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Abstract

Symmetric functions arise in several branches of mathematics such as Combinatorics, Rep-
resentation of symmetric groups and Algebraic geometry. Schur polynomials are a family
of symmetric polynomials that are indexed by partitions of positive integers. These poly-
nomials span the space of symmetric polynomials and their products can again be written
as a linear combination of Schur polynomials with non-negative integer coefficients known
as Littlewood-Richardson coefficients.
In this thesis, we begin with the study of the combinatorics of Young tableaux, the words
associated to them,the plactic monoid and the tableau ring. In the subsequent chapters we
discuss the Robinson-Schensted correspondence and its applications,introduces the Schur
polynomials and LR coefficients and discuss three combinatorial models that help compute
the LR coefficients. Finally in chapter 4 we apply the combinatorial methods studied to
give an elementary proof of a result on Schur positivity in a very special case.
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Chapter 1

The Tableau Ring

In this chapter, we fix the basic notations of a combinatorial object called young tableaux

1.1 Notations

1.1.1 Young diagram

A Young diagram is a collection of boxes, arranged in left-justified rows, with a weakly
decreasing number of boxes in each row. Listing the number of boxes in each row gives a
partition of the integer n which is the total number of boxes in the diagram. Also conversely
every partition of n corresponds to a Young diagram.
For example , the partition of 16 into 5+4+4+3 corresponds to the Young diagram.

We usually denote a partition by λ = (λ1,....,λl) , a sequence of weakly decreasing positive
integers. We usually identify a partition λ with the corresponding diagram.
Any way of putting a positive integer in each box of a Young diagram will be called a filling
of the diagram.

1.1.2 Young tableaux

A Young tableau, or simply a tableau is, a filling that is

1. weakly increasing across each row

2. strictly increasing down each column
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We say that λ is the shape of tableau. For example

1 2 2 3 5

2 3 4 4

3 4 5 6

5 5 6

is a tableau of shape (5,4,4,3).
A standard tableau is a tableau in which the entries are the numbers from 1 to n each occur-
ring once. For example

1 3 7 12 15

2 5 10 13

4 8 11 16

6 9 14

The entries of tableaux can be taken from any totally ordered set, but we usually take posi-
tive integers.
Flipping a Young diagram over its main diagonal gives the conjugate diagram. The con-
jugate of λ will be denoted here by λ̃. For example, the partition in the above examples
(5,4,4,3) has the conjugate diagram (4,4,4,3,1)

Any numbering T of a diagram determines a numbering of the conjugate, called the trans-
pose, and denoted T τ . The transpose of a standard tableau is a standard tableau, but the
transpose of a tableau need not be a tableau.

1.1.3 Schur polynomial

Associated to each partition λ and integer m such that λ has at most m rows, there is an
important symmetric polynomial sλ(x1, ...., xm) called Schur polynomial.
These polynomials can be defined in the following way. To any numbering T of a Young
diagram we have a monomial, denoted xT , which is the product of the variables xi corre-
sponding to the i’s that occur in T. For the very first example of tableau, this monomial is
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x1x
3
2x

3
3x

3
4x

4
5x

2
6. Formally,

xT =
m�

i=1

(xi)
number of times i occur in T

The Schur polynomial sλ(x1, ...., xm) is the sum

sλ(x1, ...., xm) =
�

xT

of all monomials coming from tableaux T of shape λ using the numbers from 1 to m. These
polynomials are symmetric in the variables x1, ...., xm, and they form an additive basis for
the ring of symmetric polynomials. we will prove this results later. We mention here two
special cases of Schur polynomial.
The Young diagram of λ = (n) has n boxes in a row

The Schur polynomial for this parition is nth complete symmetric polynomial, which is the
sum of all distinct monomials of degree n in the variables x1, ...., xm; this is usually denoted
hn(x1, ...., xm). For the other extreme case i.e., λ = (1n), the Young diagram is

The corresponding Schur polynomial is the nth elementary symmetric polynomial, which
is the sum of all monomials xi1xi2....xin for all strictly increasing sequences 1 ≤ i1 < i2 <

... < in ≤ m and is denoted en(x1, ...., xm).

1.1.4 Skew tableau

A partition µ = (µ1, µ2....)is said to be contained in a partition λ = (λ1,λ2....) if µi ≤ λi

for all i. A skew diagram is the diagram obtained by removing a smaller young diagram
from a larger one that contains it. The resulting skew shape is denoted λ/µ. A skew tableau
is a filling of the boxes of a skew diagram with positive integers, weakly increasing in rows
and strictly increasing in columns. For example, if λ =(4,4,3,1) and µ =(3,3,1), then the
following is a skew tableau on λ/µ

3



2

4

1 3

2

The set {1, 2, ....,m} of first m positive integers is denoted [m].

1.2 Calculus of tableaux

There are two basic operations on tableaux called the Schensted-bumping operation and
Schutzenberger sliding operation. Majority of combinatorial properties of tableaux can be
deduced from these two operations. In this section we define these two operations and claim
that these two operations can be used to define a multiplication on the set of all tableaux.

1.2.1 Row bumping or Row insertion

The algorithm for this process is as follows:- We take a tableau T and a positive integer x.
first we check x against the entries of first row of T, if x is at least as large as the last entry
of the first row we simply place x in a new box at the end of the first row of T. the resulting
diagram is clearly a tableaux. Now,if that is not the case, that is there is an entry in the first
row of T which is strictly larger than x then we bump the left-most entry which is strictly
larger than x and place x in that box. Now the bumped entry comes to the second row and
the above process is repeated, this process is continued until bumped entry can be put at the
end the row it is bumped into, or until it is bumped out at the bottom, where it forms a new
row with one entry.
So what happens here is we take a tableau T and a positive integer x and inserts this positive
integer into this tableau to get a new tableaux denoted T ←− x which has one additional
box than T and with some rearrangement so as to preserve the properties of a tableau.
The weakly increasing property of rows of a tableau is clearly preserved. Now here we
check that the strictly increasing property of tableau is also preserved. Let z be the entry
directly below y of two successive rows in a tableau (y < z),let x bumps the entry y in
that row (x < y), so now y can only bump entries to the left of or the box containing z
in the next row, thus the entry lying above the new position of y is no larger than x, so is
strictly smaller than y. Hence the strictly increasing property across column of a tableau is
preserved.

Example 1. Consider the row insertion of 2 into the given tableau
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1 2 2 3 5

2 3 4 4

3 4 5 6

5 5 6

First 2 comes and bumps 3 from the first row, this bumped 3 bumps the left-most 4 of the

second row, which then bumps the 5 of third row, which then bumps 6 of the fourth row and

finally this 6 is placed in a new box in a new row. So the resulting tableau will look like:

1 2 2 2 5

2 3 3 4

3 4 4 6

5 5 5

6

Note that the above operation of row bumping is invertible. That is given the resulting
tableau of row bumping, together with the position of new added box, we can retrieve the
initial tableau and the positive integer inserted just by reversing the above process.
A row bumping T ←− x defines a collection R of boxes of the tableau T ←− x consisting
of all the bumped boxes in the row insertion in sequence together with the box where the
last bumped element lands. This is called the bumping route. Also the box which is in
T ←− x but not in T is called the new box of the row bumping.
For example the bumping route of the previous example consists of the shaded boxes in the
given figure, and the new box is the box containing 6 in the last row.

1 2 2 2 5

2 3 3 4

3 4 4 6

5 5 5

6

It is clear from the process of bumping that a bumping route has at most one box in each of
several successive rows, starting at the top. We say that route R is strictly left( respectively
weakly left) of a route R�, if for each row which contains a box of R�, R has a box which is
left of( respectively left or equal to) the box in R�.
Now using these terminologies we can introduce a new lemma about the bumping process
which states the consequence of two successive row-insertions. This lemma relates the rel-
ative size of elements inserted to the position of newly added boxes
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Lemma 1.2.1. Row Bumping Lemma: Consider two successive row insertions, first row

inserting x in a tableau T and then row inserting x� in the resulting tableau T ←− x,

giving rise to two routes R and R�, and two new boxes B and B�.

• If x ≤ x�, then R is strictly left of R�, and B is strictly left of and weakly below B�.

• If x > x�, then R� is weakly left of R and B� is weakly left of and strictly below B.

Proof. Suppose x ≤ x�, x bumps an element y from the first row of T. now when x� comes
to bump an element y� of the first row of T ←− x, it can only bump an element which is
strictly to the right of box containing x since x ≤ x�. In particular y ≤ y�. This argument
continues from row to row. The route for R cannot stop above that of R� since any bumping
route cannot end in the middle of a row, now if R� stops first, the route for R never moves
to the right, hence the box B must be strictly left of and weakly below B�.
Now to prove the second part of the lemma, suppose x > x�. let x bumps the entry y from
the first row , now when x� comes to bumps the entries of the first row of T ←− x it can
only bump the entries at or to the left of the box where x is bumped since x > x� so in
particular we have y > y�. The same argument can be repeated on successive rows. Here
the route R� must continue at least one row below that of R. This proves the lemma.

Proposition 1.2.2. Let T be a tableau of shape λ, and let

U = ((T ←− x1) ←− x2).... ←− xp,

for some x1, x2, ..., xp. Let µ be the shape of U. If x1 ≤ x2 ≤ .... ≤ xp, then no two of the

boxes in µ/λ are in the same column. Conversely, suppose U is a tableau on a shape µ, and

λ a young diagram contained in µ, with p boxes in µ/λ. If no two boxes in µ/λ are in the

same column, then there is a unique tableau T of shape λ, and unique x1 ≤ x2 ≤ .... ≤ xp

such that U = ((T ←− x1) ←− x2).... ←− xp,.

Proof. The first claim of the proposition is a direct consequence of the Row Bumping
lemma. So we need only prove the converse. Here we have the diagram µ/λ with no
two boxes in the same column. So we will do the reverse row bumping on U using the
boxes of µ/λ, starting from the right-most box and going to the left. Let T be the resulting
tableau and xp, ...., x1 the elements bumped out in order. Row Bumping lemma ensures the
condition x1 ≤ x2 ≤ .... ≤ xp . This proves the converse.

This bumping process can be used to define product on a given pair of tableaux T and
U. The product T*U is defined in the following way. First of all we row insert the first
element of the last row of U into T then the next element in the same row and so on till
all the elements of the last row of U is inserted into T. Now repeat the same process with

6



the second last row U from left to right in order and move up U until all the rows are ex-
hausted. This will give a new tableaux and is said to be the product of T and U denoted T*U.

Proposition 1.2.3. This product operation makes the set of all tableaux into an associative

monoid. The empty tableau is a unit in this monoid.

We will prove this proposition later

1.2.2 Sliding; jeu de taquin

This is an another operation on skew tableaux,which can also be used to construct a product
between tableaux.
An inside corner of a skew diagram λ/µ is a box in the deleted diagram µ such that the
boxes below and to the right are not in µ. In the given example the shaded boxes with black
are the inside corners for λ = (4,4,3,1) and µ = (3,3,1)

2

4

1 3

2

Similarly an outside corner is a box in the diagram λ such that boxes neither to the right or
below it is in λ. In the above example the boxes shaded with green are outside corners.
Note that a skew diagram can arise out of more than one choice of λ and µ.
The procedure for sliding operation is as follows; Given a skew tableau and an inside corner,
it slides smaller of its two neighbours one to the right or below into the empty box. In case
both neighbours are the same the one below is preferred. This induce a new hole(empty
box) in the skew diagram. Now the above process is repeated to this empty box and is
continued till the hole becomes an outside corner. Since in the process of sliding the box
which is added is an inside corner and box which is removed is an outside corner The shape
of the diagram remains a skew diagram. Now we are gonna check the weakly increasing
and strictly increasing property of skew tableau in both horizontal and vertical slide.
Lets first check the horizontal slide.

a b

c d

e f

let d < f , then d slides into the hole and hole shifts to the box where d initially was, then
the diagram look like;

7



a b

c d

e f

Since a ≤ b < d and d < f we have a < d < f as required. Hence horizontal case is
verified.
Now let f ≤ d then f slides into the hole and hole slides into the position of f , then the
diagram looks like;

a b

c f d

e

Since c < e ≤ f and f ≤ d we have c ≤ f ≤ d as required. So vertical case also verified.
Similar to the bumping process the sliding process is also invertible.
Given any skew tableau S, take any inside corner and do this sliding process, take the
resulting skew tableau and an inside corner and do the same process and continue this
process until there is no more inside corners. The result is a tableau. This tableau is called
a rectification of S and the whole process is called the jeu de taquin.

Proposition 1.2.4. Starting with a given skew tableau, all choices of inside corners lead to

the same rectified tableau. that is, it is independent of the sequence of inside corners chosen.

We will prove this proposition also later.
Now lets define the product on a pair of tableaux using sliding. Given any two tableau T
and U construct a skew tableau T ∗ U by taking a rectangle of empty squares with same
number of columns as T and same number of rows as U, and place U to the right and T
below this rectangle. For example,

T ∗ U =

2 5

4

6

5 5 5

6

The product of T and U is defined to be Rect(T ∗U ), which is unique assuming the previous
proposition.

Proposition 1.2.5. The product defined using the bumping and sliding agrees.

We will prove this proposition too later.
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1.3 Words; The plactic monoid

Here we introduce the notion of words, which helps us to represent a tableau as a sequence
of positive integers. This will be crucial in proving the propositions stated earlier.
Any sequence of positive integers is defined to be a word. Given two words w and w�, w∗w�

is the juxtaposition of words w and w�

Let w = 2223 and w� = 3431, then w ∗ w� = 22233431.
Now we define the word of a tableau T by reading the entries of T from left to right and
bottom to top in order. For example the tableau

1 2 2 3 5

2 3 4 4

3 4 5 6

5 5 6

has word 5563456234412235. Usually the word of a tableau T is denoted by w(T ). Con-
versely given the word of a tableau w(T ), we can recover the tableau T. For this we first
breakdown the given word into pieces, that is whenever an entry is strictly larger than the
preceding entry we put a break after the former. This partitions the word into pieces. Here
each piece is a row of the tableau T. For the above word it looks like 556|3456|2344|12235,
Now we stack each piece over the preceding piece in a left-justified manner. The result is
the tableau T.
Here note that every word cannot come from a tableau. For a word to come from a tableau,
the pieces must have weakly increasing length and when stacked up , the columns should
have strictly increasing property. Also note that any word can arise out of a skew tableau
and different skew tableaux can have the same word which is not true in the case of tableaux.

Now we are going to understand what the bumping process does to the word of a tableau.
And this will help us in relating the word of a product of two tableaux to the words of its
factors. Suppose an element x is inserted into a row. We first factor this row as ux�v where
u and v are weakly decreasing words, x� is a integer, such that each integer in u is no larger
than x and x� is strictly larger than x. Bumping process replaces x� by x , so the word ux�v

becomes uxv and x� is bumped into the next row. So the basic algorithm is

(ux�v)*x −→ x�uxv if u ≤ x < x� ≤ v

For example row insertion of 2 into the tableau with word (44)(234)(1225) can be ex-
pressed as follows;
(44)(234)(1225)*2 �→ (44)(234)5(1222) �→ (44)(2345)(1222)

9



Bumping process can be explained in the language of a computer program, In the pro-
cess, the word is broken down into atomic pieces as described earlier. This helps to reveal
its inner structure and will be crucial to the proofs of the propositions stated earlier. The
procedure is as follows;
When we row insert an element x into a tableau T. We first check x against the last entry of
first row of T. If it is not larger than x, place x in a new box at the end of first row. Now in
case the last entry z is larger than x and also the entry y before if it is larger than x, we shift
x one step to the left and repeat the process.The steps can be listed as follows;
Lets factor the first row into ux�v, where the relations of u,x�,v are same as above. then,

ux�v1...vq−1vqx �→ ux�v1...vq−1xvq (x < vq−1 ≤ vq)
. �→ ux�v1...xvq−1vq (x < vq−2 ≤ vq−1)
..... �→ ux�v1xv2...vq−1vq (x < v1 ≤ v2)

. �→ ux�xv1...vq−1vq (x < x� ≤ v1)
In each of the above steps the basic transformation is

yzx �→ yxz if x < y ≤ z (K �)

Let us continue the above process with x bumping x� and x� successively moving to left;

u1...up−1vpx
�xv �→ u1...up−1x

�upxv (up ≤ x < x�)
. �→ u1...x

�up−1upxv (up−1 ≤ up < x�)
..... �→ u1x

�u2u3...upxv (u2 ≤ u3 < x�)

. �→ x�u1u2...upxv (u1 ≤ u2 < x�)
Each of these transformations is governed by the rule

xzy �→ zxy if x ≤ y < z (K ��)

An elementary Knuth transformation on a word applies one of the transformations (K �) or
(K ��), or their inverses, to three consecutive letters in the word.
Two words are said to be Knuth equivalent if each can be changed to another by a sequence
of elementary Knuth transformations and denoted by w ≡ w�. All of the above discussion
proves the following proposition.

Proposition 1.3.1. For any tableau T and a positive integer x,

w(T ←− x) ≡ w(T ) ∗ x

10



That is, word of a tableau T after inserting x is Knuth equivalent to the word of T juxtaposed

with x.

Corollary 1.3.1.1. If T*U is the product of two tableaux T and U, constructed by row-

inserting the word of U into T, then

w(T ∗ U) ≡ w(T ) ∗ w(U).

Corollary follows since the first construction of the product T*U of two tableaux was
by successively row inserting the letters of the word of U into T.
But the fact that sliding procedure preserves the Knuth equivalence of the words of skew
tableau is not so obvious. We are gonna prove that the Knuth equivalence class of a word
is unchanged by each step in a slide. One thing to noted here is that in each step of sliding
the configuration may not be a skew tableau, but rather a skew tableau with a hole in it.
However the word of such configuration is also defined by reading the entries from left to
right and bottom to top.
In case of a horizontal slide, the word itself is not changed. Therefore the claim is evident.
Now let us see what happens in a vertical slide. Consider the general case of the given
tableau,

u1 .... up y1 .... yq

v1 .... vp x z1 .... zq

changing to

u1 .... up x y1 .... yq

v1 .... vp z1 .... zq

where ui’s, vi’s, yj’s, and zj’s are weakly increasing sequences, ui < vi and yj < zj for all
i and j, also vp ≤ x ≤ y1.
Let u = u1....up , v = v1....vp , y = y1....yq z = z1.....zq.
Given this we must prove that

vxzuy ≡ vzuxy (1.1)

We will prove this using induction on the value of p. When p=0, above equation becomes
xzy ≡ zxy. On expanding we have

xz1....zqy1....yq ≡ z1....zqxy1....yq

11



Consider the left hand side of the above equation, If y1 is inserted in a row with entries
x,z1....zq, then the entry z1 is bumped out of the row. We know that row-insertion respects
Knuth equivalence by proposition(1.3.1). Therefore we have the following,

xz1....zqy1 ≡ z1xy1z2...zq

Now row-insertion of y2 into the row with entries x,y1,z2,....,zq bumps the entry z2 and
hence have the following,

xy1z2...zqy2 ≡ z2xy1y2z3....zq

Continuing this process of row-insertion till yq we have

xz1....zqy1....yq ≡ z1....zqxy1....yq

which is as required.
Now let p ≥ 1 and assume equation (1.1) for smaller p. Set
u� = u2....up, v� = v2...vp

As usual we start with the left hand side of equation(1.1) i.e, vxzuy = v1v
�xzu1u

�y.
Row inserting u1 in the row with word v1v

�xz bumps v1, giving v1v
�xzu1 ≡ v1u1v

�xz by
proposition(1.3.1). Which implies

v1v
�xzu1u

�y ≡ v1u1v
�xzu�y

Assumed equation for p-1 gives v�xzu�y ≡ v�zu�xy, so we have,

v1u1v
�xzu�y ≡ v1u1v

�zu�xy

Finally, row-inserting u1 in the row with word v1v
�z bumps v1, giving the equivalence

v1v
�zu1 ≡ v1u1v

�z. hence it follows

v1u1v
�zu�xy ≡ v1v

�zu1u
�xy = vzuxy

So we have proved for p assuming for p-1.
This completes the proof of the following proposition:

Proposition 1.3.2. If one skew tableau can be obtained from another skew tableau by a

sequence of slides, then their words are Knuth equivalent.
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Now We are going to state an important result which will form the base for the proofs
of the propositions stated earlier.

Theorem 1.3.3. Every word is Knuth equivalent to the word of a unique tableau.

Proof. Given an arbitrary word say w = x1x2...xr, Construct a tableau by the following
procedure; Consider a single box tableau with x1 as its entry, now row insert successively
x2,x3,....xr. that is

((...(( x1 ←− x2)
.←− ..) ←− xr)

This gives us a tableau. By proposition (1.3.1) word of this tableau is Knuth equivalent
to the word w. We call this the canonical procedure for constructing a tableau whose word
is Knuth equivalent to a given word, and we denote the resulting tableau by P (w). The
uniqueness claim in the theorem is not evident. This will require a new idea and will be
proved later.

Now for the time being we assume the theorem and draw a few consequences, includ-
ing the proofs of the three propositions (1.2.3, 1.2.4, 1.2.5) stated earlier. From proposi-
tion(1.3.2) and the theorem it follows;

Corollary 1.3.3.1. The rectification of a skew tableau S is the unique tableau whose word

is Knuth equivalent to the word of S. If S and S � are skew tableaux, then Rect(S) = Rect(S �)

if and only if w(S) ≡ w(S �).

Theorem (1.3.3) can be used to define a third product T*U of two tableaux. Define T*U
to be the unique tableau whose word is Knuth equivalent to the word w(T ) ∗ w(U), where
the product of two words is defined simply by writing one after the other.

Corollary 1.3.3.2. The three constructions of the product of two tableaux agree.

Proof. It is enough to show that each of the first two constructions produces a product T*U
with the property that w(T ∗ U) = w(T ) ∗ w(U). For the construction using bumping this
follows from the corollary (1.3.1.1) and for the construction using sliding it follows from
the proposition (1.3.2).

Our next task is to prove the uniqueness claim of Theorem(1.3.3). Once we have proved
this uniqueness, then from the theory we constructed till now we have proof for the propo-
sitions(1.2.3, 1.2.4, 1.2.5). As a first step towards this task we are going to introduce the
concept of increasing sequences of a word.

13



1.4 Increasing sequences

Given a word w, define the following:
Let L(w, 1) be the length of a longest weakly increasing sequence of w and let L(w, 2)
be the largest number that can be realized as the sum of the length of two disjoint weakly
increasing sequences of w. Similarly for any k ∈ N, let L(w, k) be the largest possible
number that can be obtained as the sum of the length of k disjoint weakly increasing se-
quences of w. To illustrate this concept, let

w = 1121322132.

Since 111223 is a weakly increasing sequence of w and no sequence in w of length > 6 is
a weakly increasing sequence we have L(w, 1) = 6.
Clearly the whole word w cannot be written as a sum of two disjoint weakly increasing
sequences of w, therefore L(w, 2) �= 10. Since 111222 and 233 form a disjoint weakly
increasing sequences of w we have L(w, 2) = 9.
So it immediately follows that L(w, 3) = 10.
Also note that for any k > 3, L(w, k) = 10 ( by considering zero sequences).

Proposition 1.4.1. Let T be a tableau on the shape λ = (λ1, ...,λm) and w be it’s word.

Then we have,

L(w, k) = λ1 + λ2 + ...+ λm for all k ≥ 1

Proof. Assume we are given a weakly increasing sequence w1 of w. Suppose we have two
entries from the same column of T in the sequence w1. This would contradict the weakly
increasing property of w1, which means that there is at most one entry from each column of
T for any weakly increasing sequence of w. Since the word of the first of T forms a weakly
increasing sequence we have

L(w, 1) = number of columns of T = λ1

Let w�
1 = word of first row of T

w�
2= word of second row of T

.

.
w�

k = word of kth row of T.
By the definition of tableau each w�

i is a weakly increasing sequence and for any k ≥ 1 the
sum of the length of these sequences is λ1 + λ2 + ...+ λk.
Now if we take any k disjoint weakly increasing sequences from w. Since any weakly
increasing can contain at most one entry from each column of T, we can replace each of

14



these k disjoint sequences by sequences from the first k rows of T with the same number of
boxes. This proves our claim.

Proposition 1.4.2. Let w and w� be two Knuth equivalent words, then

L(w, k) = L(w�, k) for all k.

Proof. The words w and w� and Knuth equivalent implies that w� can be obtained from w

by a sequence of elementary Knuth transformations and vice versa. So it suffices to show
that L(w, k) = L(w�, k) when w and w� are two sides of an elementary Knuth transforma-
tions. The two possible cases of this are the following,

(i) one u · yxz · v ≡ u · yzx · v (x < y ≤ z)

(ii) u · xzy · v ≡ u · zxy · v (x ≤ y < z)

Let M be a collection of disjoint weakly increasing sequence of w�, then clearly the same
collection M forms a disjoint weakly increasing for w also in both cases (1) and (2). There-
fore we have

L(w, k) ≥ L(w�, k) (1)

Now need to prove the other direction. That is,L(w�, k) ≥ L(w, k). This is not trivial as
before, so we will prove this in cases.
Case1
Let M be a collection of disjoint weakly increasing sequences of w. Suppose no sequence
in this collection M have both x and z occurring simultaneously, then the same collection
M forms a disjoint weakly increasing sequence for w�.
Case2
Suppose there exist a sequence in M with both x and z occurring simultaneously, let us
assume this sequence to be u1 ·xz ·v1 then the same sequence won’t be a weakly increasing
sequence for w�.To prove this case we divide case into two subcases.
subcase 1
Suppose no sequence in M uses the entry y, then the sequence u1 · yz · v1 forms a weakly
increasing sequence with the same number of entries in case (i) and u1 · xy · v1 in case (ii)
for w�. Remaining all other sequences M unchanged, we have a new collection M � with
same total number of entries of M .
subcase 2
Suppose some sequence in M uses the entry y, that is, we also have a sequence u2 · y · v2
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in M . Here the sequences u2 · yz · v1 and u1 · x · v2 forms a disjoint weakly increasing
sequence for case (i) and u1 · xy · v2 and u2 · z · v1 in case (ii) for w�. Similar to subcase
1, Remaining all other sequences of M unchanged we have a new collection M � with same
total number of entries as that of M .
So in short, given a collection of disjoint sequences of w we were able to construct a col-
lection M � for w� with the same total number of entries. This proves

L(w�, k) ≥ L(w, k) (2)

Combining (1) and (2) we have,

L(w�, k) = L(w, k) for all k,

This completes the proof.

REMARK: Proposition(1.5.1) , (1.5.2) together implies that for each word in a equiv-
alence class, when we do the canonical procedure of constructing a tableau, each of the
resulting tableau will have the same shape.

Proposition 1.4.3. If w and w� are two Knuth equivalent words. Let w0 and w�
0 are the

words obtained by removing l largest and m smallest letters from each, then w0 and w�
0 are

Knuth equivalent words

Proof. It suffices to check whether removing the largest letter from two Knuth equivalent
words gives two equivalent words then all the claims of the proposition will follow by
induction and symmetry. Here it is sufficient to check the proposition holds in cases (i) and
(ii) of the proof of proposition(1.5.2).
Case 1
If the letter removed from the words is not one among x,y and z, then the Knuth equivalence
of the resulting words is obvious.
Case 2
Now if the entry removed is one among x,y and z, then the entry removed being largest it
should be z, in which case the resulting words are same.
This proves the proposition.

Now We have enough tools to prove the uniqueness of Theorem(1.3.3).

Proposition 1.4.4. Given a tableau T and its word w(T ). If a word w is Knuth equivalent

to w(T ), then w uniquely determines T .
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Proof. To prove this we use induction on the length of the word w. For a word of length 1
the statement clearly holds. As a consequence of proposition (1.5.1),(1.5.2) the shape λ of
T is determined by w.

λk = L(w, k)− L(w, k − 1)

Suppose y is the largest letter in w. Let T0 be the tableau obtained by removing the right
most occurrence of y from T and let w0 be the word obtained by removing the right most
occurrence of y from w. Clearly then w(T )0 = w(T0). By proposition 3 we have w0 Knuth
equivalent to w(T0). Therefore by induction T0 is the unique tableau whose word is Knuth
equivalent to w0. Since we know the shape of T0 and T , the only possibility of T is that it
is obtained from T0 by placing y in the box which is there in the Young diagram of T but
not that of T0.

Now since we have proved the uniqueness of Theorem(1.3.3), the proofs for proposi-
tions(1.2.3, 1.2.4, 1.2.5).

1.5 Tableau ring

Let F be the free monoid consisting of words from the alphabet [m] and let R be the equiv-
alence relation generated by the Knuth relations (K’) and (K”). Let M = F/R be monoid
consisting of equivalence class of words, where empty word φ is the unit. Since for w ≡ w�

and v ≡ v� we have w · v ≡ w · v� ≡ w� · v� and therefore the operation is well defined. This
moniod M is called the Plactic monoid. This plactic monid M is isomorphic to monoid of
tableaux we defined earlier, where each tableau T is mapped to the equivalence class of the
word w(T ).
Now given a monoid we have an associated group ring by taking the formal linear combi-
nations. For the monoid of tableaux this ring is called the tableau ring R[m]. Note that this
is an associative but not commutative ring.

Summary of the chapter

• Introduced the notion of Young tableaux.

• Introduced two fundamental operations on tableaux and used each to define product
on the set of tableaux.

• Defined the notion of words and used it to define a third product on set all tableaux.

• Proved each product agree with each other.

• Under each product the set of all tableaux forms an associative monoid.

• Finally using this monoid defined the the tableau ring R[m]
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Chapter 2

Robinson Schensted Knuth
Correspondence And Applications

The row bumping algorithm can be used to give a remarkable one-to-one correspondence
between matrices with nonnegative integer entries and pairs of tableaux of the same shape,
known as the Robinson Schensted-Knuth correspondence(R-S-K).

2.1 The Correspondence

Definition 1. We say a two-rowed array ω =

�
u1 u2 . . . ur

v1 v2 . . . vr

�
is in lexicographic

order if the following equations hold

u1 ≤ u2 ≤ · · · ≤ ur (2.1)

vk−1 ≤ vk, if uk−1 = uk (2.2)

This is the ordering on pairs
�
u
v

�
, with the top entry taking precedence:

�
u
v

�
≤

�
u�

v�
�
, if

u < u�, or if u = u� and v ≤ v�.

Example 2.

�
1 1 2 3

1 2 2 1

�
is an example for lexicographic ordering of a two rowed ar-

ray while

�
1 1 2 3

2 1 2 1

�
is not.

Given any two rowed array ω =

�
u1 u2 . . . ur

v1 v2 . . . vr

�
that is in lexicographic order,

we can construct a pair of tableaux (P,Q) with the same shape by the following procedure.
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Start with P1 = v1 and Q1 = u1 . To construct (Pk, Qk) from (Pk−1, Qk−1), row insert
vk in Pk−1, getting Pk; add a box to Qk−1 in the position of the new box in Pk and place
uk in this box to get Qk. The (P,Q) is the last in a sequence of pairs (Pk, Qk), 1 ≤ k ≤ r.
We have seen that each Pk is a tableau. To prove inductively that each Qk is a tableau, we
need to check that when we place an entry uk under an entry ui of Q(k−1), then uk > ui.
Suppose not, they must be equal by (2.1) of Definition 1, then by (2.2) of Definition 1 we
have vi ≤ vi+1 ≤ ... ≤ vk. So by the row bumping lemma, the added boxes going from Pi

to Pk should be in different columns, which is a contradiction. This implies uk > ui.
Now we look at the reverse process, that is given an arbitrary ordered pair of tableaux (P,Q)
of same shape, how to get back the two rowed array that is in lexicographic order.

Given an arbitrary ordered pair of tableaux (P,Q) of same shape, one can perform the
reverse row bumping process, to get a sequence of pairs of tableaux

(P , Q) = (Pr, Qr), (Pr−1, Qr−1) , . . . ,(P1, Q1),

with the two tableaux in each pair having the same shape, and each having one fewer box
than the preceding. To construct (Pk−1, Qk−1) from (Pk, Qk), one finds the box that in
which Qk has the largest entry; if there are several equal entries, the box that is farthest to
the right is selected. Qk−1 is the result of simply removing the entry of this box from Qk.
and Pk−1 is the result of performing the reverse row-insertion to Pk using this box. Let uk

be the entry removed from Qk, and let vk be the entry that is bumped from the top row of
Pk.

One gets from this a two rowed array ω =

�
u1 u2 . . . ur

v1 v2 . . . vr

�
. By the very nature of

construction it follows that ui’s are in weakly increasing order. That is,

u1 ≤ u2 ≤ · · · ≤ ur

Now if uk−1 = uk, then by case(1) of Row bumping lemma, the entry vk removed from Pk

is atleast as large as the entry vk−1 removed from Pk−1 in the next step.

=⇒ vk−1 ≤ vk if uk−1 = uk

Therefore the two rowed array obtained in the above procedure is in lexicographic ordering.

Definition 2. We call a two rowed-array a word if it’s top row consists of entries 1 to r in

order. In addition if the bottom row consists of distinct entries of [r], then such arrays are

termed permutations.

What we have done till here in this chapter amounts to the following important result.
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Theorem 2.1.1. RSK Theorem

The above operations set up a one-to-one correspondence between two-rowed lexico-

graphic arrays ω and ordered pairs of tableaux (P,Q) with same shape. This is called the

Robinson-Schensted-Knuth (R-S-K) correspondence.

A couple of corollaries that can be implied by the above theorem.

Corollary 2.1.1.1. ω is a word if and only if Q is a standard tableau. This special case of

R-S-K is called Robinson-Schensted correspondence.

Corollary 2.1.1.2. ω is a permutation if and only if P and Q are standard tableaux. This

special case is called Robinson-Schensted correspondence.

Given a lexicographic array we can associate it with an m*n matrix A (where m and n
is the largest entry in the first and second row of the array respectively) whose (i,j) entry is

the number of times
�
i
j

�
occurs in the array. For example the array

�
1 1 1 2

1 2 2 2

�
, has

the matrix

�
1 2

0 1

�

The R-S-K correspondence is then a correspondence between matrices A with nonneagative
integer entries and ordered pairs (P,Q) of tableaux of the same shape. If A is an m*n matrix,
then P has entries in [n] and Q has entries in [m].

2.1.1 Symmetry Theorem

Theorem 2.1.2. If an array ω =

�
u1 u2 . . . ur

v1 v2 . . . vr

�
corresponds to the pair of tableaux

(P,Q), then the array ω� =

�
v1 v2 . . . vr

u1 u2 . . . ur

�
corresponds to the pair (Q,P).

In terms of matrix , turning an array upside down corresponds to taking the transpose
of the matrix. The symmetry theorem then says that if the matrix A corresponds to the
the tableau pair (P,Q), then the transpose Aτ corresponds to (Q,P). In particular symmetric
matrices correspond to the pairs of the form (P,P). This implies that involutions in the sym-
metric group Sn correspond to pairs (P,P) with P a standard tableau with n boxes; so there
is a one-to-one correspondence between involutions and standard tableaux.

2.2 Applications of R-S-K correspondence

The R-S-K correspondence mentioned in the above section can be used find solutions to
some counting problems.
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2.2.1 Combinatorial identities

Let fλ denote the number of standard tableaux on the shape λ.
By R-S-K correspondence a pair of standard tableaux of same shape with n boxes in each
corresponds to an n∗n permutation matrix and conversely any n∗n permutation matrix cor-
responds to a pair of standard tableaux of same shape with n boxes in each. Also we know
that the number of n∗n permutation matrix is n!. Therefore we have the identity,

�
λ � n f

2
λ = n! (1)

Let dλ(m) be the number of tableaux on shape λ with entries from [m]. Then by a similar
argument we have the following identity,

�
λ � n dλ(m)fλ = mn (2)

REMARK: In both (1) and (2) we reduced the problem of counting the tableaux into a
problem of counting matrices which is in general easier.
The number of involutions of a symmetric group Sn is given by,

�[n/2]
k=0 n!/(n− 2k)! 2k k!

We have already shown that the pairs (P,P) of standard tableaux of n boxes are in one-to-one
correspondence with the involutions of symmetric group Sn. Therefore we have,

�
λ � n fλ =

�[n/2]
k=0 n!/(n− 2k)! 2k k!

A third application is the following,
By R-S-K correspondence we have a bijection between set of all pair of tableaux of same
shape and set of all m∗n matrices with non-negative entries, where n is the highest entry in
P and m is the highest entry in Q.
Under this correspondence, let A be the matrix associated to the pair (P,Q). Let us denote
the product of the monomials P and Q by xPyQ, then we have,

xPyQ =
�n

i=1

�m
j=1(xj yi)

a(i,j)

[That is we are able to write the product of the monomials of P and Q using the entries of
their associated matrix A]
Then it follows;

�
A∈Mm∗n

�n
i=1

�m
j=1(xj yi)

a(i,j) =
�

λ sλ(x1, ..., xn)sλ(y1, ..., ym)
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Using the summation formula of a geometric progression on LHS of the above equation
gives

�n
i=1

�m
j=1 1/(1− xi yj) =

�
λ sλ(x1, ..., xn)sλ(y1, ..., ym)

where the summation is over all partitions λ. This is a formula given by Cauchy and Little-
wood.
An another important application will be introduced in the next chapter to show a result.
Summary of the chapter

• Using the row bumping algorithm introduced a remarkable one-to-one correspon-
dence between the pair of tableaux of same shape and matrices with non-negative
integer entries called R-S-K correspondence

• Stated symmetry theorem

• Gave three applications of R-S-K correspondence in counting problems.
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Chapter 3

Littlewood Richardson coefficients

It is well known that there exists a one-to-one correspondence between irreducible finite di-
mensional representations of Sn and the partitions of n. Moreover if λ, µ and ν are integer
partitions with at most n parts, and Sλ, Sµ and Sν the corresponding irreducible representa-
tion of Sn, then the Littlewood-Richardson(LR) coefficient cλµν gives the multiplicity of Sν

in the tensor product of Sλ ⊗ Sµ.In representation, the study of LR coefficient is therefore
important. In this chapter we review certain combinatorial methods to compute them.

3.1 Ring of symmetric polynomials

Let x1, x2, ..., xn be independent indeterminates. We know that the symmetric group Sn

acts on the ring Z[x1, .., xn] by permuting the variables xi. An f ∈ Z[x1, .., xn] is said to
be a symmetric polynomial, if it is invariant under the action of Sn. The collection of all
such symmetric polynomials form a subring of Z[x1, .., xn] and is denoted by Λn. We shall
write,

Λn = Z[x1, .., xn]
Sn

For any g ∈ Λn, we have;

g =
�

r≥0 g
(r)

where g(r) is the homogeneous symmetric polynomial of degree r. This means that Λn is a
graded ring,

Λn =
�

r≥0 Λ
r
n

where Λr
n is the additive group of homogeneous symmetric polynomials of degree r in

variables x1, .., xn.
If we add m more indeterminates, we have
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Λn+i = Z[x1, .., xn+i]
Sn+i for 1 ≤ i ≤ m

Now by sending xn+1, xn+2, ..., xn+i to zero, we have a surjective homomorphism of graded
rings,

Λn+i −→ Λn

Note that the mapping Λr
n+i −→ Λr

n is surjective for all r ≥ 0 and is bijective if r ≤ n. Let,

Λr = lim←−Λr
n

By definition of inverse limit, each element of Λr is a sequence (fn)n≥0 where (fn) ∈ Λr
n

for each n and fn is obtained from fn+1 by setting xn+1 = 0. Also for each r ≥ 0, let

Λ =
�

r≥0 Λ
r

The elements of Λ are not called polynomials anymore, traditionally they are called sym-
metric functions.

3.1.1 Monomial symmetric polynomial

For an integer n, let p(n) be the set of all partitions of n. Now define,
pm(n) = {λ = (λ1,λ2, ...) ∈ p(n)|λi = 0 for i > m.}

Associated to each partition λ = (λ1,λ2, ..) ∈ pm(n) consider the polynomial obtained
by taking sum of all monomials obtained by permuting all the variables of the monomial
xλ1
1 xλ2

2 ...xλm
m . Clearly by the very definition this polynomial is symmetric and is called the

monomial symmetric polynomial .It is denoted by mλ.

Proposition 3.1.1. The set Mn
m = {mλ : λ ∈ pm(n)} is a Z basis for Λn

m

Proof. Let p(x) ∈ Λn
m, and suppose that with respect to the lexicographic ordering on

p(n),λ = (λ1, ...,λm) ∈ pm(n) is the maximal element such that the coefficient bλ of
xλ1
1 xλ2

2 ...xλm
m in p(x) is non-zero. Since p(x) is a symmetric polynomial this implies that

p(x) − bλmλ ∈ Λn
m and if µ = (µ1, ..., µm) ∈ pm(n) is such that the coefficient bµ of

xµ1

1 xµ2

2 ...xµm
m in p(x) − bλmλ is non-zero, then µ ≤ ν in the lexicographic ordering. Since

the partitions of an integer n under lexicographic ordering is a total ordering we can repeat
the same process by taking the next maximal element in the ordering. Since the polynomial
p(x) contain only finitely many terms the above process will terminate at some point. This
implies that the set {mλ : λ ∈ pm(n)} spans Λm

n .
Now we will check whether this set is linearly independent. For if

�
aλmλ = 0 with λ

maximal and aλ �= 0. This implies that the coefficient of xλ is aλ �= 0. This is contradiction
since on the R.H.S of

�
aλmλ = 0 the coefficient of xλ is zero. This proves the set we

have is indeed a linearly independent one. This proves the claim of the proposition.
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3.1.2 Schur polynomials

In chapter 1 we have defined the tableau ring R[m]. Given this, we have a have a canon-
ical ring homomorphism from the ring R[m] to the ring of polynomials over integers ,i.e
Z[x1, x2, ..., xm], where each tableau T is mapped to its corresponding monomial.
The Schur polynomials are defined as follows; Given a partition λ, define Sλ[m] = Sλ to
be an element of the ring R[m] obtained as the sum of all tableaux T of shape λ with entries
from [m]. The image of Sλ under this homomorphism in the polynomial ring is the Schur
polynomial sλ(x1, ..., xm).
Note that since in the tableau ring R[m], T ·U = Rect(T∗U). Using the ring homomorphism
R[m] → Z[x1, x2, ..., xm], the product of T and U must be mapped to xRect(T∗U). Hence via
the homomorphism,

xT · xU = xRect(T∗U)

which implies,

sµ · sν =
�

T∈Πµ,U∈Πν x
Rect[T :U ]

where Πµ (resp. Πν) denote the set of all tableaux T (resp. U ) of shape µ(resp.ν).
Now we are introducing a proposition which is an application of R-S-K correspondence
from which the fact Schur polynomials are symmetric follows.

Proposition 3.1.2. The number of tableaux on a given shape λ with m11
�s m22

�s,...,mnn
�s

is same as the number of tableaux on λ with mσ(1)1
�s mσ(2)2

�s,...,mσ(n)n
�s for any σ ∈ Sn.

Proof. First consider the case where the tableaux consists of 2 distinct entries. In this case
there is at most one tableaux possible. In the case where there is no tableau the proposition
immediately follows. Now for the case where there is one tableau we have the following
correspondence,
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Therefore the proposition holds in this case. Now let λ be a arbitrary shape and P be a fixed
tableau on this shape, then by R-S-K correspondence between the pair of tableaux (P,Q) and
matrices with non negative integers, the proposition translates into proving the following
two sets have the same cardinality.

D = {A : P (A) = P ; with row sums m1,m2, ...,mn}

E = {A : P (A) = P ; with row sums mσ(1),mσ(2), ...,mσ(n)}

Since the transpositions σ of k and k+1 where 1 ≤ k ≤ n generate the symmetric group
Sn, so we need only prove the result when σ is a transposition.
Let A be a set in D,

A =



F

G

H




where F is the first k-1 rows, G next two and H the rest.
We know that P(A) is constructed by taking the corresponding two rowed lexicographic
array of A and doing the canonical procedure of tableau construction in the bottom row.
Therefore it follows that,

P(A) = P(F)· P(G)· P(H)

We have one-to-one correspondence between matrix G having row sums mk and mk+1 with
matrix G’ having row sums mk+1 and mk and with P(G) = P(G’) by the case considered
first when translated into the language of matrices. Then

A’ =



F

G�

H




is the corresponding matrix in E. This proves the proposition.

Since xT = xm1
1 xm2

2 ...xmn
n , we have the following.

Corollary 3.1.2.1. Schur polynomials are symmetric polynomials.

Now we claim the following result.

Proposition 3.1.3. The set Sn
m = {sλ : λ ∈ pm(n)} forms a Z basis for Λn

m.

Proof. Observe that the cardinality of Sn
m is same as the cardinality of Mn

m, So it is sufficient
to check that Sn

m spans Λn
m over Z. Notice that since xλ is also the leading monomial in

sλ(x), the same proof as in proposition (3.1.1) shows that Sn
m spans Λn

m over Z .This proves
the proposition.

26



Now since we have ,

Λm =
�

n≥0 Λ
n
m

sλ forms a basis for Λm over Z as well, for λ ∈ p(n) for some n.

3.2 Littlewood-Richardson coefficient

As a consequence of the proposition (3.1.3) we havee the following;

Definition 3. Let µ and ν be two partitions and let sµ and sν be the corresponding Schur

polynomials. Then we have the following expression for the product of two Schur polyno-

mials sµ and sν .

sµ · sν =
�

λ c
λ
µνsλ where cλµν ∈ Z (1)

The coefficients cλµν arising in the above expression are defined to be the LR coefficients.

Note that given three partitions µ, ν and λ we have a unique cλµν value. Clearly cλµν = 0

if |λ| �= |µ|+ |ν|.

Let Πλ ={ set of all tableaux of shape λ.}
As observed earlier,

sµ · sν =
�

T∈Πµ,U∈Πν x
Rect(T∗U) (2)

Comparing expressions (1) and (2) observe that if V0 = Rect(T∗U) for some V0 of Shape λ,
T of shape µ and U of shape ν and there exist cλµν pairs of (T’,U’) such that Rect(T �∗U �) =

V0, then coefficient of xRect(T∗U) in (2) will be cλµν . On the other hand coefficient of xV0 in
sλ is 1. Therefore comparing the expressions (1) and (2) we see that

cλµν = cardinality of R(µ, ν, V0)

where R(µ, ν, V0) = { [T,U]: T is a tableau on µ, U is a tableau on ν and Rect(T∗U) = V0}
for any V0 of shape λ.
Note that cλµν is independent of the choice of V0 of shape λ.

Now let us define an another set,
For any tableau U0 with shape ν, let

S(λ/µ, U0) = { skew tableaux S on λ/µ : Rect(S) = U0 }
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Proposition 3.2.1. For any tableaux U0 on ν and V0 on λ, there is a canonical one to one

correspondence

R(µ, ν, V0) ⇐⇒S(λ/µ, U0)

This proposition is a consequence of Robinson Schensted correspondence stated in
chapter 2.Now we will assume this result and drew a couple of corollaries.

Corollary 3.2.1.1. The set R(ν, µ, V0) also have cardinality cλµν . That is,

cλµν = cλνµ

REMARK: This is an important symmetry of LR coefficent cλµν and will be recalled
later to prove a special case of a conjecture.

Corollary 3.2.1.2. Let sλ/µ and sν be the Schur polynomials then we have,

sλ/µ =
�

ν c
λ
µνsν

This follows since the cardinalities of the sets in proposition (3.3.1) is cλµν .

3.3 Combinatorial interpretations of Littlewood-Richardson
number

In this section we introduce three combinatorial interpretations of Littlewood-Richardson
number. Even though they seem to be different we will show that each is related to another
and are equivalent in some sense. This methods of computing the Littlewood-Richardson
number was discussed in [1].

3.3.1 Littlewood-Richardson Rule

Definition 4. A word w = x1, ...., xm is called a Yamanouchi word if when read backwards

starting at xm to any letter in w, number of times the integer k appear is greater than or

equal to number of times the integer k+1 appear ,for any positive integer.

For example the word 12132211 is a Yamanouchi word but 11232211 is not since the
last 6 letters contain more 2�s than 1�s.

Definition 5. A skew tableau S is said to be a Littlewood-Richardson skew tableau if its

word is a Yamanouchi word.
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For example,

1

1

2

is a Littlewood-Richardson skew tableau on the shape (3,2,1)/(2,1) with word 211.
The following result gives a combinatorial interpretation of LR coefficients.

Theorem 3.3.1. The number of Littlewood-Richardson skew tableau of shape λ/µ with

content ν is equal to the LR number cλµν .

Now we define some definitions and lemma necessary to prove the theorem.

Lemma 3.3.2. If w and w� are Knuth equivalent words, then w is a Yamanouchi word if

and only if w� is a Yamanouchi word.

Proof. It suffices to check the lemma on the two elementary Knuth transformations defined
earlier, since any two Knuth equivalent words is a sequence of these two elementary Knuth
transformations.
Case 1: Suppose
w = uxzyv �→ uzxyv = w� with x ≤ y < z

We need to check under this transformation, the fact that the number of times k appear is
greater than or equal to the number of times k+1 appear ,is preserved as we read from right
to left , for any positive integer k. If x < y < z there is no change, so the only non trivial
case is when x = y = k and z = k + 1. For either of the words to be a Yamanouchi,
notice that the number of times k appear in v should be greater than or equal to the number
of times k+1 appear in v. In this case both words xzyv and zxyv are Yamanouchi words.
Hence case 1 is proved.

Case 2: Suppose
w = uyxzv �→ uyzxv = w� with x < y ≤ z

Here the non trivial case is when x = k and y = z = k+1. Notice that neither of the words
are Yamanouchi unless the number of k’s in v is strictly larger than the number (k+1)’s ,
and if this is the case, both words yxzv and yzxv will have atleast as many k’s as (k+1)’s,
and hence will be Yamanouchi words. This proves the lemma.

For any partition ν define the tableau U(ν) to be the tableau of shape ν whose ith row
consists entirely of the integer i. For example,

U(ν) =

1 1 1

2 2 2

3 3

for ν = (3,3,2)
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Lemma 3.3.3. A skew tableau S is a Littlewood-Richardson skew tableau of content ν if

and only if its rectification is the tableau U(ν).

Proof. Since the only LR tableau on a shape ν is Uν due the Yamanouchi word condition.
This lemma immediately follows from Lemma(3.4.2).

Now combining the Lemmas (3.4.2),(3.4.3) with proposition (3.3.1) we have the proof for
Theorem (3.4.1).The statement of Theorem(3.4.1) is called the Littlewood Richardson rule.

3.3.2 Littlewood-Richardson triangles

For a positive integer k, a hive graph Δk of size k is a graph in the plane with
�
k+2
2

�
nodes

arranged in a triangular grid containing k2 small equilateral triangles. For k = 3 the hive
graph Δ3 is of the following form,

a03

a02

a13

a01

a12

a00

a23

a11

a22

a33

Let Tk be the
�
k+2
k

�
- 1 dimensional R vector space spanned by the set {A = (aij)0≤i≤j≤k :

a00 = 0}.
Now our task is to code each Littlewood-Richardson tableau as an element of Tk satisfying
certain conditions.

Definition 6. A vector A ∈ Tk is said to be a LR triangle of size k if it satisfies the following

inequalities.

1. aij ≥ 0, for all 1 ≤ i < j < k (P).

2.
�i−1

p=0 apj ≥
�i

p=0 ap(j+1), for all 1 ≤ i ≤ j < k (CS)

3.
�j

q=i aiq ≥
�j+1

q=i+1 a(i+1)q, for all 1 ≤ i ≤ j < k (LR)

REMARK: The inequality,

�j
p=0 apj ≥

�j+1
p=0 ap(j+1), for 1 ≤ j < k

follows from (CS) and (LR) with i = j.
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Definition 7. Cone of a vector space is a subset such that all its positive scalar multiples

are contained within the set.

Take the collection of all LR triangles in Tk and denote it by LRk.
Let A ∈ LRk and α be a positive scalar in R. Clearly each αaij is ≥ 0 for 1 ≤ i < j < k.
Hence (P) holds. Multiplication by a positive scalar clearly preserves the the (CS) and (LR)
property. Therefore αA ∈ LRk. This implies that LRk is a cone of Tk and is called the LR
cone.

Let Dk = {λ = (λ1, ...,λk) ∈ Rk : λ1 ≥ λ2 ≥ ... ≥ λk} and for λ ∈ Dk, let
|λ| =

�k
i=1 λi. Notice that if λ ∈ Pk(n) for some positive integer n and k ≤ n then

λ ∈ Dk.
Given A = (aij) ∈ LRk,

• µj = a0j , for 1 ≤ j < k (B1)

• λj =
�j

p=0 apj , for 1 ≤ j < k (B2)

• νi =
�k

q=i aiq, for 1 ≤ i < k (B3)

Since A ∈ LRk,

�j
p=0 apj ≥

�j+1
p=0 ap(j+1), for 1 ≤ j < k

=⇒ λ1 ≥ λ2 ≥ λ3.
Since,

a0j ≥ a0(j+1) + a1(j+1) for all j and aij ≥ 0.

=⇒ µj ≥ µj+1 for all j.
Further,

�j
q=i aiq ≥

�j+1
q=i+1 a(i+1)q, for all 1 ≤ i ≤ j < k

=⇒ νi ≥ νi+1.
That is, for A ∈ LRk, the associated k tuples λ,µ and ν are in Dk and clearly

|λ| = |µ|+ |ν|.

An element A ∈ LRk is said to be of type (λ, µ, ν) if A satisfies the conditions B1,B2,B3.
Let

LRk(λ, µ, ν) = {A ∈ LRk : A is of type (λ, µ, ν)}

Conversely, given a triple of partitions λ, µ, ν ∈ Dk with |λ| = |µ| + |ν| and T a LR skew
tableau of shape λ/µ with content ν, let AT = (aij) ∈ Tk be defined as follows:

• a00 = 0, a0j = µj for 1 ≤ j ≤ k
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• aij equal the number of i�s in the jth row j of T for 1 ≤ i ≤ j ≤ k

It is straightforward to check that AT ∈ LRk(λ, µ, ν).

Example 3. Let λ = (3, 3, 1), µ = (2, 1) and ν = (2, 1, 1) and let T be the LR skew tableau

as follows,

1

1 2

3

Here k =3 and dim T3 = 10-1 =9,

then by definition AT is,

0

1

0

2

1

0

0

1

1

1

Clearly AT ∈ LR3(λ, µ, ν).

Theorem 3.3.4. Let λ, µ,ν ∈ Dk be partitions such that | λ |=| µ | + | ν |. Then there

exist a bijective correspondence between non- negative integer points of LRk(λ, µ, ν) and

S(λ/µ, U(ν)) where U(ν) is as defined in section(3.3.1) and

S(λ/µ, U(ν) = { skew tableaux of shape λ/µ : Rect(S) = U(ν)}

Proof. Let T ∈ S(λ/µ, U(ν)), then content of T is ν. Let AT be the corresponding element
in Tk. AT satisfies (P) since all its entries are non-negative integers by definition. The
strictly increasing property across column of T account for AT satisfying (CS). And finally
the fact T is a LR skew tableau forces AT to satisfy (LR). Thus AT clearly belongs to LRk

and in particular it belongs to the convex polytope LRk(λ, µ, ν).
Conversely, for any Littlewood-Richardson triangle A = (aij) in LRk(λ, µ, ν) with integer
entries, define a tableau TA of shape λ/µ in the following way ; place aij i

�s in the jth row,
for each i and j, in weakly decreasing order. The result will be a Littlewood-Richardson
tableau of shape λ/µ with content ν. Hence by lemma(3.3.3) its rectification is U(ν). Both
constructions are inverse of each other. This establishes the bijection. Hence the theorem
proved.
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3.3.3 Hives

This is another combinatorial interpretation of the Littlewood-Richardson number. Here
once again we consider Δk, the hive graph of size k. We know that there are k2 equilateral
triangles in the triangular grid of Δk. Each of the two adjacent triangles in this grid combine
to form an rhombus with a pair of opposite edges having obtuse angle and the other pair
being acute. There will be three types of rhombus in the figure. One tilted to left(blue), one
vertical(green) and one tilted to right(yellow).

Definition 8. A hive of size k is a labeling H = (hij)0≤i≤j≤k of the nodes of Δk with real

numbers such that the sum of the labels of the obtuse nodes is greater than or equal to sum

of the labels of acute nodes, for each rhombus in Δk. That is we say H = (hij) is a hive of

size k if it satisfies the following inequalities.

• hij − hi(j−1) ≥ h(i−1)j − h(i−1)(j−1), for 1 ≤ i < j ≤ k (R)

• h(i−1)j − h(i−1)(j−1) ≥ hi(j+1) − hij , for 1 ≤ i ≤ j ≤ k (V)

• hij − h(i−1)j ≥ h(i+1)(j+1) − hi(j+1), for 1 ≤ i ≤ j ≤ k (L)

Let Hk be the cone of all hives of size k, with h00 = 0. We refer to this cone as hive cone.
Given H = (hij) ∈ Hk, set

• µj = h0j − h0(j−1), for 1 ≤ j ≤ k (C1)

• λj = hjj − h(j−1)(j−1), for 1 ≤ j ≤ k (C2)

• νi = hik − h(i−1)k, for 1 ≤ i ≤ k (C3)
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Note,

µ2 = h02 − h01 ≥ h13 − h12 by (V),
h13 − h12 ≥ h03 − h02 = µ3 by (R)
=⇒ µ2 ≥ h13 − h12 ≥ µ3

Or in general,

µj ≥ h(j−1)(j+1) − h(j−1)j ≥ µj+1

Symmetrically,
Since λj = hjj − h(j−1)(j−1) and,

λ2 = h22 − h11 ≥ h23 − h12 by (V),
h23 − h12 ≥ h33 − h22 = λ3 by (L)
=⇒ λ2 ≥ h33 − h12 ≥ λ3

Or in general,

λj ≥ hj(j+1) − h(j−1)j ≥ λj+1

Finally using we have,

ν1 = h13 − h03 ≥ h12 − h02 by (R),
h12 − h02 ≥ h23 − h13 = ν2 by (L)
=⇒ ν1 ≥ h12 − h02 ≥ ν2

Or in general,

νi ≥ hi(i+1) − h(i−1)(i+1) ≥ νi+1

This implies that the vectors λ = (λ1, ....,λk) , µ = (µ1, ...., µk) and ν = (ν1, ...., νk) are in
Dk and also | λ |=| µ | + | ν |.
Given λ, µ, ν ∈ Dk with | λ |=| µ | + | ν |, a hive H ∈ Hk is said to be of type (λ, µ, ν) if
the labels hij’s of H satisfy the conditions C1,C2 and C3. Let,
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Hk(λ, µ, ν) = {H ∈ Hk : H is of type (λ, µ, ν)}

For any positive integer k, we define a linear map Φk : Tk −→ Tk as follows:-
Φk(aij) = hij , where

hij =
�i

p=0

�j
q=p apq

Theorem 3.3.5. The map Φk maps LRk bijectively onto Hk and for λ, µ, ν ∈ Dk with

| λ |=| µ | + | ν |, Φk maps LRk(λ, µ, ν) onto Hk(λ, µ, ν).

Proof. Let Eij be the canonical basis of Tk, that is Eij = (eijpq), where

eijpq = {, 1, if p= i and q=j;
0, otherwise.}

Now we order this basis elements in lexicographic order of the subindices, that is’

{E01, E02, ..., E0k, E11, ...E1k, ..., Ekk}

According to the definition of the map φk.

Φk(aij) = hij

where hij = a01 + ...+ a0j + a11 + ...+ a1j + ......+ aii + ...+ aij

Hence under the map φk, we have

φk(Eij) = Eij + Ei(j+1) + ......+ Ekk.

implying that with respect to the basis {E01, E02, ..., E0k, E11, ...E1k, ..., Ekk} the matrix
of Φk is lower triangular with 1’s on the diagonal.Therefore the determinant is one, which
implies the map is volume preserving. Now since in defining the map we have only used
the operation of addition on real numbers, we have all the integer points in Tk mapped to
some other integer points in Tk bijectively, that is Z(

(k+2)
2 )−1 bijectively onto Z(

(k+2)
2 )−1.

Now define the inverse of Φk by Φ−1
k (hij) = (aij) where

hij − hi(j−1) − h(i−1)j + h(i−1)(j−1), if 1 ≤ i < j ≤ k.

aij =

�
h0j − h0(j−1), if i = 0 and 1 ≤ j ≤ k.

hjj − h(j−1)j , if 1 ≤ i = j ≤ k } .

Let (aij) ∈ LRk and (hij) = Φk(aij), then we have,
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hst − hs(t−1) =
�s

p=0 apt

and
h(s+1)t − hst =

�t
q=s+1 a(s+1)q

for 0 ≤ s < t ≤ k. Using these identities we can check the (aij) defined above sat-
isfies (P),(CS), or (LR), respectively if and only if (hij) satisfies (R),(V), or (L) respec-
tively. Hence Φk(LRk) = Hk, It is clear that (aij) and (hij) have same type; therefore
Φk(LRk(λ, µ, ν)) = Hk(λ, µ, ν)) for all λ, µ, ν ∈ Dk. Hence proved the theorem.

Now we drew some corollaries.

Corollary 3.3.5.1. The number of integer points in Hk(λ, µ, ν)) is cλµν for all λ, µ, ν ∈ Dk

with non negative integer coefficients.

Corollary 3.3.5.2. Vol(Hk(λ, µ, ν)) = Vol(LRk(λ, µ, ν)), for all λ, µ, ν ∈ Dk.

In short we have introduced the Littlewood-Richardson number in the context of mul-
tiplication of elements of the tableau ring R[m]. Then we gave three methods to compute
the Littlewood-Richardson number. Now we have enough theory to understand statement
of the conjecture in question and sufficient tools to prove it at least for lower values of k.
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Chapter Summary

• Introduced the ring of symmetric polynomials.

• Mentioned two important family of symmetric polynomials called monomial sym-
metric polynomials and Schur polynomials.

• Proved each forms a basis for symmetric polynomials over Z.

• Introduced LR coefficients in this context.

• Finally gave 3 combinatorial methods to compute the LR coefficients.(LR rule, LR
triangles,Hives)
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Chapter 4

An application of the combinatorial
interpretation of LR coefficients

A symmetric function is said to be Schur positive if it has positive integer coefficients when
written as a linear combination of Schur functions. A question in this area that has generated
a lot of interest is when are expressions of the kind

sµsν − sλsρ (1)

is Schur positive.
It was conjectured by Fomin-Fulton-Li and Poon in 2003 that an expression like (1) holds
whenever (µ, ν,λ, ρ) is a 4 tuple of partition satisfying certain conditions. This conjecture
was partially proved by Bergeron and Mcnamara in 2004 and in complete generality by
Lam,Postinikov and Pylyavskyy in 2007. Here using the method of LR triangles we prove
the mentioned result in some special case.

4.1 Statement of FFLP conjecture

Given two partitions µ = (µ1, µ2, ....) and ν = (ν1, ν2, ...). Let µ ∪ ν = (σ1, σ2, ....) be the
partition obtained by arranging all parts of µ and ν in the weakly decreasing sequence. Let

σo
µ∪ν = (σ1, σ3, σ5, ...)

σe
µ∪ν = (σ2, σ4, σ6, ...)

then

sσo
µ∪ν

sσe
µ∪ν

− sµsν is Schur positive.

In other words, it was conjectured in FFLP that given two partitions µ,ν,

cλµν ≤ cλσo
µ∪νσ

e
µ∪ν

for all partitions λ.
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4.2 Proof for the conjecture

Here we are proving the conjecture for special cases when k =2,3, where k is maximum
number of parts of the partitions involved.

4.2.1 Proof for k=2

Proof. CLAIM: Let λ, µ, ν be partitions with at most 2 parts,then

cλµ∗ν∗ ≥ cλµν

Proposition 4.2.1. Let λ, µ, ν be partitions with at most 2 parts,then

cλµν ≤ 1

Proof. We know that cλµν is the number of Littlewood-Richardson tableau on the shape λ/µ
with content ν.
Also note that for k=2, we can put only 1’s and 2’s in the tableau. For a LR tableau with
shape λ/µ and content ν, all the entries of first row are forced to be one so as to preserve
the reverse lattice property of LR tableau.
Now if ν2 > 0 ( that is the number of 2’s is at least 1), then all the 2’s are forced to be placed
towards the end of the second row with no 1 in between them so as to preserve the weakly
increasing property across row of a tableau. Therefore automatically all the remaining 1’s
are placed in the second row and to the left of 2’s of the tableau.
So in short, this forces LR tableaux to have exactly one configuration, if there exist any.
This implies that there is at most one LR tableau on the shape λ/µ with content ν. i.e
cλµν ≤ 1, that is cλµν ∈ {0, 1}

CASE 1
If cλµν = 0, For some λ, µ, ν

then clearly cλµ∗ν∗ is either 0 or 1. Therefore in both cases,

cλµ∗ν∗ ≥ cλµν

CASE 2
If cλµν = 1 and (µ∗, ν∗) = (µ, ν) for some λ, µ, ν

then cλµ∗ν∗ = cλµν , Therefore,

cλµ∗ν∗ ≥ cλµν

So the only case remaining to be proved is when cλµν = 1 and (µ∗, ν∗) �= (µ, ν). This will
exhaust all the possible cases. To prove this case we introduce the following proposition.
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Proposition 4.2.2. Let λ, µ, ν be three partitions with k=2, then cλµν = 1 if and only if the

partitions satisfies the following conditions.

• | λ | = | µ | + | ν |

• λ contains both µ and ν.

• λ2 − µ1 ≤ ν2 ≤ λ1 − µ1 ≤ ν1 ≤ λ1 − µ2 and ν2 ≤ λ2 − µ2

Proof. We know that cλµν is the number of ways in which a tableau of shape λ can be written
as a product of tableaux of shape µ and ν, where the product is defined using bumping. In
that case , we have cλµν = 0, unless | λ | = | µ | + | ν | or λ contains both µ and ν. This
implies that if cλµν = 1, then | λ | = | µ | + | ν | and λ contains both µ and ν.
Now if cλµν = 1, then the following inequalities hold,

• λ2−µ1 ≤ ν2, Since the strictly increasing property down a column need to satisfied
by an LR tableau.

• ν2 ≤ λ2 − µ2, Since two can only appear in the second row of the LR tableau.

• ν2 ≤ λ1 − µ1, otherwise, it would violate the reverse lattice property of the LR
tableau.

• λ1 − µ1 ≤ ν1, Since all the entries of the first row of a LR tableau are 1 to preserve
the reverse lattice property.

• ν1 ≤ λ1 − µ2, Clearly the upper bound for ν1 is λ1 − µ2.

Combining all the above inequalities, we get
λ2 − µ1 ≤ ν2 ≤ ≤ λ1 − µ1 ≤ ν1 ≤ λ1 − µ2 and ν2 ≤ λ2 − µ2.
Therefore we have proved one direction.
Conversely, If we are given partitions λ, µ, ν satisfying the properties mentioned above,
then we can clearly construct a LR tableau of shape λ/µ and content ν. It is almost trivial so
we are skipping the proof. Therefore the reverse direction is also proved, which establishes
the proof of the proposition.

Now using this proposition we will prove the remaining case.
CASE 3

If cλµν = 1 and (µ∗, ν∗) �= (µ, ν) for some λ, µ, ν.
So by the above proposition we have,

• | λ | = | µ | + | ν |
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• λ contains both µ and ν.

• λ2 − µ1 ≤ ν2 ≤ λ1 − µ1 ≤ ν1 ≤ λ1 − µ2 and ν2 ≤ λ2 − µ2

We need to show that cλµ∗ν∗ = 1.
So by the above proposition it is enough to show the following

• | λ | = | µ∗ | + | ν∗ |

• λ contains both µ∗ and ν∗.

• λ2 − µ∗
1 ≤ ν∗

2 ≤ λ1 − µ∗
1 ≤ ν∗

1 ≤ λ1 − µ∗
2 and ν∗

2 ≤ λ2 − µ∗
2

Since | µ∗ | + | ν∗ | = | µ | + | ν |, We have | λ | = | µ∗ | + | ν∗ |.
Given (µ, ν) which not a fixed point there is exactly 4 possible cases of weakly decreasing
sequences,( that is 4 possible choices of (µ∗, ν∗).) which are

1. µ1µ2ν1ν2 =⇒ µ∗ = (µ1, ν1) and ν∗ = (µ2, ν2)

2. µ1ν1ν2µ2 =⇒ µ∗ = (µ1, ν2) and ν∗ = (ν1, µ2)

3. ν1ν2µ1µ2 =⇒ µ∗ = (ν1, µ1) and ν∗ = (ν2, µ2)

4. ν1µ1µ2ν2 =⇒ µ∗ = (ν1, µ2) and ν∗ = (µ1, ν2)

It is enough to verify the conditions for the sub cases (1) and (2), since the other two follow
by symmetry.
SUB CASE 1
µ1µ2ν1ν2 =⇒ µ∗ = (µ1, ν1) and ν∗ = (µ2, ν2) ,Also note that µ1 ≥ µ2 ≥ ν1 ≥ ν2

First we will check that µ∗ and ν∗ is contained in λ.

µ∗
1 = µ1 ≤ λ1

µ∗
2 = ν1 ≤ µ2 ≤ λ2

Therefore µ∗ is contained in λ

By a similar argument we can show that ν∗ is contained in λ.
Now we are left to check whether λ, µ∗ and ν∗ satisfies the following inequalities,

λ2 − µ1 ≤ ν2 ≤ λ1 − µ1 ≤ µ2 ≤ λ1 − ν1 and ν2 ≤ λ2 − ν1

Note that we have the following inequalities
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λ2 − µ1 ≤ ν2 ≤ λ1 − µ1 ≤ ν1 ≤ λ1 − µ2 and ν2 ≤ λ2 − µ2

Therefore the inequalities

λ2 − µ1 ≤ ν2

and ν2 ≤ λ1 − µ1

immediately follows.
To prove the inequality λ1 − µ1 ≤ µ2 we suppose

λ1 − µ1 > µ2

=⇒ ν1 ≥ λ1 − µ1 > µ2

=⇒ ν1 > µ2

which is a contradiction.
Therefore λ1 − µ1 ≤ µ2

Since we have ν1 ≤ λ1 − µ2, it follows that µ2 ≤ λ1 − ν1.
Finally we need to check the inequality ν2 ≤ λ2 − ν1

For this suppose ν2 > λ2 − ν1,
=⇒ ν2 > λ2 − ν1 ≥ λ2 − µ2

=⇒ ν2 > λ2 − µ2

This is a contradiction.
Therefore ν2 ≤ λ2 − ν1.

Combining all the above inequalities we have

λ2 − µ1 ≤ ν2 ≤ λ1 − µ1 ≤ µ2 ≤ λ1 − ν1 and ν2 ≤ λ2 − ν1

So, In short λ, µ∗, ν∗ satisfies the three properties of the proposition. And therefore cλµ∗ν∗=1.
This implies,

cλµ∗ν∗ ≥ cλµν

SUB CASE 2
µ1ν1ν2µ2 =⇒ µ∗ = (µ1, ν2) and ν∗ = (ν1, µ2) ,Also note that µ1 ≥ ν1 ≥ ν2 ≥ µ2

Since,

µ∗
1 = µ1 ≤ λ1,
µ∗
2 = ν2 ≤ λ2

=⇒ µ∗ is contained in λ
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By a similar argument ν∗ is also contained in λ.
So we are left to prove the inequalities

λ2 − µ1 ≤ µ2 ≤ λ1 − µ1 ≤ ν1 ≤ λ1 − ν2 and µ2 ≤ λ2 − ν2.

For this, first suppose

λ2 − µ1 > µ2

=⇒ λ2 − µ2 > µ1

=⇒ ν1 ≥ λ2 − µ2 > µ1

=⇒ ν1 > µ1

which is a contradiction.
Therefore λ2 − µ1 ≤ µ2

Now suppose,

µ2 > λ2 − ν2

=⇒ ν2 > λ2 − µ2

which itself is a contradiction.
Therefore µ2 ≤ λ2 − ν2.

Now suppose,

µ2 > λ1 − µ1

=⇒ ν2 ≥ µ2 > λ1 − µ1

=⇒ ν2 > λ1 − µ1

This is a contradiction.
Hence µ2 ≤ λ1 − µ1

The inequality λ1 − µ1 ≤ ν1 follows immediately.
To prove the final inequality, suppose,

ν1 > λ1 − ν2

=⇒ ν2 > λ1 − ν1 ≥ λ1 − µ1

=⇒ ν2 > λ1 − µ1

This is a contradiction.
Therefore ν1 ≤ λ1 − ν2

Combining all the above inequalities we have,
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λ2 − µ1 ≤ µ2 ≤ λ1 − µ1 ≤ ν1 ≤ λ1 − ν2 and µ2 ≤ λ2 − ν2.

Again in this sub case the partitions λ, µ∗, ν∗ satisfy the three properties of the proposition.
Therefore cλµ∗ν∗=1., which implies,

cλµ∗ν∗ ≥ cλµν

These 3 cases exhaust all the possibilities and in each case we have, cλµ∗ν∗ ≥ cλµν .
Therefore For the partitions λ, µ, ν with at most 2 parts we have,

cλµ∗ν∗ ≥ cλµν

This completes the proof for k =2.

4.2.2 Proof for k =3

We have a different method of proof in this context, here we use the combinatorial interpre-
tation of LR coefficients, in particular the LR triangles which we discussed in the previous
chapter.

Proof. As for k=2 , the case when cλµν is zero and (µ, ν) is a fixed point the claim follows
immediately. So the non-trivial case is when (µ, ν) is not a fixed point. So will give a proof
for this case.
First we will give a general idea of the proof. We know that cλµν is the number of non-
negative integer points in the convex polytope LRk(λ, µ, ν) inside the cone LRk of the
underlying vector space T3. Therefore cλµ∗ν∗ is the number of non-negative integer points
in the convex polytope LRk(λ, µ

∗, ν∗) inside the cone LRk of the underlying vector space
T3.Now If we can construct a linear operator Φ on T3 such that when Φ restricted to the con-
vex polytope LRk(λ, µ, ν) is mapped injectively into the convex polytope LRk(λ, µ

∗, ν∗),
also under the map Φ, the non-negative integer points of LRk(λ, µ, ν) should be mapped to
non-negative integer points of LRk(λ, µ

∗, ν∗), then we can claim that,

cλµ∗ν∗ ≥ cλµν

So here we will introduce a candidate for such a map when k=3,
For any A = (aij) ∈ T3, we have an associated λ, µ, ν ∈ R3 defined as follows,

• µ = (a01, a02, a03)

• ν = (a11 + a12 + a13, a22 + a23, a33)

44



• λ = (a01 + a11, a02 + a12 + a22, a03 + a13 + a23 + a33)

Now let σ = µ ∪ ν = (σ1, σ2, σ3...) be the partition obtained by rearranging all parts of
µ and ν in weakly decreasing sequence. Since real numbers forms a totally ordered set,
this weakly decreasing sequence is unique. That is given a µ and ν, there is exactly one
decreasing sequence consisting of its components.
Let call the map we define to be Φ : T3 −→ T3, and for any (aij) ∈ T3,
let Φ((aij)) = (bij)

First of all note that

cλµν ≥ cλνµ

Hence there exist a bijection between the sets LRk(λ, µ, ν) and LRk(λ, ν, µ).
Since µ1 ≥ µi, for all i and
ν1 ≥ νi, for all i
Therefore σ1 = µ1 or ν1.
If σ1 = µ1, then for A ∈ LRk(λ, µ, ν) we show that there exist B ∈ LRk(λ, µ

∗, ν∗) such
that Φ(A) = B. And if σ1 = ν1, then for A ∈ LRk(λ, ν, µ) we show that there exist
B ∈ LRk(λ, ν

∗, µ∗) such that Φ(A) = B.
Therefore in the rest of the proof we assume without loss of generality that σ1 = a01 = µ1.
Now to make sure that the image of the convex polytope LRk(λ, µ, ν) is contained within
the convex polytope LRk(λ, µ

∗, ν∗) under the map Φ, we impose the following conditions
on Φ((aij)) = (bij).

• b01 = σ1 = a01, b02 = σ3, b03 = σ5, b33 = σ6

• b11 + b12 + b13 = σ2

• b22 + b23 = σ4

• b01 + b11 = λ1

• b02 + b12 + b22 = λ2

• b03 + b13 + b23 + b33 = λ3

Note that the above mentioned conditions are necessary but not sufficient for the map to
satisfy the above property. We need also to show that each (bij) ∈ LRk, that is each (bij)

satisfies the three properties of the LR cones. Now define each bij ,’s as follows

• b01 = a01

• b11 = a11
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• b02 = σ3

• b03 = σ5

• b13 = max{0, σ5 + a13 − (µ2 − σ3)− (σ5 − µ3)}

• b12 = max{0, σ2 − a11 − b13}

• b22 = max{0,λ2 − b12 − b02}

• b23 = max{0, σ4 − b22.}

• b33 = σ6

Now we defined all the bij’s for k = 3 case, It is trivial to check the map Φ is indeed linear.
The bij’s are precisely defined in such a way that they satisfy the three properties (P),(CS)
and (LR) of the LR cones. So now we have proved that under the map Φ the image of the
convex polytope LRk(λ, µ, ν) is contained in the convex polytope LRk(λ, µ

∗, ν∗).
Now are task is to show that the map Φ is injective when restricted to the convex poly-
tope LRk(λ, µ, ν). This immediately follows from the fact that each element (aij) of
LRk(λ, µ, ν) is uniquely determined by the values of a13, that is different elements of
LRk(λ, µ, ν) has different value of a13. Since the map we defined depends on the value
of a13, each element of LRk(λ, µ, ν) has a unique image in LRk(λ, µ

∗, ν∗).
Now the only remaining thing to be checked is that the non negative integer points of
LRk(λ, µ, ν) is mapped to the non-negative integer points of LRk(λ, µ

∗, ν∗). Since the
map which we defined contains only operations of addition and subtraction of integers this
immediately follows.
This proves our claim which is,

cλµ∗ν∗ ≥ cλµν

The case for k ≥4 involves a lot of computations. So we think it requires some kind of
computer programming. So for the time being we are not working on that.We are looking
forward to work on this later.
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Chapter Summary

• Introduced the statement of FFLP conjecture

• Gave an elementary proof of the conjecture for k=2 case.

• proved the case for k=3 using the LR triangle method.
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