
An Introduction to Persistent Homology and

Simplicial Collapses

Abhijit Bhalachandra

MS16035

A dissertation submitted for the partial fulfilment of

BS-MS dual degree in Science

Indian Institute of Science Education and Research, Mohali

April 2021

Declaration

The work presented in this dissertation has been carried out by me under the guidance of
Prof. Michael Kerber at the Technische Universität, Graz, Austria, and Dr. Krishnendu
Gongopadhyay at the Indian Institute of Science Education and Research, Mohali, India.

This work has not been submitted in part or in full for a degree, a diploma, or a fellowship
to any other university or institute. Whenever contributions of others are involved, every
effort is made to indicate this clearly, with due acknowledgement of collaborative research
and discussions. This thesis is a bonafide record of work done by me and all sources listed
within have been detailed in the bibliography.

Abhijit Bhalachandra
(MS16035)

In my capacity as the supervisor of the candidate’s project work, I certify that the above
statements by the candidate are true to the best of my knowledge.

Dr. Krishnendu Gongopadhyay
(Co-supervisor)

i

Certificate of Examination

This is to certify that the dissertation titled “Introduction to Persistent Homology and

Simplicial Collapses” submitted by Mr. Abhijit Bhalachandra (Reg. No. MS16035) for
the partial fulfilment of BS-MS dual degree programme of the Institute, has been examined
by the thesis committee duly appointed by the Institute. The committee finds the work done
by the candidate satisfactory and recommends that the report be accepted.

Dr. Abhik Ganguli Dr. Soma Maity

Dr. Krishnendu
Gongopadhyay
(Co-supervisor)

ii

Acknowledgements

I would like to thank my guide Prof. Michael Kerber, without whom this thesis would
not have been possible. I also thank Dr. Krishnendu Gongopadhyay for his support and
supervision of my progress. I am thankful to the faculty members at IISER Mohali for all
the wonderful interactions, courses I’ve taken, and introducing me to the amazing world
of science, mathematics, and philosophy. I am eternally grateful to IISER Mohali and
everyone I’ve interacted with during my five years here, as every moment on campus has
changed me in different ways, and has made me grow as a person.

Thank you Amma and Dad for your motivation, support, and unconditional love.

Special thanks to my prior summer internships guides Dr. Pierre Lairez and Dr. Amit
Chattopadhyay, working with whom has made me see and appreciate mathematics through
various lenses.

I’ve been fortunate to have made some of the closest friendships during my time on campus.
I’ve cherished every moment with all of you. Thank you Nikhil for always being there.
Anshuman, Rahul, and Rishi, I will miss our long walks and conversations. Thank you
Kausthub, Prashant, and Vedang for all the memories on the tennis court and our shared
experiences at tournaments.

Last but not the least, life would have been very different had I not taken to quizzing early
on. I thank the IISER Mohali Quiz Club for all the brilliant fundaes, conversations, and
rich experiences. My quizzing experience would have been very different had I not had
excellent teammates. Thank you Ojaswi for being a superb teammate and an even better
friend! Thank you Ayush, Dhruv, and Shantanu for all the memories both a part of and
outside of quizzing.

iii

Abstract

The explosion of data has brought in the fervent need to analyze large and higher-dimensional
datasets accurately and fast. Conventional tools are quickly becoming redundant when the
focus is on the speed of computation and the expectations of impactful insight. There is
a vibrant community of researchers who are looking at topology-based tools which are
able to extract shape-pertinent features of these large datasets. Looking at alternate and
non-classical tools has led to the development of some of the most impactful sub-fields of
mathematics, one being Topological Data Analysis, which has been widely accepted and
noticed for its effectiveness on certain use cases. This thesis will focus on studying a method
called Persistent Homology, which in a sense forms the vein of Topological Data Analysis.
This thesis will build mathematical theory to understand Persistent Homology, and subse-
quently proceed to comment on contemporary challenges with regard to the method, and
novel techniques to overcome them including algorithmic approaches with experimental
observations.

iv

List of Figures

2.1 Boundary matrix after performing row and column operations [EH10] . . . 8

3.1 Representation of the height function applied on an upright torus with crit-
ical points u,v,w,z [EH10] . 10

3.2 Evolution of the sublevel set [EH10] . 11
3.3 The first two barycentric subdivisions of the given simpliicial complex [EH10] 13
3.4 Example of a Vietoris-Rips complex [CdSEG07] 15

4.1 Barcode and persistence diagram representations of the persistence ele-
ments [1, 2], [1, 3], [3, 3], [3, 4], and [3, 4] [GC09] 17

4.2 Point cloud approximation of a circle . 19
4.3 One persistent generator for H1 corresponding to a loop 19
4.4 Point cloud approximation of a sphere . 20
4.5 One persistent generator for H2 corresponding to a void 20
4.6 Point cloud approximation of a torus . 21
4.7 Three persistent generators, two for H1 and one for H2. 21
4.8 Bifiltration of a triangle [GC09] . 22

5.1 An elementary strong collapse. Here, v is dominated by v0. [BP19] 26
5.2 Constructing Gi+1 from Gi [BP19] . 30

6.1 Example 1 . 35
6.2 Example 2 . 36
6.3 FIRep file format . 38
6.4 Computing the minimal presentation of a test case 39

v

Contents

1 Introduction 1

2 Homology Theory 3

2.1 Simplicial Homology . 3
2.2 Computing Homology of a Simplicial Complex 7

3 An Introduction to Morse Theory and Filtrations 10

3.1 Morse Theory . 10
3.2 Filtrations . 13

4 Persistent Homology 16

4.1 Computing Persistence . 16
4.1.1 Circle . 19
4.1.2 Sphere . 20
4.1.3 Torus . 20

4.2 Multi-dimensional Persistence . 21

5 Collapses 23

5.1 Prerequisites . 24
5.2 Computing Peristent Homology of Flag Complexes using Strong Collapses 28
5.3 An Approach for Multi-dimensional Persistence 31

6 Computational Experiments 33

6.1 Input Bifiltration . 34
6.1.1 Examples by Hand . 34
6.1.2 Adding Edges Randomly . 37
6.1.3 function-Rips . 37

6.2 Reduction using Algorithm-R . 37
6.3 Computing Minimal Presentation of Reduced Complex 37
6.4 Verification . 38

vi

6.5 Results . 39

7 Concluding Remarks 40

A Collapses 41

A.1 Computing Persistent Homology of Flag Complexes using Strong Collapses 41

B Computational Experiments 44

vii

Chapter 1

Introduction

Computational Topology is a meeting ground for mathematics and computer science. The
field aims to address pertinent problems in topology by developing efficient algorithms for
the same. In this process, numerous applications of these algorithms usually come to light.
Some problems in topology include computing the fundamental group of a surface, comput-
ing the homology group, and determining the genus of a surface among others. Some appli-
cations which have surfaced include using these algorithms to address the protein docking
problem, image classification problems, and trajectory analysis among others.

This thesis will focus singularly on Persistent Homology, a technique in Computational
Topology which aims at discovering the “intrinsic shape” of a topological space. The idea
is to look at the topological space through the lens of a filtration, and to track homological
components of the space as they appear and disappear with respect to the filtration.

This thesis aims at introducing and building relevant mathematics to understand contem-
porary research in developing Persistent Homology. Much of the latter part of the thesis,
which looks at methods to improve the computational performance of Persistent Homology
is a survey on the research carried out by Siddharth Pritam during his PhD [Sid20], and his
current idea we are working on in the field of Multi-dimensional Persistence [Pri21].

A lot of interesting developments in Persistent Homology come from the implementation
side of the method, either through writing efficient code and building robust packages, or
coming up with ingenious algorithms to reduce computational time and/or resources. This
thesis aims to look at both these aspects and includes results from computational experi-
ments of the same.

We start with the basics of Homology Theory in Chapter 2, and will provide an algorithmic

1

method to compute the rank of the homology group. Most of the explanation is inspired
from my readings of the popular introductory text in Computational Topology by Herbert
Edelsbrunner and John Harer [EH10]. In the subsequent chapter, we will look at grasping
the basics of Morse Theory, and to understand how Filtrations of Simplicial Complexes
form the soul of Persistent Homology. Contents of the same are again learnings from
[EH10]. In Chapter 4, we will provide the definition of Persistent Homology, its mathe-
matical basis (from the seminal work by Gunnar Carlsson and Afra Zomorodian [GC09]),
and look at some examples where we compute the same. In the next chapter, we get famil-
iar with the future possibilities of Persistent Homology, of how one could possibly scale
and improve existing techniques of computing Persistent Homology. We will address this
through the spirit of simplicial collapses, through the work [Sid20]. In the penultimate
chapter, we provide evidence of some of the computational experiments we’ve done of try-
ing to algorithmically reduce bifiltration data in order to speed up computation of Persistent
Homology. The last chapter will comment on the span of the learnings, and a mention of
future work and further improvements.

2

Chapter 2

Homology Theory

This chapter is an introduction to Homology Theory, specifically Simplicial Homology, and
will build the pre-requisites required for understanding Persistent Homology. The chapter
will start by defining what a simplicial complex is and will build upto algorithmically com-
puting the rank of the nth-homology group.

2.1 Simplicial Homology

Definition 1 (Affine Combination of Points). Let u0,u1, ...,uk be a collection of points in
Rn. x = Sk

i=0liui,li 2 R is an affine combination of uis if Sk=1
i=0 li = 1.

Definition 2 (Affine Hull). The affine hull is the set of affine combinations. The affine hull
is a k-plane if the taken k+ 1 points are affinely independent, implying that for x = Sliui

and y = Sµiui, x = y iff. li = µi.

Definition 3 (Convex Combination). An affine combination is said to be a convex combi-
nation if lis are non-negative. The convex hull is the set of convex combinations.

Definition 4 (Convex Hull). The convex hull is the set of convex combinations.

Definition 5 (Simplex). A k-simplex is a convex hull of k+1 affinely independent points,
expressed as s = conv{u0, ...,uk}. We can also define |s |= k+1.

Definition 6 (Face of a Simplex). A face of a simplex s is the convex hull of a non-empty
subset of uis, and it is said to be proper if the subset is not the entire set. For a face t of s ,
if it’s proper, we denote it as t < s , else as t  s .

3

Definition 7 (Simplicial Complex). A simplicial complex K is a finite collection of sim-
plices such that s 2 K and t  s implies t 2 K, and for s 0 2 K, s \s 0 = f or is a face of
both s and s 0.

Definition 8 (Underlying Space). The underlying space of K, denoted as |K|, is defined as
the union of all the simplices of K with the underlying topology inherited from the ambient
Euclidean space the simplices live in.

Definition 9 (Simplicial Chain). A simplicial p-chain in K is a sum of p-simplices in K.
For example, c = Saisi, where the ais are coefficients in Z, Q, etc.

Proposition 2.1.1. All the p-chains form an Abelian group denoted by (Cp,+).

Proof. The proof is through verification of all properties of an Abelian group -

• The 0 p-chain is the identity element.

• For any two p-chains c1 and c2, c1 + c2 2 Cp, as Cp contains all combinations of
p-chains.

• The inverse element of a p-chain c is simply �c.

• Addition of p-chains is associative in nature, i.e. for c1,c2,c3 2Cp, c1 +(c2 + c3) =

(c1 + c2)+ c3.

• The group is Abelian as addition of p-chains is commutative in nature.

Definition 10 (Boundary of a Simplex). For s 2Cp, the boundary of s , represented as ∂p

is calculated as ∂ps = Âp
i=0[u0, ..., ûi, ...,up]. In the sum, ûi is the removed vertex.

Proposition 2.1.2. ∂p �∂p+1s = 0 where s is a (p+1)-chain.

Proof. Let ti(s) = s \{ui}. The boundary operator can be redefined as ∂ps = Âp
i=0(�1)iti.

Hence -

∂p+1 =
p+1

Â
i=0

(�1)iti

4

∂p �∂p+1 =
p

Â
j=0

(�1) jt j(
p+1

Â
i=0

(�1)iti)

= Â
j<i

(�1) j(�1)it jti +Â
j>i

(�1) j�1(�1)it jti

The terms from the first summation will cancel out the terms from the second summation,
thereby completing the proof.

Definition 11 (Chain Complex). A chain complex is a cascading sequence of simplicial
complexes connected by the boundary map -

...
∂p+2��!Cp+1

∂p+1��!Cp
∂p�!Cp�1

∂p�1��! ...

Definition 12 (Group of p-cycles). Having defined the boundary map, we define the group
of p-cycles, represented as Zp as the kernel of ∂p, or Zp = ker∂p.

Definition 13 (Group of p-boundaries). Similarly, we define the group of p-boundaries,
represented as Bp as the image of ∂p+1, or Bp = im∂p+1.

Definition 14 (Homology Group). The p-th homology group, represented as Hp is the
group of p-cycles quotiented out with the group of p-boundaries, or Hp = Zp/Bp.

Definition 15 (Betti Number). The p-th Betti number is defined as bp = rankHp. Or by the
definition of Hp, bp = rankZp� rankBp.

Definition 16 (Simplicial Map). Given two simplicial complexes K and L, a simplicial map
f is a function f : K! L which always maps a simplex in K to a simplex in L. Simplicial
maps are induced by vertex-to-vertex maps.

We can redefine the above as follows -

For two simplicial complexes K and L, let c be a p-chain in K, defined as c = Âaisi. We
obtain f#(c) =Âaiti where ti = f (si) if f (si) has dimension p, else ti = 0 if the dimension
of f (s) is less than p.

By representing the boundary maps in K and L as ∂K and ∂L respectively, we can come to
this observation -

5

Proposition 2.1.3. f# �∂K = ∂L � f#

Proof. The above is a natural observation, and can be noted in a straightforward manner.
When f (si) has dimension p, all the (p� 1)-faces of si will map to the (p� 1)-faces of
ti. When f (si) has dimension less than p, we can observe that (p� 1)-faces of si will
map to simplices of dimension lower than p� 1. It is possible that they also map to two
(p�1)-faces whose images coincide and cancel out each other. The idea here is to observe
for a dimesion lower than p, both operations f#(∂Ksi) and ∂L f#(s) will be 0.

Continuing on with the above observation, we can also observe that the induced map f#

takes cycles to cycles, or f#(Zp(K)) ✓ f#(Zp(L)). And it also takes boundaries to bound-
aries, or f#(Bp(K))✓ f#(Bp(L)).

Aimed with the above observations, given a simplicial map f : K ! L, we can define the
induced map on homology, represented as f⇤ : Hp(K)! Hp(L). [EH10] also notes that
the rank of the image is bounded from above by the Betti numbers bp(K) and bp(L), viz.
rank f⇤(Hp(K))min{bp(K),bp(L)}.

Definition 17 (Euler characteristic). The Euler characteristic of a simplicial complex is
equal to the alternating sum of the number of simplices in each dimension. Let zp = rankZp

and bp = rankBp. Therefore, the number of p-simplices in K is simply np = rankCp =

zp + bp. The Euler characteristic is represented as c , and from our definition, we can see
that -

c = Â
p�0

(�1)p(zp +bp�1)

The above expression can be obtained by observing that np is the sum of the ranks of ker∂p

and im∂p�1 respectively.

The expression can be rewritten as -

c = Â
p�0

(�1)p(zp�bp)

But zp�bp is the Betti number, thus -

c = Â
p�0

(�1)pbp

6

This result is popularly known as the Euler-Poincaré theorem.

Another important observation one can make is that isomorphic simplicial complexes will
have the same Euler characteristic. This stems from the fact that isomorphic simplicial
complexes will have the same simplicial homology, and thereby the same Betti numbers as
well.

2.2 Computing Homology of a Simplicial Complex

We will look at a classical algorithm to compute homology of a simplicial collapse in this
section, given in [EH10].

The p-boundary map can be expressed as a matrix, viz. ∂p = [a j
i]. Hence, for any given

p-chain c = Âi aisi, ∂pc can be computed by the matrix multiplication -

2

664

a1
1 a2

1 · · · anp
1

...
...

a1
np�1

a2
np�1

· · · anp
np�1

3

775

2

664

a1
...

anp

3

775

The matrix can be interpreted as the rows of ∂p forming a basis of the Cp�1, and the columns
forming the basis of Cp. The idea is to reduce the p-th boundary matrix to it’s Smith-Normal
form, and subsequently compute bp.

The Smith-Normal form of a matrix looks of the form -

2

66666666664

a11 0 0 . . . 0
0 a22 0 . . . 0
...

... 0
0 0 0 . . . 0
...

...
...

0 0 0 . . . 0

3

77777777775

In our context, the matrix will look something like the one shown below.

For reducing ∂p, we can use Gaussian elimination. Essentially, we would like to perform
two exchange operations wherein we are able to obtain a 1 in the upper left corner, and
simply proceed to obtain 0s in the rest of the first row and first column.

7

Figure 2.1: Boundary matrix after performing row and column operations [EH10]

The algorithm of Gaussian elimination performs over np�1 row and np column opera-
tions per recursive call, and thereby performing (np�1 + np)min{np�1,np} operations in
total. Taking into consideration their lengths, we obtain a running time of a constant times
2np�1npmin{np�1,np}. The memory utilized will simply be the memory required to store
the matrices, which would be (np�1 +np)2.

We will look at an example where we use the above algorithm for reduction, and subse-
quently compute the Betti numbers of a tetrahedron.

Example 1. Computing the homology of a tetrahedron For the tetrahedron, we will be
dealing with two matrices, viz. -

M1 =

0

BBBB@

ab ac ad bc bd cd

a 1 1 1 0 0 0
b 1 0 0 1 1 0
c 0 1 0 1 0 1
d 0 0 1 0 1 1

1

CCCCA

M2 =

0

BBBBBBBBBB@

abc abd acd bcd

ab 1 1 0 0
ac 1 0 1 0
ad 0 1 1 0
bc 1 0 0 1
bd 0 1 0 1
cd 0 0 1 1

1

CCCCCCCCCCA

On reduction, we obtain the following matrices -

8

M1 (reduced) =

0

BBBB@

ab ab+ac ac+ad ab+ac+bc ab+ad+bd ac+ad+cd

a+b 1 0 0 0 0 0
b+c 0 1 0 0 1 0
c+d 0 0 1 0 0 0

d 0 0 0 0 0 0

1

CCCCA

M2 (reduced) =

0

BBBBBBBBBB@

abc abc+abd abc+abd+acd abc+abd+acd+bcd

ab+ac+bc 1 0 0 0
ac+ad+bc+cd 0 1 0 0

bc+bd+cd 0 0 1 0
ad 0 0 0 0
bd 0 0 0 0
cd 0 0 0 0

1

CCCCCCCCCCA

Post-reduction, we observe the following results -

rankB0 = 3, rankZ0 = 4,b0 = 4�3 = 1

rankB1 = 3, rankZ1 = 3,b1 = 3�3 = 0

rankB2 = 0, rankZ2 = 1,b2 = 1�0 = 1

These observations coincide with those obtained when we compute the kernel and the image
of the boundary map for the simplicial complex in question by hand.

9

Chapter 3

An Introduction to Morse Theory and

Filtrations

We’ve had a look at simplicial homology, and are familiar with computing homology of
a simplicial complex algorithmically. The idea of this chapter is to introduce the reader
to Morse theory, which will be contextual when we deal with filtrations, and subsequently
progress to build up enough theory so as to be able to comprehend and compute Persistent
Homology.

3.1 Morse Theory

Figure 3.1: Representation of the height function applied on an upright torus with critical
points u,v,w,z [EH10]

10

We begin with a rather lucid example from [EH10], an upright torus, say M, and the vertical
height function f : M!R, wherein each real value of the height, say h 2R has a preimage
f�1(h), which is called as a level set. This level set consists of all points x 2M at height h.

Definition 18 (Sublevel Set). A sublevel set is a set of all points in M uptil a certain height
value. We can define it mathematically as -

Mh = f�1(�•,a] = {x 2M | f (x) h}

The idea is to track the evolution of the sublevel set. This can be done by increasing
the value of h. Points of interest are u,v,w,z, which are precisely the critical points. For
h < f (a), Mh = f . For f (u)< h < f (v), Mh ⇠= D2 (a disk). For f (v)< h < f (w), Mh will
be a cylinder, and Mh ⇠= S1 (a circle). For f (w)< h < f (z), Mh will correspond to a capped
torus. And for f (z)< h, we obtain the entire torus M as the sublevel set Mh.

Figure 3.2: Evolution of the sublevel set [EH10]

We will move on to rigorously define a smooth function. For a d-manifold M, M is endowed
with an atlas of coordinate charts diffeomorphic to an open ball in Rd . Smooth here implies
that the maps of the atlas are infinitely differentiable.

For a point x 2M, the tangent space at x is represented as TMx, and is the d-dimensional
vector space of all the tangent vectors of M at x. For a smooth map f : M! N, from one
smooth manifold to another, f induces a linear map on the level of their respective tangent
spaces, viz. the derivative - D fx : TMx! TN f (x).

Definition 19 (Regular Point). Given a point x 2 M, x is a regular point of f if D fx is
surjective.

Definition 20 (Critical Point). Given a point x 2M, x is a critical point of f if D fx is the
zero map.

11

Considering we are working with a local coordinate system represented as (x1,x2, ...,xd),
we can explicitly define x to be a critical point when -

∂ f
∂x1

(x) =
∂ f
∂x2

(x) = ...=
∂ f
∂xd

(x) = 0

Definition 21 (Critical Value). The image of a critical point x 2 M, f (x), is called the
critical value of f .

Definition 22 (Regular Value). The image of a regular point x 2 M, f (x), is called the
regular value of f . All values which are not critical values are regular values of f .

Definition 23 (Hessian Matrix). The Hessian of f at a point x 2M, is defined as -

H(x) =

2

666664

∂ 2 f
∂x1∂x1

(x) ∂ 2 f
∂x1∂x2

(x) · · · ∂ 2 f
∂x1∂xd

(x)
∂ 2 f

∂x2∂x1
(x) ∂ 2 f

∂x2∂x2
(x) · · · ∂ 2 f

∂x2∂xd
(x)

...
...

∂ 2 f
∂xd∂x1

(x) ∂ 2 f
∂xd∂x2

(x) · · · ∂ 2 f
∂xd∂xd

(x)

3

777775

Definition 24 (Non-degeneracy). A critical point x 2M is said to be non-degenerate if the
Hessian H(x) is non-singular, or detH(x) 6= 0.

Lemma 3.1.1 (Morse Lemma). For a non-degenerate critical point c 2M of f : M! R,

there are local coordinates c = (0,0, ...,0) such that f (x) = f (c)� x2
1� ...� x2

k + x2
k+1 +

...+ x2
d, for all x = (x1, ...,xd) in a small neighborhood of c.

Definition 25 (Index). The index of a critical point x 2M is the number of minus signs
we obtain from the Morse lemma. In the above case index(x) = k. For a d-dimensional
manifold, we can observe d + 1 types of non-degenerate critical points. For example, a
2-manifold will have three types of non-degenerate critical points: minimas with index 0,
saddle points with index 1, and maximas with index 2.

Aimed with the above definitions, we are ready to define a Morse function.

Definition 26 (Morse Function). A Morse function is a smooth function defined on a man-
ifold, f : M! R, such that it satisfies the following conditions

12

1. Critical points are non-degenerate

2. No two critical points have the same critical value, i.e. they have distinct function
values

A brief digression with an introduction to Morse theory provides us perspective on how one
can obtain relevant features by traversing a smooth topological space. We will try to look
at simplicial complexes with the same lens, viz. traversing a simplicial complex so as to
obtain important topological features of it by “traversing” it.

3.2 Filtrations

Definition 27 (Subdivision). Given a simplicial complex K, a simplicial complex L, is
called a subdivision of K if |L|= |K|. Every simplex in L will be contained in some simplex
in K.

Definition 28 (Barycentric Subdivision). Given a simplex s 2K, the barycenter of s would
be the average of its vertices. A barycentric subdivision would mean that we obtain all the
barycenters of all such simplices in K. Here’s a nice depiction of the same from [EH10].

Figure 3.3: The first two barycentric subdivisions of the given simpliicial complex [EH10]

Given a simplicial complex K, we can define a piecewise linear function as f : |K| !
R, f (x) = Âi bi(x) f (vi), where vis are the vertices of K, and bi(x)s are the barycentric
coordinates of x.

13

The idea is to approximate smooth functions using piecewise linear functions. We assume
that these piecewise linear functions have distinct function values at the vertices of the
simplicial complex. This would allow us to order vertices by increasing function values in
the manner: f (v1) < f (v2) < ... < f (vn). Doing this allows us to define a subcomplex Ki

defined by the first i vertices. This would mean that for s 2 K belongs to the subcomplex
Ki if and only if every vertex v j of s satisfies j  i.

Definition 29 (Lower Star). The lower star Stvi is defined as the set of all simplices such
that vi is the vertex of each of those simplices having maximum value. It can be formally
defined as: Stvi = {s 2 Stvi|x 2 s) f (x) f (vi)}.

Definition 30 (Lower Star Filtration). From the above definition, we can see that the su-
perset of lower stars will make up the entire simplicial complex. From this, we can also
observe that Ki is the union of the first i lower stars. The lower star filtration is defined as
the nested sequence of subcomplexes f = K0✓K1✓ ...✓Kn = K. A visual example, given
a real value a, and of the form f (vi)< a < f (vi+1) from [EH10] is given below -

Definition 31 (Lower Link). The lower link Lkvi is defined as the set of all simplices such
that all the vertices have a smaller functional value than vi. It can be formally defined as:
Lkvi = {s 2 Lkvi|x 2 s) f (x)< f (vi)}.

Definition 32 (Monotonicity). A function f : K ! R is said to be monotonic if it is non-
decreasing along increasing chains of faces, i.e. f (s)  f (t), where s ,t 2 K, and s is a
face of t .

14

Similar to how we obtained the subcomplexes from piecewise linear functions, we can
obtain a sublevel set from a monotonic function, wherein the sublevel set K(c), for a real
valued c, is defined as K(c) = f�1(�•,c]. And thus, we obtain a nested sequence of
subcomplexes f = K0 ✓ K1 ✓ ...✓ Kn = K. Given an ordered set of real functional values
c1 < c2 < ... < cn, Ki = K(ci) 8 i, and also c0 = �•. The obtained nested sequence is a
filtration.

Building the above definitions provides us intuition of how one can go about partitioning
a simplicial complex by constructing a filtration. This intuition is very important while
defining and understanding persistent homology.

Definition 33 (C̆ech Complex). Given a set of points, say X in a metric space, and a real
value e > 0, the C̆ech complex, denoted as Ce is a simplicial complex constructed in the
following manner - For every subset S ⇢ X , form a (e/2)-ball around every element of S,
and include S as a simplex with dimension |S| if there exists a common point contained if
each of the constructed balls.

Definition 34 (Vietoris-Rips Complex). The definition of the Vietoris-Rips complex builds
on the C̆ech complex, wherein the Vietoris-Rips complex is a C̆ech complex, however
instead of adding a simplex of dimension |S| when there is a common point of intersection
of all the (e/2)-balls, we add the simplex when all the balls have a pairwise intersection.

Figure 3.4: Example of a Vietoris-Rips complex [CdSEG07]

We will be working with the Vietoris-Rips complex for implementation purposes.

15

Chapter 4

Persistent Homology

We have seen how insightful obtaining topological characteristics of data (in our case sim-
plicial complexes) can be while trying to study the “shape” of our dataset. Scaling and
formalizing this process so as to obtain topological “hotspots” of our data is a fruitful exer-
cise. One such method which has revolutionized this process is Persistent Homology.

4.1 Computing Persistence

For a monotonic function f : K ! R, we obtain a filtration like shown in the previous
chapter of the form f = K0 ✓ K1 ✓ ... ✓ Kn = K. For any two i  n, j  n, and i  j,
there is an inclusion map Ki ,! Kj, and thereby an induced homomorphism on the level of
homology groups f i, j

p : Hp(Ki)! Hp(Kj).

We obtain an associated sequence of homology groups from the above filtration -

0 = Hp(K0)! Hp(K1)! ...! Hp(Kn) = Hp(K)

Definition 35 (Persistent Homology Group). The p-th persistent homology group is repre-
sented as Hi, j

p , defined for 0 i j  n, and defined as Hi, j
p = im f i, j

p .

Definition 36 (Persistent Betti Number). Like we defined Betti numbers for associated
homology groups, we can define the p-th persistent Betti number, represented as b i, j

p as the
rank of the p-th persistent homology group, or b i, j

p = rankHi, j
p .

The persistent homology groups can be interpreted as being made up of the homology
classes of Ki which are still alive or ”persist” at Kj. Formally, we can the p-th persistent

16

homology group as Hi, j
p = Zp(Ki)/(Bp(Kj)\Zp(Ki)).

Definition 37 (Persistence). g 2 Hp(Ki) is said to be born in Ki if g /2 Hi�1,i
p . If g is born at

Ki and dies at Kj, the persistence, pers(g), is defined as pers(g) = a j�ai.

Definition 38 (Persistence Module). We obtain P(T) : {Hp(K1)
f ⇤1�! Hp(K2)

f ⇤2�! ...
f ⇤m�1���!

Hp(Km)}, which is a sequence of vector spaces connected through induced homomorphisms
f ⇤i s, known as the persistence module. The persistence module captures the evolution of
the topology of the filtration.

Theorem 4.1.1 (Decomposition of Persistence Module, G. Carlsson & V. de Silva, 2009).
Any persistence module can be decomposed into a collection of intervals of the form [i, j).

And the multiset of all the intervals in this decomposition is called the persistence diagram.

An interval of the form [i, j) in the persistence diagram corresponds to a homological fea-

ture which appeared at i and disappeared at j.

Figure 4.1: Barcode and persistence diagram representations of the persistence elements
[1, 2], [1, 3], [3, 3], [3, 4], and [3, 4] [GC09]

This important result from [GC09] gives us a very practical tool to track persistence, and
is called a barcode, as depicted below. The barcode is precisely the multiset of intervals as
mentioned in the above result.

There are multiple softwares which one can use to compute persistence: Giotto-tda (L2F,
Switzerland) [TLT+20], Gudhi (Inria, France) [The21], PHAT (IST, Austria) [BKRW17],
Ripser [Bau21], and Dionysus [Mor17] among others.

Below are some examples of computing the persistence of three objects: a circle, a sphere,
and a torus.

17

The examples were implemented using the Giotto-tda package [TLT+20] on a Jupyter note-
book. The package is an end-to-end tool for computing the persistence diagram, from the
sampling of points to applying a filter function and so on. The idea behind this experi-
mentation is to see if we can sample points for the required object, obtain the Vietoris-Rips
complex, compute the persistence diagram, and observe the homological features, and ver-
ify if they are the same if we would compute them by hand.

18

4.1.1 Circle

Figure 4.2: Point cloud approximation of a circle

Figure 4.3: One persistent generator for H1 corresponding to a loop

It is an easy yet important observation to make that the points lying on the dotted line of the
persistence diagram are elements of the persistent homology group which are born at one
instance and die at the same instance. These points need to be ignored while taking note of
the homological features. Also, most points hovering above the dotted line are noise, and
can also be ignored.

Taking into consideration the couple of points mentioned above, we can see that we have
only one non-trivial or unignorable point, which is the one marked in green, belonging to
H1. This is a persistent generator which corresponds to the loop of the circle.

19

4.1.2 Sphere

Figure 4.4: Point cloud approximation of a sphere

Figure 4.5: One persistent generator for H2 corresponding to a void

In this example as well, we obtain one non-trivial or unignorable point, which is the one
marked in purple, belonging to H2. This is a persistent generator which corresponds to the
void in the sphere.

4.1.3 Torus

In this example, we obtain three non-trivial or unignorable points, two of which are marked
in green, belonging to H1, and one in purple, belonging to H2. There are three persistent
generators, two for H1 and one for H2, as one would expect.

20

Figure 4.6: Point cloud approximation of a torus

Figure 4.7: Three persistent generators, two for H1 and one for H2.

4.2 Multi-dimensional Persistence

We have come across one-dimensional persistence, namely when we have a monotonic
function f : K ! R. The logical next step would be try and generalize this to multiple
dimensions. However, this isn’t simple at all, and multiple groups are working on laying
the theoretical foundations for this generalization.

As part of this thesis, we will explore the basics of multi-dimensional persistence, and see
what it really means to go from single to “multi”. For the same, let us consider a monotonic
function f : K ! R2. Take two points m = (mx,my),n = (nx,ny) 2 R2. We can come up
with a partial order m n iff. mx  nx and my  ny.

21

Definition 39 (Join). For two points m,n 2 R2, the join, represented as m_n, is defined as
m_n = (max{mx,nx},max{my,ny}).

Definition 40 (Critical Values of a Bifiltration). As we are working in the realm of finite
simplicial complexes, the bifiltration f changes its value at finitely many points, and these
values, represented as Q = {qi 2 R2}, are called the critical values of the bifiltration.

For a chain complex C⇤= (Cp,∂p). Given a partial order m n, the inclusion map C⇤m ,�!C⇤n
induces a linear map between the corresponding homology spaces Hp(C⇤m) and Hp(C⇤n).

The multi-parameter persistence p-th module Hp(C) of a bifiltered chain complex C is made
up of all the homology spaces Hp(C⇤m), where m 2 R2.

Analogous to a filtration in the case of one-dimensional persistence, for two-dimensional
persistence, we deal with bifiltrations. Below is an example of a bifiltration given in
[GC09].

Figure 4.8: Bifiltration of a triangle [GC09]

In the next chapter, we will look at methods to speed up the computation of Persistent
Homology, and also look at an ongoing work of doing the same in the case of Multi-
dimensional Persistence.

22

Chapter 5

Collapses

As seen in the previous chapter, Persistent Homology is an important tool to analyze the
shape of data, specifically while working with simplicial complexes. It is important to real-
ize with the explosion of data, faster methods to analyze these datasets will be required. As
a consequence, vital techniques like Persistent Homology will and have seen improvements
in their implementation efficacy. In this chapter, we will look at two such cutting-edge
methods.

There are two schools of thoughts when it comes to improving and speeding up computation
of persistence, one is writing efficient software, some examples of which were provided in
the previous chapter, and the other is to take an apriori approach to persistence, i.e. look at
methods to simplify your dataset (simplicial complex), as a smaller or a reduced dataset will
immediately imply lesser computation to be performed in comparison with the non-reduced
case.

This part of the thesis will focus on the latter, the apriori approach, wherein we try to op-
timize persistent homology calculation by simplying our simplicial complex. This chapter
will focus on some of the novel ideas documented by Siddharth Pritam as part of his re-
search and PhD study. His PhD focused on collapses in context with persistence theory,
and algorithms which collapse various simplicial complexes efficiently enough so as to
substantially speedup the computation of Persistent Homology.

The chapter will also build theory so as to give the reader a fair understanding of the work
currently being done in the realm of Multi-dimensional Persistence, guided by Michael Ker-
ber and in collaboration with Siddharth Pritam [Pri21]. The progress includes prototyping
and implementation on minimalistic examples, some of the results of which are provided
in the following chapter.

23

5.1 Prerequisites

Definition 41 (Flag Complex). A complex K is a flag complex if, when a subset of its
vertices have pairwise edges between them they span a simplex. The 1-skeleton of K is
denoted as G.

Definition 42 (Neighborhood of a vertex in G). For a vertex v 2G, the open neighborhood
NG(v) is defined as NG(v) := {u 2 G|[uv] 2 E}. The closed neighborhood NG[v] is defined
as NG[v] := NG(v)[{v}.

We will be using the star and link of a simplex extensively, and hence will reiterate what
they stand for at this stage of the document again for the benefit of the reader -

Definition 43 (Closed Star of a Simplex). For a simplex s 2 K, the closed star of s ,
StK(s) := {t 2 K|t [s 2 K}.

Definition 44 (Link of a Simplex). For a simplex s 2 K, the link of s , LkK(s) := {t 2
stK(s)|t \s = f}.

Definition 45 (Free Simplex). A simplex s 2 K is called a free simplex if s has an unique
coface t 2 K.

Definition 46 (Free Pair). The pair {s ,t} obtained from the above definition of a free
simplex is a called a free pair.

Definition 47 (Elementary Simple Collapse). The removal of a free pair, i.e. K ! K \
{s ,t} is called as an elementary simple collapse.

Definition 48 (Simple Collapse). There is said to be a simple collapse from K to its sub-
complex L if there exists a series of elementary simple collapses from K to L. This is
denoted as K& L. The simple collapse preserves homotopy type of K, i.e. K ⇠ L.

Definition 49 (Simple-collapse Minimal). A complex K0 is called simple-collapse minimal
if there if no free pair {s ,t} in K0.

24

Definition 50 (Elementary Core). For a subcomplex Kec of K, Kec is called as an elemen-
tary core if K& Kec, and that Kec is simple-collapse minimal.

The paper by J.A. Barmak and E.G. Minian [JAB12], has proved seminal in Siddharth’s
work, and the following definitions are observations are from the same -

Definition 51 (Dominated Vertex). For a complex L and vertex a, the simplicial cone aL :=
{a,t|t 2 L or t =s[a,s 2 L}. A vertex v2K is said to be dominated if LkK(v)= v0L,v0 6=
v,L✓ K. In this case, v0 is dominating v, and v is dominated by v0.

Definition 52 (Dominated vertex, J.A. Barmak & E.G. Minian). A vertex v 2 K is domi-
nated by another vertex v0 2 K, if and only if all the maximal simplices of K that contain v

also contain v0. This is just a variation of the above definition, given in [JAB12]. However,
we will use the one above for our purpose.

Definition 53 (Dominated Simplex). A simplex s 2K is known to be a dominated simplex
if the link of the simplex, LkK(s) is a simplicial cone. This means that there exists a vertex
v0 /2 s , and a subcomplex L of K, such that LkK(s) = v0L. In this context, we claim that s
is dominated by v0, and that v0 is dominating s . This is denoted as s � v0.

Definition 54 (Elementary Strong Collapse). An elementary strong collapse is defined as
the deletion of a dominated vertex v 2 K, denoted as K&& K \ v.

Definition 55 (Strong Collapse). There is said to be a strong collapse from K to its subcom-
plex L if there exists a series of elementary strong collapses from K to L. This is denoted as
K&& L. If there is such a combination of strong collapses, K and L are said to have the
same strong homotopy type.

We can extend the nomenclature to an edge collapse, which is essentially a 1-collapse. And
similarly, a k-simplex collapse would be a k-collapse.

The below illustration of an elementary strong collapse is from [BP19].

Definition 56 (Core). The core Kc of K is a minimal subcomplex (a complex without any
dominated vertices), such that K&& Kc.

25

Figure 5.1: An elementary strong collapse. Here, v is dominated by v0. [BP19]

Definition 57 (Retraction Map). If v 2 K is dominated by v0 2 K, the vertex map r : K!
K \ v, r(w) = w,w 6= v and r(v) = v0, induces a simplicial map which is a retraction map.

Definition 58 (Contiguous Maps). Two simplicial maps f : K! L and y : K! L are said
to be contiguous if for all s 2 K,f(s)[y(s) 2 L.

Proposition 5.1.1 (J. A. Barmak & E. G. Minian, 2011). The homotopy between r and iK\v

over K \ v is a strong deformation retract. Furthermore, iK\v � r is contiguous to iK over K.

Definition 59 (Flag tower). A sequence of flag complexes T : {K1
f1�!K2

f2�! ...
fm�1���!Km},

connected through simplicial maps is called a flag tower. If all the simplicial maps are
inclusions, then the tower is called a flag filtration.

Definition 60 (Flag Filtration). If all the simplicial maps in the flag tower are inclusions,
then the tower is called a flag filtration.

From [JAB12], we note the following remark -

Remark 1. For two vertices in simplicial complex K, v,v0 2 K, v is dominated by v0 if and
only if all the maximal simplices of K that contain v also contain v0.

The subsequent two results are from [BP19] and [Pri21] respectively.

Lemma 5.1.2. For a simplex s and vertex v0 in simplicial complex K, s ,v0 2 K, s is

dominated by v0 if and only if all the maximal simplices of K that contain s also contain v0.

26

Proof. Let us assume s � v0. This means that LkK(s) = v0L, implying that for any maximal
simplex t 2 StK(s), v0 2 t .

Now, let us assume all the maximal simplices of K that contain s also contain v0. Now for
any maximal simplex t 2 StK(s), v0 2 t . But from v0 /2 s , v0 2 t \s , thereby giving us
LkK(s) = v0L, wherein L = (t \s)\ v0.

Lemma 5.1.3. For a simplex s 2 K, where K is a flag complex, s will be dominated by a

vertex v0 2 K if and only if NG[s]✓ NG[v0].

Proof. Let us assume that s � v0. From Lemma 5.1.2, we can straightaway come to the
fact that maximal simplices that contain s also contain v0, leading us to NG[s]✓ NG[v0].

Now, let us assume NG[s]✓ NG[v0], and assume t 2 K to be a maximal simplex containing
s . For two vertices, p 2 t and q 2 s respectively, edge [p,q] 2 t . And by extension of this,
we can observe that p2NG[s]✓NG[v0]. All vertices in t are linked to v0 by an edge, and as
K is a flag complex and t is maximal, v0 2 t . This would mean that all maximal simplices
containing s will also contain v0, giving us the fact that s � v0.

Remark 2. For a flag complex K and a subcomplex L of K obtained through an edge
collapse, L will also be a flag complex.

Given two persistence modules, we have a condition for them to be equivalent.

Definition 61 (Equivalence of persistence modules). Two persistence modules V : {V1!
...! Vm} and W : {W1! ...!Wm} connected through homomorphisms fi : Vi!Wi are
said to be equivalent if the fis are isomorphisms and the following diagram commutes -

V1 V2 · · · Vm

W1 W2 · · · Wm

f1 f2 fn

27

5.2 Computing Peristent Homology of Flag Complexes us-

ing Strong Collapses

We have looked at adequate machinery to be able to look at the algorithm in [BP19], which
aims at reducing the input simplicial complex, particularly a flag complex, thereby being
more efficient at computing persistent homology. However, this isn’t the only task to per-
form. An important part of the work is to verify that the persistence module of the reduced
complex is in fact equivalent to the persistence module of the original complex. We will
take this up after the discussion on the algorithm.

A point to note is that the algorithm deals only with vertices and edges, which is evident
from the check (if) condition in the algorithm. This means that for implementation pur-
poses, we can simply work with the 1-skeleton (G) of our flag complex K. The input G is
represented as an adjacency matrix M, which is a v⇥ v matrix (where v is the total number
of vertices) of 0s and 1s, encapsulating information about the edges of G. M can be for-
mally defined as Mi, j = 1 if (i, j) is an edge in G, and Mi, j = 0 if (i, j) is not an edge in
G.

Algorithm 1: Core graph algorithm [BP19]
input: the adjacency matrix M of G

output: Core graph of K

rowQueue push all rows of M (all vertices of K)
while rowQueue is not empty do

v pop(rowQueue)

NG[v] the non-zero columns of v

for w in NG[v] do

if NG[v]✓ NG[w] then

Remove from M the column and the row associated to v

push all the entries of NG[v] to rowQueue if not pushed before
break

end

end

end

The algorithm can be interpreted as being made up of two important operations -

• Operation 1: Checking for domination where each row is checked against at most k

other rows, where k is the maximal degree of any vertex. At most k2 times.

28

• Operation 2: While loop execution. At most v2 times, where v is the total number of
vertices of the complex K.

With both of these operations put together, we can evaluate the worst-case time complexity
as O(v2k2).

The idea of the algorithm is to simplify the simplicial complexes of the input sequence by
using strong collapses, and to compute the persistent homology of an induced sequence of
reduced simplicial complexes that has the same persistent homology as the initial one.

[BP19] comments how the idea of transforming a tower into an equivalent filtration can be
traced back to [DFW14], and futher refined in [KS17]. [BP19] notes that [KS17] provided
theoretical bounds on size and time to construct equivalent filtration. Wherein they proved
the size of the equivalent filtration is O(d ⇤n⇤ logn0), where d is the maximal dimension of
the complexes in the input tower, and n and n0 are the total number of elementary inclusions
and vertex inclusions respectively.

[BP19] builds on [DFW14] and [KS17], in the sense that they look at turning a flag tower
into a flag filtration with the same Persistent Homology, however by using strong expansion,
which is doing the exact opposite of a strong collapse. We will now move to the construction
bit.

Definition 62 (Active Vertex). For flag complex Ki and its 1-skeleton Gi, ki ✓ Ki, where
Ki is an augmented complex, with 1-skeleton Gi. v 2 Ki is active if it is not currently
dominated.

Definition 63. ActNGi [v] is the set of all active vertices in NGi [v].

Definition 64. ActNGi [v\u] is the set of active vertices in NGi [v] that are not in NGi [u].

Definition 65. {[u,NGi [v\u]]} is the set of edges between u and ActNGi [v\u].

The goal is to construct Gi, which is done in the following manner [BP19] -

1. Set G0 = f .

2. If Gi
[s��! Gi+1 is an elementary inclusion, then Gi+1 :=Gi[s .

29

3. If Gi
{u,v}7!u�����! Gi+1 is an elementary contraction, then -

(a) If |ActNGi [v\u]| |ActNGi [u\ v]|, then Gi+1 :=Gi[{[u,ActNGi [v\u]]}, and v

as contracted.

(b) Else Gi+1 :=Gi[{[v,ActNGi [u\ v]]}, and u as contracted.

Note: Gi ✓Gi+1 =) Ki ✓Ki+1

Below is a beautiful depiction of the construction from [BP19].

Figure 5.2: Constructing Gi+1 from Gi [BP19]

There is one more important step still left: verification. We need to verify our construction,
and that the Persistent Homology is the same.

Lemma 5.2.1 (J.-D. Boissonnat & S. Pritam, 2019). Let fi : Ki
{u,v}7!u�����! Ki+1 be the first

elementary contraction in the tower T : K0
f0�! ...

fm�1���! Km. Then the complex Ki+1 is a

subcomplex of Ki+1 and Ki+1&& Ki+1.

Lemma 5.2.2 (J.-D. Boissonnat & S. Pritam, 2019). Let fi : Ki
{u,v}7!u�����! Ki+1 be the first

elementary contraction in the tower T : K0
f0�! ...

fm�1���! Km. Then the following diagram

commutes -

Hp(Ki) Hp(Ki+1)

Hp(Ki+1)

f ⇤i

i⇤
(i0)⇤

where i0 : Ki+1 ,�!Ki+1 is the inclusion induced by the strong collapse, and i⇤ and (i0)⇤ are

homomorphisms induced by the inclusion maps.

30

The proofs to the above two lemmas can be looked at here - A.1. Both are from [BP19],
and the next two results are a consequence of the same.

Lemma 5.2.3 (J.-D. Boissonnat & S. Pritam, 2019). Given a tower T : K0
f0�! ...

fm�1���! Km,

for each 0 i m, Ki&& Ki.

Theorem 5.2.4 (J.-D. Boissonnat & S. Pritam, 2019). For the given tower T and con-

structed filtration F : K0 ,�! ... ,�! Km, the following diagram commutes, and the vertical

maps f⇤i s are isomorphisms. Hence, by the theorem provided by Carlsson & Zomorodian,

we can ascertain that both have the same persistence diagram.

Hp(K1) Hp(K2) · · · Hp(Km)

Hp(K1) Hp(K2) · · · Hp(Km)

⇤

f⇤1 f⇤2

⇤ ⇤

f⇤m
f ⇤1 f ⇤2 f ⇤m�1

where fi is a strong collapse, and i⇤ and ⇤ indicates the induced homomorphisms.

5.3 An Approach for Multi-dimensional Persistence

We will now look at an approach which will build on the foundations of [BP19] for the bi-
filtration case. We will proceed to state some definitions and make a couple of observations
before providing the algorithm.

By projecting the critical values of the bifiltration onto the x and y axes, and taking the
product of the projected critical values, one can obtain a grid in R2. The lines in this grid
are indexed with 0 < i  n, and 0 < j  m. Let E be the edge set of G, which is the 1-
skeleton of K. With this, we can assign a bi-index to each edge e 2 E. This is represented
as e(i, j), and tells us where the edge sits in the bifiltration. We can define the following
graph as a result of defining our bi-indices.

Definition 66. G(i, j) := {e(i0, j0) 2 E|i0  i, j0  j}

Both G(i, j) ,! G(i+1, j) and G(i, j) ,! G(i, j+1) are assumed to be an elementary inclusion of
a single edge, as per [Pri21].

The reduction step in the algorithm pertains to if an edge is removable or not. The edges
which are non-removable are stored and are given as output, and are called as critical edges,

31

represented by Ec. An edge is removable if it is dominated. An easy observation, but of
note is to realize that removability is a “status” of an edge, i.e. there is a chance that a
removable edge becomes non-removable on further traversal of the grid. This is why the
algorithm has a component which moves in the reverse bifiltration order.

Algorithm 2: Algorithm-R: Core flag bifiltration algorithm [Pri21]
input: set of edges E sorted by bi-filtration value
output: critical edges Ec

set Ec = f
set ci = 1,c j = 1
while ci  n,c j  m do

for i = ci, i n, i++ do

if e(ci, j) is non-dominated in G(i,c j) then

set-critical-recur((i,c j))
end

end

for j = c j, i m, j++ do

if e(i,c j) is non-dominated in G(ci, j) then

set-critical-recur((ci, j))
end

end

end

Algorithm 3: Set-critical-recur (Algorithm-R) [Pri21]
input: index (i, j)

set G = G(i, j)

Ec = Ec[e(i, j)
Enbd = ENG(e(i, j))

while ci  n,c j  m do

for (x,y) in Enbd
do

if e(x,y) /2 Ec and non-dominated in G then

set-critical-recur((x,y))
end

else if e(x,y) /2 Ec and dominated in G then

G = G\ e(x,y)
end

end

end

32

Chapter 6

Computational Experiments

This chapter will expand on the implementation aspect of the second approach explored in
the previous chapter, viz. the approach for Multi-dimensional Persistence. The algorithm
has been prototyped in Python, and tested on some examples. The flow of implementation
work and a brief about each component of the process will be explained subsequently.

Input bifiltration

Reduction using algorithm-R

Computing minimal presentation of reduced complex

Verification

33

6.1 Input Bifiltration

We took three approaches to come up with test examples -

1. Examples by hand: This was the most minimalistic input dataset wherein we de-
signed flag complexes with anywhere from 4 to 15 vertices by hand, and came up
with appropriate bifiltrations.

2. Adding edges randomly: More vertices and edges were incorporated by writing a
Python script which would give us a bifiltration on inputting the required number of
vertices, number of edges, and the bi-indices. The script would proceed to add the
required number of edges in a random manner with a pre-set probability. This was
not the ideal condition as diversity couldn’t be incorporated unless a more rigorous
probabilistic sampling of edges was done.

3. function-Rips: This was the most realistic example, generated from a Python script
written by Alexander Rolle [Rol20a].

6.1.1 Examples by Hand

Visual representations of some of the smaller examples are shown below -

Note: The bi-indices in the below example are (0,0) (bottom left), (0,1) (top left), (1,0)
(bottom right), and (1,1) (top right).

For implementation purposes, we represent elements of the bifiltration as edge ; bi-index.
For example, 1 2 ; 0 1. The interpretation of which is that the edge (1,2) comes in at the
bi-index (0,1).

34

Figure 6.1: Example 1

Example 1 before reduction

Edge Bi-index

0 1 0 0
1 2 0 0
0 2 0 1
0 3 1 1
2 3 1 1

Example 1 after reduction

Edge Bi-index

0 1 0 0
1 2 0 0

35

Figure 6.2: Example 2

Example 2 before reduction

Edge Bi-index

0 1 0 0
2 3 0 1
1 2 1 0
0 2 1 1

Example 2 after reduction

Edge Bi-index

0 1 0 0
2 3 0 1
1 2 1 0

36

6.1.2 Adding Edges Randomly

The program takes as input the number of vertices, number of edges, and (m,n) (to generate
grid of bi-indices). We start with the first vertex, and keep adding edges randomly (with a
pre-set probability) at random bi-indices until we get the required number of edges. This
however, isn’t realistic enough as it relies heavily on the probabilistic sampling.

6.1.3 function-Rips

function-Rips is a program [Rol20a] which generates a Vietoris-Rips complex with the
required number of vertices (taken as input). Other parameters which can be tweaked in the
program are the ambient dimension of the generated point cloud, the homology dimension,
and bandwidth for kernel density estimate. Data generated from this program is definitely
the closest to that of any real-world example, and was used in most of the testing runs.

6.2 Reduction using Algorithm-R

Data generated using methods from the previous section were used as input for testing the
prototype (of algorithm-R). The implementation (code) can be observed here - B.

6.3 Computing Minimal Presentation of Reduced Com-

plex

An important component of the process is the verification task. Once we have reduced our
input complex, how do we know that the Persistent Homology of the input complex is the
same as that of the one obtained post-reduction?

For this reason, we used the mpfree (Minimal presentation of a free implicit representation)
software [Rol20b], which is based on the paper by Michael Kerber and Alexander Rolle
[KR20].

There is one additional step which needs to be followed before calling the mpfree program.
The input format for the mpfree program is the .firep format, which was instituted to work
with the RIVET software [The20]. This input format requires the user to list all the vertices,
the edges, and triangles. As a result, a Python script was written to convert our complex to
the required format.

37

Figure 6.3: FIRep file format

On calling the mpfree program with the input, we obtain an output which provides the re-
quired homological information. This information can be assessed row by row, or simply
noting the row and the column values will provide us a quantitative idea about the homol-
ogy.

6.4 Verification

We continue immediately from where we left off in the previous subsection, namely when
we obtain the row and column information of the minimal presentation. The idea here is to
compare the minimal presentation of the input complex with respect to that of the reduced
complex. A sanity check would be to first compare the number of rows and number of
columns in the two minimal presentations. If they are not equal, they do not match. And
if they do, one should ideally check for the homological components in each file. If they
come from the same edge/triangle in both the cases, then the reduction is a valid one.

38

Figure 6.4: Computing the minimal presentation of a test case

6.5 Results

All the test cases generated from the three methods were reduced using the prototype, and
minimal presentation for each was checked, and they were subsequently verified. We noted
stability of the implementation up until the ballpark of 80 vertices. Below are some of the
results obtained -

The above results have been verified using the mpfree software. As we can observe, there
is a sizeable reduction in most cases, with a substantial reduction in the data required to be
computed to process Persistent Homology. Here lies the effectiveness of Algorithm-R, and
it’s universality in the approach, which works well with in a diverse set of situations.

39

Chapter 7

Concluding Remarks

We started with the basics of Homology Theory, and built our way to understanding and
computing Persistent Homology. The examples showed us the highly intuitive aspect of
Persistent Homology, which has to do with how the method is efficient at coming up with
shape (homological) descriptions. We subsequently looked at methods inspired by col-
lapses to better the computational performance of Persistent Homology.

There is quite a bit of work still required to be done to foolproof the approach to multi-
dimensional persistence (Algorithm-R). Firstly, the prototype needs to be more stable, im-
plying that it should be able to work with more extensive datasets. Secondly, the correctness
of the reduction needs to be proved like in the one-dimensional case. This would require the
exploration of more mathematical techniques, especially at the end of proving the result.

Through all of this, one can learn to appreciate the intertwined-ness of mathematics and
computation. Persistent Homology is the perfect example of how rigorous mathematics
aided with effective computational techniques can accentuate progress and give rise to
newer realms of performance and insight. It is exactly this interdisciplinary symbiosis
which makes us strive to connect the dots and contribute to a rich academic ecosystem.

40

Appendix A

Collapses

A.1 Computing Persistent Homology of Flag Complexes

using Strong Collapses

The following proofs are from [BP19].

Lemma A.1.1 (J.-D. Boissonnat & S. Pritam, 2019). Let fi : Ki
{u,v}7!u�����! Ki+1 be the first

elementary contraction in the tower T : K0
f0�! ...

fm�1���! Km. Then the complex Ki+1 is a

subcomplex of Ki+1 and Ki+1&& Ki+1.

Proof. Proving Ki+1&& Ki+1 would imply that Ki+1 ✓ Ki+11. Since fi is the first con-
traction, Ki = Ki and Gi = Gi .

Let Gi+1 := Gi[{[u,ActNGi [v\u]} be the graph defined in the construction. By construc-
tion, contracting v to u in both graphs yields the same graph Gi+1.

Let x0 2 ActNGi [v \ u]. Adding the edge [ux0] to Gi does not change the fact that all x 2
{NGi [v\u]\ActNGi [v\u]} are dominated since the addition of [ux0] only adds neighbors to
NGi [x

0] and NGi [u].

Removing all the dominated vertices in NGi [v \ u] will give us a sequence of elementary
strong collapses. This will add edges between u and the non-dominated vertices that are
in NGi [v \ u], implying that v is dominated by u in K0

i+1. This implies K0
i+1&& Ki+1, and

therefore Ki+1&& Ki+1.

41

Lemma A.1.2 (J.-D. Boissonnat & S. Pritam, 2019). Let fi : Ki
{u,v}7!u�����! Ki+1 be the first

elementary contraction in the tower T : K0
f0�! ...

fm�1���! Km. Then the following diagram

commutes -

Hp(Ki) Hp(Ki+1)

Hp(Ki+1)

f ⇤i

i⇤
(i0)⇤

where i0 : Ki+1 ,�!Ki+1 is the inclusion induced by the strong collapse, and i⇤ and (i0)⇤ are

homomorphisms induced by the inclusion maps.

Proof. We can rightaway observe the inclusion Ki = Ki ✓ Ki+1 from fi being the first
contraction.

The authors provide the following diagram, with i0 = i1 � i0, where i0 and i1 are inclusions
induced by the respective strong collapses shown in the diagram -

Ki Ki+1

Ki+1 K0
i+1

fi

i i0

i1

Now the claim made from the above is that i0 � fi and i are contiguous. This is looked using
two cases. Given s 2 Ki, i(s) = s by definition. Hence -

Case 1: If v /2 s , then i0 � fi(s) = s = i(s). Hence, i0 � fi and i are contiguous.

Case 2: If v2s , fi(s) is some simplex, say g 2Ki+1 containing u. Therefore, i0� fi(s)= g .
When looking at the retraction Ki+1 && K0

i+1, v isn’t contracted, and hence r1 � i(s) is
some simplex, say g 0 2 K0

i+1 containing v.

From the previous Lemma, we realize that u dominates v in K0
i+1. This means that all max-

imal simplices in K0
i+1 which contain v will also contain u. And thereby g 0 is a face of some

maximal simplex t 2 K0
i+1 which contains u.

But we’ve obtained g from contracting v to u, and thus g should be a face of t containing u

and v. Therefore, g 0 [g ✓ t , and thus we can see that r1 � i(s) and i0 � fi(s) are contiguous.
As i1 is an inclusion, i1 � r1 � i(s) and i1 � i0 � fi(s) are also contiguous. And now that
Ki+1&& K0

i+1, we can see that i1 � r1 and 1Ki+1 (identity map) are contiguous. And from

42

the diagram, i1 � i0 = i0, and thereby, we can say that i0 � fi(s) and i(s) are contiguous. And
because we can observe this for any simplex s 2 Ki, we can say that i0 � fi ⇠ i. Now that
contiguous maps are homotopic (at the level of geometric realization), the given diagram in
the Lemma commutes.

43

Appendix B

Computational Experiments

Below is the Python implementation of Algorithm-R.

1 import networkx as nx # Package used to help us deal with large

2 # graphs efficiently

3
4 critical_edges = [] # What we require , outputted as a list

5 # which is converted into a filtration and

6 # saved in a .txt file at the end

7
8 with open(input.txt , r) as file: # Input filtration

9 # inputted as a .txt file | Please change the input file name

10 # accordingly

11 data = file.read (). splitlines ()

12
13 bf_data = [] # List initialized to convert the string elements

14 # in the input file to integer values

15
16 for elem in data:

17 bf_data.append(elem.split(;))

18
19 last_entry = list(map(int , bf_data[len(bf_data) -1][1]. split ()))

20 # A two -element list which contains the last bigrade

21 m = last_entry [0]

22 n = last_entry [1]

23
24 """

25 core ():

26 - Or the main() function of the program

27 - Is a replica of the core() as given in algorithm -R

28 """

29
30 def core ():

31 c_i , c_j = 0, 0 # Same as the c_i and c_j

32 # given in algorithm -R

33 edge_set = []

44

34 while c_i <= n and c_j <= m:

35 for i in range(c_i , m+1, 1):

36 check = []

37 edge_set = []

38 for elem in bf_data:

39 elem_int_grade = list(map(int , elem [1]. split ()))

40 if elem_int_grade [0] <= i and

41 elem_int_grade [1] <= c_j:

42 edge_set.append(elem)

43 for elem in edge_set:

44 if elem in check:

45 continue

46 elif elem not in critical_edges:

47 check.append(elem)

48 if check_non_dominated(elem , edge_set):

49 set_critical_recur(elem , edge_set , 0)

50 for j in range(c_j , n+1, 1):

51 check = []

52 edge_set = []

53 for elem in bf_data:

54 elem_int_grade = list(map(int , elem [1]. split ()))

55 if elem_int_grade [0] <= c_i and

56 elem_int_grade [1] <= j:

57 edge_set.append(elem)

58 for elem in edge_set:

59 if elem in check:

60 continue

61 elif elem not in critical_edges:

62 check.append(elem)

63 if check_non_dominated(elem , edge_set):

64 set_critical_recur(elem , edge_set , 0)

65 c_i += 1

66 c_j += 1

67
68
69 """

70 check_non_dominated(edge , check_dom_set):

71 - Function for checking whether an edge is dominated or not

72 in a specific set of edges

73 - Takes the edge in question and the set of edges it needs to

74 check whether it is dominated in as input

75 - Note: the set of edges (check_dom_set) is constructed

76 with respect to the current

77 bifiltration value - (i, c_j) or (c_i , j)

78 """

79
80 def check_non_dominated(edge , check_dom_set):

81 # To check whether an edge is dominated or not

82 print (" Checking non -dominated for -", edge)

83 print (" Check_dom_set =", check_dom_set)

84 edge_set = []

45

85 edge_elem = list(map(int , edge [0]. split ()))

86 for elem in check_dom_set:

87 elem_edge = list(map(int , elem [0]. split ()))

88 edge_set.append(elem_edge)

89 G = nx.Graph(edge_set) # networkx graph is

90 # initialized to compute neighbors efficiently

91 neighbors_x = list(G.neighbors(edge_elem [0]))

92 neighbors_x.append(edge_elem [0])

93 neighbors_y = list(G.neighbors(edge_elem [1]))

94 neighbors_y.append(edge_elem [1])

95 neighborhood_edge = [elem for elem in

96 neighbors_x if elem in neighbors_y]

97 # Closed neighborhood computation

98 neighborhood_edge.sort()

99 for node in list(G.nodes ()):

100 if node == edge_elem [0] or node == edge_elem [1]:

101 continue

102 else:

103 neighborhood_node = list(G.neighbors(node))

104 neighborhood_node.append(node)

105 neighborhood_node.sort()

106 if set(neighborhood_edge). issubset(neighborhood_node):

107 return False

108 return True

109
110 """

111 set_critical_recur(edge , check_dom_set , flag):

112 - Function is called once an edge is observed

113 to not be dominated in a set of edges

114 - Takes the edge in question , the set of edges

115 which were used to check for domination , and

116 a flag as input

117 - The flag is for distinguishing if the function

118 is called after the domination check or

119 whether it is a recursive call

120 - Flag as 0 implies that the function is called

121 after the edge is observed to not be dominated

122 - Flag as 1 implies that the function is called

123 within itself , viz. a recursive call

124 """

125
126 def set_critical_recur(edge , check_dom_set , flag):

127 print ("Set critical recur for -", edge)

128
129 if edge not in critical_edges:

130 critical_edges.append(edge)

131 print (" Critical edges -", critical_edges)

132
133 edge_elem = list(map(int , edge [0]. split ()))

134 filt = list(map(int , edge [1]. split ()))

135 # The bifiltration value of the

46

136 # edge in question stored as a list

137
138 edge_set = []

139 G_with_filt = [] # This is G_(i, j) in the document

140
141 """

142 For a recursive call , we construct the new graph

143 G_i_j as required (below)

144 """

145 if flag == 1: # Function call originates from a

146 # recursive call

147 for i in range(filt [0]+1):

148 for j in range(filt [1]+1):

149 for element in bf_data:

150 element_grade = list(map(int , element [1]. split ()))

151 if element_grade [0] <= i and

152 element_grade [1] <= j:

153 to_add = []

154 to_add = list(map(int , element [0]. split ()))

155 edge_set.append(to_add)

156 G_with_filt.append(element)

157
158 """

159 If the function call is not recursive , we can simply

160 use the set of edges under consideration for the

161 domination check to construct the graph (below)

162 """

163 if flag == 0: # Function call originates post -domination check

164 G_with_filt = check_dom_set

165 for elem in check_dom_set:

166 elem_edge = list(map(int , elem [0]. split ()))

167 edge_set.append(elem_edge)

168
169 G = nx.Graph(edge_set) # networkx graph is initialized

170 # to compute neighbors efficiently

171 neighbors_x = list(G.neighbors(edge_elem [0]))

172 neighbors_x.append(edge_elem [0])

173 neighbors_y = list(G.neighbors(edge_elem [1]))

174 neighbors_y.append(edge_elem [1])

175 neighborhood_edge = [elem for elem in neighbors_x if

176 elem in neighbors_y]

177 # Closed neighborhood computation

178 neighborhood_edge.sort()

179
180 edge_neighborhood = []

181 for elem in G_with_filt:

182 #print(elem , edge_elem)

183 elem_check = list(map(int , elem [0]. split ()))

184 if (elem_check [0] == edge_elem [0] and

185 elem_check [1] in neighborhood_edge)

186 or (elem_check [0] == edge_elem [1] and

47

187 elem_check [1] in neighborhood_edge)

188 or (elem_check [1] == edge_elem [0] and

189 elem_check [0] in neighborhood_edge)

190 or (elem_check [1] == edge_elem [1] and

191 elem_check [0] in neighborhood_edge):

192 # Condition for element being in edge neighborhood

193 if elem not in edge_neighborhood:

194 edge_neighborhood.append(elem)

195
196 temp_nbd = [] # A temp variable which will be used for

197 # sorting purposes

198
199 for a in range(len(edge_neighborhood)): # Sorting the edge

200 # neighborhood with respect to bifiltration value

201 grade_a = list(map(int , edge_neighborhood[a][1]. split ()))

202 for b in range(a+1, len(edge_neighborhood)):

203 grade_b = list(map(int , edge_neighborhood[b][1]. split ()))

204 if grade_b < grade_a:

205 tmp_nbd = edge_neighborhood[a]

206 edge_neighborhood[a] = edge_neighborhood[b]

207 edge_neighborhood[b] = tmp_nbd

208
209 print (" Edge_nbd -", edge_neighborhood)

210
211 for i in range(len(edge_neighborhood)-1, -1, -1): # Traversing

212 # from the last to the first element of the edge neighborhood

213 # with respect to partial order of bifiltration value

214 if edge_neighborhood[i] not in critical_edges and

215 check_non_dominated(edge_neighborhood[i], G_with_filt)

216 == True:

217 set_critical_recur(edge_neighborhood[i], G_with_filt , 1)

218 elif edge_neighborhood[i] not in critical_edges and

219 check_non_dominated(edge_neighborhood[i], G_with_filt)

220 == False:

221 print("This is being removed -", edge_neighborhood[i])

222 if edge_neighborhood[i] not in G_with_filt:

223 continue

224 else:

225 G_with_filt.remove(edge_neighborhood[i])

226
227
228 core() # Calling core() function which starts the required

229 # computation

230
231 #print(critical_edges)

232 """

233 The next block (for loop) is used for sorting the output in

234 increasing (partial order) with respect to bifiltration value

235 """

236 for a in range(len(critical_edges)): # Sorting the edge

237 # neighborhood with respect to bifiltration value

48

238 grade_a = list(map(int , critical_edges[a][1]. split ()))

239 for b in range(a+1, len(critical_edges)):

240 grade_b = list(map(int , critical_edges[b][1]. split ()))

241 if grade_b < grade_a:

242 tmp_nbd = critical_edges[a]

243 critical_edges[a] = critical_edges[b]

244 critical_edges[b] = tmp_nbd

245
246 output_file = open(output.txt , w) # Output filtration

247 # outputted as a .txt file | Please change the output file

248 # name accordingly

249 for edge in critical_edges:

250 to_write = edge [0] + " ; " + edge [1]

251 output_file.write(to_write)

252 output_file.write ("\n")

253 output_file.close ()

49

Bibliography

[Bau21] Ulrich Bauer, Ripser: efficient computation of vietoris-rips persistence bar-

codes, February 2021, Preprint.

[BKRW17] Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner, Phat –

persistent homology algorithms toolbox, Journal of symbolic computation 78

(2017), 76 (English), Special Issue on: Algorithms and Software for Compu-
tational Topology.

[BP19] Jean-Daniel Boissonnat and Siddharth Pritam, Computing Persistent Homol-

ogy of Flag Complexes via Strong Collapses, SoCG 2019 - International Sym-
posium on Computational geometry (Portland, United States), April 2019.

[CdSEG07] Erin W. Chambers, Vin de Silva, Jeff Erickson, and Robert Ghrist, Rips com-

plexes of planar point sets, 2007.

[DFW14] Tamal K. Dey, Fengtao Fan, and Yusu Wang, Computing topological persis-

tence for simplicial maps, 2014.

[EH10] H. Edelsbrunner and J. Harer, Computational topology: An introduction, Ap-
plied Mathematics, American Mathematical Society, 2010.

[GC09] Afra Zomorodian Gunnar Carlsson, The theory of multidimensional persis-

tence, Discrete & Computational Geometry (2009).

[JAB12] Elias Gabriel Minian Jonathan Ariel Barmak, Strong homotopy types, nerves

and collapses, Discrete & Computational Geometry (2012).

[KR20] Michael Kerber and Alexander Rolle, Fast minimal presentations of bi-graded

persistence modules, 2020.

[KS17] Michael Kerber and Hannah Schreiber, Barcodes of towers and a streaming

algorithm for persistent homology, 2017.

[Mor17] Dimitry Morozov, Dionysus, 2017, Preprint.

50

[Pri21] Siddharth Pritam, ”multi-parameter persistence and edge collapse”, 2021.

[Rol20a] Alexander Rolle, ”function-rips”, June 2020.

[Rol20b] Michael Kerber & Alexander Rolle, ”mpfree”, 2020.

[Sid20] Siddharth Pritam, Collapses and persistent homology. (effondrements et ho-

mologie persistante)., Ph.D. thesis, 2020.

[The20] The RIVET Developers, Rivet, 2020.

[The21] The GUDHI Project, GUDHI user and reference manual, 3.4.1 ed., GUDHI
Editorial Board, 2021.

[TLT+20] Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Mat-
teo Caorsi, Anibal Medina-Mardones, Alberto Dassatti, and Kathryn Hess,
giotto-tda: A topological data analysis toolkit for machine learning and data

exploration, 2020.

51

	Introduction
	Homology Theory
	Simplicial Homology
	Computing Homology of a Simplicial Complex

	An Introduction to Morse Theory and Filtrations
	Morse Theory
	Filtrations

	Persistent Homology
	Computing Persistence
	Circle
	Sphere
	Torus

	Multi-dimensional Persistence

	Collapses
	Prerequisites
	Computing Peristent Homology of Flag Complexes using Strong Collapses
	An Approach for Multi-dimensional Persistence

	Computational Experiments
	Input Bifiltration
	Examples by Hand
	Adding Edges Randomly
	function-Rips

	Reduction using Algorithm-R
	Computing Minimal Presentation of Reduced Complex
	Verification
	Results

	Concluding Remarks
	Collapses
	Computing Persistent Homology of Flag Complexes using Strong Collapses

	Computational Experiments

