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Abstract 

The phenotypic effect of single residue mutation in proteins can vary from no effect to 

complete loss of function. Such varied effects have intrigued structural biologist and 

biophysicist, over decades, because it has remained difficult to derive a general guiding 

structural principle to explain changes in structural properties of proteins due to mutations. 

Usually, detailed structural effects on mutations are obtained by comparison of experimentally 

determined tertiary structures of wild-type and mutant proteins. Such previous studies have 

mostly focused on understanding changes in protein thermodynamic stability, which led to 

development of modeling or prediction of change in protein stability. Moreover, these have 

been also employed to understand human diseases as it has been shown that of these are due 

to mutations involving non-synonymous single-nucleotide polymorphisms (nsSNP). The 

effect on protein function due to single residue mutation can be attributed to impairment of 

stability, defective interactions with other biomolecules (ligand/proteins), and residue packing 

density. Despite many studies on single residue mutant structures, the effect on wild type 

protein residue interaction network (RIN) due to such mutation, mostly, unexplored. In the 

present study, we have systematically investigated the effect of mutation by comparing RIN of 

wild type and mutant proteins. Furthermore, we studied the network perturbation using 

closeness centrality due to mutation. Through these studies, we have explored whether changes 

in residue interaction network can explain the functional shift in proteins. The comparison of 

C- residue network of wild-type and mutant multi-domain proteins suggested that global 

network centrality measures remain mostly unchanged on mutation. However, a small subset 

of proteins showed a large change in global network parameters that could not be correlated to 

conformational change due to mutation or belonged to specific functional families. 

Interestingly, local network features show remarkable changes, which seem to propagate in the 

protein network in some cases to really large spatial distances. Thus, suggesting allosteric 

effect of mutation. Importantly, this study can provide insights for rational design of protein 

with a desired feature. 
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Chapter 1 

Introduction 

1.1 Protein tertiary structure 

Most globular proteins adopt tertiary structure for their function. However, some proteins 

remain floppy or have no stable structure, which on interaction with their cognate ligand can 

adopt partial secondary structures. These are referred to as intrinsically disordered proteins 

(IDP). The individual amino acids, the basic building blocks of proteins, interact to form 

regular secondary structures elements: helices and the sheets. These arrange in specific 

orientations having many tertiary contacts between sequentially distant but spatially close 

residues to form tertiary structures.  

 

Fig 1.1 Interactions leading to the formation of a tertiary structure 
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The tertiary structures arrange themselves to form quaternary arrangement. The basic 

interacting forces, which stabilize protein structures, are: hydrophobic interactions, 

electrostatic forces, disulfide bonds and hydrogen bonds. Among these hydrogen bonds is an 

important interacting force as it dictates both specificity and directionality of interaction. 

The tertiary contacts interactions enable amino acids, which are otherwise far away in the order 

of sequence to interact with one another. The number and type of interactions that these amino 

acids form with one another decide the shape of the protein. The tertiary structure of protein 

provides a specific shape along with forms multiple clefts/crevices providing sites of 

interactions with other biomolecules. Therefore, knowledge of tertiary structure can provide 

insights into molecular details the proteins function and also provide understanding of 

fundamental forces responsible for protein stability as well as their folding. In general, most 

globular proteins can fold to form tertiary structures, however, some proteins require assistance 

of chaperones in folding. Several experimental and computational efforts have been going on 

for decades to unravel the combination and contribution of various interacting forces in 

stabilizing or folding of globular proteins.  

Since knowledge tertiary structure of proteins is essential for deciphering molecular details of 

protein function, significant efforts have been invested in experimental determination of 

protein tertiary structures. Towards this, a structural genomics consortium was established to 

determine structures of representative proteins from genomic sequences. This has led to a 

massive increase in experimental structures deposited in Protein Data Bank (PDB). Over past 

decade, significant progress has been made in the area of structure modeling allowing 

prediction of structures of proteins sequences even remotely related to protein sequence of 

known structure. Through these efforts, one wish to leverage sequence-structure-function 

paradigm to model structure of protein based on experimentally determined structure and using 

this one can find function of proteins. Even though, this is feasible but the success rate of 

function prediction has not proven to be remarkable due to complexity in defining molecular 

function. 

Moreover, this also opens up a great potential for directing the genetic engineering of proteins 

for therapeutic, and the laboratory design of proteins with desirable properties for 

biotechnological purposes. 
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1.2 Single residue mutations (SRM) 

Protein evolves through the process of mutation and functional divergence. The single residue 

mutation (SRM), as the name suggests refer to single residue mutant of a protein. In 

experimental studies, this has been expensively employed to elucidate the function of proteins 

by creating a single residue mutation and assaying for the function of mutant protein. For 

instance, alanine scanning mutation method wherein every residue is mutated to Alanine for 

identifying critical functional residues in protein. Apart from these designed single residue 

mutations, these are also known to be responsible for many human diseases and many of these 

mutations occur in population as non-synonymous single-nucleotide polymorphisms (nsSNP). 

As can be seen, phenotypic effect of mutation has been found to range from no effect to mild 

effect and a complete loss of function, which leads to diseased state. Apart from these, protein 

has also been found to exhibit changes in biophysical properties such as increase/decrease in 

their thermodynamic stability (Anupan banerjee, Levy and Mitra, Journal of Proteome, 2020). 

Such wide varied effects of mutations have puzzled structural biologists and biophysicist over 

decades and several studies have been dedicated to understand or decipher role residue spatial 

position in the protein. From many such studies it has been deduced that mutant protein loses 

its function because impairment of their stability, defective interactions with other 

biomolecules (ligand/proteins), and loss in residue packing density (reference: Pandurangan 

and Blundell, Tools for protein science, 2019; Anupan banerjee, Levy and Mitra, Journal of 

Proteome, 2020). However, effect of many single residue mutations still remains to be 

explained. Importantly, insights from studies on single residue mutation can be useful in 

protein engineering. These mutations have been of great interest to people for several decades, 

because of their role in diseases, it could aid in drug discovery and their importance in 

understanding structural and evolutionary studies. 

 One such example is the study of unnatural amino acids (UAAs) in Chromobacterium 

violaceum. UAAs are chiral amines with high application in drug discovery and synthesis of 

other valuable compounds. Though bio catalysis, this is also known to synthesize pure UAAs, 

there was a dire need for non-native substrates and also to understand key amino acids, which 

are important for the activity of these UAAs. This study required systemic testing on different 

substrates, which relied heavily on these single residue mutations. A similar approach has been 

taken while trying to understand the reason for a significant difference in thermostability 
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between two isoforms of human cytosolic creatine kinase, which helps in maintaining the 

homeostasis of intracellular ATP level (Ref: Liu, H., Gao, YS., Chen, XJ. et al. A single residue 

substitution accounts for the significant difference in thermostability between two isoforms of 

human cytosolic creatine kinase, 2016). As mentioned before, single nucleotide polymorphism 

(SNP) is substitution of a single nucleotide at a specific position in the genome that is present 

in a sufficiently large fraction of the population. While SNPs can have a wide range of effects, 

in general, but if it is a non-synonymous SNP i.e., when present within a coding sequence it 

leads to an amino acid change or single residue mutation. If the mutation causes a premature 

stop codon, it can result in the production of a truncated protein product or a near-null 

phenotype due to nonsense-mediated decay. These SNPs are referred to as non-synonymous 

SNP or missense mutation, which can have dire consequences of proteins and manifests as 

diseases in human. SNPs are also reported to occur in several proteins involved in drug 

transport, metabolism, and receptors ultimately affecting the pharmacokinetic and 

pharmacodynamic properties of many medications. Several such studies have been reported in 

the past, highlighting the importance of these single residue mutations. 

 Usually, detailed structural effects on mutations are obtained by comparison of 

experimentally determined tertiary structures of wild-type and mutant proteins. However, it is 

not always possible to experimentally determine tertiary structure of both wild type and mutant 

proteins. In such cases, computational approaches such modeling of mutant protein followed 

by their molecular dynamics have been used to study the effect of mutation. In past, most 

studies have focused on understanding changes in protein thermodynamic stability, which led 

to development of modeling or prediction of change in protein stability (Ref: Pandurangan and 

Blundell, Tools for protein science, 2019). Despite many studies on single residue mutant, it 

remains to find a general structural effect of single residue mutation on protein functions. 

 

1.3 Residue Interaction Networks 

Residue interaction network is graph representation of a protein where residues are modelled 

as nodes and interactions among them as edges. This provides an abstract representation of 

protein structure amenable to understand many system-level perturbation effects on protein. In 

past, these have been used to find allosteric paths in proteins, modeling of structural properties 
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(Ref: Stetz G, Verkhivker GM. Computational Analysis of Residue Interaction Networks and 

Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of 

Allosteric Regulation and Communication. PLoS Comput Biol. 2017). 

 

In most studies, usually involves C-alpha based residue interaction network where the C-alpha 

atom of a given amino acid is used to represent the nodes instead of all the residues present in 

amino acid. Representing all the atoms of an amino acid is computationally expensive while 

forming the network and calculating different network attributes could being confusing and 

intractable. RIN can utilize distances between C-alpha residue to construct a network or 

involve distances between side-chain to construct side-chain residue interaction network. The 

way in which edge is decided to form between two nodes in a network defines various types 

of RIN. This criterion can be used to broadly classify the networks into two types: distance-

based and energy-based networks. 

 

a. Distance-based RINs 

The RIN, which, primarily, use distances between either two C-alpha atoms or any 

heavy atom between two residues to define an edge, is called distance-based RINs. 

Usually, the distance cutoff is set to be 7Å between C-alpha atoms of residues for 

modelling the proteins is around. It can sometimes be as low as 5Å, depending on the 

aim of the study. We have used networks constructed with distance-based cutoff of 7Å. 

Such a network is referred to as distance-based Protein Contact Network (PCN) or C-

alpha based networks. Residues that are just adjacent to each other in the protein 

sequence anyway form a bond when modelled as distance-based PCNs. But that would 

form several redundant edges. To address this a slight modification is considered while 

defining an edge, which eliminates edges between sequence neighboring residues i.e., 

an edge is not defined between residues which are within ±2 or ±3 residues. Such kind 

of network is called a long-range network, in which no edge is formed with their 

immediate adjacent residues. 

Despite their simplicity, these distance-based networks have their limitations. A value 

slightly larger than the cutoff is ignored while a value little less than is considered as 

important for interactions. These networks though might help in getting a basic 
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understanding, but to get a more robust network energy-based networks had to be 

considered. 

 

b. Energy-based RINs 

Just as the name suggests the edges within these networks are defined based on the 

energy-based interactions between them. These interactions apart from the distance 

criteria also set a wide range of characteristics such as the angle formed among the 

nodes, donor and acceptor atoms etc., depending on the type of interaction network. 

The energy-based networks can be broadly classified as under: 

 

I. Hydrogen bond based 

● Donor (D) and acceptor (A) atom pair is 

considered 

● The distance, d, between A and D is less or equal 

to 3.5-5.5 Å 

● The angle H-D-A, formed by the hydrogen of the 

donor, the donor itself and the acceptor atom, is 

less or equal to 63° 

● Donors (according to RING-2.0): main chain NH; 

Arg NE, NH1, NH2; Asn ND2; His NE2, ND1; Ser OG; Tyr OH; Cys SG; Thr 

OG1;  Gln NE2; Lys NZ; Trp NE1 

● Acceptors (according to RING-2.0):  Main chain C; Asn OD1; Gln OE1; Met 

SD; Asp OD1, OD2; Glu OE1, OE2; Ser OG; Thr OG1; His ND1; Tyr OH 

 

II. Van der Waals Interactions 

● Distance between the surface of two atoms is 

measured 

● The distance threshold is 0.5-0.8 Å 

● Only carbon-carbon or carbon-sulfur atom 

pairs are considered for a valid VDW 

interaction 
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● Van der Waals radii are taken into consideration while calculating the distance 

● Another special type of VDW involving N or O atoms and carbon is considered 

● In particular only Glutamine NE2, OE1 and Asparagine ND2, OD1 are allowed 

 

III. Disulfide bridges 

● Covalent bonds 

● Found with a very constant distance 

● A bond is defined if the distance between 

SG atoms of cysteine is lower or equal to 

2.5-3.0 Å 

IV. Salt bridges (IONIC) 

● Occur between residues with opposite 

charges 

● Ionic interaction is possible if the distance 

between the mass centers of the charged 

groups are 4.0-5.0 Å 

 

Other kinds of energy-based interactions include π-π stacking, π cation, coulomb interactions 

etc.  The type of interaction that is formed depends on the question we are trying to address. 

In some cases, we can consider all the above-mentioned interactions together by constructing 

a weighted network in which the edge weight of a given edge, between any two residues, is 

decided by the interactions between those two residues. These networks though seem a bit 

complicated, give a more realistic understanding of the interactions that are occurring among 

the residues within a protein. Any small disturbance to this complex net of interactions could 

have a huge effect on proteins structural and functional properties. Considering the applications 

of single residue mutations as discussed in the above section, modelling them as RINs could 

give new insights into the protein behavior. 

1.4 Objective 

In general, it has been of great interest for scientists over decades to analyze the structural 

changes or functional changes accompanying residue mutations. Previous studies have mostly 
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focused on studying structural changes accompanying these single residue mutations and 

strong emphases have been on modeling biophysical property of thermodynamic stability. The 

mutations can severely affect the underlying residue interactions; however, this has not been 

paid much attention, except in cases when the protein is known to exhibit allostery and residue 

is an allosteric effector site. Recent studies have been reported addressing these issues but are 

mostly limited to specific sets of proteins (Ref: Srivastava A, Birari V, Sinha S. Small 

Conformational Changes Underlie Evolution of Resistance to NNRTI in HIV Reverse 

Transcriptase. Biophys J. 2020 May 19). Owing to increase in number of protein structures in 

PDB, it provides a unique opportunity to systematically perform a large-scale study on 

understanding the network perturbation of residue mutations.  

 The main goal of these studies is to explore the effects of single residue mutation on 

the structure and function of a protein using network-based representation of proteins. Through 

this study, we have addressed following questions: does mutation lead to global/local changes 

in protein networks? and is it possible to employ network properties to explain the change in 

functional shift of proteins due to mutation? In order to address these questions, we have 

performed a large-scale systematic comparison of various network parameters derived from 

RIN of wild (WT) and mutant (MT) proteins and correlated to general effect of residue 

mutation on protein function. 
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Chapter 2 

Methodology 

2.1 Dataset construction 

To study effect of mutation on the network proteins, we initially considered a multi-domain 

protein dataset with ~80,000 PDB structures. This consists of protein structures having 

resolution less than 2.5 Å. We need to construct a dataset of pairs of structures having one wild 

type (WT) and other as single residue mutant (MT). For constructing such a dataset, first we 

mapped all possible protein structures in PDB database to the ‘Uniprot’ sequence identifiers 

or Uniprot ID either relying on SIFT database or by performing pairwise sequence alignment 

between uniprot sequence and ‘atom’ record sequences. Subsequently, we identified all 

Uniprot IDs having more than one PDB structures associated with it. These were further 

processed to identify WT or MT sequence by performing aligned of uniprot sequence to the 

PDB ‘atom’ record sequence. Since, in experimental determination of protein structures it is 

possible to have missing atom coordinates for some residues, we considered residue alignment 

overlaps of more than 90% i.e., the overlapping sequence should constitute a minimum of 90 

per cent of the entire sequence. Further, we defined WT structures as having 100% identity 

with uniprot sequence and MT as those having changes in a single residue. This resulted in 

WT-MT pair for various uniprot IDs. We also filtered the dataset using 90% redundancy to 

construct a non-redundant dataset of proteins. Thus, resulting dataset consists of protein pairs 

of wild type (WT) and single residue mutant (MT), wherein the mutant protein differs from 

WT at a single residue position. After addressing other issues in dataset construction, we 

identified ~20,000 WT-MT pairs. The pairs, though might represent single residue mutant 

pairs, they need not necessarily be mutants because these sequences could have been poor 

fitting of residues, insertions/deletions, cloning artefact etc. Therefore, for a subset of pairs we 

manually curated the dataset to identify mutant protein by confirming it with other sources 

such as PDB (from ‘author entry’), UniProt and literature. Various filtering parameters in 

several stages of dataset generation are described in detail later in this method section. 
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We used this dataset to build C-alpha based networks using network attributes obtained from 

RING executable file (which were further on visualized using Plotly library) and different 

network properties were calculated using NetowrkX, both at the global and the local levels.  

 

2.1.1 Multi-domain proteins 

In the present study, we have used multi-domain proteins for our study. This consisted of 

80,637 PDB structures having resolution less than 2.5 Å and these span various diverse 

functional proteins. We considered multi-domain proteins for our study to consider the effect 

of domains in modeling the network perturbations. These proteins structures obtained from 

PDB were mapped to Uniprot IDs relying on SIFT database or performing alignment with 

uniprot sequence, which is provided in mmCIF mapping. Since different chains of a PDB 

usually tend to have similar sequences, therefore one among the chains belonging to the same 

PDB was randomly picked within the above-formed groups. 

 

2.1.2 Construction of non-redundant dataset  

It is widely known that PDB database is biased for certain proteins; therefore, we would like 

to reduce the effect of redundancy in the dataset. Moreover, over-representation of proteins in 

dataset can adversely bias the observation. We chose redundancy cut-off 90% sequence 

identity between Uniprot sequences after mapping of protein structures to keep the dataset 

enriched for deriving useful observations. In order to construct non-redundant dataset, we used 

CD-HIT (Ref: Weizhong Li, Adam Godzik, Cd-hit: a fast program for clustering and 

comparing large sets of protein or nucleotide sequences, Bioinformatics, 1 July 2006) 

clustering with a clustering parameter of 0.9. 

1. The clustering of the above UniProt IDs was performed at 90% sequence identity using 

CD-HIT command: 

 

command: “cd-hit -i <input_fasta_file> -c 0.9 -g 1 -sc 1 -sf 1 -o <output_file>” 

 

2. The representative UniProt ID of each cluster was picked. 



11 

 

3. The PDBs of the UniProt IDs belonging to a cluster were all grouped together and 

uniprot having the maximum number of pairs were considered for further studies. 

4. The entire dataset of 80,637 different types of proteins is now broadly classified into 

489 groups (i.e., 489 representative UniProt IDs). 

2.1.3 Identification of single residue mutant structure  

Before constructing WT-MT pairs, we identified a PDB structure as WT or MT based on 

sequence identity between uniprot sequence and ‘atom’ record sequence of PDB. For this, we 

performed pairwise sequence alignment between them and classified a structure as WT if it 

has 100% sequence identity to uniprot sequence otherwise, it is classified as MT structure, 

importantly, it should involve single residue mutation or change in single residue position. It 

is known in solving structures that it is difficult to model side chains of Asparagine, Glutamine 

and in many instances, residues are modeled as ‘Alanine’ if electron density can resolve until 

C atom. In order to reduce these structural determination artifacts, we did not consider if the 

mutations involve any of these residues. This reduced the number of pairs in our dataset; 

however, it helped in minimizing erroneous mutants in the dataset. 

2.1.4 Confirming of mutant structure with the author 

A mutation observed in the above case, can be due to any of the various types of conflict such 

as alignment errors, cloning artifact, insertions, deletions etc. In this study, we considered 

engineered mutants. 

1. The above mutants were only considered for further analysis, only if they are mutants 

as confirmed by the author. 

2. The above information was processed from mmCIF files using Biopython. 

3. Further, the mmCIF information was also checked for the wild type proteins 

4. Only the mutants were considered for further analysis. 

2.1.5 Construction of WT-MT pairs  

Subsequent to classifying structures as WT or MT, we constructed pairs of WT and MT 

considering at least one residue change between WT and MT. This cut-off is considered to 

reduce effect on structures due to additional domain or structures. Since there can be many 
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missing residues in a protein structure, having additional regions can affect the network 

properties. Therefore, we considered 90% overlapping region between WT and MT structures 

and overhanging residues should not be more than 50 residues. Thus, we constructed a dataset 

that resembles the conditions similar to single-point mutants having 19,758 unique WT-MT 

pairs grouped under 489 representative UniProt IDs.  

2.2 RIN generation 

In this study, we constructed residue interaction network of WT/MT proteins to investigate 

effect of mutation on network features. Even though structural changes due to mutation can be 

studied using other approaches, protein network provides computationally less expensive and 

a system-level effect of changes. Despite its simplicity, it can in turn give much better insights 

given the development in the field for several decades. The abstraction of protein structure as 

network has immensely helped in modeling allostery in proteins. As mentioned before, a 

residue interaction network (RIN), is a graph of three-dimensional representation of a protein 

structure as a set of nodes (residues) with their connections (edges). 

2.2.1 Nodes and Edges 

1. Since the same PDB can be present in multiple WT-MT pairs formed above, to avoid 

repetition, all the unique PDB IDs were collected. 

2. The above PDBs were run through RING software (Ref: Martin, A.J.M., Vidotto, M., 

Boscariol, F., Di Domenico, T., Walsh, I., Tosatto, S.C.E. 

RING: networking interacting residues, evolutionary information and energetics in 

protein structures. 

2011), which was obtained from authors, to generate RIN 

3. Commands to generate Nodes and Edges respectively:  

<ringpath> -i <pdb path> -N <output_path> -n ca --all_edges --get_iac --no_energy 

<ringpath> -i <pdb path> -E <output_path> -n ca --all_edges --get_iac --no_energy 

4. C-alpha atoms of each amino acid residue is chosen as the node. 

5. Long-range contacts were formed with a distance cutoff of 7Å.  

6. Thus, a Protein Contact Network (PCN) or a Residue Interaction Network (RIN) is 

generated for each of the above proteins. 
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2.2.2 Shells for perturbation studies 

To understand the network perturbation or percolation of changes in edges through the three-

dimensional structure in their spatial orientation of residues because of mutation, we divided 

structures into various non-overlapping spherical shells. The objective is to study how changes 

in one shell can affect changes in distantly located shells from the origin of perturbation. Thus, 

it can provide how changes due to mutation affects spatially distantly located residues within 

a protein. For this purpose, spherical shells of 5Å were constructed with the source of 

disturbance (the mutant residue) as the center and their long-range effects were studied. A 

disturbance in a shell is defined to occur, if any residue in a given shell showed an absolute 

change in their centrality (betweenness) value between WT and MT more than 60% with 

respect to WT betweenness value. It can be either increase/decrease in betweenness parameter 

in MT with respect to WT. 

2.2.3 NetworkX for analysis 

We used NetworkX software (Ref: Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, 

“Exploring network structure, dynamics, and function using NetworkX”, in Proceedings of the 

7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod 

Millman, 2008) to calculate various global/local (residue wise) network properties of RIN. 

Further, these above properties were visualized in matplotlib, wherever required. 

2.2.4 Plotly for Visualization 

Visualizing the network parameters could provide a better understanding and intuition of 

different properties. Therefore, a visualization tool specifically for this project was built in 

which the nodes are colored based on their centrality values and the mutant residue is also 

highlighted. 

E.g., Visualizing the effect of mutant residue on the betweenness centrality values of the 

residues in HIV Type 1 Reverse Transcriptase (3hvtA_wt, 1hniA_mt) 
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(a) 3hvtA - WT protein Betweenness Centrality Values 

 

 

(b) 1hniA - MT protein Betweenness Centrality Values 

 

Fig 2.1 Plotly for visualizing the effect of mutation on the overall values of the protein 

network 
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2.3 Metrics of network comparison 

Throughout the study, network comparisons are primarily carried to understand the effect of 

the mutations at the level of residues and the level of protein. For this, we studied local and 

global network properties of proteins. Since, we are trying to understand the effect of the 

mutation and how these residues are communicating with one another in protein structure, we 

computed following network properties. 

2.3.1 Centrality measures 

Table 2.1 Centrality measures and their importance 

Network Property  Feature 

Closeness Centrality How central/closer a node is, to all other nodes 

Betweenness Centrality The probability that communication from source(s) to 

target(t) will go through that node 

Degree Centrality No. of edges connected to a particular node 

Eigenvector Centrality  Importance of a node in the network w.r.t its neighbors, 

based on the connectivity pattern 

 

The above properties are calculated at the residue level. Calculating the above properties helps 

us in understanding the changes at the residue level. To study the changes at the global level, 

the average of a given network property can be considered. 

2.3.2 The Delta Parameter 

We modeled each protein structure as RIN and various network properties (listed in section 

2.3.1) can be calculated for each protein network. In order to facilitate quantitative comparison 

of global network features, we defined an absolute difference between WT and MT feature, 

which we referred to as ‘Delta parameter’. This essentially captures changes in average global 
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features, therefore, defines changes between WT and MT networks. Assuming that this would 

follow a normal distribution, we identified set of WT-MT pairs lying 1 away from mean 

showing either high or low delta values. The high and low delta value shows increase and 

decrease in average network features in MT protein network. We used this delta parameter to 

characterize protein structures, which show large variation in these values and explored 

whether these can correspond to special protein functional class. 
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Chapter 3 

Results and Discussion 

3.1 Dataset 

3.1.1 Sequence identity distribution of WT-MT pairs 

As described in methods sections, we constructed a dataset of 19,758 WT-MT pairs from non-

redundant at 90% sequence identity of 489 uniprot sequences. First, we computed sequence 

overlapping between WT-MT by performing pairwise sequence alignment. In general, the WT-

MT pairs overlap >90% suggesting that pairs have high coverage with each other (Figure 3.1). 

Such high coverage dataset can be used for structural comparison or network properties 

because additional residues in either WT/MT protein structure would minimally affect 

structural/network features. We do not observe any pair showing 100% overlap, which shows 

that protein structures have missing residues and justifies our reasoning to relax overlap criteria 

that allows increase in WT-MT pairs for the present study.  

 

Fig 3.1 Distribution of WT-MT pairs for different percentages of sequence overlap 
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3.1.2 Distribution of delta Parameter  

In order to characterize changes in feature of mutant RIN, we first find difference in global 

network properties using a delta parameter. This is computed as the difference in average 

network centrality measures between WT and MT protein structure networks (see methods). 

This will provide whether a residue mutation leads to large or small change in global network 

properties. The distribution of delta parameter for betweenness, closeness, eigen and degree 

centrality are shown in Figure 3.2. The mean and standard deviation of these are tabulated in 

Table 3.1. It is evident from the figure, more than 60% of WT-MT pairs show no or negligible 

change in these centrality measures. Moreover, average is 0.0 and standard deviation is not 

large. Therefore, mutation of a residue, in general, does not lead to a large variation in the 

global network features.  

 Next, we analyzed pairs of WT-MT showing unusual high/low delta values by 

considering pairs, which lie at least 1  away from the mean. The number of pairs could be 

anywhere between 1500-4500, depending on the type of centrality measure that is being 

considered. We analyzed such pairs having unusual high/low delta values to find whether these 

perform any specific molecular function or these values are associated with large 

conformational changes, using Root Mean Square Deviation (RMSD) as its measure.  

 

 

Table 3.1 Mean and standard deviation of different centrality measures 

 

Centrality Measure Mean ± 1 sigma 

Betweenness Centrality 0.0 ± 0.00046 

Closeness Centrality 0.0 ± 0.00674 

Eigen Centrality 0.0 ± 0.00152 

Degree Centrality 0.0 ± 0.34553 
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Fig 3.2 Distribution of the delta parameter for different centrality measures 

3.2 Correlation of network features with change in conformation  

The change in network properties could arise from conformational change in the protein 

structure, which is measured using RMSD between WT and MT protein structure. We 

classified mutants as ‘engineered’ mutants (TRUE), which are author confirmed mutants and 

others as potential mutants (FALSE), yet not confirmed from literature. We could not find any 

correlation between any network centrality measure and RMSD and the same is evident from 

the figure 3.3. This is observed for both types of mutants whether author confirmed or not. It 

is worthwhile to note in Figure 3.3 that no change in global parameters change can be observed 

even for WT-MT pairs, which have large conformational change as measured by RMSD. 

Therefore, conformational changes do not significantly affect average network feature 
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suggesting the interaction dynamics is preserved despite movement in region of protein 

structures. 

 

Fig 3.3 Correlation of RMSD and delta values for the entire dataset. TRUE are 

engineered mutants and FALSE are other cases 

 

It is quite likely that correlation may be missed in such scatter plot, we took TRUE cases of 

WT-MT pairs and binned them with a bin size 1Å RMSD to plotted box plot to observe any 

correlation between delta parameter and RMSD. As can be seen in figure 3.4, there is no 

obvious association of RMSD and difference in centrality measures. Notably, a large RMSD 

does not lead to change in global network feature and also low structural change cannot ensure 

that mutant proteins does not undergo significant change in global network properties. 

Therefore, these analyses suggests that usually mutation does not affect the global network 

properties, however, a change in these features should be interpreted with complementary 
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analyses. Importantly, these changes are completely unaffected by conformational change in 

proteins because of single residue mutation. 

 

 

Fig 3.4 Correlation between pairwise RMSD and the Delta parameter. The plot is 

binned box plot of RMSD binned with 1 Å 

 

 

3.3 Correlation with the function 

3.3.1 Mutation data from different sources 

As shown before, global network properties does not undergo any significant change due to 

single residue mutation. There were some pairs of WT-MT proteins, which showed variation 
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more than 1  away from mean of delta value. We investigated whether these proteins are 

involved in specific function using Gene Ontology (GO) based function enrichment. The 

objective is to identify distinguishable functions associated with WT-MT pairs having delta at 

least more than 1 of delta distribution for any centrality measure. As described before, we 

confirmed mutation in protein structures as given by authors in PDB file (mmCIF) as well as 

Uniprot database. The distribution of author confirmed (TRUE) mutant (MT) proteins pairs 

either from PDB or Uniprot is shown in Figure 3.5 As can be seen, Uniprot has poor 

documentation on mutation data. Therefore, for rest other analyses we relied on TRUE cases 

derived from PDB. 

 

 

Fig 3.5 Distribution of WT-MT pairs having delta at least 1 or more and also classifies 

these as author confirmed (TRUE) and others potential mutant structures (FALSE) 

based on information from PDB/Uniprot 

 3.3.2 GO functional annotation 

Gene Ontology (GO) provides semantic based ontologies describing functions of proteins that 

are consistent across genes. GO can be described at the level of biological processes, cellular 

components, and molecular function. Since GO can facilitate structured function comparison 
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among proteins, we examined whether WT-MT pairs showing large absolute delta values (at 

least 1) are associated with any specific GO entry. This can assist whether specific functional 

class of proteins is more prone to large variation in network properties, for instance do 

allosteric proteins. In this study, we considered only author confirmed WT-MT pairs having 

large change in any centrality measure and for these find enriched molecular function GO 

terms associated with them. First, we performed this analysis for each centrality measure and 

finally, combined all WT-MT entries from various measures. As can be seen in Figure 3.6, 

binding and catalytic function are found to be enriched in all cases. These are also commonly 

observed in WT-MT pairs having no change in delta value.  

 

(a) Betweenness Centrality 

 

(b) Closeness Centrality 
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(c) Eigen Centrality 

 

 

(d) Degree Centrality  

Fig 3.6 GO functional enrichment of WT-MT pairs having delta values at least 1 from 

mean of distribution. 

 

Figure 3.7, shows results for all WT-MT pairs having large delta in any centrality measure and 

as can be seen the results as observed before. Thus, suggesting that there no specific function 

could be associated with proteins showing large change in delta parameter.  
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Fig 3.7 GO functional classification of common WT-MT pairs having delta at least 

more than 1 from mean of distribution 

 

The results showed that the global network properties do not seem to show any correlation 

with the structural and functional properties of the proteins. To analyze, the effect of mutation 

on other residues within the protein, local perturbation studies were done. 

3.4 Local network effect of mutation 

3.4.1 Determination of betweenness cut-off  

Since mutation can perturb the local residue packing and interactions, we analyzed whether 

residue level network features can capture perturbations caused due to mutation. Further, we 

investigated whether it can propagate through the RIN. The latter is interesting property as 

such perturbations are commonly used to define allostery and identify allosteric 

communication paths. The comparison of various node property (degree, betweenness, 

closeness) showed that these change in MT protein in comparison to WT. Among these, 

betweenness centrality is important feature as it provides significance of a residue in shortest 

paths in a given network. In order to study propagation of perturbation through RIN, we 

computed residue betweenness for WT and MT and calculated absolute percentage difference 

between them as BC with respect to WT as given in equation below: 

∆𝐵𝐶 =
|𝐵𝐶𝑊𝑇 − 𝐵𝐶𝑀𝑇|

𝐵𝐶𝑊𝑇
 

Since RIN is a 2-dimension representation of protein, the propagation in such a network does 

not provide information communication between spatially distant residues. For this, we 

empirically draw concentric spheres separated by 5Å and having center at the site of mutation. 
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In such representation of concentric spheres, changes in last sphere (shell) would represent 

changes in spatially distant residues.  

 Now, we have definition to find change in residue betweenness (BC) and a way to 

find spatial location of such change. With this, first we determined a suitable cut-off to define 

a significant change in residue betweenness. First, we find all WT-MT pairs of proteins having 

at least one residue undergoing change in this centrality measure until the last shell. Then, we 

computed (BC) for all residues for these WT-MT pairs. Figure 3.8 shows the fraction of WT-

MT pairs showing change until last shell plotted with various cut-off values BC expressed in 

percentage. As expected, if we consider small change in betweenness (BC <10%), we can 

observe a large number of WT-MT pairs (~80%) show change until the last shell. From this 

curve, we decided to select a stringent cut-off of 60% to defined significant change in residue 

local property of betweenness. Even though it may miss some WT-MT pairs, it will probably 

identify mutations, which are able to make long range effects on proteins. 

 

 

 

Fig 3.8 Percentage of PDB pairs vs Percentage disturbance 
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Apart from this, we also looked at the BC changes propagated to various shells (Figure 3.9). 

As can be seen at low values (0 or 10%), changes can be seen until the last shell and with 

increase in BC cut-off, the maximal effect can be seen reduced from last shell till lower 

fraction of shells and at suggested cut-off we can find ~1200 pairs which show change until 

last shell. 

 

Fig 3.9 Distribution of WT-MT pairs for different percentage cutoffs 

 

When the cutoff is set at 60%, there are several pairs in which the disturbance caused by the 

mutant residue within a protein network has propagated until different fractions of shells. This 
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suggests that mutation is not affecting far of residues. For further analysis, we considered WT-

MT pairs which have changes at >90% shells (i.e., those in which the disturbance is observed 

in more than 90% of the shells). In addition, we also removed proteins not undergoing large 

conformational change (<2Å). 

Using the above-mentioned criteria, we found enrichment of uniprot IDs to find which WT-

MT pairs contributes the maximum to changes in betweenness (Figure 3.10). Most of the 

highly represented UniProt IDs belonged to the enzyme category. As can be seen, dipeptidyl 

peptidase 4 is among the top ranked protein contributing to large change in residue level local 

network properties. 

 

Fig 3.10 Representation of different UniProt IDs for the above dataset  

(author confirmed - high Betweenness value and low RMSD)  

 

 
 

Highly represented UniProt IDs (more than 50 representations) 
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3.4.2 Local perturbation in DPP4 

Dipeptidyl-peptidase 4 (DPP4) is a glycoprotein of 110 kDa, which is ubiquitously expressed 

on the surface of a variety of cells. This exopeptidase selectively cleaves N-terminal dipeptides 

from a variety of substrates, including cytokines, growth factors, neuropeptides, and the 

incretin hormones (Ref: Röhrborn D, Wronkowitz N, Eckel J. DPP4 in Diabetes. Front 

Immunol. 2015; 6:386. Published 2015 Jul 27. doi:10.3389/fimmu.2015.00386). Interestingly, 

this protein is important drug target in treating diabetes. The catalytic important residues are 

630, 708 and 740. Given that single residue mutation in many residues can cause a long-range 

propagation suggests that this protein must show allosteric behavior. In our study, we find the 

mutation in residue id 39 (SER), leads to change in residue betweenness located in active site, 

which is ~43 Å from the site of mutant residue, which the origin of propagation in the network. 

In terms of shell distance, these two sites are about 8 shells apart, indicating the long-range 

effect these mutants can have within the protein network. To get a better understanding one 

such instance was further visualized with the above built Plotly visualization tool. 
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Fig 3.11 Long-range effect of mutation on active site residues in DPP4 

 (3eioB_wt, 2qt9A_mt) 
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Conclusions 

The present serve as preliminary study to investigate effect on RIN due to mutation. We studied 

changes in global (average centrality) as well as local (residue level) on RIN constructed using 

C-alpha distance criteria. For this analysis, we constructed a dataset of ~20,000 WT-MT 

multidomain proteins. In general, we did not observe large changes in the global network 

properties. Upon examining proteins having relatively large changes in these features could 

not be associated with any specific functional feature of proteins. Though it might sound 

surprising and counter-intuitive the above C-alpha based network analysis suggests that a 

change in network properties as quantified by the Delta parameter does not correlate with the 

pairwise RMSD.  

 Subsequently, we analyzed local (residue/node level) change in betweenness and their 

propagation to spatially distant residues. This showed that for many proteins we could observe 

change in betweenness >60% to residues lying spatially far away from the site of mutation. 

For example, in DPP4, we could identify residue undergoing change in betweenness ~43Å 

away from the site of mutation. Thus, suggesting that analyses of local network feature can 

reveal interesting characteristics of protein interaction network. These can be correlated with 

phenotypic effect of mutation to shed light on role of network communication in proteins. 
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Future work 

We need to analyze residue interaction networks constructed using other features such as based 

on energy before we finalize the proper RIN to employ for understanding network perturbation 

propagation in proteins. The local perturbation studies also suggest a possible scope for 

allostery, which is worthwhile to pursue for defining a general communication architecture in 

proteins. 
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