
Prefetching;

A Markov Decision Process Model

Kausthub Keshava

MS16010

A dissertation submitted for the partial fulfilment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research,

Mohali

April 2021

Certificate of Examination

This is to certify that the dissertation titled “Prefetching; A Markov Decision

Process Model” submitted by Mr. Kausthub Keshava (Reg. No. MS16010) for

the partial fulfilment of BS-MS dual degree programme of the Institute, has been

examined by the thesis committee duly appointed by the Institute. The committee

finds the work done by the candidate satisfactory and recommends that the report

be accepted.

Dr.Abhik Ganguli Dr. Pranab Sardar Dr. Varadharaj R.

Srinivasan

(Supervisor)

Dated: April 28, 2021

Declaration

The work presented in this dissertation has been carried out by me under the guid-

ance of Prof. Alain Jean-Marie and Prof. Sara Alouf at the National Institute for

Research in Digital Science and Technology (Inria), France, and Dr. Varadharaj

R. Srinivasan at the Indian Institute of Science Education and Research, Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a fel-

lowship to any other university or institute. Whenever contributions of others are

involved, every effort is made to indicate this clearly, with due acknowledgement

of collaborative research and discussions. This thesis is a bonafide record of work

done by me and all sources listed within have been detailed in the bibliography.

Kausthub Keshava

(MS16010)

Dated: April 28, 2021

In my capacity as the supervisor of the candidate’s project work, I certify that

the above statements by the candidate are true to the best of my knowledge.

Dr. Varadharaj R. Srinivasan

(Supervisor)

Acknowledgements

I thank Prof. Alain Jean-Marie and Prof. Sara Alouf for their guidance and sup-

port without which this thesis would not be possible. I also thank Dr. Varadharaj

R. Srinivasan for his encouragement and supervision of my progress as my local

guide. I would like to thank the Network Engineering and Operations (NEO) team

at the National Institute for Research in Digital Science and Technology (Inria),

France, for providing me the opportunity to do this project. I also thank Inria

for the financial support that they provided during the course of my collaboration

with NEO. I am grateful to the authors of the texts that I have referred to, for

having written them beautifully, and showing me the way into the wonderful world

of mathematics and optimization.

I am thankful to the faculty in the mathematics department for all they have

taught me through my years in IISER, especially Dr. Neeraja Sahasrabudhe who

furthered my interest in random processes. I am eternally grateful to IISER Mohali

for providing me with an environment to learn and grow like none other. I am

thankful for the Library at IISER Mohali for providing an amazing collection

of books and a conducive environment for thesis work. I also thank my dear

friends Abhijit, Nandan, Nikhil, Puneeth, Ruchira, and Sasank for their love and

emotional support during this entire project. Finally, I would like to thank my

family Dr. B S Keshava, Dr. Nandini Keshava, Mrs. Namratha Keshava, and Mr.

Adishesh Kishore for always being there whenever I needed them.

List of Figures

1.1 Prefetching . 2

1.2 Markov Decision Process . 3

3.1 Flow of the Prefetching MDP . 14

5.1 Types of depth 2 trees in the state space for budget 2 46

5.2 Optimal Actions for different values of p and j2 given j1 = 3, j2 ≥ 3 70

5.3 Optimal Actions for different values of p and j2 given j1 = 2, j2 > 3 70

5.4 Optimal Actions for different values of p and j2 given j1 = 1, j2 > 3 71

6.1 k versus α for p = 500 . 94

6.2 k versus α for p = 2000 . 94

i

List of Tables

1 Table of Symbols . v

2 Table of Symbols Ctd. vi

3.1 Size of State space for different d and p 17

3.2 Size of State space for d = 2 . 17

5.1 Wπ(n, t) for all trees in U for 0 ≤ n ≤ N = 4 32

5.2 Table of Action Labels . 45

5.3 Table for Optimal marking actions corresponding to W ∗(1, t) 48

5.4 Table for Optimal marking actions corresponding to W ∗(2, t) 51

5.5 Optimal Actions for Trees at n = 3 71

5.6 Optimal Actions for Trees at n = 4 72

5.7 Optimal actions for Type 2b trees at n = 3, 4 73

6.1 Table of p, k, and average costs . 93

6.2 Average Cost of different Greedy policies 95

6.3 Table of Usable state space sizes for k = 2, d = 2 96

iii

List of notation

Table 1: Table of Symbols

No. Symbol Meaning

1 Tp,d Set of rooted, ordered, and marked trees of depth d with

nodes having between 1 and p sons

2 Lk = Tp,k ∪ (Tp,k × Tp,k) ∪ . . . ∪ (Tp,k)p

3 (µ, s) Representation of a tree t in Tp,d
4 µ Mark of the root of tree and takes values in {0, 1}

5 s List of elements in Ld−1

6 n Time step of process

7 ta Tree after controller makes an action

8 tb Subtree of ta that the surfer moves to

9 U Usable state space of the MDP

10 L(t) Set of leaves of tree t

11 D(t) Set of possible discoveries of tree t

12 maxnode(d) The maximum number of nodes of tree in Tp,d
13 k Budget given to controller

14 Xd(m) Number of trees in Tp,d with m nodes

15 N Time horizon of the MDP

16 ρ Stationary probability matrix of appropriate size

v

Table 2: Table of Symbols Ctd.

No. Symbol Meaning

17 SD(t) Set of subtree discoveries of tree t

18 x+ x for x > 0, and 0 otherwise.

19 Hp Sum of harmonic series until p, i.e.,
p∑

f=1

f−1

20 minnode(d) The minimum number of nodes of tree in Tp,d which is

d+ 1

21 d1(t) Set of depth 1 nodes of tree t

22 Hpk

∑p
e=1(e− k)+/e

23 Tkbig Set of trees with number of unmarked sons greater than

or equal to the budget k

24 Tksmall Set of trees with number of unmarked sons less than the

budget k

25 δ(l, t) Depth of the node l in tree t

26 sib(l) Number of unmarked siblings of node l which takes val-

ues from 0, 1, · · · , p− 1

27 tsib(l) Total number of siblings of node l, which takes values

from 0, 1, · · · , p− 1

vi

Contents

List of Figures i

List of Tables iii

List of Notation v

Abstract xi

1 Introduction 1

1.1 Prefetching . 2

1.2 Markov Decision Process . 3

2 Preliminaries : MDP Theory 4

2.1 Finite Horizon Expected Reward Criterion 4

2.2 Infinite Horizon Average Reward Criterion 9

3 Prefetching MDP Specification 14

3.1 Design of the Prefetching MDP . 14

3.2 State Space . 15

3.3 Action Space . 18

3.4 Transition Probability Structure . 18

3.5 Cost Function . 19

3.6 Bellman Optimality Equations . 20

4 Finite Horizon Depth 1 Trees 21

vii

4.1 Optimal Policy for the General Case 23

4.2 Proposed Policy Satisfies Optimality Equations 28

5 Finite Horizon Depth 2 Trees 31

5.1 Budget 1 . 32

5.1.1 Exchange Argument Approach 34

5.1.2 Proposed Policy Satisfies Optimality Equations 41

5.2 Budget two . 44

5.2.1 Horizon n = 1 . 47

5.2.2 Horizon n = 2 . 48

5.2.3 Horizon n = 3 . 52

5.2.4 Horizon n = 4 . 72

6 Infinite Horizon Average Costs Prefetching 74

6.1 Eliminating wasteful actions . 74

6.2 Depth 1 trees . 82

6.2.1 Limit Approach . 82

6.2.2 Stationary Probability Approach 85

6.3 Depth 2 trees with budget 1 . 86

6.4 Average number of nodes . 89

6.5 Average number of nodes created 90

6.6 Average number of nodes deleted 91

6.7 Specific Parameters . 92

6.7.1 Policy of Marking Sons Only 92

6.7.2 MDP with p = 3, d = 2, k = 2 94

7 Conclusion 97

References 100

A Depth 2 Trees 101

A.1 Budget 1 recurrence . 101

A.2 M(n, j) recurrence . 102

viii

A.3 Tr(2 : 1, 1) . 104

A.4 Tr(3 : 1, 1, 0) . 105

A.5 Type 1 trees at n = 3 . 107

B Infinite Horizon Average Costs 108

B.1 Stationary Distribution for depth 2 trees 108

B.2 Average number of nodes deleted 109

ix

Abstract

Prefetching is a technique used to boost computer execution performance by fetch-

ing instructions or data before it is actually needed. Constraints on network band-

width and memory lead to a choice being made in terms of the specific data to

be prefetched. Markov Decision Processes are a valuable tool to model stochastic

decision making. One can view the prefetching process as a random process of a

surfer moving on a graph and a controller trying to ensure that the surfer lands on

a prefetched vertex. This is analogous to the well-known pursuit-evasion game in

graph theory. Our aim is to find the optimal policy for the controller and explore

the characteristics of such a policy. Throughout this thesis, we analyse and study

the properties of the prefetching process modelled on a tree (rooted acyclic graph)

as an MDP. Using the Bellman Optimality equations, we solve for the optimal

policy of the prefetching MDP for different criteria. In the finite horizon criterion,

we obtained a granular greedy optimal policy. We implemented policy iteration

for the average costs infinite horizon criterion and converged to the optimal policy

of the finite horizon MDP. The optimal policy is dependent on the specific shape

and size of the trees. We structured the state space in a manner that eased the

search for the optimal value function and corresponding optimal policy given a

particular state.

xi

Chapter 1

Introduction

This thesis is an attempt at characterising and analysing optimal policies for the

prefetching process with uncertainty. We use the framework of a Markov Decision

Process to carry out our analysis.

First, we shall establish some intuition for the concept of an MDP and prefetching.

Following this, we will go through the definition and objects of an MDP. This thesis

focuses on two specific criteria of MDPs and hence a brief outline of the theory of

these particular criteria have been included.

After establishing existential theorems and methodologies to compute an optimal

policy, we shall understand how the prefetching process can be viewed as an MDP.

We construct the prefetching process on a rooted tree of certain depth with every

node having a maximum number of sons.

Next we shall characterise the optimal policy in the finite horizon expected costs

criterion for depth 1 trees. We use various proof techniques to establish that a

proposed policy is optimal. We then move on to depth 2 trees, beginning with

budget 1 and then to budget 2. The results of the finite horizon case provide

insights into possible policies to explore in the infinite horizon average costs crite-

rion. Chapter 6 extensively deals with the Markov chain of tree shapes and then

tackles specific cases of the infinite horizon MDP.

1

It is assumed that the reader has a basic understanding of Markov chains, limits,

and combinatorics.

1.1 Prefetching

Prefetching is the process of loading of a resource before it is required to de-

crease the time spent in waiting for that resource. An example of prefetching

is - instruction prefetching where a CPU caches data and instruction blocks be-

fore they are executed. Prefetching functions often make use of a cache to store

the ”prefetched” resources. Web browsers employ prefetching by preloading com-

monly accessed pages. When the user navigates to the page that is prefetched, it

loads quickly because the browser is pulling it from the cache, rather than from

a distant sever. Some browser plugins download all of the pages that have been

hyperlinked in an attempt to speed up the browser. However this comes with an

increase in bandwidth usage. The problem to solve would be : given a constraint

on bandwidth, what are the specific resources to prefetch to minimize the possi-

bility of a user accessing a resource that is not prefetched into the cache. Figure

1.1 provides a visual depiction of the prefetching process.

Figure 1.1: Prefetching

Source: maxcdn.com/what-is-prefetching

2

https://support.maxcdn.com/hc/en-us/articles/360036932391-What-is-Prefetching-

1.2 Markov Decision Process

A Markov decision process is a discrete time stochastic control process. It is a

framework that can model decision making in situations where there is randomness

in outcomes. MDPs are an extension of Markov chains with the addition of actions

(the ”decision”) and rewards. At each time step, the process is in some state, and

the decision maker may choose any action that is available in that state. Then

the process moves into a new state and gives the decision maker a corresponding

reward (or cost) for his action. The probability of the process transitioning into a

new state depends on the initial state and the action taken at that initial state. We

obtain a simple Markov chain from an MDP if there is only one action available for

all states and a constant reward of zero for all states and actions. An example of

an MDP with three states and two actions is depicted in Figure 1.2. The possible

rewards are {+1,+2,−10} depending on the state and action taken.

Figure 1.2: Markov Decision Process

Source: medium.com/MDP

3

https://medium.com/@sanchittanwar75/markov-chains-and-markov-decision-process-e91cda7fa8f2

Chapter 2

Preliminaries : MDP Theory

2.1 Finite Horizon Expected Reward Criterion

The theory included in this chapter follows the notation and logic from Chapters

2 and 4 of the book titled Markov Decision Processes by Martin L Puterman [1]

and Chapter 5 of the book titled Introduction to Stochastic Dynamic Programming

by Sheldon Ross [2]. First, let us formally define a Markov Decision Process, a

decision rule, a policy, value function of a state, and expected total reward at a

particular time.

Definition 2.1.1 (Markov Decision Process). A collection of objects

{T, S,As, pt(.|s, a), rt(s, a)} is an MDP where:

• T = Set of decision epochs/Time steps. T = {1, · · · , N}, N < ∞ or T =

[1,∞).

• S, a finite, countable, or compact subset of Rn, is a set of all possible states.

Let the random variable st denote the state of the process at t. st ∈ S for

all t ∈ T .

• As, a finite, countable, or compact subset of Rn, is the set of all allowable

actions in state s. Let A = ∪s∈SAs. Let the random variable at denote the

4

action taken at t. at ∈ A for all t ∈ T .

• rt(s, a) : T × S × A → R is the reward received at decision epoch t as a

result of choosing action a ∈ As while in state s ∈ S.

• pt(.|s, a) : T×S×S×A→ [0, 1] is the transition probability that determines

the next state. P (st+1 = s′|st = s, at = a) = pt(s
′|s, a).

Definition 2.1.2 (Decision rule). At time t ∈ T , a decision rule dt prescribes a

rule for action selection in each state. There are four types of rules as follows:

• (MD) Markovian Deterministic : dt : S → A, dt(s) ∈ As denotes the action

chosen at time t in state s.

• (HD) History Dependent Deterministic : dt : Ht → A. ht = (s1, a1, · · · , st),
and Ht denotes the set of all histories ht. dt(ht) ∈ Ast .

• (MR) Markovian Randomized : dt : S →P(A). Here P(A) is the set of all

probability distributions on A. dt(st) = qdt(st)(.) ∈P(Ast).

• (HR) History Dependent Randomized : dt : Ht → P(A). qdt(ht)(.) ∈
P(Ast).

Definition 2.1.3 (Policy). A policy is a sequence of decision rules for each decision

epoch. π = (d1, d2, · · · , dN−1).

Let
∏K be the set of all policies of class K ∈ {HR,MR,HD,MD}. For instance,

• π ∈
∏HR means dt is a Randomized history dependent decision rule for all

t ∈ T .

Definition 2.1.4 (Value function of a state). The value function of a state s for

a policy π ∈
∏HR is defined as,

vπN(s) = Eπ
s

[
N−1∑
t=1

rt(st, at) + rN(sN)

]
. (2.1)

where rN(sN) (Scrap Value) is the reward received when the process ends at N

in some state. The expectation is conditioned on s0 = s and the process evolves

according to the policy π.

5

We seek a policy π∗ for which,

vπ
∗

N (s) ≥ vπN(s) for all s ∈ S and for all π ∈
∏HR. (2.2)

Definition 2.1.5 (Expected total reward at time t). The expected total reward

at time t of a history ht is given by uπt (ht) where

uπt (ht) = Eπ
ht

[
N−1∑
n=t

rn(Xn, Yn) + rN(XN)

]
uπN(hN) = rN(s) when hN = (hN−1, aN−1, s).

(2.3)

Here the expectation is conditioned on the history ht and the process evolves

according to policy π.

Note the equivalence between the expected total reward at time t and the value

function which is just uπt (ht) for t = 1. Thus we can use these terms interchange-

ably, unless specified otherwise. We now state a lemma that is the essence of

dynamic programming.

Lemma 2.1. (Multistage to Single stage) For π ∈
∏HD, we have the following

simplification for uπt (ht)

uπt (ht) = rt(st, dt(ht)) +
∑
j∈S

p(j|st, dt(ht))uπt+1(ht, dt(ht), j) (2.4)

The optimal value function is simply the supremum of the value function over all

possible policies:

u∗t (ht) = sup
π∈

∏HR

uπt (ht).

Using Lemma 2.1, Richard Bellman proposed a couple of equations whose solution

would be the optimal value function.

ut(ht) = sup
a∈Ast

{
rt(st, a) +

∑
j∈S

p(j|st, a)ut+1(ht, a, j)

}
uN(hN) = rN(sN).

(2.5)

6

We shall now outline the proof for the existence of a deterministic optimal policy

for any finite horizon MDP, and then show that one can find this optimal policy

by simply solving the Bellman Optimality equations in (2.5).

Theorem 2.2. Suppose ut is a solution to the Optimality equations (2.5), then,

(a) ut(ht) = u∗t (ht) for all ht ∈ Ht, t ∈ T .

(b) u1(s1) = v∗N(s1) for all s1 ∈ S.

Proof. By backward induction, we show un(hn) ≥ u∗n(hn) for all n ∈ T . For

n = N , obviously uN(hN) = rN(hN) = u∗N(hN).

Assume for all histories ht : ut(ht) ≥ u∗t (ht) for t = n + 1, · · · , N . Let π′ =

(d′1, · · · , d′N−1) be an arbitrary policy in
∏HR. For t = n, the optimality equation

is :

un(hn) = sup
a∈Asn

{
rn(sn, a) +

∑
j∈S

pn(j|sn, a)un+1(hn, a, j)

}

≥ sup
a∈Asn

{
rn(sn, a) +

∑
j∈S

pn(j|sn, a)u∗n+1(hn, a, j)

}
,

≥
∑
a∈Asn

qd′n(hn)(a)

{
rn(sn, a) +

∑
j∈S

pn(j|sn, a)u∗n+1(hn, a, j)

}
= uπ

′

n (hn).

The other way inequality is shown by constructing a policy π′ and showing that

it has a value arbitrarily close to un(hn).

Since π′ is an arbitrary policy and both way inequalities are true, we will have

that ut(ht) = u∗t (ht) for all t ∈ T .

(b) follows from the definition of ut(ht) in Definition 2.1.5 for t = 1.

Hence, we have shown that a solution to the optimality equations (2.5) would be

the optimal value function.

The following theorems shows that we may search only among the deterministic

policies to find an optimal policy. Theorem 2.3 states that if there exists an action

7

that attains the supremum in the right hand side of (2.5), then there is a history

dependent deterministic policy that is optimal. The following Theorem 2.4 further

proves that if an optimal deterministic history dependent policy exists, then there

is also a Markovian deterministic policy that is optimal.

Theorem 2.3. Let u∗t be a solution of the Optimality equations (2.5), and suppose

that for each t and st ∈ S, there exists an a′st ∈ Ast for which

rt(st, a
′
st) +

∑
j∈S

pt(j|st, a′st)u
∗
t+1(ht, a

′
st , j)

= sup
a∈Ast

{
rt(st, a) +

∑
j∈S

pt(j|st, a)u∗t+1(ht, a, j)

} (2.6)

for all ht ∈ Ht. Then there exists a history dependent deterministic policy which

is optimal.

Theorem 2.4. Let u∗t be a solution of the Optimality equations (2.5), Then

(a) For each t ∈ T , u∗t (ht) depends on ht only through st.

(b) If there exists an a′ ∈ Ast such that (2.6) holds for each st ∈ S and t ∈ T ,

then there exists an optimal policy which is deterministic and Markovian.

Theorem 2.3 and Theorem 2.4 are proved in Section 3, Chapter 4 of Puterman

[1]. Supremum over the action set As is attained when As is :

(a) Finite, and rt(s, a), pt(j|s, a) are continuous in a [The case for the Prefetching

problem],

(b) Compact, and rt(s, a) is upper semi continuous in a for every s, t, there exists

an M <∞ such that |rt(s, a)| ≤ M , and pt(j|s, a) is lower semi continuous

in a.

Thus, we only need to search among Markovian deterministic policies for an op-

timal policy and need not search among the larger set of randomized history

dependent policies. Moreover, we can solve the Bellman Equations (2.5) to obtain

such an optimal policy.

8

2.2 Infinite Horizon Average Reward Criterion

We move to the case where N = ∞. In this criterion, a simple summation of

rewards would not yield any useful information about the policy, since it will be

infinite most of the time. Hence we shall define the average reward of a policy as :

φπ(s) = lim
n→∞

Eπ[
∑n

t=0 rt(st, at)]

n+ 1
. (2.7)

If the limit does not exist, we shall define φπ(s) as the lim inf. For all practical

purposes, the limit exists.

π∗ is the average reward optimal policy if :

φπ∗(s) = max
π

φπ(s). (2.8)

Now we shall determine the conditions for such an optimal π∗ to exist.

Theorem 2.5. If there exists a bounded function f(s) for every s ∈ S and a

constant g such that

g + f(s) = max
a

[
r(s, a) +

∑
s′∈S

P (s, a, s′)f(s′)

]
(2.9)

then there exists a π∗ such that

g = lim
π
φπ(s) = φπ∗(s). (2.10)

Proof. Let ht = (s0, a0, · · · , st). Since E[f(st)] = E[E[f(st)|ht−1]], it follows that

for any policy,

Eπ

[
n∑
t=1

[f(st)− Eπ[f(st)|ht−1]]

]
= 0 (2.11)

We also have that :

Eπ[f(st)|ht−1] =
∑
s′

P (st−1, at−1, s
′)f(s′)

= rt−1(st−1, at−1) +
∑
s′

P (st−1, at−1, s
′)f(s′)− rt−1(st−1, at−1)

9

≤ max
a

[
rt−1(st−1, a) +

∑
s′

P (st−1, a, s
′)f(s′)

]
− rt−1(st−1, at−1)

= g + f(st−1)− rt−1(st−1, at−1) (2.12)

There is equality for π∗ since it is defined to take the maximizing action. Hence,

0 ≥ Eπ

[
n∑
t=1

[f(st)− g − f(st−1) + rt−1(st−1, at−1)]

]
(2.13)

which can be rearranged to obtain :

g ≥ Eπ

[
f(sn)

n

]
− Eπ

[
f(s0)

n

]
+ Eπ

[∑n
t=1 rt−1(st−1, at−1)

n

]
(2.14)

where equality is for π∗. If we allow n → ∞ and use the fact that f is bounded,

we would have that :

g ≥ φπ(s0) (2.15)

with equality for π∗ for all possible values of s0.

Thus, if the conditions of Theorem 2.5 are satisfied, then a stationary optimal

policy exists and may be found from the equation in (2.9).

Now we shall determine when the conditions in Theorem 2.5 hold true.

Denote by vα(s) the optimal expected α discounted return function,

vα(s) = max
a

[
r(s, a) + α

∑
s′

P (s, a, s′)vα(s′)

]
. (2.16)

Merely taking the limit α → 1 and then maximizing the equation would not

provide anything useful, as the limit is often infinite for all actions.

We shall assume that the state space is countable. Hence, we can order the sets

with integer labels - 0, 1, · · · . Let us fix a state, call it sf (fixed state). Now we

define what we shall refer to as the α return of state s relative to sf :

fα(s) = vα(s)− vα(sf) (2.17)

We shall use this in (2.16) to obtain :

(1− α)vα(sf) + fα(s) = max
a

[
r(s, a) + α

∑
s′

P (s, a, s′)fα(s′)

]
. (2.18)

10

If we have some sequence αn → 1, fαn(s′)→ f(s′), and (1−αn)vαn(sf)→ g, then

we would obtain from (2.16),

g + f(s) = max
a

[
r(s, a) + α

∑
s′

P (s, a, s′)fα(s′)

]
. (2.19)

The summation and limit is interchangeable since f is bounded and the reward

functions are also finite.

We analyse the above sequences in detail.

Theorem 2.6. If there exists an N < ∞ such that vα(s) − vα(sf) < N for all

α, s, then :

• There exists a bounded function f(s) and a constant g satisfying (2.9);

• For some sequence αn → 1, f(s) = limn→∞[vαn(s)− vαn(sf)] ;

• limα→1(1− α)vα(sf) = g.

Proof. Since the state space is countable, label the states as 0 = sf , 1, 2, · · · , n, · · · .
fα(t) is uniformly bounded for every t, α by assumption of the theorem. Every

bounded sequence contains a convergent subsequence.

Thus, α1,n → 1 such that limn→∞ f
α1,n(1) = f(1) exists.

Since fα1,n(2) is bounded, there is a subsequence {α2,n} of {α1,n} such that

limn→∞ f
α2,n(2) = f(2) exists.

In this manner fαn,n(i)→ f(i) for each i.

Since rewards are bounded, (1− αn)vαn(0) is bounded, and thus there is a subse-

quence {αn̄} of {αn} for which limn→∞(1− αn̄)vαn̄(0) = g exists.

From (2.18), we would get that :

(1− αn̄)vα(0) + fαn̄(i) = max
a

[
r(i, a) + αn̄

∞∑
j=0

P (i, a, j)fαn̄(j)

]
. (2.20)

By taking n → ∞, and the boundedness of fαn̄(j), we can use the Lebesgue-

bounded convergence theorem to get :

∞∑
j=0

P (i, a, j)fαn̄(j) →
∞∑
j=0

P (i, a, j)f(j) as n→∞. (2.21)

11

Since (1 − α)vα(0) is bounded, for any sequence αn → 1, there is a subsequence

{ασ(n), n ≥ 1} such that

lim
n→∞

(1− ασ(n))v
ασ(n)(0) exists

and this limit must be g. Since the subsequence limit is g, it must follow that,

lim
n→∞

(1− αn)vαn(0) = g. (2.22)

Finally, we shall look at a sufficient condition for vα(i) − vα(0) to be uniformly

bounded.

Theorem 2.7. If for some state (call it 0), there is a constant N <∞ such that

mi0(πα) < N for all i, α, and the rewards are bounded by M , then vα(i)− vα(0) is

uniformly bounded, where mi0(πα) is the expected time to go from state i to state

0 when using the α discounted optimal policy πα.

Proof. Let T = min{n : sn = 0}. Then,

vα(i) = Eπα

i

[
T−1∑
n=0

αnr(sn, an)

]
+ Eπα

i

[
∞∑
n=T

αnr(sn, an)

]
≤MEπα

i (T) + vα(0)Eπα

i (αT)

≤MN + vα(0)

(2.23)

where M is the bound on rewards. We have used the strong Markov property

with T being the stopping time to obtain the inequality.

Note that :

vα(i) ≥ vα(0)Eπα

i (αT)

or,

vα(0) ≤ vα(i) + [1− Eπα

i (αT)]vα(0).

Thus vα(0) ≤M/(1− α), and E(αT) ≥ αE(T) ≥ αN by Jensen’s inequality.

Hence,

vα(0) ≤ vα(i) + (1− αN) · M

1− α
≤ vα(i) +MN (2.24)

12

Thus we have the uniform boundedness property.

Remark. If the state space is finite, and if every stationary policy gives rise to an

irreducible Markov chain, then vα(i)− vα(0) is uniformly bounded.

This concludes the outline for the existence of a stationary optimal policy for the

infinite horizon average costs criterion.

13

Chapter 3

Prefetching MDP Specification

3.1 Design of the Prefetching MDP

TREE t" _ TREE t TREE t TAE TREEt

Figure 3.1: Flow of the Prefetching MDP

Figure 3.1 depicts the process of prefetching designed in the following manner :

• The surfer is on a rooted tree (t) of a specified depth parameter d.

• Each node of the tree, except the leaves, has between 1 and p sons. The

parameter p is also a specified parameter of the model.

• Each node is either ”marked” or ”unmarked” to denote prefetched or non-

prefetched information respectively. Marks are represented as crosses in

Figure 3.1. The tree ta is the tree after markings.

14

• The surfer moves from the root to one of the sons with uniform probability.

• The surfer is not allowed to move backwards, and is allowed to move to only

one of the sons of the root.

• After the surfer moves to one of the sons, we focus only on the offspring of

the particular node that the surfer is on.

• The surfer is now on the root of a depth d−1 tree tb. We discover one depth

further by attaching between 1 and p nodes to each leaf of the depth d− 1

tree to obtain a depth d tree, t′.

• Assume that all possible combinations of forming a depth d tree from a given

d− 1 depth tree are equally likely (Uniform probability).

3.2 State Space

The state space S will be the set of all rooted and marked trees of depth d with

nodes having sons between 1 and p. We use the notation Tp,d to denote that set.

S = Tp,d.

For a finite p, d, S is a finite discrete set.

Representation of elements :

t ∈ Tp,d for d > 0 is represented as t = (µ, s) where µ ∈ {0, 1} and s ∈ Ld−1

where Ld−1 = Tp,d−1∪ (Tp,d−1×Tp,d−1)∪ . . .∪ (Tp,d−1)p represents a list of subtrees.

For d = 0, we have t = (µ) where µ ∈ {0, 1}.
Let us denote the number of rooted trees of depth d with m nodes as Xd(m).

Minimum number of nodes for a tree of depth d will be d+ 1.

Maximum number of nodes for a tree of depth d will be (pd+1 − 1)/(p− 1).

Denote the bounds on number of nodes of depth d tree as minnode(d), and

maxnode(d). Using this notation we will obtain,

|S| =
maxnode(d)∑

m=minnode(d)

2m ×Xd(m). (3.1)

15

Since there are 2m possible markings for a tree with m nodes.

Remark. The states in S which have any of the leaves marked never feature in our

MDP. This is by definition of our process which involves discovery of unmarked

leaves after the surfer moves.

Given a budget or a specific family of policies, there are states in S which will

never feature in the MDP. Thus, we shall focus only on the ”Usable States”.

Definition 3.2.1 (Usable States U). The states in S which are attained through

transitions given a specific case of budget, or a family of policies are called usable

states. Denote this set of states as U .

For example, budget dependent states for k = 1, p = 2, d = 2 will not include

states where both nodes at depth 1 (if two exist) are marked.

We provide a recursion formula for Xd(m).

Xd(m) =Xd−1(m− 1) +
∑

m1+m2=m−1
m1,m2≥1

Xd−1(m1)Xd−1(m2)

+
∑

m1+m2+m3=m−1
m1,m2,m3≥1

Xd−1(m1)Xd−1(m2)Xd−1(m3) + · · ·

+
∑

m1+m2+···+mmin(p,m−1)=m−1
m1,m2,m3,··· ,mmin(p,m−1)≥1

Xd−1(m1)Xd−1(m2) · · ·Xd−1(mmin(p,m−1))

(3.2)

To get an idea of the range of values of Xd(m), we obtain an upper bound through

the following computation.

Let γ = min(p− 1,m− 2), then the number of terms on the right hand side of 3.2

is bounded by :

min(p,m−1)∑
r=1

(
m− 2

r − 1

)
=

min(p−1,m−2)∑
r=0

(
m− 2

r

)

≤
γ∑
r=0

(m− 2)r

r!

16

=

γ∑
r=0

γr ∗ (m−2
γ

)r

r!

≤ eγ
(
m− 2

γ

)γ
∀p ≥ 1. (3.3)

We found an expression for X2(m) as :

Proposition 3.1. Assuming that
(
a
b

)
= 0 for all a ≤ 0 or a < b :

X2(m) =

min(p,m−1)∑
r=1

r∑
j=0

(
m− (r + 2)− jp

r − 1

)
× (−1)j ×

(
r

j

)
(3.4)

We should note here that the size of S grows massively as we go from depth 2 to

depth 3, or as we increase the parameter p for a particular depth.

To get an idea of the sizes of S for different model parameters, we calculate |S|
for a few cases in Table 3.1. Following this, in Table 3.2, for depth 2 trees we have

explicitly mentioned the contribution from the terms X2(m) for possible values of

m given p = 1, 2, 3.

Table 3.1: Size of State space for different d and p

d\p 1 2 3 4

1 4 12 28 60

2 8 312 45,528

3 16 197,360

4 32

Table 3.2: Size of State space for d = 2

p X2(3) X2(4) X2(5) X2(6) X2(7) X2(8) X2(9) X2(10) X2(11) X2(12) X2(13) Number of Trees |Tp,2|
1 1 1 8

2 1 1 1 2 1 6 312

3 1 1 2 2 4 5 7 7 6 3 1 39 45,528

17

3.3 Action Space

• The action in the prefetching MDP is marking of nodes given a budget k.

• At every time step, a set of k vertices from the tree is chosen to be marked.

• The Action space A should contain k subsets of all possible trees.

• If k is greater than the number of vertices of the tree, then the action will

be the whole tree itself.

A = Set of all k subsets of vertices of trees in Tp,d. (3.5)

The size of the action space will be the sum of the number of ways to choose

k vertices from the largest tree in Tp,d and the number of trees of depth d with

number of vertices ranging from minnode(d) to k. Formally,

|A| =
(pd+1−1

p−1
− 1

k

)
+

k∑
m=d+1

Xd(m). (3.6)

The first term represents choosing k vertices from the largest tree in Tp,d. The

second term is to account for those trees which have atmost k vertices.

Remark. The Action space contains ”wasteful” actions such as marking already

marked nodes, and also actions which mark nodes that do not exist for particular

trees.

3.4 Transition Probability Structure

To define the Transition probabilities, we introduce two set mappings.

Definition 3.4.1. D : Tp,d−1 → P(Tp,d)
This can be understood as the ”discovery” mapping of trees of depth d− 1 to the

power set of trees of depth d.

D(t) is the set of trees in Tp,d obtained from the tree t by updating leaves of t

according to the below rule:

Let l be a leaf (i.e, depth 0 tree) in t. Update l = (µ) as

(µ)→ (µ, nl) where nl ∈ {0} ∪ {0, 0} ∪ ... ∪ {0}p. (3.7)

18

Definition 3.4.2. SD : Tp,d → P(Tp,d) defined by

SD((µ, s)) = t
ts∈s
D(ts). (3.8)

where the symbol t refers to the disjoint union of sets. This mapping can be

understood as the ”subtree discovery” mapping of depth d trees to the power set

of depth d trees.

Let us recall the process flow :

• Begin at a state t = (µ, s)

• Perform action a to move to ta = (µ∗, s∗), i.e, a((µ, s)) = (a(µ), a(s)) =

(µ∗, s∗).

• Surfer moves to one of the sub-trees tb ∈ s∗

• Discover one depth further of tb to obtain new state t′.

Hence, we will have :

P (t, a, t′) =


1

|s||D(tb)|
if t′ ∈ D(tb) where tb ∈ a(s)

0 if t′ /∈ SD(a(t)).

(3.9)

where D and SD are as defined in Definition 3.4.1 and Definition 3.4.2.

3.5 Cost Function

The immediate cost for moving to state t′ by choosing action a while in state t is

c(t, a, t′) =

 0 if µ′ = 1

1 if µ′ = 0
(3.10)

c(t, a) =
∑

t′∈SD(t)

P (t, a, t′)c(t, a, t′). (3.11)

19

Since the immediate costs depend on the state that the process transitions to, we

shall use the expected cost of choosing action a when in state t.

3.6 Bellman Optimality Equations

We model the Prefetching process as a Finite Horizon MDP. Hence, let us look at

the Bellman Optimality Equation for the Prefetching MDP given a finite horizon

N .

V ∗(n, t) = min
a∈A

[
c(t, a) +

∑
t′∈S

P (t, a, t′)V ∗(n+ 1, t′)

]
for 0 ≤ n < N

V ∗(N, t) = 0 , and

Γ∗n(t) ∈ argmin
a∈A

V ∗(n, t) for all n < N.

(3.12)

The Value function under any policy Γ = (Γ0, · · · ,ΓN−1) is :

VΓ(n, t) = c(t,Γn(t)) +
∑
t′∈S

P (t,Γn(t), t′)VΓ(n+ 1, t′) for all 0 ≤ n ≤ N − 1,

VΓ(N, t) = 0 for all t ∈ S.

Let us make a convenient change of notation to work forwards, rather than back-

wards.
W ∗(n, t) = V ∗(N − n, t) for all 0 ≤ n ≤ N,

πn = ΓN−1−n for all 0 ≤ n ≤ N − 1.
(3.13)

Hence solving the equations in (3.12) is equivalent to solving :

W ∗(n, t) = min
a∈A

[
c(t, a) +

∑
t′∈S

P (t, a, t′)W ∗(n− 1, t′)

]
for 0 < n ≤ N

W ∗(0, t) = 0 , and

π∗n(t) ∈ argmin
a∈A

W ∗(n+ 1, t) for all 0 ≤ n ≤ N − 1.

(3.14)

20

Chapter 4

Finite Horizon Depth 1 Trees

In this chapter, we analyse Depth 1 trees and compute the optimal policy for

arbitrary p, k. We shall first look at an example, and then proceed to finding the

optimal policy for the general case. Consider the model parameters p = 2, k = 1

and d = 1.

• S = {(0, {0}), (1, {0}), (1, {1}),
(0, {(0, 0)}),
(1, {(0, 0)}), (0, {(1, 0)}), (0, {(0, 1)}),
(1, {(1, 0)}), (0, {(1, 1)}), (1, {(0, 1)}),
(1, {(1, 1)})}

• According to Definition 3.2.1, the Usable state space will be

U = {(0, {0}), (1, {0}), (0, {(0, 0)}), (1, {(0, 0)})}.

• Let us denote the trees in U as t1, t2, t3, t4 corresponding to

{(0, {0}), (1, {0}), (0, {(0, 0)}), (1, {(0, 0)}).

• Label the nodes of the tree from the root node and proceed numbering the

depth 1 nodes from the left. The root node is numbered 0.

• The action space for the usable state space will be A = {{0}, {1}, {2}} where

the actions are the node labels to be marked.

21

We now proceed to finding the value function of all the states in U using the

Bellman equations (3.14). We shall start with N = 1 and then move to arbitrary

N .

For N = 1 The process stops after one time step. Let us apply (3.14) with N = 1.

W ∗(0, t1) = 0,W ∗(0, t2) = 0,W ∗(0, t3) = 0,W ∗(0, t4) = 0. (4.1)

W ∗(1, t1) = min(1 +
1

2
· 0 +

1

2
· 0 , 0 +

1

2
· 0 +

1

2
· 0) = min(1, 0) = 0

W ∗(1, t2) = min(0 +
1

2
· 0 +

1

2
· 0) = min(0) = 0

W ∗(1, t3) = min(1 +
1

4
· 0 +

1

4
· 0 +

1

4
· 0 +

1

4
· 0 ,

1

2
+

1

4
· 0 +

1

4
· 0 +

1

4
· 0 +

1

4
· 0

,
1

2
+

1

4
· 0 +

1

4
· 0 +

1

4
· 0 +

1

4
· 0) = min(1,

1

2
,
1

2
) =

1

2

W ∗(1, t4) = min(
1

2
+

1

4
· 0 +

1

4
· 0 +

1

4
· 0 +

1

4
· 0

,
1

2
+

1

4
· 0 +

1

4
· 0 +

1

4
· 0 +

1

4
· 0) = min(

1

2
,
1

2
) =

1

2
(4.2)

Therefore, the corresponding optimal decision rules will be :

π∗0(t1) = {1}, π∗0(t2) = {1}, π∗0(t3) ∈ {{1}, {2}}, π∗0(t4) ∈ {{1}, {2}}. (4.3)

For N = 2

W ∗(0, t1) = 0,W ∗(0, t2) = 0,W ∗(0, t3) = 0,W ∗(0, t4) = 0

W ∗(1, t1) = 0,W ∗(1, t2) = 0,W ∗(1, t3) = 1/2,W ∗(1, t4) = 1/2

W ∗(2, t1) = 1/4,W ∗(2, t2) = 1/4,W ∗(2, t3) = 3/4,W ∗(2, t4) = 3/4.

(4.4)

Therefore, corresponding optimal decision rules for n = 1 are:

π∗1(t1) = {1}, π∗1(t2) = {1}, π∗1(t3) ∈ {{1}, {2}}, π∗1(t4) ∈ {{1}, {2}}. (4.5)

For N = 3

W ∗(0, t1) = 0,W ∗(0, t2) = 0,W ∗(0, t3) = 0,W ∗(0, t4) = 0

W ∗(1, t1) = 0,W ∗(1, t2) = 0,W ∗(1, t3) = 1/2,W ∗(1, t4) = 1/2

W ∗(2, t1) = 1/4,W ∗(2, t2) = 1/4,W ∗(2, t3) = 3/4, V ∗(1, t4) = 3/4

W ∗(3, t1) = 1/2,W ∗(3, t2) = 1/2,W ∗(3, t3) = 1,W ∗(3, t4) = 1

(4.6)

22

The corresponding optimal decision rules are same as the N = 2 case for all values

of 0 ≤ n ≤ 3. This is a stationary policy.

We now seek to calculate the expected cost of the MDP. We start by calculating

the stationary distribution of the Markov chain, and then the expected cost of

transitions. Finally, we obtain the average cost of the process.

• Transition matrix over the four states if the optimal policy is followed:

P =


0 1/2 0 1/2

0 1/2 0 1/2

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

 (4.7)

• Stationary distribution :

using ρ = ρ× P ,we get ρ =
(

1/8 3/8 1/8 3/8
)

(4.8)

• Expected costs of transitions

E[c(t1, a1)] = 0, E[c(t2, a1)] = 0, E[c(t3, a1)] = 1/2, E[c(t4, a1)] = 1/2 (4.9)

• Average cost :

1/8 · 0 + 3/8 · 0 + 1/8 · 1/2 + 3/8 · 1/2 = 1/4 (4.10)

Remark. Similar calculations for the case p = 3, d = 1, k = 2 resulted in an average

cost of 1/9.

4.1 Optimal Policy for the General Case

Let us consider the general case of depth 1 trees for arbitrary p and k.

• Label the states in U as follows:

t0,1, t0,2, · · · , t0,p,

t1,1, t1,2, · · · , t1,p.
(4.11)

where ti,j denotes the tree with j sons and i is the mark of root.

23

• Given an unmarked tree with j unmarked sons, where 1 ≤ j ≤ p, the number

of possible actions are
(
j
k

)
+
(

j
k−1

)
.

• Let us label the actions as below. The action space is union of the two sets:

A1 = {a1, a2, · · · , a(jk)
}

A2 = {a(jk)+1, · · · , a(jk)+(j
k−1)
}. (4.12)

The Actions in A1 represent every possible combination of marking sons.

The Actions in A2 represents every possible combination of marking the

root and the sons.

• The cost function is :

c(ti,j, π(ti,j)) =
(j − k)+

j
for all i ∈ {0, 1}, 1 ≤ j ≤ p. (4.13)

• The transition probability structure is :

P (ti,j, π(ti,j), te,f) =


(j − k)+

jp
if e = 0, 1 ≤ f ≤ p

(j − (j − k)+)

jp
if e = 1, 1 ≤ f ≤ p

(4.14)

Before getting to the formal proof of the optimal policy for depth one trees, let us

prove a useful lemma.

We define the policy π to mark any k combination of sons at every decision epoch.

Let π̃ be the policy that marks any k combination of sons upto N − 2, and mark

the root alongwith a k − 1 combination of sons at N − 1. Formally, using the

notation in (4.12),

πn ∈ A1 for all 0 ≤ n ≤ N − 1

π̃n ∈ A1 for all 0 ≤ n ≤ N − 2

π̃N−1 ∈ A2.

(4.15)

Lemma 4.1.

Wπ(n, t0,j) = Wπ(n, t1,j) for all 1 ≤ j ≤ p , 0 ≤ n ≤ N.

24

Proof. We prove the lemma by recurrence. Wπ(0, t0,j) = Wπ(0, t1,j) = 0.

For n = 1:

Wπ(1, t0,j) = c(t0,j, π0(t0,j)) =
(j − k)+

j

Wπ(1, t1,j) = c(t1,j, π0(t1,j)) =
(j − k)+

j
.

The statement holds true for n = 1. For any 2 ≤ n ≤ N ,

Wπ(n, t0,j) = c(t0,j, πn−1(t0,j)) +
∑
te,f∈S

P (t0,j, πn−1(t0,j), te,f)Wπ(n− 1, te,f)

= c(t0,j, πn−1(t0,j)) +
∑
t0,f∈S

P (t0,j, πn−1(t0,j), t0,f)Wπ(n− 1, t0,f)

+
∑
t1,f∈S

P (t0,j, πn−1(t0,j), t1,f)Wπ(n− 1, t1,f) (4.16)

= c(t0,j, πn−1(t0,j)) +

p∑
f=1

(
(j − k)+

jp
Wπ(n− 1, t0,f)

+
(j − (j − k)+)

jp
Wπ(n− 1, t1,f)

)
. (4.17)

In (4.16), we have split the summation over the trees that are marked and un-

marked.

Since the transition probability of a tree ti,j does not depend on i, a similar cal-

culation for t1,j results in:

Wπ(n, t1,j) = c(t1,j, πn−1(t1,j)) +

p∑
f=1

(
(j − k)+

jp
Wπ(n− 1, t0,f)

+
(j − (j − k)+)

jp
Wπ(n− 1, t1,f)

)
.

(4.18)

From (4.13), the immediate costs are equal, and hence (4.17) and (4.18) are equal.

Theorem 4.2. Given S = Tp,1, the optimal policy is marking any k - combination

of sons for every 0 ≤ n ≤ N − 1.

25

Proof. We use an Exchange Argument.

We shall look at the value of states at n = N under the two policies π, π̃ as defined

in (4.15), which will be:

Wπ(N, ti,j) =c(ti,j, πN−1(ti,j)) +
∑
te,f∈S

P (ti,j, πN−1(ti,j), te,f)Wπ(N − 1, te,f)

for all 1 ≤ j, f ≤ p and i, e ∈ {0, 1},
(4.19)

Wπ̃(N, ti,j) =c(ti,j, π̃N−1(ti,j)) +
∑
te,f∈S

P (ti,j, π̃N−1(ti,j), te,f)Wπ̃(N − 1, te,f)

for all 1 ≤ j, f ≤ p and i, e ∈ {0, 1}.
(4.20)

The equations (4.19) and (4.20) will be the same for trees of kind t1,j since

πN−1(t1,j) = π̃N−1(t1,j). Thus,

Wπ(N, t1,j) = Wπ̃(N, t1,j).

Hence, we focus only on the trees of kind t0,j. The immediate costs under policy

π̃ will be:

c(t0,j, π̃N−1(t0,j)) =
(j − k + 1)+

j
. (4.21)

Clearly the cost of ti,j under Policy π is greater than the cost under the Policy π̃

for j ≥ k, and equal for j < k.

The probability of transition to a tree that is unmarked is higher under the Policy

π̃, specifically it is:

P (t0,j, π̃N−1(t0,j), te,f) =



(j − k + 1)+

jp
if e = 0, 1 ≤ f ≤ p

(j − (j − k + 1)+)

jp
if e = 1, 1 ≤ f ≤ p

(4.22)

26

Let us take difference between the second terms on RHS of (4.19) and (4.20).∑
te,f∈S

P (t0,j, π̃N−1(t0,j), te,f)Wπ̃(N − 1, te,f)− P (t0,j, πN−1(t0,j), te,f)Wπ(N − 1, te,f)

=
∑
te,f∈S

(P (t0,j, π̃N−1(t0,j), te,f)− P (t0,j, πN−1(t0,j), te,f))Wπ(N − 1, te,f).

(4.23)

The above follows from the fact that until N − 2, the policies have the same

decision rules, hence the same values.

Let us split the sum and plug-in the value of transitions.∑
te,f∈S

(P (t0,j, π̃N−1(t0,j), te,f)− P (t0,j, πN−1(t0,j), te,f))Wπ(N − 1, te,f) (4.24)

=

p∑
f=1

((
(j − k + 1)+

jp
− (j − k)+

jp

)
Wπ(N − 1, t0,f) (4.25)

+

(
j − (j − k + 1)+

jp
− j − (j − k)+

jp

)
Wπ(N − 1, t1,f)

)
=

p∑
f=1

((
(j − k + 1)+ − (j − k)+

jp

)
Wπ(N − 1, t0,f)

+

(
(j − k)+ − (j − k + 1)+

jp

)
Wπ(N − 1, t1,f)

)
(4.26)

=

p∑
f=1

(
1

jp
Wπ(N − 1, t0,f) +

−1

jp
Wπ(N − 1, t1,f)

)
for j ≥ k,

=

p∑
f=1

Wπ(N − 1, t0,f)

(
1

jp
− 1

jp

)
(4.27)

= 0.

Equation (4.26) is 0 for j < k. Equation (4.27) follows from Lemma 4.1.

The immediate costs under policy π is lesser than (or equal to) that under policy

π̃ and the future costs are equal. Hence we have the following inequality:

Wπ(N, t0,j) ≤ Wπ̃(N, t0,j). (4.28)

where equality holds for the case j < k. Thus, the Proposed Policy π is better

than Policy π̃.

27

4.2 Proposed Policy Satisfies Optimality Equa-

tions

We seek to find the general expression for the value of a state under proposed

policy π for arbitrary p, k,N . General recurrence relation for the value of a state

under policy π for 0 < n ≤ N is :

Wπ(n, ti,j) =
(j − k)+

j
+

1

p

p∑
f=1

Wπ(n− 1, t1,f). (4.29)

Wπ(0, ti,j) = 0 for all 1 ≤ j ≤ p, i ∈ {0, 1}. (4.30)

For n = 0, 1, we simply have

Wπ(1, ti,j) =
(j − k)+

j
for all 1 ≤ j ≤ p, i ∈ {0, 1}. (4.31)

The following evaluations of Wπ(n, ti,j) for 2 ≤ n ≤ N hold for all trees ti,j with

1 ≤ j ≤ p, i ∈ {0, 1}.

Wπ(2, ti,j) = c(ti,j, π(ti,j)) +
∑
te,f∈S

P (ti,j, π(ti,j), te,f)Wπ(1, te,f)

=
(j − k)+

j
+
∑
t0,f∈S

(j − k)+

jp
Wπ(1, t0,f)

+
∑
t1,f∈S

(j − (j − k)+)

jp
Wπ(1, t1,f)

=
(j − k)+

j
+

p∑
f=1

1

p
Wπ(1, t1,f)

=
(j − k)+

j
+

1

p

p∑
f=1

(f − k)+

f

=
(j − k)+

j
+

1

p
Hpk, where Hpk =

p∑
f=1

(f − k)+

f
(4.32)

We shall generously use the term Hpk as it simplifies calculations. The expansion

of Hpk in terms of the harmonic series summation Hp for k < p is :

28

Hpk =
1

p

p∑
f=k+1

f − k
f

=
1

p
(p− k − k

p∑
f=k+1

1

f

=
1

p
(p− k − k(Hp −Hk)) (4.33)

Equation (4.33) has the summation of harmonic series term Hp which does not

have a closed form. From the Recurrence (4.29), let us calculate:

Wπ(3, ti,j) =
(j − k)+

j
+

1

p

p∑
f=1

Wπ(2, t1,f)

=
(j − k)+

j
+

1

p

p∑
f=1

(
(f − k)+

f
+

1

p
Hpk

)

=
(j − k)+

j
+

1

p

p∑
f=1

(f − k)+

f
+

1

p

p∑
f=1

1

p
Hpk

=
(j − k)+

j
+

1

p
Hpk +

1

p
Hpk

=
(j − k)+

j
+

2

p
Hpk.

(4.34)

Following the above pattern of calculations with a simple induction method and

with the notation Hpk used in (4.32), we obtain the below Lemma for arbitrary n.

Lemma 4.3.

Wπ(n, ti,j) =
(j − k)+

j
+

(n− 1)

p
Hpk for all 1 ≤ n ≤ N. (4.35)

Similarly, for the policy π̃, we have the value equation for n = N :

Wπ̃(N, ti,j) =
(j − k + 1)+

j
+

(N − 1)

p
Hpk. (4.36)

29

The action set is A = {a1, · · · , a(jk)+(j
k−1)
} which is the union of A1, A2 in (4.12).

To calculate the minimum over A, we only have to check for two elements in A,

one from each of the two sets {a1, · · · , a(jk)
} and {a(jk)

, · · · , a(jk)+(j
k−1)
}.

This is because the actions in those two sets are just different combinations of

marking and yield the same values.

For 1 ≤ n ≤ N ,

W ∗(n, ti,j) = min
a∈A

[
c(ti,j, a) +

∑
t′∈S

P (ti,j, a, t
′)W ∗(n− 1, t′)

]

= min

{
(j − k)+

j
+

(n− 1)

p
Hpk,

(j − k + 1)+

j
+

(n− 1)

p
Hpk

}
=

(j − k)+

j
+

(n− 1)

p
Hpk

= Wπ(n, ti,j), and

π∗n−1(t) ∈ {a1, · · · , a(jk)
} = πn−1(t).

(4.37)

Hence, π is the optimal policy as the corresponding value function satisfies the

Bellman Optimality equations (3.14).

Remark. The value of W ∗(n, ti,j) does not depend on the future t′ that ti,j could

transition to. Instead, it depends only on j and n.

Proposition 4.4. The average cost of policy π = π∗ is p−1Hpk for all ti,j ∈ S.

Proof.

lim
N→+∞

Wπ(N, ti,j)

N
= lim

N→+∞

1

N

(
(j − k)+

j
+

(N − 1)

p
Hpk

)
= lim

N→+∞

(
(j − k)+

Nj
+

(N − 1)

Np
Hpk

)
= 0 + lim

N→+∞

(
1− 1

N

)
1

p
Hpk,

=
1

p
Hpk.

30

Chapter 5

Finite Horizon Depth 2 Trees

In this chapter, we go one depth further to Depth two trees. We shall first study

the case of budget one (k = 1) for an arbitrary p, and then move on to the more

interesting case of budget two (k = 2).

We use the labels of trees of depth 1, ti,j, to represent a depth 2 tree.

Hence, a tree of depth 2 can be represented as :

(µ, {ti1,j1 , · · · , tim,jm}), (5.1)

where 1 ≤ m ≤ p, 1 ≤ jr ≤ p, ir ∈ {0, 1} for all 1 ≤ r ≤ m. This is in line with

our representation of trees of depth d as a node attached to a list of depth d− 1

trees.

We shall first look at a simple example. Consider the MDP parameters p = 2, k = 1

for d = 2. We shall first find the values of states in U under one particular policy.

Let π be a policy that always marks a son of the root then the values Wπ(t) for

t ∈ U computed with equation (3.14) is in Table 5.1. We compare Table 5.1 with

the value functions under the policy of marking a leaf, and infer that the policy

of marking a son of the root is optimal.

31

Table 5.1: Wπ(n, t) for all trees in U for 0 ≤ n ≤ N = 4

Tree n = 0 n = 1 n = 2 n = 3 n = 4

(µ, {t0,1}) 0 0 0 1/4 1/2

(µ, {t0,2}) 0 0 1/2 3/4 1

(µ, {t0,1, t0,1}) 0 1/2 1/2 3/4 1

(µ, {t0,2, t0,1}) 0 1/2 3/4 1 5/4

(µ, {t0,1, t0,2}) 0 1/2 3/4 1 5/4

(µ, {t0,2, t0,2}) 0 1/2 1 5/4 3/2

Given d = 2 and an arbitrary p, we start the analysis of optimal policy for k = 1.

Like in the depth 1 case, we shall use an exchange argument to prove that our

proposed policy is optimal, and then show that our policy also satisfies the Bellman

Optimality equations in (3.14), and hence is optimal.

5.1 Budget 1

Possible Policies π̄, π̄, π̃ :

π = (π0, π1, · · · , πN−1),

π̄ = (π0, π1, · · · , π̄N−1),

π̃ = (π0, π1, · · · , π̃N−1).

(5.2)

where
πn = Mark a son of the tree for all 0 ≤ n ≤ N − 1,

π̄N−1 = Mark a leaf of the tree,

π̃N−1 = Mark root of the tree.

(5.3)

We propose that the policy π is optimal. Let us compute the value function under

the policy π.

Following π, the immediate cost for a tree t represented as

(µ, {ti1,j1 , · · · , tim,jm}) where 1 ≤ m ≤ p will be

c(t, π(t)) =
m− 1

m
. (5.4)

32

The transition probability will be

P (t, π(t), t′) =
1

m · pjr
if t′ ∈ D(tir,jr). (5.5)

The value function for n = 0, 1 will trivially be :

Wπ(0, t) = 0,

Wπ(1, t) = c(t, π(t)) for all 1 ≤ m ≤ p.

For n = 2,

Wπ(2, t) = c(t, π(t)) +
∑

t′∈SD(t)

P (t, π(t), t′) ·Wπ(1, t′),

= 2− 1

m
− 1

m

m∑
r=1

1

jr
. (5.6)

The simplification is in Appendix A.1.

Moving one step further, let us compute the value function at n = 3.

Wπ(3, t) = c(t, π(t)) +
∑

t′∈SD(t)

P (t, π(t), t′) ·Wπ(2, t′)

= 3− 1

m
− 1

m
·
m∑
r=1

(
1

jr
+M(1, jr)

)
(5.7)

where

M(1, jr) =
1

pj · j
∑

1≤f1,f2,··· ,fj≤p

j∑
q=1

1

fq
. (5.8)

Let us formally define the following recursion to aid our analysis. We shall solve

the recursion later on.

M(n, j) =
1

pj · j
∑

1≤f1,f2,··· ,fj≤p

j∑
q=1

(
1

fq
+M(n− 1, fq)

)
for 1 ≤ n ≤ N, and 1 ≤ j ≤ p.

M(0, j) = 0 and 1 ≤ j ≤ p.

33

Following the computation for Wπ(3, t) we move from n = 3 to n = 4, to obtain,

Wπ(4, t) = 4− 1

m
− 1

m

m∑
r=1

1

jr
− 1

m
·
m∑
r=1

1

pjrjr

∑
1≤f1,f2,··· ,fjr≤p

jr∑
q=1

(
1

fq
+M(1, fq)

)

= 4− 1

m
− 1

m
·
m∑
r=1

(
1

jr
+M(2, jr)

)
.

(5.9)

Hence, by recurrence, the general equation for Wπ(n, t), for all 2 ≤ n ≤ N is:

Wπ(n, t) = n− 1

m
− 1

m

m∑
r=1

(
1

jr
+M(n− 2, jr)

)
. (5.10)

In order to simplify the value function and remove dependency on the term

M(n, j), we solve the recurrence for M(n, j) (proof in Appendix A.2) to obtain :

M(n, j) =
n

p
·Hp (5.11)

We can use the simplified expression for M(n, j) in (5.10) which leads to the

following Lemma 5.1 for Wπ(n, t).

Lemma 5.1.

Wπ(n, t) = n− 1

m
− n− 2

p
·Hp −

1

m

m∑
r=1

1

jr
for 2 ≤ n ≤ N. (5.12)

We can cross-verify (5.12) with the values in Table 5.1. Consider the tree t =

(µ, {t0,1, t0,1}) and n = 3.

According to (5.12),

Wπ(3, t) = 3− 1

2
− 3− 2

2
H2 −

1

2
{1 + 1} = 2− 1

2
− 3

4
=

3

4
, (5.13)

which is the corresponding value in Table 5.1. All values computed using (5.12)

match with Table 5.1.

5.1.1 Exchange Argument Approach

Similar to the depth one case, let us prove a couple of useful lemmas before

computing the optimal policy.

34

Lemma 5.2. For a tree (µ, {t1,f1 , t0,f2 , · · · , t0,fj}), with j > 1 and given policies

π and π̄,

Wπ̄(n, (µ, {t1,f1 , t0,f2 , · · · , t0,fj}))−Wπ(n, (µ, {t0,f1 , t0,f2 , · · · , t0,fj}))

= −1

j
for all 1 ≤ n ≤ N − 1.

(5.14)

Proof. Let tm = (µ, {t1,f1 , t0,f2 , · · · , t0,fj}) and tum = (µ, {t0,f1 , t0,f2 , · · · , t0,fj})

Wπ̄(n, tm) = c(t, π̄n−1(tm)) +
∑

t′∈SD(tm)

P (t, π̄n−1(tm), t′) ·Wπ̄(n− 1, t′)

= 1− 2

j
+

∑
t′∈SD(tm)

P (tm, π̄n−1(tm), t′) ·Wπ̄(n− 1, t′) (5.15)

Wπ(n, tum) = c(t, πn−1(tum)) +
∑

t′∈SD(tum)

P (tum, πn−1(t), t′) ·Wπ(n− 1, t′)

= 1− 1

j
+

∑
t′∈SD(tum)

P (tum, πn−1(tum), t′) ·Wπ(n− 1, t′). (5.16)

Taking the difference of (5.15) and (5.16) we get:

Wπ̄(n, tm)−Wπ(n, (µ, tum)

=
−1

j
.

This is because πi = π̄i for all 0 ≤ i ≤ N − 2, and the values of discoveries of

marked and unmarked tree of same shape are equal.

Precisely,

t′ ∈ D(t1,f1) =⇒ t′ = (1, {t0,h1 , · · · , t0,hf1}) where 1 ≤ h1, · · · , hf1 ≤ p. (5.17)

For such a t′, there is a corresponding unmarked tree of same shape :

t′′ ∈ D(t0,f1) =⇒ t′′ = (0, {t0,h1 , · · · , t0,hf1}) where 1 ≤ h1, · · · , hf1 ≤ p. (5.18)

Since, policy π does not mark the root, the immediate costs and future trees are

same for t′, t′′, i.e.,

Wπ̄(n, t′) = Wπ(n, t′′) for all 1 ≤ n ≤ N − 1. (5.19)

35

Furthermore, the transition probabilities are same as well since the shapes of the

future trees are identical :

P (t, π̃n−1(t), t′) = P (t, πn−1(t), t′′) for all 1 ≤ n ≤ N − 1. (5.20)

Hence, the summations in (5.15) and (5.16) are equal.

Lemma 5.3. Let, for all n ≥ 0, all µ ∈ {0, 1}, and all pairs of trees t1,1, t0,1 ∈ Tp,1,

An = Wπ̄(n, (µ, {t1,1}))−Wπ(n, (µ, {t0,1})).

Then,

An =


−

p∑
f=2

{
1

f

}
·
(

1

p
+ · · ·+ 1

pn−2

)
if 3 ≤ n ≤ N − 1

0 if n < 3.

Furthermore,

1 + An > 0 for all 0 ≤ n ≤ N − 1.

Proof. The case n = 0 is trivial.

For n = 1, we just have the immediate costs which is 0 for both policies.

Wπ̄(1, (µ, {t1,1})) = Wπ(1, (µ, {t0,1})) = 0. (5.21)

For n = 2, we have the immediate zero costs and future costs of discoveries of a

subtree with one son, which is also zero.

Wπ̄(2, (µ, {t1,1})) = Wπ(2, (µ, {t0,1})) = 0. (5.22)

Before moving on to n = 3, let us look at for some 2 ≤ f ≤ p,

Wπ̄(2, (µ, {t1,f}))−Wπ(2, (µ, {t0,f}))

=
1

pf

∑
t′∈SD((µ,{t1,f}))

Wπ̄(1, t′)− 1

pf

∑
t′∈SD((µ,{t0,f}))

Wπ(1, t′)

=
1

pf

∑
1≤q1,··· ,qf≤p

Wπ̄(1, (µ, {t1,q1 , t0,q2 , · · · , t0,qf}))

36

− 1

pf

∑
1≤q1,··· ,qf≤p

Wπ(1, (µ, {t0,q1 , t0,q2 , · · · , t0,qf}))

=
−pf

pff
=
−1

f
. (5.23)

In (5.23), we have used Lemma 5.14. Similarly, we obtain by recurrence that, for

any 2 ≤ n ≤ N − 1 and 2 ≤ f ≤ p :

Wπ̄(n, (µ, {t1,f}))−Wπ(n, (µ, {t0,f}))

=
1

pf

∑
t′∈SD((µ,{t1,f}))

Wπ̄(n− 1, t′)− 1

pf

∑
t′∈SD((µ,{t0,f}))

Wπ(n− 1, t′)

=
1

pf

∑
1≤q1,··· ,qf≤p

Wπ̄(n− 1, (1, {t1,q1 , t0,q2 , · · · , t0,qf}))

− 1

pf

∑
1≤q1,··· ,qf≤p

Wπ(n− 1, (1, {t0,q1 , t0,q2 , · · · , t0,qf}))

=
−1

f
.

(5.24)

Now we shall look at n = 3:

A3 = Wπ̄(3, (µ, {t1,1}))−Wπ(3, (µ, {t0,1}))

=
1

p
·

p∑
f=1

(Wπ̄(2, (µ, {t1,f}))−Wπ(2, (µ, {t0,f})))

=
1

p
· (Wπ̄(2, (µ, {t1,1}))−Wπ(2, (µ, {t0,1})))

+
1

p
·

p∑
f=2

(Wπ̄(2, (µ, {t1,f}))−Wπ(2, (µ, {t0,f})))

=
1

p
· A2 +

1

p
·

p∑
f=2

− 1

f
(5.25)

=
1

p
·

p∑
f=2

− 1

f
=

1

p
· (1−Hp). (5.26)

In (5.25), we have used the simplified value from (5.24).

The difference in value of trees (µ, {t1,1}), (µ, {t0,1}) for 3 ≤ n ≤ N−1 is equivalent

37

to a recurrence where An = Wπ̄(n, (µ, {t1,1}))−Wπ(n, (µ, {t0,1})):

An =
1

p
·

p∑
f=1

(Wπ̄(n− 1, (µ, {t1,f}))−Wπ(n− 1, (µ, {t0,f})))

=
1

p
· (Wπ̄(n− 1, (µ, {t1,1}))−Wπ(n− 1, (µ, {t0,1})))

+
1

p
·

p∑
f=2

(Wπ̄(n− 1, (µ, {t1,f}))−Wπ(n− 1, (µ, {t0,f})))

=
1

p
· An−1 +

1

p
·

p∑
f=2

− 1

f

=
1

p
· An−1 +

1

p
· (1−Hp).

Hence,

An =
1

p
· An−1 +

1

p
· (1−Hp) with 3 ≤ n ≤ N − 1 given

A2 = 0.

(5.27)

Solving the above recurrence, we get,

An = (1−Hp) ·
(

1

p
+

1

p2
+ · · ·+ 1

pn−2

)
= −

p∑
f=2

1

f
·
(

1

p
+

1

p2
+ · · ·+ 1

pN−3

)
for all 3 ≤ n ≤ N − 1.

(5.28)

Clearly An is negative since Hp ≥ 1. Let us bound the positive term −An for any

p > 1:

−An = (Hp − 1) ·
(

1

p
+

1

p2
+ · · ·+ 1

pn−2

)
< (Hp − 1) ·

(
∞∑
k=1

1

pk

)
= (Hp − 1) · 1

p− 1

≤ ln p

p− 1
≤ 1 (5.29)

We have used the well known logarithmic bound for the harmonic series term in

(5.29). Precisely, we have used that Hp ≤ ln p+ 1 for any p ≥ 1. We then use the

38

bound ln p ≤ p− 1 for any p ≥ 1.

Therefore, An > −1 =⇒ 1+An > 0 which completes the proof of the Lemma.

Theorem 5.4. Given the state space S = Tp,2, budget k = 1, and finite horizon

N , the optimal policy is marking any depth 1 node.

Proof. Using the depth two tree representation as in (5.1), the cost of tree t under

the three distinct policies π, π̄, π̃ as defined in (5.2) are :

c(t, π(t)) = 1− 1

m

c(t, π̄N−1(t)) = 1

c(t, π̃N−1(t)) = 1.

(5.30)

Clearly,

Wπ(n, t) = Wπ̄(n, t) = Wπ̃(n, t) for all 0 ≤ n ≤ N − 1. (5.31)

Let us compare the policies π, π̄.

After applying decision rule π̄N−1, there would be future states which have already

marked node at depth 1. Hence, we have to account for the value of these states.

Without loss of generality, we assume that the first son of tree tic,jc i.e., the leaf,

is marked under π̄N−1 where c ∈ {1, · · · ,m}.

Wπ̄(N, t)

= 1 +
∑

t′∈SD(t)

P (t, π̄N−1(t), t′) ·Wπ̄(N − 1, t′)

= 1 +
m∑
r=1

 1

m · pjr
∑

t′∈D(tir,jr)

Wπ̄(N − 1, t′)



= 1 +
∑

r∈{1,··· ,m}/c

 1

m · pjr
∑

1≤f1,f2,··· ,fjr≤p

Wπ̄(N − 1, (ir, {t0,f1 , t0,f2 , · · · , t0,fjr}))


39

+

 1

m · pjc
∑

1≤f1,··· ,fjc≤p

Wπ̄(N − 1, (ic, {t1,f1 , t0,f2 , · · · , t0,fjc}))

 . (5.32)

And under the policy π, we would have :

Wπ(N, t)

= 1− 1

m
+

∑
t′∈SD(t)

P (t, πN−1(t), t′) ·Wπ(N − 1, t′)

= 1− 1

m

+
∑

r∈{1,··· ,m}/c

 1

m · pjr
∑

1≤f1,f2,··· ,fjr≤p

Wπ(N − 1, (ir, {t0,f1 , t0,f2 , · · · , t0,fjr}))


+

 1

m · pjc
∑

1≤f1,f2,··· ,fjc≤p

Wπ(N − 1, (ic, {t0,f1 , t0,f2 , · · · , t0,fjc}))

 . (5.33)

Now, let us take difference between the Value Equations (5.32), and (5.33). The

summation of terms over r ∈ {1, · · · ,m}/c in (5.33) and (5.32) cancel out when

we take their difference. For the remaining term, two cases must be considered.

Case 1: jc = 1, using Lemma 5.3 for the value of discoveries of the subtree tic,jc ,

Wπ̄(N, t)−Wπ(N, t)

=
1

m
+

1

m · pjc
·

∑
1≤f1,f2,··· ,fjc≤p

(
−

p∑
f=2

{ 1

f

}
·
(

1

p
+

1

p2
+ · · ·+ 1

pN−3

))

=
1

m
− 1

m · pjc
· pjc ·

p∑
f=2

{ 1

f

}
·
(

1

p
+

1

p2
+ · · ·+ 1

pN−3

)
(5.34)

=
1

m
− 1

m
·

p∑
f=2

{ 1

f

}
·
(

1

p
+

1

p2
+ · · ·+ 1

pN−3

)
=

1

m
· (1 + AN−1) > 0.

40

Case 2: jc ≥ 2, using Lemma 5.14,

Wπ̄(N, t)−Wπ(N, t)

=
1

m
+

1

mpjc
·

∑
1≤f1,f2,··· ,fjc≤p

−1

jc

=
1

m
+

1

mpjc
· −1

jc
· pjc

=
1

m
− 1

m · jc
=

1

m
· (1− 1

jc
)

> 0 since jc ≥ 2.

(5.35)

Hence in all cases,

Wπ(N, t) < Wπ̄(N, t). (5.36)

Under policy π̃, there would be a higher immediate cost. The future costs are

equal to the future costs under policy π since we follow the same decision rule and

have the same future trees. The value for unmarked trees under this policy is:

Wπ̃(N, t) = 1 +
∑

t′∈SD(t)

P (t, π̃N−1(t), t′) ·Wπ̃(N − 1, t′). (5.37)

Taking difference of (5.37) and (5.33), we get :

Wπ̃(N, t)−Wπ(N, t) =
1

m
> 0. (5.38)

Hence,

Wπ(N, t) < Wπ̃(N, t) for t = (0, {ti1,j1 , · · · , tim,jm}). (5.39)

When the decision rule of the policies π̄, π̃ at N − 1 are exchanged with πN−1, we

have a better of policy.

Hence, by the principle of exchange arguments, π (marking a depth one node) is

the optimal policy.

5.1.2 Proposed Policy Satisfies Optimality Equations

Let us prove that the Value Equation (5.12) satisfies the Optimality equations

(3.14). We note the following points :

41

• The action set is the union of set of all singleton depth one nodes and the

set of all singleton leaves.

• Among the actions that mark a leaf, we consider two types of actions that

result in different values. One is marking a leaf with no siblings, and another

is marking a leaf with at-least one sibling.

• The three actions we compare below in order are - First Action : Marking

a depth 1 node, Second Action : Marking a leaf with at-least one sibling,

Third Action : Marking a leaf with no sibling. i.e, A = { depth one node,

leaf with atleast one sibling, leaf with no siblings }.

Let t = (µ, {ti1,j1 , ti2,j2 , · · · , tim,jm}) where 1 ≤ m ≤ p. Then we have,

For n = 0:

W ∗(0, t) = Wπ(0, t). (5.40)

For n = 1:

W ∗(1, t) = min
a∈A

{
c(t, a) +

∑
t′∈S

P (t, a, t′)×W ∗(0, t′)

}

= min

{
1− 1

m
,1,1

}
= 1− 1

m

= Wπ(1, t), and

π∗0(t) ∈ d1(t) = π0(t).

(5.41)

The calculations for the other two actions have not been shown since they are

rather trivial computations. Given that the leaf of subtree tic,jc (where jc ≥ 2

in the second action, and jc = 1 in the third action) is marked in the other two

actions, the immediate costs are 1 of course. Furthermore, the future values of

discoveries of subtrees tir,jr for r 6= c are equal to the future values under the action

of marking a son (the first action). It is only the future values of the discoveries of

the subtree tic,jc that is different. In comparision to the first action, when jc ≥ 2,

42

there is an extra 1/jc factor multiplied with the −1/m term. For jc = 1, the 1/jc

term actually does not feature at all! This shows that it is wasteful to mark the

the leaf of a subtree with no siblings, since in the next step, given one budget this

leaf (which would become a son if the surfer moves to this particular subtree) can

be easily marked.

For n = 2:

W ∗(2, t) = min
a∈A

{
c(t, a) +

∑
t′∈S

P (t, a, t′)×W ∗(1, t′)

}

= min

{
2− 1

m
− 1

m

m∑
r=1

1

jr
,

2− 1

m

(
2

jc

)
− 1

m

∑
r∈{1,··· ,m}/c

1

jr
,

2− 1

m
− 1

m

∑
r∈{1,··· ,m}/c

1

jr


= 2− 1

m
− 1

m

m∑
r=1

1

jr
= Wπ(2, t), and

π∗1(t) ∈ d1(t) = π1(t).

(5.42)

In (5.42), the minimum is the first action since the difference between the first and

second action is a factor of 2/jc multiplied to −1/m. Since jc ≥ 2, the factor is less

than 1, and hence the negative terms in the second action are lesser in absolute

value than the negative terms in the first action. The third action has an entire

−1/jc = −1 term missing and hence is not the minimum. The same argument

applies in the following case for 2 < n ≤ N in (5.43).

43

For 2 < n ≤ N

W ∗(n, t) = min
a∈A

{
c(t, a) +

∑
t′∈S

P (t, a, t′)×W ∗(n− 1, t′)

}

= min

{
n− 1

m
− 1

m
·
m∑
r=1

(
1

jr
+M(n− 2, jr)

)
,

n− 1

m
·
((

2

jc

)
+M(n− 2, jc)

)
− 1

m
·

∑
r∈{1,··· ,m}/c

(
1

jr
+M(n− 2, jr)

)
,

n− 1

m
·M(n− 2, 1)− 1

m
·

∑
r∈{1,··· ,m}/c

(
1

jr
+M(n− 2, jr)

)
= n− 1

m
− 1

m
·
m∑
r=1

(
1

jr
+M(n− 2, jr)

)
= Wπ(n, t), and

π∗n−1(t) ∈ d1(t) = πn−1(t).

(5.43)

The Value equation (5.12) under policy π satisfies the Bellman Equations. Hence,

the policy π of marking a son is an optimal policy.

5.2 Budget two

With a budget of two, the problem is more complicated, as there are possibilities

of marking any combination of sons and leaves.

Remark. There will be symmetrical trees in the usable state space U . We shall

restrict the analysis to trees with increasing depth 1 subtree sizes, as any other

combination of those depth 1 subtrees will result in the same value.

Lemma 5.5. The set of usable states for budget 2 will contain all trees with

unmarked leaves and not more than 2 marked depth-1 sons. i.e,
m∑
r=1

ir ∈ {0, 1, 2}.

Proof. We shall work with depth-1 subtrees of a given depth-2 tree.

Note that given a tree t = (µ, {ti1,j1 , ti2,j2 , ti3,j3 , · · · , tim,jm}), there will be m depth-

44

1 subtrees which are precisely ti1,j1 , ti2,j2 , ti3,j3 , · · · , tim,jm . There is also the depth-1

subtree - root with m sons. But we do not bother about this subtree since it is not

a subtree that will be ”discovered” further. There are (m + 1) depth-1 subtrees

in total. Since we start with unmarked trees at n = 0, and there is a budget of 2,

no state after marking at n = 1 will have a depth 1 subtree with more than two

marked sons. This implies
m∑
r=1

ir ≤ 2. Assume this statement holds true for any

n < N . That is, all states after marking at n < N do not have a depth 1 subtree

with more than two marked sons.

To prove it for n+ 1, let us proceed by contradiction.

Assume that there is a tree t′ = (µ, {ti1,j1 , · · · , tim,jm}) with
m∑
r=1

ir > 2, say that

m∑
r=1

ir = 3. Without loss of generality, let i1, i2, i3 = 1.

The tree t′ is one of the discoveries of any of the m depth one subtrees (say tb)

of the tree at n after marking, and this tb has three marked leaves. The root of t

with its m sons is also a depth one subtree (contributing the +1 to the number of

depth one subtrees), but we do not discover this subtree further! So t′ is not one

of the discoveries of the subtree tµ,m.

Precisely,

t′ ∈ D(tb) = D(µ, {1, 1, 1, 0, · · · , 0)}) there are three ”1s” and m− 3 ”0s”.

But tb is a depth 1 subtree of a tree at n after marking, and according to our

induction statement such a tb does not exist. Hence the tree t′ does not exist.

Let us calculate the Optimal policy for separate types of trees for each of the

1 ≤ n ≤ N . To begin, let us label the actions in Table 5.2 :

Table 5.2: Table of Action Labels

Sl no. Action Label Action Interpretation

1 a(d1, d1) Mark any two unmarked depth 1 nodes.

2 a(d1, lg) Mark any unmarked depth 1 node and leaf of tree tig ,jg with g ∈ {1, · · · ,m} .

3 a(lg, lh) Mark leaf of tree tig ,jg , and leaf of tree tih,jh where g, h ∈ {1, · · · ,m}, g 6= h.

4 a(lg, lg) Mark two leaves of tree tig ,jg with g ∈ {1, · · · ,m}.

45

We now partition the state space to ease the analysis. The intuition for partition-

ing the state space in the way we have is the following.

Assume we prioritize marking the depth one nodes over marking leaves. Under

such a marking, the trees that would still have unmarked depth one nodes, or all

marked depth one nodes such that there is no more budget to mark leaves would

be in one type.

A second type would be the trees where following the above marking would leave

some budget that can be used to mark leaves. The second type is further subdi-

vided into three types depending on the number of marked and umarked depth 1

sons.

Figure 5.1: Types of depth 2 trees in the state space for budget 2

Figure 5.1 provides a visual depiction of the tree types. In the trees, the crosses

represent markings.

46

5.2.1 Horizon n = 1

Type 1 - Trees with m ≥
m∑
r=1

ir + 2 :

In this case, it is optimal to use the budget to mark depth 1 nodes as that action

has the minimum cost. The action set A = {a(d1, d1), a(d1, lg), a(lg, lg), a(lg, lh)}
where g, h ∈ {1, · · · ,m} and g 6= h. We find the minimum over A in order of the

actions.

W ∗(1, t) = min
a∈A
{c(t, a(t))}

= min

{
1

m
· (m−

m∑
r=1

ir − 2),
1

m
· (m−

m∑
r=1

ir − 1),
1

m
· (m−

m∑
r=1

ir),

1

m
· (m−

m∑
r=1

ir)

}

=
1

m
· (m−

m∑
r=1

ir − 2).

Type 2a,2b,2c - Trees with m <
m∑
r=1

ir + 2 :

The action a(d1, lg) for Type 2a and 2b trees ensures that all depth 1 nodes are

marked and hence results in a zero cost. Thus, a(d1, lg) leads to the minimum

value for Type 2a and 2b as the other actions lead to a non-zero cost. For Type

2c, the optimal action is, rather trivially, a(l1, l1) since there is only one subtree

attached to the root.

W ∗(1, t) = 0 for all t.

Summary of Optimal Values.

W ∗(1, t) =



1

m
(m−

m∑
r=1

ir − 2) for m ≥
m∑
r=1

ir + 2

0 otherwise.

(5.44)

In Table 5.3 we have listed the corresponding optimal actions.

47

Table 5.3: Table for Optimal marking actions corresponding to W ∗(1, t)

Tree Type Optimal Marking Action

m ≥
m∑
r=1

ir + 2 a(d1, d1), Mark two depth one nodes.

m−
m∑
r=1

ir = 1 a(d1, lj1), Mark unmarked depth one node and leaf of tree ti1,j1 .

m−
m∑
r=1

ir = 0 a(ljg , ljh), where g, h ∈ {1, · · · ,m}, Mark any two leaves.

5.2.2 Horizon n = 2

Type 1 :

The action set is : A = {a(d1, d1), a(d1, lg), a(lg, lh)} where g, h ∈ {1, · · · ,m} with

the possibility that g = h.

Whenever we mark a leaf (or leaves) of a particular subtree, denote that subtree

by tic,jc or by (tic1,jc1 , tic2,jc2) if two leaves are marked.

We use the values for n = 1 from (5.44) in the Bellman Equations to obtain :

W ∗(2, t) = min
a∈A

c(t, a(t)) +
∑

t′∈SD(t)

P (t, a(t), t′) ·W ∗(1, t′)


= min

{
1

m
· (m−

m∑
r=1

ir − 2) +
1

m
·
m∑
r=1

(jr − 2)+

jr
, (5.45)

1

m
· (m−

m∑
r=1

ir − 1) +
1

m
·

∑
r∈{1,··· ,m}/c

(jr − 2)+

jr
+

1

m
· (jc − 3)+

jc
,

(5.46)

1

m
· (m−

m∑
r=1

ir) +
1

m
·

∑
r∈{1,··· ,m}/{c1,c2}

(jr − 2)+

jr

+
1

m
· (jc1 − 3)+

jc1
+

1

m
· (jc2 − 3)+

jc2

}
(5.47)

=
1

m
· (m−

m∑
r=1

ir − 2) +
1

m
·
m∑
r=1

(jr − 2)+

jr
.

48

The minimum among the actions is a(d1, d1). The expression in (5.45) is lesser

than or equal to (5.46) because their difference is 1/m · (1− 1/jc) > 0 for jc ≥ 3,

and 0 for jc < 3. Similarly, the expression in (5.45) is lesser than or equal to

(5.47) because their difference is 1/m · (1 − 1/jc1) + 1/m · (1 − 1/jc2) > 0 for

jc1, jc2 ≥ 3, and 0 for jc1, jc2 < 3. If jc1 < 3 and jc2 ≥ 3 then their difference is

1/m ·(1−1/jc2) > 0. This reasoning is also applied while calculating the minimum

value among actions for Type 2a trees.

Type 2a :

The action set is A = {a(d1, lg), a(lg, lh)}:

W ∗(2, t) = min
a∈A

c(t, a(t)) +
∑

t′∈SD(t)

P (t, a(t), t′) ·W ∗(1, t′)


= min

{ 1

m
·

∑
r∈{1,··· ,m}/c

(jr − 2)+

jr
+

1

m
· (jc − 3)+

jc
,

1

m
+

1

m
·

∑
r∈{1,··· ,m}/{c1,c2}

(jr − 2)+

jr
+

1

m
· (jc1 − 3)+

jc1

+
1

m
· (jc2 − 3)+

jc2

}
=

1

m
·

∑
r∈{1,··· ,m}/c

(jr − 2)+

jr
+

1

m
· (jc − 3)+

jc
.

In continuation to the analysis of Type 2a, we note that it is better to mark the

leaf which has more than 2 siblings, and the minimum number of siblings. If all

leaves have less than 2 siblings, then mark any leaf.

Let us look at why we have to mark the leaf which has more than 2 siblings, and

the minimum number of siblings. Let js = min
r∈{1,··· ,m}

jr, and jl = max
r∈{1,··· ,m}

jr with

js, jl ≥ 3. The difference between marking the leaf of subtree tis,js and til,jl is :

js − 3

js
+

∑
r∈{1,··· ,m}/{s,l}

(
jr − 2

jr

)
+
jl − 2

jl


49

−

js − 2

js
+

∑
r∈{1,··· ,m}/{s,l}

(
jr − 2

jr

)
+
jl − 3

jl


=
−1

js
+
−1

jl

< 0 since js < jl.

This implies that it is better to mark the leaf of subtree tis,js .

Hence, mark jc such that

jc = max{min
r
{jr ≥ 3},max

r
{jr ≤ 2}} where r ∈ {1, · · · ,m}. (5.48)

Type 2b :

The relevant actions here are marking the leaves since the sons are marked already.

The particular leaf to mark is what we aim to find.

Let A = { (First action) a(lj1 , lj2), (Second action) a(lj1 , lj1), (Third action)

a(lj2 , lj2) }. Let us solve the Bellman equation for the actions in this order.

W ∗(2, t) = min
a∈A

c(t, a(t)) +
∑

t′∈SD(t)

P (t, a(t), t′) ·W ∗(1, t′)


= min

{
1

m
· (j1 − 3)+

j1

+
1

m
· (j2 − 3)+

j2

,

1

m
· (j1 − 4)+

j1

+
1

m
· (j2 − 2)+

j2

,
1

m
· (j1 − 2)+

j1

+
1

m
· (j2 − 4)+

j2

}

=



1

m
· (j1 − 3)+

j1

+
1

m
· (j2 − 3)+

j2

if j1 or j2 = 3

1

m
· (j1 − 4)+

j1

+
1

m
· (j2 − 2)+

j2

if j1, j2 > 3

1

m
· (j2 − 4)+

j2

if j1 < 3 < j2

0 if j1, j2 < 3

50

The optimal decision for Type 2b trees can be described as follows :

• If both subtrees have more than three leaves, then mark the leaves of ti1,j1

i.e., the smallest subtree.

• If either of the subtrees have three leaves, mark one of those leaves and the

leaf of the other subtree.

• If j1 < 3, then it is better to mark two leaves of ti2,j2 .

• If both subtrees have less than three leaves, we can mark any pair of leaves

since the cost is 0 for any combination of marking leaves.

Type 2c : Trivially, mark any two leaves.

W ∗(2, t) =
1

m
· (j1 − 4)+

j1

=
(j1 − 4)+

j1

. (5.49)

Table 5.4 lists the optimal actions for each tree type which is followed by the

summary of optimal value functions for all tree types.

Table 5.4: Table for Optimal marking actions corresponding to W ∗(2, t)

Tree Type Optimal Marking Action

m ≥
m∑
r=1

ir + 2 a(d1, d1), Mark any two unmarked depth 1 nodes.

m−
m∑
r=1

ir = 1 a(d1, ljc), Mark unmarked depth 1 node and leaf of tree tic,jc with c defined in (5.48)

m = 2,
m∑
r=1

ir = 2, j1 or j2 = 3 a(lj1 , lj2), Mark one leaf each of subtrees ti1,j1 , ti2,j2 .

m = 2,
m∑
r=1

ir = 2, j1, j2 > 3 a(lj1 , lj1), Mark two leaves of subtree ti1,j1 .

m = 2,
m∑
r=1

ir = 2, j1, j2 < 3 Mark any two leaves.

m = 2,
m∑
r=1

ir = 2, j1 < 3 < j2 a(lj2 , lj2), Mark two leaves of subtree ti2,j2 .

m = 1,
m∑
r=1

ir = 1 a(lj1 , lj1) Mark any two leaves of the sole subtree.

51

Summary of Optimal Value functions at n = 2 for each tree type:

W ∗(2, t) =



1

m
(m−

m∑
r=1

ir − 2)

+
1

m
·
m∑
r=1

1

jr
(jr − 2)+ for m ≥

m∑
r=1

ir + 2

1

m

∑
r∈{1,··· ,m}/c

(jr − 2)+

jr
for m−

m∑
r=1

ir = 1 where,

+
1

m
· (jc − 3)+

jc
jc as in (5.48)

1

m
· (j1 − 3)+

j1

+
1

m
· (j2 − 3)+

j2

for m = 2,
m∑
r=1

ir = 2, j1 or j2 = 3

1

m
· (j1 − 4)+

j1

+
1

m
· (j2 − 2)+

j2

for m = 2,
m∑
r=1

ir = 2, j1, j2 > 3

1

m
· (j2 − 4)+

j2

for m = 2,
m∑
r=1

ir = 2, j1 < 3 < j2

0 for m = 2,
m∑
r=1

ir = 2, j1, j2 < 3

1

m
· (j1 − 4)+

j1

for m = 1,
m∑
r=1

ir = 1.

(5.50)

5.2.3 Horizon n = 3

Preliminary Computations

We shall define and then compute the closed form solutions (upto Hp) of the

following terms. We refer to these terms frequently in this section.

52

Tr(2 : 0, 0) =

p∑
f1=1

p∑
f2=1

W ∗(2, (ic, {t0,f1 , t0,f2}))

Tr(2 : 1, 0) =

p∑
f1=1

p∑
f2=1

W ∗(2, (ic, {t1,f1 , t0,f2}))

Tr(2 : 1, 1) =

p∑
f1=1

p∑
f2=1

W ∗(2, (ic, {t1,f1 , t1,f2}))

Tr(3 : 1, 1, 0) =

p∑
f1=1

p∑
f2=1

p∑
f3=1

W ∗(2, (ic, {t1,f1 , t1,f2 , t0,f3})).

(5.51)

One should understand Tr(2 : 1, 0) as the accumulated values of all trees with

two sons, one of which is marked, and the other unmarked. We adopt similar

interpretation for the other terms.

Tr(2 : 0, 0) = p ∗Hp2 = p(p− 2Hp + 1). (5.52)

Let us write the equation line by line, where each line is for a particular value of

f1 as indicated in the square brackets.

2 · Tr(2 : 1, 0)

=

p∑
f2=1

(f2 − 3)+

f2

[f1 = 1] (5.53)

+

p∑
f2=1

(f2 − 3)+

f2

[f1 = 2] (5.54)

+

p∑
f2=1

(
(f1 − 3)+

f1

+
(f2 − 2)+

f2

)
[f1 = 3] (5.55)

+
2∑

f2=1

(f1 − 3)+

f1

+ (
4∑

f2=3

(f1 − 2)+

f1

+
(f2 − 3)+

f2

)

+

p∑
f2=5

(
(f1 − 3)+

f1

+
(f2 − 2)+

f2

)
[f1 = 4] (5.56)

+
2∑

f2=1

(f1 − 3)+

f1

+
5∑

f2=3

(
(f1 − 2)+

f1

+
(f2 − 3)+

f2

)

53

+

p∑
f2=6

(
(f1 − 3)+

f1

+
(f2 − 2)+

f2

)
[f1 = 5]

· · ·

+
2∑

f2=1

(f1 − 3)+

f1

+

p∑
f2=3

(
(f1 − 2)+

f1

+
(f2 − 3)+

f2

)
[f1 = p]. (5.57)

The summation is split into three cases beginning from f1 = 4 in (5.56). This is so

because as f2 varies from 1 to p, we refer to (5.50) for the optimal value function.

The optimal value is different for each of the cases : f2 = 1, 2, f2 = 3, f2 ≥ f1,

and 4 ≤ f2 ≤ f1 since the optimal actions for these cases are different as noted in

Table 5.4.

Let us add (5.53), (5.54), and (5.55), and then group the terms from the f1 = 4

case based on the summations.

2 · Tr(2 : 1, 0) = Hp3 +Hp3 +Hp2 +

p∑
f1=4

2
(f1 − 3)+

f1

+

p∑
f1=4

f1∑
f2=3

(
(f1 − 2)+

f1

+
(f2 − 3)+

f2

)
+

p−1∑
f1=4

p∑
f2=f1+1

(
(f1 − 3)+

f1

+
(f2 − 2)+

f2

)

= 4Hp3 +Hp2 +

p∑
f1=4

f1∑
f2=3

(
(f1 − 2)+

f1

+
(f2 − 3)+

f2

)

+

p−1∑
f1=4

p∑
f2=f1+1

(
(f1 − 3)+

f1

+
(f2 − 2)+

f2

)
.

(5.58)

The expression in (5.58) is solved on Mathematica and the output is :

Tr(2 : 1, 0) = p2 +
7p

2
+

7

4
− 5Hp

2
− 3pHp. (5.59)

We compute Tr(2 : 1, 1), T r(3 : 1, 1, 0) in a method similar to that of Tr(2 : 1, 0).

The explicit computations for Tr(2 : 1, 1) is in Appendix A.3, and for Tr(3 : 1, 1, 0)

it is in Appendix A.4.

To summarise the results of the preliminary computations we have :

54

Tr(2 : 0, 0) = p(p− 2Hp + 1) (5.60)

Tr(2 : 1, 0) = p2 +
7p

2
+

7

4
− 1

2
(5 + 6p)Hp (5.61)

Tr(2 : 1, 1) = p2 +
19p

3
+ 5− (4p+ 6)Hp (5.62)

Tr(3 : 1, 1, 0) =
5

2
+ 8p+ 4p2 + p3 − 1

3
(19 + 15p+ 9p2)Hp. (5.63)

Analysis

Type 1 :

To begin with, let us calculate the values of Type 1 trees under different actions

and then compare them. The value function of Type 1 trees under action a(d1, d1)

is:

Wa(d1,d1)(3, t) = c(t, a(d1, d1)(t)) +
∑

t′∈SD(t)

P (t, a(d1, d1)(t), t′) ·W ∗(2, t′)

= c(t, a(d1, d1)(t)) +
m∑
r=1

1

m · pjr
∑

t′∈D(tir,jr)

W ∗(2, t′)

= c(t, a(d1, d1)(t))

+
m∑
r=1

 1

m · pjr
∑

1≤f1,··· ,fjr≤p

W ∗(2, (µ, {t0,f1 , · · · , t0,fjr}))

 .

(5.64)

Let us split the term W ∗(2, (µ, {t0,f1 , t0,f2 , · · · , t0,fjr}) based on the values jr could

take. We split this by referring to the summary of optimal decisions at n = 2 in

(5.50). The optimal value functions for jr ≥ 2 and jr = 1 are different since the

55

optimal actions differ as noted in Table 5.4.

Wa(d1,d1)(3, t) = c(t, a(d1, d1)(t))

+
m∑
r=1

1{jr≥2}
1

m · pjr
∑

1≤f1,··· ,fjr≤p

(
jr − 2

jr
+

1

jr

jr∑
q=1

(fq − 2)+

fq

)

+
m∑
r=1

1{jr=1}
1

m · p
∑

1≤f1≤p

(f1 − 3)+

f1

= c(t, a(d1, d1)(t))

+
1

m
·
m∑
r=1

(
1{jr≥2}

(
(jr − 2)+

jr
+

1

p
Hp2

)
+ 1{jr=1}

(
1

p
Hp3

))
,

(5.65)

where Hpk is as defined in (4.32). The explicit computation by which we obtain

the term p−1Hp2 when jr ≥ 2 is in Appendix A.5.

Under the action a(d1, lc) where c ∈ {j1, · · · , jm}, the value is :

Wa(d1,lc)(3, t) = c(t, a(d1, ljc)(t)) +
∑

t′∈SD(t)

P (t, a(d1, ljc)(t), t
′) ·W ∗(2, t′)

= c(t, a(d1, ljc)(t)) +
m∑
r=1

1

m · pjr
∑

t′∈D(tir,jr)

W ∗(2, t′).

(5.66)

Split the summation into two parts (with sub-parts). The first part runs over

{1, · · · ,m}/c which is the discovery of sub-trees with no marked leaf, and the

other part is discovery of the sub-tree tic,jc which has one marked leaf. The sub-

parts in each part are for different values of jr and jc. Therefore, we have :

Wa(d1,lc)(3, t) =
m−

∑m
r=1 ir − 1

m
+

1

m

∑
r∈{1,··· ,m}/c

(
1{jr≥2}

(
(jr − 2)+

jr
+

1

p
Hp2

)

+1{jr=1}

(
1

p
Hp3

))
+

1

m
·
(
1{jc≥3}

(
(jc − 3)+

jc
+

1

p
Hp2

))
+

1

mp2
· 1{jc=2}

p∑
f1=1

p∑
f2=1

W ∗(2, (ic, {t1,f1 , t0,f2}))

+ 1{jc=1}
1

mp
·

p∑
f1=1

(f1 − 4)+

f1

. (5.67)

56

To ease the readability of the value equation, we shall introduce the following

notation.

lun(j) = 1{j≥2}

(
(j − 2)+

j
+

1

p
Hp2

)
+ 1{j=1}

(
1

p
Hp3

)
(5.68)

lm1(j) =

(
(j − 3)+

j
+

1

p
Hp2

)
(5.69)

lm2(j) =

(
(j − 4)+

j
+

1

p
Hp2

)
(5.70)

The notation lun(j) should be understood as costs of “leaf-unmarked” which is

the costs to go of the discoveries of trees ti,j with unmarked leaves. Similarly

lm1(j) is the costs to go of the discoveries of trees ti,j with one marked leaf. The

same interpretation applies for lm2(j).

With this notation, (5.65) and (5.67) can be written as:

Wa(d1,d1)(3, t) =
m−

∑m
r=1 ir − 2

m
+

1

m

m∑
r=1

lun(jr) (5.65)

Wa(d1,lc)(3, t) =
m−

∑m
r=1 ir − 1

m
+

1

m

∑
r∈{1,··· ,m}/c

lun(jr) +
1

m
1{jc≥3} lm1(jc)

+
1

mp2
1{jc=2} Tr(2 : 1, 0) + 1{jc=1}

1

mp
·

p∑
f1=1

(f1 − 4)+

f1

. (5.67)

Now, let us compare the values of the actions a(d1, d1) and a(d1, lc) for each of

the cases jc ≥ 3, jc = 2 and jc = 1.

For jc ≥ 3. Difference between (5.65) and (5.67) is :

Wa(d1,lc)(3, t)−Wa(d1,d1)(3, t) =
1

m
+

1

m
·
((

(jc − 3)+

jc
+

1

p
Hp2

)
−
(

(jc − 2)+

jc
+

1

p
Hp2

))
=

1

m
·
(

1− 1

jc

)
> 0.

(5.71)

For jc = 1, we have :

Wa(d1,lc)(3, t)−Wa(d1,d1)(3, t) =
1

m
+

1

mp
· (Hp4 −Hp3)

57

=
1

m
·
(

1 +
(Hp −H3)+

p

)
(5.72)

≥ 0.

The term in (5.72) is obviously non-negative for p ≥ 3 since Hp−H3 ≥ 0, and for

p = 1, 2, Hp −H3 ≥ −1.

For jc = 2, we have :

Wa(d1,lc)(3, t)−Wa(d1,d1)(3, t) =
1

m
+

1

mp2
Tr(2 : 1, 0)− 1

mp2
Tr(2 : 0, 0). (5.73)

Thus, if we can prove that (5.73) is Strictly Positive, a(d1, d1) dominates a(d1, lc).

(5.73) can be written as,

1

m

{
4p3 + 14p2 − 8p2Hp − 10pHp + 3p

4p3

}
. (5.74)

To check that the action a(d1, d1) is better, we only need to show that the term

within braces is non-negative. i.e., we need to show that,

4p2(p− 2Hp) + 2p(7p− 10Hp) + 3p ≥ 0 for all p. (5.75)

First, let us check that (5.75) holds for all p ≥ 5. It can be easily seen that for

p ≥ 5, the following holds true :

p > 2Hp >
10

7
Hp.

For p = 1, 2, 3, 4, the left hand side of (5.75) evaluates to 3, 16, 56, and 142

respectively.

Hence (5.73) is strictly positive for all p ≥ 1.

We have to assert that the action a(lc1, lc2) with the possibility that c1 = c2 = c

(marking two leaves) is not optimal as well before concluding that a(d1, d1) is the

optimal action. To do this we shall show that the a(lc1, lc2) is actually worse than

the action a(d1, lc).

The value function under action a(d1, lc) is in (5.67).

58

For action a(lc, lc), where we mark two leaves of the same subtree, the value

function is :

Wa(lc,lc)(3, t) =
m−

∑m
r=1 ir

m
+

1

m

∑
r∈{1,··· ,m}/{c}

lun(jr)

+
1

m
· 1{jc≥4}lm2(jc) +

1

mp3
· (1{jc=3})Tr(3 : 1, 1, 0)

+
1

mp2
· (1{jc=2})Tr(2 : 1, 1) +

1

mp
· (1{jc=1})

p∑
f1=1

(f1 − 4)+

f1

.

(5.76)

For marking leaves of different subtrees the value function is,

Wa(lc1,lc2)(3, t) =
m−

∑m
r=1 ir

m
+

1

m

∑
r∈{1,··· ,m}/{c1,c2}

lun(jr)

+
1

m
·
(
1{jc1≥3}lm1(jc1)

)
+

1

m
·
(
1{jc2≥3}lm1(jc2)

)
+

1

mp2
· (1{jc1=2} + 1{jc2=2})Tr(2 : 1, 0)

+
1

mp
· (1{jc1=1} + 1{jc2=1})

p∑
f1=1

(f1 − 4)+

f1

.

(5.77)

Before comparing the values under the three actions, we assume without loss of

generality, that one of the leaves marked is common in all three actions. That

is, c = c1 in a(d1, lc), a(lc, lc) and a(lc1, lc2). Among the actions a(ljc , ljc) and

a(ljc1 , ljc2), there would be some particular a(ljc , ljc) that would dominate over all

other a(ljg , ljg) for g 6= c, and some particular a(ljc1 , ljc2) would dominate over

all other a(ljg , ljh) for (g, h) 6= (c1, c2). Let us assume that when we pick the

best action among the a(ljc1 , ljc1) and a(ljc1 , ljc2) actions, we compare these ”best”

actions with a(d1, lc) with a common leaf. We first establish that a(d1, lc) is better

than a(lc, lc) for any lc. We also prove that a(d1, lc1) is better than a(lc1, lc2) for

all c1 6= c2. Hence, we would obtain that a(d1, lc1) is better than a(lc1, lc2) for any

c1, c2. Note that even if a(d1, lc) is better than the best a(ljc , ljc) and a(ljc1 , ljc2),

a(d1, lc) is not necessarily the optimal action. There could be an action a(d1, ls)

where s 6= c which is optimal. However, in order to eliminate the actions a(ljc1 , ljc1)

59

and a(ljc1 , ljc2), it is sufficient to show that a(d1, lc) is better than the best a(ljc , ljc)

and a(ljc1 , ljc2).

Wa(lc1,lc1)(3, t)−Wa(d1,lc1)(3, t)

=



1

m
− 1

m
· 1

jc1
for jc1 ≥ 4

1

m
+

1

mp3
· Tr(3 : 1, 1, 0)− 1

mp
(p− 2Hp + 1) for jc1 = 3

1

m
+

1

mp2
· Tr(2 : 1, 1)− 1

mp2
· Tr(2 : 1, 0) for jc1 = 2

1

m
for jc1 = 1.

(5.78)

For the case jc1 ≥ 4, the difference is obviously positive.

For jc1 = 3, we have, using (5.60) and (5.63), the following simplified difference

which is positive:

1

m

(
1 +

1

p3

(
5

2
+ 8p+ 3p2 −Hp

(
19

3
+ 5p+ p2

)))
> 0. (5.79)

For the jc1 = 1 case the action a(lc1, lc1) may not make sense since there is only

one leaf. We assume that the action marks the sole leaf, and the other budget is

unused. In such a case, the difference is positive rather trivially.

For jc1 = 2, the difference between values under actions a(lc1, lc1) and a(d1, lc1)

simplifies to:

1

m

(
1 +

1

p2
(Tr(2 : 1, 1)− Tr(2 : 1, 0))

)
=

1

m · 12p2

(
12p2 − 12pHp + 34p− 42Hp + 39

)
.

(5.80)

Again using that p > 2Hp > 42/34 ·Hp > Hp, the expression in (5.80) is strictly

positive. Hence,

Wa(lc1,lc1)(3, t) > Wa(d1,lc1)(3, t) for all c1 ∈ {j1, · · · , jm}, and t ∈ U.

60

Similarly, we compare the actions a(lc1, lc2) and a(d1, lc1) :

Wa(lc1,lc2)(3, t)−Wa(d1,lc1)(3, t)

=



1

m
− 1

m
· 1

jc2
for jc2 ≥ 3

1

m
+

1

mp2
· Tr(2 : 1, 0)− 1

mp2
· Tr(2 : 0, 0) for jc2 = 2

1

m
for jc2 = 1.

(5.81)

For jc2 = 2, we have the reasoning from (5.73) that the difference is non-negative.

Hence,

Wa(lc1,lc2)(3, t) > Wa(d1,lc1)(3, t) for all c1, c2 ∈ {j1, · · · , jm}, and t ∈ U.

Lemma 5.6. The optimal action for Type 1 trees at n = 3 is a(d1, d1), which is

marking two unmarked depth 1 nodes.

Type 2 :

In case of marking leaves, we shall initially consider that any leaf(s) is(are) being

marked. Later on, we shall find which leaf(s) to mark.

Type 2a :

The set of relevant actions are : A = {a(d1, lg), a(lg, lh)} where g, h ∈ {j1, · · · , jm}
with the possibility that g = h.

Under action a(d1, lc) :

Wa(d1,lc)(3, t) = c(t, a(d1, lc)(t)) +
∑

t′∈SD(t)

P (t, a(d1, lc)(t), t
′) ·W ∗(2, t′)

= c(t, a(d1, lc)(t)) +
m∑
r=1

1

m · pjr
∑

t′∈D(tir,jr)

W ∗(2, t′)

= c(t, a(d1, lc)(t))+∑
r∈{1,··· ,m}/c

1

mpjr

∑
1≤f1,··· ,fjr≤p

W ∗(2, (µ, {t0,f1 , · · · , t0,fjr}))

61

+
1

mpjc

∑
1≤f1,··· ,fjc≤p

W ∗(2, (µ, {t1,f1 , · · · , t0,fjc}))

Using indicators for different jr and jc:

Wa(d1,lc)(3, t) =
1

m

∑
r∈{1,··· ,m}/c

lun(jr) +
1

m
·
(
1{jc≥3}lm1(jc)

)
+

1

mp2
· 1{jc=2}Tr(2 : 1, 0) + 1{jc=1}

1

mp
·

p∑
f1=1

(f1 − 4)+

f1

.

(5.82)

Under action a(lc1, lc2) (mark leaves of different subtrees):

Wa(lc1,lc2)(3, t) =
1

m

+
∑

r∈{1,··· ,m}/{c1,c2}

1

mpjr

∑
1≤f1,··· ,fjr≤p

W ∗(2, (µ, {t0,f1 , · · · , t0,fjr}))

+
1

mpjc1

∑
1≤f1,··· ,fjc1≤p

W ∗(2, (µ, {t1,f1 , · · · , t0,fjc1}))

+
1

mpjc2

∑
1≤f1,··· ,fjc2≤p

W ∗(2, (µ, {t1,f1 , · · · , t0,fjc2})).

(5.83)

Splitting the cases for different jr and jc1, jc2 using indicators, we get,

Wa(lc1,lc2)(3, t) =
1

m
+

1

m

∑
r∈{1,··· ,m}/{c1,c2}

lun(jr)

+
1

m
·
(
1{jc1≥3}lm1(jc1)

)
+

1

m
·
(
1{jc2≥3}lm1(jc2)

)
+

1

mp2
· (1{jc1=2} + 1{jc2=2})Tr(2 : 1, 0)

+
1

mp
· (1{jc1=1} + 1{jc2=1})

p∑
f1=1

(f1 − 4)+

f1

.

(5.84)

A similar calculation for the action of marking two leaves of same subtree a(lc, lc)

(without loss of generality, assume first two leaves are marked):

62

Wa(lc,lc)(3, t) =
1

m
+

1

m

∑
r∈{1,··· ,m}/{c}

lun(jr)

+
1

m
·
(
1{jc≥4}lm2(jc)

)
+

1

mp3
· (1{jc=3})Tr(3 : 1, 1, 0)

+
1

mp2
· (1{jc=2})Tr(2 : 1, 1) +

1

mp
· (1{jc=1})

p∑
f1=1

(f1 − 4)+

f1

.

(5.85)

We assume without loss of generality that one of the leaves marked is common in

all three actions. That is, c = c1 in a(d1, lc), a(lc, lc) and a(lc1, lc2).

The difference between (5.84) and (5.82) is exactly (5.81).

The difference between (5.85) and (5.82) is exactly (5.78).

The conclusion of the formal analysis of actions a(d1, lc1), a(lc1, lc1) and a(lc1, lc2)

for Type 2a trees has been stated in the following Lemma 5.7.

Lemma 5.7. For type 2a trees, the optimal action is a(d1, lc), that is marking the

unmarked depth 1 node and any leaf is better than marking any combination of

leaves.

Let us find the specific leaf to mark according to Lemma 5.7. First consider trees

where jr ≥ 3 for at least one r ∈ {1, · · · ,m}.
Among all the jr ≥ 3, it is better to mark the leaf of tree tir,jr with minimum

jr ≥ 3. Let us call js = minr∈{1,··· ,m} jr. Let us compare a(d1, ls) and a(d1, lo)

where jo > js. Using (5.82), we obtain :

Wa(d1,lo)(3, t)−Wa(d1,ls)(3, t) =
1

m

(
js − 2

js
+

1

p
Hp2

)
+

1

m

(
jo − 3

jo
+

1

p
Hp2

)
− 1

m

(
jo − 2

jo
+

1

p
Hp2

)
− 1

m

(
js − 3

js
+

1

p
Hp2

)
=

1

js
− 1

jo

> 0 for all js < jo.

(5.86)

Between a jr ≥ 3 and jo = 2, difference in value of (5.82) under these two actions

63

is :

Wa(d1,l2)(3, t)−Wa(d1,ljr)(3, t) =
1

m

(
jr − 2

jr
+

1

p
Hp2

)
+

1

mp2
Tr(2 : 1, 0)

−
(

1

mp
Hp2 +

1

m

jr − 3

jr
+

1

mp
Hp2

)
=

1

mjr
+

1

mp2
Tr(2 : 1, 0)− 1

mp
Hp2

=
1

mjr
+

1

mp2

(
5p

2
+

7

4
− 5

2
Hp − pHp

)
> 0.

(5.87)

We obtain the inequality from (5.73). This implies that it is better to mark the

leaf of subtree tir,jr with jr ≥ 3.

If all the jr < 3, then let us check whether it is better to mark leaf with one sibling

or none. Assume there is a jr = 1 and js = 2 for some r, s ∈ [1,m].

Wa(d1,l2)(3, t)−Wa(d1,l1)(3, t) =
1

mp
Hp3 +

1

mp2
Tr(2 : 1, 0)−

(
1

mp
Hp4 +

1

mp
Hp2

)
=

1

mp

(
3Hp − p−

17

6

)
+

1

mp2
Tr(2 : 1, 0)

=
1

mp2

(
2p

3
+

7

4
− 5

2
Hp

)
< 0.

(5.88)

This means that it is better to mark the leaf with one sibling.

Hence, completing the statement of Lemma 5.7, we have :

Lemma 5.8. It is better to mark a leaf of the subtree with min
r
{jr ≥ 3} if any

jr ≥ 3, else we mark leaf of subtree with jr = 2 if it exists, else we mark leaf of

the subtree with jr = 1.

Before moving to Type 2b, let us solve the trivial case of Type 2c.

Type 2c :

The only action here is marking two leaves and hence the value function is :

64

Wa(lj1 ,lj1)(3, t) =

(
1{j1≥4}

(
(j1 − 4)+

j1
+

1

p
Hp2

))
+

1

p3
· (1{j1=3})Tr(3 : 1, 1, 0)

+
1

p2
· (1{j1=2})Tr(2 : 1, 1) +

1

p
· (1{j1=1})

p∑
f1=1

(f1 − 4)+

f1

. (5.89)

Type 2b :

The action set is : A = {a(lj1 , lj2), a(lj1 , lj1), a(lj2 , lj2)}. We evaluate the value

function under these actions. Under action of marking two leaves with different

fathers :

Wa(lj1 ,lj2)(3, t) = c(t, a(lj1 , lj2)(t)) +
∑

t′∈SD(t)

P (t, a(lj1 , lj2)(t), t′) ·W ∗(2, t′)

= 0 +
2∑
r=1

1

2pjr

∑
t′∈D(tir,jr)

W ∗(2, t′)

=
1

2pj1

∑
1≤f1,··· ,fj1≤p

W ∗(2, (µ, {t1,f1 , · · · , t0,fj1}))

+
1

2pj2

∑
1≤f1,··· ,fj2≤p

W ∗(2, (µ, {t1,f1 , · · · , t0,fj2})),

(5.90)

Splitting individual cases of j1, j2 using indicators,

Wa(lj1 ,lj2)(3, t) =
1

2
·
(
1{j1≥3}

(
(j1 − 3)

j1

+
1

p
Hp2

))
+

1

2
·
(
1{j2≥3}

(
(j2 − 3)

j2

+
1

p
Hp2

))
+

1

2p2
· (1{j1=2} + 1{j2=2})Tr(2 : 1, 0)

+
1

2p
· (1{j1=1} + 1{j2=1})

p∑
f1=1

(f1 − 4)+

f1

.

(5.91)

Similarly for the action a(lc, lc) where c ∈ {1, 2} (without loss of generality, assume

first two leaves are marked), we have:

Wa(lc,lc)(3, t) =
1

2
·

∑
r∈{1,2}/{c}

(
1{jr≥2}

(
(jr − 2)+

jr
+

1

p
Hp2

)
+ 1{jr=1}

(
1

p
Hp3

))

65

+
1

2
·
(
1{jc≥4}

(
jc − 4

jc
+

1

p
Hp2

))
+

1

2p3
· (1{jc=3})Tr(3 : 1, 1, 0)

+
1

2p2
· (1{jc=2})Tr(2 : 1, 1) +

1

2p
· (1{jc=1})

p∑
f1=1

(f1 − 4)+

f1

. (5.92)

Let us compare the value equations under the three actions in A. If the difference

is positive then a(lj1 , lj1) is better than a(lj1 , lj2), and vice versa. Therefore,

Wa(lj1 ,lj2)(3, t)−Wa(lj1 ,lj1)(3, t)

=



1

2

(
1

j1

− 1

j2

)
for j1 ≥ 4, j2 ≥ 4 (5.93)

−1

2j2

+
1

2p
(p− 2Hp + 1)

− 1

2p3
Tr(3 : 1, 1, 0) for j1 = 3, j2 ≥ 3 (5.94)

1

2p2
· Tr(2 : 1, 0)− 1

2j2

− 1

2p2
· Tr(2 : 1, 1) for j1 = 2, j2 ≥ 3 (5.95)

1

2p2
· 2Tr(2 : 1, 0)− 1

2p
(p− 2Hp + 1)

− 1

2p2
· Tr(2 : 1, 1) for j1 = 2, j2 = 2 (5.96)

−1

2j2

for j1 = 1, j2 ≥ 3 (5.97)

1

2p2
· Tr(2 : 1, 0)− 1

2p
(p− 2Hp + 1) for j1 = 1, j2 = 2 (5.98)

1

2p

(
(p− 4Hp +

13

3
)− (p− 3Hp +

5

2
)

)
for j1 = 1, j2 = 1. (5.99)

66

In (5.93), the difference is obviously positive since j1 ≤ j2. (5.94) is negative for

some values of j2 and then switches sign as j2 increases. The threshold for j2 after

which (5.94) turns positive is :

j2 ≥
p3

Hp(
19
3

+ 5p+ p2)− 3p2 − 5
2
− 8p

(5.100)

Hence a(lj1 , lj1) is better than a(lj1 , lj2) as j2 crosses the threshold which can be

verified by referring to the results of a numerical simulation in Figure 5.2 (Page

70). The case for j1 = 2, j2 ≥ 3 in (5.95) relies on j2 and hence gives rise to an

interesting phenomenon when simulated numerically.

Given a particular p, (5.95) is negative for some j2 and after j2 crosses a ”thresh-

old” (5.95) becomes positive. This means the optimal action switches from a(lj1 , lj2)

to a(lj1 , lj1) after j2 crosses a threshold. The threshold is precisely,

j2 ≥
12p2

12pHp − 34Hp − 39 + 42Hp

(5.101)

Of course we also impose the condition that j2 ≤ p. We can verify this by referring

to the numerical simulation in Figure 5.3 (Page 70).

Let us tackle the case for j1 = 2, j2 = 2 in (5.96).

1

2p2
· 2Tr(2 : 1, 0)− 1

2p
Hp2 −

1

2p2
· Tr(2 : 1, 1) =

1

2p2

(
Hp −

p

3
− 3

2

)
< 0.

(5.102)

(5.97) is trivially negative. Let us simplify (5.98) :

1

2p2
· Tr(2 : 1, 0)− 1

2p
Hp2 =

1

2p2

(
7

4
− pHp +

3p

2
− 5Hp

2

)
< 0. (5.103)

(5.99) is also trivially negative.

Similarly we compare the other pair actions a(lj2 , lj2), a(lj1 , lj2). If the difference

is positive then a(lj1 , lj2) is better than a(lj2 , lj2) and vice versa.

67

Wa(lj2 ,lj2)(3, t)−Wa(lj1 ,lj2)(3, t)

=



1

2

(
1

j1

− 1

j2

)
for j1 ≥ 3, j2 ≥ 4 (5.104)

1

6
− 1

2p
(p− 2Hp + 1) +

1

2p3
Tr(3 : 1, 1, 0) for j1 = 3, j2 = 3 (5.105)

1

2p
(p− 2Hp + 1)− 1

2p2
· Tr(2 : 1, 0)− 1

2j2

for j1 = 2, j2 ≥ 4 (5.106)

1

2p3
Tr(3 : 1, 1, 0)− 1

2p2
· 2Tr(2 : 1, 0) for j1 = 2, j2 = 3 (5.107)

1

2p
(p− 2Hp + 1) +

1

2p2
· Tr(2 : 1, 1)

− 1

2p2
· 2Tr(2 : 1, 0) for j1 = 2, j2 = 2 (5.108)

− 1

2j2

+
1

2p

(
(p− 3Hp +

5

2
)− (p− 4Hp +

13

3
)

)
for j1 = 1, j2 ≥ 4 (5.109)

1

2p3
Tr(3 : 1, 1, 0) +

1

2p

(
p− 3Hp +

5

2

)
− 1

2p

(
(p− 4Hp +

13

3
) + (p− 2Hp + 1)

)
for j1 = 1, j2 = 3 (5.110)

1

2p

(
(p− 3Hp +

5

2
)− (p− 4Hp +

13

3
)

)
+

1

2p2
(Tr(2 : 1, 1)− Tr(2 : 1, 0)) for j1 = 1, j2 = 2 (5.111)

1

2p

(
(p− 3Hp +

5

2
)− (p− 4Hp +

13

3
)

)
for j1 = 1, j2 = 1. (5.112)

(5.104) is obviously non-negative since j2 ≥ j1. (5.105) is positive since it is the

negative of (5.94) for j2 = 3. (5.106) is negative for some j2 values and changes

68

sign after j2 crosses a threshold. Precisely, (5.106) is positive when :

j2 ≥
4p2

4pHp − 10p− 7 + 10Hp

(5.113)

Of course we also impose the condition that j2 ≤ p. This too has been verified

numerically as evident from Figure 5.3 (Page 70). (5.107) simplifies to

1

2p3

(
5

2
+

9p

2
+ 3p2Hp − 3p2 − p3 − 19Hp

3

)
< 0. (5.114)

(5.108) is the negative of (5.96) and hence is positive.

(5.109) depends on j2 and is positive when :

j2 ≥
p

Hp − 11
6

(5.115)

This means a(lj1 , lj2) is optimal when j2 crosses the threshold. Figure 5.4 (Page

71) depicts this switch between optimal policies.

(5.110) evaluates to :

1

2p3

(
5

2
+ 8p+

7p2

6
− 1

3
(19 + 15p)Hp

)
> 0 for p ≥ 5. (5.116)

(5.111) simplifies to :

1

2p
(Hp3 −Hp4) +

1

2p2
(Tr(2 : 1, 1)− Tr(2 : 1, 0))

=
1

2p2

(
p+

13

4
− 7Hp

2

)
> 0.

(5.117)

(5.112) is trivially positive. Figure 5.2 (Page 70) depicts the optimal policies

for type 2b trees with j1 = 3 for different values of p, j2. The Type 2b tree

with j1 = 2, j2 > 3 is a special case where all three actions are optimal for

some configuration of p, j2. Figure 5.3 (Page 70) depicts the dynamics of the

optimal actions as p varies in the interval [4, 50] on the x-axis, and j2 varies in

the interval [4, p] on the y-axis. The coloured bubbles represent different optimal

actions according to the legend. To read the plot, pick a point p on the x-axis.

69

Then go vertically up along the values of j2 along the y-axis. The colour of the

bubble indicates the optimal policy for a particular p and 3 < j2 ≤ p.

Figure 5.2: Optimal Actions for different values of p and j2 given j1 = 3, j2 ≥ 3

Figure 5.3: Optimal Actions for different values of p and j2 given j1 = 2, j2 > 3

70

Just like for j1 = 2, 3, Figure 5.4 depicts the different optimal policies when j1 = 1

for different values of p, j2.

Figure 5.4: Optimal Actions for different values of p and j2 given j1 = 1, j2 > 3

The table below summarises the optimal actions for all tree types at n = 3.

Table 5.5: Optimal Actions for Trees at n = 3

Tree Type Specifications Optimal Action

Type 1 a(d1, d1)

Type 2a
jr ≥ 3 for some r a(d1, ljc), jc = minr jr ≥ 3

jr < 3 for all r a(d1, ljc), jc = maxr jr

Type 2b

j1 > 3 j2 > 3 a(lj1 , lj1) assuming j1 ≤ j2

j1 = 3 j2 ≥ 3 a(lj1 , lj1) and a(lj1 , lj2) determined by the threshold in (5.100).

j1 = 2

j2 > 3
a(lj1 , lj1), a(lj1 , lj2), and a(lj2 , lj2)

determined by thresholds in (5.101) and (5.113).

j2 = 3 a(lj2 , lj2)

j2 = 2 a(lj1 , lj2)

j1 = 1

j2 ≥ 4 a(lj2 , lj2) and a(lj1 , lj2) determined by the threshold in (5.115)

j2 = 3 a(lj2 , lj2) for p < 5, a(lj1 , lj2) for p ≥ 5

j2 < 3 a(lj1 , lj2)

Type 2c a(lj1 , lj1)

71

5.2.4 Horizon n = 4

We move to the horizon n = 4. The n = 3 case had complicated value equations.

Surely the n = 4 case would contain added complexity. Hence, we numerically

analyse the value functions for p ∈ [1, 500] to infer the optimal actions. All Type

1 trees were investigated.

Table 5.6 summarises the optimal actions for all tree types at n = 4.

Table 5.6: Optimal Actions for Trees at n = 4

Tree Type Specifications Optimal Action

Type 1 a(d1, d1)

Type 2a
jr ≥ 3 for some r a(d1, ljc), jc = minr jr ≥ 3

jr < 3 for all r a(d1, ljc), jc = maxr jr

Type 2b

j1 > 3 j2 > 3 a(lj1 , lj1)

j1 = 3 j2 ≥ 3
Switch from a(lj1 , lj2) to

a(lj1 , lj1) after p ≥ 13 for some j2.

j1 = 2

j2 > 3

Switch from a(lj1 , lj2) to

a(lj1 , lj1) after p ≥ 52

for some j2.

j2 = 3 a(lj1 , lj2)

j2 = 2 a(lj1 , lj2)

j1 = 1

j2 > 3

a(lj1 , lj2) mostly, but

a(lj2 , lj2) for some values of j2

dependent on p.

j2 < 3 a(lj1 , lj2)

Type 2c a(lj1 , lj1)

It is interesting to note how the optimal actions have changed (or not) from n = 3

to n = 4. Table 5.7 summarises the changes for Type 2b trees since they are of

interest.

72

Table 5.7: Optimal actions for Type 2b trees at n = 3, 4

Sl no.
Type 2b

Tree Shape
n = 3 n = 4

1 j1, j2 > 3 a(lj1 , lj1) a(lj1 , lj1)

2 j1 = 3, j2 ≥ 3
Switch from a(lj1 , lj2) to a(lj1 , lj1)

determined by the threshold in (5.100)

Switch from a(lj1 , lj2) to

a(lj1 , lj1) after p ≥ 13 for some j2.

3 j1 = 2, j2 > 3

Switch from a(lj2 , lj2) to a(lj1 , lj2) to a(lj1 , lj1),

determined by thresholds in (5.101)

and (5.113)

Switch from a(lj1 , lj2) to

a(lj1 , lj1) after p ≥ 52

for some j2.

4 j1 = 2, j2 = 3 a(lj2 , lj2) a(lj1 , lj2)

5 j1 = 2, j2 = 2 a(lj1 , lj2) a(lj1 , lj2)

6 j1 = 1, j2 > 3
Switch from a(lj2 , lj2) to a(lj1 , lj2)

determined by the threshold in (5.115)

a(lj1 , lj2) mostly, but

a(lj2 , lj2) for some values of j2

dependent on p.

7 j1 = 1, j2 = 3 a(lj2 , lj2) for p < 5, a(lj1 , lj2) for p ≥ 5 a(lj1 , lj2)

8 j1 = 1, j2 < 3 a(lj1 , lj2) a(lj1 , lj2)

It is evident from Table 5.7 that the optimal actions at n = 4 are relatively

simpler than at n = 3. This give us reason to believe that as n increases, the

optimal actions may not be as varied for different sizes of subtrees (i.e, different

j1, j2 values). Moreover, the thresholds may disappear after some large value of n.

We note that this specific greedy policy at n = 4, which we shall refer to as

the ”Leg-1 Policy” is a candidate policy for the infinite horizon criterion. The

complexity of numerical analysis for n = 5 and greater is out of scope of this

study, and away from the aim of this thesis. We shall truncate the finite horizon

criterion here and move to the infinite horizon average costs criterion.

73

Chapter 6

Infinite Horizon Average Costs

Prefetching

The infinite horizon average costs criterion has an interesting feature. We only

have to look among stationary policies in our search for an optimal policy. Just

like in the finite horizon case, we shall first establish some results for depth 1 trees

and then move to depth 2 trees.

Before we get to these specific depths, it is important to first eliminate ”wasteful”

actions, such as those which mark the root node, or already marked nodes, or not

using the complete budget. To do so, we shall prove that the action of marking a

root node is always dominated by some action that does not. Note that marking

the root is equivalent to marking an already marked node, or not using one mark

at all.

6.1 Eliminating wasteful actions

For a general p, d, let π̃ be the policy of marking the root and k − 1 sons. Recall

the representation of a marked tree of depth d as t = (µ, s) where s is a list of

trees of depth d − 1. Let us eliminate the action of marking the root for each of

the two types of trees : trees with number of unmarked sons greater than budget

74

and those with number of unmarked sons smaller than the budget. Call the set

of trees of the former type as Tkbig, and those of the latter type as Tksmall. All

notation introduced for both cases has been specified in the List of Notation 2

(23-27). Before moving to the proof, we state and prove a useful lemma.

Recall the notation : For any tree t and action a, a(t) denotes the tree t after

marking according to the action a. Similarly, for a stationary policy π, π(t) is the

tree t after marking according to the action specified by π. Moreover for a tree

t = (µ, s), let a(s) be the ”list” of sub-trees of t after marking according to the

action a.

Lemma 6.1. For any tree t, consider any two actions a′ and a′′ and any t′ ∈
SD(a′(t)), and t′′ ∈ SD(a′′(t)) such that t′ and t′′ have the same shape (i.e, t′ and

t′′ differ only in markings of the nodes). Then P (t, a′, t′) = P (t, a′′, t′′).

Proof. Let us revisit the transition probability structure,

P (t, a, t′) =


1

|s||D(tb)|
if t′ ∈ D(tb) where tb ∈ a(s)

0 if t′ /∈ SD(a(t)).

(6.1)

In (6.1), the term |s| in the denominator will be the same for both transitions to t′

and t′′ since |s| is dependent only on t. We have to show that |D(tb)| is the same

for both transitions. We only have to show that the size of the sets are equal.

We note the following: Let t′b and t′′b be the subtrees of a′(t) and a′′(t) whose

discoveries lead to t′ and t′′ respectively.

• t′b and t′′b are sub-trees of t after the actions a′ and a′′ respectively.

• The shapes of t′b and t′′b are the same and they differ only in the marking of

nodes.

• Since the number of leaves of t′b and t′′b are equal, the number of discoveries

of both the trees are the same.

75

Hence, when t′b ∈ a′(s) and t′′b ∈ a′′(s), we have that |D(t′b)| = |D(t′′b)|. Thus

P (t, a′, t′) = P (t, a′′, t′′) when the shapes of t′, t′′ are the same.

Theorem 6.2. For the prefetching infinite horizon MDP with the state space Tp,d,
and given any budget k, the action of marking the root node of any tree is always

dominated by some other action.

For simplicity, we shall prove a less general statement first which can be extended

to Theorem 6.2.

Theorem 6.3. For the prefetching infinite horizon MDP with the state space Tp,d,
and given a budget k; the policy of marking the root first and then k− 1 unmarked

sons for trees in Tkbig, and marking the root first with all the unmarked sons and

some other nodes for trees in Tksmall, is dominated by another policy which does

not mark the root.

Proof. For each case of trees, we shall define two policies and calculate the differ-

ence in values of trees under the two policies. If the differences are of same sign

for every n, then dividing the difference by n and taking n→∞ would prove that

one policy dominates the other.

Case 1 : Tkbig

Consider two policies π and π̃. Let π mark k unmarked sons and π̃ mark the root

and k − 1 unmarked sons of trees in Tkbig. For trees in Tksmall, let π and π̃ do the

exact same marking. We are not interested in what that marking is exactly as

long as it results in the same costs. Hence,

Wπ(1, t)−Wπ̃(1, t) =


−1

|s|
for all t ∈ Tkbig

0 for t ∈ Tksmall.

As a consequence, we have:

Wπ(1, t)−Wπ̃(1, t) ≤ 0 for all t. (6.2)

76

Next, for n = 2, for all t ∈ Tkbig,

Wπ(2, t)−Wπ̃(2, t) =
−1

|s|
+

∑
t′∈SD(π(t))

P (t, π(t), t′)Wπ(1, t′)

−
∑

t′∈SD(π̃(t))

P (t, π̃(t), t′)Wπ̃(1, t′).

There is one subtree (call it trm) whose discovery would have a marked root

under π, but an unmarked root under π̃. Thus, for the set of trees {t′ : t′ ∈
SD(π(t))/D(trm)}, there is a corresponding set of trees {t̃′ : t̃′ ∈ SD(π̃(t))/D(trm)}
with the same shape and marking.

The trees t′m ∈ D(trm) and t′un ∈ D(trm) have the shape same, and hence using

Lemma 6.1, we have that for all t ∈ Tkbig :

Wπ(2, t)−Wπ̃(2, t) =
−1

|s|
+

∑
t′∈SD(π(t))/D(trm)

P (t, π(t), t′) (Wπ(1, t′)−Wπ̃(1, t′))

+
∑

t′∈D(trm)

P (t, π(t), t′) (Wπ(1, t′m)−Wπ̃(1, t′un)) .

(6.3)

In (6.3), t′m is the tree in D(trm) with marked root, whereas t′un is the tree in

D(trm) with unmarked root.

Since the mark of the root is irrelevant in calculating the values of the trees, the

second summation can be absorbed into the first summation and the result is

also non-positive. (6.3) is the sum of a negative term and two summations over

non-positive terms which would lead to negative difference.

Similarly for t ∈ Tksmall,

Wπ(2, t)−Wπ̃(2, t) =
∑

t′∈SD(π(t))

P (t, π(t), t′) (Wπ(1, t′)−Wπ̃(1, t′)). (6.4)

The difference in (6.4) is obviously non-positive from (6.2). The immediate costs

are the same since the policies are the same for Tksmall trees. The difference in

future costs is non-positive. We have therefore,

Wπ(2, t)−Wπ̃(2, t) ≤ 0 ∀t ∈ Td,p.

77

By induction, we can prove that:

Wπ(n, t)−Wπ̃(n, t) ≤ 0 ∀n = 0, 1, . . . , N ∀t ∈ Td,p.

This is indeed true for n ≤ 2 as proved before, and for general n,

Wπ(n, t)−Wπ̃(n, t)

=



−1

|s|
+

∑
t′∈SD(π(t))/D(trm)

P (t, π(t), t′) (Wπ(n− 1, t′)−Wπ̃(n− 1, t′))

+
∑

t′∈D(trm)

P (t, π(t), t′) (Wπ(n− 1, t′m)−Wπ̃(n− 1, t′un)) for all t ∈ Tkbig

∑
t′∈SD(π(t))

(Wπ(n− 1, t′)−Wπ̃(n− 1, t′)) for all t ∈ Tksmall.

(6.5)

Both the expressions in (6.5) will be non-positive because of the non-positive

difference in values at n− 1. Hence, policy π dominates the policy π̃.

Case 2 : Tksmall

For trees in Tksmall, there are more subtleties.

• Marking a root would still lead to sufficient budget for marking all unmarked

sons plus some more nodes.

• Let π̄ mark the root, the unmarked sons, and some other nodes in the tree.

Let us assume that π does the same markings as π̄ except that π does not

mark the root and instead marks an additional node (call it l) at some depth

δ(l, t) ∈ [2, d] of a tree t.

• Assume that these two policies do the exact same markings for trees in Tkbig.

Trivially we would have that Wπ(1, t)−Wπ̄(1, t) = 0 for all t. There is a non trivial

difference at n = 2 depending on where the node l is. Let the number of unmarked

siblings of l be denoted by sib(l). Of course if sib(l) ≥ k, discovery of the subtree

where l is a son would be a tree belonging to Tkbig. Call the d− 1 subtree where l

78

is a node as tl. For the specific case that t ∈ Tksmall, δ(l, t) = 2, sib(l) ≥ k,

Wπ(2, t)−Wπ̄(2, t) =
∑

t′∈SD(t)/D(tl)

P (t, π(t), t′) (Wπ(1, t′)−Wπ̄(1, t′))

+
∑

t′∈D(tl)

P (t, π(t), t′) (Wπ(1, t′lm)−Wπ̄(1, t′lun)) (6.6)

=
∑

t′∈D(tl)

P (t, π(t), t′)
−1

tsib(l) + 1
. (6.7)

In (6.6), the trees t′lm are the trees in D(tl) where node l is marked. Similarly the

trees t′lun are the trees in D(tl) where node l is unmarked. To take the probability

term in common, we use Lemma 6.1. For all other cases of δ(l, t) and sib(l), and

t ∈ Tkbig, the difference is zero. We therefore have,

Wπ(2, t)−Wπ̄(2, t) ≤ 0 ∀t ∈ Td,p.

By induction, we can prove that:

Wπ(n, t)−Wπ̄(n, t) ≤ 0 ∀n = 0, 1, . . . , N ∀t ∈ Td,p. (6.8)

This is indeed true for n ≤ 2 as proved above. For n ≥ 3, the cases where

δ(l, t) = 2, 3, · · · ,min(n, d) are of interest. For t ∈ Tksmall,

Wπ(n, t)−Wπ̄(n, t)

=
∑

t′∈SD(t)/D(tl)

P (t, π(t), t′) (Wπ(n− 1, t′)−Wπ̄(n− 1, t′))

+
∑

t′∈D(tl)

P (t, π(t), t′lm)Wπ(n− 1, t′lm)−
∑

t′∈D(tl)

P (t, π̄(t), t′lun)Wπ̄(n− 1, t′lun).

(6.9)

In (6.9) the first summation of differences is non-positive according to the induction

statement. There is a correspondence between t′lm and t′lun and from Lemma 6.1

the transition probabilities to both these trees are the same.

79

Wπ(n, t)−Wπ̄(n, t) = non-positive term

+



∑
t′∈D(tl)

P (t, π(t), t′)
−1

tsib(l) + 1
if δ(l, t) = 2, sib(l) ≥ k

∑
t′∈D(tl)

P (t, π(t), t′)(Wπ(n− 1, t′)

−Wπ̄(n− 1, t′)) if δ(l, t) = 2, sib(l) < k

∑
t′∈D(tl)

P (t, π(t), t′)(Wπ(n− 1, t′lm)

−Wπ̄(n− 1, t′lun)) if δ(l, t) ≥ 3.

(6.10)

The first two cases in (6.10) are non-positive from Lemma 6.1 and the induction

statement. For δ(l, t) ≥ 3, there are more intricacies to be handled since the

benefit of the marked node l is not immediate or even in the first step ahead.

When δ(l, t) = 3, at the next time step, the node l will be at depth 2. To find the

sign of Wπ(n− 1, t′lm)−Wπ̄(n− 1, t′lun), we can compare each of these two values

with Wπ(n− 1, t′lun). We can use that for δ(l, t′lm) = δ(l, t′lun) = 2,

Wπ(n− 1, t′lm)−Wπ(n− 1, t′lun) ≤ 0 (6.11)

Wπ(n− 1, t′lun)−Wπ̄(n− 1, t′lun) ≤ 0 for all n. (6.12)

The second inequality (6.12) follows directly from the induction statement. For

the first inequality (6.11),

Wπ(n− 1, tlm)−Wπ(n− 1, tlun)

=
∑

t′∈SD(tlm)

P (t, π(t), t′)Wπ(n− 2, t′)−
∑

t′∈SD(tlun)

P (t, π(t), t′)Wπ(n− 2, t′)

(6.13)

80

=



∑
t′∈SD(tlm)

P (t, π(t), t′)
−1

tsib(l) + 1
if sib(l) ≥ k and δ(t′, l) = 1

∑
t′∈D(tl)

P (t, π(t), t′)(Wπ(n− 2, t′lm)

−Wπ̄(n− 2, t′lun)) if sib(l) < k and δ(t′, l) = 1.

(6.14)

We have used Lemma 6.1 and the fact that every t′ ∈ SD(tlm) has a corresponding

tree t′ ∈ SD(tlun) and the difference in their values would be −1/(tsib(l) + 1).

For the case where sib(l) < k, the difference is non-positive which follows form

(6.10) for n− 2.

If δ(l, t) is greater than 3, we would need to show that the equations (6.11) and

(6.12) hold for any 2 < δ(l, t′) ≤ d− 1 where t′ ∈ D(tl). This is seen methodically

as :

• For δ(l, t) = g where g ∈ [4, d− 1] for t as in (6.10), we would have to show

equations (6.11) and (6.12) hold for δ(l, t′lm) = δ(l, t′lun) = g − 1.

• (6.12) is true from the main induction statement.

• For (6.11), we would proceed by a ”depth” induction ; The induction state-

ment would be :

Wπ(n− 1, tlm)−Wπ(n− 1, tlun) ≤ 0 for δ(l, tlm) = δ(l, tlun) = g − 1 (6.15)

where g ∈ [4, d − 1]. For the case where δ(l, tlm) = δ(l, tlun) = g, we would

have that

Wπ(n− 1, tlm)−Wπ(n− 1, tlun)

=
∑

t′∈SD(tlm)

P (t, π(t), t′)Wπ(n− 2, t′)−
∑

t′∈SD(tlun)

P (t, π(t), t′)Wπ(n− 2, t′)

(6.16)

where δ(l, t′) = g − 1.

• The above equation is non-positive according to the induction statement

(6.15).

81

Thus, (6.10) is non positive for all δ(l, t).

For trees t ∈ Tkbig,

Wπ(n, t)−Wπ̄(n, t) =
∑

t′∈SD(t)

(Wπ(n− 1, t′)−Wπ̄(n− 1, t′)) ≤ 0. (6.17)

This follows from the induction statement for (6.8). Thus policy π is better than

the policy π̃ in Case 1 for trees in Tkbig, and π as defined in Case 2 is better than

π̄ for trees in Tksmall. Combining the two polices for each case would result in a

policy that dominates the policy of marking the root of trees.

6.2 Depth 1 trees

We first define the possible policies for depth 1 trees with a budget k. Instead

of directly evaluating the limit φπ(t) as defined in (2.7) for all possible policies

π, we shall iteratively compare the values of policies for a general n, and then

take the limit of this difference. Later, we compute the stationary distribution

of the Markov chain induced by a stationary policy and multiply this stationary

distribution vector with the expected cost of each state to obtain the average cost

of that policy.

6.2.1 Limit Approach

Label the Usable states of depth 1 trees in U with integers [1, |U |]. Since this is

the infinite horizon criterion, we look for only stationary policies. There would

be mainly two kinds of actions for each tree- Marking root and k − 1 unmarked

sons, or just marking k marked sons. The policies we search over can involve any

combination of these two actions for the trees. Let us define the policy:

π̃ = (d̃1, · · · , d̃|U |) (6.18)

where d̃i is the action of marking the root and k − 1 unmarked sons of the tree

labelled i. Let us iteratively define stationary policies π̃1, · · · , π̃|U |−1 as

π̃1 = (d̃1, · · · , di1 , · · · , d̃|U |) where i1 ∈ [1, |U |]. (6.19)

82

di1 is the action of marking k unmarked sons of the tree labelled i1.

π̃2 = (d̃1, · · · , di1 , di2 , · · · , d̃|U |) where i1, i2 ∈ [1, |U |], i1 6= i2. (6.20)

Similarly,

π̃|U |−1 = (di1 , · · · , di|U|−1
, d̃|U |) where i1, · · · , i|U |−1 ∈ [1, |U |], i1 6= · · · 6= i|U |−1

(6.21)

and finally we will have the policy,

π̃|U | = π = (d1, · · · , d|U |) (6.22)

Since i1, · · · , i|U | is arbitrary, this sequence of policies covers the whole space of

policies that we wish to search over. We aim to find the difference Wπ̃1(n, tµ,j)−
Wπ̃(n, tµ,j) and then check if this difference in the limit n going to infinity is

negative. To check this, we shall begin with n = 1, 2, 3 and then generalise. The

policy π̃1 marks the tree tµ,i1 according to the rule di1 . Thus, for i1 ≥ k,

Wπ̃1(1, tµ,j)−Wπ̃(1, tµ,j) =


0 for all j 6= i1
−1

i1
for j = i1

(6.23)

Moving to n = 2,

Wπ̃1(2, tµ,j)−Wπ̃(2, tµ,j) =


−1

p · i1
for all j 6= i1

−1

i1
− 1

p · i1
for j = i1

(6.24)

When we check for n = 3 we identify a pattern emerging,

Wπ̃1(3, tµ,j)−Wπ̃(3, tµ,j) =


−2

p · i1
for all j 6= i1

−1

i1
− 2

p · i1
for j = i1

(6.25)

Hence by induction,

Wπ̃1(n, tµ,j)−Wπ̃(n, tµ,j) =


−(n− 1)

p · i1
for all j 6= i1

−1

i1
− (n− 1)

p · i1
for j = i1

(6.26)

83

Therefore,

lim
n→∞

Wπ̃1(n, tµ,j)−Wπ̃(n, tµ,j)

n
=
−1

p · i1
for all tµ,j ∈ U. (6.27)

Thus, the policy π̃1 is better of than π̃ in the average costs criterion.

Comparing the next pair of policies π̃1 and π̃2, we would obtain the same differences

but with i2 instead of i1. We assume that the same i1 undergoes the rule of marking

k unmarked sons in both the policies.

Wπ̃2(1, tµ,j)−Wπ̃1(1, tµ,j) =


0 for all j 6= i2
−1

i2
for j = i2

(6.28)

Moving to n = 2,

Wπ̃2(2, tµ,j)−Wπ̃1(2, tµ,j) =


−1

p · i2
for all j 6= i2

−1

i2
− 1

p · i2
for j = i2

(6.29)

And by induction we obtain,

Wπ̃2(n, tµ,j)−Wπ̃1(n, tµ,j) =


−(n− 1)

p · i2
for all j 6= i2

−1

i2
− (n− 1)

p · i2
for j = i2

(6.30)

Therefore,

lim
n→∞

Wπ̃2(1, tµ,j)−Wπ̃1(1, tµ,j)

n
=
−1

p · i2
(6.31)

Thus, we have that for any pair of policies π̃q with π̃q+1 where q ∈ [1, |U |] :

Wπ̃q+1(n, tµ,j)−Wπ̃q(n, tµ,j) =


−(n− 1)

p · iq+1

for all j 6= iq+1

−1

iq+1

− (n− 1)

p · iq+1

for j = iq+1.
(6.32)

Which would lead to the limit of their difference being :

lim
n→∞

Wπ̃q+1(n, tµ,j)−Wπ̃q(n, tµ,j)

n
=
−1

p · iq+1

. (6.33)

84

Hence, the policy π̃q+1 is better of than π̃q for all q ∈ [1, |U |] (of course here

|U | = p). This implies that the policy π̃|U | = π is the optimal policy since the

policies π̃q covers all possible markings of all trees. Let us recall the average cost

of the policy π from Proposition 4.4.

φ∗(ti,j) = φπ(ti,j) = lim
N→∞

Wπ(N, ti,j)

N
=
Hpk

p
(6.34)

for all ti,j.

Formally, let us refer to this policy of marking sons only as the ”Greedy Depth 1”

policy.

6.2.2 Stationary Probability Approach

Under policy π, the Usable state space U would consist of trees

t0,1, · · · , t0,p, · · · , t1,p where t0,j are unmarked trees with j sons, and t1,j are marked

trees (marked at the root) with j sons. However, we can aggregate the states to

tµ,1, · · · , tµ,p since the mark of the root is irrelevant under the policy we choose to

evaluate. The transition structure of this aggregated state space would be :

P =



1/p 1/p · · · 1/p

1/p 1/p · · · 1/p
...

... · · · ...

1/p 1/p · · · 1/p

1/p 1/p · · · 1/p


(6.35)

which would lead to the stationary distribution being,

ρ =
(

1/p 1/p · · · 1/p
)
. (6.36)

The expected costs for each tree is :

E[c(tµ,j, π(tµ,j))] =
(j − k)+

j
(6.37)

85

Therefore, the average cost of policy π is :

p∑
j=1

1

p
E[c(tµ,j, π(tµ,j))] =

p∑
j=1

(j − k)+

jp
=
Hpk

p
=
p− k + 1− k(Hp −Hk−1)

p
.

(6.38)

This matches with the value of φ∗(t) calculated using the limit approach.

6.3 Depth 2 trees with budget 1

Given a tree t = (µ, {t0,j1 , · · · , t0,jm}), the transition structure under policy π is:

P (t, π(t), t′) =


1

mpjr
if t′ ∈ SD(t)

0 otherwise
(6.39)

where SD(t) is the set mapping defined in Definition 3.4.2. Let us divide the state

space into blocks. In each block, trees would contain a particular number of sons.

There would be p blocks. The first block contains p trees, the second contains p2,

and so on upto pp trees in the pth block. We call each of these blocks as pm where

m ∈ [1, p] and the block pm contains pm trees.

The total number of trees are p + p2 + · · · + pp. The stationary distribution for

the case p = 3 is :

ρ =
(

1/9 1/9 1/9 1/27 1/27 · · · 1/27 1/81 · · · 1/81
)

(6.40)

where 1/27 repeats for 9 trees in the p2 block, and 1/81 repeats for 27 trees in the

p3 block.

Using this structure, for a general p, we conjecture that the stationary distribution

is :

ρ =
(

1/p2 · · · 1/p2 1/p3 · · · 1/p3 · · · 1/pp+1 · · · 1/pp+1
)

(6.41)

where the stationary probability of a tree in the pm block is 1/pm+1 with m ∈ [1, p].

Essentially the trees in each block adds up to a probability of 1/p, and with p

such blocks, the probability of all trees adds to 1. We prove this in the following

theorem.

86

Theorem 6.4. The stationary distribution under the greedy policy π for depth 2

trees with budget 1 is :

ρ =
(

1/p2 · · · 1/p2 1/p3 · · · 1/p3 · · · 1/pp+1 · · · 1/pp+1
)

(6.42)

Proof. We need to check that ρP = ρ. To do so, we shall try to identify the

columns in P . We only need to identify the column in P for each block. Let us

denote c(pm) as the column vector of transition probabilities for a tree in the pm

block.

Therefore P = (c(p1)c(p2) · · · c(pp)), where the column c(p1) repeats p1 times as

it is representative of a tree in the p1 block. Similarly the column c(pm) repeats

pm times for every m ∈ [1, p]. Each column is the probability of arriving at a

particular tree from all other trees.

Let us breakdown the column vector of transition probabilities of a tree t =

(µ, {ti1,j1 , · · · , tim,jm}) in the pm block.

• Only one of the trees from the p1 block would transition to t. This is so

because the number of sons of t will match the number of leaves of exactly

one tree in the p1 block.

• For the p2 block, there are more possibilities. Trees in the p2 block with any

one or both subtrees having m leaves would have some non zero value. If any

one of the subtrees have m leaves, then 1/(2pm) would be the probability of

transition from a tree in block pm to our tree of interest. If both subtrees

have m leaves, then we simply have the value to be 1/pm.

• From any block b, we should have the term b−r
bpm

where r ∈ [1, b− 1] repeats

for qr trees. qr represents the number of trees with b sons and exactly b− r
subtrees with m leaves. In addition to these terms we should also have the

1/pm term as well from a tree where all the sons have m leaves. And of

course there would be some number of 0s to complete the column written

below.

c(pm)Tb =

(
1

pm
b− 1

bpm q1

b− 2

bpm q2

b− 3

bpm q3

· · · b− (b− 1)

bpm q(b−1)

0qb

)
(6.43)

87

Let us find qr which is the number of trees with b sons and all but r of the b

subtrees have m leaves. First pick r nodes among the b sons, and each of these r

nodes can have any one of the p−1 possible sons of their own. Thus, qr is simply,

qr =

(
b

r

)
(p− 1)r for all r ∈ [0, b]. (6.44)

For r = 0 (6.44) is simply 1, and for r = b it is (p− 1)b.

We evaluate the product ρP . This product for a tree in the mth block will be

(ρ · P)m =

p∑
b=1

(
1

pb+1

)
|c(pm)b|

· c(pm)b (6.45)

The product in (6.45) simplifies to 1/pm+1 (Appendix B.1). We have that (ρ.P)m =

(ρ)m for all m ∈ [1, p] which implies that ρ.P = ρ. It is also obvious that the

elements of ρ sum up to 1 since there are p blocks with trees in each block summing

up to 1/p. Hence, ρ is the stationary distribution for the Markov chain of depth

2 tree shapes.

Let us calculate the average cost under the policy π. The expected cost of a tree

t = (µ, {t0,j1 , · · · , t0,jm}) is

E[c(t, π(t))] =
m− 1

m
(6.46)

Therefore, the average cost is (split into blocks):∑
t∈p1

1

p2
E[c(t, π(t))] +

∑
t∈p2

1

p3
E[c(t, π(t))] + · · ·+

∑
t∈pp

1

pp+1
E[c(t, π(t))]

=
∑
t∈p1

1

p2

1− 1

1
+
∑
t∈p2

1

p3

2− 1

2
+ · · ·+

∑
t∈pp

1

pp+1

p− 1

p

=
1

p2

1− 1

1
· p+

1

p3

2− 1

2
· p2 + · · ·+ 1

pp+1

p− 1

p
· pp

=

p∑
m=1

1

p

m− 1

m

=

p∑
m=1

1

p

(
1− 1

m

)
88

=
1

p
p− 1

p

p∑
m=1

1

m

= 1− Hp

p
. (6.47)

In the finite horizon criteria, we had the following expression for the value function

under the greedy policy π.

Wπ(n, t) = n− 1

m
− n− 2

p
·Hp −

1

m

m∑
r=1

1

jr
for 2 ≤ n ≤ N. (6.48)

The average cost of this policy in the infinite horizon is:

lim
N→∞

Wπ(N, t)

N

= lim
N→∞

1

N

(
N − 1

m
− N − 2

p
·Hp −

1

m

m∑
r=1

1

jr

)

= lim
N→∞

(
1− 1

Nm
− N − 2

Np
·Hp −

1

Nm

m∑
r=1

1

jr

)

= 1− Hp

p
+ lim

N→∞

(
− 1

Nm
− 2

Np
·Hp −

1

Nm

m∑
r=1

1

jr

)
= 1− Hp

p
(6.49)

This matches with (6.47). Now let us explore this Markov chain of tree shapes

and analyse its properties. In the this section, we noticed that the transitions of

states was invariant of the markings. Let us try to calculate the average number

of nodes, average number of nodes created at each time step, and average number

of nodes deleted at each time step.

6.4 Average number of nodes

For depth 2 trees, we shall first calculate the total number of nodes of all trees :

p∑
m=1

∑
1≤j1,··· ,jm≤p

((m+ 1) + (j1 + · · ·+ jm)) (6.50)

89

=

p∑
m=1

pm(m+ 1) +

p∑
m=1

p∑
j1=1

· · ·
p∑

jm=1

(j1 + · · ·+ jm)

=

p∑
m=1

pm(m+ 1) +

p∑
m=1

p(p+ 1)

2
· pm−1 ·m

=

p∑
m=1

pm
(
m+ 1 +

p+ 1

2
·m
)

(6.51)

In (6.50), the (m+ 1) is from one root node and m sons. Each of the m sons have

j1, · · · , jm sons/leaves of their own.

The total number of depth 2 trees is p + p2 + · · · + pp. Hence, dividing (6.51) by

the total number of depth 2 trees, we obtain the following simplified expression :

5− p+ pp(p3 + 2p2 − 2p− 5)

2(p− 1)(pp − 1)
(6.52)

for p > 1. The formula in (6.52) for p = 2, 3 gives the values 31/6, 115/13 respec-

tively.

The above approach in (6.52) assumed uniform stationary probability of trees.

However this is not the case as we know the stationary probabilities are not uni-

form. Hence using (6.51), we multiply the stationary probability of trees in each

block to obtain :

p∑
m=1

1

pm+1
pm
(
m+ 1 +

p+ 1

2
·m
)

=

p∑
m=1

1

p

(
m+ 1 +

p+ 1

2
·m
)

=
7 + 4p+ p2

4

(6.53)

Using (6.53) for p = 1, 2, 3 we obtain 3, 19/4, 7 respectively.

6.5 Average number of nodes created

Given a depth two tree t = (µ, {ti1,j1 , · · · , tim,jm}), let us proceed as below,

• Pick an r ∈ [1,m] with probability 1/m.

• To each of these jr leaves, add between 1, · · · , p new leaves with uniform

probability 1/p.

90

Therefore, for the tree t, the expected number of nodes added is :

m∑
r=1

1

m

(
p+ 1

2

)
· jr (6.54)

This is because adding new nodes to each of the jr leaves are independent. Let Y1

be the random variable that denotes the number of nodes added to the first leaf

of the tree tir,jr , Y2 denotes the number of nodes added to the second leaf of the

tree tir,jr , and Yjr denotes the number of nodes added to the last leaf of the tree

tir,jr . Then.

E[Y1 + Y2 + · · ·+ Yjr] = E[Y1] + E[Y2] + · · ·+ E[Yjr] =

(
p+ 1

2

)
· jr (6.55)

And the probability of picking the subtree tir,jr is 1/m. Therefore the expected

number of nodes created for tree t is (6.54). The stationary probability of a tree

with m sons is 1/pm+1. Hence summing over all possible jr for all possible m, and

multiplying it by the stationary probability, we obtain :

p∑
m=1

1

pm+1

∑
1≤j1,··· ,jm≤p

m∑
r=1

1

m

(
p+ 1

2

)
· jr (6.56)

Example : For p = 1, 2, 3, 4, we obtain 1, 9/4, 4, 25/4 respectively.

Equation (6.56) simplifies to : (
p+ 1

2

)2

(6.57)

6.6 Average number of nodes deleted

Given a tree t = (µ, {ti1,j1 , · · · , tim,jm}), let us proceed as below.

• Pick an r ∈ [1,m] with probability 1/m.

• Remove the root node plus the sub-trees tiq ,jq for all q 6= r.

For a tree t, the expected number of nodes deleted is :

m∑
r=1

1

m
(1 + (m− 1) + (j1 + · · ·+ jm)− jr) (6.58)

91

Summing over all possible combinations of number of leaves for each son, and then

summing over all possible number of sons, and multiplying this with the stationary

probabilities we obtain (simplification in Appendix B.2),
p∑

m=1

1

pm+1

∑
1≤j1,··· ,jm≤p

m∑
r=1

1

m
(1 + (m− 1) + (j1 + · · ·+ jm)− jr)

=

(
p+ 1

2

)2

. (6.59)

This is equal to the average number of nodes created in (6.57) as expected. If they

were unequal, we would have increasing or decreasing sizes of trees as the process

goes ahead in time.

6.7 Specific Parameters

Due to various complexities arising from the size of the state space in the MDP of

budget 2 depth 2 trees, we shall focus on some specific policies and try to compute

the optimal policy given certain parameter values.

6.7.1 Policy of Marking Sons Only

We compute the average cost of the Greedy depth 1 policy for depth 2 trees with

budget k. Since no leaf is marked, the trees in U will not have any marked sons.

The expected cost of a tree t = (µ, {ti1,j1 , · · · , tim,jm}) will be :

E[c(t, π(t))] =
(m− k)+

m
(6.60)

We know that the stationary distribution of tree shapes at depth 2 is 1/pm+1 for

a tree in block m. Hence, the product of the distribution and the expected costs

summed over all blocks and trees would be :

1

p

p∑
m=1

(m− k)+

m
=

1

p

p∑
m=k+1

m− k
m

=
1

p
(p− k − k(Hp −Hk)) . (6.61)

Let us have the condition that k < p, since otherwise the MDP will be zero cost

always. We have listed some values of the average cost for a few combinations of

p, k in Table 6.1.

92

Table 6.1: Table of p, k, and average costs

p k Average Cost p k Average Cost

2.0 1.0 0.25 20.0 1.0 0.8201

2.0 2.0 0.0 20.0 2.0 0.6902

3.0 1.0 0.3889 20.0 3.0 0.5853

3.0 2.0 0.1110 20.0 18.0 0.0076

3.0 3.0 0.0 20.0 19.0 0.0025

4.0 1.0 0.4791 20.0 20.0 0.0

4.0 2.0 0.2083 105.0 2.0 0.9097

4.0 3.0 0.0625 105.0 3.0 0.8742

4.0 4.0 0.0 105.0 100.0 0.0013

There seems to be a gradual fall off in costs as k increases.

Let us try to solve the equation average costs(p, k) = α, where α is some value

in [0, 1], for a fixed p and a variable k. This is an attempt to find out how much

budget is needed for some pre-determined cost.

α =
1

p
(p− k − k(Hp −Hk)) (6.62)

p(1− α) = k(1 +Hp −Hk). (6.63)

We use the approximation for large k and p ; Hk ≈ ln k+γ and a similar expression

for Hp, where γ is the Euler constant (≈ 0.5772).

p(1− α) ≈ k
(

1 + log
p

k

)
p

k
(1− α) ≈ 1 + log

p

k

Using Mathematica we obtain :

k ≈ (α− 1)p

ProductLog
[
α−1
e

] (6.64)

where ProductLog(z) is the value x that solves the equation z = x · ex

93

We examine how k varies as α increase in the interval [0, 1] for two values of

p = 500, 2000 in Figure 6.1 and Figure 6.2 respectively.

Figure 6.1: k versus α for p = 500

Figure 6.2: k versus α for p = 2000

As expected in both Figure 6.1 and Figure 6.2, α is closer to 0 as k is closer to p,

and α increases to 1 as k decreases towards 0.

6.7.2 MDP with p = 3, d = 2, k = 2

For the MDP p = 3, d = 2, k = 2, we checked for the policy of marking the

unmarked sons first. If there is budget left after marking an unmarked son or if

94

all sons are already marked, then mark the first leaf (from left) of the first son.

For Type 2b trees ({µ, {t1,j1 , t1,j2}}), mark the first two leaves of t1,j1 or if j1 = 1,

mark that leaf and the first leaf of t1,j2 . For the special case of tree {µ, {t1,1}},
just mark the leaf.

Using the same transition matrix of our numerical program for the Greedy Depth

1 policy on depth 2 trees, we obtain the average cost for p = 3 to be 0.1111 and

for p = 4 to be 0.2083. This is consistent with the formula in (6.62),

1

3
(3− 2− 2(H3 −H2)) =

1

3

(
1− 2

(
11

6
− 3

2

))
=

1

9

1

4
(4− 2− 2(H4 −H2)) =

1

4

(
2− 2

(
25

12
− 3

2

))
=

5

24

Let us check for different greedy policies. We can mark the leaf of the leftmost

subtree (Greedy Left), largest subtree (Greedy Large), or the smallest subtree

(Greedy Small). The average cost under these variants of the greedy policy are :

Table 6.2: Average Cost of different Greedy policies

Policy/p 3 4

Greedy Depth 1 0.111111 0.208333

Greedy Small 0.067912 0.161568

Greedy Left 0.062802 0.160227

Greedy Large 0.054369 0.156907

As expected, in Table 6.2, the average cost under the policy Greedy Large is the

least, followed by Greedy Left, and then Greedy Small. To get an idea of the

enormous size of the Usable state space, Table 6.3 lists a few values of |U | for

different p.

95

Table 6.3: Table of Usable state space sizes for k = 2, d = 2

p value
Size of Usable

state space - |U |
3 231

4 3,336

5 57,860

6 1,166,772

7 26,768,959

The complexity of analysis in the infinite horizon criterion has reached a peak

here as the size of |U | for p = 7 is in the tens of millions already! Even numerical

programs are inefficient at computing the optimal policy. We truncate our analysis

of the infinite horizon prefetching MDP for this thesis here.

96

Chapter 7

Conclusion

We analytically solved for the optimal policy for depth 1 trees with any budget

and depth 2 trees with budget 1, for the finite horizon expected costs criterion

and the infinite horizon average costs criterion. The optimal policy for these cases

was the greedy policy of marking sons first. Moving to budget two complicated

the analytical study. The complexity arose from the wide range of value functions

that exist for different tree types in the finite horizon case, and the wide range of

possible markings for the infinite horizon case. There was an interesting phenom-

ena at the n = 3 horizon of the finite horizon MDP for particular kind of Type 2b

trees where all three possible strategies were optimal for some range of p and size

of subtrees. In the finite horizon study, we have structured the state space in a

budget and policy dependent manner which would ease the search for an optimal

policy given a particular tree.

The natural way of extending this structure to depth 2 trees with any budget k

would be to alter the Tree type definition for t = (µ, {ti1,j1 , · · · , tim,jm}) as follows:

• Type 1 : m−
m∑
r=1

ir − k ≥ 0.

• Type 2a1 : m−
m∑
r=1

ir = k − 1.

• Type 2a2 : m−
m∑
r=1

ir = k − 2 and so on.

97

• For a general 1 ≤ z ≤ k − 1, Type 2az : m−
m∑
r=1

ir = k − z.

• Type 2b : m−
m∑
r=1

ir = 0, m > 1.

• Type 2c : Simply the tree (µ, {t1,j1}) where 1 ≤ j1 ≤ p. This is the trivial

tree with one marked son.

One may ask why we are centered around the greedy policy? From the analysis for

Type 1 and Type 2 trees, the other actions where one does not prioritize marking

sons before leaves involve an extra cost of anywhere between 1/m to k/m. Our

analysis has shown that for Type 1 and Type 2a trees, marking leaves that would

yield lower future costs does not subdue the higher immediate cost of not marking

sons. It might be reasonable to extend this to an arbitrary budget k.

For greater depths, we propose a certain way of partitioning the state space which

might prove useful in solving for the optimal policy. Depth 2 trees involved the

possibility of planning only one step in the future which was not better than

focusing on the present. However, in depth 3 trees, the controller can plan two

steps into the future which might be better than focusing on the present.

Perhaps, we could divide the depth d tree into (d−1) depth two trees (overlapping

depths), and assign equal fractions of the budget to each depth 2 tree. Then we

could structure the state space as Type 1, Type 2az, Type 3az, · · · , Type (d−1)az,

Type 2b, Type 3b, · · · ,Type (d− 1)b, Type 2c, Type 3c, · · · , Type (d− 1)c. Like

before, z ∈ [1, k − 1]. This structuring would entail solving for the optimal policy

for each depth-2 tree to arrive at an optimal policy for the depth d tree. We are

yet to explore this prospect.

The analysis of the Markov chain of depth two tree shapes provided some insight

for the policies to be evaluated using the stationary probability approach in the

infinite horizon criterion. When we evaluated the average cost for the MDP with

p = 3, k = 2, d = 2, we obtained that a specific greedy policy of marking the

leaf of the largest subtree (when all sons are marked) is optimal. This matches

with the computation of the optimal policy in the finite horizon case for the same

parameters. We faced complexity issues while extending to larger depths or larger

98

budgets merely due to the enormous size of the state space. Moreover, numerical

programs also seemed to be inefficient in calculating the optimal policy for large

state spaces. It may prove useful to restrict ourselves to smaller and more realistic

state spaces. The Markov Decision Process framework has been a useful tool in

analysing the process of prefetching. Further work that builds on this thesis could

be to relax one of the assumptions in our design of the MDP. Perhaps the surfer

is allowed to move backwards or move with a non-uniform probability to one of

the sons. These variants are interesting as they model a surfer’s movement on

a website more realistically. Analysis of such variants however would involve a

great deal of complexity as the simpler MDP studied in this thesis proved to be

challenging.

99

Bibliography

[1] [MP94] Martin L. Puterman, Markov Decision Processes, 1994, Wiley-

Interscience.

[2] [SR83] Sheldon Ross, Introduction to Stochastic Dynamic Programming, 1983,

Academic Press.

100

Appendix A

Depth 2 Trees

A.1 Budget 1 recurrence

We evaluate the value function under policy π at n = 2,

Wπ(2, t) = c(t, π(t)) +
∑

t′∈SD(t)

P (t, π(t), t′) ·Wπ(1, t′),

= c(t, π(t)) +
m∑
r=1

∑
t′∈D(tir,jr)

P (t, π(t), t′) ·Wπ(1, t′)

= c(t, π(t)) +
m∑
r=1

1

mpjr

∑
1≤f1,f2,··· ,fjr≤p

(
1− 1

jr

)
(A.1)

= c(t, π(t)) +
m∑
r=1

1

mpjr
·
(
pjr − pjr

jr

)
= c(t, π(t)) +

m∑
r=1

(
1

m
− 1

m · jr

)
= c(t, π(t)) + 1− 1

m

m∑
r=1

1

jr

= 1− 1

m
+ 1− 1

m

m∑
r=1

1

jr

101

= 2− 1

m
− 1

m

m∑
r=1

1

jr
. (A.2)

Note that in (A.1), the innermost summation is independent of fq for all q ∈
{1, · · · , jr}.

Wπ(3, t) = c(t, π(t)) +
∑

t′∈SD(t)

P (t, π(t), t′) ·Wπ(2, t′)

= c(t, π(t)) +
m∑
r=1

 1

mpjr

∑
1≤f1,f2,··· ,fjr≤p

Wπ(2, (ir, {t0,f1 , · · · , t0,fjr}))


= c(t, π(t)) +

m∑
r=1

 1

mpjr

∑
1≤f1,f2,··· ,fjr≤p

(
2− 1

jr
− 1

jr
·
jr∑
q=1

1

fq

) (A.3)

= c(t, π(t)) + 2− 1

m
·
m∑
r=1

1

jr
−

m∑
r=1

 1

mpjrjr
·

∑
1≤f1,f2,··· ,fjr≤p

jr∑
q=1

1

fq


= 3− 1

m
− 1

m
·
m∑
r=1

1

jr
− 1

m
·
m∑
r=1

 1

pjrjr
·

∑
1≤f1,f2,··· ,fjr≤p

jr∑
q=1

1

fq


= 3− 1

m
− 1

m
·
m∑
r=1

(
1

jr
+M(1, jr)

)
, (A.4)

where we have used the value of Wπ(2, t) from (A.2).

A.2 M(n, j) recurrence

Recall the summation of harmonic series as :

Hp =

p∑
f=1

1

f
. (A.5)

Then,

M(1, 1) =
1

p

∑
1≤f1≤p

1

f1

=
1

p
·Hp (A.6)

102

M(1, 2) =
1

2p2

∑
1≤f1,f2≤p

(
1

f1

+
1

f2

)
=

1

2p2

p∑
f1=1

p∑
f2=1

(
1

f1

+
1

f2

)

=
1

2p2
·

(
p∑

f1=1

p∑
f2=1

1

f1

+

p∑
f1=1

p∑
f2=1

1

f2

)

=
1

2p2
· (p ·Hp + p ·Hp)

=
1

2p2
· (2p ·Hp)

=
1

p
·Hp.

Hence, for any 2 ≤ j ≤ p:

M(1, j) =
1

jpj

∑
1≤f1,f2,··· ,fj≤p

(
1

f1

+
1

f2

+ · · ·+ 1

fj

)

=
1

jpj

p∑
f1=1

p∑
f2=1

· · ·
p∑

fj=1

(
1

f1

+
1

f2

+ · · ·+ 1

fj

)

=
1

jpj
·

 p∑
f1=1

· · ·
p∑

fj=1

1

f1

+ · · ·+
p∑

f1=1

· · ·
p∑

fj=1

1

fj


=

1

jpj
·
(
pj−1 ·Hp + · · ·+ pj−1 ·Hp

)
=

1

jpj
· (j · pj−1 ·Hp)

=
1

p
·Hp. (A.7)

We have a simplified expression for M(1, j). Now, let us simplify M(2, j),

M(2, j) =
1

jpj
·

∑
1≤f1,f2,··· ,fj≤p

j∑
q=1

(
1

fq
+M(1, fq)

)

=
1

jpj
·

 p∑
f1=1

· · ·
p∑

fj=1

j∑
q=1

1

fq
+

p∑
f1=1

· · ·
p∑

fj=1

j∑
q=1

1

p
·Hp


103

=
1

jpj
·
(
pj−1 · j ·Hp +

1

p
·Hp · pj · j

)
=

1

p
·Hp +

1

p
·Hp

=
2

p
·Hp.

Thus by a simple induction, we obtain for 2 ≤ n ≤ N ,

M(n, j) =
1

jpj
·

∑
1≤f1,f2,··· ,fj≤p

j∑
q=1

(
1

fq
+M(n, fq)

)

=
1

jpj
·

 p∑
f1=1

· · ·
p∑

fj=1

j∑
q=1

1

fq
+

p∑
f1=1

· · ·
p∑

fj=1

j∑
q=1

(n− 1) · 1

p
·Hp


=

1

jpj
·
(
pj−1 · j ·Hp +

n− 1

p
·Hp · pj · j

)
=

1

p
·Hp + (n− 1) · 1

p
·Hp

=
n

p
·Hp.

A.3 Tr(2 : 1, 1)

We compute a more explicit expression for Tr(2 : 1, 1).

2Tr(2 : 1, 1) =

p∑
f2=1

(f2 − 4)+

f2

[f1 = 1]

+

p∑
f2=1

(f2 − 4)+

f2

[f1 = 2]

+

p∑
f2=1

+
(f3 − 2)+

f2

[f1 = 3]

+
2∑

f2=1

(f1 − 4)+

f1

+
(f1 − 3)+

f1

+ (
4∑

f2=4

(f1 − 2)+

f1

+
(f2 − 4)+

f2

)

+

p∑
f2=5

(
(f1 − 4)+

f1

+
(f2 − 2)+

f2

)
[f1 = 4]

104

+
2∑

f2=1

(f1 − 4)+

f1

+
(f1 − 3)+

f1

+
5∑

f2=4

(
(f1 − 2)+

f1

+
(f2 − 4)+

f2

)

+

p∑
f2=6

(
(f1 − 4)+

f1

+
(f2 − 2)+

f2

)
[f1 = 5]

· · ·

+
2∑

f2=1

(f1 − 4)+

f1

+
(f1 − 3)+

f1

+

p∑
f2=4

(
(f1 − 2)+

f1

+
(f2 − 4)+

f2

)
[f1 = p].

Clubbing similar terms together we obtain :

2Tr(2 : 1, 1) = 4Hp4 + 2Hp3 +

p∑
f1=4

f1∑
f2=4

(
(f1 − 2)+

f1

+
(f2 − 4)+

f2

)

+

p−1∑
f1=4

p∑
f2=f1+1

(
(f1 − 4)+

f1

+
(f2 − 2)+

f2

)
.

(A.8)

We simplify (A.8) using Mathematica and obtain :

Tr(2 : 1, 1) = p2 +
19p

3
+ 5− (4p+ 6)Hp. (A.9)

A.4 Tr(3 : 1, 1, 0)

We shall split the summation over f1 into three parts. The first part is for f1 = 1, 2,

the second for f1 = 3, and the third for f1 ∈ [4, p]. (A.10) details the contribution

of f1 = 1, 2 to 3Tr(3 : 1, 1, 0).

2

{
2∑

f2=1

p∑
f3=4

f3 − 3

f3

+

p∑
f3=3

f3 − 2

f3

+

p∑
f2=4

{
2(f2 − 3)

f2

+
f2 − 2

f2

+

f2∑
f3=4

(
f3 − 3

f3

+
f2 − 2

f2

)

+

p∑
f3=f2+1

(
f2 − 3

f2

+
f3 − 2

f3

)}}
.

(A.10)

105

Similarly for f1 = 3, we have (A.11) as the contribution to 3Tr(3 : 1, 1, 0)

2∑
f2=1

(
1

3
+

p∑
f3=4

f3 − 2

f3

)
+

2∑
f3=1

1

3
+

p∑
f3=3

(
f3 − 2

f3

+
1

3

)

+

p∑
f2=4

{
2(f2 − 2)

f2

+
f2 − 2

f2

+
1

3
+

p∑
f3=4

(
f3 − 2

f3

+
f2 − 2

f2

)}
.

(A.11)

We shall now detail the contribution from f1 ∈ [4, p] to 3Tr(3 : 1, 10) in (A.12).

p∑
f1=4

{
2∑

f2=1

(
2(f1 − 3)

f1

+
f1 − 2

f1

+

f1∑
f3=4

(
f3 − 3

f3

+
f1 − 2

f1

)

+

p∑
f3=f1+1

(
f3 − 2

f3

+
f1 − 3

f1

))
+

2∑
f3=1

f1 − 2

f1

+

p∑
f3=3

(
f3 − 2

f3

+
f1 − 2

f1

)

+

f1∑
f2=4

(
2

(
f2 − 3

f2

+
f1 − 2

f1

)
+
f2 − 2

f2

+
f1 − 2

f1

+

f2∑
f3=4

(
f3 − 3

f3

+
f2 − 2

f2

+
f1 − 2

f1

)

+

p∑
f3=f2+1

(
f3 − 2

f3

+
f2 − 3

f2

+
f1 − 2

f1

))

+

p∑
f2=f1+1

(
2

(
f2 − 2

f2

+
f1 − 3

f1

)
+
f2 − 2

f2

+
f1 − 2

f1

+

f1∑
f3=4

(
f3 − 3

f3

+
f2 − 2

f2

+
f1 − 2

f1

)

+

p∑
f3=f1+1

(
f3 − 2

f3

+
f2 − 2

f2

+
f1 − 3

f1

))}

(A.12)

Adding (A.10), (A.11), and (A.12) we obtain the value of 3Tr(3 : 1, 1, 0). We

simplified it using Mathematica to obtain :

Tr(3 : 1, 1, 0) =
1

3

(
15

2
+ 3p(8 + p(4 + p))− (19 + 3p(5 + 3p))Hp

)
(A.13)

106

A.5 Type 1 trees at n = 3

We detail how we obtain the Hp2 term.

m∑
r=1

1

m · pjr
∑

1≤f1,··· ,fjr≤p

1

jr

jr∑
q=1

(fq − 2)+

fq

=
m∑
r=1

1

m · pjr · jr

p∑
f1=1

· · ·
p∑

fjr=1

(
(f1 − 2)+

f1

+ · · ·+ (fjr − 2)+

fjr

)

=
1

m

m∑
r=1

1

pjrjr

 p∑
f1=1

· · ·
p∑

fjr=1

(f1 − 2)+

f1

+ · · ·+
p∑

f1=1

· · ·
p∑

fjr=1

(fjr − 2)+

fjr


=

1

m

m∑
r=1

1

pjrjr

(
pjr−1 ·Hp2 + · · ·+ pjr−1 ·Hp2

)
=

1

m

m∑
r=1

1

pjrjr
· jr · pjr−1 ·Hp2

=
1

m

m∑
r=1

1

p
Hp2

= Hp2.

(A.14)

107

Appendix B

Infinite Horizon Average Costs

B.1 Stationary Distribution for depth 2 trees

We compute the product of the stationary distribution and the transition matrix

for a tree in the pm block.

(ρ · P)m =

p∑
b=1

1

pb+1

(
1

pm
+

b−1∑
r=1

b− r
bpm

·
(
b

r

)
(p− 1)r

)

=

p∑
b=1

1

pb+1

(
b−1∑
r=0

b− r
bpm

·
(
b

r

)
(p− 1)r

)

=
1

pm

p∑
b=1

1

pb+1

(
b−1∑
r=0

b− r
b
·
(
b

r

)
(p− 1)r

)

=
1

pm

p∑
b=1

1

pb+1

(
b−1∑
r=0

b− r
b
· b!

(b− r)!r!
(p− 1)r

)

=
1

pm

p∑
b=1

1

pb+1

(
b−1∑
r=0

(b− 1)!

(b− 1− r)!r!
· (p− 1)r

)

=
1

pm

p∑
b=1

1

pb+1

(
b−1∑
r=0

(
b− 1

r

)
· (p− 1)r

)

=
1

pm

p∑
b=1

1

pb+1
· pb−1 (B.1)

108

=
1

pm
· 1

p
=

1

pm+1
(B.2)

In (B.1), we have used the Binomial expansion theorem.

B.2 Average number of nodes deleted

The simplification for the average number of nodes deleted is as follows :

p∑
m=1

1

pm+1

∑
1≤j1,··· ,jm≤p

m∑
r=1

1

m
(1 + (m− 1) + (j1 + · · ·+ jm)− jr)

=

p∑
m=1

1

mpm+1

∑
1≤j1,··· ,jm≤p

m∑
r=1

(m+ (j1 + · · ·+ jm)− jr)

=

p∑
m=1

1

mpm+1
pm ·m ·m+

p∑
m=1

1

mpm+1

∑
1≤j1,··· ,jm≤p

m∑
r=1

(j1 + · · ·+ jm − jr)

=

p∑
m=1

m

p
+

1

mpm+1

p∑
j1=1

· · ·
p∑

jm=1

m∑
r=1

(j1 + · · ·+ jm − jr) (B.3)

=
p+ 1

2
+

p∑
m=1

1

mpm+1

(
p(p+ 1)

2
· pm−1 · (m− 1) ·m

)

=
p+ 1

2
+

p∑
m=1

(p+ 1)(m− 1)

2p

=
p+ 1

2
+

(p+ 1)

2p

p∑
m=1

(m− 1)

=
p+ 1

2
+

(p+ 1)

2p

p− 1

2

=
2p+ 2 + p2 − 1

4

=

(
p+ 1

2

)2

. (B.4)

109

	List of Figures
	List of Tables
	List of Notation
	Abstract
	Introduction
	Prefetching
	Markov Decision Process

	Preliminaries : MDP Theory
	Finite Horizon Expected Reward Criterion
	Infinite Horizon Average Reward Criterion

	Prefetching MDP Specification
	Design of the Prefetching MDP
	State Space
	Action Space
	Transition Probability Structure
	Cost Function
	Bellman Optimality Equations

	Finite Horizon Depth 1 Trees
	Optimal Policy for the General Case
	Proposed Policy Satisfies Optimality Equations

	Finite Horizon Depth 2 Trees
	Budget 1
	Exchange Argument Approach
	Proposed Policy Satisfies Optimality Equations

	Budget two
	Horizon n=1
	Horizon n=2
	Horizon n=3
	Horizon n=4

	Infinite Horizon Average Costs Prefetching
	Eliminating wasteful actions
	Depth 1 trees
	Limit Approach
	Stationary Probability Approach

	Depth 2 trees with budget 1
	Average number of nodes
	Average number of nodes created
	Average number of nodes deleted
	Specific Parameters
	Policy of Marking Sons Only
	MDP with p=3,d=2,k=2

	Conclusion
	References
	Depth 2 Trees
	Budget 1 recurrence
	M(n,j) recurrence
	Tr(2:1,1)
	Tr(3:1,1,0)
	Type 1 trees at n = 3

	Infinite Horizon Average Costs
	Stationary Distribution for depth 2 trees
	Average number of nodes deleted

