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Abstract

The recent observation of GW150914 has led to the birth of a new field: Gravitational

Wave Astronomy. With three currently active detectors, and a few more scheduled to be

operational within the next decade or so, the relevance of this field is expected to vastly

increase. Akin to electromagnetic radiation, the propagation of gravitational radiation is

affected by local changes in the curvature of space-time. However, there is one crucial

difference: the wavelength of gravitational waves that are of astrophysical interest are much

larger than that of light, and hence wave effects may become important in some instances.

In particular, wave effects cannot be ignored if the wavelength of radiation is comparable to

the physical size of the gravitational lens. Unlike in the geometric optics regime where all

frequency components are magnified by the same factor, wave effects introduce frequency

dependent modulation.

Based on the length of the signal in time domain, gravitational wave signals can be

broadly classified into two types: signals can run for long periods of time, like the grav-

itational wave signal produced during the in-spiral of two massive objects, or continuous

gravitational waves produced by, for e.g., a rotating neutron star with an irregularity on

its surface. As opposed to this, gravitational wave packets are short bursts of gravitational

radiation, and as per current understanding, these do not exceed a time-length of one sec-

ond. Another key difference is that the chirp signal is quasi-monochromatic, while the

wave packets under consideration are not. In this MS thesis, we have aimed to study, and

quantify, the distortions that can be induced in a gravitational wave packet as a result of

gravitational lensing.

For frequencies in the LIGO-band, wave effects are only important in the case of mi-

crolensing. We have thus focused on the microlensing of gravitational wave packets. To

connect with observations, we have simulated wave packets that are similar to those pro-

duced during core-collapse supernovae. We hope that the results of this thesis will find

applications in the future, when increased sensitivity of detectors will allow detection of

multiple instances of lensed gravitational wave packets.
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Chapter 1

Introduction

When Albert Einstein published his General Theory of Relativity (GTR) in 1916, it brought

about a radical change in the understanding of physics. However, this was only a theory,

and there was no available observational evidence to support it at that time. Since then, this

grand theory has undergone multiple observational ‘tests’, and these observations have all

but confirmed its authenticity. In this thesis, (a combination of) two of these ‘tests’ will be

discussed: Gravitational Lensing and Gravitational Waves.

Gravitational Lensing was first observed about a century ago, by Sir Arthur Edding-

ton in 1919. He made use of a Total Solar Eclipse to record the position of stars in the

Hyades Cluster, which wouldn’t otherwise be visible at that time of the day owing to the

brightness of the Sun. These measurements pointed towards the fact that the ‘apparent’

position of the stars had changed: the incoming photons from these stars were deflected

by the Gravitational Lens (aka the Sun) that was present in their path. This observation

not only confirmed Einstein’s prediction of Gravitational Lensing, but also disproved the

Lensing theory derived using Newtonian Gravity, which predicted a deflection angle that

was off by a factor of two.

Another prediction of the GTR was the existence of Gravitational Waves: ripples of

space-time that propagate at the speed of light. These waves (alternatively) squeeze and

stretch any object (or even empty space) that they pass through. At astronomical/cosmological

distances from the source, the strain produced is usually of the order of 10−19 (the corre-

sponding change in length for the LIGO arm would be around the width of a proton) or

even smaller, which is impossible to measure using any ‘standard’ ruler. To overcome

this limitation, the idea of using laser interferometers was put forward: since space it-

self is stretched/squeezed as gravitational waves pass through, there would be a change in

the interference pattern produced by the interferometer. The idea was to use this change

to measure the strain produced. As good as the idea sounds, there were a fair share of

technological issues/limitations involved. After numerous efforts, gravitational waves were

1



finally discovered directly for the first time in 2015 by the LIGO and VIRGO collaboration

([Collaboration 16]). This ‘chirp signal’ was emitted as a result of a Binary Black Hole

merger that took place over a billion years ago. Since then, over fifty more instances of

such events have been observed, and this ever growing field promises to provide an excit-

ing tool to probe the universe.

In addition to the chirp signal produced during the merger of two massive objects,

gravitational waves are also emitted during Core-Collapse Supernovae (CCSNe) events.

Although these haven’t yet been detected by the LIGO/VIRGO interferometers, various

computer simulations have yielded a multitude of information about such signals (for e.g:

[Andresen 17], [Powell 20], [Vartanyan 20]): the signal maintains high intensity for a pe-

riod of around 0.5 to 1 second following the bounce, with the frequency ranging between a

few Hertz to a thousand Hertz. Different frequency components are produced by different

processes – f-mode oscillations of the proto-neutron star are responsible for the high fre-

quency components, asymmetrical neutrino/matter emissions produce waves at the lower

end of the frequency domain, while prompt convection and the Standing Accretion Shock

Instability (SASI) account for intermediate frequencies. When detected, these signals thus

have the potential to offer a multidimensional probe into CCSNe events.

As gravitational waves propagate towards the Earth, they may encounter gravitational

lenses along the way. The lensing that takes place is similar to what happens in the case

of electromagnetic radiation, but with one important difference: the wavelength of grav-

itational waves is much larger than their electromagnetic counterpart, and in some cases,

wave optics may be required to describe their propagation. Figure 1.1, which is a plot of

Frequency of Radiation ‘ f ’ versus Mass of the Gravitational Lens ‘ML’, provides a crude

idea of when wave optics may need to be considered: the line running diagonally across

the plot is the regime where wave effects are non-negligible. To the far right of this line,

propagation may be described by geometric optics. To the far left, the wavelength is be

so large that lensing would be absent. The shaded blue region represents the band that is

currently active – the LIGO/VIRGO band. Within this frequency range, only micro-lenses

(∼ 10M� < ML < ∼ 100M�) are important from the perspective of wave optics.

As discussed in Chapter 2, lensing is achromatic once wave effects are non-negligible.

As a result, the lensed signal may appear very different in comparison to the original one.

A lensed signal may thus ‘dilute’ the information that could possibly be gleaned. It is

therefore important to identify such lensed signals, and if possible, de-lens them.

At the moment, there are no available templates to faithfully reproduce CCSNe signals.

Thus, it is not a straightforward task to identify whether a signal has been lensed or not.

In this thesis, we have aimed to explore this challenge, and develop a possible statistical

technique that can be employed. The rest of the thesis is organised as follows: In Chapter

2
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Figure 1.1: A plot of Frequency of Radiation ‘ f ’ versus Mass of the Gravitational Lens

‘ML’. The region immediately surrounding the diagonal line is where wave effects are

important.

2, we review the formalism of Wave Optics in Gravitational Lensing. As will be explained

in detail later on, this chapter assumes that the lens system can be approximated by a single

lens plane. This of course is not a very general scenario. Chapter 3 expands the formalism

to a slightly more general case, wherein the lens system can lie along N-different planes. In

Chapter 4, we discuss the lensing of CCSNe signals, and their possible identification. We

summarise the thesis in Chapter 5, and mention auxiliary information in the Appendix. Al-

though our work is aimed towards gravitational waves produced during CCSNe, the physics

and methods employed can be used for gravitational waves emitted in any possible way.

3



Chapter 2

Wave Effects in Gravitational Lensing

In this Chapter, we begin by reviewing the basics of gravitational lensing in the geometric

optics regime ([Narayan 96]). We next provide a brief overview of the physics involved

when wave effects become non-negligible in the case of gravitational lensing of gravita-

tional waves ([Misner 73], [Schneider 92], [Nakamura 99]). The formalism of wave optics

is the most fundamental, and as we show, the equation in case of geometric optics can be

derived as a limit of wave optics. In the later part of this chapter, we explore the typical

behavior of various lens systems.

2.1 Basics of Gravitational Lensing

In this section, we explore the basics of Gravitational Lensing as described in the geomet-

ric optics regime. The simplest approach to gravitational lensing is to assume a locally

flat spacetime which is perturbed by a distribution of matter. This condition is satisfied as

long as the (dimensionless) gravitational potential is small (U(= φ/c2)� 1), and the pe-

culiar velocity of the lens is small (vp� c). Provided the preceding assumptions hold, the

effective refractive index is given by ([Schneider 92]):

n = 1−2U = 1+2|U | (2.1)

Due to the increased refractive index (n > 1), the radiation slows down:

v =
c
n
∼ c−2|U |c (2.2)

This reduced speed gives rise to a time delay that is commonly referred to as the Shapiro

delay ([Shapiro 64]):

tshap =
∫ 2|U |

c
dl (2.3)

4
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Figure 2.1: A typical lens configuration. The gravitational lens deflects the incoming ra-

diation from a source at position β , due to which an observer observes the corresponding

image at an angular position θ .

Akin to on optical lens, a gravitational lens also deflects any radiation that passes close

to it. The deflection angle is given by:

α̂ = 2
∫
~∇⊥Udl (2.4)

The above two integrals are performed along the path followed by the radiation as it

propagates from the source to the observer.

A typical lens configuration is depicted in Figure 2.1. The distance between the observer

and the source (lens) is DS (DL), while the distance between the lens and source is DLS.

Note that these distances are angular diameter distances. The source is present at an angular

position β . Due to gravitational lensing, the incoming radiation is deflected by an angle α̂ ,

and the apparent angular position of the source is θ . From Figure 2.1, we see that θDS

= βDS + α̂DLS. By defining a reduced deflection angle α = (DLS/DS) α̂ , one obtains the

following relation:

β = θ −α(θ) (2.5)

This is called the ray-tracing equation or the lens equation. For a given source position

β , one can use this equation to obtain the positions of the various images that are formed.

5



2.2 Gravitational Waves and their Propagation

The gravitational wave is viewed as a tensor perturbation to the background metric:

ds2 =−(1+2U)dt2 +a2(1−2U)dr2 = g(B)µν dxµdxν (2.6)

gµν = g(B)µν +hµν (2.7)

Here, g(B)µν is the background metric, gµν is the altered metric of space-time when a

gravitational wave hµν propagates through it, and U is the (dimensionless) gravitational

potential. The gravitational wave can be expressed in terms of a scalar (φ ) and a polarisation

tensor (eµν ) ([Baraldo 99]):

hµν = φeµν (2.8)

As the gravitational wave propagates forward in space-time, the polarization tensor is

parallel transported along the null geodesic, and the change in eµν is negligible as long as

U � 1. In this limit, the propagation of the gravitational wave can be described solely in

terms of the scalar φ , and the wave equation in frequency domain is given by:(
∇

2 + ω̃
2)

φ̃ = 4ω̃
2U φ̃ (2.9)

To understand the propagation of the wave, one needs to solve Equation (2.9). In gen-

eral, the incoming wavefront would require a three-dimensional treatment. However, as

long as the distances between the source, lens and observer are large compared to the phys-

ical spread of the lens system, one can assume the ‘Thin Lens Approximation’: the lens

system is assumed to be planar. Under this approximation, the underlying calculations re-

duce to a two-dimensional problem. In this chapter, we assume that all the lens systems are

confined to a single lens plane. We later generalise this to ‘N’ lens planes in Chapter 3.

Figure 2.2 outlines the assumed lens configuration: The source and the lens systems

are confined to the source and lens plane respectively, which are at distances DS and DL

from the observer. The distance between the source and lens plane is denoted by DLS. The

position of the source on the source plane is given by η , and vectors on the lens plane are

denoted by ξ .

The propagation of the incoming wavefront across the lens plane can be evaluated using

the Kirchhoff Diffraction Integral ([Schneider 92]) (or using the Path Integral Formalism

[Nakamura 99]). The lensed wave is commonly represented in terms of the Amplification

Factor, which is the ratio between the scalars of the lensed and unlensed waves:

F ( f ,η) =
φ̃ L

obs

φ̃obs
=

DS

DLDLS

f (1+ zL)

i

∫
d2

ξ exp [2πi f (1+ zL)td (ξ ,η)] (2.10)

6
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Figure 2.2: Gravitational Lens Configuration. We assume the so called ‘Thin-Lens Approx-

imation’, and also assume that all lenses are confined to a single lens plane. All symbols

carry their usual meaning as elaborated in the main text.

In the above equation, zL is the redshift of the lens, and the various distances – DS,

DL and DLS – are angular diameter distances. The term td (ξ ,η) is called the time delay

function, and is given by:

td (ξ ,η) =
DLDS

2DLS

(
ξ

DL
− η

DS

)2

−ψ(ξ )+φ(η) = tgeom + tgrav + tarr (2.11)

The term ψ(ξ )

(
= 2DLS

DLDS

∫
dzU(ξ ,z)

)
is called the lensing potential, and is the Newto-

nian potential of the lens systems integrated along the line of sight. It can be visualised as

the potential projected onto the lens plane. The three terms in Equation (2.11) correspond

to three different physical quantities: tgeom is the time delay caused by the extra geometric

distance that the wave has to travel due to the presence of the lens, tgrav is identical to the

Shapiro delay discussed earlier (but with an additional scaling factor), and tarr is the time

taken by the unlensed wave to reach the observer. The last term only contributes a phase

difference to the amplification factor, and is often assigned a value such that the time delay

of the first image (corresponding to the global minima of the time delay function) is zero.

For ease of computation, it is often convenient to rewrite the above equations in terms

of dimensionless quantities: the two vectors ξ and η are normalised by an arbitrary length

scale ξ0:

x =
ξ

ξ0

7



y =
ηDL

ξ0DS

The dimensionless frequency and the dimensionless time delay function are given in

terms of x and y as:

ω =
DS

DLSDL
2πξ

2
0 (1+ zL) f

td (x,y) =
1
2
|x−y|2−ψ (x)+φ(y)

where, ψ (x) = DLSDL/(ξ
2
0 DS)ψ(ξ ) and φ(y) = DLSDL/(ξ

2
0 DS)φ(η). Equation (2.10)

is re-written in terms of these dimensionless quantities as:

F (ω,y) =
ω

2πi

∫
d2x exp [iωtd(x,y)] (2.12)

Due to the highly oscillatory nature of the above integrand, when ωtd(x,y)� 1, only

stationary points contribute to the integral. A stationary point could either correspond to a

minima, saddle point or maxima of the time delay function. In gravitational lensing, the

images corresponding to these points are referred to as Type-I, Type-II and Type-III images

respectively. In this limit, Equation (2.12) reduces to ([Nakamura 99]):

Fgeom (ω,y) = ∑
j

√
|µ j|exp

(
iωtd, j− iπn j

)
(2.13)

where, µ j corresponds to the magnification of the jth image. n j is the Morse index,

which is equal to the number of negative eigenvalues of the Hessian of the jth image, and

equals 0, 1/2 and 1 for a Type-I, -II and -III image respectively. Thus, a Type-I, -II and

-III image would be out of phase with respect to the original signal by 0, π/2 and π re-

spectively. Note that this phase difference is in addition to that induced by the geometric

and gravitational time delays. Under almost all scenarios, the frequency of electromagnetic

waves is so large that no oscillations are observed in the amplification factor. One notable

exception is the case of femtolensing of gamma-ray bursts (for e.g. [Ulmer 95]). Although

this scenario has been of theoretical interest, it hasn’t yet been observed.

2.3 Examples of Lens Models

In this section, we describe possible lens models and the corresponding amplification fac-

tors. We always assume that the lens can be approximated by a point mass object. For

microlenses, this approximation is valid under most relevant astrophysical scenarios, more

about which is mentioned in Appendix A.
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2.3.1 Isolated Point Mass Lens

The simplest lens model is that of an Isolated Point Mass Lens. For the choice of ξ0 =√
4GMLDLDLS/c2DS, the Lensing Potential for such a lens is ψ (x) = ln(|x|). The term

ML stands for the mass of the lens, and the choice of ξ0 is called the Einstein Radius. This

is the radius of the ‘ring’ that is formed in the strong lensing regime when the source, lens

and observer happen to be collinear. For this lens system, Equation (2.12) can be integrated

analytically to obtain ([Peters 74]):

F (ω,y) = exp

[
πω

4
+

iω
2

{
ln
(

ω

2

)
−2φm (y)

}]

Γ

(
1− iω

2

)
1F1

(
iω
2
,1;

iω
2

y2
)

(2.14)

where, ω = 8πG(1+zL)ML f/c3, φm (y)= (xm−y)2 /2−ln xm with xm =
(

y+
√

y2 +4
)
/2,

and 1F1 is the hypergeometric function. An Isolated Point Mass produces two images with a

time delay of ∆t = y
√

y2+4
2 + ln

(√
y2+4+y√
y2+4−y

)
, with magnifications µ± = 1

2±
y2+2

2y
√

y2+4
. Using

Equation (2.13), the geometric optics limit (ω � 1) of Equation (2.14) is given by:

Fgeom (ω,y) =
√
|µ+|− i

√
|µ−|exp(iω∆t) (2.15)

Figure 2.3 portrays the difference between what one would obtain using geometric op-

tics (in black) as opposed to the complete wave optics calculation (blue). The source is

positioned at y = (1,0), and the mass of the lens is taken to be 50M�. At low frequencies

( f . 600Hz), there are visible differences between the two curves. This difference arises

due to diffraction. The oscillatory nature of the amplification factor arises as a result of the

superposition between the two (time-separated) images.

The amplification factor is a function of ω , or equivalently f , and y = |y|. The left panel

of Figure 2.4 shows |F| as a function of f for different values of y (all for ML = 50M�)

– As one transitions from a higher to lower value of y, two qualitative differences take

place: the peak value of the amplification factor increases (corresponding to an increase

in magnification of the images), and oscillations become less rapid (due to a decrease in

time-delay between images). For instance, the black curve (y = 3) oscillates more rapidly

in comparison to the red curve (y = 0.2), but the range of oscillations is smaller.

For a fixed value of y, since ω ∝ ML, the rate of oscillation of |F| increases with the

mass of the lens. The right panel of Figure 2.4 shows this for a value of y = 1. For example,

the range of oscillation of the blue (ML = 50M�) and red (ML = 100M�) curves is the same,

but the red curve oscillates about twice as fast.
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Figure 2.3: Comparison between Amplification Factors obtained using Geometric Optics

(black) versus the complete Wave Optics Calculation (blue). The lens is assumed to be a

50M� Isolated Point Mass Lens, with the source postioned at y = (1,0). The left panel plots

the modulus, while the phase ∆φ =−i ln(F/|F |) is shown in the right panel.
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Figure 2.4: Qualitative Dependence of |F| on |y| and ML. In the left panel, ML = 50M�,

while the value of |y| is varied. The right panel assumes a constant value of |y|, while the

value of ML is varied.
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2.3.2 Point Mass Lens Embedded in a Galaxy Potential

While the Isolated Point Mass Lens model provides initial insights into the behaviour of the

amplification factor, it is not a very realistic model. One step towards more realistic lensing

scenarios is to consider a model where a Point Mass Lens is embedded in a galaxy. In what

follows, we model the galaxy as a cored isothermal ellipsoid. Due to the small size of the

micro-lens, the effect of the galaxy can be assumed to be constant across the size of the

micro-lens. Under this assumption, the galaxy alters the lensing potential of the micro-lens

by contributing two terms: external convergence (κ), and shear (γ1,γ2). The effect of the

former is to enlarge/minimize the image in an isotropic fashion, while shear distorts the

image unequally in different directions. Note that this description is more intuitive when

one deals with electromagnetic radiation where ‘actual’ images can be seen, as opposed to

the strain that is observed in case of gravitational waves. The lensing potential of a point

mass lens embedded in a galaxy is given by ([Schneider 92]):

ψ (x1,x2) = ln
(√

x2
1 + x2

2

)
+

κ

2
(x2

1 + x2
2)+

γ1

2
(x2

1− x2
2)+ γ2x1x2 (2.16)

No analytic solution is available for such a lens system, and hence one has to inte-

grate Equation (2.12) numerically to obtain the amplification factor. While it is possi-

ble to directly evaluate the integral in frequency-domain, the Ulmer-Goodman formalism

([Ulmer 95]) provides a faster approach to compute the integral in time-domain. Through-

out the rest of this section, we have used the latter to evaluate the respective amplification

factors. A more detailed note on this method is provided in Appendix B.

Figure 2.5 highlights the features that external strong lensing induces into the ampli-

fication factor of a point mass lens: On the left panel, different values of (κ,γ1,γ2) are

assumed, all for a source positioned at y = 1. For small values of (κ,γ1,γ2), as has been

assumed in this figure, both convergence and shear increase the time delay between im-

ages, which results in the amplification factor oscillating faster than the isolated point mass

lens counterpart. The difference is that convergence increases the values of |F|, while shear

decreases it.

Even with external convergence, the number of images for a single point mass lens is

restricted to two. However, in the presence of external shear, this number can increase to

four, depending on the position of the source – for sources within the caustic, four images

are formed, and two images otherwise. On the right panel of Figure 2.5, we show the

amplification factor for a case where four images are formed (y= (0.1,0.1)). For reference,

the amplification factor for an isolated point mass for the same value of y is shown in black.

In addition to faster oscillations of the blue curve, one can notice richer patterns in the

amplification factor formed as a result of the interference between the four images.
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Figure 2.5: Effect of external convergence and shear on the amplification factor of a point

mass lens.

2.3.3 ‘N’ Point Mass Lenses on a Single Lens Plane

Until now, we have assumed that there is only one micro-lens situated on the lens plane. In

a more general case, we could have ‘N’ Point Mass Lenses spread across the Lens Plane. If

the ith lens has a mass of Mi, and is positioned at li on the lens plane, the lensing potential

is given by ([Asada 09]):

ψ (x) = Σimi ln(|x− li|) (2.17)

where, mi =
Mi

ΣiMi
is the fractional mass of a given lens. Note that li represents the

position of the lens normalised by ξ0. Each lens contributes at least one Type-II image, and

at least one Type-I image is always formed as a whole by the collection of lenses. Thus, for

‘N’ point mass lenses, a minimum of N+1 images are formed. Depending on the position

of the source and the lenses, a maximum of 5(N-1) images may be formed ([Asada 09]).

While deriving Equation (2.17), the constant ξ0 is again taken to be the Einstein Radius. In

this case, the Einstein Radius is given by
√

4GMT DLDLS/c2DS, where MT = ΣiMi is the

total mass of all the lenses.

Of the different images that are formed, two of them always account for bulk of the

magnification. Due to this, |F| oscillates akin to the Isolated Point Mass case, but with one

difference: the de-magnified images act as small ‘perturbations’ to the sinusoidal oscilla-

tions, and hence the |F| would appear ‘noisy’. Figure 2.6 shows the amplification factor

for two values of N. In both cases, values of li have been drawn from a random uniform

distribution between -1 and 1. The left panel assumes N = 5, while N = 7 on the right. As

can be seen, both the plots showcase an overall sinusoidal behavior, with the de-magnified
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Figure 2.6: Amplification Factor for ‘N’ point mass lenses on a plane: N = 5 (7) in the

left (right) panel. Both plots are as a function of dimensionless frequency ω = 8πG(1+

zL)MT f/c3.

images accounting for smaller random oscillations. In both panels, |F| has been plotted as

a function of ω = 8πG(1+ zL)MT f/c3.
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Chapter 3

Multi-Plane Lensing

In the previous chapter, we had assumed that all lenses under consideration are situated at

the same redshift from the observer, i.e on a single lens plane. To generalise this further,

we relax the single-plane condition, and explore scenarios wherein lenses may be present

at different redshifts. In general, lenses may lie along ‘N’ lens planes, but as we later show,

even something as simple as the two-plane case carries a large number of parameters, and

it is not straightforward to make qualitative statements like the previous chapter. We start

by extending the equations from Chapter 2 to the multi-plane case, and then explore some

possible lens systems for the case of N = 2.

3.1 Formalism of Multi-Plane Lensing

Even in the case of Multi-Plane lensing, the basics remains the same as the single-plane

counterpart: the objective is to solve Equation (2.9). The approach is to again consider the

incoming radiation as a 2-D wavefront, and propagate it across the lens planes. Doing so,

we obtain the following form for the Amplification Factor ([Schneider 92], [Yamamoto 03]):

F ( f ,y) =C f N
∫

d2x1 ...d2xN exp [2πi f td (x1, ...,xN,y)] (3.1)

where, different xi’s correspond to vectors along the different lens planes, and xN+1 =

y. The time delay function is given by td (x1, ...,xN,y) = ΣN
i=1td (xi,xi+1), and is now a

function of N + 1 variables: the N different vectors along N different lens planes, and the

vector along the source plane. C is a factor that depends on the various distances under

consideration and is given by C =
(
(−i

c )
N ΠN

i=1(1+ zi)
D0iD0i+1

Dii+1

)
. zi represents the redshift

of the ith lens plane, and Di j is the distance between the ith and jth planes, with i = 0

(N+1) corresponding to the observer (source plane). As before, the various xi’s correspond

to angular distances. Figure 3.1 summarises the lens configuration for N = 2. Note that

Equation (3.1) reduces to Equation (2.12) for the special case of N = 1.
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Figure 3.1: Gravitational Lens Configuration. We continue to assume the Thin-Lens Ap-

proximation, but now allow lenses to lie on different planes (each corresponding to a unique

redshift). For simplicity, the diagram assumes two lens planes, but in general, one could

work with N such planes.

Equation (3.1) can be re-written as:

F ( f ,y) =C f N
∫

d2x1

∫
d2x2 exp [2πi f td (x1,x2)]

......

......

......∫
d2xN−1 exp [2πi f td (xN−2,xN−1)]∫

d2xN exp [2πi f td (xN,y)]exp [2πi f td (xN−1,xN)]

(3.2)

Going from bottom to top, the result of each integral (more strictly, each double inte-

gral) is a function of the variable of the next integral (for e.g., the result of the bottom-most

integral is a function of xN−1, and so on). We thus cannot break Equation (3.2) into ‘N’

double integrals while performing the integration numerically. Numerically solving a 2N

integral using frequently used quadrature methods is not a very efficient process. Through-

out the rest of this chapter, wherever numerical integration of Equation (3.1) is required, we

have used a Monte-Carlo Integrator provided by the VEGAS python package ([Lepage 20]).

While such a method seems to give reasonable results for the case of N = 2, this too may

not be efficient for higher values of N, and one may have to explore alternate options.
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3.2 Possible Lens Systems

Similar to the Single-Plane case, Equation (3.1) has to be integrated numerically for all but

one case. We begin with the special case for which an analytic expression is available, and

later explore other possible scenarios.

3.2.1 The Special Case

Consider a lens arrangement as depicted in Figure 3.2. The position of the source (S) is

taken to be the origin. Two Point Mass Lenses are collinear with respect to the source, at (ra-

dial) distances r1 and r2, with masses M1 and M2 respectively. The Observer (O) is present

at a distance r3, and at an angle θ3 with respect to the source. Due to the symmetry in the

Lens configuration, Equation (3.1) can be solved analytically to obtain ([Yamamoto 03]):

F(k,θ3) = eiαeπkG(M1+M2)/c2
Γ(1−2ikGM1/c2) z

∞

∑
L=0

(−i)L

(L!)2 Γ(1+L−2ikGM2/c2)

×(xz)L
2F1
(
1−2ikGM1/c2,1+L−2ikGM2/c2,1 ;1− z

)
, (3.3)

where,

z =
r3(r2− r1)

r2(r3− r1)
, (3.4)

x =
kr2r3θ 2

3
2(r3− r2)

. (3.5)

α is a real constant corresponding to a constant phase difference, and 2F1(a,b,c ;d) is the

Hypergeometric function. For better visibility, Equation (3.3) has been written in terms of

k = (2π f )/c. Even for this special case, we have six different parameters: r1,r2,r3,M1,M2

and θ3. In the next few plots, we vary these parameters one at a time to provide a qualitative

idea about the dependence of the amplification factor on these parameters.

3.2.1.1 Dependence on Radial Distance

In the first set of plots (Figure 3.3), we keep r3 fixed at 3kpc. In the left (right) panel, we

vary the value of r1(r2) while keeping r2(r1) fixed at 2(2) kpc. We take M1 = M2 = 10M�,

and choose θ3 such that the observer is at an angle equal to the Einstein Radius when a

single point mass lens is kept at 2 kpc , with a total mass of M1 +M2. Such a choice

will allow us to make comparisons with the single plane arrangement that was discussed in

Chapter 2.

As the two point masses approach each other (i.e. as |r1− r2| decreases), the ampli-

fication factor begins to resemble that of a single point mass lens. This can be seen by
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Figure 3.2: Lens Configuration for the Special Case discussed in Section 3.2.1. Two point

mass lenses lie collinear with respect to the source.

comparing the black (red) and green curves in the left (right) panel. Thus, differences be-

tween the multi-plane and single-plane formalisms become important only when there is a

reasonable separation between neighbouring lens planes.

From both panels, there is one more feature that we observe: as either of the lenses

move away from the source (or equivalently towards the observer), the oscillations of the

|F| curve become more rapid. This is accompanied by a drop in the maximum value that

|F| acheives as it oscillates.

3.2.1.2 Dependence on Mass of the Lens

In the next set of plots (Figure 3.4), we keep r1,r2,r3 fixed at 1,2,3 kpc respectively. In

the left (right) panel, we vary the value of M1(M2) while keeping M2(M1) fixed at 10(10)

M�. For consistency, we again choose θ3 such that the observer is at an angle equal to

the Einstein Radius when a single point mass lens is kept at 2 kpc , with a total mass of

M1 +M2.

As the mass of either of the lenses increases, the oscillations of |F| become more rapid.

However, the lens closer to the observer (i.e. M2) has a greater effect on the rate of os-

cillations. For example, when (M1,M2) = (10, 40) M� (green curve on the left panel), the

average period of oscillations is∼ 700 Hz. When we consider the inverse scenario (M1,M2)

= (40, 10) M� (green curve on the right), the average period is ∼ 500 Hz. One can make
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Figure 3.3: Dependence of the amplification factor on radial distance of the two lenses: We

fix r3 = 3kpc, M1 = M2 = 10M�, and θ3 = 4.4e-8 rad. In the left panel, we vary r1 while

keeping r2 fixed at 2 kpc, while r2 is varied with a fixed value of r1 = 1 kpc on the right

panel.

similar observations by comparing the same-coloured curves from both panels. This is

qualitatively similar to the right panel of Figure 2.4.

3.2.1.3 Dependence on θ3

In this final plot (Figure 3.5), we keep r1,r2,r3 fixed at 1,2,3 kpc respectively, and fix

the values of M1 = M2 = 10M�. We vary the value of θ3 to understand the effect of this

parameter.

Similar to the Single Plane case (left panel of Figure 2.4), as the angular position of the

observer approaches the line joining the source with the two lenses, two trends take place:

the peak value of |F| increases, and oscillations of |F| become less rapid.

In all the above plots, we have varied only one parameter at a given time. As we show in

the next subsection, varying multiple parameters at once produces trends that aren’t always

a combination of all the above observations.

3.2.2 Relaxing the Collinearity Condition

In this subsection, we relax the condition that requires the two lenses to be collinear with

the source. The lens configuration now looks like the one depicted in Figure 3.6. As a

result, there are two additional parameters that are to be considered: θ1 and θ2. Note that

we continue to assume that the source, the observer and the two lenses lie on the same plane

(i.e. on the plane of the paper).
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Figure 3.4: Dependence of the amplification factor on the mass of the two lenses: We fix

(r1,r2,r3) = (1, 2, 3) kpc, and θ3 as described in the main text. In the left panel, we vary

M1 while keeping M2 fixed at 10 M�, while M2 is varied with a fixed value of M1 = 10 M�
on the right panel.
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Figure 3.5: Dependence of the amplification factor on the the position of the observer (θ3):

We fix (r1,r2,r3) = (1, 2, 3) kpc, and M1 = M2 = 10 M�. We vary θ3 by four different

factors.
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Figure 3.6: Lens Configuration for the Case discussed in Section 3.2.2. The two point

masses are no longer collinear with the source.

As has been mentioned earlier, for all plots in this subsection, a Monte-Carlo Integrator

provided by the VEGAS python package has been used to numerically integrate Equation

(3.1). To verify the accuracy of this method, we first try to reproduce one of the plots

that can be made using the analytic expression Equation (3.3). In Figure 3.7, we choose

(r1,r2,r3) = (1, 2, 3) kpc, (M1,M2) = (10, 10) M�, and θ3 = 4.4e-8 rad, and generate the blue

curve using Equation (3.3). The black curve is obtained using numerical integration, and

reproduces the analytic expression within an error of 1%. Given the satisfactory accuracy

obtained, we proceed to use the same method for all other cases.

We now vary the values of θ1 and θ2 while keeping other parameters fixed. We again

fix (r1,r2,r3) = (1, 2, 3) kpc, (M1,M2) = (10, 10) M�, and θ3 = 4.4e-8 rad. We try four

different configurations:

1. (θ1,θ2) = (0, 0)

2. (θ1,θ2) = (2θ3
3 , −2θ3

3 )

3. (θ1,θ2) = (−2θ3
3 , −2θ3

3 )

4. (θ1,θ2) = (−2θ3
3 , 2θ3

3 )

Figure 3.8 shows the amplification factor for these four cases. Curves 2 and 3 seem to

oscillate at more or less the same rate, and this rate is faster than that of Curve 1. As opposed

to this, Curve 4 oscillates slower than Curve 1. This suggests that the angular position of
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Figure 3.7: Comparing the amplification factor obtained using the Analytic Expression

available for the special case (Equation (3.3)) with the one obtained by integrating Equation

(3.1) numerically using a Monte-Carlo Integrator.

M2 has an important effect on the rate of oscillation: as the angular separation between M2

and the observer decreases, the |F| curve oscillates slower. A comparison between Curve 2

and Curve 3 points towards another trend: When M1 is closer to the line joining the source

with the observer, |F| reaches larger values as it oscillates. Thus, M1 seems to have a greater

effect on magnitude of |F| values, rather than the rate of oscillation.

In Figure 3.9, we fix (M1,M2) = (10, 10) M�, r3 = 3 kpc, θ3 = 4.4e-8 rad, and (θ1,θ2)

= (−2θ3
3 , 2θ3

3 ). One at a time, we vary the values of r1 and r2: In both panels, in curve 1,

we take (r1,r2) = (1, 2) kpc. In the left panel curves 2 and 3 correspond to r1 = (1.5, 0.5)

kpc respectively with r2 = 2 kpc . In this case, we observe trends similar to the previous

section (3.2.1.1) – as M1 moves away (towards) from the source, the oscillations of the

amplification factor become less (more) rapid. On the right panel, for curves 2 and 3, r2

= (1.5, 2.5) kpc respectively with r1 = 1 kpc. However, in this case, the observations of

Section 3.2.1.1 no longer seem to apply. Thus, the amplification factor in the case of multi-

plane lensing seems to have a complicated dependence on the various parameters involved,

and it is not always possible to assert monotonous trends for the variation of the different

parameters.

We conclude this chapter by noting that the best way to study multi-plane lensing is to

select various lens system, and study them case by case, instead of trying to generalize the

observations of some test cases.
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Figure 3.9: Varying r1 and r2 while keeping r3 = 3 kpc, (M1,M2) = (10, 10) M�, θ3 = 4.4e-8

rad, and (θ1,θ2) = (−2θ3
3 , 2θ3

3 ). In both panels, curve 1 corresponds to (r1,r2) = (1, 2) kpc.

On the left panel, curves 2 and 3 correspond to r1 = 1.5 and 0.5 kpc respectively with r2

= 2 kpc. On the right, we fix r1 = 1 kpc, with r2 = 1.5 and 2.5 kpc for curves 2 and 3

respectively.
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Chapter 4

Identifying Lensed Gravitational Wave
Signals

In this Chapter, we consider cases where gravitational wave signals are lensed. Our aim is

to understand the conditions under which signals are strongly distorted by lensing, and to

develop a method to identify lensed signals. For initial insights, we begin by considering

a Gaussian wave packet as our model signal. We later extend the study to more realistic

waveforms. The effect of lensing on the chirp waveform has already been studied in detail

(for e.g. [Meena 20]). We here choose to focus on the Gravitational Wave Packet emitted

during a Core Collapse Supernova event.

4.1 Gaussian Wave Packets

Owing to it’s simplicity, we begin our study by modelling a signal by a Gaussian Wave

Packet. Such a waveform is parameterised by two quantities: f0 and σ f . The former is the

central frequency of the wave packet in frequency domain, while the latter is a measure of

the width of the signal, again in frequency domain. Equivalently, one could define analo-

gous quantities t0 and σt in time domain. For a Gaussian Wave Packet, note that σt =
1

2πσ f
.

We simulate this signal through the following relation:

h(t) = exp[−0.5((t− t0)/σt)
2]Real

(
exp[2πif0t]

)
(4.1)

Once simulated, we ‘lens’ the signal by a model gravitational lens. To do so, we first

take a Fourier transform of the signal to obtain the corresponding wave packet in frequency

domain h( f ). For a given lens system, the lensed wave packet is a product of the wave

packet h( f ) and the amplification factor F , i.e. hL( f ) = h( f )F . The lensed signal in time

domain, hL(t), is obtained by taking an inverse Fourier transform of hL( f ).
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Figure 4.1: Comparison between wide and narrow wave packets. A wide wave packet (in

frequency domain) is distorted more.

From hereon, unless otherwise stated, we consider lensing by an isolated point mass

with the source situated at y = 1. For our model signal, we begin by considering two wave

packets that are centred at f0 = 400 Hz, but with different values of σ f . Figure 4.1 shows

these signals – with σ f = 10 Hz on the left panel, and σ f = 50 Hz on the right panel. Be-

cause of the inverse relation between time and frequency domains, the former corresponds

to a wide wave packet in time domain, while the latter is narrower. In both cases, the blue

curve corresponds to the original signal, while the curve in red is the lensed signal by a

50M� lens. Comparison between the two signals in both panels leads to a straightforward

observation: a wide signal (in frequency domain) is distorted more in comparison to a nar-

row signal. One way to understand this to have a look at the amplification factor from

Figure 2.3. One could look at either of the panels, i.e. the modulus or the phase of the

amplification factor, but we will focus on the former. For a wave packet that is wide in

frequency domain, there is a considerable change in the value of the amplification factor

across the range of frequencies covered by the signal. For example, a gaussian wave packet

extends roughly 3σ f across either side of the mean. In our model signal with ( f0,σ f ) =

(400, 50) Hz, the amplification factor is as high as ∼ 1 at the lower end of the wave packet,

dips to a minimum at ∼ 400 Hz, and rises to ∼ 1.4 towards the higher end of the wave

packet. However, for ( f0,σ f ) = (400, 10) Hz, the amplification factor is fairly constant

across the frequency range covered by the signal. Thus, wide wave packets experience

varied amounts of amplification across their frequency range, and hence are distorted by

greater amounts.

From the right panel of Figure 4.1, we see that the signal is not only distorted, but

this distortion is asymmetric. An intuitive way to understand the reason for the same is to
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Figure 4.2: Increasing the Mass of the Lens. The lensed signal is a superposition between

the all images that are formed.

increase the mass the lens. In Figure 4.2, we fix ( f0,σ f ) = (400, 50) Hz, and assume the

mass of the lens to be 200 M� (500 M�) in the left (right) panel. On the left panel, we

begin to see a non-zero value of the lensed signal in regions where the unlensed signal is

absent. On further increasing the mass of the lens, as has been done on the right, we observe

two different images. The first image is a Type-I image, and is an enlarged version of the

original signal. The image on the right is a Type-II image, and thus has an additional phase

difference of π

2 . Thus, a lensed signal is a superposition of the different (diffracted) images

that are formed as a result of lensing. Because of the time-delay between the images, the

right side of the signal is distorted by a greater extent, and hence the overall distortion of

the signal is asymmetric.

4.2 Core Collapse Supernova Gravitational Wave Signal

In the previous section, we had considered a Gaussian Wave Packet as our model signal. In

this case, we had a priori knowledge of the shape of the (unlensed) signal, and thus it was

straightforward to identify whether a signal has been lensed or not. However, if the shape

of the signal is unknown, would it be possible to identify the same? This will be our focus

for the rest of the section.

As has already been mentioned in the Introduction, gravitational waves are emitted dur-

ing core collapse supernovae events. Due to the stochasticity associated with such events,

the emitted gravitational wave is noisy. Various computer simulations ([Andresen 17],

[Powell 20], [Vartanyan 20], [Yakunin 15], [Yakunin 17], [Morozova 18], [Andresen 19],
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[Radice 19], [Warren 20]) have revealed that the signal maintains high intensity only for a

short time following the bounce (0.5 to 1 second). In this period, the frequency rises from a

few tens of Hertz to slightly over a thousand Hertz. The exact numbers depend on the mass

and spin of the progenitor star. Following the bounce, there are various processes that give

rise to gravitational waves:

1. f-mode and g-mode oscillations of the Proto-Neutron Star (PNS) give rise to waves

in the frequency range of a few hundreds to thousand Hertz. The (relative) intensity

of waves produced by this method is the highest.

2. The Standing Accretion Shock Instability (SASI), that is formed as a result of the

stalling of the shock by the infalling matter, accounts for waves in the region of ∼
100−300 Hz. This is prominent in only those supernovae events where an explosion

doesn’t take place. Prompt convection following the bounce also gives rise to waves

in the same frequency bracket (for the first 10s of milliseconds following the bounce).

3. Asymmetric flow of matter and neutrinos produce waves in the regime of ∼ 0.1−
10 Hz. The strain produced by this is the weakest amongst the various processes

highlighted here.

Owing to the randomness associated with the above events, to the best of our knowl-

edge, there are no templates to faithfully reproduce such a signal. However, since we know

that the signal is noisy, we have attempted to simulate this signal using a Gaussian Random

Field. The wave packet in frequency domain is generated by the following relation:

h( f j) = (a j +b j)
√

P( f j) (4.2)

where, all the a j’s and b j’s are random numbers drawn from a unit Gaussian distribu-

tion, and P( f ) is the power spectrum. In addition to creating a noisy wave packet, we would

like to ensure that the time-evolution of frequency takes up a certain form. To do this, we

transition to time domain using the following relation:

h(t) = Σ jh( f j)exp[−2πi f jt] (4.3)

where we, for the time being, take f j = f0, j +mt – i.e., the frequency increases linearly

with a slope m over time.

Figure 4.3 shows one of the realisations of a signal generated using a power spectrum

that is random white noise. The left panel is the signal in time domain, the central panel

gives the corresponding frequency-time plot. The frequency increases linearly between

∼ 100 to ∼ 1500 Hz in a span of 0.5 seconds. The right panel is the same signal that has
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Figure 4.3: Left: A noisy Core Collapse Supernova Gravitational Wave like signal. Centre:

The frequency-time plot of the signal. Right: The signal lensed by a 100M� lens.

been lensed by a 100M� lens. Comparison between the left-most and right-most panels

makes it evident that the unlensed and lensed signals ‘look’ different. However, since

templates for such signals are unavailable at the moment, it is impossible for an observer to

identify whether a given signal is lensed just by looking at it.

However, there is a powerful tool that may prove useful in such circumstances: the

power spectrum of the signal. To illustrate this point, we show the power spectrum for two

cases in Figure 4.4: the left panel considers lensing by a 20M� lens, while we assume a

mass of 100M� on the right. The curve in blue is the power spectrum of the original signal,

red is the power spectrum of the lensed signal, and black is the |F| for the corresponding

lenses. Comparison between the red and black curves points towards an interesting trend:

the power spectrum of the lensed signal rises and falls in accordance with the oscillations

of the amplification factor. For heavier lenses, the amplification factor oscillates at a faster

rate, and hence a greater number of these ‘alignments’ are observed.

While the power spectrum seems to be a useful tool, we would like to know if any

statistical inference can be drawn from using such a method. For this, we first generate

100 realisations using a given power spectrum. We next compute the overlap between the

amplification factor and the power spectrum by finding the average distance between the

peaks of the two curves (for e.g., from Figure 4.4, we compare the blue with the black

curve, and the red with the black curve). One could also try to match troughs between

the two sets of curves, but these give rise to widely similar results, and we hence focus on

peaks alone. To counter the noise of the power spectrum, we use a Savitzky-Golay filter

([Savitzky 64]) to average across ‘N’ neighbouring bins. The value of ‘N’ is important, and

is to be chosen based on the number of oscillations of the power spectrum. If ‘N’ is too

large (small), one would end up with too few (many) peaks. Once filtered, we locate peaks

by comparing neighbouring values to identify local maximas.

Figure 4.5 shows the average distance between peaks of the amplification factor and
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Figure 4.4: Power spectra of Lensed and Unlensed signals from Figure 4.3. The left panel

considers a 20M� lens, and 100M� on the right.

peaks of the power spectrum using the method explained above. The crosses correspond

to median values, while the error bars correspond to the 16th and 84th percentile regions.

The data points of the lensed (unlensed) signals is represented by red (blue). The average

distance, denoted by ∆ f , is plotted against ML, for different lens masses. At relatively low

masses, there isn’t a big difference between the peak-matching of the unlensed and lensed

signals. This is because of the relatively low number of peaks of the amplification factor.

As ML increases, one notices a gradual seperation between the red and blue data points –

the probability of identify a lensed signal increases as the signal encounters heavier lenses.

While the trend of the red line is as expected, one would expect the median values of the

blue curve to ‘randomly’ oscillate, owing to the intrinsic noise of the signal. However, this

too seems to monotonically decrease at high values of ML. This is due to a limitation of

the method we adopt: for higher lens masses, we decrease the value of N for the Savitzky-

Golay filter. As a result, a greater number of peaks emerge for the unlensed signal. At a

later part of this section, we explore an alternate method to estimate genuine peaks.

While the central frequency increases linearly over time for a Core Collapse Supernova

Gravitational Wave Packet, the ‘spread’ of frequency components varies with time. To

simulate such a signal whose frequency evolves like this, we modify Equation (4.3) to:

h(t) = Σ
( f0+3σ f )

( f0−3σ f )
h( f )exp[−2πi f t− ( f − f0)

2/(2σ
2
f )]∆ f (4.4)

where, f0 ≡ f0(t) is the central frequency, and σ f ≡ σ f (t) is a measure of the spread

of the signal (in frequency domain). We choose values such that f0 increases linearly from

100 Hz to 1000 Hz in a span of 0.4 seconds, and then stabilizes at 1000 Hz for the next
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Figure 4.5: Results of the peak finding method for a set of 100 signals simulated using

Equation (4.3). The crosses denote median values, while the error bars correspond to the

16th and 84th percentile regions. Points in red (blue) correspond to the lensed (unlensed)

signal.

0.1 seconds. σ f increases linearly from 25 to 100 Hz during the first half of the signal, and

drops linearly from 100 to 25 Hz during the second half. One of the realisations of such a

signal is shown in the left panel of Figure 4.6, while the corresponding frequency-time plot

is shown in the central panel. We simulate hundred such signals and repeat the peak-finding

method described above. The results of this is shown on the right panel, and observations

remain more or less similar in comparison to Figure 4.5.

While the method used above seems to work well, it suffers from one main drawback –

the number of bins used by the Savitzky-Golay filter determines how good the estimation

of peaks are, as has been mentioned above. To improve this, we would like to develop a

method that better identifies peaks, and ideally is independent of the number of bins used.

To do so, we employ the following method: we first use a Savitzky-Golay filter with a bin

size of N = 11 to smoothen out the power spectrum. For the highest peak of the smoothened

power spectrum, we traverse to higher and lower frequencies such that the power is within

a fraction x of the power at the peak. We here take x = 50%. The location of the peak is then

estimated as a weighted average across the bounded region obtained above: fpk =
ΣP( f ) f
ΣP( f ) .

We then repeat this process for all other peaks, selecting peaks in descending order. The

left panel of Figure 4.7 gives an example of the peaks estimated by this method for one of

the signals simulated using Equation (4.4). In blue is the power spectrum of the signal, in

red is what one obtains after using a Savitzky-Golay filter, and the black crosses correspond

to the estimated location of peaks. The right panel of the same figure represents the results

29



0.0 0.1 0.2 0.3 0.4 0.5
t (s)

400

300

200

100

0

100

200

300

400

h(
t)

Figure 4.6: Left: One realisation of a signal simulated using Equation (4.4). Centre: The

corresponding frequency-time plot. Right: Results of the peak-finding method for 100 such

signals. Notations are same as that of Figure 4.5.

of the peak-finding method. One immediately notices a stark difference in results: Unlike

Figure 4.5 or Figure 4.6, the median values corresponding to the unlensed signals oscillate

randomly, instead of showing a monotonic trend like the lensed values.

Despite the improvement, this method isn’t foolproof as well: when one chooses to cre-

ate a bounded region around each peak such that the power within the region is within 50%

of the value of the peak, the number of estimated peaks will remain more or less constant

across all signals. As the mass of the lens increases, the number of peaks corresponding to

the amplification factor will increase, and at some point, the number of peaks of the ampli-

fication factor will equal the number of estimated peaks of the power spectrum. For lens

masses above this limit, the value of ∆ f will appear to worsen due to the limited number of

peaks. In such a case, one would have to modify the value of x.

Another way to reduce the number of false peaks would be to consider only those peaks

of the smoothened power spectrum that are larger than a given lower threshold (for e.g.

three times the rms value). However, introducing such a threshold seems to greatly reduce

the number of peaks estimated using our method, and the values of ∆ f are biased as a result.

Introducing such a lower limit would especially be important during real life observations,

where detector noise contributes false peaks. We conclude by noting that a more robust

method is required to tackle such scenarios.
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Figure 4.7: Results of the peak finding method using the new weighted average method to

estimate the location of peaks. The median values of the unlensed signal oscillate randomly

instead of depicting a monotonic trend.
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Chapter 5

Summary

In this thesis, we have explored the conditions under which wave effects are important in

gravitational lensing – this is when the wavelength of radiation is comparable to the physical

size of the lens. For wavelengths much smaller than the lens, geometric optics can be used.

At the other extreme, when wavelengths are much larger than the lens, lensing is absent.

Equivalently, wave optics is important when the time delay between neighbouring images

is comparable to the average time period of oscillation of the incoming radiation.

Gravitational Lensing produces multiple images, and the lensed signal that one observes

is a superposition of all these (diffracted) images. When the time delay between images is

comparable to the length of the signal in time-domain, distortions are strong in the lensed

signal. When one studies a signal whose shape is known, changes produced by lensing

may be inferred through a visual inspection of the signal, as long as the intrinsic noise of

the detector is small compared to the signal itself. This holds true for waveforms such as the

chirp signal, for which various templates are available. However, for a signal like the one

produced during a core collapse supernova, it is not easy to predict the shape of the signal.

In such a case, it is next to impossible to identify whether a signal has been lensed or not

by just looking at the signal. For such a case, it is useful to study the power spectrum of the

signal. The power spectrum of a lensed signal shows periodic rises and drops in power in

accordance with the oscillations of the amplification factor. This method is, however, useful

only for large lenses, for which the amplification factor oscillates multiple times within the

frequency range covered by the wave packet.

In addition to studying lensing by a simple model of an isolated point mass lens, we have

looked at other possible lensing systems. The simplest of these is that of a point mass lens

embedded in an underlying galaxy potential. The effect of the galaxy is to introduce two

additional terms into the lensing potential of the point mass lens: convergence and shear.

Convergence only increases the magnification and time delay between the images, while

shear may additionally increase the number of images in some cases. The next system that

32



we looked at was that of multiple point mass lenses spread across a single lens plane. The

number of images lies between N +1 and 5(N−1) for N(> 1) point mass lenses, but two

of these images carry away bulk of the magnification. As a result, the amplification factor

exhibits a ‘noisy’ sinusoidal behavior. All these lens models assumed lenses to be co-planar

on a single lens plane. We also looked at the case of multi-plane lensing. Unfortunately,

the number of parameters in this case is too large to make generalised statements.

At the moment, there are three detectors that are active as part of the LIGO/VIRGO

collaboration. A few more are planned in the form of LIGO-India, the Einstein Observatory,

LISA and DECIGO. Some of these detectors will be operational within the next decade or

so, and the field of gravitational wave astronomy is expected to rise in significance. Until

the present day, over 50 chirp signals have been detected, but none of them have been

claimed to be lensed. We wait for the day when improved detectors would allow for the

detection of a greater number of gravitational waves, and hope that some of these are lensed

during their propagation towards the Earth.
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Appendix A

How Good is the Point-Mass
Approximation?

Throughout this thesis, we have approximated micro-lenses as point-masses. This may

seem acceptable for neutron stars (black holes), whose radii (schwarzschild radii) are often

of the order of a few kilometres to a few tens of kilometres. However, stars are much larger

objects, with typical radii of the order of 106 kilometres. In this section, we aim to explore

the conditions under which an object as large as this can be considered as a point-mass.

In what follows, we approximate a star by a uniform-density sphere of radius R?. The

Gravitational Potential is given by:

φ(r) =

−
GM
2R?

(3− r2

R2
?
) ;r ≤ R?

−GM
R?

;r ≥ R?

(A.1)

The lensing potential can then be written as ([Suyama 05]):

ψ(x) =

ln[1+(1− (x/R)2)0.5]− (1/3)[4− (x/R)2][1− (x/R)]0.5 ;x≤ R

ln[x/R] ;x≥ R
(A.2)

where, R = R?/ξ0 is the radius of the star normalised by the Einstein Radius of the

Lens system. As it turns out, the parameter R is what determines the accuracy of this

approximation.

Figure A.1 shows the (modulus of the) Amplification factor obtained by using the above

lensing potential (in black). The left panel assumes a value of R = 0.1, while R = 1 on the

right panel. In blue, the amplification factor of a point mass lens is provided for reference.

We readily see that for R = 0.1, the point mass approximation almost reproduces the black

curve perfectly. In fact, this holds true R ≤ (0.4− 0.5). For larger values of R, we begin

seeing discrepancies between the two curves, and the point mass approximation no longer

holds.

34



0 2 4 6 8 100.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|F
|

R = 0.1
Point Mass

0 2 4 6 8 100.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|F
|

R = 1
Point Mass

Figure A.1: Amplification Factor for a Lens approximated as a Uniform Density Sphere (in

black) (as a function of dimensionless frequency, ω = 8πG(1+ zL)ML f/c3). Left Panel:

R = 0.1; Right Panel: R = 1. For reference, the amplification factor of a Point Mass Lens

(for the same lens/source parameters) is shown in blue.

To assess the physical situations during which the point mass approximation holds, we

next provide certain ballpark numbers for the value of R:

1. For a lens system in which all distances are of the order of one kpc, and for a solar

mass lens, the Einstein radius is of the order of 10−9 rad. The angular size of the sun

at this distance is ∼ 10−11 rad, and thus R ∼ 0.01. For typical galactic distances, a

solar mass star is well approximated by a point mass.

2. For stars on the Main Sequence, R? ∝ M0.57 (for e.g. [Eker 18]), while the Einstein

radius ∝ M0.5. Thus, R ∝ M0.07. The value of R remains fairly constant with increase

in mass, and hence the point mass approximation holds true for even larger stars

within typical galactic distances.

3. For a general distance D, the Einstein Radius ∝
√

D, while the angular size of an

object ∝ D−1, and hence R ∝
1√
D

. At large values of D (> 1kpc), the value of R is

bound to decrease. However, for values of D < 1kpc, the value of R will begin to

increase, and if D happens to be a few parsecs, R will be of order unity. It is only in

this unlikely scenario when the point mass approximation does not hold for a star.

Given that the uniform sphere model is a highly simplified and unrealistic model, one

may try to use an alternate mass distribution. One possibility is that of a polytrope of index

n = 3, but as has been shown in the past ([Ohanian 74]), the difference is noticeable only

when R∼ 1.
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Appendix B

The Ulmer-Goodman Formalism

The Ulmer-Goodman formalism [Ulmer 95] is a method to compute the amplification factor

in time-domain in lieu of frequency-domain. Equation (2.12) in time-domain is:

F (t,y) =
∫

∞

−∞

d f F ( f ,y)exp(−2πi f t) =
∫

d2x δ [td (x,y)− t] (B.1)

The estimation of F (t,y) is thus reduced to a line integral over contours with td (x,y) =
t. Transiting from time to frequency domain (or the inverse) can be performed using the

ever efficient FFT algorithm ([Cooley 65]), and thus computation of (2.12) is much faster

even for a general lens system of ‘N’ lenses on a single lens plane.

Unfortunately, extending this formalism to a Multi-Lens Plane scenario is accompanied

by a fair share of challenges. In this case,

F (t,y) =
∫

∞

−∞

d f F ( f ,y)exp(−2πi f t) =
∫

d2x1 ...d2xNδ [td (x1, ...,xN,y)− t] (B.2)

For a general case of N lens-planes, points lying on a higher-dimensional contour

(td (x1, ...,xN,y) = t) would contribute to F (t,y). At the moment, to the best of our knowl-

edge, there happens to be no efficient method to estimate such high-dimensional contours.

One possible alternative is to ‘freeze’ values for all but one set of variables, use (an

analogue of) Equation (B.1), and iterate over all other variables to obtain Equation (B.2). If

each iterate takes T amount of time to compute, then the total time this method would take

is T m2(N−1), where m is the grid size (used to define the various xi’s) employed. T is usually

of the order of minutes to hours, while m is usually of the order of 103. Unfortunately, even

for N = 2, this seems to be very inefficient.

Although the Ulmer-Goodman formalism is extremely useful for the case of Single-

Plane lensing, an alternate method is required for the Multi-Plane counterpart.
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Appendix C

Wave Packet Succeeding a Chirp Signal

During the in-spiral process between two massive objects, a ‘chirp signal’ is emitted. At

the moment of coalescence, a gravitational wave packet is emitted. Figure C.1 provides an

example of these signals for a 1M�+1M� binary system. We have simulated these signals

using the PyCBC package ([Nitz 21]). The left panel shows the chirp signal produced

during the final ∼ 0.1 seconds before coalescence, while the wave packet is shown on the

right. For the binary system considered here, the wave packet is only ∼ 0.5 milliseconds

long.
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Figure C.1: A gravitational wave signal produced during the inspiral of a 1M�+ 1M�
binary system. The well-known chirp signal is shown on the left, while the wave packet is

shown on the right.

Unlike all the cases that have been discussed in this thesis, the wave packet is not ‘iso-

lated’, but is rather attached to the chirp signal that precedes it. Due to this, it is not easy

to observe multiple distinct images of the wave packet. Figure C.2 portrays how the above
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wave packet would appear if it is lensed by 10M� lens (left) and 30M� lens (right). Here,

we have again assumed an isolated point mass lens. Even though the wave packet appears

visually different, it may not always be easy to identify this difference during real life ob-

servations, for two reasons: the time resolution of the detector may not allow such fine

measurements, and/or the detector noise may limit observations.
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Figure C.2: Lensing of the above wave packet by a 10M� lens (left) and 30M� lens (right).

Suppose such measurements are made at some point in the future, there is an important

application that can envisaged: if both the source and lens happen to be extragalactic, the

galaxy in which the micro-lens is situated will lens the signal as well. The time delay

caused by the galaxy lens can be as large as a few days, so distinct signals will be observed

in such a case. Each of these images would further be lensed by any micro-lenses in their

vicinity, which would impart features such as those shown in Figure C.2. If macro-images

are obeserved within a few days of each other, these minute features caused by the micro-

lens may help decide if the different signals are indeed macro-images, or signals emitted by

different sources.
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