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Abstract

The study of vacuum entanglement is boosted with idea of entanglement harvesting (EH),

transferring the entanglement into a simpler system with well known measures of entan-

glement. We will see that trapped ion chains provide a practical model for studying EH.

Recent studies have shown the quantum advantage of temporal superposition used to

enhance the efficiency of EH. We will incorporate superposition in the ion trap model, to

try to come up with an experimentally viable study of applying quantum superposition

in EH.
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Chapter 1

Introduction

Quantum entanglement is probably the most fundamental characteristics of quantum

mechanics. Right from being noticed in context of “spooky action at a distance” by

Einstein Rosen and Podolsky (EPR) in 1935 (Einstein 35), its peculiarity has caught the

attention of physicists for generations (Horodecki 09). Bell in 1964 (Bell 64) came up

with his inequality, claiming that two subsystems can have stronger correlations than

can be predicted from any local classical theory. Over the years we have found ways to

use entanglement as a resource in tasks like cryptography (Ekert 91) and teleportation

(Bennett 93).

In a famous proposal by Summers and Werner in 1985 (Summers 85), they claimed

that the vacuum state of a quantum field is entangled. They came up with a mathe-

matically rigorous proof in a set of two papers in 1987 (Summers 87) to validate their

claim. What they showed is, two space-like separated regions in the space-time having a

quantum field, will have some non-local quantum correlations. In the context of Algebraic

Quantum Field Theory (AQFT), this means that, there exists some operators in the C∗-

algebra corresponding to the two regions, with which we can show a Bell-like inequality

violation. We will explain it in detail in chapter 2.

Hence, the vacuum state of a quantum field is a huge reservoir of this entanglement

which can be used as a resource. Also, it is now found that a proper understanding of the

entanglement can unravel mysteries about the global space-time structure like curvature

(Steeg 09) and topology (Mart́ın-Mart́ınez 16). The concept of field entanglement is also

used in frontiers of fundamental physics like AdS-CFT correspondence in string theory.

Ryu-Takayanagi in 2006 (Ryu 06) conjectured that there is a relation between the entan-

glement entropy of a quantum field with a property of a higher dimensional AdS space.

This again indicates that the entanglement has a role to play in the global geometry of
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CHAPTER 1. INTRODUCTION

space-time. In a recent work by Brown et. al. (Brown 21), they were able to replicate

the behaviour of wormhole using an entangled quantum system. In this paper they have

talked about using a trapped ion chain as an experimentally realizable quantum system.

We will also use a system of ion traps in our study (chapter 4). In condensed matter stud-

ies have shown that, the ground state entanglement characterizes the quantum phases of

matter (Filippone 11) . So all these examples show us how vital is the understanding of

vacuum entanglement in various fields.

The problem with the study of entanglement in quantum fields is that we have a very

limited understanding of the measures of entanglement for such systems. However, we

know some good measures for 2×2 and 2×3 dimensional systems like Negativity (Peres 96)

(Horodecki 96) and Concurrence(Wootters 98). So, we can “swap” the entanglement

present in a larger dimensional system into some 2 × 2 system, by locally coupling with

it, at two different locations. Subsequently we can measure the entanglement “taken up”

by the simpler system using these well defined entanglement measures.

This idea led to the works of Valentini (Valentini 91) and Reznik et. al. (Reznik 03)

respectively on Electromagnetic (EM) fields and real scalar fields. Valentini could show

that if two initially uncorrelated atoms interact locally with the EM field vacuum at two

different locations, they get entangled after some time even if the interaction events remain

space-like separated. The internal electronic levels of the atoms form the 2 × 2 system

in this case, into which the EM vacuum entanglement gets harvested. Reznik obtained

similar results using Unruh-DeWitt (Smith 19) detectors in real scalar fields. Unruh-

DeWitt detectors are again a pair of systems with 2 energy levels, which can locally

couple with a quantum field. In Figure 1.1 we depict the quantum field as a discrete

chain of balls, to which two detectors are locally coupled. The detectors get entangled

after coupling for some finite time even if the coupling events remain causally separated.

The source of the entanglement is the entanglement already present in the vacuum field

itself as any other possibility of interaction is ruled out by causal separation. So, this

serves as the lower limit of the amount of entanglement present in the vacuum.

In section 3.2 we will talk about the work of Reznik in detail. We will also talk about an

interesting concept of temporal superposition which would be used to enhance the efficiency

of entanglement harvesting (Henderson 20). Recent works (Foo 21) have showed us that

this concept of superposition has very powerful effect in better entanglement harvesting

in various types of space-times. It provides us with a better tool to study the quantum

field entanglements that depend on space-time properties.

However, the issue with entanglement harvesting is, it requires very intricate detector-

field coupling, which is not experimentally viable. In chapter 4 we will discuss about

11



CHAPTER 1. INTRODUCTION

Figure 1.1: Two detectors A and B are coupled locally at two far away locations in space-

time having a quantum field in vacuum state. After some finite time t, we observe that

the detectors get entangled. It happens even if t is less than the time required for any

physical information to travel the distance d from A to B

a simple system of trapped ion chain which can be thought of as a discrete analogue

of an one-dimensional quantum field. The chain of ions form a system of n-dimensional

quantum harmonic oscillator, with a ground state analogous to the quantum field vacuum.

Each ions have their internal electronic structure from which a couple of energy levels can

be coupled with the vibrational ground state of the harmonic oscillator using lasers. This

way we can possibly “harvest” the entanglement into the internal levels. (Retzker 05)

It would interesting to see the effect of superposition in ion trap entanglement har-

vesting. Firstly, because it is something that is experimentally viable. Secondly, it is

much easier to study the nature of entanglement in a system of discrete modes, like the

harmonic oscillator than a continuous mode quantum field. We will see in chapter 5 that

with a certain interaction Hamiltonian, it is only possible to extract entanglement when

we use superposition. We will try to find a condition for choosing the coupling constants,

such that we get a maximum entanglement harvesting.

We will see that using the superposition we are able to harvest up to 15% of the initial

12



CHAPTER 1. INTRODUCTION

entanglement present in the ground state of a two-ion in a chain system. This indicates

a clear quantum advantage of incorporating superposition in entanglement harvesting in

the ion trap model.
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Chapter 2

Vacuum Entanglement

As we mentioned in the introduction (chapter 1), Summers and Werner showed that

the vacuum state of a quantum field is entangled (Summers 85)(Summers 87). In this

chapter we try to understand what it is meant for a quantum field to be entangled. In

section 2.1 we will discuss about the claim by Einstein, Rosen and Podolsky in 1935, which

was the first attempt (Einstein 35) to mathematically formulate the strange non-classical

behaviour of entanglement. It remained a mystery till Bell tried to validate the claim in

1964 but instead ended up showing that nature in the formulation of quantum physics do

behave counter-intuitively (Bell 64).

Summers and Werner extended the argument to quantum fields by using the formula-

tion of Algebraic Quantum Field Theory (AQFT) as we will see section 2.3. They used a

generalized Bell’s inequality in the formulation of order unit spaces (section 2.2) and then

in C∗-algebraic framework. We will try to get the essence of the idea without going too

much into the mathematical rigour. We will try to introduce the mathematical definitions

as and when required.

2.1 Bell’s Inequality

The most peculiar aspect of quantum mechanics is the claim that the physical properties

of a system to be measured do not exist independent of observation. In 1935 Einstein,

Rosen and Podolsky came up with a paper “Can Quantum-Mechanical Description of

Physical Reality be Considered Complete?” (Einstein 35), to question the completeness

of the quantum theory. They argued that there exists some “hidden variables” that we

overlook in the theory.
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CHAPTER 2. VACUUM ENTANGLEMENT

2.1.1 Classical case

Let us look at what we should expect in a classical scenario (M. Nielsen 00). Charlie (C)

prepares an ensemble of systems (say many copies of a system of two particles) and sends

one each to Alice and Bob. Alice and Bob measure two properties each (Q,R and S, T )

on the parts of the system they received. Both Alice and Bob randomly chooses between

measurements Q or R and S or T respectively just before measuring. They perform

the measurements in such a way that they remain causally separated, i.e., the events of

measurements remain space-like separated. So, the events in the process (of which among

the two measurements to be preformed and then performing it) of one party remain space-

like separated from that of the other party. The outcomes of the measurements are either

1 or −1, so Q,R, S, T ∈ {−1, 1}. It is illustrated in Figure 2.1.

Figure 2.1: The figure represents the labs of Alice and Bob as squares that are “far away”

such that the measurements remain space-like separated. Q and R are measured by Alice

while S and T are measured by Bob.

We will be particularly interested in the quantity

QS +RS +RT −QT
= (Q+R)S + (R−Q)T = ±2 (2.1)

as R,Q = ±1, either of (Q + R) or (R − Q) vanishes and the other is ±2. Classically

we expect that the systems will have a certain probability of being in a particular state

depending on the preparation. So we can have a classical probability distribution as

a function of the values of the quantities that are measured. Using such a probability

distribution we can get the expectation value of the combination,

E(QS +RS +RT −QT ) (2.2)

=
∑
QRST

p(Q,R, S, T )(QS +RS +RT −QT )

15



CHAPTER 2. VACUUM ENTANGLEMENT

≤
∑
QRST

p(Q,R, S, T )× 2 = 2

So,

E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2 (2.3)

. This is the Bell or CHSH inequality (Clauser 69).

2.1.2 The Quantum Case

Now, we consider a quantum system prepared in the following two-qubit state,

|φ〉 =
|01〉 − |10〉√

2
(2.4)

The two qubits are separated and sent to Alice and Bob respectively. Let the observables

we encountered before in Equation 2.1 be,

Q = Z1, R = X1, S =
−Z2 −X2√

2
, T =

Z2 −X2√
2

(2.5)

where Zi and Xi are the σz and σx operators respectively of individual qubits. We can

show that,

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 = 2
√

2 (2.6)

where, the angled brackets indicate the expectation values of the operators in the given

state (Equation 2.4). Hence the inequality is clearly violated. This is not possible for any

classical theory that has the following assumptions,

1. Realism: Physical properties take values independent of observation.

2. Locality: Bob’s measurements do not affect that of Alice.

The violation indicates that one of the two (or both of) the assumptions does not hold

true under the quantum theory.

2.2 Bell’s inequality in Order Unit Spaces

We can generalize the idea that an inequality like the Bell’s inequality can characterize

the non-classicality present in a theory. We will follow the line of arguments given in the

1987 paper by Summers and Werner (Summers 87). We will have to look at a few basic

mathematical definitions to formulate such a generalization.
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CHAPTER 2. VACUUM ENTANGLEMENT

• Order Unit Spaces are vector spaces with a defined ordering and containing a

unit element. It is given as (A ,≥,1). So, we arbitrarily assign a relation, A >

B∀A,B ∈ A .

• Convex Cone is defined as A+ ≡ {a ∈ A |a ≥ 0} such that,

1. ∀r > 0, r ∈ R, rA+ ⊆ A+, hence it is closed under a scaling with a positive

element in the field over which the vector space is defined.

2. A+ + A+ ⊆ A+, hence it is also closed under vector addition.

Notice, we can use A+ to order A . To do so, we will say, for a,b ∈ A , if (a − b) ∈ A+,

then a ≥ b.

In a general quantum theory we need to define two main objects. The preparation or

the states in which we prepare our system and measurement or the operators with which

we bring about a change in the system. In a more mathematically rigorous sense we have

the following definitions.

• Measurements with finite possible outcomes are represented as the set {ai}, ai ∈
A+,

∑
i ai = 1, where A+ ≡ {a∗a|a ∈ A }. If we look closely,

∑
i ai = 1 is basically

the Kraus’ theorem for a complete set of Kraus operators.

• Preparations are the normalized linear functionals on A that maps each element

in A to some number. If, ω is a state on A , then ωi = ω(ai) is the probability of

obtaining result i. We will see that in our familiar notion we can write ωρ(A) =

Tr(ρA), where ρ is the state and A is the operator.

Now the stage is set to define a generalized Bell’s inequality in this context. In order

to do so we need to define something known as the correlation duality. Correlation

duality consists of two order unit spaces A , B and a mapping p̂ : A ×B → R, such

that, p̂(a, b) ≥ 0 and p̂(1A ,1B) = 1, where a ∈ A and b ∈ B. 1A and 1B represent the

unit elements in A and B respectively.

Let us consider measurements that admits two outcomes (and hence consisting of only

two elements), corresponding to {a+, a−} ⊂ A , where we can see a+,a− ≥ 0, a+ +a− = 1.

It can be mapped to elements like −1 ≤ a ≤ 1 using a± = 1
2
(1± a). We will look at two

such measurements each at A and B. a1, a2 ∈ A and b1, b2 ∈ B. We have the following

theorem,

Theorem 1 χ = 1
2
|p̂(a1, (b1 + b2)) + p̂(a2, (b1 − b2))|
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CHAPTER 2. VACUUM ENTANGLEMENT

1. χ ≤ 2

2. (a) If A is Hermitian part of C∗ algebra then χ ≤
√

2

(b) If χ =
√

2, ∀a ∈ A

ω([ai, a]) = 0, ω(a2
i a) = ω(a), ω((a1a2 + a2a1)a) = 0

3. χ ≤ 1 if,

(a) A is classical(Abelian).

(b) ω is pure on A

(c) ∃ ξα ∈ A ∗, ηα ∈ B∗, such that, ∀a ∈ A , b ∈ B

p̂(a, b) =
∑
λαξα(a)ηα(b).

We will not go into the detailed proof of the theorem which is present in full rigor in the

paper of Summers and Werner (1987). If we look closely, we can make some interesting

observations.

Notice that χ = 1
2
|p̂(a1, (b1 + b2)) + p̂(a2, (b1 − b2))| has the same form as the left hand

side of the CHSH inequality in Equation 2.3. The right hand side would be 4 instead of

2
√

2 as we have a 1/2 factor on the left. So point 1, is a general inequality theorem.

We get the CHSH inequality in the a more specialized order unit space known as the

C∗ algebra. If we construct our theory such that the measurements are represented by

a C∗ algebra, then we get our familiar quantum theory in a generalized form. Before

moving on, let us have a brief mathematical description of C∗ algebra.

An algebra is a vector space with an additional bilinear mapping in the form of vector

multiplication ∗ : A × A → A or A ∗ B ∈ A ∀ A,B ∈ A . A C∗ algebra is a special

kind of algebra with the following properties,

1. We can define an involution A∗ for every A ∈ C such that, A∗∗ = (A∗)∗ = A,

where C is the C∗ algebra. The involution is the generalized hermitian conjugation

for the operators.

2. For all A,B ∈ C we have (A + B)∗ = A∗ + B∗ and, (AB)∗ = B∗A∗

3. (cA)∗ = c̄(A)∗ for all c in the complex field over which the algebra is defined. c̄ is

the complex conjugate of c.

4. ‖A∗A‖ = ‖A‖‖A∗‖ which is the most important property of the C∗ algebra.

18



CHAPTER 2. VACUUM ENTANGLEMENT

Coming back to the theorem, if ω(x) = 0 implies, x = 0,∀x ∈ A , then from the

second part (2(b)), a2
i = 1 and ((a1a2 + a2a1)) = 0. When A is the Hermitian part

of C∗ algebra, i.e., when A∗ = A, and ω is restricted to 2 × 2 matrix algebra M2(C),

the elements a1, a2 and a3 ≡ −(i/2)[a1, a2] form the Pauli spin matrices. We know that

the observation of Bell’s inequality violation was experimentally realized using spin qubit

systems (Aspect 81), which are basically some 2 × 2 systems. Hence, this theory has a

direct experimental realization in the form of this special case.

The point 3 is all about the situations in which we do not have an entanglement.

3a) is the classical Abelian case which follows the Bell’s inequality. In 3b) purity is a

situation when we can decompose the mapping p̂ into a product of local mappings from

individual subalgebras. So, p̂(a, b) = ω(a)η(b) where, a ∈ A and b ∈ B, ω : A → R
and η : B → R. Finally, 3c) is the most general case in which we decompose the global

mapping as, p̂(a, b) =
∑
λαξα(a)ηα(b). Here A ∗ and B∗ are the dual spaces. or the space

of mappings from A and B to R which are basically the local state spaces.

The maximal Bell correlation β(p̂,A ,B) is defined as:

β(p̂,A ,B) ≡ 1

2
sup(p̂(a1, b1) + p̂(a1, b2) + p̂(a2, b1)− p̂(a2, b2)) (2.7)

where supremum is over all ai ∈ A , bj ∈ B and, −1A ≤ ai ≤ 1A , −1B ≤ bi ≤ 1B

So, β(p̂,A ,B) = 1 means all possible quadruple satisfy Bell’s inequality. If we have

measurements that violate the classical inequality as we did in subsection 2.1.2, we have

reached the quantum realm, which cannot be explained by any local classical theory. We

have experimentally demonstrated (Aspect 81) that we can have such situations, implying

that nature does behave quantum mechanically.

For, quantum theories, in C∗ algebraic framework, the right hand side is
√

2, which is

an equivalent inequality. Again if we find measurements for which even that inequality is

violated, we say that the observation cannot be explained by the postulates of standard

quantum mechanics. We have not yet experimentally violated this inequality, which

implies that the quantum theory is safe so far.

Let us now try to understand how we study a quantum field in the framework of C∗

algebra, and what are the equivalent correlation duality that we can use to form a Bell

like inequality.
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CHAPTER 2. VACUUM ENTANGLEMENT

2.3 Vacuum Entanglement in context of Algebraic

QFT

In the 1950’s and 60’s people were trying to come up with a proper mathematical structure

for studying quantum fields. While Wightman (Streater 64) tried to focus on the field,

Haag, Kastler, and Araki (Araki 99)(Haag 64) considered the observables as the primary

objects for the theory. They claimed that the field states emerge naturally from the

mathematical description of the space of observables. We will be looking at the postulates

formulated by Haag, Kastler, and Araki in the form of Algebraic Quantum Field theory

in the following subsection.

2.3.1 Algebraic Quantum Field Theory

In AQFT we assign a C∗ algebra A (O) to each space-time region, O ⊂ R4. So, each

possible subset or location of the Minkowski space-time has an associated local C∗ algebra,

representing the observables in that region. These local C∗ algebras will be satisfying the

following conditions,

1. Isotony: If O1 ⊆ O2 then A (O1) ⊆ A (O2). We say A (O) are subalgebras of the

global algebra C∗ algebra A generated by ∪O⊂R4A (O).

So, for any location within a larger location we have a smaller subalgebra for it.

We can think of any location as a smaller location within the entire space-time, and

hence all local algebras are some sub-algebra of the global algebra.

2. Poincaré covariance: ∃{aλ|λ ∈ P} where P is the Poincaré group, aλ are

automorphisms on A such that, aλ(A (O)) = A (Oλ) where Oλ = λ(O)

This postulate makes sure that we have a corresponding notion of translations and

Lorentz transformations in the algebra of operators. The algebra associated with

the transformed space-time is equivalent to an unique automorphism of that algebra.

So, the algebra is mapped to another algebra in accordance to the transformation

in the spacetime. Here λ represents the space-time Poincaré transformation while

aλ is the corresponding automorphism in the algebra.

3. Locality: If O1 and O2 are space-like separated, then [A (O1),A (O2)] = 0

This postulates incorporates the Einstein’s causality in the algebra of the observ-

ables. When the two locations O1 and O2 are space-like separated, we expect the

operators associated with these two regions to commute.
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4. Physical Representation: There is a representation π of A on Hilbert space H

such that, there is a unitary representation U(P) of the Poincaré group, where,

(a) U(λ)π(A)U(λ)−1 = π(aλ(A)), ∀A ∈ A

(b) Generators of translation group satisfy, (P 2
0 − P 2

1 − P 2
2 − P 2

3 ) ≥ 0

There is a Gelfand–Naimark–Segal (GNS) representation of a C∗ algebra on a

Hilbert space H , that maps each element of the algebra to some bounded op-

erators on H (Arveson 76). Here the mapping is the π. So we can find an ξ ∈H

such that ω(a) = 〈π(a)ξ, ξ〉. We saw in postulate 2 that, there is a automorphism

aλ corresponding to some Poincaré transformation λ. For such automorphisms we

have a corresponding unitary operation that transforms the operator acting on the

Hilbert space over which the algebra is represented. 4b) is basically the 4-momentum

conservation under Poincaré transformation, as the translations must be generated

by some momentum operators Pi.

Now, we move on to the description of the vacuum state and the correlation duality

in this picture of algebraic QFT.

2.3.2 The Vacuum state and inequality violation

The two local algebras that we required to form a correlation duality in order unit spaces,

are just the sub-algebras corresponding to the two space-like separated regions O1 and

O2. The global state φ0 will be the mapping p̂. So in our case the correlation duality will

be of the form, (φ0,A (O1),A (O2)) where O1 and O2 are space-like separated regions.

It can be shown that there exists a unique vacuum vector Ω ∈ H . Ω is the vac-

uum state, which means, it is translation invariant. So the vacuum state is φ0(A) =

〈Ω, π(A)Ω〉, A ∈ A .

There is a very important property called the clustering property that emerges in this

formalism.

Clustering property of the vacuum state: If O1,O2 are bounded subsets of space-

time and a ∈ R4 is some space-like vector,

lim
t→∞

φ0(U(ta)AU(ta)−1B) = φ0(A)φ0(B) (2.8)

for any A ∈ A (O1) and B ∈ A (O2). With the works of Fredenhagen (Fredenhagen 85)

and Araki (Araki 62) it can be stated that the clustering behaves like R−2 for massless

and e−mR for massive fields, where R is roughly the distance between O1 and O2. This
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property implies that as the two space-time locations are translated infinitely far from

each other, they can be written in a product form and hence they will no longer be

violating the classical inequality.

In the next chapter we will try to see how we can experimentally realize the fact that

the quantum field vacuum is entangled.
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Entanglement Harvesting

As we mentioned in the introduction, we do not have a good understanding of how to

quantify the entanglement in an infinite dimensional system like the quantum field. Hence

to experimentally demonstrate that the quantum field is indeed entangled, we need to first

transfer the entanglement in a simpler (2×2) system and then measure it using Negativity

(Peres 96) or Concurrence (Wootters 98). In the following section, we will briefly discuss

about the work of Reznik in 2003 (Reznik 03), in which he used a Unruh-DeWitt detector

to “probe” a real scalar quantum field.

3.1 Entanglement Harvesting using Unruh-DeWitt

detectors

In this paper titled “Entanglement from the vacuum”, Reznik considers a massless rela-

tivistic scalar field φ(~x, t) in 3 spatial dimensions. The field is locally coupled with two

Unruh-DeWitt detectors in two distant regions. A Unruh-DeWitt detector is basically a

system with two discrete energy levels with an energy gap Ω.

The interaction hamiltonian used to couple the field and the detectors is,

Hint = HA +HB

= εA(τ)(e−iΩτσ+
A + e+iΩτσ−A)⊗ φ(xA(τ), t)

+ εB(τ ′)(e−iΩτ
′
σ+
B + e+iΩτ ′σ−B)⊗ φ(xB(τ ′), t) (3.1)

where τ and τ ′ are the proper times of the detectors A and B respectively. εA(τ) and

εB(τ ′) are the coupling parameters which are active(non-zero) at some parts of the space-

time trajectories of the detectors. The couplings are switched on in such a way that the
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parts of the trajectories in which they couple remain space-like separated. σ+
A , σ−A and

σ+
B , σ−B are the raising and lowering operators of the Detectors A and B respectively. Ω is

the energy gap between the two energy levels of the detectors and φ is the quantum field

operator.

The trajectories are chosen as follows,

xA = −L/2 cosh(2τ/L)

tA = L/2 sinh(2τ/L) (3.2)

xB = L/2 cosh(2τ ′/L)

tB = L/2 sinh(2τ ′/L) (3.3)

This choice of trajectories makes sure that they remain causally separated. Hence we can

now write the unitary evolution operator as a product, as the local Hamiltonians HA and

HB will commute.

U = e−i
∫ ∫

(HA(τ)+HB(τ ′))dτdτ ′

= e−i
∫
HA(τ)dτ ⊗ e−i

∫
HB(τ ′)dτ ′

=

(
IA − i

∫
HA(τ)dτ +

1

2

(
−i
∫
HA(τ)dτ

)2

+O(ε3A)

)
⊗(

IB − i
∫
HB(τ ′)dτ ′ +

1

2

(
−i
∫
HB(τ ′)dτ ′

)2

+O(ε3B)

)
(3.4)

Now, both the detectors and the field are initially assumed to be in their respective

ground and vacuum states. |Ψi〉 = |↓A〉 |↓B〉 |0〉 . Now, evolving with the unitary operator

we get,

|Ψf〉 =
[
(1− Φ−AΦ+

A + Φ−BΦ+
B) |↓↓〉 − Φ+

A Φ+
B |↑↑〉

− iΦ+
A1B |↑↓〉 − i1AΦ+

B |↓↑〉
]
|0〉+O(ε3i ) (3.5)

where we have,

Φ±i =

∫
dτεi(τ)e±iΩτφ(xi(τ), t) (3.6)

(i = A,B). Note that we have only expanded the unitary operators upto second order in

the coupling parameters as they are very small.
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The final state after tracing over the field degrees of freedom has the following form.

ρ =


1− C 0 0 −〈XAB|0〉

0 |EA|2 〈EB|EA〉 0

0 〈EA|EB〉 |EB|2 0

−〈0|XAB〉 0 0 |XAB|2

 (3.7)

where, |EA〉 ≡ Φ+
A |0〉, |EB〉 ≡ Φ+

B |0〉, |XAB〉 ≡ Φ+
AΦ+

B |0〉, C = 2Re 〈0|T(Φ−AΦ+
A +

Φ−BΦ+
B) |0〉 and |XAB|2 = 〈XAB|XAB〉. We have written the density matrix in the basis

{|↓↓〉 , |↓↑〉 , |↑↓〉 , |↑↑〉}.
The condition for non separability (Peres 96)(Horodecki 96) for the density matrix in

Equation 3.7 is given as,

|〈0|XAB〉|2 > |EA|2|EB|2 and

|〈EB|EA〉|2 > |XAB|2 (3.8)

Now, we will be calculating the terms. We have,

|EA|2 =

∫
dτA

∫
dτ ′Ae

−iΩ(τ ′A−τA)D+(A′, A) (3.9)

and

〈0|XAB〉 =

∫
dτA

∫
dτBe

iΩ(τA+τB)D+(A,B) (3.10)

where we have the Wightman function given as, D+(x′, x) = 〈0|φ(x′, t′)φ(x, t)) |0〉 =

− 1
4π2 ((t′ − t− iε)2 − (~x′ − ~x)2)

Now, if we put in the trajectories we considered in Equation 3.2 and Equation 3.3,

D+(A′, A) = − 1

4π2L2 sinh2[(τ ′A − τA − iε)/L]
(3.11)

D+(A,B) =
1

4π2L2 cosh2[(τB + τA − iε)/L]
(3.12)

we can put in these functions and calculate the integrals. We get,

|〈0|XAB〉|
|EA|2

= eπΩL/2 (3.13)

and hence, it does satisfy the condition of non-separability. Hence we conclude that

the final density matrix in Equation 3.7, did have some entanglement starting from a

separable local ground state. We could successfully ‘transfer’ some of the entanglement

into the detector pair system.

Now, entanglement harvesting depends on the configuration and internal properties

of the detectors(Pozas-Kerstjens 17). It depends on the
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• energy gap of the two levels of the detectors,

• coupling constants or the strength of the detector field coupling,

• spacial separation of the two detectors, and

• switching profile, or the time for which the detector-field coupling remains active.

In the paper by Pozas-Kerstjens et. al. (Pozas-Kerstjens 17), they have come up with

an interesting no-go theorem, for a special kind of switching profile.

Theorem 2 No-go theorem Entanglement Harvesting is not possible if the detectors

have a Dirac-delta window function.

In other words, when the detector-field coupling is switched on and off in an infinitesimally

short time interval, we see no harvested entanglement. We will see that this theorem will

be challenged by using the novel idea of Temporal Superposition and Indefinite Causal

Ordering. (Henderson 20). We will discuss about this in the following section.

3.2 Temporal Superposition and Indefinite Causal Or-

der in Entanglement Harvesting

The most radical claim of Einstein’s Relativity is, the causal relations of events are dy-

namic in nature. They depend on the metric, which is the solution of the Einstein field

equations given a matter-energy distribution. In order to incorporate such an idea into

the quantum framework, it was found necessary to consider quantum events with no

fixed order (Hardy 09). It is a completely new and unexplored area as most of quantum

mechanics is done assuming some fixed arrangement of events in time.

Shannon’s theory (Shannon 48) of quantum communication, assumes a definite con-

figuration of channels. It was later found (Aharonov 90) that in general however, we

can have a quantum superposition of these channels. This superposition can also be in

the order of these channels in time. The temporal order can be controlled by a control

qubit, the superposition of which can lead to an indefinite causal ordering. This setup

was termed as the quantum Switch (Chiribella 13a).

It was shown by the works of Chiribella et. al. (Chiribella 13b) that indefinite or-

dering can be used to perform some unique tasks. It is impossible to accomplish such

computations with the same number of definitely ordered gates. More recently, Procopio

et. al (Procopio 15) experimentally realized the quantum switch.
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In the paper by Henderson et. al. (Henderson 20), it was found that, using quantum

controlled superposition of a pair of co-moving Unruh DeWitt detectors we can have a more

efficient entanglement harvesting. It is found we get a violation of the no-go theorem we

got in Theorem 2.

We will have a couple of co-moving Unruh DeWitt detectors in a real scalar field. The

interaction Hamiltonian is given as

HI(t) =
∑

D=A,B

∑
i=0,1

λDχD,i(t)
(
eiΩDtσ+ + e−iΩDtσ−

)
⊗φ (xD(t))⊗ |i〉C 〈i| (3.14)

where, λD, χD,i, φ are the coupling constants, switching functions, and scalar field operator

respectively. The σ± and ΩD are the raising/lowering ladder operators and the energy gap

of the two-level detectors. System C is the control qubit that determines the switching

functions of the detectors A and B.

There are four terms in the Hamiltonian, two each for the two detectors A and B.

χD,0(t) are chosen when the control qubit is in |0〉 state and χD,1(t) are chosen when the

control qubit is in |1〉 state. Now, we can choose the functions χD,i(t)’s to depend on time

in a certain way as we will discuss in the following. Things get interesting when we have

a superposition in the control qubit.

As we have a common rest frame for the two detectors, lets assume in the frame we

divide the space-time into equal time space-like slices. There are a couple of distinct cases

that we are considering.

• Past-Future case: When supp(χA,0) = supp(χB,0) ≤ supp(χA,1) = supp(χB,1), the

two detectors are switched on simultaneously but in superposition of two different

time slices.

Here supp is the support of a function, i.e., the subset of the domain (here its

the time) in which they are non-zero. If we look at the interaction hamiltonian

Equation 3.14, in this case we have both the χD,0(t)’s and χD,1(t)’s being activated

at some particular time say t0 and t1 respectively. In Figure 3.1(left), we have

this phenomenon of simultaneous activation of the two detectors at either of the

two different time slices. When the control qubit is in a superposition, we get a

superposition of the coupled unitary evolution (corresponding to the interaction

hamiltonian) at two different times t0 and t1.

• Cause-Effect case: When supp(χA,0) = supp(χB,1) ≤ supp(χA,1) = supp(χB,0),

one detector is switched on in the causal past of another, but in superposition of

causal ordering.
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Figure 3.1: The Past-Future case and the Cause-Effect case, with the faded and brightened

colors in separate branch of superposition. In the past-future image, both A and B

are switched on simultaneously at either of the two times. The 45◦ line in cause-effect

image indicates the trajectory of light from A to B, showing that A is in the causal

past of B in one branch of superposition, while B is in the causal past of A in the

other.(Henderson(2018))

Figure 3.1(right) we have, a situation in which supp(χA,0(t)) ≤ supp(χB,0(t)) when

control is in |0〉 and so we have the coupling at A taking place before that at B.

Also, supp(χA,1(t)) ≥ supp(χB,1(t)) when control is in |1〉 in which B is before A.

Now, again if the control qubit is in a superposition, we get a superposition in the

unitaries with different causal orders of the events.

3.3 Evolving the system

Initially both the detectors and the field are in their respective ground and vacuum states.

The control qubit is in |+〉C = 1√
2
(|0〉C + |1〉C) which is the superposition state.

The density matrix corresponding to the initial state of the entire system ABC and

the field is,

ρ0 = |0〉A 〈0| ⊗ |0〉B 〈0| ⊗ |+〉C 〈+| ⊗ |0〉F 〈0| (3.15)
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Again we expand the unitary operators upto the second order in coupling parameter.

U = I− i
∫ ∞
−∞

dtHI(t)

−
∫ ∞
−∞

dt

∫ t

−∞
dt′HI(t)HI (t′) + O

(
λ3
)

= I + U (1) + U (2) + O
(
λ3
)

(3.16)

Evolving the initial state and tracing over the field we get,

ρABC = TrF
[
ρ0 + U (1)ρ0U

(1)† + U (2)ρ0 + ρ0U
(2)†]+ O(λ4)

=
1

2

∑
i,j


(1 + Yii + Y jj) 0 0 M ∗

jj

0 PB,ij L ∗
AB,ji 0

0 LAB,ij PA,ij 0

Mii 0 0 0

⊗ |i〉C 〈j| (3.17)

where the U (1) and U (2) are the first and the second order terms of the Dyson series ex-

pansion of the unitary operator corresponding to the Hamiltonian given in Equation 3.14.

The various terms appearing in the final density matrix are given as:

• PD,ij : Local terms of correlation at the same time when i = j and non-local

correlation at different times when i 6= j both for the same detector.

PD,ij = λ2
D

∫ ∞
−∞

dt

∫ ∞
−∞

dt′χD,i(t)χD,j(t
′)〈φ(xD(t′))φ(xD(t))〉

eiΩD(t−t′) (3.18)

• The Yii’s are simply related, Yii + Y ∗ii = −(PA,ii + PB,ii)

• M : Non-local field correlations between different detectors, responsible for entan-

glement harvesting

M = −λAλB
∑
D 6=D′

∫ ∞
−∞

dt

∫ t

−∞
dt′χD,i(t)χD′,i(t

′)

〈φ(xD(t′))φ(xD′(t))〉eiΩD(t)eiΩD′ (t
′) (3.19)

• LAB:

LAB,ij = λAλB

∫ ∞
−∞

dt

∫ ∞
−∞

dt′χA,i(t)χB,j(t
′)

〈φ(xB(t′))φ(xA(t))〉eiΩA(t)e−iΩB(t′) (3.20)
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Tracing over the qubit C in Equation 3.17 will give us in the classical results that we

got in Equation 3.7.

ρ
(tr)
AB =


1− (P

(tr)
A + P

(tr)
B ) 0 0 M ∗

0 P
(tr)
B L (tr)∗

AB 0

0 L (tr)
AB P

(tr)
A 0

M 0 0 0

 (3.21)

Instead if the Control qubit is measured in |+〉 basis, some interference terms are retained.

ρ
(+)
AB =


1− (P

(+)
A + P

(+)
B ) 0 0 M ∗

0 P
(+)
B L (+)∗

AB 0

0 L (+)
AB P

(+)
A 0

M 0 0 0

 (3.22)

where we find terms like PD,i6=j and LAB,i 6=j, containing two-point correlation functions

between non-local events of the activation of same or different detectors in superposition.

Now that we have put the entanglement in the detectors, we will again measure it

using standard measures.

3.4 Measuring Entanglement

In order to quantify entanglement harvesting we need a measure of entanglement for a two-

qubit system in some general mixed state. Hill and Wootters in 1997 (Hill 97) (further

developed by Wooters in 1998 (Wootters 98)) came up with the idea of concurrence

which is a simple and general measure of entanglement for two-qubit systems. For the

density matrix of Equation 3.21 and Equation 3.22, It is given as,

C (+/tr) = 2max

{
0, |M | −

√
P

(+/tr)
A P

(+/tr)
B

}
(3.23)

It can be shown that |M | <
√
P

(tr)
A P

(tr)
B and so C (tr) = 0, which is the no-go theorem

(Theorem 2). Now as P
(+)
D ≤ P

(tr)
D , we may get a situation in which C (+) does not vanish.

So, by introducing the superposition we have opened up the possibility of violating the

no-go theorem. In the next section we will look at some plots to see in which situations

we get the violation.
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3.5 Results

In Figure 3.2 concurrence is plotted as a function of spatial separation s and time difference

T between the two branches of superposition in Past-Future scenario. It demonstrates the

violation of no-go theorem, i.e., |M | − P (+)
D > 0, in 2 + 1 dimensions. Non-perturbative

violation of no-go theorem is shown in the other two plots, with (centre) being the Cause-

Effect scenario (TA,0 ≤ TB,1 ≤ TA,1 ≤ TB,0) and the (right) the Past-Future scenario

(TA,0 ≤ TB,0 ≤ TA,1 ≤ TB,1).

Figure 3.2: Harvested entanglement for different space-time separation of the detectors.

(Henderson 20)

The effect on entanglement harvesting can also be seen for point-like detectors. To

avoid divergences a different window function is used, which is cos(2t/η), for −π/4 ≤
t/η ≤ π/4. In Figure 3.3 the concurrence is plotted as function of space-time separation

again, for classical mixture (right), and Cause-Effect superposition (left). The green line

marks the region of space-like separation. The harvesting efficiency increases, with space-

like harvesting only possible for the superposition case, for the given choice of parameters.
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Figure 3.3: Difference between the classical case (right), and the temporal superposition

case (left) indicating improvement in harvesting efficiency. Also small parts of space-like

separated region (enclosed within the green lines) showing some non-zero harvesting shows

that the source of entanglement is exclusively the vacuum state itself. (Henderson 20)

Hence we see, that we get a clear violation of the no-go theorem. We get a completely

new scenario when we introduce the superposition, which cannot be obtained otherwise.

We also see a clear enhancement of efficiency in entanglement harvesting using temporal

superposition. However, the process of entanglement harvesting involves very precise

detector-field coupling. So, in the next chapter we will try to look at an experimentally

realizable system of studying entanglement harvesting involving trapped ion chains.
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Trapped Ion Chain

The issue with entanglement harvesting is that it requires very precise detector-field cou-

pling. So, we will look at a simpler model which has similar properties of a scalar quantum

field. We will see how an entanglement harvesting is done in a system of trapped ions in

a chain.

Wolfgang Paul came up with a technique to trap ions (Paul 90), for which he shared

the 1989 Nobel Prize with H.G. Dehmelt. The ions are placed in a setup illustrated in

Figure 4.1(left). There are some rod electrodes arranged around and axis, with some time

varying electric potential. The nature of the potential is illustrated in Figure 4.1(right).

The potential well spins around the z-axis at some angular velocity ω. The mathematical

form of the potential is,

φ =
U0 + V0 cos(Ωt)

2r2
0

(x2 − y2) (4.1)

This makes sure that the ions are trapped along the z-axis. Here Ω is the angular velocity

with which the potential well is rotating about the z-axis, while the U0 and V0 are elec-

trostatic potentials applied using the rods. r0 is the distance of the rods from the z-axis.

We will consider that the potential is very deep compared to that along z-axis, and hence

we would neglect any oscillation in the x and y direction.

In the z direction an electrostatic field is used to create an approximately harmonic

potential, using some ring electrodes (as illustrated in Figure 4.1(left)). The ions also in-

teract among themselves due to their respective charges through electrostatic interaction.

So, in total we have the system in a potential as follows,

V =
N∑
i=1

(
mω2

z

2
z2
i +

N∑
j=i+1

q2

4πε0

1

|zi − zj|

)
(4.2)

where we have the harmonic oscillator term with frequency ωz, and mass of each oscillator
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m. q in the coulomb potential term is the charge of each ion, while the zi’s represent the

position of each ion on the z-axis.

Cirac and Zoller in 1995 (Cirac 95) , proposed that using such a linearly trapped cold

ion chain we can model a quantum computer. We can identify a couple of internal levels in

the electronic structure of the ions, and use them as a two level qubit system in each ion.

A laser can be used to couple the internal levels with the phonon modes of the harmonic

chain of ions. We will look at it in detail in section 4.2.

Before that let us look at an interesting result we can derive about the vacuum state

which has a Gaussian nature, as we will see in the following section.

Figure 4.1: (left): The setup used to apply the desired potential to trap the ions in a

linear chain.(Sasura 02) ((right): The Paul trap potential (Paul 90)

4.1 Gaussian State Entanglement

Although we have a fairly unclear notion of entanglement measures in a general infinite

dimensional system, we do have a way to analyse it in some special cases. In this section

we will discuss about a special kind of infinite dimensional states called Gaussian states.

The ground state of a system with quadratic canonical operators in the Hamiltonian

(like the harmonic oscillator) is Gaussian (discussed in more detail in (Schuch 06)). Which

means that the phase space distribution function corresponding to the state has a Gaussian

structure.

For Gaussian states we have an interesting result by Botero and Reznik (Botero 03).

They show that a pure Gaussian state can be decomposed, in a bipartite division, into
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a product of two mode squeezed states(Arvind 95) and local ground states of remaining

modes.

|ψ〉 =
∣∣∣ψ̃1

〉
Ã1B̃1

∣∣∣ψ̃2

〉
Ã2B̃2

· ·
∣∣∣ψ̃s〉

ÃsB̃s
|0〉ÃF |0〉B̃F (4.3)

for some s ≤ min(m,n) and
∣∣∣ψ̃k〉

ÃkB̃k
being two mode squeezed states

∣∣∣ψ̃k〉
ÃkB̃k

=
1√
Zk

∑
n

eβkn/2 |n〉Ãk |n〉B̃k (4.4)

and |0〉ÃF and |0〉B̃F are local ground states of remaining modes. We have illustrated

it pictorially in Figure 4.2. The linear chain is divided into a bipartite division of A(red)

and B(blue). We can think of each balls representing a mode. Some balls on one side

are paired with another on the other side. These pairs form two mode squeezed states.

The entanglement of the system in this particular bipartite division, will hence be the

sum of the entanglements in each of these pairs of modes. We will try to go through the

argument leading to this in the following. The full mathematical details can be found in

(Botero 03).

Figure 4.2: A multimode system is divided into two parts, A and B. According to the

results of Botero-Reznik (Botero 03) we can take some local symplectic transformation in

A and B to decompose the state into several 2 mode entangled pairs, with each mode in

the pair coming from different parts. The rest of the modes remain in local vacuum state.

The total entanglement of the system is the sum of the entanglements of the pairs.

For gaussian states, entanglement entropy can be expressed in terms of symplectic

eigenvalues. We write the phase space variables in a vector form as

r = (q̂1, .., q̂n, p̂1, ..p̂n)T (4.5)
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where the q̂i and p̂i are the position and momentum operators of the ith oscillator.

Symplectic eigenvalues are the absolute values of the eigenvalues of M = ΓΩ, where,

Γij = tr[ρrirj] (4.6)

is the covariance matrix and Ω symplectic form. The covariance matrix can be written

in this simple form for gaussian states as the expectation values of position and the

momenta can be made to vanish by taking local displacements, which would not affect

the entanglement as they are local operations.

According to Williamson’s theorem (Williamson 36), any real symmetric matrix can be

diagonalized by some symplectic transformation. Hence we can diagonalize the covariance

matrix by finding a suitable symplectic transformation Γ′ = SΓST . The eigenvalues of Γ′

and Γ would not be same in general. We can show that the matrix M = ΓΩ undergoes

an eigenvalue preserving similarity transformation when we take a symplectic transform

of Γ. Also the absolute values of the eigenvalues of M ′ are the eigenvalues of Γ′, and

hence we can use them directly and not worry about finding a diagonalizing symplectic

transform.

It can be shown that for pure gaussian state the symplectic eigenvalues σ = 1/2

(Botero 03). In our bipartite division if we perform local symplectic transformations, on

covariance matrices of each part, to get to the Williamson normal form, we would see

that both parts will have equal number of modes for which σ ≥ 1/2 and hence in mixed

form. These modes will pair up to form several 1× 1 mode entangled pairs giving us the

result we got in Equation 4.3.

We can calculate the entanglement entropy by using the symplectic eigenvalues we get

from one of the two parts. The entanglement entropy is given as,

S(ρ′A) =
s∑
i=1

[(σ′i + 1/2) log2 (σ′i + 1/2)

− (σ′i − 1/2) log2 (σ′i − 1/2)] (4.7)

Where the σ′i’s are the symplectic eigenvalues of one part. The total entanglement is the

sum of the entanglements coming from each 1× 1 mode entangled pair.

In case of 2 ions in the chain we can label the ions as A and B. Now as the ground

state is gaussian we should be able to write it in the form of a two mode squeezed state.

|vac〉 =
√

1− e−2β
∑
n

e−βn |n〉A |n〉B (4.8)

e−β =
√

(λ− 1/2)/(λ+ 1/2) (4.9)
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λ is the the symplectic eigenvalue given as λ = (1/4)[
√
ν0/ν1 +

√
ν1/ν0], ν0 and ν1 being

collective and breathing mode frequencies (Retzker 05). (Note, in Equation 4.8 we have

e−βn without a 1/2 factor in the exponential as in Equation 4.4. The factor is adjusted

by taking the square root in the RHS of Equation 4.9 which is not there in (Botero 03))

We get this results by writing the Hamiltonian in the decoupled normal mode basis and

calculating the corresponding covariance matrix. We can use the formula given in (4.7)

to calculate the entanglement of the ground state of such a system.

In the next section, we will continue discussing about the ion trap system in more

detail. We will try to harvest the entanglement present in the vibrational ground state

into the internal electronic levels of the ions.

4.2 Coupling Internal Levels with Phonon Modes

The ion chain is cooled using techniques of laser cooling to get it to the vibrational ground

state (Cirac 92). This ground state of the ion chain is the analogue of the entangled

vacuum state of a quantum field.

A laser will be used to couple the internal electronic levels of the k’th ion in the chain

with the vibrational modes, as illustrated in Figure 4.3. A Jaynes–Cummings (Jaynes 63)

interaction Hamiltonian can be set up using the laser. Jaynes-Cummings model (JCM)

mainly talks about the interaction of two level systems with bosonic fields, in which

generally a photon field is used by coupling a microwave cavity with the two-level system.

In the paper by Cirac et. al. (Cirac 93) they have proposed the use of phonon field as

the bosonic field. The interaction hamiltonian that we get if a standing electromagnetic

wave is put on a trapped ion (Cirac 92) , is of the same form as the JCM interaction

Hamiltonian. It is of the following form,

H
(k)
int = Ω(t)

(
e−iφσ

(k)
+ + eiφσ

(k)
−

)
x̂k (4.10)

(Retzker 05) where φ and x̂k is the laser phase and displacement operator of k’th ion. Here

Ω(t) is the Rabi frequency which can be identified as the coupling constant, indicating the

strength of the interaction between phonon mode and the internal levels. It is dependent

on time in the way we choose to put the laser pulses.

The laser is directed on two such ions (A and B in Figure 4.3) chosen from among the

chain of them. The idea is to let the internal levels couple with the phonon (vibrational)

modes, kept in the ground state, for a finite duration of time and “pick up” or harvest the

entanglement present in it. The interaction will only be switched on for a short duration

of time so that the phonon wave cannot travel from one ion to the other in that time.
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Figure 4.3: Laser is used to couple phonon modes with internal levels of ions A and B

(Retzker 05) chosen from the chain of ions in the trap. In the internal electronic structure,

2 energy levels are considered, which are represented by the two lines.

This is done to eliminate the possibility of any classical correlations appearing in the final

state of the 2× 2 dimensional internal level system of the two ions we chose.

Going back to the case of two ions in the trap, we notice that e−β is small. hence,

most entanglement is in the first two terms of Equation 4.8, i.e., we say |vac〉 ≈ |0〉 |0〉+

e−β |1〉 |1〉. We want to “swap” this vacuum state into the internal levels which are ini-

tially both kept in the ground state. As we know good measures of entanglement for

2× 2 systems like Negativity (Peres 96) and Concurrence (Wootters 98) we can measure

the entanglement of the internal levels much like what is done in case of entanglement

harvesting.

|vac〉 |↓〉 |↓〉 swap−−→ |χ〉
[
|↓〉 |↓〉+ e−β |↑〉 |↑〉

]
(4.11)

Where |χ〉 is the final state of the harmonic oscillator after the interaction. We see that

the first two levels of the vacuum has been swapped into the internal levels.

We will use unitary swap operations, eiπ/4(σ̃xσx+σ̃yσy) to make the swap. We can notice

that σ̃x and σ̃y can be approximated by x and p operator. So we want a series of unitary

operations of the form V (α) = eiασxx and W (β) = eiβσyp to perform the swap. To obtain

V (α), laser with φ = 0 is sent for T � 1/ν0 such that
∫

Ω(t)dt = α. For W (β) two laser

beams at φ = π/2 are used at a gap of dt = τ , each having the effect of V ′(β) = exp(iβσyx)

V ′t=τ (β
′)V ′t=0(β′) = exp(−iβσy(x+ pτ/m) +O(ν2τ 2))exp(iβσyx) (4.12)

Taking the limit ν2τ 2 � 1 and setting β = β′τ/m we effectively obtain W (β). Optimizing
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the entanglement of the internal levels over the free coupling parameters we can find the

required condition on the pulses to get an efficient swap.

In the paper (Retzker 05) they claimed to have successfully transferred 97% of the

entanglement in the ground state (calculated using the symplectic eigenvalues) into the

internal level system. We can extend this idea further to n ions in a chain and find the

entanglement of the ground state. (Retzker 05).

So, we saw a very practical and experimentally viable method of studying vacuum

entanglement using ion traps. In the following chapter, we will try to explicitly calculate

the entanglement transferred. We will see that the entanglement cannot be transferred (or

harvested) using a simple unitary evolution constructed using the interaction hamiltonian

in Equation 4.10. But, we do get an entanglement harvesting using a superposition.
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Chapter 5

Temporal Superposition and

Harvesting Entanglement in Ion

Trap

In the previous chapter we discussed about ion traps being an experimentally viable sys-

tem to study entanglement harvesting. In the paper (Retzker 05) they used a complicated

series of evolution operators to successfully swap the ground state into the internal levels.

Let us see what we get if we construct the unitary out of the simple interaction hamilto-

nian in Equation 4.10. Next, we will put in the superposition of unitaries to see the effect

of the superposition.

5.1 Without Superposition

As we saw in the previous chapter, most of the entanglement is present in the first two

levels of the two-mode squeezed state as e−β is small. It would be informative to consider

only 2-levels {|0〉 , |1〉}, as a “toy model” for the 2 trapped ion harmonic oscillator (HO)

system.

|ψi〉 =
(
1 + e−2β

)−1/2 (|00〉+ e−β |11〉
)
HO
|↓↓〉int (5.1)

Where we can consider β to be any positive real number. |ii〉 = |i〉A ⊗ |i〉B, i ∈ {0, 1}
are the 2× 2 dimensional harmonic oscillator part. The internal levels (indicated by int)

are kept in the ground state as earlier. As we can see the value of β determines the

amount of entanglement present initially in the HO system. The interaction Hamiltonian
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coupling the vibrational modes with the internal levels of the ion is as we saw earlier in

Equation 4.10,

HI,k = Ω(t)
(
e−iφσ+

k + eiφσ−k
)
x̂k (5.2)

where again Ω(t) is the time dependent coupling constant. φ is the laser phase while σ±k
and x̂k are the internal level raising-lowering operators and the displacement operator of

the kth ion respectively.

σ+ =

(
0 0

1 0

)
σ− =

(
0 1

0 0

)
(5.3)

x̂ =
i√
2m

(|1〉 〈0|+ |0〉 〈1|) (5.4)

So in the matrix form the interaction Hamiltonian looks like,

HI,D =
iΩ(t)√

2m

(
0 eiφ

e−iφ 0

)
⊗

(
0 −1

1 0

)
(5.5)

in {|↓〉 , |↑〉} ⊗ {|0〉 , |1〉} basis. D is the index for the modes (which are the ions in the

previous case) which would be A for one mode and B for the other.

The unitary evolution operator constructed out of the interaction hamiltonian given

in Equation 5.2 is,

UD = exp(−iHD,I ã)

=
∞∑
p=0

[
1

(2p)!

(
ã√
2m

)2p

(−1)pIint ⊗ IHO

+
1

(2p+ 1)!

(
ã√
2m

)2p+1

(−1)p

(
0 eiφ

e−iφ 0

)
int

⊗

(
0 −1

1 0

)
HO

(5.7)

where D = {A,B} and ã =
∫∞
−∞Ωdt. The summations form the sin and cos series,

UD =

[
cos(a)(Iint ⊗ IHO) + sin(a)

(
0 eiφ

e−iφ 0

)
int

⊗

(
0 −1

1 0

)
HO

]
(5.8)

where we have put ã/
√

2m = a.
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Now this is the operator acting on one ion. We have to put a similar operation on the

other ion as well. So the total operation is,

UB ⊗ UA = cos2(a) [(IA ⊗ IB)int ⊗ (IA ⊗ IB)HO]

+ cos(a) sin(a)

[{
IA ⊗

(
0 eiφ

e−iφ 0

)}
int

⊗

{
IA ⊗

(
0 −1

1 0

)}
HO

]

+ sin(a) cos(a)

[{(
0 eiφ

e−iφ 0

)
⊗ IB

}
int

⊗

{(
0 −1

1 0

)
⊗ IB

}
HO

]

+ sin2(a)

[{(
0 eiφ

e−iφ 0

)
⊗

(
0 eiφ

e−iφ 0

)}
int

⊗

{(
0 −1

1 0

)
⊗

(
0 −1

1 0

)}
HO

]
(5.9)

We have the following theorem,

Theorem 3 Using the unitary evolution operator given in Equation 5.9 we do not get

any entanglement harvesting.

To go about proving the theorem we will have to evolve the system using the unitary

evolution operator (Equation 5.9).

|ψf〉 = UA ⊗ UB |ψi〉 becomes,

|ψf〉 =
(
1 + e−2β

)−1/2 [
cos2(a)

{
|00〉+ e−β |11〉

}
|↓↓〉

+ cos(a) sin(a)
{

(|01〉 − e−β |10〉)e−iφ |↓↑〉+ (|10〉 − e−β |01〉)e−iφ |↑↓〉
}

+ sin2(a)
{
|11〉+ e−β |00〉

}
e−2iφ |↑↑〉

]
(5.10)

Now forming the density matrix and taking the trace over the harmonic oscillator part

ρint = TrHO(|ψf〉 〈ψf |) we get,

ρint =


c4 0 0 2e−βs2c2e2iφ

1+e−2β

0 s2c2 −2e−βs2c2

1+e−2β 0

0 −2e−βs2c2

1+e−2β s2c2 0
2e−βs2c2e−2iφ

1+e−2β 0 0 s4

 (5.11)

where c = cos(a) and s = sin(a)

The entanglement monotone that we are going to use here is Concurrence (Wootters 98).

The Concurrence for a density matrix in the form

ρ =


ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ∗23 ρ33 0

ρ∗14 0 0 ρ44

 (5.12)
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is given (Henderson 20) as

C = 2max{|ρ14| −
√
ρ22ρ33, 0} (5.13)

For the density matrix that we got the condition for positive Concurrence turns out

to be,

sin2(a) cos2(a)

(
2e−β

1 + e−2β

)
> sin2(a) cos2(a) (5.14)

which can only be achieved if,

(1− e−β)2 < 0 (5.15)

which is not possible for any real values of β. Hence in this scheme we do not get any

entanglement harvesting in the internal levels. Hence Theorem 3 is proved.

5.2 Incorporating Superposition

Now we put in a superposition in the evolution to see whether Theorem 3 still holds.

For incorporating superposition we will have to introduce the control qubit. The time

dependent coupling parameter Ω(t) will depend on the control qubit state. The interaction

Hamiltonian is,

HI,k =
1∑
i=0

Ωi(t)
(
e−iφσ+

k + eiφσ−k
)
x̂k ⊗ |i〉 〈i|C (5.16)

where C represents the control qubit part of the state.

So the unitary time evolution operator is

U = (U0 ⊗ |0〉 〈0|C + U1 ⊗ |1〉 〈1|C) (5.17)

where U0 and U1 are the unitaries formed with coupling parameter Ω0 and Ω1 respectively.

This would make sure that U0( U1) will act if the initial state of control qubit is in |0〉(
|1〉). To incorporate the superposition in evolution, we will put the initial control qubit

in a superposition.

|ψi〉 =
(
1 + e−2β

)−1/2 (|00〉+ e−β |11〉
)
HO
|↓↓〉int ⊗

(
1√
2

(|0〉+ |1〉)C
)

(5.18)

So now the final state is,

|ψf〉 =
1√
2

(|ψf,0〉 ⊗ |0〉+ |ψf,1〉 ⊗ |1〉) (5.19)
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Finally we will measure the final state in
(

1√
2
(|0〉+ |1〉)C

)
state of the control qubit.

So at the end the state (without the control part) has four terms.

|ψf〉 〈ψf | =
1

4
[|ψf,0〉 〈ψf,0|+ |ψf,0〉 〈ψf,1|+ |ψf,1〉 〈ψf,0|+ |ψf,1〉 〈ψf,1|] (5.20)

The terms are as follows,

TrHO(|ψf,i〉 〈ψf,i|) =


c4
i 0 0

2e−βs2i c
2
i e

2iφ

1+e−2β

0 s2
i c

2
i −2e−βs2i c

2
i

1+e−2β 0

0 −2e−βs2i c
2
i

1+e−2β s2
i c

2
i 0

2e−βs2i c
2
i e
−2iφ

1+e−2β 0 0 s4
i


where ci = cos(ai) and si = sin(ai) for i = {0, 1}. For the cross terms, TrHO(|ψf,i〉 〈ψf,j|) =

c2
i c

2
j 0 0

2e−βs2jc
2
i e

2iφ

1+e−2β

0 sicisjcj −2e−βsicisjcj
1+e−2β 0

0 −2e−βsicisjcj
1+e−2β sicisjcj 0

2e−βs2i c
2
je
−2iφ

1+e−2β 0 0 s2
i s

2
j


(5.21)

sk = sin(ak) and ck = cos(ak), k ∈ {i, j} where i 6= j. So, here the condition for

concurrence to be positive (|ρ14| −
√
ρ22ρ33 > 0) is,

(sin2(a0) + sin2(a1))(cos2(a0) + cos2(a1))

(
2e−β

1 + e−2β

)
> (sin(a0) cos(a0) + sin(a1) cos(a1))2

(5.22)

which is (
2e−β

1 + e−2β

)
> κ (5.23)

where,

κ =
(sin(a0) cos(a0) + sin(a1) cos(a1))2

(sin2(a0) + sin2(a1))(cos2(a0) + cos2(a1))
(5.24)

In Figure 5.1 we have plotted the inequality considering both κ and β to be positive

real numbers. The boundary of the plot is at
(

2e−β

1+e−2β

)
= κ and the green area is the

values of κ and β for which we get a positive concurrence. Hence, we have clearly violated

Theorem 3 using the superposition.
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Figure 5.1: The κ vs β inequality is plotted to demonstrate that we do get a region where

it is possible to get non-zero entanglement unlike the case with no superposition.

The initial state of the Harmonic Oscillator part was
(
1 + e−2β

)−1/2 (|00〉+ e−β |11〉
)
HO

.

The Concurrence for a pure state like,

|ψ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 (5.25)

is given as,

C = 2|ad− bc| (5.26)

(An-Min 03). So our initial concurrence is,

Ci =

(
2e−β

1 + e−2β

)
(5.27)

For β ≈ 1.99, Ci ≈ 0.266 e-bits. We can analyse the expression of Concurrence we got in

the internal levels as a function of the a0 and a1 for the extrema points,

C(a0, a1) = (1/2)[(sin2(a0) + sin2(a1))(cos2(a0) + cos2(a1))

(
2e−β

1 + e−2β

)
− (sin(a0) cos(a0) + sin(a1) cos(a1))2] (5.28)

We can see that when a1 = π/2 + a0, we get an extrema point, with final concurrence,

Cf =

(
e−β

1 + e−2β

)
= (1/2)Ci (5.29)
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So we see that, at maxima we get back half of the total entanglement present in the initial

2-level Harmonic Oscillator state. When however a0 = a1, we get back to the case similar

to no superposition, with zero final entanglement. In our analysis we never considered

the coupling to be weak, and hence the condition for maximum entanglement harvesting

can be achieved.

We can plot the final Concurrence as a function of the parameters a0 and a1 (see

Figure 5.2). We can see that the 45◦ line from origin corresponding to a0 = a1 has no

concurrence. The 45◦ from a0 = 0, a1 = ±π/2 has the maximum concurrence of ≈ 0.134

e-bits. As we see this is half of the initial concurrence.

Figure 5.2: The concurrence is plotted as a function of the parameters a0 and a1. The

color gradient as indicated in the color bar is used to represent the value of concurrences.

This plot is for the value β ≈ 1.99 which is what we expect for 2 ions in a chain.
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5.2.1 Extending to Higher Dimensions

We can extend the analysis to higher dimensions of Harmonic Oscillator states by con-

sidering the corresponding x̂ operators. The x̂ operator for nth dimension is,

x̂n =
i√
2m



0 −1 0 0 . . . 0

1 0 −
√

2 0 . . . 0

0
√

2 0 −
√

3 . . . 0

0 0
√

3 0 . . . 0
...

...
...

...
. . . −

√
n− 1

0 0 0 0
√
n− 1 0


(5.30)

The initial state of the Harmonic Oscillator part will be

|ψi〉HO,n =

(
n−1∑
k=0

e−2βk

)−1/2(n−1∑
k=0

e−βk |kk〉

)
(5.31)

Using these we can do the same calculation as we did in the previous section with the 2-

level Harmonic Oscillator. Doing the calculations numerically, we got some final internal

level concurrence distribution for different values of a0 and a1. The plots are given in

Figure 5.3. We can observe that the entanglement harvesting is not as efficient when we

consider more levels in the Harmonic Oscillator.

In order to compare how much of the entanglement we transfer from the Harmonic

Oscillator to the entanglement we use the measure Negativity (Peres 96). Negativity of

a state ρ is given as (Vidal 02),

N (ρ) ≡ ||ρ
TA||1 − 1

2
(5.32)

where ||ρ||1 = Tr(
√
ρ†ρ) is the trace norm, and ρTA is the partial transpose of the matrix

ρ. For our state (Equation 5.31), we get,

||ρTA||1 =

(∑n−1
k=0 e

−βk)2(∑n−1
k=0 e

−2βk
) (5.33)

We can clearly see that for 2-level system, (2 × 2) the negativity is just half of the

concurrence. This is also true for the the final internal level matrix which is in the form

of Equation 5.12. So, we can compare the initial and the final harvested entanglement

with optimum a0 and a1 setting for β ≈ 1.99. We have tabulated the values of initial

negativity and final negativity in Table 5.1. Also in Figure 5.4 we can see the same data

plotted.
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(a) 3D: Maxima is = 0.046 e-bits,

a0 = 3.173, a1 = 0.454

(b) 4D: Maxima is = 0.060 e-bits,

a0 = 0.539, a1 = 3.592

(c) 5D: Maxima is = 0.054 e-bits,

a0 = 0.504, a1 = 4.084

(d) 6D: Maxima is = 0.049 e-bits,

a0 = 2.013, a1 = 3.013

(e) 7D: Maxima is = 0.049 e-bits,

a0 = 2.201, a1 = 3.201

(f) 8D: Maxima is = 0.049 e-bits,

a0 = 2.380, a1 = 3.380

Figure 5.3: Concurrence of the internal levels when we consider the Harmonic Oscillator

systems with different dimensions. Also, the maximum concurrence and one of the points

of maxima are found for each dimension.

48



CHAPTER 5. TEMPORAL SUPERPOSITION AND HARVESTING
ENTANGLEMENT IN ION TRAP

The initial negativity converges to the value 0.158 while the final negativity remains

around 0.024 (for β ≈ 1.99). We can see from Equation 5.33 that for n → ∞ the initial

state negativity formula is,

N∞ =

(1−e−2β)
(1−e−β)2

− 1

2
=
e−β − e−2β

(1− e−β)2
(5.34)

For β ≈ 1.99, N∞ ≈ 0.158. So, after 5 dimensions the negativity converges to the value to

the number of decimal places considered here. So, to our approximation we have already

converged to the initial and final negativity for infinite dimensional case. Hence, we

conclude that with superposition we can obtain upto ≈ 15% of the initial entanglement

in the internal levels.

dim Ni Nf

2 0.134 0.067

3 0.155 0.023

4 0.157 0.030

5 0.158 0.027

6 0.158 0.024

7 0.158 0.024

8 0.158 0.024

Table 5.1: Initial Negativity Ni, and Negativity harvested optimally Nf . for different di-

mensions (Hilbert space dimensions of the states) of Harmonic Oscillator state considered

for β ≈ 1.99.

So, we see that we are able to harvest entanglement using the superposition which was

not possible without it. Hence we establish that superposition in evolution has a clear

advantage in the process of entanglement harvesting.
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CHAPTER 5. TEMPORAL SUPERPOSITION AND HARVESTING
ENTANGLEMENT IN ION TRAP

Figure 5.4: Initial negativity and final (optimally harvested entanglement in the internal

level system) negativity is plotted as a function of the dimension of the initial state Hilbert

space considered for β ≈ 1.99.
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Conclusion

We talked about the peculiar nature of the the quantum field vacuum which is entangled.

In order to study and experimentally validate such a claim we introduced the idea of

entanglement harvesting. The enormous resource of entanglement present naturally in

the vacuum can find a lot of potential applications if we can successfully harvest it. The

vacuum entanglement is intricately dependent on the structure of space-time itself. Hence,

a viable protocol of studying it opens up opportunities to unravel the mysteries of the

fundamental properties of nature.

We looked at the novel idea of applying temporal superposition in entanglement har-

vesting. There is a clear enhancement in the efficiency of entanglement harvesting. We

are able to harvest entanglement in situations which proved to be impossible to harvest

from without superposition. Hence, we see a quantum advantage.

However it is experimentally challenging to study entanglement harvesting in quantum

fields. So, we looked at a practical model of trapped ion chains to make the study

experimentally viable. Constructing a Jaynes-Cummings interaction hamiltonian that

couples the vibrational modes with the internal electronic levels of the ions, we swapped

the vibrational mode and the internal level states, using a chain of unitary evolution.

We got the entanglement present in the ground state of the vibrational modes, which is

analogous to the quantum field vacuum state, into the internal levels.

However, we saw that with a simplistic unitary evolution, we do not get any entangle-

ment harvesting. Once we apply the superposition again in ion trap model, however, we

get an efficient entanglement harvesting. This again demonstrates the quantum advan-

tage that we have when we apply the superposition in entanglement harvesting. Building

from the “toy model” we could see that, considering the entire infinite dimensional Hilbert

space, we can harvest at most ≈ 15% of the initial entanglement present in the ground

state of the Harmonic oscillator.
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Future outlook

We considered a very simplistic model to demonstrate the advantage of superposition in

entanglement harvesting. The next step would be to apply this in an n-mode system,

having n ions in the chain. This would give us some prediction, which can be experimen-

tally verified to establish the result. We can also study the relation between harvested

entanglement and the distance of the ions if we have the detailed calculation of n ions

case.
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