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Chapter 1

Classification of Compact Surfaces

1.1 Introduction
The aim of this chapter is to discuss the classification of compact surfaces. First
we will see observe the fundamental group of certain class of closed surfaces
followed by the first homology groups of the same class. Elementary operations
on schemes prepare us for the classification theorem for compact surfaces. The
first chapter ends by discussing the paper by Doyle and Moran which gives a proof
that compact 2-manifolds can be triangulated.

1.2 Fundamental group of surfaces
Our motive in this section is to study fundamental group of compact surfaces. For
this we first look at construction of polygonal regions in plane.
We are interested in polygonal regions since we obtain surfaces by carrying out a
particular ”quotienting” on the polygonal region in the plane.

1.2.1 Construction of polygonal region in a plane
Observe the following figures below.

Here, c PR2 a ą 0

θ0 ď θ1.... ď θn θn “ θ0 ` 2π, n ě 3, (1.1)

Line through pi´1, pi splits the plane into two closed half-planes.
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Figure 1.1: Example of a polygonal region in a plane, where x is a boundary point
while ”p” an interior point, h is the positive linear map.

Call Hi´1 which contains all the points pk, k � i, i ´ 1. Then the space,

P “ H0 X H1 X ...X Hn´1 (1.2)

Given a line segment L in R2, an orientation of L is simply an ordering of its
end points.

Given two line segments say L and L1, where orientations are from a to b and c
to d respectively, then a positive linear map from L onto L1 is the homeomorphism
that carries, x “ p1 ´ tqa ` tb of L to hpxq “ p1 ´ tqc ` td of L1

If 2 polygonal regions are having same number of vertices then there exist a
homeomorphism between them

Hint- Use positive linear map
An interesting question at this point is, how does the ’quotienting’ happens in

polygonal region, for this we define labelling and labelling scheme.

Definition 1.2.1. A labelling of edges of P is a map from set of edges of P to set
of labels say S.

For labelled oriented edges we define equivalence relation on points of P as
follows

• Each point of int(P) is equivalent to itself only.

• Given two edges of same label, any point of one is mapped to a point of
other via a positive linear map.

Quotient of P modulo this equivalence relation (pasting edges together) gives us
a surface.

Let us see some examples,
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Figure 1.2: Circle with ordered points

Figure 1.3: Half plane Hi´1 between point pi and pi´1

Definition 1.2.2. Given labelling, say a1,a2, ..,ak and orientation,say ε1,ε2, ..,εk ,
of edges of P, where εi “ `1 if orientation is from pi´1 to pi and εi “ ´1otherwise.

ω “ pai1qε1pai2qε2 ...painqεn (1.3)

is labelling scheme of length n. The number of edges, orientation of edges and
labelling of edges of P are specified by this symbol.

Theorem 1.2.1. Let X be a space obtained from a finite number of polygonal
regions by pasting edges together according to some labelling scheme. Then X is
a compact, Hausdorff space.

Proof. Let’s consider the case when X is obtained from a single P.
Clearly π : P Ñ X , the quotient map, is continuous. P is compact. Hence X is

compact.
To show X is Hausdorff we use the following lemma.

4



Figure 1.4: Polygonal Region ’P’, P “ H0 X H1 X ...X Hn´1

Figure 1.5: Triangular region(under the given label)ÝÑ Cone ÝÑ Disc, note
tSu “ ta,bu

Lemma 1.2.2. If π : E Ñ X, is a closed quotient map, then X is normal if E is
normal.

Since the proof is standard we skip it.
So, in our case, to start with P is definitely normal. Hence we show that π is a

closed map, then we are done.
For any closed set C of P, it is enough to show that π´1pπpCqq is closed, since

π is a quotient map. Observe, preimage of πpCq contains C along with edges
pasted together to edges of C under π .

Define Ce “ C X e, this is a compact subset of C, if it exists, hence closed. For
each i we have homeomorphism hi : ei Ñ e, also define De “ π´1pπpCqq X e, now
De is union of Ce and hipCeiq for all i (finitely many), clearly Ce and hipCeiq are
both closed in e, since they are union of finitely many closed sets and hence closed
in P.

Finally De over all e, union C equals π´1pπpCqq, hence this is closed in P �
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Figure 1.6: Rectangular region(under the given label)ÝÑTwo cones intersecting
at the circleÝÑ Sphere

Figure 1.7: Two disjoint polygonal regions results in a connected space on quoti-
enting

Theorem 1.2.3. Let P be a polygonal region

ω “ pai1qε1pai2qε2 ...painqεn (1.4)

be a labelling scheme for edges of P. Let X be the resulting quotient space under
π : P Ñ X.If π maps all the vertices of P to a single point x0 of X, and if a1, ...,ak
are the distinct labels that appear in the labelling scheme, then π1pX ,x0q is iso-
morphic to the quotient of the free group on k generators α1, ...,αk by the smallest

Figure 1.8: Two disjoint polygonal regions results in a disconnected space on
quotienting
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Figure 1.9: A scheme for torus

normal subgroup containing the element

pαi1qε1pαi2qε2 ...pαinqεn (1.5)

Proof. A rough sketch, using Van Kampen theorem is given below
Immediate observations,

• π maps Bd(P) to a closed set of X, call it A.

• π maps all vertices of P to a single point x0 in X(maybe, example of torus,
is easy to see)

• πpBdpPqq is a wedge of k circles.

• So π1pπpBdpPqq,x0q, is free group on k generators

• If gi “ π ¨ fi ,the loops g1, ...,gk represent a set of free generators for π1pA,x0q
Consider this figure, conditions for Van Kampen theorem are satisfied, so Van

Kampen ùñ
i˚ : ˚π1pAαi ,xαq Ñ π1pX ,x0q

is a surjection, and we can observe that loops in π1pAα1 X Aα2 ,xαq are exactly of
the form pgi1qε1pgi2qε2 ...pginqεn .

Hence π1pX ,x0q is isomorphic to the quotient of g1 ˚ g2 ˚ ... ˚ gk by the normal
closure of pgi1qε1pgi2qε2 ...pginqεn . �

Proof using another theorem.

7



Figure 1.10:

Theorem 1.2.4. Let X be a Hausdorff space and A be a closed path connected
subspace of X. Suppose that there exist continuous map h : B2 Ñ X that maps
IntpBq2 bijectively onto X-A and BdpBq2 “ S1 into A. Let p P S1 and h(p)=a, let k
: pS1, pq Ñ pA,aq be the map obtained by restricting h. Then the homomorphism

i˚ : π1pA,aq Ñ π1pX ,aq
induced by inclusion is surjective and its kernel is the least normal subgroup of
π1pA,aq, containing the image of k˚ : π1pS1, pq Ñ π1pX ,aq

We will see an application of this theorem

Theorem 1.2.5. The fundamental group of the torus has a presentation consisting
of two generators α,β and a single relator αβα´1β ´1.

Proof. Let X be the torus under consideration, so we know that X “ S1 ˆ S1.
If p is a covering map from RÑ S1. Now restriction of the covering map ,

p ˆ p :RˆRÑ S1 ˆ S1 to I ˆ I is a continuous map.

Also let A “ hpBdpI2qq if we consider the point (0,0) in I2 and let a “ hp0,0q, then
this matches conditions mentioned in above theorem.
Let a0ptq “ pt,0q, b0ptq “ p0, tq, let α “ h ¨ a0ptq and β “ h ¨ b0ptq, clearly α and
β are loops in A, A is wedge of 2 circles, so α , β are generators for π1pA,aq.

Also, let a1ptq “ p1, tq, b1ptq “ p1, tq, as mentioned in the figure. Now,

f “ a0 ˚ b0 ˚ a1 ˚ b1

is a loop generating BdpI2q, and image of this loop is clearly α0 ˚ β0 ˚ α1 ˚ β1, so
applying by above theorem

8



Figure 1.11:

π1pX ,aq “ xα,β |α0β0α´1
1 β ´1

1 “ 1y
�

Definition 1.2.3. Consider the space obtained from a 4n-sided polygonal region
P by means of the labelling scheme

pa1b1a´1b´1qpa2b2a´1b´1q..panbna´1b´1q
This space is called the n-fold connected sum of tori, or simply the n-fold torus,
and denoted T#T#..#T

Figure 1.12: 2 Torus

9



Figure 1.13: P2 can be obtained by pasting the two discs

Theorem 1.2.6. Let X denote the n-fold torus. Then π1pX ,x0q is isomorphic to the
quotient of the free group on 2n generators α1,β1, ....,αn,βn by the least normal
subgroup containing the element

rα1,β1s....rαn,βns
where rα1,β1s “ α1β1α´1β ´1

Proof. Given n ´ f old torus we know that labelling scheme take every vertex to
a single point(positive linear map helps). Now we can apply Theorem 1.2. �

Definition 1.2.4. Let m ą 1. Consider the space obtained from a 2m-sided polyg-
onal region P in the plane by means of the labelling scheme

pa1a1qpa2a2q...pamamq
This space is called the m-fold connected sum of projective planes, or simply the
m-fold projective plane, and denoted P2#...#P2.

The 2-fold projective plane P2#P2 is pictured below.

Theorem 1.2.7. Let X denote the m-fold projective plane. Then π1pX ,x0q is iso-
morphic to the quotient of the free group on m generators α1,α2, ..,αm by the least
normal subgroup containing the element

pα1q2pα2q2..pαmq2

Proof. As before, observe all vertices are mapped to a single point, then apply
Theorem 1.2. �

Qn 1.3. Find a presentation for the fundamental group of P2#T .

Sol: π1pP2#T,x0q “ xα,β ,γ |pααqpβγβ ´1γ´1q “ 1y

10



Figure 1.14: Six sided polygon with scheme a2bcb´1c´1 cut along d

1.4 Homology of surfaces
If X is a path-connected space, and if α is a path in X from x0 to x1, then there is
an isomorphism α̂ : π1pX ,x0q Ñ π1pX ,x1q, but the isomorphism depends on the
choice of the path α .

However, the isomorphism of the ”abelianized fundamental group” based at
x0 with the one based at x1, induced by α , is in fact independent of the choice of
the path α .

To verify this fact consider two paths α , β from x0, x1, and we show that, for
a loop γ based at x1, rαγα´1s “ rβγβ ´1s

rπ1,π1s .

Definition 1.4.1. If X is a path-connected space, let

H1pXq “ π1pX ,x0q{rπ1pX ,x0q,π1pX ,x0qs
We call H1pXq the first homology group of X.

Theorem 1.4.1. Let F be a group and N be a normal subgroup of F. Let q : F Ñ
F{N be the quaotient map. The quotient homomorphism

p : F Ñ F{rF,Fs
induces an isomorphism

φ : qpFq{rqpFq,qpFqs Ñ ppFq{ppNq
Proof. p, q, r, s, are quotient homomorphisms

q : F Ñ qpFq “ F{N,qp f q “ f ˝ N
p : F Ñ ppFq “ F{rF,Fs, pp f q “ f ˝ rF,Fs

r : ppFq Ñ ppFq{ppNq,rppp f qq “ pp f q ˝ ppNq
similarly s

11



Figure 1.15:

Figure 1.16: Universal property

Because r˝p maps N to 1, it induces a homomorphism u. As p(F)/p(N) is
abelian, the homomorphism u induces a homomorphism φ of q(F)/[q(F), q(F)].
On the other hand, because s ˝ q maps F into an abelian group, it induces a homo-
morphism v : ppFq Ñ qpFq{rqpFq,qpFqs. Since s ˝ q carries N to 1, so does v ˝ p,
hence v induces a homomorphism ψ of p(F)/p(N).

The homomorphism φ can be described as follows: Given an element y of the
group qpFq{rqpFq,qpFqs, choose an element x of F such that spqpxqq “ y; then

φpyq “ rpppxqq.
The homomorphism φ can be described similarly. It follows that φ and ψ are
inverse to each other. �

Put it simply, if one takes quotient of F by N and then abelianizes the quotient,
one obtains the same result as if one first abelianizes F and then divides by the
image of N in this abelianization.

Corollary 1.4.1.1. Let F be a free group with free generators α1,α2...,αn; let N be
the least normal subgroup of F containing the element x of F; let G = F/N. Let p :
F Ñ F{rF,Fs be quotient. Then G/[G, G] is isomorphic to the quotient of F/[F,F],
which is free abelian with basis ppα1q, ..., ppαnq, by the subgroup generated by
p(x).

Theorem 1.4.2. If X is the n-fold connected sum of tori, then H1pXq is a free
abelian group of rank 2n.
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Figure 1.17: Cutting

Proof. Recall π1pX ,x0q is quotient of free group on 2n generators,
say α1,β1,α2,β2...,αn,βn, by the subgroup generated by the element rα1,β1srα2,β2s...rαn,βns.
Apply corollary above, so H1pXq is isomorphic to the quotient of the free

abelian group F’ on the set α1,β1,α2,β2...,αn,βn by the subgroup generated by
the element rα1,β1s...rαn,βns, where rα,β s “ αβα´1β ´1 as usual. Because the
group F’ is abelian, this element equals the identity element. �

Theorem 1.4.3. If X is the m-fold connected sum of projective planes, then the
torsion subgroup T pXq of H1pXq has order 2, and H1pXq{T pXq is a free abelian
group of rank m-1.

Proof. Corollary ùñ H1pXq is quotient of free abelian group F’ on the set
α1,α2, ...αm by the subgroup generated by the element pα1q2pα2q2...pαmq2

A small trick, switch to additive notation , and let us change bases in the group
F’. If we letβ “ α1 ` ...`αm,then the elements α1, ..,αm´1,β form a basis for F’,
any element of F’ can be written uniquely in terms of these elements.

The group H1pXq is isomorphic to the quotient of the free abelian group on
α1, ..,αm´1,β by the subgroup generated by 2β . Said differently, H1pXq is iso-
morphic to the quotient of the m-fold cartesian product ZˆZˆ ...ˆZ by the
subgroup 0 ˆ ...ˆ 0 ˆ 2Z. The theorem follows. �

1.5 Elementary operations on schemes
The regions Q1

1 and Q2 in figure 1.17 are said to have been obtained by cutting P
apart along the line from po to pk. The region P is homeomorphic to the quotient
space of Q1 and Q2 obtained by pasting the edge of Q1

1 going from qo to qk to the
edge of Q2 going from po to pk, by the positive linear map.

Sort of reverse of the above operation is pasting. Given two polygonal region-
als we paste them to form a single polygonal region.

13



Figure 1.18: Pasting

This task is accomplished as follows: The points of Q2 lie on a circle and are
arranged in counterclockwise fashion. Let us choose points p1, ..., pk´1 on this
same circle in such a way that p0, p1, ...,Pk´1, pk are arranged in counterclockwise
order, and let Q1 be the polygonal region with these as successive vertices. There
is a homeomorphism of Q1

1 onto Q1 that carries qi to pi, for each i and maps the
edge q0qk of Q1

1 linearly onto the edge p0 pK of Q2. Therefore, the quotient space
in question is homeomorphic to the region P that is the union of Q1

1 and Q2. We
say that P is obtained by pasting Q1

1 and Q2 together along the indicated edges.

Theorem 1.5.1. Suppose X is the space obtained by pasting the edges of m polyg-
onal regions together according to the labelling scheme

p˚q y0y1,w2, ...,wm.

Let c be a label not appearing in this scheme. If both y0 and y1 have length at
least two, then X can also be obtained by pasting the edges of m + 1 polygonal
regions together according to the scheme

p˚˚q y0c´1,cy1,w2, ...,wm.

Conversely, if X is the space obtained from m + 1 polygonal regions by means of
the scheme (**), it can also be obtained from m polygonal regions by means of the
scheme (*), providing that c does not appear in scheme (*).

Elementary operations on scheme

• Cut. One can replace the scheme w1 “ y0y1 by the scheme y0c´1 and cy1,
provided c does not appear elsewhere in the total scheme and y0 and y1 have
length at least two.

• Paste. One can replace the scheme y0c´1 and cy1 by the scheme y0y1, pro-
vided c does not appear elsewhere in the total scheme.

14



Figure 1.19: Cancel

• Relabel. One can replace all occurrences of any given label by some other
label that does not appear elsewhere in the scheme. Similarly, one can
change the sign of the exponent of all occurrences of a given label a; this
amounts to reversing the orientations of all the edges labelled ”a”. Neither
of these alterations affects the pasting map.

• Permute. One can replace any one of the schemes w, by a cyclic permutation
of w. Specifically, if wi “ y0y1, we can replace wi,- by y1y0- This amount
to renumbering the vertices of the polygonal region Pi, so as to begin with a
different vertex; it does not affect the resulting quotient space.

• Flip. One can replace the scheme by its inverse

• Cancel. One can replace the scheme wi “ y0aa´1y1 by the scheme y1y0,
provided a does not appear elsewhere in the total scheme and both y0 and
y1 have length at least two.

• Uncancel. Reverse of cancel

Definition 1.5.1. Two labelling schemes for collections of polygonal regions to
be equivalent if one can be obtained from the other by a sequence of elementary
scheme operations. Since each elementary operation has as its inverse another
such operation, this is an equivalence relation.
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Example Klein bottle K is the space obtained from the labelling scheme
aba´1b. We give a geometric argument showing that K is homeomorphic to the
2-fold projective plane P2#P2.

Sol : aba´1b ÝÑ abc´1 andca´1b by cutting

ÝÑ c´1ab and b´1ac´1b by permuting first and flipping second

ÝÑ c´1aac´1 by pasting
ÝÑ aacc by permuting and relabelling

1.6 Classification of compact surfaces
We will see some definitions prior to classification theorem.

Definition 1.6.1. If w1,w2...,wm be the labelling schemes of polygonal regions
P1,P2, ..,Pm, if each label appears twice in this scheme we call it a proper labelling
scheme

Remark. If one applies any elementary operation to a proper scheme, one obtains
another proper scheme.

Definition 1.6.2. If w is a proper labelling scheme and if every label is appearing
once with exponent +1 and once with -1, we say w is of torus type, otherwise it is
said to be of projective type.

We will see some useful equivalent schemes, of some general proper labelling
schemes. Following series of lemmas helps us in proving classification theorem.

Lemma 1.6.1. Let ω be a proper scheme of the form

ω “ ry0sary1sary2s,
where some of the yi may be empty. Then one has the equivalence

ω „ aary0y1
´1y2s.

Proof. Step1 Consider the case where y0 is empty.
We show that

ary1sary2s „ aary´1
1 y2s

16



Figure 1.20:

If y1 is empty then it is trivial otherwise we follow Figure1.19.

ary1sary2s „ ay1c´1 cay2 by cutting

„ y1c´1a a´1c´1y´1
2 by permuting 1st and flipping 2nd

„ y1c´1c´1y1 by pasting along a

„ aay´1
2 y1 by permuting and relabelling

Step2 Consider the general case, ω “ ry0sary1sary2s, if both y1and y2 are empty
then permuting gives result. Otherwise we apply cutting and pasting sequence
given in Figure1.20 to show that

ω „ bry2sbry1y´1
0 s.

Then,

ω „ bbry´1
2 y1y´1

0 s by step 1

ry0y´1
1 y2sb´1b´1 by flipping

aary0y´1
1 y2s by permuting and relabelling

�

Corollary 1.6.1.1. Given a projective type scheme ω , it is equivalent to a scheme
of same length having the form

pa1a1qpa2a2q...pakakqω1,

where ω1 is either torus type or empty.
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Figure 1.21:

Proof. Let ω be the projective type scheme therefore

ω “ ry0sary1sary2s
ω „ aaω1

by applying previous lemma. If ω1 is of torus type or empty then we are done
otherwise ω1 is of projective type therefore

ω1 “ rz0sbrz1sbrz2s,
applying previous lemma again ω1 „ bbω 1 if ω 1 is empty or torus type then we
are done otherwise we proceed as before. �

All the results above tells us that if ω is a proper labelling scheme then,ω is of
the following type

• Torus type –(1)

• ω „ pa1a1qpb1b1q...pn1n1qω1, where ω1 is of torus type–(2)

• ω “ pa1a1qpa2a2q..pananq–(3)

If it is of type (3) then scheme represents n fold connected sum of projective
planes, otherwise the following lemma helps classify the schemes.

Lemma 1.6.2. Given a proper scheme ω , ω “ ω0ω1 where ω1 of torus type (after
cancellation), then ω is equivalent to ω0ω2 , where

ω2 “ aba´1b´1ω3

is of this form and ω3 is of torus type or empty.

18



Proof. Step1- ω “ ω0ω1 “ ω0ry0sary1sbry2sa´1ry3sb´1ry4s
By assumption ω1 is of torus type(empty case is trivial), so let

ω1 “ ry0sary1sbry2sa´1ry3sb´1ry4s,
by this we avoid cancellation of labels if we use 1.6.1. Also if switch a,a´1 and
b,b´1 then the scheme is similar to the above one and also general in nature.

First cutting and pasting Apply cutting pasting techniques given in fig 1.21
directly so

ω1 “ ry0sary1by2sa´1ry3b´1y4s
ω „ ω0cry1sbry2sc´1ry0y3sb´1ry4s

„ ω0ary1sbry2sa´1ry0y3sb´1ry4s by relabelling.

Figure 1.22:

Step 2- second cutting and pasting
Suppose

ω 1 “ ω0ary1sbry2sa´1ry0y3sb´1ry4s
Claim1 : ω 1 „ ω0ary0y3y2sba´1b´1ry1y4s
Proo f 1 : I f y4 y0y3andω1are empty then

ω 1 „ ary1sbry2sa´1b´1

“ bry2sa´1b´1ary1s by permuting

“ ary2sba´1b´1ry1s by relabelling.

19



Figure 1.23:

Otherwise we apply the operations indicated in figure1.22

ω2 “ ω0ary1sbry2sa´1ry0y3sb´1ry4s
„ ω0cry0y3y2sa´1c´1ary1y4s
„ ω0ary0y3y2sba´1b´1ry1y4s by relabelling.

Step 3- third cutting and pasting

ω2 “ ω0ary0y3y2sba´1b´1ry1y4s.
We show that ω2 is equivalent to the scheme

ω3 “ ω0aba´1b´1ry0y3y2y1y4s
as before if the schemes ω0,y1y4 are empty then permuting and relabelling ùñ

ω 1 “ aba´1b´1ry0y3y2s
Otherwise we apply the operations indicated in figure1.23

ω2 “ ω0ary0y3y2sba´1b´1ry1y4s
„ ca´1c´1ary0y3y2y1y4s
„ ab´1a´1bry0y3y2y1y4s

by relabelling as desired.
�

20



Figure 1.24:

Next lemma shows that connected sum of projective planes and torii is equiv-
alent to connected sum of projective planes alone.

Lemma 1.6.3. If ω is a proper labelling scheme of the form

ω “ ω0ccpaba´1b´1qω1,

then ω is equivalent to the scheme

ω 1 “ ω0paabbccqω1

Proof. Recall lemma 1.6.1 for proper schemes we have

ry0sary1sary2 „ aary0y1
´1y2ss ´ ´ ´ ´p˚q

Now,

ω “ ω0ccpabqa´1b´1ω1

„ ccrabsrbas´1rω1ω0s by permuting
„ rabscrbascrω1ω0s by (*) backwards
„ rasbrcsbracω1ω0s
„ bbrac´1acω1ω0s by (*)

„ rbbsarc´1sarcω1ω0s by (*) backwards
„ aarbbccω1ω0s
„ rω0sraabbccsrω1s by permuting

�
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Theorem 1.6.4 (The classification theorem). If X is the quotient space obtained
from a polygonal region by pasting edges togather in pairs then X is homeomor-
phic to either S2, n-fold connected sum of torus, or the m-fold connected sum of
projective plane.

Proof. Let ω be the scheme of polygonal region for our space X. So ω is proper
scheme of length atleast four, we show it is equivalent to one of the following

1. aa´1bb´1

2. abab

3. pa1a1qpa2a2q..pamamq with m ě 2,

4. pa1b1a´1
1 b´1

1 qpa2b2a´1
2 b´1

2 q..panbna´1
n b´1

n q with n ě 1

Step 1. Let ω be a proper scheme of torus type. We claim ω is equivalent to
scheme of type (1) or (4).

If ω is of length 4, then ω is in one of the forms

aa´1bb´1 or aba´1b´1.

We proceed by induction on length of ω . Assume ω has length greater than 4. By
induction any torus type scheme of length ’m’ will be of the type

pa1b1a´1
1 b´1

1 qpa2b2a´1
2 b´1

2 q..pambma´1
m b´1

m q.
If ω is of length greater than ’m’, then ω does not contain pair of adjacent

terms having same label, ∴we apply Lemma1.6.2 to conclude that ω is equivalent
to a scheme having same length as ω , of the form,

aba´1b´1ω3,

ω3 is of torus type and is non empty since ω is of length ě 4. We can apply the
Lemma1.6.2 again to conclude the result.

Step 2. Next case is ω is a scheme of projective type.
If ω has length 4 then by Corollary1.6.1.1

ω „ one of the form aabb or aab´1b.

First is of type 3. Second can be written as aay´1
1 y2, with y1 “ y2 “ b, then

Lemma1.6.1 ùñ scheme is „ ay1ay2 “ abab which is of type 2.
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If length of scheme is greater than 4 we proceed in the similar direction as in
Step 1, by induction. Corollary1.6.1.1 tells us that ω of length greater than 4 is
equivalent to a scheme of the form

ω 1 “ pa1a1qpa2a2q..pakakqω1,

where k ě 1 and ω1 is of torus type or empty. If ω1 is empty then we are done, oth-
erwise if ω1 has 2 adjacent terms of same label then induction hypothesis applies,
if not Lemma1.6.2 ùñ ω 1 is equivalent to a scheme of the form

ω2 “ pa1a1qpa2a2q..pakakqaba´1b´1ω2,

where ω2 is of torus type or empty. Applying lemma1.6.3 ω2 is equivalent to

pa1a1qpa2a2q..pakakqaabbω2.

Continuing similarly we obtain a scheme of type 3. �

1.7 Constructing compact surfaces
Since we have shown that Classification theorem( for compact surfaces 1.6.4)
is applicable for every surfaces that are obtained by pasting the edges together
in pairs (with proper labelling schemes) from a polygonal region, we now are
required to show that every compact connected surface can be obtained by pasting
edges together in pairs of a polygonal region. We show something weaker than
this, that is we show that surface under consideration is having a triangulation.

Definition 1.7.1. Consider a compact, Hausdorff space say X. A curved triangle
in X is a subspace A of X and a homeomorphism h : T Ñ A, where T is a closed
triangular region in the plane. If e is an edge of T, then h(e) is an edge of A and
similarly for vertex.

Definition 1.7.2. For a compact Hausdorff space X, a triangulation of X is a
collection of curved triangles A1,A2A3...An in X whose union is X and for i � j,
Ai X A j is either empty, a vertex, or an edge of both. Also,for each i since

hi : Ti Ñ Ai

is the homeomorphism associated with Ai, if Ai X A j is an edge e of both, then the
map h´1

j hi defines a linear homomorphism of the edge h´1
i peq of Ti with the edge

h´1
j peq of Tj. If X has a triangulation then X is said to be triangulable
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Triangulation of a circle, sphere e.t.c are easy to observe.

Example. The figure 1.25 given below, is a triangulation of Torus

Figure 1.25: Triangulation of torus

Example. The figure, 1.26 is not a triangulation of torus.

Figure 1.26: Not a triangulation of torus

Theorem 1.7.1. For a compact triangulable surface X, X is homeomorphic to
the quotient space obtained from a collection of disjoint triangular regions in the
plane by pasting their edges together in pairs.

Proof. Let A1,A2,A3...An be a triangulation of X with hi as corresponding home-
omorphisms. Consider h : T1 Y T2 Y ...Y Tn Ñ X , clearly h is continuous since
each hi’s are continuous and pasting lemma implies h is continuous. Furthermore,
for any closed set C in X, f ´1pCq is closed, similarly for any closed set f ´1pCq Ă
some Ti , continuity of hi ùñ C is closed in X, as h is also surjective, h is a quo-
tient map.Moreover, recall that the map h´1

j hi defines a linear homeomorphism
whenever Ai X A j is an edge e, so h pastes edges of Ti and Tj together.

If Ai X A j “ φ @ i � j then we have nothing to prove since there are no edge
pasting. So we consider the two case when Ai X A j “ an edge e or a vertex v.

First we show that if Ai X A j “ v some vertex then there exists a sequence
of triangles having v as vertex beginning with Ai and ending with A j, such that
intersection of each triangle in the sequence with it’s succesor equals an edge
common to both. See figure below.
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Figure 1.27: Triangular regions of a surface

Figure 1.28:

Otherwise, if the situation is as in this figure, figure , we show since X is a
surface such a situation cannot happen. Figure actually provides an intuitive idea.

First we define two triangles Ai and A j to be equivalent if there is a sequence
of triangles having a vertex in common beginning with Ai and ending with A j.
Consider two equivalent class call B and C,now BXC “ v and for every sufficiently
small neighbourhood W of v in X, the space W-v is disconnected

But, if X is a surface, then v has neighbourhood homeomorphic to open 2-ball
ùñ v has sufficiently small neighbourhood that is connected. This proves the
first part.

Next objective to show is that for each edge e of a triangle Ai, there is exactly
one another triangle A j such that Ai X A j “ e. First we will show the existence,
and then show there is exactly one for each Ai.

The existence part is a consequence of the following claim.
Claim: If X is a triangular region in the plane and if x is a point on the interior

to one of the edges of X, then x does not have a neighbourhood homeomorphic to
an open 2-ball.

Proof: Note that x has arbitrarily small neighbourhoods W for which W- x is
simply connected, clearly from figure W-x is contractible to a point.
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Figure 1.29:

Assume the contrary, so if U is a neighbourhood of x that is homeomorphic to
an open ball in R2, with homeomorphism carrying x to 0. We show that x does
not have arbitrarily small neighbourhoods W such that W-x is simply connected.

Let B be the open unit ball in R2 centered at the origin, and suppose V is any
neighbourhood of 0 that is contained in B. Choose ε so that the open ball Bε of
radius ε centered at 0 lies in V, and consider the inclusion mappings

Figure 1.30:

The inclusion i is homotopic to the homeomorphism hpxq “ x{ε , so it induces
an isomorphism of fundamental groups. Therefore, k˚ is surjective, it follows that
V-0 cannot be simply connected. If it were, it will contradict the inclusion map
from Bε to V and the fact that Bε is not simply connected.

As we have shown the existence of more than one triangle intersecting an edge,
we now show that there is exactly one other triangle, say A j intersecting edge of
another triangle Ai for i � j. This indeed is the consequence of following result,

Claim: Let X be the union of k triangles in R3, each pair of which intersect in
the common edge e. Let x be an interior point of e. If k ě 3, then x does not have
a neighbourhood in X homeomorphic to an open 2-ball.

Proof: The idea is to show that there is no neighbourhood W of x in X such
that W-x has abelian fundamental group. It follows that no neighbourhood of x is
homeomorphic to an open 2-ball.

For this consider A as union of all edges of the triangles of X that are different
from e, then we claim that fundamental group of A is not abelian. Consider B as
union of 3 arcs that make A, now r is retract of A onto B obtained by mapping

26



Figure 1.31:

all arc of A not in B homeomorphically to one arc of B, keeping end points fixed.
Then r˚ is an epimorphism, also since fundamental group of B is not abelian
fundamental group of A also ceases to be abelian.

Why is fundamental group of B not abelian?
B is union of 3 arcs, so B is of homotopy type of θ space, we can either use

the result that fundamental group of θ space and figure 8 are isomorphic or apply
Van-Kampen theorem to show fundametal group is free group on 2 generators and
hence not abelian.

In our case A is a deformation retract of X-x and it should follow that funda-
mental group ofX-x is not abelian.

For convenience, assume x as the origin of R3. Let W be a arbitrary neigh-
bourhood of �, then the shrinking map f pxq “ εx for some ε ă 1 carries X to W
and the space Xε “ f pXq is a copy of X lying inside W. Consider the below in-
clusions as before since i is homotopic to homeomorphism hpxq “ x{ε , it induces

Figure 1.32:

isomorphism of fundamental groups.Now k˚ is surjective, so fundamental group
of W-0 cannot be abelian.

Thus we have shown that given an edge e of a triangle Ai there is exactly one
other triangle A j having e as a common edge. Hence the compact triangulable
surface X is homeomorphic to the space obtained from pasting edges together by
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the linear homeomorphism h´1
j hi in the collection of disjoint triangular regions in

the plane. �

Theorem 1.7.2. For a compact connected triangulable surface X, X is homeomor-
phic to a space obtained from a polygonal region in the plane by pasting edges
together in pairs.

Proof. From the earlier theorem we have that X is homeomorphic to a collection
of disjoint triangular regions say T1,T2, ..,Tn in the plane. Moreover, since the
edges are pasted in pairs by the quotient map the space in plane is having proper
labelling scheme.

Application of elementary operations will give us the result. Pasting (flipping
also if needed) operation of two triangular regions along the edges bearing same
label will give a single four-sided polygonal region, preserving the same orienta-
tions and label. The process can be iterated as long as there are two edges with
same label. If we are having single polygonal region at the end then the theorem
is proved.

Otherwise one has several polygonal regions, no two which has edges bearing
same label, but this give rise to a disconnected quotient space, but space X was
connected, therefore such a situation cannot occur. �

1.8 Proof that compact 2-manifolds can be triangu-
lated

Theorem 1.8.1 (Jordan-Schoenflies theorem). A simple closed J curve in E2 sep-
arates E2 into two regions. There exists a self-homeomorphism of E2 under which
J is mapped onto a circle.

Definition 1.8.1. A cellular set K is one that can be written as intersection of
2-cells, Ei.

K “ X8
i“1Ei, Ei Ă intpEi´1q.

Remark. If K is a cellular subset of a 2-manifold M, then M/K is homeomorphic
to M

Lemma 1.8.2. Let M be a closed 2-manifold and let C be a connected subset of
M which is a union of n-simple closed curves

C “ Yn
i“1Ci.
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Then a compact totally disconnected set A lies in the interior of a closed 2-cell in
M.

Remark. A totally disconneced set is characterised by the property that
each of its connected subset has a single point.

So, if γ1 ,γ2 are 2 intersecting simple closed curves in a closed 2-manifold,
consider an open set U containing both curves, U is locally euclidean. Now, every
point on the curves are having 1 dimensional euclidean neighbourhood except at
the points where the curves ’cut’ one another. Call the set of points were curves
’cut’ as A.By cut it is meant that for some t, γ1ptq “ γ2ptq, but D atleast one δ ą
0,γ1ptq � γ2ptq@ t P pt ´ δ , t ` δ q ´ ttu , t P r0,1s.
Proposition 1.8.1. Set of cut points does not have 1 dimensional euclidean neigh-
bourhood

Proof. Let a P A, any nbd Ua of a will contain points from γ1 Y γ2, choose a nbd
Ua1 which does not contain any a

1 P A such that a
1
� a. Let t1, t2 be the respective

time when γ1pt1q “ a “ γ2pt2q,
let Ua1 “ γ1pt1 ´δ1, t1 `δ1qYγ2pt2 ´δ2, t2 `δ2q, if Ua1 was 1 dimensional then Ua1

must be homeomorphic to (0,1)(say f is the homeomorphism), hence Ua1 ´ a
1

and
(0,1)- f pa

1q must have same number of connected components. Ua1 ´ a
1

is having
4 connected components while (0,1)- f pa

1q is having 2 connected components.
Therefore any a P A is not having 1 dim euclidean nbd. �

If 2 curves are ’touching’ each other, i.e γ1ptq “ γ2ptq | D atleast one δ ą
0,γ1ptq “ γ2ptq@ t P pt ´δ , t `δ q, clearly all such points were the curves are touch-
ing, say tT u posses 1 dim euclidean nbd, ∴ any subset of tT u is connected.

Proposition 1.8.2. If γ1 ,γ2 are 2 intersecting simple closed curves in a closed
2-manifold, then the set containing the ’cut’ points, say A, is totally disconnected.

Proof. We have already shown that no point of A is having 1 dim euclidean nbd.
Suppose for some A1 Ă A with atleast two points, is connected. Then ∵ A1 Ă
γ1 Y γ2 , A1 will be path connected ùñ points of A1 posses 1 dim euclidean
nbd, meaning they are touching hence implying they are not in A1. Therefore any
connected subset of A will be singleton, implying A is totally disconnected. �

Observe, that the totally disconnected set A can be finite or infinite.
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Theorem 1.8.3. Any closed 2-manifold M can be triangulated[1]

Proof. Proof is attempted in 3 steps.
Recall: A closed manifold is a compact manifold without boundary.

• Step 1: Choose an irreducible cover for the manifold M.

• Step 2: Proceed to M1 “ M{D; it does not contain any self intersecting
curves from C.All the intersecting simple closed curves in M are now a one
point union of simple closed curves in M1.

• Step 3: Change to M2 “ M1{T so as to obtain finitely many one point union
of simple closed curves(r-leafed rose) in intM2, then a triangulable mani-
fiold N with boundary is obtained, now extend the triangulation to whole
manifold.

Step 1
Cover M irreducibly (no proper subset of these cover M)by a finite collection

of closed disks say B1,B2, ..,Bn.Put Ci “ BdpBiq, let A be the set of cut points in C,
apply lemma, so A Ă D. [Use homotopy of curves, f pt,sq “ p1 ´ tqγ1psq ` tγ2psq,
to say one can shift from infinite set of cut points A8 to a finite/countable set of
cut points An][If two s.c curves γ1 and γ2 intersect at two points, then we can find 3
s.c curves with non-intersecting interiors]Observe M ´C is disjoint union of open
2-cells, consequence of Jordan-Schoenflies theorem, and C ´ D is collection of
countably many disjoint arcs.

Step 2
Move to M1 “ M{D, recall ’Remark’, let R “ impC ´ Dq under quotient map,

therefore all arcs in C ´D becomes one point union of simple closed curves in M1
Claim- R is one point union of a countable collection of simple closed curves
Proof- R Ă M1, and M1 “ M{D. For each disjoint arc, say ai in C ´ D, end-

points of each arc is in D, so ai is a compact set, let pi andqi be the end points
of ai, then in M{D every point in D goes to a point say p. Therefore @ i pi,qi is
mapped to p, this shows that each ai is now closed loop around p in M1.

Any 2 cell nbd V of p will contain all but a finite number of the simple closed
curves which comprise R. If not, then for any arbitrary open cover Vαof R if one
chooses a finite subcover tV1, ...,Vnu, each of these Vi will contain only finitely
many simple closed curves and hence R will be a union of finite union of finite
curves. A contradiction to the fact that R is a countable union of s.c curves.

Step 3
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Pick a cellular set T containing V , move to M1{T if necessary, in M1{T impRq
is an r-leafed rose. Moreover, the complement of R in M1{T is composed of
finitely many components that are open 2-cells. Pick a small 2-cell, E, enclosing
p, such that each simple closed curve of R meets boundary of E at two points.
E Y R is now disk with finitely many closed arcs say, A1,A2, ..,Ar. Each Ai may
be enclosed in interior of a closed disk meeting E in a pair of arcs on its boundary.
Choosing pair wise disjoint disks one obtains a triangulable manifiold N. Next is
to extend the triangulation of N to the whole manifold.(paper by M A Armstrong)

Extension is possible using the following corollary from the paper by M A
Armstrong

Corollary 1.8.3.1. Any triangulation of a compact PL-manifold can be extended
to the whole manifold.

�
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Chapter 2

A brief revision of basic Riemannian
Geometry

2.1 Introduction
A revision on Riemannian metric, Riemannian isometry, Levi ´Civita connection,the
notion of parallelism of vectors along curves, geodesics and Hop f ´ Rinow the-
orem are done very briefly in this chapter.

2.2 Riemannian metric and isometry
Definition 2.2.1. A tensor g P T 2pTp̊ Mq is said to be

1. symmetric if gpv,wq “ gpw,vq for all v,w P TpM

2. nondegenerate if gpv,wq “ 0 for all w P TpM ùñ v “ 0

3. positive definite if gpv,vq “ 0 for all v P TpM�t0u
A covariant 2-tensor field g is said to be symmetric, positive definite or non-

degenerate if gp is symmetric, positive definite or non-degenerate @p P M. If
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x : U ÑRn is a local chart, we have

g “
nÿ

i, j“1

gi jdxi b dx j

in U, where gi j “ gp B
Bxi ,

B
Bx j q

It is easy to see that g is symmetric, positive definite or non-degenerate iff the
matrix pgi jq has these properties.

Definition 2.2.2. A Riemannian metric on a smooth manifold M is a symmetric,
positive definite smooth covariant 2-tensor field g. A smooth manifold M equipped
with a Riemannian metric g is called a Riemannian manifold, and is denoted by
pM,gq

Hence a Riemannian metric is a smooth assignment of an inner product to
each tangent space.

gppv,wq “ xv,wyp.

Proposition 2.2.1. Let pN,gq be a Riemannian manifold and f : M Ñ N be an
immersion. Then f ˚g is a Riemannian metric(called the induced metric).

Proof. Let p P M and let v,w P TpM, define

p f ˚gqppv,wq “ gppd fppvq,d fppwqq.
Since g is symmetric we have p f ˚gq also satisfying this property. For positive
definiteness, p f ˚gqp is clearly ě 0.
If p f ˚gqp “ 0 ùñ gppd fppvq,d fppwqq “ 0 ùñ d fppvq “ 0 ùñ v “ 0 (as f is
an immersion ùñ d fppvq is injective.) �

Definition 2.2.3. Let (M,g) and (N,h) be Riemannian manifolds. A diffeomor-
phism f : M Ñ N is said to be an isometry if f ˚h “ g. Similarly, a local diffeo-
morphism f 1 : U Ă M Ñ V Ă N is said to be a local isometry if f ˚h “ g.

2.3 Affine connection
Given vector fields in Euclidean space, we can define the directional derivative
∇XY of Y along X . Connection helps us to extend this concept to an arbitrary
smooth manifold.
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Definition 2.3.1. An affine connection on a smooth manifold M is a map ∇ : X pMqˆ
X pMq Ñ X pMq such that,

1. ∇ f X`gY Z “ f ∇X Z ` g∇Y Z

2. ∇X pY ` Zq “ ∇XY ` ∇X Z

3. ∇X p fY q “ pX f qY ` f ∇XY

for all X ,Y,Z P X pMq and f ,g P C8pM,Rq
Proposition 2.3.1. Let ∇ be a connection on a differentiable manifold M, let X ,Y P
X pMq with p P M. Then p∇XY qp P TpM depends only on Xp and on the values of
Y along a curve tangent to X at p. Moreover, if x : W ÑRn are local coordinates
on some open set W Ă M and

X “
nÿ

i“1

xi B
Bxi ,Y “

nÿ

i“1

yi B
Bxi

on this set we have,

∇XY “
nÿ

i“1

pX ¨ yi `
nÿ

j,k“1

Γi
jkx jykq B

Bxi

where the differentiable functions Γi
jk : W Ñ R, called the Christoffel symbols

are defined by

∇ B
Bx j

B
Bxk “

nÿ

i“1

Γi
jk

B
Bxi (2.1)

Proof. Observe that affine connection is local, i.e, if X ,Y P X pMq coincide with
X̃ ,Ỹ P X pMq in some open set W Ă M then ∇XY “ ∇X̃Ỹ on W.

Let W be a coordinate neighbourhood for the local coordinates x : W Ñ Rn,
and define the Christoffel symbols associated with these local coordinates through
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2.1, so we have :

∇XY “ ∇přn
i“1 xi B

Bxi qp
nÿ

j“1

y j B
Bx j q

by properties of ∇in2.3.1, ∇XY “
nÿ

i“1

xip∇ B
Bxi

p
nÿ

j“1

y j B
Bx j qq

“
nÿ

i“1

xip
nÿ

j“1

p B
Bxi py jq B

Bx j ` y j∇ B
Bxi

B
Bx j qq

from 2.1,we know∇ B
Bx j

B
Bxk “

nÿ

i“1

Γi
jk

B
Bxi

∴ ∇XY “
nÿ

i“1

xip
nÿ

j“1

B
Bxi py jq B

Bx j `
nÿ

j“1

py j∇ B
Bxi

B
Bx j qq

“
nÿ

i“1

xip
nÿ

j“1

B
Bxi py jq B

Bx j `
nÿ

j“1

py j

nÿ

k“1

Γk
i j

B
Bxk qq

reindexing we have “
nÿ

i“1

xi
nÿ

j“1

B
Bxi py jq B

Bx j `
nÿ

j“1

py j

nÿ

k“1

Γk
i j

B
Bxk q

“
nÿ

i“1

nÿ

j“1

xi B
Bxi py jq B

Bx j `
nÿ

j“1

py jxi
nÿ

k“1

Γk
i j

B
Bx j q

“
nÿ

j“1

p
nÿ

i“1

xi B
Bxi py jq `

nÿ

j“1

py jxi
nÿ

k“1

Γk
i jqq B

Bx j

“
nÿ

j“1

pXpy jq `
nÿ

j“1

py jxi
nÿ

k“1

Γk
i jqq B

Bx j

This formula shows that p∇XY qp depends only on xippq,yippq and pX ¨ yiqppq.
Moreover, xiippq and yippq depends only on Xp and Yp, and pX ¨yiqppq “ d

dt y jpcptqq|t“0

depends only on the values of yi or Y along a curve c whose tangent vector at
p “ cp0q is Xp. �

Definition 2.3.2. Consider a curve c : I Ñ M, where I is the unit interval and M
is a smooth manifold. If V is a vector field defined along the differentiable curve
c : I Ñ M with 9c � 0, its covariant derivative along c is the vector field defined
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along c given by
DV
dt

ptq : “ ∇ 9cptqV “ p∇XY qcptq (2.2)

for any vector fields X ,Y P X pMq such that Xcptq “ 9cptq and Ycpsq “ V psq with
s P pt ´ ε, t ` εq for some ε ą 0.

Note that for a curve c : I Ñ M avector field defined along a differentiable
curve is a differentiable map V : I Ñ T M such that V ptq P TcptqM @t P I. Also,
proposition 2.3.1 tells us that p∇XY qpcptqq does not depend on the choice of X ,Y ,
so in local coordinates we have xiptq : “ xipcptqq and

V ptq “
nÿ

i“1

V iptq
ˆ B

Bxi

˙

cptq
,

then
DV
dt

ptq “
nÿ

i“1

¨
˝ 9V iptq `

nÿ

j,k“1

Γk
i jpcptqq 9x jptqV kptq

˛
‚

ˆ B
Bxi cptq

˙
(2.3)

Definition 2.3.3. A vector field V defined along a differentiable curve c : I Ñ M
is said to be parallel along c if

DV
dt

ptq “ 0

for all t P I. The curve c is called a geodesic of the connection ∇ if 9c is parallel
along c , i.e if

D 9c
dt

ptq “ 0 @t P I.

In local coordinates x : W Ñ Rn, the condition for V to be parallel along c is
clear if we let equation 2.3 = 0, i.e

nÿ

i“1

¨
˝ 9V iptq `

nÿ

j,k“1

Γi
jkpcptqq 9x jptqV kptq

˛
‚

for each i, this represent a system of first-order linear ODE’s for the components
of V. We take it for granted that using Picard-Lindelof theorem, together with
the global existence theorem for linear ODE’s, given a curve c : I Ñ M, a point
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p P cpIq and a vector v P TpM, there exists a unique vector field V : I Ñ T M parallel
along c such that V p0q “ v, this is called the parallel transport of v along c.

Also geodesic equations are

:xi `
nÿ

j,k“1

Γi
jkpcptqq 9x jptq 9xkptq pi “ 1, ...,nq

2.4 Levi-Civita connection
In the case of Riemannian manifold, there is a particular choice of connection,
called the Levi ´ Civita Connection, with special geometric properties.

Definition 2.4.1. A connection ∇ in a Riemannian manifold pM,x., .yqis said to be
compatible with the metric if

X ¨ xY,Zy “ x∇XY,Zy ` xY,∇X Zy
for all X ,Y,Z P X pMq.

If ∇ is compatible with the metric, then the inner product of two vectors fields
V1 and V2, parallel along a curve, is constant along the curve :

d
dt

xV1ptq,V2ptqy “ x∇ 9cptqV1ptq,V2ptqy ` xV1ptq,∇ 9cptqV2ptqy “ 0.

In particular, parallel transport preserves lengths of vectors and angles between
vectors. Therefore, if c : I Ñ M is ageodesic, then � 9cptq� “ k is constant. If a P I,
the length s of the geodesic between a and t is

s “
ż t

a
� 9cpvq�dv “

ż t

a
kdv “ kpt ´ aq.

Theorem 2.4.1 (Levi-Civita). If pM,x., .yq is a Riemannian manifold then there
exists a unique connection ∇ on M which is symmetric and compatible with x., .y.
In local coordinates px1,x2, . . . ,xnq, the christoffel symbols for this connection are

Γi
jk “ 1

2

nÿ

l“1

gil
ˆBgkl

Bx j ` Bg jl

Bxk ` Bg jk

Bxl

˙

where pgi jq “ pgi jq´1.
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2.5 Minimising properties of geodesics
Let M be a differentiable manifold with an affine connection ∇. Given a point
p P M and a tangent vector v P TpM, there exists a unique geodesic cv : I Ñ M,
defined on a maximal open interval I ĂR, such that 0 P I,cvp0q “ p and 9cvp0q “ v.
Consider now the curve γ : J Ñ M defined by γptq “ cvpatq, where a PR and J is
the inverse image of I by the map t Ñ at. So,

9γptq “ a 9cvpatq, (2.4)

and consequently
∇ 9γ 9γ “ ∇a 9cvpa 9cvq “ a2∇ 9cv 9cv “ 0 (2.5)

Thus γ is also a geodesic. Since γp0q “ cvp0q “ p and 9γp0q “ a 9cvp0q “ av, we see
that γ is the unique geodesic with initial velocity av P TpM(that is, γ “ cav). There-
fore, we have cavptq “ cvpatq@t P I. This property is referred to as the homogeneity
of geodesics. Observe that one can make the interval J arbitrarily large by making
a sufficiently small. If 1 P I, we define expppvq for v in some open neighbourhood
U of the origin in TpM. The map expp : U Ă TpM Ñ M thus obtained is called the
exponential map at p.

Proposition 2.5.1. There exists an open set U Ă TpM containing the origin such
that expp : U Ñ M is a diffeomorphism onto some open set V Ă M containing
p(called a normal neighbourhood).

Proof. We assume the fact that ”the exponential map is differentiable”. If v P TpM
is such that expppvq is defined, we have , by homogeneity, that exppptvq “ ctvp1q “
cvptq. Consequently,

pdexppq0v “ d
dt

exppptvq|t“0 “ d
dt

cvptq|t“0 “ v.

We conclude that pdexppq0q : TopTpMq � TpM Ñ TpM is the identity map. By the
inverse function theorem, expp is then a diffeomorphism of some open neighbour-
hood U of 0 P TpM onto some open set V Ă M containing p “ exppp0q. �

Example. Consider the Levi-civita connection in S2 with the standard metric,
and let p P S2. Then expppvq is well defined for all v P TpS2, but it is not a diffeo-
morphism, as it is clearly not injective. However, its restriction to the open ball
Bπp0q Ă TpS2 is a diffeomorphis, onto S2 ´p.
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Now let (M, x., .y) be a Riemannian manifold and ∇ its levi-civita connection.
Since x., .y defines an inner product in TpM, we can think of TpM as the Euclidean
n´ space Rn. Let E be the vector field defioned on TpM t0u by

Ev “ v
||v|| ,

and define X � pexppq˚E on V tpu, where V Ă M is a normal neighbourhood.
We have

Xexpppvq “ pdexppqvqEv “ d
dt

expp

ˆ
v ` t

v
||v||

˙

t“0

“ d
dt

cv

ˆ
1 ` t

||v||
˙

t“0
“ 1

||v|| 9cvp1q.

Since || 9cvp1q|| “ || 9cvp0q|| “ ||v||, we see that Xexpppvq is the unit tangent vector to
the geodesic cv. In particular, X must satisfy

∇X X “ 0.

For each ε ą 0 such that Bεp0q Ă U� expp
´1pV q , we define the normal ball with

center p and radius ε as the open set Bεppq� expppBεp0qq, and the normal sphere
of radius ε centered at p as the compact submanifold Sεppq� expppBBεp0qq. We
will now prove that X is, and hence the geodesics through p are, orthogonal to nor-
mal spheres. For that, we choose a local parametrization φ : W ĂRn´1 Ñ Sn´1 Ă
TpM, and use it to define a parametrisation φ̃ : p0,`8q ˆ W Ă Rn´1 Ñ TpM
through

φ̃pr,θ 1, . . . ,θ n´1q “ rφpθ 1, . . . ,θ n´1q
(hence pr,θ 1, . . . ,θ n´1q are spherical coordinates on TpM).
Note that B

Br
“ E,

since,

Eφ̃ pr,θ q “ Erφpθq “ φpθq “ Bφ̃
Br

pr,θ q,
and so

X “ pexppq˚
B
Br

. (2.6)
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Since B
Bθ i is tangent to r, where r= ε , the vector fields

Yi� pexppq˚
B

Bθ i (2.7)

are tangent to Sεppq. Notice also that � B
Bθ i� “ � Bφ̃

Bθ i� “ r� Bφ
Bθ i� is proportional to

r, and consequently B
Bθ i Ñ 0 as r Ñ 0, implying that pYiqq Ñ 0p as q Ñ p. Since

expp is a local diffeomorphism, the vector fields X and Yi are linearly independent
at each point. Also,

rXi,Yis “
„

pexppq˚
B
Br

,pexppq˚
B

Bθ i


“ pexppq˚

„ B
Br

,
B

Bθ i


“ 0

or, since the Levi-Civita connection is symmetric,

∇XYi “ ∇YiX .

To prove that X is orthogonal to the normal spheres Sεppq, we show that X is
orthogonal to each of the vector fields Yi. In fact, since ∇X X “ 0 and �X� “ 1, we
have

X ¨ xX ,Yiy “ x∇X X ,Yiy ` xX ,∇XYiy “ xX ,∇Y iXy “ 1
2

Yi ¨ xX ,Xy “ 0

and hence xX ,Yiy is constant along each geodesic through p. Consequently,

xX ,Yiypexppvq “ xXexppv,pYiqexppvy “ lim
tÑ0

xXexppv,pYiqexppvy “ 0

(as �X� “ 1 and pYiqq Ñ0p as q Ñ p), and so every geodesic through p is orthog-
onal to all normal spheres centered at p.

The current result helps us in deducing the following proposition.

Definition 2.5.1. A normal neighbourhood V Ă M is called a totally normal neighbourhood
if D ε ą 0 such that V Ă Bεppq @p P V .

2.6 Hopf-Rinow theorem
Definition 2.6.1. A Riemannian manifold (M, x., .y) is said to be geodesically complete
if, @p P M, the map expp is defined in TpM.
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Theorem 2.6.1 (Hopf-Rinow theorem). Let (M, x., .y) be a connected Riemannian
manifold and p P M. The following assertions are equivalent :

1. M is geodesically complete,

2. (M,d) is a complete metric space,

3. expp is defined in TpM.

Moreover, if (M, x., .y) is geodesically complete then @q P M D a geodesic c con-
necting p to q with l(c)=d(p,q).

For proof refer [5]
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Chapter 3

Fundamental theorem of surface
theory

3.1 Introduction
In this chapter the discussion will be mainly about certain properties of immersed
manifolds that will help us in proving few important theorems like Gauss Theo-
rema Egregium, Synge’s Inequality, Weingarten’s equations and Codazzi- Mainardi
Equations. All these will help us in proving the Fundamental theorem on Surface
theory by Bonnet.

3.2 Theorema Egregium
Few theorems on immersed manifolds will prepare us for Gauss Theorema Egregium
.

An immersion i is a smooth map from Mn Ñ Nm, where M,N are smooth
manifolds, where M Ď N, such that rank of i is ’n’.

Remark. If N is endowed with a Riemannian metric (N, xy), then M has the in-
duced Riemannian metric (M, i˚xy),

Theorem 3.2.1. Let i : M Ñ N be an immersion. Suppose N has a Rieman-
nian connection ∇1 (N, xy), and M has the induced Riemannian connection ∇
(M, i˚xy), then if p is a point in a neighbourhood U of M, Xis a vectorfield P Mp,
and Y is a vector field which is everywhere tangent to M then ,

∇XpY “ Jp∇1
XpY q
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Definition 3.2.1. Given a manifold M with a point p, there is a well defined tensor
field ’s’, such that s : Mp ˆ Mp Ñ MK

p for each p P M, such that

spXp,Ypq “ Kp∇1
XpY q

for any vector field Y extending Yp.

Theorem 3.2.2. The tensor s is symmetric.

Proof. Let X and Y be extensions of Xp,Yp P Mp to all of N which are tangent to
M at all points of M. Then

Kp∇1
XpY q ´ Kp∇1

YpXq “ Kp∇1
XpY ´ ∇1

YpXq
“ Kp∇1

XY ppq ´ ∇1
Y Xppqq

“ KprX ,Y sppqq

Since rX ,Y s is tangent to M at all points of M KprX ,Y sppqq “ 0, hence ’s’ is
symmetric tensor. �

Combining the above two theorems we have the following decomposition

∇1
XpY “ K∇1

XpY ` J∇1
XpY (3.1)

which can be further written as

The Gauss Formulas :
∇1

XpY “ ∇XpY + spXp,Ypq,

Theorem 3.2.3 (Theorema Egregium). Let M be isometrically immersed in N,
and let R and R

1
denote curvature tensors of M and N respectively. Then for all

Xp,Yp,Zp,Wp P Mp we have

xR1pXp,YpqZp,Wpy “ xRpXp,YpqZp,Wpy`xspXp,Zpq,spYp,Wpqy´xspYp,Zpq,spXp,Wpqy
Proof. Extend Xp,Yp,Zp,Wp to vector fields X ,Y,Z,W which are tangent along
M. Then Gauss formulas yield

paq ∇1
X p∇1

Y Zq “ ∇1
X p∇Y Zq ` ∇1

X pspY,Zqq
“ ∇X p∇Y Zq ` spX ,∇Y Zq ` ∇1

X pspY,Zq
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and similarly

pbq ∇1
Y p∇1

X Zq “ ∇Y p∇X Zq ` spY,∇X Zq ` ∇1
Y pspX ,Zq

as well as

pcq ∇1
rX ,Y sZ “ ∇rX ,Y sZ ` sprX ,Y s,Zq

Recall the formula for curvature tensor,

R1pX ,Y qZ “ ∇1
X ∇1

Y Z ´ ∇1
Y ∇1

X Z ´ ∇1
rX ,Y sZ,

now substitute (a)(,b),(c) into this formula, we get

xR1pX ,Y qZ,W y “ x∇1
X ∇1

Y Z ´ ∇1
Y ∇1

X Z ´ ∇1
rX ,Y sZ,W y

“ x∇1
X ∇1

Y Z,W y ´ x∇1
Y ∇1

X Z,W y ´ x∇1
rX ,Y sZ,W y

applying Gauss formulas “ tx∇X p∇Y Z ` spX ,∇yZq ` ∇1
X spY,Zqq,W y

´ tx∇Y p∇X Zq,W y ` xspY,∇X Zq,W y
` x∇1

Y spX ,Zq,W yu ´ tx∇rX ,Y sZ,W y ` xsprX ,Y s,Zq,W yuu
∵ t1u ´ xsp,q,W y “ 0 the equation will be reduced as follows
“ tx∇X p∇Y Zq,W y ` x∇1

X spY,Zqq,W y
´ x∇Y p∇X Zq,W y x∇1

Y spX ,Zq,W y ´ x∇rX ,Y sZ,W yu
“ xRpX ,Y qZ,W y ` x∇1

X pspY,Zqq,W y ´ x∇1
Y spX ,Zq,W y ´ t˚u

t1u ùñ XpxspY,Zq,W q “ 0
by the property of Riemannian metricx,y
∴ x∇1

X spY,Zq,W y ` xspY,Zq,∇1
XW y “ 0 ´ t2u

applying Gauss formulas , t2u “ x∇1
X spY,Zq,W y ` xspY,Zq,∇XW ` spX ,W qy

“ x∇1
X spY,Zq,W y ` xspY,Zq,spX ,W qy

∵ spY,Zq “ Kp∇1
Yp

Zq,xspY,Zq,∇XW y “ 0

∴ t2u ùñ x∇1
X spY,Zq,W y “ ´xspY,Zq,spX ,W qy

hence t˚u “ xRpX ,Y qZ,W y ´ xspY,Zq,spX ,W qy ´ xspX ,Zq,spY,W qy
�
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3.3 Synge’s inequality
Recall that if P Ă Mp is a 2-dimensional subspace of Mp, we define the sectional
curvature K(P) as

KpPq “ xRpX ,Y qY,Xy
for orthonormal X ,Y P P. Since we had studied Gauss Theorema Egregium(G.T.E)
, we observe an inequality which is a corollary to G.T.E that relates the sectional
curvatures of a 2-dimensional subspace in an immersed and ambient manifold.

Corollary 3.3.0.1. Let M be isometrically immersed in N, and let γ : ra,bs Ñ M
be a curve in M which is a geodesic in N. Then for all 2-dimensional P Ă Mγptq
with γ 1ptq P P we have

KpPq ď K1pPq
In particular if M is a surface then for all p “ γptq we have

KpMpq ď K1pMpq
Proof. Let γ be parametrized by arclength. Let Xp “ γ 1ptq and let Yp P P be a
unit vector perpendicular to Xp. Appplying Gauss’s equation with Zp “ Yp and
Wp “ Xp, we have

K1pPq “ KpPq ` xspXp,Ypq,spXp,Ypqy ´ xspYp,Ypq,spXp,Xpqy
If we let X be the vectorfield Xptq “ γ 1ptq along γ , then X is parallel along γ , so
we have 0 “ ∇1

X X ùñ Kp∇1
X Xqppq “ spXp,Ypq “ 0

hence, the desired inequality holds. �

Remark. For the case of surface equality holds for all p “ γptq if and only if Mγptq
is parallel along γ , in the sense that pertains to N.

From now on we consider the specific situation where M is a hypersurface in
N, that is a submanifold of codimension 1.

Remark. If M is a hypersurface of N then,

1. D unit normal vector field for M on neighbourhood U of a point p P M

2. xv,vy “ 1 & vpqq P Mq
K @q P U

Theorem 3.3.1. Let M be a hypersurface in N nd let v be a unit normal field on a
neighborhood of p in M.
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(a) @Xp P Mp we have
∇1

Xp
v P Mp

(b) If Y is a vector field tangent along M, then we have

The Weingarten Equations
x∇1

Xp
v,Ypy= -xv,∇1

Xp
Y y =-xv,spXp,Ypqy

(c) Consequently,
x∇1

Xp
v,Ypy “ xXp,∇1

Yp
vy

Proof. (a)

xv,vy “ 1
∴ Xppxv,vyq “ 0

∴ x∇1
Xp

v,vy ` xv,∇1
Xp

vy “ 0

ùñ x∇1
Xp

v,vy “ 0

i.e∇1
Xp

v Kv ùñ ∇1
Xp

v P Mp

(b)

xv,Ypy “ 0
Xpxv,Ypy “ x∇1

Xp
v,Ypy ` xv,∇1

Xp
Ypy

ùñ x∇1
Xp

v,Ypy “ ´xv,∇1
Xp

Ypy
Gauss equations “ xv,Jp∇1XpYpq ` Kp∇1

Xp
Ypqy

observe that ∵ vKMp&Jp∇1
Xp

Ypq “ ∇XpYp

so xv,∇XpYpy “ 0

ùñ xv,∇1
Xp

Ypy “ xv,Kp∇1
Xp

Ypqy
i.exv,∇1

Xp
Ypy “ xv,spXp,Ypqy

Hence x∇1
Xp

v,Ypy= -xv,∇1
Xp

Y y =-xv,spXp,Ypqy
�
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Corollary 3.3.1.1. Let Mn be a hypersurface in Rn`1 and let v be a unit normal
field on a neighbourhood of p in M. Then for all Xp,Yp P Mp we have

spXp,Ypq “ IIpXp,Ypq ¨ vppq
where IIpXp,Ypq ¨ vppq is the second fundamental form of M defined for the choice
v of unit normal field, namely

IIpXp,Ypq “ ´xdvpXpq,Ypy
Proof. Observe that

∇1
Xp

v “ rXppvqsp “ rdvpXpqsp “ dvpXpq,

Remark. Since v can be seen as a map v : M Ñ Sn´1 ĂRn`1, we have the vector
valued differential form dv : Mp Ñ Rn`1, and dvpXpq P Rn`1 should be moved
back to a parallel vector in Mp, equivalently, dvpXpq denotes v˚pXpq P Sn´1

vppq moved
back to a parallel vector in Mp.

So according to Theorem 3.3.1

xv,spXp,Ypqy “ ´x∇1
Xp

v,Ypy
“ ´xdvpXpq,Ypy
“ IIpXp,Ypq ´ p˚q

also we know spXp,Ypq “ Kp∇1
Xp

Ypq
ùñ spXp,Ypq “ k1v where k1is scalar

hence to find spXp,Ypq we take inner product with v
∴ xspXp,Ypq,vy “ xk1v,vy “ k1

we know that byp˚q,xspXp,Ypq,vy “ IIpXp,Ypq
hence k1 “ IIpXp,Ypq

and ∴ spXp,Ypq “ IIpXp,Ypq ¨ vppq
�

Theorem 3.3.2. Let M be a hypersurface in N, and let v be a unit normal field on
a neighbourhood of p in M, with corresponding II. Then for all Xp,Yp,Zp P Mp we
have :

47



The Codazzi-Mainardi Equations
xR1pXp,YpqZp,vppqy “ p∇XpIIpYp,Zpq -p∇YpIIpXp,Zpq

Proof. Recall the equations derived in the proof of Theorem 3.2.3

p1q ∇1
X p∇1

Y Zq “ ∇1
X p∇Y Zq ` ∇1

X pspY,Zqq
“ ∇X p∇Y Zq ` spX ,∇Y Zq ` ∇1

X pspY,Zq
p2q ∇1

Y p∇1
X Zq “ ∇Y p∇X Zq ` spY,∇X Zq ` ∇1

Y pspX ,Zq
p3q ∇1

rX ,Y sZ “ ∇rX ,Y sZ ` sprX ,Y s,Zq
“ ∇rX ,Y sZ ` sp∇XY,Zq ´ sp∇Y X ,Zq

This shows that the normal component of R1pX ,Y qZ is given by

normal component ofR1pX ,Y qZ “
rK∇1

X pspY,Zq ´ sp∇XY,Zq ´ sp∇Y X ,Zqs
´ rK∇1

Y pspX ,Zq ´ sp∇Y X ,Zq ´ spX ,∇Y Zqs
Also, as

spY,Zq “ IIpY,Zq ¨ pvq,
we have,

∇1
X pspY,Zq “ XpIIpY,Zqq ¨ v ` IIpY,Zq ¨ ∇1

X v

so by Theorem 3.3.1 ∇1
X v P Mp ùñ xIIpY,Zq ¨ ∇1

X v,vy “ 0

∴ x∇1
X pspY,Zq,vy “ XpIIpY,Zqq ¨ v

hence

xR1pX ,Y qZ,vy “ rXpIIpY,Zqq ´ IIp∇XY,Zq ´ IIpY,∇X Zqs
´ rY pIIpX ,Zqqs ´ IIp∇Y X ,Zq ´ IIpX ,∇Y Zq

�

A particular case to observe this is when our ambient space N has constant
curvature K0.
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Corollary 3.3.2.1. Let N have constant curvature K0. Then for isometrically im-
mersed in N we have :

Gauss’s Equations:
xRpXp,YpqZp,Wpy` xspXp,Zpq,spYp,Wpqy´ xspYp,Zpq,spXp,Wpqy

= K0rxXp,Wpy ¨ xYp,Zpy ´xXp,Zpy ¨ xYp,Wpys
And if M is a hypersurface we have :

The Codazzi-Mainardi Equations:
p∇XpqIIpYp,Zpq =p∇YpIIqpXp,Zpq

3.4 Fundamental theorem of surface theory(Bonnet-
1867)

From the theory of curves , we know that κ and τ formed a complete set of
invariants for a curve up to translations and rotations (elements of SOp3q), by
showing that they were a complete set of invariants up to rotation for the func-
tion s Ñ ptpsq,npsq,bpsq, this was accomplished using the Serret-Frenet formulas,
which are differential equations for pt,n,bq, involving only κ and τ . In this the-
orem we will observe an analogous situation for surfaces and see whether every
immersion f : U Ñ R3 is described completely by the corresponding gi j and li j,
which are ”invariant under proper Euclidean motion”.

In the case of surfaces, we have the three vectors p f1, f2,Nq, where if f is an
immersion, f : U ÑR3 (for U ĂR2 open), then

f1ps, tq “ B f
Bs

ps, tq,

f2ps, tq “ B f
Bt

ps, tq
and

N “ f1 ˆ f2

| f1 ˆ f2|
Introducing this new gk j notation is really helpful, where

ÿ

k

gikgk j “ δ j
i
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First we try to express the derivatives of each of f1, f2,N as linear combina-
tions of these three vectors.

We want to write

fik “
2ÿ

h“1

Ah
ik fh ` BikN

To find Ah
ik we take innerproduct of fik with f j.

We know thatx fi, f jy “ gi j

differentiating, x fik, f jy ` x fi, f jky “ B
Bk

pgi jq “ gi j,k pk “ 1,2q
“ x∇ B

Bxk
fi, f jy ` x fi,∇ B

Bxk
f jy

similarlyx f ji, fky ` x f j, fkiy “ g jk,i

x fk j, fiy ` x fk, fliy “ gki, j

adding the first two and subtracting the third we have,

x fik, f jy “ 1
2

pgi j,k ` g jk,i ´ gki, jq
“ rik, js,

where rik, js is the Christoffel symbol for the metric I f “ f ˚x,y on U with respect
to the standard coordinate system ps, tq on R2, so we have,

rik, js “ x fi, f jy “
2ÿ

h“1

Ah
ikgh j

To explicitly find Ah
ik, take inner product with gi j for each i, so,

Aρ
ik “

2ÿ

j“1

gρ jrik, js “ Γρ
ik

Recall that
ř

ρ giρgρ j “ δ j
i

Similarly to find Bik we take inner-product with N, i.e

Bik “ x fik,Ny “ ´xNi, fky “ lik

Thus,

fik “
2ÿ

h“1

Γh
ik fh ` likN {The Gauss Formulas} (3.2)
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Observe that in the equation 3.2 we are expressing the covariant derivative of B
Bxi

as
its tangential component p fhq and normal component pNq, which is similar to how
we expressed connection on the ambient manifold as its tangential and normal
component in the equation 3.1.

Next to express Ni in terms of f1, f2,N, we write Ni as,

Ni “
2ÿ

h“1

Ch
i fh ` 0.N

just as we did above,

li j “ x´Ni, f jy “ ´
2ÿ

h“1

Ch
i gh j,

and consequently

Cρ
i “ ´

2ÿ

j“1

gρ jli j

Introducing new symbols lh
i we can write,

Ni “ ´
ÿ

h “ 12

¨
˝

nÿ

j“1

gh jli j

˛
‚fh “ ´

2ÿ

h“1

lh
i fh {The Weingarten Equations}

(3.3)
The following theorem is useful in proving the fundamental theorem of surfaces.

Theorem 3.4.1. Let U ˆV Ă Rm ˆRn be open, where U is a neighbourhood of
0 P Rm, and let fi : U ˆV Ă Rn be C8 functions, for i “ 1, ...,m. Then for every
x P V, there is at most one function

α : W Ñ V,

defined in a neighbourhood W of O in Rm, satisfying

αp0q “ x
Bα
Bt j ptq “ f jpt,αptqq@t P W
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Remark. Any two functions α1,α2, as mentioned above, defined on W1,W2, agree
on the component of W1 XW2 which contains 0.

Theorem 3.4.2 (Fundamental theorem of Surface theory, (Bonnet- 1867)). Let
U ĂR2 be a convex open set containing (0,0)

1. Let f , f : U ÑR3 be two immersions, and define

gi j “ x fi, f jy gi j “ x fi, f jy
N “ f1ˆ f2?

g11g22´g122 N “ f1ˆ f2?
g11g22´g122

li j “ x´Ni, f jy “ x´N, fi jy li j “ x´Ni, f jy “ x´N, f i jy

Suppose that gi j “ gi j and gi j “ gi j on U. Then there is a proper Euclidean motion A such that
f “ A ˝ f

2. Let gi j and gi j (i,j =1,2) be functions on U which satisfy

i. gi j “ g ji and li j “ l ji, and (gi j) is positive definite on U, so that
we can define corresponding gi j and Γk

i j
ii. Gauss’s Equation :

l11l22 ´ pl12q2 “ R1212

“
2ÿ

ρ“1

g1ρpΓρq22,1 ´ pΓρq21,2 `
2ÿ

h“1

pΓh
22Γρ

h1 ´ Γh
21Γρ

h2q

iii. The Codazzi- Mainardi Equations :

l12,1 ´ l11,2 `
2ÿ

h“1

Γh
12lh1 ´

2ÿ

h“1

Γh
11lh2 “ 0

l22,1 ´ l21,2 `
2ÿ

h“1

Γh
22lh1 ´

2ÿ

h“1

Γh
21lh2 “ 0

Then there is an immersion f : U ÑR3 such that

gi j “ x fi, f jy
li j “ x´Ni, f jy “ xN, f jiy, for N “ f1 ˆ f2a

g11g22 ´ g122
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Proof. Spivak follows a convenient notation to prove this theorem, let’s follow
the same

v1 “ f1 v2 “ f2 v3 “ N
v1= f 1 v2= f 2 v3= N

First choose a roatation B P SO(3) such that

Bpvαp0,0qq “ vαp0,0q α “ 1,2,3.

This is possible because gi jp0q “ gi jp0q for i, j “ 1,2 and because the two triples of
vectors pv1p0,0q,v2p0,0q,v3p0,0qq and pv1p0,0q,v2p0,0q,v3p0,0qq are both posi-
tively oriented, with the third perpendicular to the first two. If we let f̃ “ B ˝ f ,
then it is easy to see that

g̃i j “ gi j “ gi j

v3 “ B ˝ v3

l̃i j “ li j “ li j

We claim that the maps

pv1,v2,v3q,pv1,v2, ṽ3q : U ÑR3

which are equal at zero are infact equal at everywhere. Recall that Gauss formulas
and Weingarten equations give

vi,kps, tq “
2ÿ

h“1

Γh
ikps, tqvhps, tq ` likps, tqv3ps, tq i “ 1,2 (3.4)

v3,kps, tq “ ´
2ÿ

h“1

¨
˝

2ÿ

j“1

gh jps, tqlk jps, tq
˛
‚vhps, tq (3.5)

for the vα , while for the vα we obtain the corresponding equations with Γ̃h
ik,

l̃ik and g̃h j. But l̃ik “ lik, and since gi j “ g̃i j we also have gh j “ g̃i j and Γh
ik “ Γ̃h

ik.
So the two maps pv1,v2,v3q and pv1,v2, ṽ3q satisfy the same equations, and is
equal at (0,0), hence they must be equal on U by Theorem 3.4.1. So this implies
that f and f̃ “ B ˝ f have the same partial derivatives, and therefore differ by a
constant vector. Consequently there is a translation T : R3 ÑR3 with f “ T ˝ f̃ “
pT ˝ Bq ˝ f .
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To prove (2), we again use Theorem 3.4.1 to conclude that equations 3.4 and
3.5 written in terms of the given li j and gi j, has a solution v1,v2,v3 : U ÑR3 with
any desired initial conditions. Moreover the functions vα can be defined on all of
U because the equations 3.4 and 3.5 are linear. Since pgi jq is positive definite at
p0,0q there is a solution for which the following conditions are satisfied at (s,t)=
(0,0)

paq xvips, tq,vjps, tqy “ gi jps, tq i, j “ 1,2
pbq xvips, tq,v3ps, tqy “ 0 i “ 1,2
pcq |v3ps, tq| “ 1

pdqpv1ps, tq,v2ps, tq,v3ps, tqqis positively oriented.

We will show that conditions (a)-(d) actually hold at all points of U .
The equations 3.4 and 3.5 for v1ps, tqv2ps, tqv3ps, tq gives the equations

pAqxvi,vjyk “ xvi,k,vjy ` xvi,k,vj,ky

“
2ÿ

h“1

Γh
ikxvh,vjy `

2ÿ

h“1

Γh
jkxvh,viy ` likxv3,viy ` l jkxv3,vjy

for i,j=1,2, as well as
pBqxvi,v3yk “ xvi,k,v3y ` xvi,v3,ky

“ lik ´
2ÿ

h“1

¨
˝

2ÿ

j“1

gh jlk j

˛
‚xvi,vhy

and
pCq xv3,v3yk “ 2xv3,k,v3y “ 0

[Equations (A)-(C) all hold for k=1,2.]
But we also have

gi j,k “ rik, js ` r jk, is

“
2ÿ

h“1

Γh
ikgh j `

2ÿ

h“1

Γh
jkghi.

This shows that the set of equations (A)-(C) are satisfied both by
the set of functions : xvi,vj,yp j “ 1,2q,xv3,v1,y,xv3,v2,y,xv3,v3,y
and by
the set of functions : gi jp j “ 1,2q,0 ,0 , 1
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Moreover we chose the vi so that these two collections of functions have the
same value at (0,0). I t follows that they have the same values on all of U . In other
words equations (a)- (c) hold on all of U .Moreover, (a) and (b)[and non singularity
of pgi jq] imply that pv1,v2,v3q are always linearly independent. So condition (d)at
(0,0) implies (d) everywhere.

We now claim that there is a function f : U ÑR3 satisfying fi “ vi. In order
to prove this, we just show that vi,j “ v j,i. But this follows from equations 3.4 and
3.5, by symmetry of the Γh

ik and lik. We now have x fi, f jy “ gi j by (a). Moreover,
(b)-(d) then show that v3 “ n, consequently,

x fi j,ny “ xvi,j,v3y “ li j

by 3.4 and 3.5 together with (b) and (c). �

Theorem 3.4.3 (Hadamard). (1)If M is a convex surface inR3, then Kppq ě 0 for
all p P M.

(2) Let M be a compact connected 2-manifold, and f : M ÑR3 an immersion
with Kppq ą 0 for all p P M. Then

1. The manifold M is orientable, and the normal map N : M Ñ S2 Ă R3 is a
diffeomorphism,

2. The map f : M ÑR3 is an imbedding, and f pMq is convex.
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Chapter 4

Surfaces of constant curvature

In this chapter we will determine precisey which surfaces inR3 can be obtained by
isometrically immersing complete manifolds with constant curvature K ą 0,K “
0,K ă 0.

4.1 Hilbert’s lemma
Theorem 4.1.1. Let X be a C8 vector field on M with Xppq � 0. Then there is a
coordinate system (x,U) around p such that

X “ B
Bx1 on U.

Proof. Assume M “ Rn for a convenient coordinate system saypt1, t2, ..., tnq and
p “ 0 P Rn. Moreover, we can assume that Xp0q “ B

Bt1 |0. The idea of proof
is that in a neighbourhood of 0 there is a unique integral curve through each
point p0,a2, . . . ,anq, if q lies on the integral curve through this point, we will use
a2, . . . ,an as the last n ´ 1 coordinates of q and the time interval it takes the curve
to get to q as the first coordinate. To do this, let X generate φt and consider the
map X defined on a neighbourhood of 0 in Rn by

X pa1,a2, . . . ,anq “ φa1p0,a2, . . . ,anq.
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We compute that for a “ pa1,a2, . . . ,anq,

X˚
ˆ B

Bt1

ˇ̌
ˇ̌
˙

a
p f q “

ˆ B
Bt1

ˇ̌
ˇ̌
˙

a
p f ˝X q

“ lim
hÑ0

1
h

r f pX pa1 ` h,a2, . . .anqq ´ f pX paqqs

“ lim
hÑ0

1
h

r f pφa1`hp0,a2, . . . ,anqq ´ f pX paqqs

“ lim
hÑ0

1
h

r f pφhpX paqqq ´ f pX paqqs
“ pX f qpX paqq

Moreover, for i ą 1 we can at least compute

X˚
ˆ B

Bt1

ˇ̌
ˇ̌
˙

0
p f q “

ˆ B
Bt1

ˇ̌
ˇ̌
˙

0
p f ˝X q

“ lim
hÑ0

1
h

r f pX p0, . . . ,h, . . . ,0qq ´ f p0qs

“ lim
hÑ0

1
h

r f p0, . . . ,h, . . . ,0q ´ f p0qs

“ B f
Bt1

ˇ̌
ˇ̌
0

Since Xp0q “ B{Bt1|0 by assumption, this shows that X˚0 “ I is non-singular.
Hence x “ X ´1 may be used as a coordinate system in a neighbourhood of 0. This
is the desired coordinate system, for it is easy to see that the equation X˚pB{Bt1q “
X ˝X , which we have just proved, is equivalent to X “ B{Bt1. �

Proposition 4.1.1. Let X1,X2 be linearly independant vector fields in a neigh-
bourhood of a point p in a 2-dimensional manifold M. Then there is an imbedding
f : U Ñ M, where U Ă R2 is open and p P f pUq, whose ith parameter lines lie
along the integral curves of Xi.

Proof. Assume that p “ 0 P R2, and that Xip0q “ peiq0. Every point q in a suf-
ficiently small neighbourhood of 0 is on a unique integral curve of X1 through a
point p0,x2pqqq which we proved in Theorem 4.1.1. Similarly , q is on a unique
integral curve of X2 through a point px1pqq,0q.

The map q Ñ px1pqq,x2pqqq is C8, with Jacobian equal to I at 0. Its inverse,
in a sufficiently small neighbourhood of 0, is the required diffeomorphism. �
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Remark. Let p be a point on a surface M in R3.

1. If p is not an umbilic point, then there is an imbedding f : U Ñ M, with
p P f pUq, whose parameter curves are lines of curvature.

2. If Kppq ă 0, then there is an imbedding f : U Ñ M, with p P f pUq, whose
parameter curves are asymptotic curves.

Lemma 4.1.2 (Hilbert). Let M be a surface immersed in R3, and let p P M be a
non- umbilic point. Let k1 ě k2 be the two principal curvatures on M and suppose
that k1 has a local maximum at p, and k2 has a local maximum at p. Then KpPq ď
0.

Proof. According to the given remark above, we can choose an imbedding f : U Ñ
M, with p P f pUq, whose coordinate lines are the lines of curvature. Then Gauss’s
equation and the Codazzi-Mainardi equations become

p1q K “ ´ 1
2

?
EG

„ˆ
E2?
EG

˙

2
`

ˆ
G1?
EG

˙

1



p2q l2 “ E2

2

ˆ
l
E

` n
G

˙
“ E2

2
pk1 ` k2q

p3q n1 “ G1

2

ˆ
l
E

` n
G

˙
“ G1

2
pk1 ` k2q

the second equality’s in (2) and (3) follow from the fact that

l “ k1E, n “ k2G

Moreover, differentiation of these last two equations yields

l2 “ Bk1

Bt
E ` k1E2, n1 “ Bk2

Bs
G ` k2G1.

The functions ki are differentiable near p, since the functions H and K are differ-
entiable, and ki “ H `´

?
H2 ´ K, where H2 ´ K ą 0 in a neighbourhood of the

non-umbilic point p. Together with (2)and (3) we then have

p21q E2 “ ´ 2E
K1 ´ K2

.
BK1

Bt

p31q G1 “ ´ 2G
K1 ´ K2

.
BK2

Bs
.
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Substituting (2’) and (3’) into (1) gives

p11q K “ ´ 1
2EG

r´ 2E
K1 ´ K2

.
B2K1

Bt2 ` 2G
K1 ´ K2

.
B2K2

Bs2 s

` something continuous.
BK1

Bt

` something continuous.
BK2

Bs

Since k1 has a local maximum at p, and k2 a local minimum, we have

BK1

Bt
ppq “ BK2

Bs
ppq “ 0,

B2K1

Bt2 ppq ď 0,
B2K2

Bs2 ppq ě 0

Together with (1’) this shows that Kppq ď O. �

Theorem 4.1.3. If M is a compact connected surface in R3 with constant curva-
ture K ą 0, then M is a sphere.

Proof. Let k1 ě k2 be the principal curvatures on M, and let p be a point where
k1 achieves its maximum. Then k2 “ K{k1 has its minimum at p. If we had
k1ppq ą k2ppq, so that p was not an umbilic, then the lemma would imply that
Kppq ď 0, a contradiction. Hence k1ppq “ k2ppq. Moreover, for any point q P M
we then have

k1ppq ě k1pqq ě k2pqq ě k2ppq “ k1ppq,
so also k1pqq “ k2pqq. Thus all points of M are umbilics �

Theorem 4.1.4. If M is a compact connected surface in R3, with K everywhereą
0, and constant mean curvature H, then M is a sphere.

Refer [4] for proofs.

Lemma 4.1.5. Let M be a 2-dimensional immersed submanifold of R3 with con-
stant curvature K ą 0. Then for every point p P M there is a diffeomorphism

g : p´ε,εq ˆ p´ε,εq Ñ M,
gp0,0q “ p

whose parameter curves are asymptotic curves parametrized by arclength.
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For any 2-dimensional Riemannian manifold M. an immersion g : pa,bq ˆ
pc,dq Ñ M is called Tschebyscheff net if all parameter curves are parametrized
by arclength.If we think of the domain pa,bq ˆ pc,dq as a piece of cloth woven
from fibres parallel to the axes, then the immersion g doesn’t stretch any fibres.
So if we can find Tschebyscheff nets around each point then our surface could be
outfitted in a tight fitting cloth. Previous lemma(4.1.5) shows that this can always
be done on a submanifold of R3 with constant negative curvature.

Lemma 4.1.6. Let M be a 2-dimensional Riemannian manifold and g : pa,bq ˆ
pc,dq Ñ M is a Tschebyscheff net. Define ω : pa,bq ˆ pc,dq Ñ R as follows
: ωps0, t0q is the unique number with 0 ă ωps0, t0q ă π such that ωps0, t0q is an
angle between

dgps,t0q
ds

ˇ̌
ˇ
s“s0

and dgps0,tq
dt

ˇ̌
ˇ
t“t0

Then ω satisfies the differential equation

B2ω
BsBt

“ p´Kqsinω.

Now we can prove the theorem, which still requires quite a bit of argument.
We will use the term asymptotic Tschebyscheff net for a Tschebyscheff net of
the sort discussed in Lemma 4.1.5, with all parameter curves being asymptotic
curves.

Theorem 4.1.7. A complete surface M with constant curvature K “ ´1 cannot be
immersed in R3.

Proof. The proof depends on establishing two facts

(a) Suppose that M could be immersed in R3. Then there would be a
Tschebyscheff net f : R2 Ñ M, from the whole plane to M, and the
function ω , defined on all of R2, which gives the angle between the
first and second parameter lines would satisfy

B2ω
BsBt “ sinω , 0 ă ω ă π

(b) There is no function ω : R2 ÑR satisfying
B2ω
BsBt “ C sinω , 0 ă ω ă π

where C ą 0 is any constant.

�
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Chapter 5

The Gauss Bonnet Theorem

In this chapter we will look at Cartan1s Structure equations, a powerful computa-
tional method which employs differential forms to calculate the curvature. These
equations will be further used to prove the Gauss ´ Bonnet theorem, relating the
curvature of a compact surface to its topology. This theorem gives a simple ex-
ample of how the curvature of a complete Riemannian manifold can constrain its
topology.

5.1 Cartan’s structure equations
Recall. Let Π be a 2-dimensional subspace of TpM and let Xp,Yp be two linearly
independent elements of Π. Then the sectional curvature of Π is defined as

KpΠq “ ´ RpXp,Yp,Xp,Ypq
�Xp�2�Yp�2 ´ xXp,Ypy2

Note that �Xp�2�Yp�2 ´xXp,Ypy2 is the square of the area of the parallelogram
in TpM spanned by Xp,Yp, also observe that the definition of sectional curvature
does not depend on the choice of the linearly independent vectors Xp,Yp. We
will now see that understanding the sectional curvature of every section of TpM
completely determines the curvature tensor on this space.

Proposition 5.1.1. The Riemannian curvature tensor at p is uniquely determined
by the values of the sectional curvatures of sections(i.e, 2-dimensional subspaces
of TpM).
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For proof please refer [5] A Riemannian manifold is called isotropic at a point
p P M if its sectional curvature is a constant Kp for every section Π Ă TpM.
Moreover, it is called isotropic if it is isotropic at all points. Note that every
2-dimensional manifold is trivially isotropic. Its sectional curvature Kppq� Kp is
called the Gauss curvature.

Remark. As we will see later, the Gauss curvature measures how much the local
geometry of the surface differs from the geometry of the Euclidean plane. For
instance, its integral over a disk D on the surface gives the angle by which a vector
is rotated when parallel-transported around the boundary of D. Alternatively,
its integral over the interior of a geodesic triangle � is equal to the difference
between the sum of the inner angles of � and π

Now we will reformulate the properties of the Levi-Civita connection and of
the Riemannian curvature tensor in terms of differential forms.

A field of frames tX1 . . .Xnu, is a set of n vector fields that, at each point p
of V , form a basis for TpM. Then we consider a field of dual coframes, that
is, 1-forms tω1 . . .ωnu on V such that ω ipXjq “ δi j. From the properties of a
connection, in order to define ∇XY we just have to establish the values of

∇XiXj “
nÿ

k“1

Γk
i jXk,

where Γk
i j is defined as the kth component of the vector field ∇XiXj on the basis

tXiun
i“1. Given the values of the Γk

i j on V , we can define 1-forms ωk
j p j,k “ 1, . . .nq

in the following way :

ωk
j �

nÿ

i“1

Γk
i jω

i

Conversely, given these forms, we can obtain the values of Γk
i j through

Γk
i j “ ωk

j pXiq.
The connection is then completely determined from these forms :
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given two vector fields X “ řn
i“1 aiXi and Y “ řn

i“1 biXi, we have

∇XiXj “ ∇řn
i“1 aiXi

Xj “
nÿ

i“1

ai∇XiXj “
nÿ

i,k“1

aiΓk
i jXk

“
nÿ

i,k“1

aiωk
j pXiqXk “

nÿ

k“1

ωk
j pXqXk

(5.1)

and hence

∇XY “ ∇X

˜
nÿ

i“1

biXi

¸
“

nÿ

i“1

`pX ¨ biqXi ` bi∇X Xi
˘

“
nÿ

j“1

´
pX ¨ b jq ` biω j

i pXq
¯

Xj

(5.2)

Note that the values of the forms ωk
j at X are the components of ∇X Xj relative to

the field of frames, that is,

ω i
jpXq “ ω ip∇xXjq. (5.3)

The ωk
j are called the connection forms.

Theorem 5.1.1 (Cartan’s). Let V be an open subset of a Riemannian manifold
M on which we have defined a field of frames tX1, . . .Xnu. Let tω1, . . .ωnu be the
corresponding field of coframes. Then the connection forms of the Levi-Civita
connection are the unique solution of the equations

1. dω i “ řn
j“1 ω j ^ ω j

i ,

2. dgi j “ řn
k“1pgk jωk

i ` gkiωk
j q,

where gi j “ xXi,Xjy
Proof. Proof is clearly mentioned in [5], so we skip it. �

In addition to connection forms, we can also define curvature forms. For
this again we consider an open subset V of M where we have a field of frames
tX1, . . .Xnu(hence a corresponding field of dual coframes tω1, . . .ωnu). We then
define 2 forms Ωl

kpk, l “ 1, . . . ,nq by :
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Ωl
kpX ,Y q� ω lpRpX ,Y qXkq,

for all vector fields X ,Y in V (i.e RpX ,Y qXk “ řn
l“1 Ωl

kpX ,Y qXl). Using the
basis tω i ^ ω juiă j for 2-forms, we have :

Ωl
k “

ÿ

iă j

Ωl
kpXi,Xjqω i ^ ω j “

ÿ

iă j

ω lpRpXi,XjqXkqω ^ ω j “
ÿ

iă j

Rl
i jkω i ^ ω j “ 1

2

nÿ

i, j“1

Rl
i jkω i ^ ω j,

where the Rl
i jk are the coefficients of the curvature relative to these frames

RpXi,XjqXk “
nÿ

l“1

Rl
i jkXl

The curvature forms satisfy the following equation.

Proposition 5.1.2. In the above notation,
3. Ω j

i “ dω j
i ´ řn

k“1 ωk
i ^ ω j

k , for every i,j = 1, . . . n.

Equations 1,2 and 3 are known as the Cartan1s structure equations. These
equations are listed below

1. dω i “ řn
j“1 ω j ^ ω j

i

2. dgi j “ řn
k“1pgk jωk

i ` gkiωk
j q,

3. Ω j
i “ dω j

i ´ řn
k“1 ωk

i ^ ω j
k ,

where ω ipXjq “ δi j, ωk
j “ řn

i“1 Γk
i jω

i and Ω j
i “ ř

kăl R j
kliω

k ^ ω l.

Example. For a field of orthonormal frames in Rn with Euclidean metric, the
curvature forms must vanish (as R=O), and we obtain the following structure
equations :

1. dω i “ řn
j“1 ω j ^ ω j

i

2. ω j
i ` ω i

j “ 0,

3. dω j
i “ řn

k“1 ωk
i ^ ω j

k ,

Proposition 5.1.3. If tE1,E2u and tF1,F2u have the same orientation then, denot-
ing by ω2

1 and ω2
1 the corresponding connection forms, we have ω2

1 ´ ω2
1 “ σ ,

where σ � adb ´ bda.(where a,b : V ÑR are such that a2 ` b2 “ 1)
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5.2 Gauss - Bonnet theorem
Using Cartan’s structure equations we will now prove the Gauss ´ Bonnet Theorem.
Let M be a compact, oriented, 2-dimensional manifold and X a vector field o M.

Definition 5.2.1. A point p P M is said to be a singular point of X if Xp “ 0. A
singular point is said to be an isolated singularity if there exists a neighbourhood
V Ă M of p such that p is the only singular point of X in V.

Since M is compact, if all the singularities of X are isolated then they are
infinite in number. To each isolated singularity p P V of X P X pMq one can
associate an integer number, called the index of X at p, as follows :

1. fix a Riemannian metric in M

2. choose a positively oriented orthonormal frame tF1,F2u defined on V ztpu,
such that

F1 “ X
�X�

let tω1,tω2u be the dual coframe and let tω1
2 be the corresponding con-

nection form

3. possibly shrinking V , choose a positively oriented orthonormal frame tE1,E2u,
defined on V , with dual coframe tω1,ω2u and connection form ω2

1

4. take a neighbourhood D of p in V , homeomorphic to a disc, with smooth
boundary BD, endowed with the induced orientation, and define the index
Ip of X at p as

2πIp “ ş
BD σ ,

where σ � ω2
1 ´ ω2

1 is the form in Proposition 5.1.3

Here σ satisfies σ “ dθ , where θ is the angle between E1 and F1. Hence Ip must
be an integer. Next one should check the well definedness of Ip, and also show
that Ip does not depend on the choice of Riemannian metric.
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Theorem 5.2.1 (Gauss- Bonnet). Let M be a compact, oriented, 2-dimensional
manifold and let X be a vector field in M with isolated singularities p1 . . . pk. Then

ż

M
K “ 2π

kÿ

i“1

Ipi

for any Riemannian metric on M, where K is the Gauss curvature.

Proof. Consider the positively oriented orthonormal frame tF1,F2u, with

F1 “ X
�X�

defined on M Yk
i“1 tpiu, with dual coframe tω1,ω2u and connection form ω2

1.
For r ą 0 sufficiently small, we take Bi � Brppiq such that Bi X B j “ φ for i � j
and note that

ż

MzYk
i“1Bi

K “
ż

MzYk
i“1Bi

Kω1 ^ ω2 “ ´
ż

MzYk
i“1Bi

Kdω1
2

ż

Yk
i“1BBi

ω1
2 “

kÿ

i“1

ż

BBi

ω1
2,

where the BBi have the orientation induced by the orientation of Bi. Taking the
limit as r Ñ 0 one obtains ż

M
K “ 2π

kÿ

i“1

Ipi .

�
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