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NOTATIONS

R: Real numbers
C: Complex numbers
M": n-dimensional smooth manifold
Bd(I): Boundary of [0, 1]
Z'(M): the set of all differentiable vector fields on M.
TyM: the dual of tangent space T,M
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Chapter 1

Classification of Compact Surfaces

1.1 Introduction

The aim of this chapter is to discuss the classification of compact surfaces. First
we will see observe the fundamental group of certain class of closed surfaces
followed by the first homology groups of the same class. Elementary operations
on schemes prepare us for the classification theorem for compact surfaces. The
first chapter ends by discussing the paper by Doyle and Moran which gives a proof
that compact 2-manifolds can be triangulated.

1.2 Fundamental group of surfaces

Our motive in this section is to study fundamental group of compact surfaces. For
this we first look at construction of polygonal regions in plane.

We are interested in polygonal regions since we obtain surfaces by carrying out a
particular “quotienting” on the polygonal region in the plane.

1.2.1 Construction of polygonal region in a plane

Observe the following figures below.
Here,ce R?a >0

6)<0...<6, 6,=06y+2x, n=3, (1.1)

Line through p;_1, p; splits the plane into two closed half-planes.



Figure 1.1: Example of a polygonal region in a plane, where x is a boundary point

99_.%0

while ”p” an interior point, h is the positive linear map.

Call H;_; which contains all the points py, k # i,i — 1. Then the space,
PZHQOH](W...K\H,,_I (1.2)

Given a line segment L in IR?, an orientation of L is simply an ordering of its
end points.

Given two line segments say L and L', where orientations are from a to b and ¢
to d respectively, then a positive linear map from L onto L' is the homeomorphism
that carries, x = (1 —f)a+1tb of Lto h(x) = (1 —t)c+1td of L

If 2 polygonal regions are having same number of vertices then there exist a
homeomorphism between them

Hint- Use positive linear map

An interesting question at this point is, how does the ’quotienting’ happens in
polygonal region, for this we define labelling and labelling scheme.

Definition 1.2.1. A labelling of edges of P is a map from set of edges of P to set
of labels say S.

For labelled oriented edges we define equivalence relation on points of P as
follows

e Each point of int(P) is equivalent to itself only.

e Given two edges of same label, any point of one is mapped to a point of
other via a positive linear map.

Quotient of P modulo this equivalence relation (pasting edges together) gives us
a surface.
Let us see some examples,



Figure 1.2: Circle with ordered points

Hy

Figure 1.3: Half plane H;_ between point p; and p;_1

Definition 1.2.2. Given labelling, say ay,ay,..,a; and orientation,say €;,€;, .., &,
of edges of P, where € = +1 if orientation is from p;_| to p; and & = —1otherwise.

o = (ail)sl (aiz)sz...(ain)gn (1.3)

is labelling scheme of length n. The number of edges, orientation of edges and
labelling of edges of P are specified by this symbol.

Theorem 1.2.1. Let X be a space obtained from a finite number of polygonal
regions by pasting edges together according to some labelling scheme. Then X is
a compact, Hausdorff space.

Proof. Let’s consider the case when X is obtained from a single P.

Clearly 7 : P — X, the quotient map, is continuous. P is compact. Hence X is
compact.

To show X is Hausdorff we use the following lemma.

4



P= l:{,n----OH

Figure 1.4: Polygonal Region 'P’, P=HynH|n...nH,_

Figure 1.5: Triangular region(under the given label)— Cone — Disc, note

{$} = {a,b}

Lemma 1.2.2. I[f n: E — X, is a closed quotient map, then X is normal if E is
normal.

Since the proof is standard we skip it.

So, in our case, to start with P is definitely normal. Hence we show that 7 is a
closed map, then we are done.

For any closed set C of P, it is enough to show that £~ (7(C)) is closed, since
7 is a quotient map. Observe, preimage of 7(C) contains C along with edges
pasted together to edges of C under 7.

Define C, = C n e, this is a compact subset of C, if it exists, hence closed. For
each i we have homeomorphism #; : e; — e, also define D, = 7~ (7(C)) N e, now
D, is union of C, and h;(C,,) for all i (finitely many), clearly C, and h;(C,) are
both closed in e, since they are union of finitely many closed sets and hence closed
inP.

Finally D, over all e, union C equals 7! (7(C)), hence this is closed in P O



Figure 1.6: Rectangular region(under the given label)— Two cones intersecting
at the circle— Sphere

Figure 1.7: Two disjoint polygonal regions results in a connected space on quoti-
enting

Theorem 1.2.3. Let P be a polygonal region

= (ail)el (aiz)gz...(ain)g” (1.4)

be a labelling scheme for edges of P. Let X be the resulting quotient space under
7 : P — X.If ® maps all the vertices of P to a single point xo of X, and if ay, ...,ay
are the distinct labels that appear in the labelling scheme, then (X ,xg) is iso-
morphic to the quotient of the free group on k generators o, ..., 0 by the smallest

Figure 1.8: Two disjoint polygonal regions results in a disconnected space on
quotienting
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Figure 1.9: A scheme for torus

normal subgroup containing the element
(ocil)el(ociz)sZ...(ain)S" (1.5)

Proof. A rough sketch, using Van Kampen theorem is given below
Immediate observations,

e 7 maps Bd(P) to a closed set of X, call it A.

e 7 maps all vertices of P to a single point xy in X(maybe, example of torus,
is easy to see)

e 7(Bd(P)) is a wedge of k circles.
e So m(m(Bd(P)),xp), is free group on k generators
o Ifg; =m- f; theloops g1, ..., g represent a set of free generators for 7y (A, xo)

Consider this figure, conditions for Van Kampen theorem are satisfied, so Van
Kampen —
Iy o *TT] (Aal.,xa) — M (X,X())

is a surjection, and we can observe that loops in 7 (Ag, N Ag,,Xq) are exactly of

the form (g;,)*' (gi,)%...(gi,) "
Hence 7 (X,xp) is isomorphic to the quotient of gj = g5 = ... * g; by the normal

closure of (g, ) (gi,)%...(gi, ). .

Proof using another theorem.
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Figure 1.10:

Theorem 1.2.4. Let X be a Hausdorff space and A be a closed path connected
subspace of X. Suppose that there exist continuous map h : B> — X that maps
Int(B)? bijectively onto X-A and Bd(B)?> = S into A. Let p € S' and h(p)=a, let k
: (S, p) — (A, a) be the map obtained by restricting h. Then the homomorphism

Iy : 71:1(A,a) — ﬂl(X,a)
induced by inclusion is surjective and its kernel is the least normal subgroup of
71 (A, a), containing the image of k. : m (S, p) — m (X, a)
We will see an application of this theorem

Theorem 1.2.5. The fundamental group of the torus has a presentation consisting
of two generators o, B and a single relator oo~ B!

Proof. Let X be the torus under consideration, so we know that X = St x st
If p is a covering map from R — S'. Now restriction of the covering map ,

pxp:RxR—S'xS ol xI is a continuous map.

Also let A = h(Bd(I?)) if we consider the point (0,0) in I and let a = /(0,0), then

this matches conditions mentioned in above theorem.

Let ao(t) = (¢,0), bo(t) = (0,1), let &« = h-ap(t) and B = h-by(t), clearly o and

B are loops in A, A is wedge of 2 circles, so a, 3 are generators for (A, a).
Also, leta;(t) = (1,t), by(t) = (1,t), as mentioned in the figure. Now,

f=apxbo+ai by

is a loop generating Bd(I?), and image of this loop is clearly aq # By = 07 = B, so
applying by above theorem



Figure 1.11:

m(X,a) = (o, Blowfoc; ' Bt = 1)
O

Definition 1.2.3. Consider the space obtained from a 4n-sided polygonal region
P by means of the labelling scheme

(a1bra= b~V (agbra b ") .(apbpa= b7 1)

This space is called the n-fold connected sum of tori, or simply the n-fold torus,
and denoted THT#H..#T

Figure 1.12: 2 Torus
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Figure 1.13: P2 can be obtained by pasting the two discs

Theorem 1.2.6. Let X denote the n-fold torus. Then (X ,xo) is isomorphic to the
quotient of the free group on 2n generators o, By, ..., Qy, B, by the least normal
subgroup containing the element

[abﬁl]----[anaﬁn]
where [0y, B1] = ay B!

Proof. Given n— fold torus we know that labelling scheme take every vertex to
a single point(positive linear map helps). Now we can apply Theorem 1.2. O

Definition 1.2.4. Let m > 1. Consider the space obtained from a 2m-sided polyg-
onal region P in the plane by means of the labelling scheme

(a1a1)(araz)...(aman)

This space is called the m-fold connected sum of projective planes, or simply the
m-fold projective plane, and denoted P*#.. #P>.

The 2-fold projective plane P?#P? is pictured below.

Theorem 1.2.7. Let X denote the m-fold projective plane. Then m(X,xg) is iso-
morphic to the quotient of the free group on m generators o, 0, .., 04y, by the least
normal subgroup containing the element

(01)*(a2)?..(0m)?

Proof. As before, observe all vertices are mapped to a single point, then apply
Theorem 1.2. |

Qn 1.3. Find a presentation for the fundamental group of P*#T.
Sol: m (P*#T,x0) = (a, B, vl(ca)(ByB~ 'y ") = 1)

10



Figure 1.14: Six sided polygon with scheme a”bch~ ¢! cut along d

1.4 Homology of surfaces

If X is a path-connected space, and if « is a path in X from x( to x1, then there is
an isomorphism &: m;(X,x9) — (X, x), but the isomorphism depends on the
choice of the path «.

However, the isomorphism of the “abelianized fundamental group” based at
xo with the one based at x1, induced by ¢, is in fact independent of the choice of

the path «.
To verify this fact consider two paths o, B from x, xi, and we show that, for
—1
aloop y based at x, [ayo~!] = [Big[fm 1l

Definition 1.4.1. If X is a path-connected space, let
Hy(X) = 71 (X, x0)/[701 (X, %0), 71 (X, x0) ]
We call H(X) the first homology group of X.

Theorem 1.4.1. Let F be a group and N be a normal subgroup of F. Let q : F —
F /N be the quaotient map. The quotient homomorphism

p:F — F/|F,F|
induces an isomorphism

¢ :q(F)/[q(F),q(F)] — p(F)/p(N)
Proof. p, q, 1, s, are quotient homomorphisms

q:F —q(F)=F/N,q(f) =foN
p:F —p(F)=F/[F,F],p(f) = fo[F,F]
r:p(F) — p(F)/p(N),r(p(f)) = p(f)op(N)

similarly s

11



q(F) ———— q(F)/[q(F).q(F)]

S

p(F)/p(N)

r

Figure 1.15:

G
ﬂl N\ ¢

G/H — K
¢

Figure 1.16: Universal property

Because rop maps N to 1, it induces a homomorphism u. As p(F)/p(N) is
abelian, the homomorphism u induces a homomorphism ¢ of q(F)/[q(F), q(F)].
On the other hand, because s o ¢ maps F into an abelian group, it induces a homo-
morphism v : p(F) — q(F)/[q(F),q(F)]. Since soq carries N to 1, so does vo p,
hence v induces a homomorphism y of p(F)/p(N).

The homomorphism ¢ can be described as follows: Given an element y of the
group ¢(F)/[q(F),q(F)], choose an element x of F such that s(¢g(x)) = y; then

The homomorphism ¢ can be described similarly. It follows that ¢ and y are
inverse to each other. |

Put it simply, if one takes quotient of F by N and then abelianizes the quotient,
one obtains the same result as if one first abelianizes F and then divides by the
image of N in this abelianization.

Corollary 1.4.1.1. Let F be a free group with free generators Qy,0..., 0, let N be
the least normal subgroup of F containing the element x of F; let G = F/N. Let p :
F — F/|F,F] be quotient. Then G/[G, G] is isomorphic to the quotient of F/[EF],
which is free abelian with basis p(Qy),...,p(®,), by the subgroup generated by
p(x).

Theorem 1.4.2. If X is the n-fold connected sum of tori, then H\(X) is a free
abelian group of rank 2n.

12



Figure 1.17: Cutting

Proof. Recall m;(X,xq) is quotient of free group on 2n generators,
say oy, B1, 0, Ba..., 0y, By, by the subgroup generated by the element ¢y, B1][ 02, B2]...[ ¢, Bl
Apply corollary above, so Hj(X) is isomorphic to the quotient of the free

abelian group F’ on the set o, B1,00,Bs..., y, By by the subgroup generated by

the element [o, B1]...[@, Ba], where [, B] = afa~!B~! as usual. Because the

group F’ is abelian, this element equals the identity element. O

Theorem 1.4.3. If X is the m-fold connected sum of projective planes, then the
torsion subgroup T (X) of H\(X) has order 2, and H\(X)/T (X) is a free abelian
group of rank m-1.

Proof. Corollary = H;(X) is quotient of free abelian group F’ on the set
a, 0, .0, by the subgroup generated by the element ()% (a)?...(0,)>

A small trick, switch to additive notation , and let us change bases in the group
F’. If we let = o + ... + Qi then the elements a, .., ¢, _1, B form a basis for F,
any element of F’ can be written uniquely in terms of these elements.

The group H;(X) is isomorphic to the quotient of the free abelian group on
ai,..,y—1,B by the subgroup generated by 2f3. Said differently, H,(X) is iso-
morphic to the quotient of the m-fold cartesian product Z x Z x ... x Z. by the
subgroup 0 x ... x 0 x 2Z.. The theorem follows. O

1.5 Elementary operations on schemes

The regions Q' and Q, in figure 1.17 are said to have been obtained by cutting P
apart along the line from p, to px. The region P is homeomorphic to the quotient
space of Q; and Q obtained by pasting the edge of Q) going from g, to g, to the
edge of O, going from p, to py, by the positive linear map.

Sort of reverse of the above operation is pasting. Given two polygonal region-
als we paste them to form a single polygonal region.

13
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b, q, ) *
& K

Figure 1.18: Pasting

This task is accomplished as follows: The points of O, lie on a circle and are
arranged in counterclockwise fashion. Let us choose points py,..., pr—1 on this
same circle in such a way that pg, p1, ..., P._1, py are arranged in counterclockwise
order, and let Q| be the polygonal region with these as successive vertices. There
is a homeomorphism of Q) onto Q; that carries g; to p;, for each i and maps the
edge gogx of Q] linearly onto the edge popx of Q». Therefore, the quotient space
in question is homeomorphic to the region P that is the union of Q] and Q,. We
say that P is obtained by pasting Q/ and Q, together along the indicated edges.

Theorem 1.5.1. Suppose X is the space obtained by pasting the edges of m polyg-
onal regions together according to the labelling scheme

(*) YoY1, W2,y eeey Wiy

Let ¢ be a label not appearing in this scheme. If both yo and y; have length at
least two, then X can also be obtained by pasting the edges of m + I polygonal
regions together according to the scheme

<**) yocilacybw% s Wi

Conversely, if X is the space obtained from m + 1 polygonal regions by means of
the scheme (*%), it can also be obtained from m polygonal regions by means of the
scheme (*), providing that ¢ does not appear in scheme (*).

Elementary operations on scheme

e Cut. One can replace the scheme w; = ygy; by the scheme y()c_1 and cyq,
provided c does not appear elsewhere in the total scheme and y( and y; have
length at least two.

e Paste. One can replace the scheme yoc~! and cy; by the scheme ygy, pro-
vided c does not appear elsewhere in the total scheme.

14
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Yo

yl y1

—— yo

Figure 1.19: Cancel

Relabel. One can replace all occurrences of any given label by some other
label that does not appear elsewhere in the scheme. Similarly, one can
change the sign of the exponent of all occurrences of a given label a; this
amounts to reversing the orientations of all the edges labelled ”a”. Neither
of these alterations affects the pasting map.

Permute. One can replace any one of the schemes w, by a cyclic permutation
of w. Specifically, if w; = ypy;, we can replace w;,- by y1yo- This amount
to renumbering the vertices of the polygonal region 7;, so as to begin with a
different vertex; it does not affect the resulting quotient space.

Flip. One can replace the scheme by its inverse

Cancel. One can replace the scheme w; = ypaa~'y; by the scheme yyo,
provided a does not appear elsewhere in the total scheme and both yg and
y1 have length at least two.

Uncancel. Reverse of cancel

Definition 1.5.1. Two labelling schemes for collections of polygonal regions to
be equivalent if one can be obtained from the other by a sequence of elementary
scheme operations. Since each elementary operation has as its inverse another
such operation, this is an equivalence relation.

15



Example Klein bottle K is the space obtained from the labelling scheme
aba—'b. We give a geometric argument showing that K is homeomorphic to the
2-fold projective plane P>#P>.

Sol : aba™'b — abc™! andca™'b by cutting
— ¢ laband b 'ac™'b by permuting first and flipping second
— ¢ laac™! by pasting
— aacc by permuting and relabelling

1.6 Classification of compact surfaces

We will see some definitions prior to classification theorem.

Definition 1.6.1. If wi,w»...,w,, be the labelling schemes of polygonal regions
P, P, .., P, if each label appears twice in this scheme we call it a proper labelling
scheme

Remark. If one applies any elementary operation to a proper scheme, one obtains
another proper scheme.

Definition 1.6.2. If w is a proper labelling scheme and if every label is appearing
once with exponent +1 and once with -1, we say w is of torus type, otherwise it is
said to be of projective type.

We will see some useful equivalent schemes, of some general proper labelling
schemes. Following series of lemmas helps us in proving classification theorem.

Lemma 1.6.1. Let @ be a proper scheme of the form
o = [yola[y1]aly],

where some of the y; may be empty. Then one has the equivalence
® ~ aalyoy1 ™' y2]-

Proof. Stepl Consider the case where y is empty.
We show that

alyi]aly2] ~ aaly;'y2]

16



Yy

Y2

Figure 1.20:

If y; is empty then it is trivial otherwise we follow Figurel.19.

alyi]a[y2] ~ ayic™! cay, by cutting
~yic la a_lc_lyz_1 by permuting 1st and flipping 2nd
~yic ey by pasting along a
~ aay, by by permuting and relabelling

Step2 Consider the general case, ® = [yo|a[yi]a[y2], if both y;and y, are empty
then permuting gives result. Otherwise we apply cutting and pasting sequence
given in Figurel.20 to show that

o ~ b[y2]by1yy ']

Then,
® ~ bbly; 'yiyy '] by step 1
[yoyy ya]b™'b7! by flipping
aa[yoyl_1 2] by permuting and relabelling

O

Corollary 1.6.1.1. Given a projective type scheme , it is equivalent to a scheme
of same length having the form

(a1a1)(azaz)...(aray) oy,

where ) is either torus type or empty.

17



Y2

Figure 1.21:

Proof. Let w be the projective type scheme therefore

o = [yolalyi]aly-]
@ ~ aa@q

by applying previous lemma. If @; is of torus type or empty then we are done
otherwise ; is of projective type therefore

o1 = [20]b[z1]b[z2],

applying previous lemma again ®; ~ bb®' if @’ is empty or torus type then we
are done otherwise we proceed as before. O

All the results above tells us that if @ is a proper labelling scheme then,® is of
the following type

e Torus type —(1)
e o~ (ajay)(biby)...(nn;) @y, where oy is of torus type—(2)
* W= (alal)(a2a2>-'(anan)_(3)

If it is of type (3) then scheme represents n fold connected sum of projective
planes, otherwise the following lemma helps classify the schemes.

Lemma 1.6.2. Given a proper scheme @, ® = wy®; where 1 of torus type (after
cancellation), then @ is equivalent to Wy, , where

a)zzaba_lb_lab

is of this form and s is of torus type or empty.

18



Proof. Stepl- @ = wyw; = wylyola[y1]b[y2]a ' [y3]b~ 4]
By assumption @ is of torus type(empty case is trivial), so let

@1 = [yola[y1]b[y2]a ' [y3]b™ [y,

1

by this we avoid cancellation of labels if we use 1.6.1. Also if switch a,a™" and

b,b~! then the scheme is similar to the above one and also general in nature.
First cutting and pasting Apply cutting pasting techniques given in fig 1.21
directly so

o1 = [yola[yibyz]a ' [y3b ™ 'ys
o ~ woc[y1]b[y2]e ™ Doys]b ! [v4]
~ a)oa[yl]b[yz]a_l [yoyg]b_1 [v4] by relabelling.

a

¥z b
a
Yo b Y5 W N

Figure 1.22:

Step 2- second cutting and pasting
Suppose

o' = woalyi]bly2la” [yoys]b " [ya]
Claiml : @' ~ a)oa[yoy3y2]ba_lb_l[)’1y4]
Proof1 :1fy4 yoy;andware empty then

@' ~ alyi]blyz]la”'b™!
— b[ys]a b aly] by permuting
= alys]ba'b[y] by relabelling.
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Y3
¥ ¥; W,

Yi s

Ys Y5

Figure 1.23:

Otherwise we apply the operations indicated in figure1.22

" = apalyi]b[y2]a" [voys]b™"[v4]
~ anclyoysy2la !¢ alyiya]
~ woalyoy3y2]ba b [y1y4] by relabelling.

Step 3- third cutting and pasting
0" = woa[yoysy2]ba” b~ [y1ya].
We show that @” is equivalent to the scheme
" = wpaba~"' b~ [yoyzy2y1y4]
as before if the schemes @y, y;y4 are empty then permuting and relabelling —
o' = aba~'b~' [yoysy.]

Otherwise we apply the operations indicated in figurel.23

0" = wyalyoysy2]ba ' b7 [y1y4]
L Yalyoyayayiyal
~ ab~'a 'blyoysy2y1y4

~ca

by relabelling as desired.

20



Y3 Ya N a W Y5 N2

\ W, Y5 Y2 Y Ya i a

Figure 1.24:

Next lemma shows that connected sum of projective planes and torii is equiv-
alent to connected sum of projective planes alone.

Lemma 1.6.3. If o is a proper labelling scheme of the form
o = wycc(aba b Ny,
then ® is equivalent to the scheme
o' = wy(aabbcc)w
Proof. Recall lemma 1.6.1 for proper schemes we have
[yolalyilalyz ~ aalyoyr~'ya]] = = = —(+)
Now,

o = aycc(ab)a b~ oy

~ cclab][ba] ™ o o) by permuting
~ |ab]c|[ba]c|wi ] by (*) backwards
~ [a]b[c]blacw; )

~ bblac™ 'acw; ] by (*)
~ [bblalc a[co; ax] by (*) backwards
~ aa|bbccw; |

~ [a][aabbec]| o] by permuting
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Theorem 1.6.4 (The classification theorem). If X is the quotient space obtained
from a polygonal region by pasting edges togather in pairs then X is homeomor-
phic to either S%, n-fold connected sum of torus, or the m-fold connected sum of
projective plane.

Proof. Let o be the scheme of polygonal region for our space X. So ® is proper
scheme of length atleast four, we show it is equivalent to one of the following

1. aa='bb™!

2. abab

3. (a1a1)(a2az)..(amam) withm = 2,

4. (a1bra; by (azbaay 'y Y. (anbuay by t) with n > 1

Step 1. Let @ be a proper scheme of torus type. We claim ® is equivalent to
scheme of type (1) or (4).
If o is of length 4, then  is in one of the forms

aa 'bb~ or aba"'b7!.

We proceed by induction on length of @. Assume ® has length greater than 4. By
induction any torus type scheme of length 'm’ will be of the type

(alblal_lbl_l)(azbzaz_lbgl)..(ambma;]b;,l).

If o is of length greater than 'm’, then @ does not contain pair of adjacent
terms having same label, .". we apply Lemmal.6.2 to conclude that @ is equivalent
to a scheme having same length as w, of the form,

aba_lb_lab,

@3 is of torus type and is non empty since @ is of length > 4. We can apply the
Lemmal.6.2 again to conclude the result.

Step 2. Next case is @ is a scheme of projective type.

If o has length 4 then by Corollary1.6.1.1

® ~ one of the form aabb or aab™'b.

First is of type 3. Second can be written as aayl_1 y2, with y; = y» = b, then
Lemmal.6.1 = scheme is ~ ayjay, = abab which is of type 2.
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If length of scheme is greater than 4 we proceed in the similar direction as in
Step 1, by induction. Corollary1.6.1.1 tells us that @ of length greater than 4 is
equivalent to a scheme of the form

o' = (a1a1)(a2a)..(aray) oy,

where k > 1 and oy is of torus type or empty. If @; is empty then we are done, oth-
erwise if m; has 2 adjacent terms of same label then induction hypothesis applies,
if not Lemmal.6.2 = @’ is equivalent to a scheme of the form

0" = (a1a1)(a2az)..(agar)aba™'b~" oy,

where @, is of torus type or empty. Applying lemmal.6.3 @” is equivalent to

(ara1)(aray)..(aray)aabbwy,.

Continuing similarly we obtain a scheme of type 3. O

1.7 Constructing compact surfaces

Since we have shown that Classification theorem( for compact surfaces 1.6.4)
is applicable for every surfaces that are obtained by pasting the edges together
in pairs (with proper labelling schemes) from a polygonal region, we now are
required to show that every compact connected surface can be obtained by pasting
edges together in pairs of a polygonal region. We show something weaker than
this, that is we show that surface under consideration is having a triangulation.

Definition 1.7.1. Consider a compact, Hausdorff space say X. A curved triangle
in X is a subspace A of X and a homeomorphism h : T — A, where T is a closed
triangular region in the plane. If e is an edge of T, then h(e) is an edge of A and
similarly for vertex.

Definition 1.7.2. For a compact Hausdorff space X, a triangulation of X is a
collection of curved triangles A1,A>A3...A, in X whose union is X and for i # j,
A;NAj is either empty, a vertex, or an edge of both. Also,for each i since

]’l,’ZTi—>Ai

is the homeomorphism associated with A;, if A; "Aj is an edge e of both, then the
map h;lh,- defines a linear homomorphism of the edge hl._1 (e) of T; with the edge

h;l (e) of T;. If X has a triangulation then X is said to be triangulable
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Triangulation of a circle, sphere e.t.c are easy to observe.

Example. The figure 1.25 given below, is a triangulation of Torus

Figure 1.25: Triangulation of torus

Example. The figure, 1.26 is not a triangulation of torus.

Figure 1.26: Not a triangulation of torus

Theorem 1.7.1. For a compact triangulable surface X, X is homeomorphic to
the quotient space obtained from a collection of disjoint triangular regions in the
plane by pasting their edges together in pairs.

Proof. Let Aj,A>,A3...A, be a triangulation of X with 4; as corresponding home-
omorphisms. Consider 4 : Ty v T, u...u T, — X, clearly h is continuous since
each h;’s are continuous and pasting lemma implies h is continuous. Furthermore,
for any closed set C in X, f~!(C) is closed, similarly for any closed set £~ (C)
some T; , continuity of h; = C is closed in X, as h is also surjective, h is a quo-
tient map.Moreover, recall that the map h;lh,- defines a linear homeomorphism
whenever A; N A is an edge e, so h pastes edges of 7; and T together.

If A;nA; = ¢ Vi# jthen we have nothing to prove since there are no edge
pasting. So we consider the two case when A; N A; = an edge e or a vertex v.

First we show that if A; "A; = v some vertex then there exists a sequence
of triangles having v as vertex beginning with A; and ending with A, such that
intersection of each triangle in the sequence with it’s succesor equals an edge
common to both. See figure below.
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Figure 1.27: Triangular regions of a surface

Figure 1.28:

Otherwise, if the situation is as in this figure, figure , we show since X is a
surface such a situation cannot happen. Figure actually provides an intuitive idea.

First we define two triangles A; and A; to be equivalent if there is a sequence
of triangles having a vertex in common beginning with A; and ending with A;.
Consider two equivalent class call B and C,now BN C = v and for every sufficiently
small neighbourhood W of v in X, the space W-v is disconnected

But, if X is a surface, then v has neighbourhood homeomorphic to open 2-ball
= v has sufficiently small neighbourhood that is connected. This proves the
first part.

Next objective to show is that for each edge e of a triangle A;, there is exactly
one another triangle A; such that A; " A; = e. First we will show the existence,
and then show there is exactly one for each A;.

The existence part is a consequence of the following claim.

Claim: If X is a triangular region in the plane and if x is a point on the interior
to one of the edges of X, then x does not have a neighbourhood homeomorphic to
an open 2-ball.

Proof: Note that x has arbitrarily small neighbourhoods W for which W- x is
simply connected, clearly from figure W-x is contractible to a point.
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N

x

Figure 1.29:

Assume the contrary, so if U is a neighbourhood of x that is homeomorphic to
an open ball in IR?, with homeomorphism carrying x to 0. We show that x does
not have arbitrarily small neighbourhoods W such that W-x is simply connected.

Let B be the open unit ball in R? centered at the origin, and suppose V is any
neighbourhood of 0 that is contained in B. Choose € so that the open ball Be of
radius € centered at 0 lies in V, and consider the inclusion mappings

B.—0——"——B—0
N /
Figure 1.30:

The inclusion i is homotopic to the homeomorphism /(x) = x/€, so it induces
an isomorphism of fundamental groups. Therefore, k. is surjective, it follows that
V-0 cannot be simply connected. If it were, it will contradict the inclusion map
from B¢ to V and the fact that B is not simply connected.

As we have shown the existence of more than one triangle intersecting an edge,
we now show that there is exactly one other triangle, say A; intersecting edge of
another triangle A; for i # j. This indeed is the consequence of following result,

Claim: Let X be the union of k triangles in R3, each pair of which intersect in
the common edge e. Let x be an interior point of e. If k = 3, then x does not have
a neighbourhood in X homeomorphic to an open 2-ball.

Proof: The idea is to show that there is no neighbourhood W of x in X such
that W-x has abelian fundamental group. It follows that no neighbourhood of x is
homeomorphic to an open 2-ball.

For this consider A as union of all edges of the triangles of X that are different
from e, then we claim that fundamental group of A is not abelian. Consider B as
union of 3 arcs that make A, now r is retract of A onto B obtained by mapping
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‘

Figure 1.31:

all arc of A not in B homeomorphically to one arc of B, keeping end points fixed.
Then r, is an epimorphism, also since fundamental group of B is not abelian
fundamental group of A also ceases to be abelian.

Why is fundamental group of B not abelian?

B is union of 3 arcs, so B is of homotopy type of 0 space, we can either use
the result that fundamental group of 0 space and figure 8 are isomorphic or apply
Van-Kampen theorem to show fundametal group is free group on 2 generators and
hence not abelian.

In our case A is a deformation retract of X-x and it should follow that funda-
mental group ofX-x is not abelian.

For convenience, assume x as the origin of IR®>. Let W be a arbitrary neigh-
bourhood of ¥, then the shrinking map f(x) = €x for some € < 1 carries X to W
and the space X; = f(X) is a copy of X lying inside W. Consider the below in-
clusions as before since i is homotopic to homeomorphism A(x) = x/g, it induces

Xe—0—-

W—-0
Figure 1.32:

isomorphism of fundamental groups.Now k. is surjective, so fundamental group
of W-0 cannot be abelian.

Thus we have shown that given an edge e of a triangle A; there is exactly one
other triangle A; having e as a common edge. Hence the compact triangulable
surface X is homeomorphic to the space obtained from pasting edges together by
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the linear homeomorphism h;lhi in the collection of disjoint triangular regions in
the plane. |

Theorem 1.7.2. For a compact connected triangulable surface X, X is homeomor-
phic to a space obtained from a polygonal region in the plane by pasting edges
together in pairs.

Proof. From the earlier theorem we have that X is homeomorphic to a collection
of disjoint triangular regions say T1,73,..,1, in the plane. Moreover, since the
edges are pasted in pairs by the quotient map the space in plane is having proper
labelling scheme.

Application of elementary operations will give us the result. Pasting (flipping
also if needed) operation of two triangular regions along the edges bearing same
label will give a single four-sided polygonal region, preserving the same orienta-
tions and label. The process can be iterated as long as there are two edges with
same label. If we are having single polygonal region at the end then the theorem
is proved.

Otherwise one has several polygonal regions, no two which has edges bearing
same label, but this give rise to a disconnected quotient space, but space X was
connected, therefore such a situation cannot occur. O

1.8 Proof that compact 2-manifolds can be triangu-
lated

Theorem 1.8.1 (Jordan-Schoenflies theorem). A simple closed J curve in E* sep-
arates E? into two regions. There exists a self-homeomorphism of E* under which
J is mapped onto a circle.

Definition 1.8.1. A cellular set K is one that can be written as intersection of
2-cells, E;.
K= ﬁ?ilEi, E; c il’lt(Ei_l).

Remark. If K is a cellular subset of a 2-manifold M, then M/K is homeomorphic
toM

Lemma 1.8.2. Let M be a closed 2-manifold and let C be a connected subset of
M which is a union of n-simple closed curves

C= U?:lcl'.

28



Then a compact totally disconnected set A lies in the interior of a closed 2-cell in
M.

Remark. A totally disconneced set is characterised by the property that
each of its connected subset has a single point.

So, if 71,7 are 2 intersecting simple closed curves in a closed 2-manifold,
consider an open set U containing both curves, U is locally euclidean. Now, every
point on the curves are having 1 dimensional euclidean neighbourhood except at
the points where the curves ’cut’ one another. Call the set of points were curves
cut’ as A.By cut it is meant that for some ¢, 1 (f) = »(¢), but 3 atleast one & >
0,71(t) #p)Vre(t—356,t+06)—{t},t[0,1].

Proposition 1.8.1. Set of cut points does not have 1 dimensional euclidean neigh-
bourhood

Proof. Leta e A, any nbd U, of a will contain points from y; U >, choose a nbd
U, which does not contain any d €A suchthatd #a. Lett ,1» be the respective
time when ¥ (t1) = a = Y (t2),

letU, =vi(t; — 61,11 + 81) U Yot — 62,12+ &2), if U/ was 1 dimensional then U
must be homeomorphic to (0,1)(say f is the homeomorphism), hence U ; — d and
O,1)- f (al) must have same number of connected components. U s — d is having

4 connected components while (0,1)- f (a/) is having 2 connected components.
Therefore any a € A is not having 1 dim euclidean nbd. O

If 2 curves are "touching’ each other, i.e ¥,(t) = 1»(¢) | 3 atleast one & >
0,7(t) =7p(t)Vte(t—58,t+0), clearly all such points were the curves are touch-
ing, say {T'} posses 1 dim euclidean nbd, .". any subset of {T'} is connected.

Proposition 1.8.2. If 1 .y, are 2 intersecting simple closed curves in a closed
2-manifold, then the set containing the ’cut’ points, say A, is totally disconnected.

Proof. We have already shown that no point of A is having 1 dim euclidean nbd.
Suppose for some A; — A with atleast two points, is connected. Then *." A} <
vy, A will be path connected = points of A; posses 1 dim euclidean
nbd, meaning they are touching hence implying they are not in A;. Therefore any
connected subset of A will be singleton, implying A is totally disconnected. |

Observe, that the totally disconnected set A can be finite or infinite.
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Theorem 1.8.3. Any closed 2-manifold M can be triangulated[1]

Proof. Proof is attempted in 3 steps.
Recall: A closed manifold is a compact manifold without boundary.

e Step 1: Choose an irreducible cover for the manifold M.

e Step 2: Proceed to M| = M/D; it does not contain any self intersecting
curves from C.All the intersecting simple closed curves in M are now a one
point union of simple closed curves in M.

e Step 3: Change to M, = M, /T so as to obtain finitely many one point union
of simple closed curves(r-leafed rose) in intM;, then a triangulable mani-
fiold N with boundary is obtained, now extend the triangulation to whole
manifold.

Step 1

Cover M irreducibly (no proper subset of these cover M)by a finite collection
of closed disks say By, By, .., B,.Put C; = Bd(B;), let A be the set of cut points in C,
apply lemma, so A — D. [Use homotopy of curves, f(t,s) = (1 —1)71(s) +17(s),
to say one can shift from infinite set of cut points A, to a finite/countable set of
cut points A, J[If two s.c curves y; and 9 intersect at two points, then we can find 3
s.c curves with non-intersecting interiors]Observe M — C is disjoint union of open
2-cells, consequence of Jordan-Schoenflies theorem, and C — D is collection of
countably many disjoint arcs.

Step 2

Move to M| = M/D, recall 'Remark’, let R = im(C — D) under quotient map,
therefore all arcs in C — D becomes one point union of simple closed curves in M;

Claim- R is one point union of a countable collection of simple closed curves

Proof- R < M}, and M; = M/D. For each disjoint arc, say a; in C — D, end-
points of each arc is in D, so @; is a compact set, let p; andg; be the end points
of a;, then in M/D every point in D goes to a point say p. Therefore V i p;,q; is
mapped to p, this shows that each a; is now closed loop around p in M.

Any 2 cell nbd V of p will contain all but a finite number of the simple closed
curves which comprise R. If not, then for any arbitrary open cover Vyof R if one
chooses a finite subcover {Vi,...,V,}, each of these V; will contain only finitely
many simple closed curves and hence R will be a union of finite union of finite
curves. A contradiction to the fact that R is a countable union of s.c curves.

Step 3
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Pick a cellular set 7 containing V, move to M; /T if necessary, in M; /T im(R)
is an r-leafed rose. Moreover, the complement of R in M;/T is composed of
finitely many components that are open 2-cells. Pick a small 2-cell, E, enclosing
p, such that each simple closed curve of R meets boundary of E at two points.
E U R is now disk with finitely many closed arcs say, A1,A3,..,A,. Each A; may
be enclosed in interior of a closed disk meeting E in a pair of arcs on its boundary.
Choosing pair wise disjoint disks one obtains a triangulable manifiold N. Next is
to extend the triangulation of N to the whole manifold.(paper by M A Armstrong)

Extension is possible using the following corollary from the paper by M A
Armstrong

Corollary 1.8.3.1. Any triangulation of a compact PL-manifold can be extended
to the whole manifold.

O
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Chapter 2

A brief revision of basic Riemannian
Geometry

2.1 Introduction

A revision on Riemannian metric, Riemannian isometry, Levi — Civita connection,the
notion of parallelism of vectors along curves, geodesics and Hop f — Rinow the-
orem are done very briefly in this chapter.

2.2 Riemannian metric and isometry
Definition 2.2.1. A tensor g € ﬂz(Tp”‘M) is said to be
1. symmetric if g(v,w) = g(w,v) for all vyw e T,M
2. nondegenerate if g(v,w) =0 forallwe T,M — v=0
3. positive definite if g(v,v) = 0 for all v € T,M\{0}

A covariant 2-tensor field g is said to be symmetric, positive definite or non-
degenerate if g, is symmetric, positive definite or non-degenerate Vp € M. If
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x: U — R"is a local chart, we have

g= Z gijdxi®dxj

ij=1
: 0 0
in U, where g;; = g(ﬁ, (97)

It is easy to see that g is symmetric, positive definite or non-degenerate iff the
matrix (g;;) has these properties.

Definition 2.2.2. A Riemannian metric on a smooth manifold M is a symmetric,
positive definite smooth covariant 2-tensor field g. A smooth manifold M equipped
with a Riemannian metric g is called a Riemannian manifold, and is denoted by

(M, g)
Hence a Riemannian metric is a smooth assignment of an inner product to
each tangent space.
gp(V7 W) = <V, W>P'
Proposition 2.2.1. Let (N,g) be a Riemannian manifold and f: M — N be an
immersion. Then f*g is a Riemannian metric(called the induced metric).

Proof. Let p e M and let v,w € T,M, define
(f8)p(viw) = gp(dfp(v),dfp(w)).

Since g is symmetric we have (f*g) also satisfying this property. For positive
definiteness, (f*g)p is clearly > 0.

It (f*g)p =0 = gp(dfp(v),dfp(w)) =0 = dfp(v) =0 = v=0(asfis
an immersion —> d f,,(v) is injective.) O

Definition 2.2.3. Let (M,g) and (N,h) be Riemannian manifolds. A diffeomor-
phism f: M — N is said to be an isometry if f*h = g. Similarly, a local diffeo-
morphism f': U c M —V < N is said to be a local isometry if f*h = g.

2.3 Affine connection

Given vector fields in Euclidean space, we can define the directional derivative
VxY of Y along X. Connection helps us to extend this concept to an arbitrary
smooth manifold.
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Definition 2.3.1. An affine connection on a smooth manifold M is amap V: 2 (M) x
X (M) — Z (M) such that,

I VixierZ = fVxZ+8VyZ

2. Vy(Y +Z) = VxY + VxZ

3. Vx(fY) = (Xf)Y + fVxY
forallX,Y,Ze 2 (M) and f,g e C*(M,R)

Proposition 2.3.1. Let V be a connection on a differentiable manifold M, let X ,Y €
Z' (M) with pe M. Then (VxY), € T,M depends only on X,, and on the values of

Y along a curve tangent to X at p. Moreover, if x: W — IR" are local coordinates
on some open set W < M and

on this set we have,

n n
[ i 0
VxY = Z(X y + Z l—‘]kxjy )E
i=1 k=1

where the differentiable functions l";k: W — IR, called the Christoffel symbols
are defined by

0 5o, 0
Vo—=> T, ,— 2.1
25 Oxk ; Tk pxi 1)
Proof. Observe that affine connection is local, i.e, if X,Y € 2" (M) coincide with
X,Y € 2°(M) in some open set W = M then VxY = V¥ on W.

Let W be a coordinate neighbourhood for the local coordinates x: W — R",
and define the Christoffel symbols associated with these local coordinates through
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2.1, so we have :

n
VxY = V
X Z (}xj
j:
by properties of Vin2.3.1, VxY = Zx (Vo

n
o Zy 8xl

i=1 j=1

n l noo5 P P
=le<21<§<yf> =59V 2 =)
i= j=
from 2.1, we knowV ——zn:I‘i 9
Tweknon¥ s 25 = 31Tz
SRS NG 0
Vszz;x(Z:]@(yf)E%—Z:](y] 257)
1= Jj= j=
- i(NY i L k
izlx (JZI axl(y )&x]+]21<yjlglrzja k))

Il
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This formula shows that (VxY), depends only on x'(p),y’(p) and (X -y')(p).
Moreover, x'i(p) and y'(p) depends only on X, and ¥,,, and (X ') (p) = %3/ (c(1))),_,
depends only on the values of y' or Y along a curve ¢ whose tangent vector at
p=c(0)is X),. O

—.
Il

Definition 2.3.2. Consider a curve c: I — M, where I is the unit interval and M
is a smooth manifold. If V is a vector field defined along the differentiable curve
c: I — M with ¢ # 0, its covariant derivative along c is the vector field defined
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along c given by

DV

— 0 = VeV = (Vx¥)e() (2.2)
for any vector fields X,Y € 2" (M) such that X ;) = ¢(t) and Y.(5) = V(s) with

s€ (t —€,t+¢€) for some € > 0.

Note that for a curve ¢: I — M avector field defined along a differentiable
curve is a differentiable map V: I — TM such that V(z) € T.(nyM Vit e 1. Also,
proposition 2.3.1 tells us that (VxY)c(¢)) does not depend on the choice of XY,

so in local coordinates we have x/(t): = x'(c(t)) and

vio-3vio (57)

i=1

then
ov . _ i k 9
— (t)—Z Vi kZ I AG) ( axfc(,)) (2.3)

Definition 2.3.3. A vector field V defined along a differentiable curve c: I — M
is said to be parallel along c if

DV
E(Z) =

for all t € I. The curve c is called a geodesic of the connection V if ¢ is parallel

along c, i.eif
D¢
—(t)=0Vrel.
() €

In local coordinates x: W — IR”, the condition for V to be parallel along c is
clear if we let equation 2.3 =0, i.e

2|V ZF 1)V (r)
i=1 jk=1

for each i, this represent a system of first-order linear ODE’s for the components
of V. We take it for granted that using Picard-Lindelof theorem, together with
the global existence theorem for linear ODE’s, given a curve c¢: I — M, a point
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pec(I)andavector ve T,M, there exists a unique vector field V: I — T'M parallel
along ¢ such that V(0) = v, this is called the parallel transport of v along c.
Also geodesic equations are

B ) Tle)d () () (i=1,...,n)

Jk=1

2.4 Levi-Civita connection

In the case of Riemannian manifold, there is a particular choice of connection,
called the Levi — Civita Connection, with special geometric properties.

Definition 2.4.1. A connection V in a Riemannian manifold (M ,{.,.))is said to be
compatible with the metric if

XY, Z)={VxY,Z)+{Y,VxZ)
forallX,Y,Ze 2 (M).

If V is compatible with the metric, then the inner product of two vectors fields
V1 and V;, parallel along a curve, is constant along the curve :

%<Vl (1), Va(2)) = <V () Vi), Va (1)) + V1 (1), ¥, Va (1)) = 0.

In particular, parallel transport preserves lengths of vectors and angles between
vectors. Therefore, if ¢: I — M is ageodesic, then ||c(¢)|| = k is constant. If a € I,
the length s of the geodesic between a and ¢ is

§ = Jat |lc(v)||dv = Ltkdv =k(t —a).

Theorem 2.4.1 (Levi-Civita). If (M,{.,.)) is a Riemannian manifold then there
exists a unique connection V on M which is symmetric and compatible with {.,.).
2 ..., x"), the christoffel symbols for this connection are

In local coordinates (x',x?,
BN Ogk  08ji | 08k
i = 5; <(”xf o T o

where (g') = (gij)~
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2.5 Minimising properties of geodesics

Let M be a differentiable manifold with an affine connection V. Given a point
p € M and a tangent vector v € T,M, there exists a unique geodesic ¢,: I — M,
defined on a maximal open interval I IR, such that 0 € I, ¢,,(0) = p and ¢,(0) = v.
Consider now the curve y: J — M defined by y(¢) = ¢, (at), where a € R and J is
the inverse image of / by the map ¢ — at. So,

Y(t) = ac,(ar), (2.4)

and consequently
V¥ = Ve, (acy) = a*Vié, =0 (2.5)

Thus y is also a geodesic. Since y(0) = ¢,(0) = p and y(0) = a¢,(0) = av, we see
that y is the unique geodesic with initial velocity av € T,M(that is, ¥ = c,y). There-
fore, we have ¢, (t) = ¢, (at)Vt € I. This property is referred to as the homogeneity
of geodesics. Observe that one can make the interval J arbitrarily large by making
a sufficiently small. If 1 € 1, we define exp,(v) for v in some open neighbourhood
U of the origin in T,M. The map exp,: U < T,M — M thus obtained is called the
exponential map at p.

Proposition 2.5.1. There exists an open set U = T,M containing the origin such
that exp,: U — M is a diffeomorphism onto some open set V. — M containing
p(called a normal neighbourhood).

Proof. We assume the fact that ”the exponential map is differentiable”. If v e T,M
is such that exp, (v) is defined, we have , by homogeneity, that exp,,(tv) = ¢, (1) =
¢y (t). Consequently,

d d
(dexpp)ov = EexPP(tV)I[=o = ECV(I>|t=0 =

We conclude that (dexp))o): T,(T,M) = T,M — T,M is the identity map. By the
inverse function theorem, exp), is then a diffeomorphism of some open neighbour-
hood U of 0 € T,M onto some open set V < M containing p = exp,(0). O

Example. Consider the Levi-civita connection in S2 with the standard metric,
and let p € S*. Then expp(v) is well defined for all v TPSZ, but it is not a diffeo-
morphism, as it is clearly not injective. However, its restriction to the open ball
B(0) = T,S? is a diffeomorphis, onto S* —p.
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Now let (M, {.,.)) be a Riemannian manifold and V its levi-civita connection.
Since {.,.) defines an inner product in 7,M, we can think of 7,,M as the Euclidean
n— space R". Let E be the vector field defioned on 7,M {0} by

%

EV: T
vl

and define X := (exp,)«E onV {p}, where V c M is a normal neighbourhood.
We have

d v
Xexpy(v) = (dexpp)y)E, = —exp) (V+t—) .
=

di 1l
d < t ) 1.
=—c¢ (1 +— = —¢y(1).
de™" V[ =g IV
Since |[¢,(1)]| = [|¢v(0)[| = [[v]], we see that X, (v) is the unit tangent vector to

the geodesic c,. In particular, X must satisfy
VxX =0.

For each £ > 0 such that B¢ (0) = U = exp, (V) , we define the normal ball with
center p and radius € as the open set Be(p) := exp,(B¢(0)), and the normal sphere
of radius € centered at p as the compact submanifold S¢(p) = exp,(0B¢(0)). We
will now prove that X is, and hence the geodesics through p are, orthogonal to nor-
mal spheres. For that, we choose a local parametrization ¢ : W  R*~! — 571 <
T,M, and use it to define a parametrisation ¢: (0,+o0) x W < R*™! — T,M
through
d(r,0,....0" ) =re(6',...,0" ")

(hence (r,0',...,0"!) are spherical coordinates on T,M).
Note that
2
or
since, B
09
E5(r,0) = E,p0) = ¢(0) = E(h@),
and so 5
X - % T~ . 2.6
(expp) o (2.6)
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Since % is tangent to r, where r= €, the vector fields

A

Y; = (expp)*% 2.7)

are tangent to S¢(p). Notice also that || %H = ||%;‘)—,H = rH% || is proportional to

r, and consequently % — 0 as r — 0, implying that (Y¥;); — 0, as ¢ — p. Since
exp), is a local diffeomorphism, the vector fields X and Y; are linearly independent
at each point. Also,

0 0 0 0
.51~ | Cexpp). 2 (expp)sz | = Cexm). | 5| =0

or, since the Levi-Civita connection is symmetric,
VxY; = VyX.

To prove that X is orthogonal to the normal spheres S¢(p), we show that Xis
orthogonal to each of the vector fields ;. In fact, since VxX = 0 and || X|| = 1, we
have

1
X (X)) ={(VxX,Y)+{X,VxY;) =(X,Vy;X) = 5Y,~-<X,X> =0
and hence (X,Y;) is constant along each geodesic through p. Consequently,
<X7 Yi>(€XPpV) = <Xexppv; (Yi>exppv> = tling<xexppw (Yi>exppv> =0

(as [|[X|| = 1 and (Y;); —0, as ¢ — p), and so every geodesic through p is orthog-
onal to all normal spheres centered at p.
The current result helps us in deducing the following proposition.

Definition 2.5.1. A normal neighbourhoodV c M is called a totally normal neighbourhood
if3€>0suchthatV < Bg(p)VpeV.

2.6 Hopf-Rinow theorem

Definition 2.6.1. A Riemannian manifold (M, {.,.)) is said to be geodesically complete
if, Vp € M, the map exp,, is defined in T,M.
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Theorem 2.6.1 (Hopf-Rinow theorem). Let (M, {.,.)) be a connected Riemannian
manifold and p € M. The following assertions are equivalent :

1. M is geodesically complete,
2. (M,d) is a complete metric space,
3. expp is defined in T,M.

Moreover, if (M, {.,.)) is geodesically complete then Yq € M 3 a geodesic ¢ con-
necting p to q with l(c)=d(p,q).

For proof refer [5]
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Chapter 3

Fundamental theorem of surface
theory

3.1 Introduction

In this chapter the discussion will be mainly about certain properties of immersed
manifolds that will help us in proving few important theorems like Gauss Theo-
rema Egregium, Synge’s Inequality, Weingarten’s equations and Codazzi- Mainardi
Equations. All these will help us in proving the Fundamental theorem on Surface
theory by Bonnet.

3.2 Theorema Egregium

Few theorems on immersed manifolds will prepare us for Gauss Theorema Egregium

An immersion i is a smooth map from M" — N™, where M,N are smooth
manifolds, where M < N, such that rank of i is 'n’.

Remark. If N is endowed with a Riemannian metric (N, {)), then M has the in-
duced Riemannian metric (M, i.)),

Theorem 3.2.1. Let i : M — N be an immersion. Suppose N has a Rieman-
nian connection V' (N, (), and M has the induced Riemannian connection V
(M, i.()), then if p is a point in a neighbourhood U of M, Xis a vectorfield € M),
and Y is a vector field which is everywhere tangent to M then ,

Vx,Y =T(VxY)
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Definition 3.2.1. Given a manifold M with a point p, there is a well defined tensor
field ’s’, such that s : M, x M, — Mpl for each p € M, such that

s(Xp,Yp) = J—(V/X,,Y)
for any vector field Y extending Y),.

Theorem 3.2.2. The tensor s is symmetric.

Proof. Let X and Y be extensions of X,,,Y), € M), to all of N which are tangent to
M at all points of M. Then
/ / / /
L(Vix,Y) - L(Vy,X) = L(Vx,Y = V'y,X)
L(V'xY(p) = V'yX(p))
= L(Ix,Y](p))

Since [X,Y] is tangent to M at all points of M L([X,Y](p)) = 0, hence ’s’ is
symmetric tensor. |

Combining the above two theorems we have the following decomposition
Vix,Y = LV'x Y + TV'x Y (3.1)

which can be further written as

The Gauss Formulas :
V’XDY: VXDY + s(Xp,Yp),

Theorem 3.2.3 (Theorema Egregium). Let M be isometrically immersed in N,
and let R and R denote curvature tensors of M and N respectively. Then for all
X,,Yy,Z,,W, € M, we have

<R/(XpaYp)ZpaWp> = <R(vaYp)ZpaWp>+<S(vaZp)=S(YP7Wp)>_<S(Ypﬂzp)vs(XP7Wp)>

Proof. Extend X,,,Y,,Z,,W, to vector fields X,Y,Z,W which are tangent along
M. Then Gauss formulas yield

(a) Vx(VyZ) = Vx(VyZ) + Vi (s(Y,Z))
= Vx(VyZ) +5(X,VyZ) + Vi (s(Y,2)
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and similarly
(b) Vy(VXZ) = Vy(VxZ)+s(Y,VxZ) + Vy(s(X,Z)
as well as
©) ViewZ = VirnZ+s([X.¥1.2)
Recall the formula for curvature tensor,
R'(X,Y)Z =V\VyZ -V, V\Z — V’[X’Y]Z,
now substitute (a)(,b),(c) into this formula, we get

R(X.Y)ZW) = (V\VyZ—VyVXZ—Viy yZ,W)
— (VRVYZW) — (VpVRZ W) — (V1 Z,W)
applying Gauss formulas = {{Vx(VyZ + s(X,VyZ) + Vis(Y,Z)),W)
—{Vr(VxZ2), W)+ (s(Y,VxZ),W)
+{Vys(X,Z), W)} = {(Vx y)Z, W) +{s([X, Y], 2), W)}
{1} ={s(,), W) = 0 the equation will be reduced as follows
= {(Vx(VyZ),W) +(Vys(Y,Z)),W)
—(Vy(VxZ),W) (Vys(X,Z), W) —(Vx yjZ, W)}
— (R(XY)Z, W) + (Vi (5(Y,2)), W) — (Vys(X,2), W) — [}
{1} = X({(s(Y,Z2),W)=0
by the property of Riemannian metric(, )
AVs(Y,Z) Wy +{s(Y,Z), Vi W) =0 — {2}
applying Gauss formulas , {2} = (Vis(Y,Z), W)+ {(s(Y,Z),VxW +s(X,W))
= (Vis(Y,Z),W)+{(s(Y,Z),s(X,W))
ws(Y,Z) = L(Vy 2),(5(Y,Z),VxW) = 0
cA2Y = (Vis(Y,Z),W) = —(s(Y,Z),s(X,W))
hence {+} = (R(X,Y)Z,W)—{s(Y,Z),s(X,W))—(s(X,Z),s(Y,W))

O
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3.3 Synge’s inequality

Recall that if P < M), is a 2-dimensional subspace of M),, we define the sectional
curvature K(P) as
K(P) = (R(X,Y)Y,X)

for orthonormal X, Y € P. Since we had studied Gauss Theorema Egregium(G.T.E)
, we observe an inequality which is a corollary to G.T.E that relates the sectional
curvatures of a 2-dimensional subspace in an immersed and ambient manifold.

Corollary 3.3.0.1. Let M be isometrically immersed in N, and let y: [a,b] — M

be a curve in M which is a geodesic in N. Then for all 2-dimensional P — My
with ¥ (t) € P we have
K(P)<K'(P)

In particular if M is a surface then for all p = y(t) we have
K(M,) < K'(M))

Proof. Let y be parametrized by arclength. Let X, = ¥/(¢) and let Y, € P be a
unit vector perpendicular to X,. Appplying Gauss’s equation with Z, =Y, and
W, = X, we have

K'(P) = K(P) + (s(Xp,Yp),5(Xp,Yp)) — (5(Yp, ¥p), 5(Xp, Xp))

If we let X be the vectorfield X (z) = ¥/ (¢) along ¥, then X is parallel along ¥, so
we have 0 = Vi X — L(V4X)(p) =s(X,,Y,) =0
hence, the desired inequality holds. O

Remark. For the case of surface equality holds for all p = y(t) if and only if My
is parallel along 7, in the sense that pertains to N.

From now on we consider the specific situation where M is a hypersurface in
N, that is a submanifold of codimension 1.

Remark. If M is a hypersurface of N then,
1. 3 unit normal vector field for M on neighbourhood U of a point p e M
2. vy =1&v(q) e M, VgeU

Theorem 3.3.1. Let M be a hypersurface in N nd let v be a unit normal field on a
neighborhood of p in M.
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(a)

VX, € M, we have
V&pveMp

(b) If Y is a vector field tangent along M, then we have

The Weingarten Equations
!/ _ !/
<VX,,va YP>_ -<V, VX,,Y>

:'<V7S(vayp)>

(c) Consequently,
(V0 Yp) = Xp,Vy,v)
Proof. (a)
<V7 V> =1
X (vv)) =0
AV v+, Vy v) =0
— <V§(pv, vy=0
i.eVS(pv ly — V&pv eM,
(b)

Y, =0

XP<V7 YP> = <VS([,V7 YP> + <V, V;(pYP>

- <V3(pv, Yp)
Gauss equations = (v, T(V'X,)Y,)

= —<V, Vé(pYP>
+ J—(VSK,,YP»

observe that "~ vIM,&T(Vy Y,) = Vx,¥,

50 (v, Vx,¥,) =0
— (Vi ) = L(V )
i'e<V7 VS(pYP> = <V7S(XP7YP)>

Hence <V$(p Vs YP>: '<V7 V;{,,Y> :-<V, S(va
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Corollary 3.3.1.1. Let M" be a hypersurface in R*™*! and let v be a unit normal
field on a neighbourhood of p in M. Then for all X,,,Y, € M), we have

s(Xp,Yp) = (Xp,Y,) - v(p)

where I1(X,,Y,) - v(p) is the second fundamental form of M defined for the choice
v of unit normal field, namely

H(Xp,Yp) = —(dv(Xp),Yp)
Proof. Observe that
Vx,v = [X()]p = [dv(Xp)]p = dv(X,),

Remark. Since v can be seen as amap v: M — S"~1 < R"*! we have the vector
valued differential form dv : M, — R"", and dv(X,) € R""! should be moved

back to a parallel vector in M, equivalently, dv(X,) denotes v, (X)) € SZ(_p %

back to a parallel vector in M,,.

moved

So according to Theorem 3.3.1

Ws(Xp,Yp)) = _<VS(,,V7 Yp)
= —(dv(Xp).Yp)
= 1(Xp,Yp) = (%)
also we know s(X,,Y,) = L(V ¥p)
— 5(X,,Y,) = k'v where k'is scalar
hence to find 5(X),,Y,) we take inner product with v
S As(Xp,Yy), vy = Ky =K
we know that by(«),(s(X,,Y,),v) = II(X,,Y))
hence k' = I11(X,,Y,)
and .. 5(X,,Y,) = I1(X,,Y},) - v(p)

O

Theorem 3.3.2. Let M be a hypersurface in N, and let v be a unit normal field on
a neighbourhood of p in M, with corresponding 1. Then for all X,,,Y,,Z, € M), we
have :
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The Codazzi-Mainardi Equations
R(Xp.Yp)Zp,v(p)) = (Vx,11(Yp, Zp) -(Vy,11(Xp,Zp)

Proof. Recall the equations derived in the proof of Theorem 3.2.3

(1) Vx(VyZ) = Vx(VyZ) +Vx(s(Y,Z))
=Vx(VyZ) +s(X,VyZ) + Vi (s(Y,Z)
(2) Vy(VXZ) = Vy(VxZ) +s(Y,VxZ) + Vy (s(X,Z)
(3) VixyZ=VixnZ+s(X.Y].Z)
= Vixy)Z+s(VxY,Z) —s(VyX,Z)

This shows that the normal component of R'(X,Y)Z is given by

normal component ofR'(X,Y)Z =
[LVY(s(Y,Z)—s(VxY,Z) —s(VyX,Z)]
— [LVY (s(X,Z) — s(VyX,Z) —s(X,VyZ)]

Also, as
S(Y7Z) = II(Y7Z) ’ (V),

we have,
Vi(s(Y,Z) =X(II(Y,Z))-v+1I(Y,Z) - Viv

so by Theorem 3.3.1 Vyve M, — {II(Y,Z)-Vyv,v)=0

AV (5(Y,Z) V) = X(I(Y,Z)) -v

hence

(R(X,Y)Z,vy = [X(I(Y,Z))—I(VxY,Z) —11(Y,VxZ)]
—[Y(II(X,Z2))]| - 1I(VyX,Z)—1I(X,VyZ)

O

A particular case to observe this is when our ambient space N has constant
curvature Kj.
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Corollary 3.3.2.1. Let N have constant curvature Ko. Then for isometrically im-
mersed in N we have :

Gauss’s Equations:
RXp,Yp)Zp,Wp)+  (s(Xp,Zp),s(Yp,Wp))—  (s(¥p,Zp),5(Xp,Wp))
= Ko [<vaWp> : <vazp> _<vazp> : <YP7WP>]

And if M is a hypersurface we have

The Codazzi-Mainardi Equations:
(Vx )1(Y,,Z,) =(Vy I1)(X,,Z))

3.4 Fundamental theorem of surface theory(Bonnet-
1867)

From the theory of curves , we know that k¥ and 7 formed a complete set of
invariants for a curve up to translations and rotations (elements of SO(3)), by
showing that they were a complete set of invariants up to rotation for the func-
tion s — (t(s),n(s),b(s), this was accomplished using the Serret-Frenet formulas,
which are differential equations for (t,n,b), involving only x and 7. In this the-
orem we will observe an analogous situation for surfaces and see whether every
immersion f : U — IR is described completely by the corresponding g; jand [,
which are “invariant under proper Euclidean motion”.

In the case of surfaces, we have the three vectors (f1, f,N), where if f is an
immersion, f: U — R3 (for U = R? open), then

of
t) = =—(s,t
f](S, ) as(s7 )7
0
f2(57t> = q_f(s7t)
ot
and
X
N S1Xf
1f1 < f2]
Introducing this new g*/ notation is really helpful, where
Zgikgkj = 6,'j
k
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First we try to express the derivatives of each of f1, f2, N as linear combina-
tions of these three vectors.
We want to write

2
fic =Y Al fn+ BN
h=1

To find A", we take innerproduct of fy with f;.

We know that(f;, f;) = gij

) . 0
differentiating, (fi. £7) + (fi fie) = = (8ij) = gij (k = 1,2)

= <V;%fi,fj> +{fi, V?%fﬁ
similarly(f;i, fi) + {f}, fui) = 8 jk,i
ijs Ji) + Lo, J1i) = 8kij

adding the first two and subtracting the third we have,
1
{fir ) = E(gij,k + 8 ki — 8ki,j)
= [lka ]]7

where [ik, j] is the Christoffel symbol for the metric I = f*(,) on U with respect
to the standard coordinate system (s,) on IR?, so we have,

2
[ik, 1= firfi) = D Aikgnj
h=1

To explicitly find A%, take inner product with g'/ for each i, so,
2 .
A= D, 8Pk, j] =T§
=1

Recall that 3, gipg?’ = 5/
Similarly to find B;; we take inner-product with N, i.e

Bix = {fit,N) = =Ny, iy = lik
Thus,

2
fix = 2 F?k fn + LixN {The Gauss Formulas} (3.2)
h=1
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Observe that in the equation 3.2 we are expressing the covariant derivative of aixi as
its tangential component ( fj,) and normal component (N ), which is similar to how
we expressed connection on the ambient manifold as its tangential and normal
component in the equation 3.1.

Next to express N; in terms of f1, fo, N, we write N; as,

2
N; = Z Clhfh +0.N
h=1

just as we did above,
2
lij={=Ni,fj)=— Z Clgn,,
h=1

and consequently
2

cf =— 8"l
=1

Introducing new symbols ll-h we can write,

n

2
N; = —Zh =17 2 gnjlij | fo=— Z 1" f;, {The Weingarten Equations }
j=1 h=1
(3.3)
The following theorem is useful in proving the fundamental theorem of surfaces.

Theorem 3.4.1. Let U x V < R™ x IR" be open, where U is a neighbourhood of
0eR™, and let f;: U xV < R" be C* functions, for i = 1,...,m. Then for every
x €V, there is at most one function

o: W -V,
defined in a neighbourhood W of O in R™, satisfying
o(0) =x

S0 = fi(t )y ew
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Remark. Any two functions o, 0, as mentioned above, defined on W\, W,, agree
on the component of Wi n W, which contains 0.

Theorem 3.4.2 (Fundamental theorem of Surface theory, (Bonnet- 1867)). Let
U < R? be a convex open set containing (0,0)

1. Let f,F:U — R be two immersions, and define

=

:;811822 812

Ni,fip ={-N.fij)

<ﬁmﬁ>

N = 7_L\_L N
g11822—8122
= (-

lij = (—=Ni, fj) ={—N, fij)

||°°

Suppose that gij = g;; and g;j =g;; on U. Then there is a proper Euclidean motion A such that
F=Aof
2. Let gij and g;;j (i,j =1,2) be functions on U which satisfy

i. gij = gji and lij = lji, and (gij) is positive definite on U, so that
we can define corresponding g'/ and F{‘J

ii. Gauss’s Equation :

Il — (112)* = Rion
2 2

= > g1p(MP)x 1 — (P12 + ), (ThI, —T5,Th,)
p=1 h=1

iii. The Codazzi- Mainardi Equations :

2 2
hoa—la+ ), Thol — ) Tl =0
=1 =1

2 2
o —lia+ >, Dholny — D Tl =0
h=1 h=1
Then there is an immersion f : U — R> such that
gU::<ﬁhﬁ>

fixp
h = _%%7' = Ah i/ N =
J < f]> < fj>f0r g11g22—g122
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Proof. Spivak follows a convenient notation to prove this theorem, let’s follow
the same

vi=fi v2=/f2 v3=N

Vi =71 V2=72 Vi=N
First choose a roatation B € SO(3) such that

B(v4(0,0)) = 74(0,0) & =1,2,3.

This is possible because g;;0) = §; j(O) for i, j = 1,2 and because the two triples of
vectors (v1(0,0),v2(0,0),v3(0,0)) and (v1(0,0),v2(0,0),¥3(0,0)) are both posi-
tively oriented, with the third perpendicular to the first two. If we let f = Bo f,
then it is easy to see that

8ij = 8ij = 8ij
V3 =Bovj
lij=lij =T

We claim that the maps
(v,v2,v3), (V1,¥2,¥3): U —R?

which are equal at zero are infact equal at everywhere. Recall that Gauss formulas
and Weingarten equations give

2
Vik(s,t) = O Th(s,0)Va(s,1) + lu(s,0)v3(s,1) i=1,2 (3.4)
h=1

2
V3 k(s8,1) Z Zghf $,0)lkj(s,t) | va(s,t) (3.5)

for the v, while for the Vv, we obtain the corresponding equations w1th sz’
I and g". But [;; = I, and since 8;; = &ij we also have g = g and Fik = Ff.’k.
So the two maps (v,v2,v3) and (V,V,V3) satisfy the same equations, and is
equal at (0,0), hence they must be equal on U by Theorem 3.4.1. So this implies
that ¥ and f = Bo f have the same partial derivatives, and therefore differ by a
constant vector. Consequently there is a translation 7: R3 — R3 with f =T o f =

(ToB)of.

33



To prove (2), we again use Theorem 3.4.1 to conclude that equations 3.4 and
3.5 written in terms of the given /;; and g;;, has a solution v{,v,v3: U — R3 with
any desired initial conditions. Moreover the functions v, can be defined on all of
U because the equations 3.4 and 3.5 are linear. Since (g;;) is positive definite at
(0,0) there is a solution for which the following conditions are satisfied at (s,t)=
(0,0)

(a) <Vi(svt)vv.](sa[)>:gij<s7t> i,j=1,2
(b) (vi(s,1),v3(s,2)) =0 i=1,2
() [va(s,0)] =1
(d)(v1(s,1),va(s,t),v3(s,1))is positively oriented.

We will show that conditions (a)-(d) actually hold at all points of U.
The equations 3.4 and 3.5 for vy (s,7)va(s,)v3(s,t) gives the equations

(A)<vi, ik = (Vi Vi) + (Vik, Vik)
2 2
= D T Vi) + D T, vi) + 1 (va, vi) + L (3, V)
el hel

for 1,j=1,2, as well as

(B){(¥i, v3)r = {Vik,V3) + Vi, V3 k)
2

2
==Y | D 8"l |<vi, vn)

h=1 \ j=1
and
(€) (v3,v3)r = 2(v3,Kk,v3) = 0
[Equations (A)-(C) all hold for k=1,2.]
But we also have
8ijk = lik, j]+ [jk, ]

2 2
= Z Tlgnj+ Z F?kghi-
h=1 h=1

This shows that the set of equations (A)-(C) are satisfied both by
the set of functions : (v, vj, )(j = 1,2),{(v3,V1,),{v3,V2,),{V3,V3,)
and by
the set of functions : gij(j=1,2),0 ,0 , 1
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Moreover we chose the v; so that these two collections of functions have the
same value at (0,0). I t follows that they have the same values on all of U. In other
words equations (a)- (c) hold on all of U.Moreover, (a) and (b)[and non singularity
of (gi;)]1imply that (v, V2, v3) are always linearly independent. So condition (d)at
(0,0) implies (d) everywhere.

We now claim that there is a function f: U — R satisfying f; = v;. In order
to prove this, we just show that v; j = v; ;. But this follows from equations 3.4 and
3.5, by symmetry of the I}, and /. We now have {f;, f;) = gi; by (a). Moreover,
(b)-(d) then show that v3 = n, consequently,

(fijiny = (Vij: v3) = i
by 3.4 and 3.5 together with (b) and (c). |

Theorem 3.4.3 (Hadamard). (1)If M is a convex surface in IR?, then K(p) = 0 for
allpe M.

(2) Let M be a compact connected 2-manifold, and f: M — R> an immersion
with K(p) > 0 for all p e M. Then

1. The manifold M is orientable, and the normal map N: M — §*> c R3 is a
diffeomorphism,

2. The map f: M — R is an imbedding, and f(M) is convex.
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Chapter 4

Surfaces of constant curvature

In this chapter we will determine precisey which surfaces in IR can be obtained by
isometrically immersing complete manifolds with constant curvature K > 0,K =
0,K <0.

4.1 Hilbert’s lemma

Theorem 4.1.1. Let X be a C* vector field on M with X (p) # 0. Then there is a
coordinate system (x,U) around p such that

0

:ﬁ onU.

Proof. Assume M = IR" for a convenient coordinate system say(¢!,#2,...,") and
p = 0¢€R". Moreover, we can assume that X(0) = %’0- The idea of proof
is that in a neighbourhood of O there is a unique integral curve through each
point (O,az, ...,a"), if g lies on the integral curve through this point, we will use
a?,...,a" as the last n — 1 coordinates of g and the time interval it takes the curve
to get to g as the first coordinate. To do this, let X generate ¢, and consider the
map £ defined on a neighbourhood of 0 in IR” by
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We compute that for a = (a!,a?,...,a"),

0 0
2(37) 0= (z1]) o)
— lim 2 [/(2 (@ + b))~ (2 (a)]
= lim = [/(9a 14(0.0......a") ~ (2 (@)]
o1

= lim ~[f(on(2"(a))) — f( 2 (a))]
= (X)(Z(a))

Moreover, for i > 1 we can at least compute

0 0
7 (1)) - (51]) vo )

o1
= lim ~[£(2(0,....h...,0)) = £(0)]

Since X(0) = 0/dt!|y by assumption, this shows that 2o = I is non-singular.
Hence x = 2"~ ! may be used as a coordinate system in a neighbourhood of 0. This
is the desired coordinate system, for it is easy to see that the equation .25 (0/0t') =
X o %", which we have just proved, is equivalent to X = 0/0t!. O

Proposition 4.1.1. Let X|,X, be linearly independant vector fields in a neigh-
bourhood of a point p in a 2-dimensional manifold M. Then there is an imbedding
f: U — M, where U c R? is open and p € f(U), whose i'" parameter lines lie
along the integral curves of X;.

Proof. Assume that p = 0 € R?, and that X;(0) = (¢;)9. Every point ¢ in a suf-
ficiently small neighbourhood of 0 is on a unique integral curve of X; through a
point (0,x%(g)) which we proved in Theorem 4.1.1. Similarly , ¢ is on a unique
integral curve of X; through a point (x!(g),0).

The map ¢ — (x'(g),x%(g)) is C*, with Jacobian equal to I at 0. Its inverse,
in a sufficiently small neighbourhood of 0, is the required diffeomorphism. O
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Remark. Let p be a point on a surface M in R3.

1. If p is not an umbilic point, then there is an imbedding f: U — M, with
p € f(U), whose parameter curves are lines of curvature.

2. If K(p) <0, then there is an imbedding f: U — M, with p € f(U), whose
parameter curves are asymptotic curves.

Lemma 4.1.2 (Hilbert). Let M be a surface immersed in R3, and let p € M be a
non- umbilic point. Let ki = ky be the two principal curvatures on M and suppose

that ki has a local maximum at p, and ky has a local maximum at p. Then K (P) <
0.

Proof. According to the given remark above, we can choose an imbedding f: U —
M, with p € f(U), whose coordinate lines are the lines of curvature. Then Gauss’s
equation and the Codazzi-Mainardi equations become

(1) K=—ﬁ{(f—é—g>ﬁ (%)1]

E> /1l n E>
2 = —_—t = | ==
( ) b > (E+G> > (k1+k2)
. G1 l n . G1
G) "me7 (E*E) =7 hrk)

the second equality’s in (2) and (3) follow from the fact that
= k]E N n= k2G
Moreover, differentiation of these last two equations yields

6](1 akZ
lh =—FE+kE,, =
2= 122 ny ER
The functions k; are differentiable near p, since the functions H and K are differ-
entiable, and k; = H +_ +H? — K, where H> — K > 0 in a neighbourhood of the

non-umbilic point p. Together with (2)and (3) we then have

G+ kG

2E 0K
?/ Ey=— =L
( ) 2 Ki—K; ot
2G 0Ky
3/ G =— —
(3) 'K —K T os
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Substituting (2’) and (3’) into (1) gives

1 2E  0°K 2G K
(]‘/) K = — [— . 1 + . 2
2EG" K1 —K; o2 Ki— K, 0s?

. ) 0K,

+ something contlnuous.w

K>

+ something continuous.a—
s

Since k; has a local maximum at p, and k; a local minimum, we have

oK, K> 02K, %K,
i = =0 P <0, —— >0
= (p) =—=(r) =0, =2 (P) 52 (P)
Together with (1°) this shows that K(p) < O. O

Theorem 4.1.3. If M is a compact connected surface in R> with constant curva-
ture K > 0, then M is a sphere.

Proof. Let k1 > ky be the principal curvatures on M, and let p be a point where
ki achieves its maximum. Then k; = K/k; has its minimum at p. If we had
ki(p) > ka(p), so that p was not an umbilic, then the lemma would imply that
K(p) <0, a contradiction. Hence k;(p) = k2(p). Moreover, for any point g € M
we then have

ki(p) = ki(q) = ka(q) = ka2(p) = k1 (p),
so also k1 (g) = k2(g). Thus all points of M are umbilics O

Theorem 4.1.4. If M is a compact connected surface in R3, with K everywhere>
0, and constant mean curvature H, then M is a sphere.

Refer [4] for proofs.

Lemma 4.1.5. Let M be a 2-dimensional immersed submanifold of R3 with con-
stant curvature K > 0. Then for every point p € M there is a diffeomorphism

g: (—€,€)x(—¢€,€) > M,
g(0,0) =p

whose parameter curves are asymptotic curves parametrized by arclength.
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For any 2-dimensional Riemannian manifold M. an immersion g: (a,b) x
(¢,d) — M is called Tschebyscheff net if all parameter curves are parametrized
by arclength.If we think of the domain (a,b) x (c¢,d) as a piece of cloth woven
from fibres parallel to the axes, then the immersion g doesn’t stretch any fibres.
So if we can find Tschebyscheff nets around each point then our surface could be
outfitted in a tight fitting cloth. Previous lemma(4.1.5) shows that this can always
be done on a submanifold of IR? with constant negative curvature.

Lemma 4.1.6. Let M be a 2-dimensional Riemannian manifold and g: (a,b) x
(c,d) — M is a Tschebyscheff net. Define ®: (a,b) x (¢,d) — R as follows
. @(s0,10) is the unique number with 0 < ®(so,t)) < T such that ©(so,to) is an
angle between

dg dSSJo) and dgﬁ;fﬂ
s=50 1=1g

Then o satisfies the differential equation
o
osot

Now we can prove the theorem, which still requires quite a bit of argument.

We will use the term asymptotic Tschebyscheff net for a Tschebyscheff net of

the sort discussed in Lemma 4.1.5, with all parameter curves being asymptotic
curves.

(—K)sin .

Theorem 4.1.7. A complete surface M with constant curvature K = —1 cannot be
immersed in R>.

Proof. The proof depends on establishing two facts

(a) Suppose that M could be immersed in IR®>. Then there would be a
Tschebyscheff net f: R? — M, from the whole plane to M, and the
function ®, defined on all of IR?, which gives the angle between the
first and second parameter lines would satisfy

2 .
29 —sinw, O<w<n

(b) There is no function ®: R? — R satisfying

faad0)

asatzCsm(o, O<w<mw

where C > 0 is any constant.
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Chapter 5

The Gauss Bonnet Theorem

In this chapter we will look at Cartan’s Structure equations, a powerful computa-
tional method which employs differential forms to calculate the curvature. These
equations will be further used to prove the Gauss — Bonnet theorem, relating the
curvature of a compact surface to its topology. This theorem gives a simple ex-
ample of how the curvature of a complete Riemannian manifold can constrain its

topology.

5.1 Cartan’s structure equations

Recall. Let I1 be a 2-dimensional subspace of T,M and let X,,,Y), be two linearly
independent elements of I1. Then the sectional curvature of I1 is defined as
 R(X,.Y,.X,.Y,)

AT — (X 1,2

K(IT) =

Note that || X, ||?||¥,||> — (X,,Y,)? is the square of the area of the parallelogram
in T,M spanned by X,,,Y),, also observe that the definition of sectional curvature
does not depend on the choice of the linearly independent vectors X,,Y,. We
will now see that understanding the sectional curvature of every section of T,M
completely determines the curvature tensor on this space.

Proposition 5.1.1. The Riemannian curvature tensor at p is uniquely determined

by the values of the sectional curvatures of sections(i.e, 2-dimensional subspaces
of T,M).
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For proof please refer [5] A Riemannian manifold is called isotropic at a point
p € M if its sectional curvature is a constant K, for every section II < T,M.
Moreover, it is called isotropic if it is isotropic at all points. Note that every
2-dimensional manifold is trivially isotropic. Its sectional curvature K (p) := K, is
called the Gauss curvature.

Remark. As we will see later, the Gauss curvature measures how much the local
geometry of the surface differs from the geometry of the Euclidean plane. For
instance, its integral over a disk D on the surface gives the angle by which a vector
is rotated when parallel-transported around the boundary of D. Alternatively,
its integral over the interior of a geodesic triangle /\ is equal to the difference
between the sum of the inner angles of /\ and ©

Now we will reformulate the properties of the Levi-Civita connection and of
the Riemannian curvature tensor in terms of differential forms.

A field of frames {X;...X,}, is a set of n vector fields that, at each point p
of V, form a basis for T,M. Then we consider a field of dual coframes, that
is, 1-forms {®!...®"} on V such that '(X;) = &;. From the properties of a
connection, in order to define VxY we just have to establish the values of

n
VxXj = > TiXe,
k=1

where Fé‘j is defined as the kth component of the vector field Vx,X; on the basis

{X;}"_,. Given the values of the l“f.‘j on V, we can define 1-forms a)j-‘(j, k=1,...n)
in the following way :

n
k._ k i
;= ZFU(D
i=1

Conversely, given these forms, we can obtain the values of Ff?j through

k k

The connection is then completely determined from these forms :
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given two vector fields X = Y7 a’X;and Y = Y1, b'X;, we have

n n
j Tk
VxX;= Vzlr}:laixin = ZalVXin = Z Cllrink
i=1 i,k=1

" " (5.1
- i,k2=l - ;
and hence
n n
VyY =Vy (Z ) Z ((X - D)X; +b'VxX;)
= = (5.2)

. Zn: ((X~bf) +b"a>j(X)) X;

j=1

Note that the values of the forms w}‘ at X are the components of Vx X relative to
the field of frames, that is,

o}(X) = 0'(V.X;). (5.3)

The (o}‘ are called the connection forms.

Theorem 5.1.1 (Cartan’s). Let V be an open subset of a Riemannian manifold
M on which we have defined a field of frames {X,...X,}. Let {®y,...®,} be the
corresponding field of coframes. Then the connection forms of the Levi-Civita
connection are the unique solution of the equations

L do' =3 @ A o/,
2. dgij =Y (gk0f +gkiwf),
where gi; = (Xi,X;)
Proof. Proof is clearly mentioned in [5], so we skip it. |

In addition to connection forms, we can also define curvature forms. For
this again we consider an open subset V of M where we have a field of frames
{X1,...X,}(hence a corresponding field of dual coframes {®',...®"}). We then
define 2 forms Q,l{(k,l =1,...,n) by :
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Q! (X,Y) = 0 (R(X,Y)Xy),

for all vector fields X,Y in V (i.e RX.Y)X; = >, Qf{(X,Y)Xl). Using the
basis {®' A @'}, for 2-forms, we have :

! ! ' ' (R
Q= ZQk(XhXj)wl A @’ =Za) (R(X:, X)) Xp) 0 A 0 ZRcho Al = 2 R]ka) A,
i<j i<j i<j i,j=1

where the Rf i are the coefficients of the curvature relative to these frames

R(X;, X)X = ZR ¢
=1
The curvature forms satisfy the following equation.

Proposition 5.1.2. In the above notation,
3. Q =dol -Y)_of N0, foreveryij=1...n

Equations 1,2 and 3 are known as the Cartan’s structure equations. These
equations are listed below

L do' =3 o/ A o
2. dgij= 22:1(8kjwik +gkiw§<)7
3.0/ —do/ - Y7_ of A @,
where ©'(X;) = §;, (Dk pIa Fﬁfja)" and Qlj = Zk<1Rilzwk no'.

Example. For a field of orthonormal frames in R" with Euclidean metric, the
curvature forms must vanish (as R=0), and we obtain the following structure
equations :

i_\m ' J
lodo'=3%)_ 0/ o;

J i_
2. 0 +0; =0,

J_\m k J
3. dw! =3 0f Ay,

Proposition 5.1.3. If {E|,E»} and {F,F,} have the same orientation then, denot-
ing by F)% and E% the corresponding connection forms, we have E% — (1)12 = 0O,

where 6 = adb — bda.(where a,b: V. — R are such that a* + b* = 1)
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5.2 Gauss - Bonnet theorem

Using Cartan’s structure equations we will now prove the Gauss — Bonnet Theorem.
Let M be a compact, oriented, 2-dimensional manifold and X a vector field o M.

Definition 5.2.1. A point p € M is said to be a singular point of X if X, = 0. A
singular point is said to be an isolated singularity if there exists a neighbourhood
V < M of p such that p is the only singular point of X in'V.

Since M is compact, if all the singularities of X are isolated then they are
infinite in number. To each isolated singularity p € V of X € 2 (M) one can
associate an integer number, called the index of X at p, as follows :

1. fix a Riemannian metric in M

2. choose a positively oriented orthonormal frame {Fj, F>} defined on V\{p},
such that

X
X

Fi =

let {@!, {®?} be the dual coframe and let {@;> be the corresponding con-
nection form

3. possibly shrinking V, choose a positively oriented orthonormal frame {E}, E»},
defined on V, with dual coframe {®', ®*} and connection form ®?

4. take a neighbourhood D of p in V, homeomorphic to a disc, with smooth
boundary ¢D, endowed with the induced orientation, and define the index
I, of X at p as

2nl, = §;p 0,

where 6 := @7 — ®? is the form in Proposition 5.1.3

Here o satisfies 0 = d0, where 0 is the angle between Ey and F;. Hence I, must
be an integer. Next one should check the well definedness of 1, and also show
that 7, does not depend on the choice of Riemannian metric.
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Theorem 5.2.1 (Gauss- Bonnet). Let M be a compact, oriented, 2-dimensional
manifold and let X be a vector field in M with isolated singularities p; ... py. Then

k
K=2m) I,
Jy k=273

for any Riemannian metric on M, where K is the Gauss curvature.

Proof. Consider the positively oriented orthonormal frame {Fj, F>}, with

p_ X
=
11

defined on M UX_| {p;}, with dual coframe {®' ®>} and connection form @;.

For r > 0 sufficiently small, we take B; := B,(p;) such that E N B_J =¢ fori#j
and note that

f K:J Kﬁlszz—J Kdwoy*
M\U*_,B; M\U¥_,B; M\U¥_,B;

k
- -
J ]] :ZJ W,
uf:,(?B,- i=1 0B;

where the 0B; have the orientation induced by the orientation of B;. Taking the

limit as ¥ — O one obtains )
J K =211,
M i=1
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