθÂ) is the evolution operator.

For postselection we choose th projectors generated from the following two or-

thonormal states,

|f1〉 =
|λ〉+ |−λ〉√

2
, (5.25)

|f2〉 =
cos(ψ)[|λ〉 − |−λ〉]√

2
+ sin(ψ) |λ̃〉 . (5.26)

Here ψ is a real parameter which controls the alignment of the postselection.

Thus in this setting the evolved state will be,

|ψθ〉 = Û(θ) |ψi〉 =
1√
2

[(cos(φ) + sin(φ))e−iδθλ |λ〉 − (cos(φ)− sin(φ))eiδθλ |−λ〉]. (5.27)

Calculating the postselected Fisher information using Eq 5.6 we get,

IQ(θ/ |ψpsθ 〉) =
4λ2cos2(ψ){cos2(φ+ λδθ)− sin2(φ− λδθ)}2

sin2(φ− λδθ) + cos2(ψ)cos2(φ+ λδθ)
. (5.28)

The total postselection probability comes out for this estimation as follows (using

Eq 5.14),

ppsθ = sin2(φ− λδθ) + cos2(ψ)cos2(φ+ λδθ). (5.29)

43



Figure 5.3: The parameter dependence of postselected quantum Fisher information (ψ =

π
2
− 0.1) and λ = 1

Figure 5.4: The parameter dependence of total postselection probability (ψ = π
2
− 0.1)

and λ = 1

The weak values and their corresponding probabilities are,

Awθ1 =
λcos(φ+ λδθ)

sin(φ− λδθ)
, ppsθ1 = sin2(φ− λδθ) (5.30)

and

Awθ2 =
λsin(φ− λδθ)
cos(φ+ λδθ)

, ppsθ1 = cos2(ψ)cos2(φ− λδθ) (5.31)

When we take the limit θ → 0 and φ→ 0 the conditions for optimal quantum advantage

conditions (as described in 5.3) are satisfied. In this limit the quantities take the following

form.
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Figure 5.5: The parameter dependence of efficiency (ψ = π
2
− 0.1) and λ = 1

Figure 5.6: Optimal quantum advantage limit, as probability decreases the QFI increases

The Fisher information obtains,

lim
δθ→0

lim
φ→0
IQ(θ/ |ψpsθ 〉) = 4λ2sec2(ψ), (5.32)

the postselection probability becomes

lim
δθ→0

lim
φ→0

ppsθ = cos2(ψ) (5.33)

and the efficiency of quantum advantages of this protocol becomes,

lim
δθ→0

lim
φ→0

ξ(IQ, ppsθ ) = 4λ2. (5.34)

Thus we see that in the aforementioned limit, we achieve the information pre-

serving protocol quantum enhancement of postselected metrology.
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Now if we wish to amply amplify the Fisher information, we just have to set

the parameter ψ accordingly so that the Fisher information inflates and the probability

decreases. In figure 5.3 and 5.4 we have taken ψ = π/2 − 0.1. In that limit we get

anomalous amount of Fisher information according to result in Eq 5.34. We can see in

the scale in figure 5.3 which plots the quantum Fisher information v/s φ and δθ shows

that the maximum Fisher information reaches 400 which is well beyond the Heisenberg

limit.

In the following diagram we show how quantum Fisher information, postselec-

tion probability and the efficiency of the protocol are dependent upon the parameters

{δθ, φ, ψ}. It opens a choice for us to choose the amount of precision we require (by fixing

the value of ψ) within the regime of no loss of information.

When we take the limit δθ → 0, it seems that we work in very close proxim-

ity region of the actual value of the parameter. It means that we have to have a lot of

information about the parameter θ beforehand. However, for our discussion, this approx-

imation is legitimate since the purpose of quantum metrology is to measure very minute

fluctuations of the parameter. That is why the approximated region is the domain of the

parameter values we are interested in.

5.4 Discussion

It is evident from the recent lines of research that associating postselection with the stan-

dard quantum metrology provides significant advantage in parameter estimation. It is

somewhat related with the nonclassical features of quantum states since only the states

with complex Kirkwood distribution exhibit this effect. Although we don’t fully under-

stand this particular phase space distribution and it’s correspondence with our physical

understanding. Thus to answer why do we avail this quantum advantage is not an easy

task.

To understand the reason behind postselected metrology one needs to explore

the significance of postselection in this method. The meaning of postselection in the

context of quantum mechanics is understood only through it’s effects. We know that the
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effect of postselection in a classical distribution is akin to classical conditioning of the

distribution. The quantum advantages in postselected metrology can be viewed as the

effect of postselection on a quasiprobability distribution. That might be starting point of

another line of research to find the meaning of postselection in quantum world.

Our argument on this matter have mainly three focal points,

1. There exist relation between two distinguished realities of postselection, the weak

values and the postselected metrology. We reason the inflation of postselected Fisher

information with the appearance of weak values. Weak values provide significant

precision in parameter estimation which comes here directly in the expression of

Fisher information. Thus the cost-gain relation is also same in these two significantly

different scheme.

2. The effect of weak values appear in this scheme without any weak measurement.

This reveals a very interesting fact that the existence of weak values is independent

of it’s measurement via weak interaction indicating that the ontology of weak value

is a major point of concern in order to truly understand the physical meaning behind

these phenomena.

3. The Kirkwood distribution plays a key role to determine the consequentiality of

postselected metrology. The elements of the Kirkwood distribution has geometric

meaning in terms of Pancharatnam phase in quantum systems, which is also closely

related with the weak values. Thus a geometric perspective on to this problem

would be rather helpful to visualize and understand these effects better. We found

that the optimization schemes which we have taken so far especially in weak value

amplification exhibit interesting effects in the geometry of state space. This part is

explored in the following section.

47



Geometric interpretation of optimal

weak value amplification
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Chapter 6

Geometric interpretation of optimal

weak value amplification

Suppose in a quantum system the state of the system is evolved unitarily via a cyclic

Hamiltonian (Hamiltonian with a cyclic parameter dependence) and comes back to the

same point in Bloch sphere, does the state keeps information of the path? The answer

to this question is ”Yes”. The state assumes a global phase which keeps the information

of the path including it’s geometrical properties and topological invariants. The concept

of geometric phase in quantum mechanics originates from Aharanov-Bohm effect but it’s

actual inception dates back to 1950s when Pancharatnam introduced the idea in the

context of classical optics[Pancharatnam 56]. Later on this concept was generalised by

Berry, Aharanov and Anandan. Berry’s construction of geometric phase was very much

dependent upon the adiabatic approximation of quantum evolutions which are cyclic in

nature[Victor 84]. Later on it was found that the occurrence of geometric phase was

independent of quantum adiabaticity, it is only dependent upon the intrinsic geometry of

the state space and cyclicity of the evolution[Aharonov 87].Geometric phase has become

a popular topic since last couple of decades because of it’s applications in solid state

physics, thermodynamics, quantum phase transitions[ZHU 08][Ma 09][Carollo 20][Ma 15].

The topological nature of geometric phase is also crucial and have proved its usefulness in

understanding the topological phase transitions in recently reported results [Henriet 18]

[Wang 21][Zhu 14].
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In this chapter we briefly review the idea of geometric phase and the geometric

implications of optimal weak value amplification in terms of pancharatnam’s geometric

phase.

6.1 Brief review of geometric phase in a one qubit

Bloch sphere

A one qubit Bloch sphere is the simplest geometry of state space, that is why we shall dis-

cuss the concept of geometric phase using this system which will help us to elaborate pro-

found concepts in an efficient manner. This review is based on these references[Simon 92]

[Sjöqvist 15][Sjöqvist 06].

In general the Bloch sphere or Poincare sphere is the geometric representation of

a complex projective Hilbert space CPn−1. In simple term this is the set of pure states in

a n dimensional quantum system. The one qubit Bloch sphere is represented by a hollow

sphere of radius one embedded in a three dimensional euclidean space. The boundary

of the region represents the pure states of the system which can be parametrized by two

real parameters (θ, φ) representing the azimuthal and polar angle of a coordinate on the

surface of the sphere. The state corresponding to that point is,

|θ, φ〉 = cos
θ

2
|0〉+ eiφsin

θ

2
|1〉 (6.1)

The (x,y,z) coordinates of an arbitrary state ρ̂ in Bloch sphere can be obtained

by averaging the Pauli spin matrices: x = Tr(σ̂xρ̂), y = Tr(σ̂yρ̂),z = Tr(σ̂zρ̂).

This Bloch geometry has a natural metric associated defining the topology of

this manifold. This is the Fubini-Study metric where the distance between two states |ψ〉

and |φ〉 is given as,

(|ψ〉 , |φ〉) := cos−1

√
〈φ|ψ〉〈ψ|φ〉
〈φ|φ〉〈ψ|ψ〉

(6.2)

This implies that the orthonormal states are located farthest apart from each other. Thus

the two basis states, |0〉 and |1〉 remain in the two poles of the 1 qubit Bloch sphere.
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Figure 6.1: Bloch diagram of one qubit optimal weak value amplification with Â = σ̂z

Figure 6.2: Geometric phase in 1 qubit Bloch sphere.
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Suppose we have three states on the surface of a Bloch sphere: |ψ1〉, |ψ2〉, |ψ3〉.

The three vertex Bergman invariant of these three states is given as,

∆3(|ψ1〉 , |ψ2〉 , |ψ3〉) = 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉 (6.3)

This Bergman invariant is directly connected with the geometric phase which is given as

the argument of the Bergman invariant.

Φg(|ψ1〉 , |ψ2〉 , |ψ3〉) = arg(∆3(|ψ1〉 , |ψ2〉 , |ψ3〉)) (6.4)

What is geometric in geometric phase?

The answer is that this phase is dependent upon the intrinsic geometry of the

state space. When we make a cyclic state transition from |ψ1〉 to |ψ2〉, then |ψ2〉 to |ψ3〉

and then back to |ψ1〉, this quantity Φg remains invariant over all cyclic Hamiltonians

which generate this transition and it is invariant over all cyclic permutations of this

transition. The state assumes a phase which is just addition of a dynamical phase which

is dependent upon the path of transition (the cyclic Hamiltonian which specify this path)

and this geometric phase. When we do the state transitions via the geodesic lines i.e

the great circles in Bloch sphere, the dynamic phase becomes zero and we are left with

only the geometric phase. Every cyclic pure state transitions traverse the boundary of a

closed region in Bloch sphere. This closed region subtends a solid angle at the centre of

Bloch sphere. When the transition is done through the geodesic paths, this solid angle is

proportional to the geometric phase.

Φg(|ψ1〉 , |ψ2〉 , |ψ3〉) = −Ω

2
(6.5)

Here Ω is the solid angle subtended by the enclosed region at the centre of the Bloch

sphere. See the image 6.2.

The relation between the weak values and geometric phase derives through the

Bergman invariant. Let us take the operator Â := |a〉 〈a| then from Eq 3.1 and Eq 3.7 we

can see that when we multiply the weak value with the postselection probability we get

the following relation,

psAw = ∆3(|ψi〉 , |a〉 , |ψf〉) (6.6)
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The Kirkwood distribution is also related with Bergman invariant and the geometric

phase. In Eq 5.8 if we take the state ρ as a pure state |ψ〉 we can write the Kirkwood

distribution in form of Bergman invariant,

K|ψ〉(am, bn) = ∆3(|am〉 , |ψ〉 , |bn〉) (6.7)

6.2 Geometric significance of optimal Weak Value

Amplification

Here we show that the efficiency of weak value amplification as we have defined earlier

has connection with the geometric phase. To establish that we first write the operator Â

in spectral decomposition in Eq 4.1 and 4.2 to get the following relation,

ps|Aw|2 = |
∑
k

ak|〈ψf |ak〉〈ak|ψi〉|

exp(iΦg(|ψi〉 , |ak〉 , |ψf〉))|2
(6.8)

When we make a cyclic transition from the preselected state |ψi〉 to the same state via a

path connecting |ak〉 and |ψf〉 through geodesic lines which are specified by the Fubini-

Study metric in Bloch sphere, The final state acquires a phase factor exp(iΦg(|ψi〉 , |ak〉 , |ψf〉))

over |ψi〉 where this phase Φg is proportional to the Solid angle subtended by the area

enclosed by the transition path at the centre of the Bloch Sphere. Thus this phase is

associated with the geometry of the state space of the system. Eq 6.8 shows how the

efficiency of the Weak Value Amplification protocol depends on the geometric phases be-

tween the preselected state, postselected state and the eigen states of the system variable.

We can argue in this point that the factor which actually controls the efficiency of weak

value amplification is the dependence of the geometric phase Φg on the eigenvalues ak.

Additionally we can state that the right side of the Eq 6.8 maximizes when the geometric

phase factor(eiΦg) is dependent on the eigenvalues ak via a sign function. This condition

ensures that all the terms inside the summation sign is always positive. The following the-

orem shows that when we make the choice for our postselection state as given in corollary

1 the condition is satisfied.

Theorem 3. In a Weak Value Amplification protocol if the postselection state |ψf〉 is
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proportional to Â |ψi〉, then

exp(iΦg(|ψi〉 , |ak〉 , |ψf〉)) = sgn(ak)exp(iφ) (6.9)

where sgn(.) is the sign function defined as, sgn(x) = |x|
x

and φ is a constant phase which

doesn’t depend on ak.

Proof. |ψf〉 is parallel to Â |ψi〉. This implies we can write the post selected state as

follows,

|ψf〉 =
Â |ψi〉

[〈ψi| Â2 |ψi〉]1/2
(6.10)

Using this relation we can derive the following relation,

〈ψf |ak〉〈ak|ψi〉 = ak
|〈ψi|ak〉|2

[〈ψi| Â2 |ψi〉]1/2
(6.11)

The geometric phase writes,

Φg(|ψi〉 , |ak〉 , |ψf〉) = arg(〈ψi|ak〉〈ak|ψf〉〈ψf |ψi〉)

= arg(〈ψf |ak〉〈ak|ψi〉) + arg(〈ψf |ψi〉)

= arg(ak
|〈ψi|ak〉|2

[〈ψi| Â2 |ψi〉]1/2
) + arg(〈ψf |ψi〉)

(6.12)

Now instead of ak all the terms inside the first argument function is positive. So we can

write the phase as follows,

Φg(|ψi〉 , |ak〉 , |ψf〉) = arg(sgn(ak)) + arg(〈ψf |ψi〉) (6.13)

This implies that,

exp(iΦg(|ψi〉 , |ak〉 , |ψf〉)) = sgn(ak)exp(iφ) (6.14)

where φ = arg(〈ψf |ψi〉) which is independent of ak.

We explore this result with a simple example with one qubit system. Suppose

the operator Â is σ̂z operator. The initial preselected state |ψi〉 is given by a point in Bloch

sphere |θ, φ〉. Thus our final postselection state for optimal weak value amplification is

proportional to Â |ψi〉. So in this case the final postselected state is, |ψf〉 = |θ, φ+ π〉.
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Figure 6.3: Bloch diagram of one qubit optimal weak value amplification with Â = σz

The two closed region covered by the two geometric phases in this case is given in the

figure 6.3. The two geometric phases are, Φg(|θ, φ〉 , |0〉 , |θ, φ+ π〉) which equals -1 and

Φg(|θ, φ〉 , |1〉 , |θ, φ+ π〉) which equals 1. The first geometric phase encloses the blue region

and the second one encloses the pink region. It is evident that the blue region covers a

smaller area than the pink region. The areas are subtended accordingly such that the

phase factor induced by the blue region is 1 and the pink region induces the phase factor

-1.

6.3 Discussion

In this chapter we showed that the optimization of weak value scheme can also be shown

from a geometrical perspective where we are led to the same conditions for optimization.

From the geometric phase perspective we showed that under what condition we achieve

the highest efficiency of weak value amplification. The optimization condition imposes a

constraint in the choice of postselection. In this result we get a geometrical insight into

this constraint via theorem 3.
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Conclusion and Future prospects
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Chapter 7

Conclusion

The fundamental bounds in nature are crucial in understanding the laws of nature itself.

This project yields some fundamental bounds which is crucial in understanding the power

of weak values and postselection in quantum metrology. In the first part we showed how

the efficiency of weak value amplification is bounded and how we achieve this bound. In

the second part we showed how the postselected metrology scheme is dependent upon

the internal weak values. With our observations from this part we arrive at a conclusion

that the effects of weak values exist even when we don’t perform any weak measure-

ment. This result takes us one step further towards a realization that weak values are

universal[Dressel 12]. Using this observation we formulated the example where we achieve

arbitrary Fisher information without loss of information with a simple three level system.

This allows us to device efficient experimental schemes to realize the postselected quan-

tum metrology. The effects of weak values in geometric phase has also became a point

of research in recent years. Our treatment of weak value amplification is also consequen-

tial in this context. We showed that the optimization of weak value amplification can be

drawn from a geometric perspective which obtains interesting results in terms of geometric

phase. The results we derived in this project comes from three different lines of research,

the weak value, the postselected metrology and geometric phase and they confluence in

one main conclusion, the technological advantage in quantum metrology we obtain based

on weak values and postselection is not unbounded when we compare it with it’s cost. It

is crucial to specify the conditions to achieve the best situation where we obtain maximum
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yield with a minimum amount of cost.
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Chapter 8

Future prospects

This project opens up many possible lines of research in both theory and experiment. We

list them as follows,

1. The postselection plays a crucial role in weak values and postselected metrology. Re-

cently it has been reported that one can obtain anomalous weak values even without

postselection[Abbott 19]. Thus it is worthwhile to explore the role of postselection

in these two schemes from the perspective of quantum foundations.

2. The weak values and geometric phase has become a crucial ingredient to understand

the topological phase transitions in solid state materials. The geometric phases are

known to set order parameters for these phase transitions[Ma 13]. Thus it would

prove consequential to explore the physical consequences of theorem 3 in various

contexts where geometric phases are realized physically.

3. The nonclassical features of Kirkwood distribution is essential in order to obtain

quantum advantages in postselected metrology. The nonclassicality in Kirkwood

distribution is fundamentally concerned with it’s complex values. The resource

theory of complex numbers in quantum mechanics has become a point of research in

recent times[Wu 21a][Wu 21b]. In future we plan to explore how quantum imaginary

values of Kirkwood distribution is used as a resource in postselected metrology.

4. In multiparameter estimation protocols how the postselected metrology works and
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how quantum systems provide advantages for this purpose is another point we plan

to explore in future.

5. The postselected metrology scheme we propose in section 5.3.1 can be materialized

using spin systems in NMRQC. This method is simpler than the proposed scheme in

here [Arvidsson-Shukur 20]. This will possibly give advantage to device experiments

for realizing this phenomenon.
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Chapter 9

Appendix

9.1 Appendix 1

Derivation of the Quantum Fisher Information and Quantum Cramer-Rao

bound

This proof is taken from [Osborne ]. First we construct an inner product on the

operator space of the system which is dependent on the system.

(Â, B̂)ρ = tr(Â†Ωρ(B̂)) (9.1)

This is a valid sesquilinear inner product since it satisfies all the properties of inner

product. This inner product has the following properties,

• (Â, Â)ρ = V ar(Â)ρ

• (Â, I)ρ = 〈Â〉ρ

Now let Φ be our unbiased estimator. Thus we have,

〈Φ〉ρ = θ (9.2)
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From the above Eq we derive the following result,

1 = ∂θtr(Φρ̂)

= tr(Φ∂θρ̂)

= tr(ΦΩρ(Ω
−1
ρ (∂θρ̂)))

(9.3)

The symmetric logarithmic derivative of θ is expressed as,

Λθ := Ω−1
ρ (∂θρ̂)

Thus we get,

tr(ΦΩρ(Λθ)) = (Φ,Λθ)ρ = 1 (9.4)

Now we apply Cauchy-Schwartz inequality on this inner product to get the following,

(Φ,Φ)ρ(Λθ,Λθ)ρ ≥ |(Φ,Λθ)ρ|2 = 1 (9.5)

From the previous results it is easy to deduct that,

V ar(θ) = V ar(Φ)ρ = (Φ,Φ)ρ (9.6)

and,

(Λθ,Λθ)ρ = IQ(ρ(θ), Â) (9.7)

is the Quantum Fisher information. Thus we deduct the Quantum Cramer-Rao bound

which is completely independent of the choice of the likelihood function thus sets a stronger

limit in the precision of the parameter estimation than the Classical Cramer-Rao bound.,

V ar(θ) ≥ 1

IQ(ρ(θ), Â)
(9.8)

9.2 Appendix 2

Derivation of the relation between postselected Fisher information and weak

values

We start with a pure initial state ρ̂0 = |ψi〉 〈ψi|. The evolved state becomes,

|ψθ〉 = Û |ψi〉 where Û := exp(−iθÂ). First we do postselection with a rank 2 projector
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as in 5.14. Using Eq 5.6 we get the following result,

I(ppsθ )2 = 4ppsθ Tr(ÂF̂ ÂÛρ0Û
†)− 4|Tr(ÂF̂ Ûρ0Û

†)|2

= 4
[(
|〈ψθ|f1〉|2 + |〈ψθ|f2〉|2

)(
|〈ψθ|Â|f1〉|2 + |〈ψθ|Â|f2〉|2

)
−
∣∣〈ψθ|Â|f1〉〈f1|ψθ〉+ 〈ψθ|Â|f2〉〈f2|ψθ〉

∣∣2]
= 4
[
ppsθ1 |〈ψθ|Â|f2〉|2 + ppsθ2 |〈ψθ|Â|f1〉|2 − 〈ψθ|Â|f1〉〈f1|ψθ〉〈ψθ|f2〉〈f2|Â|ψθ〉

−〈ψθ|Â|f2〉〈f2|ψθ〉〈ψθ|f1〉〈f1|Â|ψθ〉
]

= 4[ppsθ1p
ps
θ2
|Awθ1|

2 + ppsθ1p
ps
θ2
|Awθ2|

2 − ppsθ1p
ps
θ2

(Awθ1)
∗Awθ2 − p

ps
θ1
ppsθ2(A

w
θ2

)∗Awθ1 ]

= 4ppsθ1p
ps
θ2
|Awθ1 − A

w
θ2
|2

(9.9)

9.3 Appendix 3

Postselected Fisher information for for n projectors For two projectors we derived

the formulae,

IQ(θ|Ψps
θ )(pps

θ )2 = 4pps
θ1p

ps
θ2|A

w
θ1
− Awθ2|

2 (9.10)

For three projectors we get the following result.

IQ(pps
θ )2 = 4

[
pps
θ1p

ps
θ2|A

w
θ1
− Awθ2|

2 + pps
θ2p

ps
θ3|A

w
θ2
− Awθ3 |

2 + pps
θ3p

ps
θ1|A

w
θ3
− Awθ1|

2
]

(9.11)

From these two results we can easily extrapolate this formulae for n number of projectors

as follows,

IQ(θ/ρpsθ ) =
4

(ppsθ )2

∑
m<n

ppsθmp
ps
θn

∣∣Awθm − Awθn∣∣2 (9.12)
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