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Introduction

Gromov hyperbolic spaces or δ-hyperbolic spaces are metric spaces satisfying cer-

tain metric relations between the points depending on a non-negative real number δ.

The definition, introduced by Eliyahu Rips, generalizes the metric properties of

classical hyperbolic geometric and that of trees. The field was further developed

thoroughly by Mikhael Gromov. Hyperbolicity is very useful to the study of certain

infinite groups called the hyperbolic groups.

Chapter 0-3 contains some of the basic concepts required to go through this the-

sis. Chapter 0 looks at the definition of metric spaces and associated notions like

the metric graphs, length metric and valuation metric. In Chapter 1, we look at

what Cayley Graphs are. They are a very important object required in the study

of Hyperbolic groups. In Chapter 2, we look at cell complexes and apply Van Kam-

pen’s theorem to find the fundamental group of a space to which 2-cells have been

attached. In Chapter 3, we look at the Hopf Rinow theorem and the Arzela Ascoli

theorem. These also prove to be an important tool in our later studies.

From Chapter 4, we look at Gromov hyperbolic spaces. In Chapter 4, we look

at the definition of Gromov hyperbolic spaces and some equivalent conditions to

check for Gromov hyperbolicity. We also look at the hyperbolicity of the subspaces

and its implications. Since examples form an important part of understanding any

new concept, we look at examples of Hyperbolic spaces in Chapter 5. Geodesic

triangles in hyperbolic spaces have some important properties such as δ-slimness

and δ-thinness, which are very often used as equivalent formulations of hyperbolic-

ity. These properties are gone through Chapter 6.

Next, we look at the boundary of hyperbolic spaces. Chapter 7 introduces the

boundary of hyperbolic spaces using sequences. In the next chapter, Chapter 8, we

inspect the boundary as a set of rays. We look at what quasi-geodesics are and the
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stability of quasi-geodesics. These concepts aid us in proving the lemma on the visi-

bility of the boundary of hyperbolic space.

In Chapter 9, we prove that if X1 and X2 are two geodesic metric spaces with X2

hyperbolic and f : X1 → X2 is a quasi-isometry, then X1 is also hyperbolic, and f

induces an embedding ∂f from ∂X1 to ∂X2. Towards the end of this chapter, we

show that 0-hyperbolic geodesic spaces are trees.

We introduce hyperbolic groups in Chapter 10. Let Γ be a finitely generated

group and G be a finite system of generators of Γ. We say that Γ is δ-hyperbolic

relative to the system of generators G if it is δ-hyperbolic with respect to the as-

sociated word metric. We later prove in this chapter that the hyperbolicity of the

group doesn’t depend on the choice of system of generators. We see some examples

of hyperbolic groups in Chapter 11. We prove that if X is a proper geodesic space,

and Γ is the group of isometries of X acting properly discontinuous on this space,

and such that the action is cocompact, then Γ is hyperbolic if and only if X is and

additionally we have a canonical homeomorphism ∂Γ → ∂X. This theorem provides

us with numerous examples of hyperbolic groups.

The final chapter in this thesis, Chapter 12, introduces the three models of hyper-

bolic spaces and shows the equivalence of these models.
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Chapter 0

Basic Notions

For this chapter, I have referred to Metric Spaces of Non-Positive Curvature by

Bridson & Haefliger [Mar99], Abstract Algebra by David S.Dummit & Richard M.Foote

[Dav04] and Topology by James Munkres [Mun03]

0.1 Metric Spaces

Definition 0.1.1. Let X be a set. A metric on X is a real valued function d : X ×
X → R satisfying the following, for all x, y, z ∈ X :

� Positivite Definite : d(x, y) ≥ 0 and d(x, x) = 0 iff x = y.

� Symmetry: d(x, y) = d(y, x).

� Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z).

We refer to d(x, y) as the distance between the points x and y.

Definition 0.1.2. A metric space is said to be complete if every Cauchy sequence

in it converges.

Definition 0.1.3. If Y is a subset of X, then the restriction of d to Y × Y is called

an induced metric on Y.

Given x ∈ X and r > 0, the open ball of radius r about x, denoted by B(x, r), is

the set {y ∈ X|d(x, y) < r} and the closed ball is denoted by B(x, r). Associated

with d, one has a topology with basis set as the set of open balls B(x, r).

Definition 0.1.4. The metric space is said to be proper if, in this topology, for

every x ∈ X and for every r > 0, the closed ball B(x, r) is compact.
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Definition 0.1.5. A metric space (X, d) is said to be separable if there exists a

countable dense subset S of X.

Definition 0.1.6. Given two metric spaces (X, dX) and (Y, dY ), where dX denotes

the metric on the set X, and dY is the metric on set Y , a function f : X → Y is

called Lipschitz continuous if there exists a real constant K ≥ 0 such that, for all x1

and x2 in X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2). (1)

Any such K is referred to as a Lipschitz constant for the function f .

Definition 0.1.7. An isometry from one metric space (X, d) to another (X �, d�) is a

bijection f : X → X � such that d�(f(x), f(y)) = d(x, y) for all x, y ∈ X. If such a

map exists then, (X, d) is said to be isometric to (X �, d�).

Example 0.1.8. Euclidean metric d on Rn

d(x, y) := (
n�

i=1

|xi − yi|2)2

where x = (x1, ..., xn) and y = (y1, ..., yn). (Rn, d) will be denoted as En.

Definition 0.1.9 (Hausdorff distance). Let X and Y be two non-empty subsets of

a metric space (M, d). We define their Hausdorff distance dH(X, Y ) by

dH(X, Y ) = max

�
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

�
.

Equivalently,

dH(X, Y ) = inf{ε ≥ 0 ; X ⊆ Yε and Y ⊆ Xε},

where

Xε :=
�

x∈X
{z ∈ M ; d(z, x) ≤ ε},

that is, the set of all points within ε of the set X (sometimes called the ε -fattening

of X or a generalized ball of radius ε around X.

Informally, two sets are close in the Hausdorff distance if every point of either

set is close to some point of the other set. The Hausdorff distance is the longest

distance, you can be forced to travel by an adversary who chooses a point in one of

the two sets, from where you then must travel to the other set. In other words, it
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is the greatest of all the distances from a point in one set to the closest point in the

other set.

0.2 Geodesics

Definition 0.2.1. Let (X, d) be a metric space. A geodesic path joining x ∈ X

to y ∈ X is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) =

y and d(c(t), c(t�)) = |t−t�| for all t, t� ∈ [0, l] ( in particular, l = d(x, y)). If c(0) = x,

then c is said to issue from x. The image α of c is called a geodesic segment with

endpoints x and y.(There is a 1 − 1 correspondence between geodesic paths in X

and pairs (α, x), where α is a geodesic segment in X and x is an endpoint of α.)

Definition 0.2.2. Let I ⊆ R be an interval. A map c : I → X is said to be

a linearly reparameterized geodesic or a constant speed geodesic, if there exists a

constant λ such that d(c(t), c(t�)) = λ|t− t�| for all t, t� ∈ I.

Definition 0.2.3. A geodesic ray in X is a map c : [0,∞) → X such that d(c(t), c(t�)) =

|t−t�| for all t, t� ≥ 0. A geodesic line in X is a map c : R → X such that d(c(t), c(t�)) =

|t− t�| for all t, t� ∈ R.

Definition 0.2.4. A local geodesic in X is a map c from an interval I ⊆ R to X

with the property that for every t ∈ I there exists � > 0 such that d(c(t�), c(t��)) =

|t� − t��| for all t�, t�� ∈ I with |t− t�|+ |t− t��| ≤ �.

Definition 0.2.5. (X, d) is said to be a geodesic metric space (or, more briefly, a
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geodesic space) if every two points in X are joined by a geodesic. We say that (X, d)

is uniquely geodesic if there is exactly one geodesic joining x to y, for all x, y ∈ X.

Definition 0.2.6. Given r > 0, a metric space (X, d) said to be r−geodesic if for

every pair of points x, y ∈ X with d(x, y) < r there is a geodesic joining x to y.

And X is said to be r−uniquely geodesic if there is a unique geodesic segment join-

ing each such pair of points x and y.

Definition 0.2.7. A subset C of a metric space (X, d) is said to be convex if ev-

ery pair of points x, y ∈ C can be joined by a geodesic in X and the image of ev-

ery such geodesic is contained in C. If this condition holds for all points x, y ∈ C

with d(x, y) < r, then C is said to be r−convex.

0.3 Metric Graphs

Intuitively speaking, metric graphs are the spaces that one obtains by taking a con-

nected graph (i.e., a connected 1-dimensional CW-complex), metrizing the individ-

ual edges of the graph as bounded intervals of the real line, and then defining the

distance between two points to be the infimum of the lengths of paths joining them,

where ”length” is measured using the chosen metrics on the edges. It does not take

long to realize that if one is not careful about the way in which the metrics on the

edges are chosen, then various unpleasant pathologies can arise. Before considering

these, we give a more precise formulation of the above.

Definition 0.3.1. A combinatorial graph G consists of two (possibly infinite) sets,

V (the vertices) and E (the edges), together with two maps, ∂0 : E → V and ∂1 :

E → V (the endpoint maps). We assume that V is the union of the images of ∂0

and ∂1. One associates to G the set XG (more briefly, X ) that is obtained by taking

the quotient of E × [0, 1] by the equivalence relation generated by (e, i) ∼ (e�, i�)

if ∂i(e) = ∂i�(e
�), where e, e� ∈ E and i, i� ∈ {0, 1}.

Let p : E × [0, 1] → X be the quotient map. We identify V with the image in X

of E × {0, 1}. For each e ∈ E , let fe : [0, 1] → X denote the map that sends t ∈ [0, 1]

to p(e, t). Note that fe is injective on (0, 1). If fe(0) = fe(1), the edge e is a called a

loop. To define a metric on X, one first specifies a map

λ : E → (0,∞)

associating a length λ(e) to each edge e. A piecewise linear path is a map c : [0, 1] →
X for which there is a partition 0 = t0 ≤ t1 ≤ ... ≤ tn = 1 such that each is of the
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form fei ◦ ci, where ei ∈ E and ci is an affine map from [ti, ti+1] into [0, 1]. We say

that c joins x to y if c(0) = x and c(1) = y.

Definition 0.3.2. The length of a path c along the graph is defined to be l(c) =�n−1
i=0 l(ci), where l(ci) = λ(ei)|ci(ti)− ci+1(ti+1)|.

We assume that X is connected, i.e. any two points are joined by such a path.

Definition 0.3.3. We define a pseudometric d : X ×X → [0,∞] by setting d(x, y)

equal to the infimum of the length of piecewise linear paths joining x to y. The

space X with its pseudometric d is called a metric graph.

For any edge e, the distance between p(e, 1/2) and ∂i(e) is λ(e)/2.

Definition 0.3.4. A combinatorial graph G is called a tree if the corresponding

metric graph X where all the edges have length one is connected and simply con-

nected.

Definition 0.3.5. The Cayley graph CA(Γ) of a group Γ with respect to a gener-

ating set A is the metric graph whose vertices are in 1-1 correspondence with the

elements of Γ and which has an edge (labelled a) of length one joining γ to γa for

each γ ∈ Γ and a ∈ A.

In the notation of (0.3.1), V = Γ, E = {(γ, a)|γ ∈ Γ, a ∈ A}, ∂0(γ, a) = γ,

(γ, a) = γa, and λ : E → [0,∞) is the constant function 1.

0.4 The Length of a Curve

Let X be a metric space. For us, a curve or a path in X is a continuous map c

from a compact interval [a, b] ⊂ R to X. We say that c joins the point c(a) to the

point c(b). If c1 : [a1, b1] → X and c2 : [a2, b2] → X are two paths such that c1(b1) =

c2(a2), their concatenation is the path c : [a1, b1+b2−a2] → X defined by c(t) = c1(t)

if t ∈ [a1, b1] and c(t) = c2(t + a2 − b1) if t ∈ [b1, b1 + b2 − a2]. More generally, the

concatenation of a finite sequence of paths ci : [ai, bi] → X, with ci(bi) = ci+1(ai+1)

for i = 1, 2, ..., n − 1, is defined inductively by concatenating c1, ...., cn−1 and then

concatenating the result with cn.

Definition 0.4.1. Let X be a metric space. The length l(c) of a curve c : [a, b] →
X is

l(c) = sup
a=t0≤t1≤...≤tn=b

n−1�

i=0

d(c(ti), c(ti+1)),

where the supremum is taken over all possible partitions(no bound on n) with a =

t0 ≤ t1 ≤ .... ≤ tn = b.
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The length of c is either a non-negative number, or it is infinite. The curve c is said

to be rectifiable if its length is finite.

Proposition 0.4.2. Let (X, d) be a metric space and let c : [a, b] → X be a path.

(1) l(c) ≥ d(c(a), c(b)), and l(c) = 0 if and only if c is a constant map

(2) If φ is a weakly monotonic map from an interval [a�, b�] onto [a, b], then l(c) =

l(c ◦ φ).

(3) Additivity: If c is the concatenation of two paths c1 and c2, then l(c) = l(c1) +

l(c2).

(4) The reverse path c : [a, b] → X defined by c(t) = c(b+a−t) satisfies l(c) = l(c).

(5) If c is rectifiable of length l, then the function λ : [a, b] → [0, l] defined

by λ(t) = l(c|[a,t]) is a continuous weakly monotonic function.

(6) Reparameterization by arc length: If c and λ are as in (5), then there is a

unique path c̃ : [0, 1] → X such that

c̃ ◦ λ = c and l(c̃|[0,t]) = t.

(7) Lower seimcontinuity: Let (cn) be a sequence of paths [a, b] → X converging

uniformly to a path c. If c is rectifiable, then for every � > 0, there exists an

integer N(�) such that

l(c) ≤ l(cn) + �

whenever n > N(�).

Proof.

(1) Since by definition, l(c) is the supremum over all partions, l(c) is greater than

any one partion (n = 1). Hence l(c) ≥ d(c(a), c(b)).

If l(c) = 0, all sums of distances are 0. Hence d(c(ti), c(ti+1)) = 0. Hence c is a

constant map.

Conversly, if c is a constant map, d(c(ti), c(ti+1)) = 0 for all i ∈ Z.

(2) Since a weakly monotonic map is injective and φ is surjective as well, we see

that c and c ◦ φ are isometric. Hence l(c) = l(c ◦ φ).

8



(3)

l(c) = sup
a=t0≤t1≤...≤tn=b

n−1�

i=0

d(c(ti), c(ti+1))

≤ sup
a=t0≤t1≤...≤tn=l

n−1�

i=0

d(c(ti), c(ti+1)) + sup
l=t0≤t1≤...≤tn=b

n−1�

i=0

d(c(ti), c(ti+1))

≤ l(c1) + l(c2)

Now

l(c1) +
n−1�

i=0

d(c(ti), c(ti+1)) ≤ l(c)

Now taking the supremum over the partitions of the domain of c2, we see that

l(c1) + l(c2) ≤ l(c)

Hence l(c) = l(c1) + l(c2).

(4) From (2) we see that c(t) = c(b + a − t) = c ◦ φ where φ(t) = b + a − t.

Hence l(c) = l(c).

(5) Property (3) reduces the proof of (5) to showing that, given � > 0, one can

partition [a, b] into finitely many subintervals so that the length of c restricted

to each of these subintervals is at most �. To see that this can be done, we

first use the uniform continuity of the map c : [a, b] → X to choose δ > 0 such

that d(c(t), c(t�)) < δ/2 for all t, t� ∈ [a, b] with |t − t�| < δ. Since l(c) is finite,

we can find a partition a = t0 < t1 < ... < tk = b such that

k−1�

i=0

d(c(ti), c(ti+1)) > l(c)− �/2.

Taking a refinement of this partition if necessary, we may assume that |ti −
ti+1| < δ for i = 0, ., k − 1, and hence d(c(ti), c(ti+1)) < �/2. But l(c|[ti,ti+1]) ≥
d(c(ti), c(ti+1)), and l(c) =

�
l(c|[ti,ti+1]) by (3). Hence

l(c) =
k−1�

i=0

l(c|[ti,ti+1]) ≥
k−1�

i=0

d(c(ti), c(ti+1)) > l(c)− �/2,

with each summand in the first sum no less than the corresponding summand

in the second sum. Hence, for all i we have l(c|[ti,ti+1]) − d(c(ti), c(ti+1)) ≤ �/2,
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and in particular l(c|[ti,ti+1]) < �.

(6) Follows from (5) and (2).

(7) Choose a = t0 < t1 < .. < tk = b such that

l(c) ≤
k−1�

i=0

d(c(ti), c(ti+1)) + �/2.

Then we choose N(�) big enough to ensure that d(c(t), c(tn)) < �/4k for

all n > N(�) and all t ∈ [a, b]. By the triangle inequality, d(c(ti), c(ti+1)) ≤
2�/4k + d(cn(ti), cn(ti+1)). Hence

l(c) ≤ k
�

2k
+

k−1�

i=0

d(cn(ti), cn(ti+1)) + �/2 ≤ �+ l(cn).

Definition 0.4.3. A path c : [a, b] → X is said to be parameterized proportional to

arc length if the map λ defined above in 0.4.2(5) is linear.

0.5 Length Metric

Definition 0.5.1. Let (X, d) be a metric space. d is said to be a length metric

(otherwise known as an inner metric) if the distance between every pair of points x, y ∈
X is equal to the infimum of the length of rectifiable curves joining them. (If there

are no such curves, then d(x, y) = ∞.) If d is a length metric, then (X, d) is called a

length space.

Proposition 0.5.2. Let (X, d) be a metric space, and let d : X × X → [0,∞] be

the map which assigns to each pair of points x, y ∈ X the infimum of the lengths of

rectifiable curves which join them. (If there are no such curves then d(x, y) = ∞.)

(1) d is a metric.

(2) d(x, y) ≥ d(x, y) for all x, y ∈ X.

(3) If c : [a, b] → X is continuous with respect to the topology induced by d, then

it is continuous with respect to the topology induced by d.(The converse is false

in general.)
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(4) If a map c : [a, b] → X is rectifiable curve in (X, d), then it is a continuous

and rectifiable curve in (X, d).

(5) The length of a curve c : [a, b] → X in (X, d) is the same as its length in (X, d).

(6) d = d.

Proof.

(1) d is a metric:

(i) d(x, y) ≥ 0 follows from the fact that length of rectifiable curves are

greater than zero always.

d(x, y) = 0 implies that d(x, y) = 0. Hence x = y.

Conversely, if x = y, then d(x, y) = 0, Hence d(x, y) = 0.

(ii) d(x, y) = inf l(c) = inf l(c) = d(y, x).

(iii) Let x, y, z be fixed, and let � > 0. Then, by the definition of infimum,

there exists a path γ1 from x to y with L(γ1) < d(x, y) + �/2, and there

exists a path γ2 from y to z with L(γ2) < d(y, z) + �/2. Let γ = γ1γ2 be

the path γ1 followed by γ2 from x to z. Then d(x, z) ≤ L(γ) = L(γ1) +

L(γ2) < d(x, y) + d(y, z) + �. Thus for all � > 0 we have d(x, z) <

d(x, y) + d(y, z) + �,thus d(x, z) ≤ d(x, y) + d(y, z).

(2) l(c) ≥ d(x, y) for all c joining x to y. Hence d(x, y) ≥ d(x, y).

(3) d induces a finer topology compared to d. Hence (3) holds.

(4) Follows from 0.4.2(5)

(5) Let c : [a, b] → X be a path which has length l(c) with respect to the

metric d, and length l(c) with respect to the metric d. On the one hand, we

have that l(c) ≥ l(c), by (2), and on the other hand

l(c) = sup
a=t0≤t1≤...≤tk=b

k−1�

i=0

d(c(ti), c(ti+1)) ≤ sup
a=t0≤t1≤...≤tk=b

k−1�

i=0

l(c|[ti−1,ti]) = l(c).

Hence l(c) = l(c).

(6) Follows from (4) and (5).
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Definition 0.5.3. Let (X, d) be a metric space. The map d defined in (3.2) is called

the length metric (or inner metric) associated to d, and (X, d) is called the length

space associated to (X, d). Note that d = d if and only if (X, d) is a length space.

The induced length metric on a subset Y ⊆ X is the length metric associated to the

restriction of d to Y × Y (which in general will not be the same as the restriction

to Y × Y of d).

Example 0.5.4. Consider the set of rational numbers Q with the usual metric d

induced from R. In the associated length metric d, the distance between every pair

of distinct points of Q is infinite. Hence d induces the discrete topology on Q.

0.6 Valuation Metric

Definition 0.6.1. A discrete valuation on a field K is a function v : K× → Z
satisfying:

(i) v is surjective.

(ii) v(xy) = v(x) + v(y) for all x, y ∈ K×.

(iii) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K× with x+ y �= 0.

The subring {x ∈ K|v(x) ≥ 0} ∪ {0} is called the valuation ring of v.

The valuation v is often extended to all of K by defining v(0) = +∞, in which

case (ii) and (iii) hold for all a, b ∈ K.

Definition 0.6.2. A discrete valuation v on a field K defines an associated metric, dv,

on K as follows: fix any real number β > 1 (the actual value of β does not matter

for verifying the axioms of a metric), and for all a, b ∈ K define

dv(a, b) := �a− b�v where �a�v = β−v(a)

and where we set dv(a, a) = 0.

We now check that the metric defined in this manner is indeed a metric.

Proposition 0.6.3.

(i) dv(a, b) ≥ 0, with equality holding if and only if a = b.

(ii) dv(a, b) = dv(b, a) i.e. dv is symmetric.
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(iii) dv(a, b) ≤ dv(a, c) + dv(c, b), for all a, b, c ∈ K, i.e. dv satisfies the triangle

inequality.

Proof.

Observe that v(1) = v(−1) = 0. Now v(−a) = v(a)+v(−1) = v(a). Hence, v(a−b) =

min{v(a), v(b)}.

(i) dv(a, b) = β−v(a−b) ≥ 0 since β > 1. Now if dv(a, b) = 0, we see that β−v(a−b) =

0, which implies v(a − b) = ∞. Hence a = b. The other way follows from the

definition.

(ii) v(a− b) = v(b− a). Hence dv(a, b) = dv(b, a).

(iii) v(a− b) ≥ min{v(a− c), v(c− b)}. Hence

β−v(a−b) ≤ β−min{v(a−c),v(c−b)} ≤ β−v(a−c) + β−v(c−b).

Hence dv(a, b) ≤ dv(a, c) + dv(c, b) for all a, b, c ∈ K.

Proposition 0.6.4. The valuation metric defined in the above manner satisfies the

following inequality

dv(a, b) ≤ max{dv(a, c), dv(c, b)} for all a, b, c ∈ K.

Proof.

v(a− b) ≥ min{v(a− c), v(c− b)}
β−v(a−b) ≤ β−min{v(a−c),v(c−b)}

β−v(a−b) ≤ βmax{−v(a−c),−v(c−b)}

dv(a, b) ≤ max{dv(a, c), dv(c, b)}
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Chapter 1

Cayley Graphs

In this chapter, we see how graph theory and algebra interplay. Specifically, we are

going to develop Cayley Graphs and Schrier Diagrams. We would also see some ex-

amples later. For this chapter, I have referred to Cayley Graphs by Padraic Bartlett

[Bar].

1.1 Free Groups, Generating Sets, Presented Groups

and Cosets

Definition 1.1.1. The free group on n generators a1, a2, ...., an denoted

�a1, ...., an�

is the following group:

� The elements of the group are all of the strings of the form

ak1i1 a
k2
i2
....aklil

where the indices i1, i2, ..., il are all valid indices for the a1, ..., an and k1, ..., kl

are all integers.

� We also have identity element e in the group, which corresponds to the empty

string that contains no elements.

� Given two strings s1, s2, we can concatenate these two strings into the word s1s2

by simply writing the string that consists of the string s1 followed by the

string s2.
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� Whenever we have ak in a string, we think of this as being

k copies� �� �
a.a......a, i.e. k

copies of a. If we have multiple consecutive strings of a’s, we can combine

them together into one such ak: for example, the word a3aa2 is the same

thing as the word a6.

� Finally, if we ever have an aa−1 or an a−1a occurring next to each other in a

string, we can simply replace this pairing with the empty string, e.

Example 1.1.2. The free group on two generators �a, b� contains strings like

a, a2, b, ab, a2ba, a6b4a−2b3a1

We concatenate strings simply by placing one after another and reducing the terms

pairwise.

a2b−2a3ba3.a−3b−1a1b3 = a2b−2a3ba3a−3b−1a1b3 = a2b−2a4b3

This is a group as concatenation is associative; the empty string e is clearly an iden-

tity, and we can invert any word by simply reversing it and switching the signs on

the ki’s

ak1i1 .a
k2
i2
...aknin .a

−kn
in

...a−k2
i2

.a−k1
i1

= e

Definition 1.1.3. Given a group G, we say that it is generated by some collection

of elements a1, ..., an ∈ G if we can write any element in G as some combination of

the elements a1, ..., an and their inverses.

Remark. Some groups have multiple different sets of generators: i.e. �Z,+� is gen-
erated both by the single element {1} and also by the pair of elements {2, 3}.

In our above discussion, we have primarily defined groups by giving a set and an

operation on that set. There are other ways of defining a group as shown below.

Definition 1.1.4. A group presentation is a collection of n generators a1, ..., an

and m words R1, ...Rm from the free group �a1, ...an�, which we write as

�a1, ...an|R1, ...Rm�.

We associate this presentation with the group defined as follows:

� Start off with the free group �a1, ..., an�.
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� Now, declare that within this free group, the words R1, ...Rmare all equal to

the empty string: i.e. if we have any words that contain some Ri as a sub-

string, we can simply “delete” this Ri from the word

Example 1.1.5. Consider the group with the presentation

�a|an�.

This is the collection of all words written with one symbol a, where we regard an =

e.

�a|an� = {e, a, a2, a3, ..., an−1}

Often, we will give a group a presentation of the form:

�a1, ..., an|R1 = R2, R3 = R4, ..., ...Rm−1 = Rm�

Definition 1.1.6. Suppose that G is a group, s ∈ G is some element of G and H

is a subgroup of G. We define the right coset of H corresponding to s as the set

Hs = {hs|h ∈ H}.

From now, we will simply call these objects cosets.

1.2 Cayley Graphs

Definition 1.2.1. Take any group A along with a generating set S. We define the

Cayley graph GA,S associated to A as the following directed graph:

� Vertices: the vertices of GA are precisely the elements of A.

� Edges: for two vertices x, y, create the oriented edge (x, y) if and only if there

is some generator s ∈ S such that x.s = y. If this happens, we decorate the

edge (x, y) with this generator s so that we can keep track of how we have

formed our connections.

Example 1.2.2. The integers Z with generator 1 has the following simple Cayley

graph. For each vertex, there are two edges: one to the successor of the integer and

one to its predecessor.

Example 1.2.3. The integers Z with the generating set {2, 3} has the following

Cayley graph: Again, our vertices are integers. Now since there are two generators,
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one could add the generators or subtract the generator from the integer. Hence each

node is connected to four other nodes.

Notice that the above Cayley graphs are different. Hence the Cayley graph for the

same group could differ depending on the generator set used.

Example 1.2.4. Cayley graph of S3 with generators (12) and (123) :

We start with id and find the elements connected to it, namely (12) and (123). We

go on recursively find the Cayley graph.

(12)(12) = id (123)(123) = (132)

(123)(123)(123) = id (123)(12) = (13)

(13)(12) = (123) (132)(12) = (23)

(23)(12) = (132) (12)(123) = (23)

(23)(123) = (13) (13)(123) = (12)

Example 1.2.5. Cayley graph of �a, b|a3 = b2 = (ab)2 = id�: As before again, we

begin with the identity element and draw our graph by recursively finding the edges

of each new element. We first draw the identity element. Then we find the elements

connected to identity through the corresponding generator edges.

id.b = b

id.a = a
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Now we go to vertices b and a and find the elements connected to them.

b.b = id

b.a = ba

a.b = ab

a.a = a2

Now we go to the vertices ba, ab and a2. Here we need to use the words which are
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defined to be identity.

ba.b = bab = a3bab = a2(a3 = abab = 1)

ba.a = baa = ba2 = ab(abab = 1)

ab.b = abb = a(b2 = 1)

ab.a = aba = b(abab = 1)

a2.a = a3 = id

a2.b = ba(abab = 1)

Remark.

� Same group with two different generator sets have different Cayley graphs.

Eg: Z with generating sets {1} and {2, 3} , D4 with following presentations:

�a, b|a4 = b2 = e, ab = ba3� and �b, c|b2 = c2 = e, bcbc = cbcb�

� Formally, for a given choice of generators, one has the word metric (the natu-

ral distance on the Cayley graph), which determines a metric space. The word
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(a) (b)

metric is a metric on G, assigning to any two elements g, h of G a distance d(g, h)

that measures how efficiently their difference g−1h can be expressed as a word

whose letters come from a generating set for the group. The word metric on G

is very closely related to the Cayley graph of G: the word metric measures the

length of the shortest path in the Cayley graph between two elements of G.

Eg: The group of integers Z is generated by the set {−1,+1}. The integer −3

can be expressed as −1− 1− 1 + 1− 1, a word of length 5 in these generators.

But the word that expresses −3 most efficiently is −1−1−1, a word of length

3. The distance between 0 and −3 in the word metric is therefore equal to 3.

More generally, the distance between two integers m and n in the word metric

is equal to |m−n| because the shortest word representing the difference m−n

has a length equal to |m− n|.

1.3 Schreier Graphs

Definition 1.3.1. Take a group G, a subgroup H of G and some collection of elements S

that(along with the elements in H) generate G. We create the Schreier diagram

corresponding to this collection of information as follows:

� Vertices: the various right cosets of H in G.

� Edges: connect two cosets K, L with an edge if and only if there is some ele-

ments s ∈ S such that Ks = L.
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In this sense, a Cayley graph is simply a Schreier diagram where we set H = {id}.

Example 1.3.2. Lets take G = S3 as before, with H = {id, (12)} and generating

set S = {(123)}. Now we have three cosets for H:

H.(12) = H.id = {id, (12)}
H.(13) = H.(132) = {(13), (132)}
H.(23) = H.(123) = {(23), (123)}

This gives us a fairly simple Schreier diagram
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Chapter 2

Cell Complexes

In the last chapter, we saw how groups have a graph associated with them. In

this chapter, we see how every group has associated with it a 2-dimensional cell

complex. We begin by seeing what cell complexes are. I have referred to Algebraic

Topology by Allen Hatcher [Hat02] for this chapter.

Definition 2.0.1. Let X and Y be topological spaces, and let A be a subspace

of Y . Let f : A → X be a continuous map (called the attaching map). One forms

the adjunction space X ∪f Y (sometimes also written as X +f Y ) by taking the

disjoint union of X and Y and identifying a with f(a) for all a ∈ A. Formally,

X ∪f Y = (X � Y )/ ∼

where the ∼ equivalence relation is generated by a ∼ f(a) for all a in A, and the
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quotient is given the quotient topology. As a set, X ∪f Y consists of the disjoint

union of X and (Y − A). Intuitively, one may think of Y as being glued onto X via

the map f .

Definition 2.0.2. A k-cell is a k-dimensional disc.

ek = {x ∈ Rk : |x| ≤ 1}.

Definition 2.0.3. A CW complex is a space built out of smaller spaces, iteratively

attaching cells. Attaching a k-cell to another space X means, intuitively, forming

the union of X and ek, where we glue the boundary of ek to X.

Example 2.0.4. Let X be a single point p and attach a 1-cell e1 = [−1, 1] to X so

that the two endpoints attach at the point p. The result is a circle. Alternatively,

one could attach a 2-cell to X by collapsing its boundary circle to p; the result is

a 2-sphere.

Example 2.0.5. You could attach several cells. For example, attaching two 1-cells

to a single point yields the figure 8. The 2-torus is built by attaching a square to

the figure 8. Since the square is topologically a disc, this is a 2-cell attachment. The

boundary of the square (disc) is attached in a more interesting way than the pre-

vious examples: its boundary runs along the two loops, a, b, of the figure 8 in the

order b−1a−1ba. Similarly, one could construct toruses of higher genuses.

2.1 Constructing Spaces

A natural generalization to construct cell complexes using cells is as below:
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(i) Start with a discrete set X0, whose points are regarded as 0-cells.

(ii) Inductively, form the n skeleton Xn from Xn−1 by attaching n-cells enα via

maps φα : Sn−1 → Xn−1. This means that Xn is the quotient space of the

disjoint union Xn−1 �α Dn
α of Xn−1 with a collection of n-disks Dn

α under the

identifications x ∼ φα(x) for x ∈ ∂Dn
α. Thus as a set, Xn = Xn−1 �α enα where

each enα is an open n-disk.

(iii) One can either stop this inductive process at a finite stage, setting X = Xn

for some n < ∞, or one can continue indefinitely, setting X = ∪nX
n. In the

latter case, X is given the weak topology: A set A ⊂ X is open (or closed) if

and only if A ∩Xn is open (or closed) in Xn for each n.

If X = Xn for some n, then X is said to be finite-dimensional, and the smallest

such n is the dimension of X, the maximum dimension of cells of X.
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2.2 Van Kampen’s Theorem

Theorem 2.2.1. If X is the union of path-connected open sets Aα each containing

the basepoint x0 ∈ X and if each intersection Aα ∩ Aβ is path-connected, then the

homomorphism Φ : ∗απ1(Aα) → π1(X) is surjective. If in addition each intersection Aα∩
Aβ ∩ Aγ is path-connected, then the kernel of Φ is the normal subgroup N generated

by all elements of the form iαβ(ω)iβα(ω)
−1 for ω ∈ π1(Aα ∩ Aβ), and so Φ induces

an isomorphism π1(X) ≈ ∗απ1(Aα)/N .

2.3 Application of Van Kampen’s Theorem to Cell

Complexes

We examine how the fundamental group of a space is affected by attaching 2-cells

to the space.

Suppose we attach a collection of 2-cells e2α to a path connected space X via maps ϕα :

S1 → X, producing a space Y . If s0 is a basepoint of S1, then ϕα determines a loop

at ϕα(s0) that we shall call ϕα, even though technically loops are maps I → X

rather than S1 → X. For different α ’s the basepoints ϕα(s0) of these loops ϕα

may not all coincide. To remedy this, choose a basepoint x0 ∈ X and a path γα

in X from x0 to ϕα(s0) for each α. Then γαϕαγα is a loop at x0. This loop may not

be nullhomotopic in X, but it will certainly be nullhomotopic after the cell e2α is at-

tached. Thus the normal subgroup N ⊂ π1(X, x0) generated by all the loops γαϕαγα

for varying α lies in the kernel of the map π1(X, x0) → π1(Y, x0) induced by the

inclusion X �→ Y .

Proposition 2.3.1. The inclusion X �→ Y induces a surjection π1(X, x0) →
π1(Y, x0) whose kernel is N . Thus π1(Y ) ≈ π1(X)/N .

The kernel N is independent of the choice of the paths γα, but this can also be

seen directly: If we replace γα by another path ηα having the same endpoints, then γαϕαγα

changes to ηαϕαηα = (ηαγα)γαϕαγα(γαηα), so γαϕαγα and ηαϕαηα define conjugate

elements of π1(X, x0).

Proof. Let us expand Y to a slightly larger space Z that deformation retracts onto Y

and is more convenient for applying van Kampen’s theorem. The space Z is ob-

tained from Y by attaching rectangular strips Sα = I×I, with the lower edge I×{0}
attached along γα, the right edge {1} × I attached along an arc βα : I → Y whose
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origin is at φα(s0) in e2α, and all the left edges {0} × I of the different strips iden-

tified together. The top edges of the strips are not attached to anything, and this

allows us to deformation retract Z onto Y . So the space Z is of the form

Z =
Y � (∪α(γα(I)× I))

(γα(s), 0) ∼ γα(s), (γα(1), t) ∼ βα(t)

To show that Z deformation retracts onto Y, consider the map r : Z → Y as fol-

lows:

r(z) =

�
idY (z) z ∈ Y

γα(s1) z = [(γα(s1), s2)], with s1 �= 1 and s2 �= 0.

r is well-defined since r[(γα(s1), 0)] = γα(s1) = z = idY (γα(s1)), for z = [(γα(s1), 0)]

and also, r[(γα(0), s2)] = γα(0) = x0 = γβ(0) = r[(γβ(0), s2)], for [(γα(0), s2)] =

[(γβ(0), s2)].r[(γα(1), t)] = [(γα(1), t)] = [βα(t)] = r[βα(t)] since βα(t) ∈ Y . r is

continuous since assuming that W is an open subset of Y , then r−1(W ) = W ∪α

(γ−1
α (W )× I) is open as union of open sets.

Consider the inclusion i : Y → Z, we have r ◦ i(y) = r([y]) = [y] = y = idY (y) by
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definition of the map r. So r ◦ i = idY We have

i ◦ r(z) =
�

idY (z) z ∈ Y

(γα(s1), 0) otherwise

Consider the map H : Z × I → Z defined by

H(z, t) =

�
[idY (z)] z ∈ Y

[( γα(s1), ts2)] otherwisez = (γα(s1), s2)

H is well-defined since H([(γα(s1), 0)], t) = [γα(s1)] = z = [idY (γα(s1))] by con-

struction of Z, for z = [(γα(s1), 0)] and also, H([(γα(0), s2)], t) = [(γα(0), ts2)] =

[(x0, ts2)] = [(γβ(0), ts2)] = H([(γβ(0), s2)], t), for [(γα(0), s2)] = [(γβ(0), s2)]. H is

continuous since assume O is an open subset of Z, then H−1(O) = (O ∪α (γ
−1
α (O)×

I))× I is open as the cartesian product of the segment I and union of open set.

H(z, 0) =

�
idY (z) z ∈ Y

[( γα(s1), 0)] otherwise

H(z, 1) =

�
idY (z) z ∈ Y

[( γα(s1), s2)] otherwise

Hence H(z, 0) = i ◦ r(z) and H(z, 1) = idZ(z). Hence we have that π1(Y ) ∼=
π1(Z). In each cell e2α, choose a point yα not in the arc along which Sα is attached.

Let A = Z − ∪αyα and let B = Z − X = ∪α(e
2
α ∪ Sα) − γαϕαγα(I). We

have A ∩ B = (Z − X) − ∪αyα = ∪α(e
2
α ∪ Sα) − (γα ∪ γαϕαγα(I)). Hence, A

is path-connected and open since AC = ∪αYα is closed as a finite set, B is also

path-connected and open, and finally, A ∩ B is also path-connected and open.

27



Since x0 /∈ A ∩ B, to apply van Kampen’s theorem to the cover {A,B} of Z, we

need to have a new basepoint, say z0 ∈ A ∩ B. That point z0 is chosen close to x0

on the segment where all the bands Sα intersect.

Now, the hypothesis of van Kampen’s theorem are verified. Then:

(i) the map Φ : π1(A, z0) ∗ π1(B, z0) → π1(Z, z0) is surjective.

(ii) Its kernel kerΦ = N � π1(A, z0) ∗ π1(B, z0) generated by i∗1([δα])i
∗
2([δα]

−1) ∈
π1(A, z0) ∗ π1(B, z0), ∀[δα] ∈ π1(A ∩ B) implies N = ��[δα]α��.

(i) and (ii) imply that π1(Z, z0) ∼= (π1(A, z0) ∗ π1(B, z0))/N . But B is contractible.

Hence π1(B, z0) = 1. So we have

π1(Z, z0) ∼= π1(A, z0)/N.

So it remains only to see that π1(A∩B) is generated by the loops γαϕαγα, or rather

by loops in A ∩ B homotopic to these loops. If this is shown, we are done since Aα

deformation retracts onto a circle in e2α − yα, we have π1(Aα) ≈ Z generated by a

loop homotopic to γαϕαγα, and the result follows.

Here, for each α, we consider the open subsets Aα = A ∩ B − ∪β �=αe
2
α and we apply

van Kampen’s theorem on the cover {Aα|α} of A∩B. We have that Aα’s and ∩αAα

are open and path-connected, also z0 ∈ ∩αAα. Applying van Kampen’s theorem, we

have the following:

(i) the map Φ : ∗απ1(Aα, z0) → π1(A ∩ B, z0) is surjective.

(ii) Its kernel kerΦ = N � ∗απ1(Aα, z0) generated by i∗1([λα])i
∗
2([λα]

−1) ∈ ∗απ1(Aα, z0), ∀[λα] ∈
π1(∩αAα) but ∩αAα is contractible, that is, π1(∩αAα, z0) = 1 which implies N =

1.

The points (i) and (ii) imply that π1(A ∩ B, z0) ∼= ∗απ1(Aα, z0). But each Aα defor-

mation retracts onto the circle S1 in e2α − yα due to the holes created by the with-

drawal of points yα, that is, π1(Aα, z0) = Z for each α, so we have π1(A ∩ B, z0) ∼=
∗αZ.
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We have that A = (Y−∪αyα)�(∪α(γα(I)×I))
(γα(s),0)∼γα(s)

deformation retracts onto X as in the

case of Z and Y.

We have π1(X, x0) ∼= π1(X, x1) ∼= π1(A, x1) ∼= π1(A, z0) and π1(Y, z0) ∼= π1(Y, x0)

since the fundamental group is independent of the choice of the basepoint for path-

connected spaces. Therefore we have the following result:

π1(Y, x0) ∼= π1(X, x0)/N, with N = ��{[γαϕαγα]}α��

where [γαϕαγα] = Ψ([δα]),Ψ : π1(Z, z0) → π1(Z, x0) is the basepoint-change isomor-

phism.

Corollary 2.3.2. Fundamental group of an orientable surface Mg of genus g.

Proof. The orientable surface Mg of genus g has a cell structure with one 0-cell, 2g

1-cells, and one 2-cell. The 1-skeleton is a wedge sum of 2g circles, with fundamen-

tal group free on 2g generators. The 2-cell is attached along the loop given by the

product of the commutators of these generators, say [a1, b1], ..., [ag, bg]. Therefore

π1(Mg) ≈ �a1, b1, ...., ag, bg|[a1, b1]...[ag, bg]�

where �gα|rβ� denotes the group with generators gα and relators rβ, in other words,

the free group on the generators gα modulo the normal subgroup generated by the

words rβ in these generators.

Nonorientable surfaces can be treated in the same way. If we attach a 2-cell to

the wedge sum of g circles by the word a21....a
2
g, we obtain a nonorientable surface Ng.

For example, N1 is the projective plane RP2, the quotient of D2 with antipodal

points of ∂D2 identified. And N2 is the Klein bottle, though the more usual rep-

resentation of the Klein bottle is as a square with opposite sides identified via the

word aba−1b. If one cuts the square along a diagonal and reassembles the result-

ing two triangles as shown in the figure, one obtains the other representation as a

square with sides identified via the word a2c2. By the Proposition 2.3.1, π1(Ng) ≈
�a1, ...., ag|a21.....a2g�. This abelianizes to the direct sum of Z2 with g − 1 copies of Z
since in the abelianization, we can rechoose the generators to be a1, ..., ag−1 and a1+

.... + ag, with 2(a1 + .... + ag) = 0. Hence Ng is not homotopy equivalent to Nh

if g �= h, nor is Ng homotopy equivalent to any orientable surface Mh.

Corollary 2.3.3. The surface Mg is not homeomorphic, or even homotopy equiva-

lent, to Mh if g �= h.
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Proof. The abelianization of π1(Mg) is the direct sum of 2g copies of Z. So if M �
g �

Mh then π1(Mg) ≈ π1(Mh), hence the abelianizations of these groups are isomor-

phic, which implies g = h.

Corollary 2.3.4. For every group G there is a 2-dimensional cell complex XG

with π1(XG) ≈ G.

Proof. Choose a presentation G = �gα|rβ�. This exists since every group is a quo-

tient of a free group, so the gα’s can be taken to be the generators of this free group

with the rβ’s generators of the kernel of the map from the free group to G. Now

construct XG from
�

α S
1
α by attaching 2-cells e2β by the loops specified by the words rβ.
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Chapter 3

Hopf-Rinow Theorem

Definition 3.0.1. Let X be a topological space. If (xn) is a sequence of points

of X, and if

n1 < n2 < ... < ni < ...

is an increasing sequence of positive integers, then the sequence (yi) defined by

setting yi = xni
is called a subsequence of the sequence (xn). The space X is said

to be sequentially compact if every sequence of points of X has a convergent subse-

quence.

Definition 3.0.2. Let (X, d) and (Y, d�) be two metric spaces, and F a family of

functions from X to Y .

The family F is equicontinuous at a point x0 ∈ X if for every � > 0, there exists

a δ > 0 such that d�(f(x0), f(x)) < � for all f ∈ F and all x such that d(x0, x) < δ.

The family is pointwise equicontinuous if it is equicontinuous at each point of X.

The family F is uniformly equicontinuous if for every � > 0, there exists a δ > 0

such that d�(f(x1), f(x2)) < � for all f ∈ F and all x1, x2 ∈ X such that d(x1, x2) <

δ.

Definition 3.0.3. Let X be a topological space. X is called locally compact if

every point x of X has a compact neighbourhood, i.e., there exists an open set U

and a compact set K, such that x ∈ U ⊆ K.

Definition 3.0.4. Suppose E is a set and (fn)n∈N is a sequence of real-valued func-

tions on it. We say the sequence (fn)n∈N is uniformly convergent on E with limit f :

E → R if for every � > 0, there exists a natural number N such that for all n ≥ N

and all x ∈ E

|fn(x)− f(x)| < �.

Lemma 3.0.5. Every closed subspace of a compact space is compact.
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Lemma 3.0.6. The image of a compact space under a continuous map is compact.

Lemma 3.0.7. Let X be a metrizable space. Then X is compact if and only if X is

sequentially compact.

Definition 3.0.8. A metric space (X, d) is said to be proper if, for every x ∈ X

and every r > 0, the closed ball B(x, r) is compact.

3.1 Hopf-Rinow Theorem

Proposition 3.1.1. Let (X, d) be a metric space and c : [a, b] → X be a path.

Let (cn) be a sequence of paths [a, b] → Xconverging uniformly to a path c. If c is

rectifiable, then for every � > 0, there exists an integer N(�) such that

l(c) ≤ l(cn) + �

whenever n > N(�).

Proof. Choose a = t0 < t1 < ... < tk = b such that

l(c) ≤
k−1�

i=0

d(c(ti), c(ti+1)) + �/2

Then we choose N(�) big enough to ensure that d(c(t), cn(t)) < �/4k for all n >

N(�) and all t ∈ [a, b](by uniform convergence). By the triangle inequality,

d(c(ti), c(ti+1) ≤ d(c(ti), cn(ti)) + d(cn(ti), cn(ti+1)) + d(c(ti+1), cn(ti+1))

≤ 2�/4k + d(cn(ti), cn(ti+1)).

Hence

l(c) ≤ k�/2k +
k−1�

i=0

d(cn(ti), cn(ti+1)) + �/2 ≤ �+ l(cn)

Theorem 3.1.2 (Hopf-Rinow Theorem). Let X be a length space. If X is complete

and locally compact, then

(1) Every closed bounded subset of X is compact.

(2) X is a geodesic space (i.e. joining two points of X, there exists a minimizing

geodesic).
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Proof.

For (1), it suffices to prove that closed balls about a fixed point a ∈ X are compact.

This follows from the fact that every closed bounded set is contained in a closed

ball.

Given r > 0, we denote by B(r) = {x ∈ X|d(a, x) ≤ r} the closed ball with

centre a and radius r. Consider the set of non-negative numbers A such that B(ρ)

is compact for every ρ ∈ A.

0 ∈ A since singleton sets are compact. We claim that A is both open and closed.

Because X is assumed to be locally compact, the interval contains a neighbour-

hood of 0. To see that it contains a neighbourhood of each of its other points, we

fix ρ ≥ 0 such that B(ρ) is compact, and use the local compactness of X to cover B(ρ)

with finitely many balls B(xi, �i) such that each B(xi, �i) is compact. There is a

strictly positive lower bound, say, 2δ on the distance from any point in B(ρ) to the

closed set X − ∪B(xi, �i). This follows from the fact that the distance funtion d is a

continuous function and d(., X − ∪B(xi, �i)) : B(ρ) → R is a function from a com-

pact set. Hence B(ρ + δ) is a closed subset of the compact set ∪B(xi, �i) and thus

compact. Hence A is open (follows from Lemma 3.0.5 and Lemma 3.0.6).

It remains to prove that if B(r) is compact for all r < ρ then B(ρ) is compact

i.e. A is closed. It suffices to show that every sequence of points xn ∈ B(ρ) such

that d(a, xn) converges to ρ has a convergent subsequence (sequentially compact).

We fix such a sequence (xn).
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Let �p be a sequence of positive numbers tending to 0. For each p and each n, we

can find a point ypn such that

d(a, ypn) < ρ− �p/2 and d(ypn, xn) ≤ �p

(To see this, one chooses a path c of length smaller than d(a, xn) + �p/2 joining a

to xn, and then chooses a convenient point ypn on this path). For each p, the points ypn

are contained in the compact ball B(ρ − �p/2). Hence we can extract from (y1n)n∈N

a convergent subsequence (y1
n1
k
)k∈N; from the sequence (y2

n1
k
)k∈N, we can then extract

a convergent subsequence, and so on. Eventually, by a diagonal process, we obtain a

sequence of integers (nk)k∈N such that the sequence (ypnk
)k∈N converges for all p. We

claim that the corresponding sequence (xnk
)k∈N is Cauchy. Indeed, for a given � > 0,

we can choose p such that �p < �/3 and then use the fact that the sequence ypnk
is

convergent (hence Cauchy) to see that for large k, k�, we have

d(ypnk
, ypnk�

) < �/3,

and hence

d(xnk
, xnk� ) < d(xnk

, ypnk
) + d(ypnk

, ypnk�
) + d(ypnk�

, xnk� )

< �p + �/3 + �p

< �.

We shall now prove (2). Let a and b be distinct points of X. For every integer

n > 1, there is a path cn : [0, 1] → X, parameterized proportional to its arc length,

such that l(cn) < d(a, b) + 1/n. Such a family of paths [cn] is equicontinuous; indeed

forall t, t� ∈ [0, 1] we have:

|t− t�| = l(cn|[t,t�])
l(cn)

≥ d(cn(t), cn(t
�))

d(a, b) + 1

hence d(cn(t), cn(t
�)) < � if |t− t�| < �

d(a,b)+1
. The image of each path cn is contained

in the compact set B(2d(a, b)). By the Arzelà-Ascoli theorem (see below)( [0, 1] is

a separable metric space and X is a compact) there is a subsequence of the (cn)n∈N

converging uniformly to a path c : [0, 1] → X. Finally, by Proposition 3.1.1, we have

l(c) ≤ lim inf l(ckn) = d(a, b).
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But l(c) ≥ d(a, b), so in fact l(c) = d(a, b), and therefore c is a linearly reparameter-

ized geodesic joining a to b.

Corollary 3.1.3. A length space is proper if and only if it is complete and locally

compact.

3.2 Arzela Ascoli Theorem

Lemma 3.2.1. If f : Y → X is a uniformly continuous map between two met-

ric spaces and (xn) is a Cauchy sequence in Y , then (f(xn)) is a Cauchy sequence

in X.

Proof. Since (xn) is a Cauchy sequence, we have that for every δ > 0, ∃N ∈ N such

that for m,n ≥ N,

dX(xn, xm) < δ

We also have that f is a uniformly continuous map. Hence we get that

dY (f(xn), f(xm)) < �

for all n,m > N . Thus (f(xn)) is Cauchy as well.

Lemma 3.2.2. Let X and Y be metric spaces, S ⊆ Y , and f : S → X be uni-

formly continuous. If two sequences (xn) and (yn) in S converge to the same limit

in Y and if the sequence f(xn) converges, then the sequence f(yn) converges and

lim f(xn) = lim f(yn).

Proof. Consider the interlaced sequence zn

zn =




xn+1

2
if n is odd

yn/2 if n is even

By hypothesis, there exists a point a in Y such that xn → a and yn → a. It is

easy to see that the “interlaced” sequence (zn) also converges to a : :since (xn)

converges a, there exists N ∈ N such that d(xn, a) < � for all n > N . Similarly we

have d(yn, a) < � for all n > M where M ∈ N. Now choosing A = max{M,N}, we
see that d(zn, a) < � for all n > A. Hence (zn) is Cauchy in Y and therefore in S

(follows from the fact that all convergent sequences are Cauchy), and by lemma

above (applied to S), the sequence f(zn) is Cauchy in X. The sequence f(xn) is a

subsequence of f(zn) and is, by hypothesis, convergent ( follows from the fact that
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if a subsequence of a Cauchy sequence is convergent, the sequence itself is conver-

gent). Therefore, the sequence f(zn) converges and

lim f(xn) = lim f(zn) = lim f(yn).

Lemma 3.2.3. Let X and Y be metric spaces, S a subset of Y , and f : S → X.

If f is uniformly continuous and X is complete, then there exists a unique continu-

ous extension of f to S.

Proof. Define g : S → X by g(a) = lim f(yn) where (yn) is a sequence in S converg-

ing to a.

First, we show that g is well defined. To do this, we show that lim f(yn) does exist

(follows from Lemma 3.2.1), and the value assigned to g at a does not depend on

the particular sequence (yn) chosen, i.e., if xn → a and yn → a, then lim f(xn) =

lim f(yn) (follows from Lemma 3.2.2).

Now g is an extension of f , since when y ∈ S and if yn → y, then lim f(yn) =

f(y) = g(y).

Now we show the uniqueness of the extension. Let h and g be two extensions of

the same function f . Now consider the set B = {y ∈ S|h(y) = g(y)}. Observe

that S ⊆ B. We show that this set is closed. This would imply that B = S.

X is a Hausdorff space then the set D = {(x, x) ∈ X × X, x ∈ X} is closed

in X ×X. Now let p : S → X ×X be the map defined by p(y) = (h(y), g(y)) it is a

continuous map, and B = p−1(D) is closed.

Remark. Observe that every function in a family of uniformly equicontinuous func-

tions is uniformly continuous.

Lemma 3.2.4 (Arzelia-Ascoli). If X is a compact metric space and Y is a separa-

ble metric space, then every sequence of uniformly equicontinuous maps fn : Y → X

has a subsequence that converges(uniformly on compact subsets) to a continuous

map f : Y → X.

Proof. We first fix a countable dense set Q = {q1, q2, ...} in Y . Then we use the

compactness of X to choose a subsequence fn(1) such that the sequence of points fn(1)(q1)

converges in X as n → ∞; we call the limit point f(q1). We then pass to a further

subsequence fn(2) to ensure that fn(2)(q2) converges to some point f(q2), as n →
∞. Proceeding by recursion on k, we pass to further subsequences fn(k) so that

as n(k) tends to infinity, fn(k)(qj) converges to f(qj) for all j ≤ k. The diagonal

subsequence fn(n) has the property that lim
n→∞

fn(n)(q) = f(q) for all q ∈ Q.
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By uniform equicontinuity, for every � > 0 there exists δ > 0 such that if d(y, y�) <

δ then d(fn(y), fn(y
�)) < � for all n. So taking the limit, d(f(q), f(q�)) ≤ � for

all q, q� ∈ Q with d(q, q�) < δ. Since X is compact (hence complete) it follows that f

has a unique continuous extension Y → X, which again satisfies this inequality

(from Lemma 3.2.1 ,Lemma 3.2.2 and Lemma 3.2.3 above).

It remains to show that the convergence of fn(n) to f is uniform on compact sub-

sets. Given � > 0 we choose δ as above. Given a compact subset C ⊆ Y we fix N >

0 so that for every y ∈ C there exists j(y) < N with d(y, qj(y)) < δ, then we fix M

sufficiently large so that d(fn(n)(qj), f(qj)) < � for all n > M and all j < N . Then,

for all y ∈ C and all n > M we have:

d(f(y), fn(n)(y)) ≤ d(f(y), f(qj(y))) + d(f(qj(y)), fn(n)(qj(y))) + d(fn(n)(qj(y)), fn(n)(y))

≤ 3�.

Thus fn(n) → f uniformly on compact sets as n → ∞.

Corollary 3.2.5. If X is a compact metric space and if cn : [0, 1] → X is a se-

quence of linearly reparameterized geodesics, then there exists a linearly reparam-

eterized geodesic c : [0, 1] → X and a subsequence cn(i) such that cn(i) → c uni-

formly as n(i) → ∞.

Proof. For every n ∈ N and all t, t� ∈ [0, 1], we have d(cn(t)cn(t
�)) ≤ D|t − t�|,

where D is the diameter of X. Thus, the cn are equicontinuous. Now by the Arzela

Ascoli theorem above, we are done. Hence uniform limit of geodesics is a geodesic.

Lemma 3.2.6. Every sequence of equicontinuous maps {fn} which converges point-

wise on a compact set to f , converges uniformly to f.

Proof. Let � > 0. By equicontinuity, there exists a δ > 0 such that for all n,

d(x, y) < δ =⇒ d(fn(x), fn(y)) < �/3.

Since K is compact, there exist finitely many points {p1, , pm} such that

K ⊂ ∪m
k=1Bδ(pk).

Now by pointwise convergence, we see that for every � > 0, there exists Nk ∈ N such

that

d(fn(pk), f(pk)) < �
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when n > Nk. Let N = max{N1, , Nm}. Now for any x ∈ K, there exists pk such

that d(x, pk) < δ. Then for n > N ,

d(fn(x), f(x)) < d(fn(x), fn(pk)) + d(fn(pk), f(pk)) + d(f(pk), f(x))

< �/3 + �/3 + �/3

< �.

Hence proved.

Lemma 3.2.7. Let x and y be points in a proper geodesic metric space X. Suppose

that there is a unique geodesic segment joining x to y in X; Let c : [0, 1] → X

be a linear parameterization of this segment. Let cn : [0, 1] → X be linearly repa-

rameterized geodesics in X, and suppose that the sequence of points cn(0) and cn(1)

converge to x and y, respectively. Then cn → c uniformly.

Proof. We fix R > 0 so that the image of each of the paths cn lies in the (compact)

closed ball of radius R about x. If the sequence cn did not converge to c pointwise,

then there would exist � > 0, t0 ∈ (0, 1) and an infinite sequence cni
such that

d(cni
(t0), c(t0)) ≥ � for all ni. The previous corollary would yield a subsequence

of the cni
converging uniformly to a linearly reparameterized geodesic c� : [0, 1] → X

joining x = lim cni
(0) to y = lim cni

(1). But since d(c�(t0), c(t0)) ≥ �, this would

contradict the uniqueness of c.

Thus cn → c pointwise. Using the fact that c and cn are geodesic, it is easy to see

that the convergence must be uniform.
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Chapter 4

Hyperbolic Metric Spaces

In mathematics, a hyperbolic metric space is a metric space satisfying certain met-

ric relations (depending quantitatively on a nonnegative real number δ) between

points. The definition, introduced by Mikhael Gromov, generalizes the metric prop-

erties of classical hyperbolic geometry and trees. Hyperbolicity is a large-scale prop-

erty and is very useful to the study of certain infinite groups called (Gromov-)hyperbolic

group

4.1 Gromov Product

Let (X, x0) be a pointed metric space. Then the following notations are adopted:

� |x − y| = d(x, y) denotes the distance between the points x and y ∀x, y ∈
(X, x0).

� |x| = |x|x0 = d(x, x0).

We define the Gromov product (x.y) based at the point x0 to be

(x.y)x0 =
1

2
(d(x, x0) + d(y, x0)− d(x, y))

With this definition in hand, we can show the following.

Proposition 4.1.1. Prove the following:

(i) (x.y) = (y.x)

(ii) (x.x) = d(x, x0)

(iii) (x.x0) = 0
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(iv) Triangle inequality

0 ≤ (x.y) ≤ min(d(x, x0), d(y, x0))

Proof. (i)

(x.y) =
1

2
(d(x, x0) + d(y, x0)− d(x, y))

(y.x) =
1

2
(d(y, x0) + d(x, x0)− d(y, x))

(ii) (x.x) = 1
2
(d(x, x0) + d(x, x0)− d(x, x)) = d(x, x0)

(iii) (x.x0) =
1
2
(d(x, x0) + d(x0, x0)− d(x, x0)) = 0

(iv)

|d(x, x0)− d(y, x0)| ≤ d(x, y) ≤ d(x, x0) + d(y, x0)

⇒ −d(x, x0)− d(y, x0) ≤ −d(x, y) ≤ −|d(x, x0)− d(y, x0)|
⇒ d(x, x0) + d(y, x0)− d(x, x0)− d(y, x0) ≤ d(x, x0) + d(y, x0)− d(x, y)

≤ d(x, x0) + d(y, x0)− |d(x, x0)− d(y, x0)|
⇒ 0 ≤ (x.y) ≤ min(d(x, x0), d(y, x0))

We can calculate (x.y) in the following manner. Consider the triangle [x�
0, x

�, y�] in

the Euclidean plane which realizes the metric space {x0, x, y}

d(x�
0, x

�) = d(x0, x) , d(x�
0, y

�) = d(x0, y) and d(x�, y�) = d(x, y)

Let c� be the point of contact of the circle inscribed in the triangle [x�
0, x

�, y�] with

a side emanating from x�
0. Then (x.y) is the distance between the points x�

0 and c�
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(Remark: In the above construction, the Euclidean plane can be replaced by the

Hyperbolic plane H2 or even by a sphere of fairly large radius).

Now we look at how the change in basepoint affects the Gromov product.

Proposition 4.1.2. |(x.y)x0 − (x.y)x1 | ≤ d(x0, x1)

Proof.

|(x.y)x0 − (x.y)x1 | = |1
2
(d(x, x0) + d(y, x0)− d(x, y))− 1

2
(d(x, x1) + d(y, x1)− d(x, y))|

=
1

2
|d(x, x0) + d(y, x0)− d(x, x1)− d(y, x1)|

Now using triangle inequality twice,

|(x.y)x0 − (x.y)x1 | ≤
1

2
|d(x0, x1) + d(x0, x1)|

≤ d(x0, x1)

4.2 Hyperbolicity

Definition 4.2.1. Let δ ≥ 0. Then we say that the pointed metric space (X, x0)

is δ-hyperbolic when

(x.y) ≥ min((x.z), (y.z))− δ

for all x, y, z ∈ X.

Let us study the effect of changing the base point on the hyperbolicity condition

above.

Lemma 4.2.2. If (X, x0) is δ-hyperbolic, then (X, x1) is δ
�-hyperbolic where δ� =

δ + 2d(x0, x1).

Proof. Since (X, x0) is δ-hyperbolic,

(x.y)x0 ≥ min((x.z)x0 , (y.z)x0)− δ.
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Now from the inequality in Proposition 4.1.2, we have that,

−d(x0, x1) ≤ (x.y)x0 − (x.y)x1 ≤ d(x0, x1)

⇒ (x.y)x1 − d(x0, x1)| ≤ (x.y)x0 ≤ (x.y)x1 + d(x0, x1).

Now putting this in the hyperbolicity inequality, we get

(x.y)x1 + d(x0, x1) ≥ min(((x.z)x1 − d(x0, x1)), ((y.z)x1 − d(x0, x1)))− δ

⇒ (x.y)x1 ≥ min((x.z)x1 , (y.z)x1)− δ − 2d(x0, x1)

Hence δ� = δ + 2d(x0, x1)

As a consequence we get that if (X, x0) is δ-hyperbolic, then (X, x1) is δ
�− hyper-

bolic with δ� = δ + 2d(x0, x1).

Lemma 4.2.3. If (X, x0) is δ-hyperbolic, then

(x.y) + (z.t) ≥ min((x.z) + (y.t), (x.t) + (y.z))− 2δ (4.1)

for all x, y, z ∈ X.

Proof. From the hyperbolicity inequality, we get

(x.y) ≥ min((x.t), (y.t))− δ (4.2)

(z.t) ≥ min((z.x), (x.t))− δ (4.3)

(x.y) ≥ min((x.z), (z.y))− δ (4.4)

(z.t) ≥ min((z.y), (y.t))− δ (4.5)

Case I When (y.t) is the largest. Choose (1) and (4). Adding these, we get that

(x.y) + (z.t) ≥ (x.t) + (z.y)− 2δ

Case II When (x.t) is the largest. Choose (1) and (2). Adding these, we get that

(x.y) + (z.t) ≥ (y.t) + (z.x)− 2δ

And similarly for the other cases as well. Hence we conclude that

(x.y) + (z.t) ≥ min((x.t) + (z.y), (y.t) + (z.x))− 2δ
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In the beginning, we saw how the change in basepoint affects the hyperbolicity in-

equality. Now we show a stronger version of the same below.

Proposition 4.2.4. If (X, x0) is δ-hyperbolic, then (X, x1) is 2δ-hyperbolic for all

points x1 ∈ X.

Proof. To prove the proposition, we use the lemma above. Add to both sides of the

equation,

(d(x, t) + d(y, t) + d(z, t)− d(x, x0)− d(y, x0)− d(z, x0)− d(t, x0))/2

Then we get

(x.y)t ≥ min((z.y)t, (x.z)t)− 2δ

Hence Proved.

Now, we define what we mean by δ-hyperbolic spaces and hyperbolic spaces.

Definition 4.2.5. A metric space X is said to be δ-hyperbolic if (X, x0) is δ-hyperbolic

for all x0 ∈ X. We say that X is hyperbolic if X is δ-hyperbolic for some δ ≥ 0.

The Proposition 4.2.4 shows that if there exists x0 ∈ X for which (X, x0) is δ-

hyperbolic, then X is 2δ-hyperbolic with respect to some other point.

4.3 Subsets of δ-Hyperbolic Spaces

Let X be a metric space and Y ⊂ X. We say that Y is bounded if the function dist(., Y )

is bounded on X. Now, we are interested to see when would hyperbolicity of a sub-

set of a metric space imply the hyperbolicity of the metric space.

Proposition 4.3.1. Let X be a metric space and Y ⊂ X. If X is δ-hyperbolic,

then Y is δ-hyperbolic. Conversely, if Y is δ-hyperbolic and bounded, then X is

δ�-hyperbolic where δ� = δ + 6η with η = supx∈X dist(x, Y ).

Proof. Proving one way is obvious. Let us look at the converse: Let x, y, z, b ∈ X

be given and assume that η = supx∈X d(x, Y ) < ∞. Fix x�, y�, z�, b� ∈ Y such

that d(x, x�), d(y, y�), d(z, z�), d(b, b�) are all ≤ η. Using the triangle inequality, one
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can show that

(x�.y�)b� ≤ (x.y)b + 3η

(x.z)b ≤ (x�.z�)b� + 3η

(y.z)b ≤ (y�.z�)b� + 3η.

Then combining the above with the fact that Y is δ-hyperbolic, we get

(x.y)b ≤ (x�.y�)b� − 3η

≤ min{(x�.z�)b� , (y
�.z�)b�}− δ − 3η

≤ min{(x.z)b − 3η, (y.z)b − 3η}− δ − 3η

= min{(x.z)b, (y.z)b}− δ − 6η.

So X is δ�-hyperbolic with δ� = δ + 6η.

4.4 Four-Point Condition

In previous sections, we have defined hyperbolicity and looked at how the change in

basepoint affects the condition. In this section we look at an important reformula-

tion of the hyperbolicity condition(refer 4.2.1 ), the four-point condition. Later we

look into its geometrical interpretation as well.

Proposition 4.4.1. The metric space X is said to be δ-hyperbolic if and only if

d(x, y) + d(z, t) ≤ max(d(x, z) + d(y, t), d(x, t) + d(y, z)) + 2δ, (4.6)

for all x, y, z, t ∈ X.

Proof.

( ⇐)

d(x, y) + d(z, t) ≤ max(d(x, z) + d(y, t), d(x, t) + d(y, z)) + 2δ

d(x, y)− d(x, t)− d(y, t) ≤ max(d(x, z)− d(x, t)− d(z, t), d(y, z)− d(y, t)− d(z, t)) + 2δ

−2(x.y)t ≤ max(−2(x.z)t,−2(y.z)t) + 2δ

(x.y)t ≥ min((x.z)t, (y.z)t)− δ

( ⇒)
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Since X is δ-hyperbolic,

(x.y)t ≥ min((x.z)t, (y.z)t)− δ

d(x, t) + d(y, t)− d(x, y) ≥ min(d(x, t) + d(z, t)− d(x, z), d(y, t) + d(z, t)− d(y, z))− 2δ

−d(x, y)− d(z, t) ≥ min(−d(x, z)− d(y, t),−d(y, z)− d(x, t))− 2δ

d(x, y) + d(z, t) ≤ max(d(x, z) + d(y, t), d(y, z) + d(x, t)) + 2δ

The geometry behind this equality becomes apparent if we think of w, x, y, z as the

vertices of a tetrahedron; d(x, y) + d(z, w), d(x, z) + d(y, w) and d(x, w) + d(y, z)

correspond to the sums of the lengths of the three opposite pairs of edges. With

this picture in mind, we call these three sums the pair sizes of [w, x, y, z]. The in-

equality 4.6 states that if we list the pair sizes in increasing order, say S < M < L,

then L−M < 2δ.

Suppose S = d(x, z) + d(y, w),M = d(x, y) + d(z, w) and L = d(x, w) + d(y, z).

In terms of comparison triangles, the inequality S ≤ M means that by choosing ad-

joining comparison triangles �(x, w, y) and �(x, w, z) in E2, we obtain the configu-

ration shown in the figure below, with l ≥ 0. For convenience, we have omitted the

overbars in labelling the comparison points. We shall examine the inequality L −
M < 2δ in terms of this comparison figure.
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Chapter 5

First Examples of Hyperbolic

Spaces

In the last chapter, we introduced the notion of δ-hyperbolicity. In this chapter,

we look at some examples of hyperbolic spaces. Towards the end, we look at δ-

ultrametricity.

5.1 Examples of Hyperbolic Spaces

5.1.1 Bounded Metric Spaces

Proposition 5.1.1. Any bounded metric space X is δ-hyperbolic for δ = diam(X).

Proof. We know that (x.y) ≤ D = diam(X) ∀x, y ∈ X. Hence, min((x.z), (y.z)) ≤
D for z ∈ X. Hence the hyperbolicity inequality holds with δ = D.

(x.y) ≥ min((x.z), (y.z))−D

5.1.2 The Real Line

The real line is 0-hyperbolic. Indeed, we notice that in R, (x.y) is the distance of

the point x0 from the line segment [x, y].

Proposition 5.1.2. Real line is 0-hyperbolic
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Proof. In R, we have that

(x.y) =
1

2
(d(x, x0) + d(y, x0)− d(x, y)) = d(x, x0)

Now similarly, we get that (y.z) = d(y, x0) and (x.z) = d(x, x0). Hence we see that

(x.y) = d(x, x0) = min((x.z), (y.z))

Hence R is 0-hyperbolic.

Definition 5.1.3. A homothety (or homothecy, or homogeneous dilation) is a trans-

formation of an affine space determined by a point S called its centre, and a nonzero

number λ called its ratio, which sends

M → S + λ
−−→
SM.

In other words, it fixes S and sends each M to another point N such that the segment SN

is on the same line as SM but scaled by a factor λ.

Proposition 5.1.4. Rn is not hyperbolic.
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Proof. Now we have

(x.y) =
1

2
(d(x, x0) + d(y, x0)− d(x, y)) = 0

(x.z) =
1

2
(d(x, x0) + d(z, x0)− d(x, z)) �= 0

(y.z) =
1

2
(d(y, x0) + d(z, x0)− d(y, z)) �= 0

Hence min((x.z), (y.z)) = r > 0. Now for Rn to be hyperbolic, it should be δ-

hyperbolic for some δ. But observe that if we consider a homothetic transformation

based at x0 and ratio λ, we get that 0 ≥ λr − δ, which is not true when λ is very

large.

5.1.3 Real Trees

Proposition 5.1.5. All real trees are 0-hyperbolic.

Proof. We first observe that the product (x.y) is equal to d(x0, [x, y]).

(x.y) =
1

2
(d(x, x0) + d(y, x0)− d(x, y)) = d(x0, [x, y])

Now to complete the proof of the proposition, observe in that the subtree of T

form the meeting point of the geodesics connecting two points of {x0, x, y, z}. Ob-
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serve that in both the cases,

(x.y) ≥ min((x.z), (y.z))

Hence real trees are 0-hyperbolic.

5.2 δ-ultrametric Spaces

A metric space X is said to satisfy δ-ultrametric inequality if

d(x, y) ≤ max(d(x, z), d(y, z)) + δ for all x, y, z ∈ X.

Proposition 5.2.1. All metric spaces which satisfy δ-ultrametric inequality are δ-

hyperbolic.

Proof. δ-ultrametric inequality gives

d(x, y) ≤ max(d(x, z), d(y, z)) + δ (5.1)

d(x, y) ≤ max(d(x, t), d(y, t)) + δ (5.2)

d(z, t) ≤ max(d(z, x), d(t, x)) + δ (5.3)

d(z, t) ≤ max(d(z, y), d(t, y)) + δ (5.4)

Now let us assume that d(y, t) is the minimum. Hence from equations(2.2) and

(2.4) we get that

d(x, y) + d(z, t) ≤ d(x, t) + d(z, y) + 2δ

Now let us assume that d(x, t) is the minimum. Hence from equations(2.2) and

(2.3), we get that

d(x, y) + d(z, t) ≤ d(y, t) + d(z, x) + 2δ

Hence,

d(x, y) + d(z, t) ≤ max(d(x, t) + d(z, y), d(y, t) + d(z, x)) + 2δ.

This gives the δ-hyperbolicity inequality (refer to Proposition 4.4.1)

Example 5.2.2.

1) If K is a field provided with a valuation v taking real values( for example, the

field of p-adic numbers Qp provided with p-adic valuation). Then d(x, y) = e−v(x−y)

defines a metric on K satisfies the 0-ultrametric inequality. Hence (K, d) is 0-hyperbolic(refer

Proposition 0.6.4).
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2) If (X, d) is a metric space with some metric. We obtain a new metric on X given

by

d�(x, y) = log(1 + d(x, y)).

The above metric satisfies the δ-ultrametric inequality with δ = log2. Indeed, we

have:

d(x, y) ≤ d(x, z) + d(y, z) ≤ 2max(d(x, z), d(y, z)),

which gives

d�(x, y) ≤ max(d�(x, z), d�(y, z)) + log2.

Thus we deduce that (X, d�) is δ-hyperbolic with δ = log2.

Remark. The real line is hyperbolic but does not satisfy the ultrametric inequality.
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Chapter 6

Hyperbolicity and Geodesic

Triangles

6.1 Geodesic Spaces

Definition 6.1.1. A metric space X is said to be a geodesic space if two points in

the space can be connected by a geodesic segment.

A metric space (X, d) is termed a length-metric space if the distance between any

two points in it equals the infimum of the lengths of all the paths joining them.

di(x, y) := inf L(σ)

where the infimum is taken over all rectifiable curves σ : [0, 1] → X from x to y,

i.e., σ(0) = x, σ(1) = y. Here, the length of a path is defined as the supremum,

over all partitions of the unit interval, of the sums of distances between the images

of endpoints of each part.

L(σ) = sup
a=t0<....<tn=b

n−1�

i=0

d(σ(ti), σ(ti+1))

A geodesic metric space is a metric space if given any two points, there exists a

path between them whose length equals the distance between the points. Hence all

geodesic spaces are length metric spaces.

Example.

� R2 without the origin is a length space which is not geodesic.

� All real trees are geodesic.
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� According to the Hopf-Rinow theorem, all complete Riemannian manifolds are

geodesic.

� All complete locally compact length spaces are geodesic( Hopf-Rinow theo-

rem).

In a geodesic space, we denote a geodesic segment between the points x and y by [x, y].

(Note that [x, y] is not necessarily unique).

6.2 Geodesic Triangles

In a metric space, a geodesic triangle is the meeting of three geodesic segments [x, y], [y, z]

and [z, x]; we denote such a triangle as [x, y, z]. The geodesic segments form the

sides of the geodesic triangle and the extremities of these segments form the ver-

tices.

Given a geodesic triangle [x1, x2, x3], we associate with it a tripod denoted as TΔ.

The tripod TΔ is the metric space obtained from the edges of the Euclidean com-

parison triangle Δ� = [x�, y�, z�] by identifying the line segments emanating from a

vertex of the triangle and touching the inscribed circle at a single point and doing

this identification for all the sides. There is an important application for fΔ : Δ →
TΔ, which we will see later. Note here that the restriction of fΔ on each side is an

isometry.

6.3 Hyperbolicity and Thinness of geodesic trian-

gles

Definition 6.3.1. A geodesic triangle Δ is said to be δ-thin if two points of Δ

which are on the same image by fΔ are always at a distance ≤ δ from one another.

Proposition 6.3.2. Let X be a geodesic metric space. Then we have the following

implications:
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1) If X is δ-hyperbolic, then all geodesic triangles of X are 4δ-thin.

2) If all the geodesic triangles of X are δ-thin, then X is δ-hyperbolic.

Proof.

1) Let Δ = [x0, x1, x2] be the geodesic triangle and let x ∈ [x0, x1], y ∈
[x0, x2] having the same image by fΔ. Hence let t = d(x, x0) = d(y, x0) ≤
(x1.x2). With base point x0, the δ-hyperbolicity condition is:

(x.y) ≥ min((x.x2), (x2.y))− δ

Applying the hyperbolicity condition again on (x.x2), we get

(x.y) ≥ min((x.x1), (x1.x2), (x2.y))− 2δ

Now (x.x1) =
1
2
(d(x, x0) + d(x1, x0) − d(x, x1)) = t ≤ (x1.x2), since these

points lie on the same geodesic segment. Similarly (y.x2) = t ≤ (x1.x2).

53



Hence

(x.y) =
1

2
(d(x, x0) + d(y, x0)− d(x, y)) = t− 1

2
(d(x, y)) ≥ t− 2δ,

hence d(x, y) ≤ 4δ, which shows that the geodesic triangles of X are 4δ-

thin.

2) Now for the second implication. Let x0 be the base point and x, y, z ∈
X. Consider the geodesic triangles [x0, x, y], [x0, x, z] and [x0, y, z] and

let x�, y� and z� be points respectively in the segments [x0, x], [x0, y] and [x0, z]

such that

d(x�, x0) = d(y�, x0) = d(z�, x0) = min((x.z), (y.z))

(Notice that min((x.z), (y.z)) ≤ min(d(x, x0), d(y, x0), d(z, x0)).) Since

the triangles [x0, x, z] and [x0, y, z] are δ-thin, we have that d(x�, z�) ≤ δ

and d(y�, z�) ≤ δ which gives according to the triangle inequality

d(x�, y�) ≤ d(x�, z�) + d(z�, y�) ≤ 2δ (6.1)

Now applying the triangle inequality multiple times, we get that

d(x, y) ≤ d(x, x�) + d(x�, y�) + d(y, y�),

then d(x, y) ≤ d(x, x0) + d(y, x0)− 2min((x.z), (y.z)) + d(x�, y�)
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which gives on using 6.1

(x.y) ≥ min((x.z), (y.z))− δ

6.4 Hyperbolicity and Internal Size of Geodesic

Triangles

Definition 6.4.1. We define internal point of a geodesic triangle Δ as any point

of Δ which under fΔ is sent to the central point of the tripod TΔ. We define inter-

nal size of Δ, denoted as insize(Δ), as the diameter of the set of internal points of

Δ,

insize(Δ) = max d(ci, cj)

where ci(i = 1, 2, 3) are the internal points of the geodesic triangle Δ.

Proposition 6.4.2. Let X be a geodesic metric space. Then we have the following

implications:

1) If X is δ-hyperbolic, then all the geodesic triangles have an internal size ≤ 4δ.

2) If all geodesic triangles in X have an internal size ≤ δ, then X is δ-hyperbolic.

Proof.

1) We have seen Proposition 6.3.2 which says that if X is δ-hyperbolic, then all

the geodesic triangles of X are 4δ-thin. Now it is clear that a 4δ-thin geodesic

triangle has an internal size of 4δ.
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2) We hypothesize here that all the geodesic triangles Δ of X satisfy insize(Δ) ≤
δ. We go to show that any geodesic triangle is δ-thin what will finish the proof

by the Proposition 6.3.2.

Let [x0, x1, y1] be a geodesic triangle, x ∈ [x0, x1] and y ∈ [x0, y1] such

that fΔ(x) = fΔ(y). Now to show that the triangle is δ-thin, we have to show

that d(x, y) < δ.

We have in particular that d(x, x0) = d(y, x0) ≤ (x1.y1) (with x0 as the base

point). Let, for t ∈ [0, 1], xt ∈ [x0, x1]and yt ∈ [x0, y1] such that d(xt, x0) =

td(x1, x0) and d(yt, x0) = td(y1, x0). Now (x0.y0) = 0 and (x1.y1) �= 0.

According to the intermediate value theorem, there exists α ∈ [0, 1] such

that (xα.yα) = d(x, x0) = d(y, x0). The geodesic triangle Δ� = [x0, xα, yα]

satisfies the hypothesis insize(Δ) ≤ δ, and hence we have d(x, y) ≤ δ.

6.5 Hyperbolicity and Minimum Size of Geodesic

Triangles.

Definition 6.5.1. Given a geodesic triangle Δ = [x1, x2, x3], we define the mini-

mum size of the geodesic triangle Δ, denoted by minsize(Δ), as the infimum of the

diameters of the set of three points situated on each side of the triangle:

minsize(Δ) = inf max
i,j

d(yi, yj)

for y1 ∈ [x2, x3], y2 ∈ [x3, x1] and y3 ∈ [x1, x2](This limit is achieved by compact-

ness).
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Lemma 6.5.2. For any geodesic triangle Δ, we have:

minsize(Δ) ≤ insize(Δ) ≤ 4minsize(Δ).

Proof.

The left hand side of the inequality follows trivially. Let q1 ∈ [x2, x3], q2 ∈ [x1, x3]

and q3 ∈ [x1, x2] such that δ = diam{q1, q2, q3}. Let p1, p2 and p3 be the points

of the inscribed circle that meet the geodesic triangle. Let a1 = d(x2, x3), a2 =

d(x1, x3), a3 = d(x1, x2), bi,j as drawn on the picture, and ci,j = d(qi, xj) for all i, j ∈
{1, 2, 3}. Then, by the properties ofthe inscribed circle,

bi,k = bj,k =
1

2
(ai + aj − ak) and bi,j + bi,k = ci,j + ci,k = ai.

Since d(qi, qj) ≤ δ,

d(qi, xk)− d(qj, xk) ≤ d(qi, qj) ≤ δ and d(qj, xk)− d(qi, xk) ≤ δ.

That is, |ci,k − cj,k| ≤ δ. As a consequence,

2bi,k = ai + aj − ak = ci,j + ci,k + bj,i + bj,k − ck,i − ck,j,

ci,j + ci,k + bk,i − bi,k − ck,i − ck,j = 0,

|ci,k − bi,k − ck,i + bk,i| = |ci,j − ck,j| ≤ δ.

If we denote c1,2 − b1,2 by d1, we have that

d1 = c1,2 − b1,2 = d(q1, x2)− d(p1, x2) = d(p1, x3)− d(q1, x3) = −(c1,3 − b1,3)
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In the same way,

d2 = c2,3 − b2,3 = −(c2,1 − b2,1) and d3 = c3,1 − c3,1 = −(c3,2 − b3,2).

Hence,

|d1| = d(p1, q1), |d2| = d(p2, q2) and |d3| = d(p3, q3).

In addition, |d1 + d2| = |c1,2 − b1,2 − c2,1 + b2,1| ≤ δ, and in the same fashion,

|di + dj| ≤ δ, for i, j ∈ {1, 2, 3}.
As a result,

|di| =
1

2
|di + dj + di + dk − dj − dk| ≤

3

2
δ.

In conclusion, d(pj, pk) ≤ d(pj, qj) + d(qj, qk) + d(qk, pk) ≤ 3
2
δ + δ + 3

2
δ = 4δ.

From this lemma and the preceding proposition, we get:

Proposition 6.5.3. Let X be a geodesic metric space. Then we have the following

implications:

1) If X is δ-hyperbolic, then all the geodesic triangles have a minsize ≤ 4δ.

2) If all the geodesic triangles of X have a minsize ≤ δ, then X is 4δ-hyperbolic.

Proof. The proof follows easily from the Lemma 6.5.2 above and the Proposition

6.4.2 above.

6.6 Hyperbolicity and Slimness of Geodesic Tri-

angles.

Definition 6.6.1. We say that a geodesic triangle is δ-slim if one of its sides is con-

tained in δ-neighbourhood of the meeting of the other two (Notice that when Y ⊂
X, the δ-neighbourhood of Y is the set of points of X which are at a distance ≤ δ

of Y ).
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Lemma 6.6.2. In a metric space, any δ-slim triangle is of minsize ≤ 2δ.

Proof. Let [x, y, z] be a geodesic triangle such that [x, z] is contained in the δ−
neighbourhood of [x, y] ∪ [y, z]. The function f(m) = dist(m, [x, y]) − dist(m, [y, z])

for all m ∈ [x, z] satisfies f(x) ≤ 0 and f(z) ≥ 0. From the theorem on intermediate

values, there exists a point m of [x, z] such that dist(m, [x, y]) = dist(m, [y, z]) ≤ δ.

Hence the existence of points p ∈ [x, y] and q ∈ [y, z] whose distance from m is ≤ δ.

The diameter of [m, p, q] is ≤ 2δ, which shows the lemma.

Proposition 6.6.3. Let X be a geodesic space. Then we have the following implica-

tions:

1) If X is δ-hyperbolic, then all the geodesic triangles of X are 4δ-slim.

2) If all the geodesic triangles of X are δ-slim, then X is 8δ-hyperbolic.

Proof. For the first implication, it suffices to use the Proposition 6.3.2 and the re-

mark that any side of the δ-thin triangle is contained in the δ-neighbourhood of

the meeting of the other two sides of the triangle.
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For the second implication, we use the Lemma 6.6.2 and the Proposition 6.5.3.
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Chapter 7

Boundary of Hyperbolic Spaces

7.1 Sequences converging at infinity

Definition 7.1.1. Let X be a metric space with base point x0. We say that the

sequence (ai) of points of X converges at infinity if

lim(ai.aj)x0 = ∞ when i and j → ∞.

Lemma 7.1.2. This definition does not depend on the choice of the base point x0.

Proof. Since for all the pairs of points x, y ∈ X, we have

|(x.y)x1 − (x.y)x0 | ≤ d(x0, x1)

Now using the triangle inequality, we see that

|(x.y)x1 | ≥ |(x.y)x0 |− d(x0, x1)

Hence the proof follows.

Note here that if the sequence (ai) converges at infinity, then |ai| → ∞ when i →
∞, since (ai.ai) = |ai| ( remember that |a| = d(a, x0). )

We denote by S∞(X), the set of all sequences of points in X which, converge at

infinity.
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7.2 Construction of boundary of hyperbolic spaces

We define a relation R in S∞(X) as

(ai)R(bi) ⇐⇒ lim(ai.bi) = ∞ when i → ∞. (7.1)

This relation also does not depend on the choice of the base point as before.

Proposition 7.2.1. The relation R is an equivalence relation for a hyperbolic space.

Proof. Let X be a δ-hyperbolic space.

Reflexive: This follows from the fact that the relation is defined on S∞(X). Hence

for (ai) ∈ S∞(X), we have

lim(ai.aj)x0 = ∞ when i and j → ∞.

In particular,

lim(ai.ai)x0 = ∞ when i → ∞.

Hence (ai)R(ai)

Symmetric: We know that the Gromov product is symmetric. In particular,

(ai.bj)x0 = (bj.ai)x0

Hence the relation is transitive as well.

Transitivity: We have (ai)R(bi) and (bi)R(ci). Hence lim(ai.bi) = ∞ and lim(bi.ci) =

∞ as i → ∞. Now, since X is δ-hyperbolic, we have

(ai.ci) ≥ min((ai.bi), (bi.ci))− δ.

In particular, we have

lim(ai.ci) = ∞ as i → ∞.

Hence (ai)R(ci).

Lemma 7.2.2. Note that the above proposition also helps to show that if (ai)R(bi)

then (ai.bj) → ∞ when i and j → ∞.
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Proof. From the hyperbolicity inequality, we get,

(ai.bj) ≥ min((ai.bi), (bi.bj))− δ (7.2)

Since (bi) ∈ S∞X and (ai)R(bi), we get that (ai.bj) → ∞ as i → ∞. Hence proved.

Definition 7.2.3. If X is a hyperbolic metric space, we call the boundary(hyperbolic)

of X and denote by ∂X the quotient of S∞(X) by the equivalence relation R.

We say that the sequence (ai) of the points of X converges to the point x ∈ ∂X

if (ai) converges to infinity and x is the equivalence class of (ai).

Example 7.2.4.

1) If X is bounded, we have S∞(X) = ∂X = φ.

2) If X ∈ R, we have ∂X = {−∞,∞}.

3) Let X be any metric space. We have seen (5.2) that the new metric | |� →
log(1 + | |) is a δ-hyperbolic metric on X, with δ = log2. If X is not bounded,

the hyperbolic boundary of X for | |� is reduced to a point( since metrics are

positive.), and all sequences (ai) with ai ∈ X and |ai| → ∞ converge to this

unique point on the boundary. In effect, we have

(x.y) =
1

2
(log(1 + |x|) + log(1 + |y|)− log(1 + |x− y|)) (7.3)

=
1

2
log(

(1 + |x|)(1 + |y|)
1 + |x− y| ) (7.4)

(7.5)

Now using the triangle inequality, we get

(x.y) ≥ 1

2
log(

|x||y|
1 + |x|+ |y|)

Lemma 7.2.5. If X and Y are two hyperbolic spaces, and f : X → Y is an isom-

etry, then the mapping from S∞(X) to S∞(Y ), which associates to (ai), (f(ai)) goes

to the quotient to give an injective mapping ∂f : ∂X → ∂Y.

Proof. Since f is an isometry, observe that

(f(ai).f(bi)) = ((ai).(bi))
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Hence to check injectivity of ∂f let

[(f(ai))] = [(f(bi))]

=⇒ lim(f(ai).f(bi)) = ∞
=⇒ lim(ai.bi) = ∞

=⇒ [(ai)] = [(bi)]

Hence ∂f is injective. Hence proved.

Definition 7.2.6. Let (X1, d1) and (X2, d2) be metric spaces. A (not necessarily

continuous) map f : X1 → X2 is called a (λ, �)-quasi-isometric embedding if there

exist constants λ ≥ 1 and � ≥ 0 such that for all x, y ∈ X1

1

λ
d1(x, y)− � ≤ d2(f(x), f(y)) ≤ λd1(x, y) + �

If, in addition, there exists a constant C ≥ 0 such that every point of X2 lies in

the C-neighbourhood of the image of f , then f is called a (λ, �)-quasi-isometry.

When such a map exists, X1 and X2 are said to be quasi-isometric.

Example 7.2.7.

(1) For v, b ∈ R2, the map t → tv+b from R to R2 is a quasi-isometric embedding.

(2) The natural inclusion Z �→ R is a quasi-isometry.

Proposition 7.2.8. If f : X → Y is a quasi-isometry,

|(f(x).f(y))− (x.y)| ≤ 3

2
�+

1

2
(λ− 1)(x.y)

by taking x0 ∈ X and f(x0) ∈ Y as base points.

Proof.

|(f(x).f(y))− (x.y)| = 1

2
(|d(f(x), f(x0)) + d(f(y), f(x0))− d(f(x), f(y))

− d(x, x0)− d(y, x0) + d(x, y)|)
(7.6)

≤ 1

2
(|d(f(x), f(x0))− d(x, x0)|+ |d(f(y), f(x0))

− d(y, x0)|+ |d(f(x), f(y))− d(x, y)|)

≤ 3

2
�+

1

2
(λ− 1)(x.y)

(7.7)
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Proposition 7.2.9. Let X be a hyperbolic space, (ai) and (bi) be two sequences of

points in X. We suppose that (ai) ∈ S∞(X) and that (ai.bi) → ∞ when i → ∞.

Then (bi) ∈ S∞(X). (Note that, by definition, the two sequences converge to the

same point of ∂X)

Proof. We have, by the hyperbolicity inequality,

(ai.bj) ≥ min((ai.aj), (aj.bj)− δ

Since (aj.bj) → ∞ as j → ∞ and (ai) ∈ S∞X, (ai.bj) → ∞ as well. Now, again by

hyperbolicity inequality,

(bi.bj) ≥ min((bi.aj), (aj.bj))− δ

which shows that (bi.bj) → ∞ when i, j → ∞.

Proposition 7.2.10. If X and Y are two hyperbolic spaces, and f : X → Y

is a quasi-isometry, then the mapping from S∞(X) to S∞(Y ), which associates

to (ai), (f(ai)) goes to the quotient to give a bijective mapping ∂f : ∂X → ∂Y.

Proof. Since f is a quasi-isometry, observe that

|(f(x).f(y))− (x.y)| ≤ 3

2
�+

1

2
(λ− 1)(x.y)

=⇒ (f(x).f(y)) ≤ 3

2
�+

1

2
(λ+ 1)(x.y)

Hence to check injectivity of ∂f let

[(f(ai))] = [(f(bi))]

=⇒ lim(f(ai).f(bi)) = ∞
=⇒ lim(ai.bi) = ∞

=⇒ [(ai)] = [(bi)]

Hence ∂f is injective.

Now we show that it is surjective. Let (yi) ∈ Y be a sequence of points such that [(yi)] ∈
S∞X. Now by Definition 7.2.6, we can choose for each i, xi ∈ X such that

dY (f(xi), yi) < C

65



Now we show that [(xi)] is the required pre-image i.e.,

[(f(xi))] = [(yi)]

Hence it suffices to show that

lim(f(xi).yi) = ∞ as i → ∞

Now, using the definition of Gromov product,

(f(xi).yi) =
1

2
(d(f(xi), y0) + d(yi, y0)− d(f(xi), yi))

Now since |yi| → ∞ as i → ∞ and dY (f(xi), yi) < C, we see that lim(f(xi).yi) =

∞. Now using Proposition 7.2.9, we see that [(f(xi))] ∈ ∂Y as well. Hence we are

done.

Corollary 7.2.11. Let X be a hyperbolic space, (ai) and (bi) be two sequences of

points in X such that d(ai, bi) ≤ C( where C ≥ 0 is a constant). We suppose that

the sequence (ai) belongs to S∞(X). Then the sequence (bi) also belongs to S∞(X),

and the two sequences (ai) and (bi) converges to the same point in ∂X.

Proof. We have

(ai.bi) =
1

2
(d(ai, x0) + d(bi, x0)− d(ai, bi)) (7.8)

=
1

2
((ai.ai) + (bi.bi)− d(ai, bi)) (7.9)

≥ 1

2
((ai.ai) + (bi.bi)− C). (7.10)

Now since (ai.ai) ∈ S∞X, we see that (ai.bi) → ∞ as i → ∞. Now it suffices to

utilize the preceding proposition.

7.3 Extension of (x.y)

Here we are defining the Gromov product for sequences.

Definition 7.3.1. Let a = (ai) and b = (bi) be two sequences of points of X. We

pose:

(a.b) = lim inf(ai.bi), when i → ∞. (7.11)
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Let x and y be two points of X ∪ ∂X. We pose:

(x.y) = inf(a.b), (7.12)

with a = (ai) converging to x, and b = (bi) converging to y.

(Remember that the formulae are correct if the points x and y are in X).

Proposition 7.3.2. We have then (x.y) = ∞ if and only if x = y ∈ ∂X

Proof.

If x = y ∈ ∂X, then by definition of sequences converging at infinity and sequential

boundary, we see that (x.y) = ∞.

Now the other way. Let (x.y) = inf lim inf(ai.bi) = ∞. Hence lim(ai.bi) = ∞ as i →
∞. Thus x = y ∈ ∂X.

We then have always that (x.y) ≥ min((x.z), (y.z))− δ, for all x, y, z ∈ X ∪ ∂X.
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Chapter 8

The Boundary ∂X as a Set of Rays

8.1 Quasi-Geodesics

Definition 8.1.1. A (λ, �)-quasi-geodesic in a metric space X is a (λ, �)-quasi-

isometric embedding c : I → X, where I is an interval of the real line (bounded

or unbounded) or else the intersection of Z with such an interval. More explicitly,

1

λ
d(t, t�)− � ≤ d(c(t), c(t�)) ≤ λd(t, t�) + �

for all t, t� ∈ I. If I = [a, b], then c(a) and c(b) are called the endpoints of c. If I =

[0,∞), then c is called a quasi-geodesic ray.

Definition 8.1.2. Two geodesic rays c, c� : [0,∞) → X in a metric space X are said

to be asymptotic if supt d(c(t), c
�(t)) is finite; this condition is equivalent to saying

that the Hausdorff distance between the images of c and c� is finite.

Lemma 8.1.3. The relation defined above is an equivalence relation on the set of

all geodesic rays.

Proof.

Reflexive: Since ∀ t ∈ [0,∞), d(c(t), c(t)) = 0, we see that the relation is reflex-

ive.

Symmetric: This follows from the symmetric nature of the metric.

Transitive: Let a, b and b, c be asymptotic geodesics. Hence we have

sup
t

d(a(t), b(t)) = k < ∞ and sup
t

d(b(t), c(t)) = l < ∞
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Now, we have by triangle inequality, for some t ∈ [0,∞),

d(a(t), c(t)) ≤ d(a(t), b(t)) + d(b(t), c(t)) ≤ k + l

Hence we have that

sup
t

d(a(t), c(t)) ≤ k + l < ∞

Definition 8.1.4. We define quasi-geodesic rays to be asymptotic if the Hausdorff

distance between their images is finite.

Lemma 8.1.5. The relation defined above is an equivalence relation on the set of

all quasi-geodesic rays.

Proof.

Reflexive: For a quasi-geodesic c, dH(im(c), im(c)) = 0. Hence the relation is re-

flexive.

Symmetric: Let a, b be two quasi-geodesics which are asymptotic. Then we have

dH(im(a), im(b)) = max

�
sup

x∈im(a)

inf
y∈im(b)

d(x, y), sup
y∈im(b)

inf
x∈im(a)

d(x, y)

�

= dH(im(b), im(a)) < ∞

Transitive: Let a, b and b, c be asymptotic. Hence we have,

dH(im(a), im(b)) = inf{ε ≥ 0 ; im(a) ⊆ im(b)ε and im(b) ⊆ im(a)ε} < ∞

dH(im(b), im(c)) = inf{Γ ≥ 0 ; im(b) ⊆ im(c)Γ and im(c) ⊆ im(b)Γ} < ∞

Now,

dH(im(a), im(c)) = inf{Δ ≥ 0 ; im(a) ⊆ im(c)Δ and im(c) ⊆ im(a)Δ}
≤ dH(im(a), im(b)) + dH(im(b), im(c))

< ∞

Hence the relation is transitive.
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8.2 Stability of Quasi-Geodesics

Lemma 8.2.1. Let X be a δ/4-hyperbolic geodesic metric space, and Y = [x0, x1] ∪
[x1, x2] ∪ ... ∪ [xn−1, xn] a chain of n geodesic segments, with n ≤ 2k, where k is an

integer ≥ 1. Then, for every point x in a geodesic segment [x0, xn], we have dist(x, Y ) ≤
kδ.

Proof. By subdividing some of the n segments, we come back to the case where n =

2k. We then do induction over k. For k = 1, the property follows from the fact

that X is δ-thin(If X is δ-hyperbolic, then all geodesic triangles are 4δ-thin).

Suppose the lemma is true for n = 2k, and we show it for n = 2k+1. We con-

sider two geodesic segment, [x0, xn/2] and [xn/2, xn]. In the geodesic triangle � ≡
[x0, xn] ∪ [x0, xn/2] ∪ [xn/2, xn], the point x in [x0, xn] is at a distance ≤ δ from a

point m located on [x0, xn/2] or on [xn/2, xn]. By the hypothesis, m is then situated

at a distance ≤ kδ from a point on [x0, x1] ∪ ... ∪ [xn/2−1, xn/2] or on [xn/2, xn/2+1] ∪
... ∪ [xn−1, xn]. Hence dist(x, Y ) ≤ (k + 1)δ, which proves the lemma.

Proposition 8.2.2. Let X be a δ-hyperbolic geodesic space. Let c be a continuous

rectifiable path in X. If [p, q] is a geodesic segment connecting the endpoints of c,
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then for every x ∈ [p, q]

d(x, im(c)) ≤ δ| log2 l(c)|+ 1.

Proof.

If l(c) ≤ 1, we observe that d(p, q) ≤ 1. Hence for x ∈ [p, q], d(x, im(c)) ≤ 1.

Hence d(x, im(c)) ≤ δ| log2 l(c)|+ 1.

Suppose that l(c) > 1. Without loss of generality we may assume that c : [0, 1] →
X is a map that parameterizes its image proportional to arc length. Thus p = c(0)

and q = c(1). Let N denote the positive integer such that l(c)/2N+1 < 1 ≤ l(c)/2N

(Equivalently, 2N ≤ l(c) < 2N+1).

Let Δ1 = Δ([c(0), c(1/2)], [c(1/2), c(1)], [c(0), c(1)]) be a geodesic triangle in X

containing the given geodesic [c(0), c(1)]. Given x ∈ [c(0), c(1)], we choose y1 ∈
[c(0), c(1/2)] ∪ [c(1/2), c(1)] with d(x, y1) < δ( since all triangles in X are δ-slim).

If y1 ∈ [c(0), c(1/2)] then we consider a geodesic triangle

Δ([c(0), c(1/2)], [c(1/4), c(1/2)], [c(0), c(1/4)]),

which has the edge [c(0), c(1/2)] in common with Δ1 and call this triangle Δ2. If on

the other hand y1 ∈ [c(1/2), c(1)], then we consider

Δ([c(1/2), c(3/4)], [c(3/4), c(1)], [c(1/2), c(1)])

and call this triangle Δ2. In either case, we can choose y ∈ Δ2−Δ1 such that d(y1, y2) <

δ.

We proceed inductively: at the (n+1)-st stage we consider a geodesic triangle Δn+1

which has in common with Δn the side [c(tn), c(t
�
n)] containing yn and which has
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as its third vertex c(tn+1), where tn+1 = (tn + t�n)/2. We choose yn+1 ∈ Δn+1 −
[c(tn), c(t

�
n)] with d(yn, yn+1) ≤ δ.

At the N -th stage of this construction, we obtain a point yN which is a distance

at most δN from x, and which lies on an interval of length l(c)/2N with endpoints

in the image of c (Observe that 1 ≤ l(c)/2N < 2). If we define y to be the closest

endpoint of this interval, then

d(y, yN) ≤ 1.

Now, since l(c)/2N+1 < 1 and 2N ≤ l(c) we have

d(x, y) ≤ d(x, yN) + d(yN , y)

≤ δN + 1

≤ δ| log2 l(c)|+ 1

Hence proved.

Lemma 8.2.3. Let, in any metric space X, γ : [a, b] → X be a continuous path

and [x, y] be a geodesic segment connecting the extremities x = γ(a) and y =

γ(b) of γ. Let K ≥ 0 such that γ is contained in the K-neighbourhood of [x, y].

Then [x, y] is contained in the 2K-neighbourhood of γ.

Proof. Let z be a point in [x, y]. From the Intermediate value theorem, we can find

a point u in γ such that |x − u| = |x − z|. By hypothesis, there exists a point p

in [x, y] such that |u− p| ≤ K. Then we have:

|p− z| = ||x− z|− |x− p|| = ||x− u|− |x− p|| ≤ |u− p|
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on applying the triangle inequality, we get

|p− z| ≤ K

where,

|u− z| ≤ |u− p|+ |p− z| ≤ 2K

which shows the lemma.

Lemma 8.2.4 (Taming Quasi-Geodesics). Let X be a geodesic space. Given any (λ, �)

quasi-geodesic c : [a, b] → X, one can find a continuous (λ, ��) quasi-geodesic c� :

[a, b] → X such that:

(1) c�(a) = c(a) and c�(b) = c(b).

(2) �� = 2(λ+ �).

(3) l(c�|[t,t�]) ≤ k1d(c
�(t), c�(t�)) + k2, for all t, t� ∈ [a, b], where k1 = λ(λ + �) and

k2 = (λ�� + 3)(λ+ �).

(4) The Hausdorff distance between the images of c and c� is less than (λ+ 2�).

Proof.

(1) (2) Define c� to agree with c on Σ = {a, b} ∪ (Z ∩ (a, b)). Then choose geodesic

segments joining the images of successive points in Σ and define c� by concate-

nating linear reparameterizations of these geodesic segments. Note that the

length of each of the geodesic segments is at most (λ+ �).

d(c(a), c(a+ 1)) ≤ λd(a, a+ 1) + � = λ+ �

Every point of im(c�) lies in the (λ + �)/2 neighbourhood of c(Σ) and every

point of im(c) lies in the λ/2 + � neighbourhood of c(Σ). To see the latter,

consider,

d(c(a), c(a+ 1/2)) ≤ λd(a, a+ 1/2) + � = λ/2 + �

Let [t] denote the point of Σ closest to t ∈ [a, b]. Now since im(c�) is in

the (λ+ �)/2 neighbourhood of c(Σ), we have

d(c�(t), c�(t�)) ≤ d(c�(t), c�([t])) + d(c�([t]), c�([t�])) + d(c�(t�), c�([t�]))

≤ d(c�([t]), c�([t�])) + (λ+ �)
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Because c is a (λ, �) quasi-geodesic and c([t]) = c�([t]) for all t ∈ [a, b], we have

d(c�(t), c�(t�)) ≤ d(c([t]), c([t�])) + (λ+ �)

≤ λ|[t]− [t�]|+ �+ (λ+ �)

≤ λ(|t− t�|+ 1) + (λ+ 2�)

≤ λ(|t− t�|) + 2(λ+ �)

and

1

λ
|t− t�|− 2(λ+ �) =

1

λ
(|t− t�|− λ2)− (λ+ 2�)

≤ 1

λ
(|t− t�|− 1)− (λ+ 2�)

≤ 1

λ
(|t− t�|+ 1)− (λ+ 2�)

≤ 1

λ
|[t]− [t�]|− (λ+ 2�)

≤ d(c([t]), c([t�]))− (λ+ �)

≤ d(c�([t]), c�([t�]))− (λ+ �)

≤ d(c�(t), c�(t�)).

This proves that c� is a (λ, �) quasi-geodesic with �� = 2(λ+ �).

(3) For all integers n,m ∈ [a, b],

l(c�|[n,m]) =
m−1�

i=n

d(c(i), c(i+ 1)) ≤ (λ+ �)|m− n|,

and similarly l(c�|[a,m]) ≤ (λ+ �)(m− a+ 1) and l(c�|[n,b]) ≤ (λ+ �)(b− n+ 1).
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Thus for all t, t� ∈ [a, b] we have:

l(c�|[t,t�]) ≤ (λ+ �)(|[t]− [t�]|+ 2),

and

d(c�(t), c�(t�)) ≥ 1

λ
|t− t�|− �� ≥ 1

λ
(|[t]− [t�]|− 1)− ��.

By combining these inequalities and noting that � ≤ �� we obtain,

l(c�|[t,t�]) ≤ (λ+ �)(|[t]− [t�]|+ 2)

≤ (λ+ �)((λ(d(c�(t), c�(t�)) + ��) + 1 + 2)

≤ λ(λ+ �)d(c�(t), c�(t�)) + (λ+ �)(λ�� + 3)

Hence l(c�|[t,t�]) ≤ k1d(c
�(t), c�(t�)) + k2, for all t, t

� ∈ [a, b], with k1 = λ(λ + �)

and k2 = (λ�� + 3)(λ+ �).

(4) Since every point of im(c) ∪ im(c�) lies in the λ/2 + � neighbourhood of c(Σ),

we have that,

d(c(t), c�(t)) ≤ d(c(t), c([t])) + d(c�(t), c�([t])) ≤ λ+ 2�.

Hence we are done.

Theorem 8.2.5 (Stability of Quasi-Geodesics). For all δ > 0,λ ≥ 1, � ≥ 0 there

exists a constant R = R(δ,λ, �) with the following property: If X is a δ-hyperbolic

geodesic space, c is a (λ, �)-quasi-geodesic in X and [p, q] is a geodesic segment join-

ing the endpoints of c, then the Hausdorff distance between [p, q] and the image of c

is less than R.

Proof. First one tames c. In other words, one replaces it by c� as in the Lemma

8.2.4. We write im(c�) for the image of c� and [p, q] for a choice of geodesic seg-

ment joining its endpoints. Let D = sup{d(x, im(c�))|x ∈ [p, q]} and let x0 be a
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point on [p, q] at which this supremum is attained. The open ball of radius D with

centre x0 does not meet im(c�)� We shall use Proposition 8.2.2 to bound D.

Let y be the point of [p, x0] ⊂ [p, q] that is a distance 2D from x0 (if d(x0, p) <

2D then let y = p). Choose z ∈ [x0, q] similarly. We fix y�, z� ∈ im(c�) with d(y, y�) ≤
D and d(z, z�) ≤ D and choose geodesic segments [y, y�] and [z�, z]. Consider the

path γ from y to z that traverses [y, y�] then follows c� from y� to z�, then traverses [z�, z].

This path lies outside B(x0, D).

Since,

d(y�, z�) ≤ d(y�, y) + d(y, z) + d(z, z�) ≤ D + 4D +D ≤ 6D

from 8.2.4(3) we have,

l(γ) = l(γ|[y�,z�]) + d(y, y�) + d(z, z�) ≤ 6Dk1 + k2 + 2D

And from 8.2.2, as d(x0, im(γ)) = D we have D − 1 ≤ δ| log2 l(γ)|. Thus

D − 1 ≤ δ log2(6Dk1 + k2 + 2D),

which gives an upper bound on D depending only on λ, � and δ. Let D0 be such a

bound.

We claim that im(c�) is contained in the R�-neighbourhood of [p, q], where R� =

D0(1+k1)+k2/2. Consider a maximal sub-interval [a�, b�] ⊂ [a, b] such that c�([a�, b�])

lies outside the D0-neighbourhood VD0 [p, q]. Every point of [p, q] lies in VD0(im(c�)),
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so by connectedness there exist w ∈ [p, q], t ∈ [a, a�] and t� ∈ [b�, b] such that

d(w, c�(t)) ≤ D0 and d(w, c�(t�)) ≤ D0. In particular

d(c�(t), c�(t�)) ≤ d(c�(t), w) + d(w, c�(t�)) ≤ 2D0

so by Lemma 8.2.4(3)

l(c�|[t,t�]) ≤ 2k1D0 + k2

Now, the maximum height that can be attained by the curve is half of its length

i.e., k1D0 + k2/2. Hence im(c�) is contained in the R� neighbourhood of [p, q] where

R� = D0(1 + k1) + k2/2.

From this and Lemma 8.2.4(4), it follows that R = R� + λ+ � satisfies the statement

of the theorem(since we have tamed c).

Definition 8.2.6. A (λ, �)-quasi-geodesic triangle in a metric space X consists of

three (λ, �)-quasi-geodesics (its sides) pi : [0, Ti] → X, i = 1, 2, 3 with pi(Ti) = pi+1(0)

(indices mod 3). Such a triangle is said to be k-slim (where k > 0) if for each i ∈
{1, 2, 3} every point x ∈ im(pi) lies in the k-neighbourhood of im(pi) ∪ im(pi+1)

(indices mod 3).

Corollary 8.2.7. A geodesic metric space X is hyperbolic if and only if, for every

λ ≥ 1 and every � ≥ 0, there exists a constant M such that every (λ, �)-quasi-

geodesic triangle in X is M -slim. (If X is δ-hyperbolic, then M depends only on

δ,λ and �.)

Proof.

Let X be a δ-hyperbolic space. Hence all the geodesic triangles are δ-slim. Now

consider a (λ, �)-quasi-geodesic triangle Δ. Now by Theorem 8.2.5, we have that the

Hausdorff distance between each side and the corresponding geodesic is at most R(δ,λ, �).

Also, we have the same constant R for all the sides since all the sides are (λ, �)-

quasi-geodesic. Hence Δ is M -slim where M = R + δ.

Now in the other direction, if, for every λ ≥ 1 and every � ≥ 0, there exists a

constant M such that every (λ, �)-quasi-geodesic triangle in X is M -slim, it is obvi-

ous that every geodesic triangle is M -slim as well. Hence the space is M -hyperbolic.

Lemma 8.2.8. Let X be a geodesic space that is δ-hyperbolic.

(1) Let c, c� : [0, T ] → X be geodesics with c(0) = c�(0). If d(c(t0), im(c�)) ≤ K, for

some K > 0 and t0 ∈ [0, T ], then d(c(t), c�(t)) ≤ 2δ for all t < t0 −K − δ.

77



(2) Let c1 : [0, T1] → X and c2 : [0, T2] → X be geodesics with c1(0) = c2(0).

Let T = max{T1, T2} and extend the shorter geodesic to [0, T ] by the constant

map. If k = d(c1(T ), c2(T )), then d(c1(t), c2(t)) ≤ 2(k + 2δ) for all t ∈ [0, T ].

Proof.

(1) To prove the first assertion, we choose a geodesic c0 joining c(t0) to a closest

point c�(t1) on the image of c�. By the triangle inequality,

|t0 − t1| = |d(c(t0), c(0))− d(c�(t1), c
�(0))|

≤ d(c(t0), c
�(t1))

≤ d(c(t0), im(c�))

≤ K

Note that c(t) is not δ-close to any point on c0 if t < t0−K−δ. It follows from

the δ-slimness of the triangle with sides c0, c([0, t0]), c
�([0, t1]) that d(c(t), c�(t�)) ≤

δ for some t�. By the triangle inequality

|t− t�| = |d(c(t), c(0))− d(c�(t�), c�(0))|
≤ d(c(t), c�(t�))

≤ δ
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Therefore,

d(c(t), c�(t)) ≤ d(c(t), c�(t�)) + d(c�(t�), c�(t))

≤ 2δ

Hence we are done.

(2) To prove the second assertion, we consider a geodesic triangle, two of whose

sides are c1 and c2. Let the third side be c�. If c1(t) is δ-close to a point c2(t
�)

then as above |t − t�| ≤ δ and hence d(c1(t), c2(t)) < 2δ. If c1(t) is δ-close to a

point on the third side of the triangle, then it is (k + δ)-close to the endpoint

of c2.

d(c1(t), c2(T )) ≤ d(c1(t), c
�(t��)) + d(c�(t��), c2(T ))

≤ δ + k

Now also observe that,

|t− T | = |d(c1(t), c1(0))− d(c2(T ), c2(0))|
≤ d(c1(t), c2(T ))

≤ δ + k
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Hence as in the first case, this implies that

d(c1(t), c2(t)) ≤ d(c1(t), c2(T )) + d(c2(t), c2(T ))

≤ 2(k + δ)

Hence we are done.

8.3 Boundary ∂X as a set of Rays

We write ∂X to denote the set of equivalence classes of geodesic rays in X, and we

write ∂qX to denote the set of equivalence classes of quasi-geodesic rays. In each

case, we write c(∞) to denote the equivalence class of c.

There is a natural map from ∂X to ∂qX given by the inclusion of the set of equiva-

lence classes of geodesic rays in the set of equivalence classes of quasi-geodesic rays.

Lemma 8.3.1. The natural map from ∂X to ∂qX is well defined.

Proof. Let a, b be two geodesic rays belonging to the same equivalence class in ∂X.

Hence by the equivalence condition, we have that

dH(a, b) < R

Now since the natural map is an inclusion and the Hausdorff distance between the

geodesics is finite, we get that a, b belong to the same equivalence class in ∂qX the

map is well-defined.

Lemma 8.3.2. If X is a proper geodesic space that is δ-hyperbolic, then the natural

map from ∂X to ∂qX is a bijection. For each p ∈ X and ξ ∈ ∂X there exists a

geodesic ray c : [0,∞) → X with c(0) = p and c(∞) = ξ.

Proof. The natural map ∂X → ∂qX is injective because the natural map is an in-

clusion.

Let c be a geodesic ray asymptotic to ξ, with the initial point x0. Consider a se-

quence of geodesic segments γn : [0, Dn] → X, connecting p to xn = c(n), where Dn =

d(p, c(n)). The δ-hyperbolicity of X implies that the image of γn is at a Hausdorff

distance of at most 4δ + dist(x, x0) from x0xn, where x0xn is the initial subsegment

of c.

80



Now consider a closed ball centered at p of radius 1. The sequence of geodesics cn

hits the closed ball of radius 1 at the points pn. Now since X is proper, we have

that the ball is compact, and hence we can apply the Arzela-Ascoli theorem. Then

there exists a subsequence c1n of cn corresponding to [p, p1n], which converges. Now

we increase the radius of the closed circle, and hence, we get c2n ⊂ c1n ⊂ cn. Now

proceeding similarly, we get the diagonal subsequence which converges to a geodesic

ray c� : [0,∞) → X.

Clearly, the image of c� is at Hausdorff distance at most 4δ + dist(x, x0) from the

image of c. In particular, c� is asymptotic to c.
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Lemma 8.3.3 (Visibility of ∂X). If the metric space X is proper, geodesic and δ-

hyperbolic, then for each pair of distinct points x and y on the boundary of X, there

exists a geodesic d : R → X such that d(−∞) = x and d(∞) = y.

Proof. Fix p ∈ X and choose geodesic rays c1, c2 : [0,∞) → X issuing from p

with c1(∞) = ξ1 and c2(∞) = ξ2. Let T be such that the distance from c1(T ) to the

image of c2 is greater than δ. For each n > T we choose a geodesic segment [c1(n), c2(n)]

and consider the geodesic triangle with sides c1([0, n]), c2([0, n]) and [c1(n), c2(n)].

Since this triangle is δ-slim, [c1(n), c2(n)] must intersect the closed (hence compact)

ball of radius δ about c1(T ) at a point, say pn.

By the Arzela-Ascoli theorem on compact sets, as n → ∞ we can find a subse-

quence of the geodesics cδ of [pn, c2(n)] ⊂ [c1(n), c2(n)], which will converge. Now

we increase the radius of the ball around c1(T ) and choose the sequence cδ+1 ⊂ cδ ⊂
[c1(n), c2(n)], which converges. We keep on proceeding in a similar manner and ob-

tain a subsequence cnk
of the sequence [c1(n), c2(n)], which converges. The limit of

this subsequence is a geodesic line which has an endpoint c1(∞).

Let S be such that the distance from c2(S) to the image of c1 is greater than δ.

For each nk > S we consider the geodesic triangle with sides c1([0, nk]), c2([0, nk])

and [c1(nk), c2(nk)]. Since this triangle is δ-slim, [c1(nk), c2(nk)] must intersect the

closed (hence compact) ball of radius δ about c2(S) at a point, say qnk
.

By the Arzela-Ascoli theorem on compact sets, as nk → ∞ we can find a subse-

quence of the geodesics cδnk
of [qn, c1(nk)] ⊂ [c1(nk), c2(nk)], which will converge.

Now we increase the radius of the ball around c2(S) and choose the sequence cδ+1
nk

⊂
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cδnk
⊂ [c1(nk), c2(nk)], which converges. We keep on proceeding in a similar manner

and obtain a subsequence c∞ of the sequence [c1(n), c2(n)], which converges. The

limit of this subsequence is a geodesic line which has end point c1(∞) and c2(∞).

Since each [c1(n), c2(n)] is contained in the δ-neighbourhood of the union of the

images of c1 and c2, the image of c is also contained in this neighbourhood. Thus

the endpoints of c are ξ1 and ξ2.

Lemma 8.3.4 (Asymptotic Rays are Uniformly Close). Let X be a proper δ-hyperbolic

space and let c1, c2 : [0,∞) → X be geodesic rays with c1(∞) = c2(∞).

1) If c1(0) = c2(0) then d(c1(t), c2(t)) < 2δ for all t > 0.

2) In general, there exist T1, T2 > 0 such that d(c1(T1 + t), c2(T2 + t)) < 5δ for

all t ≥ 0.

Proof.

(1) follows immediately from 8.2.8. When c1(∞) = c2(∞), supt d(c1(t), c2(t)) =

M < ∞. Now we apply 8.2.8 (1). d(c1(t0), im(c2)) ≤ K for some K > 0 and

all t0 ∈ [0,∞). Hence d(c1(t), c2(t)) ≤ 2δ for all t.

(2) In order to prove this part, we consider a sequence of geodesics cn = [c1(0), c2(n)].

Now apply the Arzela-Ascoli theorem to obtain a subsequence of the cn that con-

verges to a geodesic ray c�1 with c�1(0) = c1(0). Since the triangles Δ(c1(0), c2(0), c2(n))

are δ-slim, all but an initial segment of each cn is contained in the δ-neighbourhood

of the image of c2, and hence a terminal segment of c�1 is also contained in this neigh-

bourhood. In other words, there exists T1, T2 > 0 with d(c2(T2), c
�
1(T1)) ≤ δ such
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that for all t ≥ 0 one can find t� with,

d(c2(T2 + t�), c�1(T1 + t)) ≤ δ

(This is because the terminal segments of c�1 and c2 lies in the δ-neighbourhood).

By the triangle inequality,

|t− t�| = |d(c�1(T1), c
�
1(T1 + t�))− d(c2(T2), c2(T2 + t))|

≤ |d(c�1(T1), c2(T2)) + d(c2(T2), c
�
1(T1 + t�))

− (d(c2(T2), c
�
1(T1 + t�))− d(c�1(T1 + t�), c2(T2 + t)))|

≤ |d(c�1(T1), c2(T2)) + d(c�1(T1 + t�), c2(T2 + t))|
≤ 2δ
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t and t� differ by at most 2δ. Thus for all t ≥ 0 we have

d(c2(T2 + t), c�1(T1 + t)) ≤ d(c2(T2 + t), c�1(T1 + t�)) + d(c�1(T1 + t), c�1(T1 + t�))

≤ δ + 2δ

≤ 3δ

And from (1), we know that d(c1(T + t), c�1(T + t)) < 2δ for all t > 0 ( Since c�1
and c1 have the same starting point). Hence,

d(c2(T2 + t), c1(T1 + t)) ≤ d(c2(T2 + t), c�1(T1 + t)) + d(c�1(T1 + t), c1(T1 + t))

≤ 3δ + 2δ

≤ 5δ

Hence we are done.
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Chapter 9

Hyperbolicity and

Quasi-Isometries

Definition 9.0.1. Let X1 and X2 be two metric spaces, λ ≥ 1 and k ≥ 0 be any

real number, and let f a function between X1 and X2. We say that f is a (λ, k)-

quasi-isometry in the strong sense if for all pair of points x, y ∈ X1, we have:

λ−1|x− y|− k ≤ |f(x)− f(y)| ≤ λ|x− y|.

Remark. The above definition is by Thurston. Notice that a quasi-isometry in the

strong sense is continuous( because of lipschitzness), which is not necessarily the

case for a quasi-isometry in the broad sense.

In this section, we demonstrate the following theorem:

Theorem 9.0.2. Let X1 and X2 be two geodesic metric spaces with X2 hyperbolic.

If f : X1 → X2 is a quasi-isometry in the strong sense, then

1) X1 is also hyperbolic.

2) The function which associates a sequence (ai) of X1 which converges at infin-

ity with (f(ai)), induces a topological embedding.

∂f : ∂X1 → ∂X2.

In addition, if f is bounded ( that is to say, if the function dist(., f(X1)) is

bounded in X2), then ∂f is a homeomorphism.

We can immediately deduce from Theorem 9.0.2 the following corollary:
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Corollary 9.0.3. Let X be a space provided with two metrics | |1 and | |2, which
are geodesic, and which are equivalent (that is to say that there exists λ > 0 such

that λ−1| |1 ≤ | |2 ≤ λ| |1). If X is hyperbolic for | |1, then it is also for | |2, and the

boundary of X for | |1 is a canonical homeomorphism of boundary of X for | |2.

Note here that for the equivalent metrics which are not geodesic, the statement is

generally true. To prove the Theorem 9.0.2, we apply the following two lemmas:

Lemma 9.0.4. Let X1 and X2 be two metric spaces and f : X1 → X2 be a (λ, k)-

quasi-isometry in the strong sense. For all geodesic segments [x, y] in X1, the image

of the path f([x, y]) is (λ�, k�)-tamed-quasi-geodesic.

Proof. For any segment [x�, y�] of [x, y], we have, in utilizing the fact that f is a (λ, k)-

quasi-isometry,

l(f |[x�,y�]) = sup
x�=t0≤t1≤...≤tn=y�

n−1�

i=0

|f(ti)− f(ti+1)|

≤ sup
x�=t0≤t1≤...≤tn=y�

n−1�

i=0

λ|ti − ti+1|

≤ λl([x�, y�])

≤ λ|x� − y�|
≤ λ2(|f(x�)− f(y�)|+ k)

≤ λ2|f(x�)− f(y�)|+ λ2k

Hence the image of the path f([x, y]) is (λ�, k�)-tamed-quasi-geodesic with λ�(λ� +

k�) = λ2 and (2λ�(λ� + k�) + 3)(λ� + k�) = λ2k.

Lemma 9.0.5. Let X1 and X2 be two geodesic metric spaces, with X2 δ-hyperbolic,

and let f : X1 → X2 a (λ, k)-quasi-isometry in the strong sense. There exists a con-

stant K dependent only on δ,λ and k, such that for every geodesic segment [f(x), f(y)]

and for all points z in f([x, y]), we have

dist(z, [f(x), f(y)]) ≤ K. (9.1)

Proof.

The path f([x, y]) is from the Lemma 9.0.4 above, (λ�, k�)-tamed-quasi-geodesic.

From the Theorem 8.2.5 above, it is contained in the K-neighbourhood of the seg-

ment [f(x), f(y)], where K is a constant which depends only on δ,λ and k.
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Corollary 9.0.6. Under the hypothesis of Lemma 9.0.5, there exists a constant C

such that for all geodesic segments [f(x), f(y)] and for all points z in [f(x), f(y)],

we have

dist(z, f([x, y])) ≤ C. (9.2)

Proof. It follows from the Lemma 9.0.5 and Lemma 8.2.3, taking C = 2K, where K

is the constant of Lemma 9.0.5.

Proof of the first part of Theorem 9.0.2 in the case of quasi-isometry in the strong sense.

Suppose that the function f is a (λ, µ)-quasi-isometry in the strong sense, and let Δ1 =

[x1, x2, x3] be a geodesic triangle of X1. Consider the geodesic triangle Δ2 = [f(x1), f(x2), f(x3)].

If X2 is δ-hyperbolic, then the minimum size of the triangle Δ2 is ≤ 4δ. Conse-

quently, there exists points zi(i = 1, 2, 3) situated on each side of the triangle Δ2,

such that |zi−zj| ≤ 4δ. From the lemma 8.2.3 before, there exists a constant C such

that zi is at a distance ≤ C from f(ci), where ci is the side opposite to xi in Δ1.

Hence there exists ui ∈ ci such that |zi − f(ui)| ≤ C. From the triangle inequality,

we have

|f(ui)− f(uj)| ≤ |f(ui)− zi|+ |zi − zj|+ |zj − f(uj)|
≤ 2C + 4δ.

So we have

|ui − uj| ≤ λ(|f(ui)− f(uj)|+ k)

≤ λ(2C + 4δ) + λk = δ�
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The minimum size of the geodesic triangle Δ1 is ≤ δ�. We then deduce that X1

is 4δ�-hyperbolic.

To show the second part of the theorem, we will need the following lemma:

Lemma 9.0.7. Let X be a metric space, x0 ∈ X a base point and [x, y] a geodesic

segment joining the points x and y of X. We have then:

(x.y) ≤ dist(x0, [x, y]). (9.3)

If, in addition, the space X is geodesic and δ-hyperbolic, we have

(x.y) ≤ dist(x0, [x, y]) ≤ (x.y) + 4δ. (9.4)

Proof. For the first inequality, we take a point t ∈ [x, y] such that |x0 − t| =

dist(x0, [x, y]). We then have

|x0 − t| ≥ |x− x0|− |x− t| and |x0 − t| ≥ |y − x0|− |y − t|. (9.5)

Hence,

|x0 − t| ≥ 1

2
(|x− x0|+ |y − x0|− (|x− t|+ |y − t|))

≥ 1

2
(|x− x0|+ |y − x0|− |x− y|)

≥ (x.y)

For the second inequality, let c1, c2 and c3 be the internal points of the geodesic

triangle [x0, x, y] with c1 ∈ [x0, x] and c3 ∈ [x0, y]. We have from the triangle in-
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equality,

|c3 − x0| ≤ |c1 − x0|+ |c1 − c3|. (9.6)

or,

|c1 − x0| = (x.y) and |c1 − c3| ≤ 4δ follows from 6.4.2 and 6.5.3 (9.7)

Hence,

dist(p, [x, y]) ≤ |c3| ≤ (x.y) + 4δ (9.8)

Proof of the second part of Theorem 2.2 when f is a quasi isometry in the strong sense.

Let (ai) be a sequence of points of X1 which converges at infinity. We thus have

(ai.aj) → ∞ when i and j → ∞. (9.9)

Let x0 be the basepoint of X1. Take f(x0) as the basepoint of X2 and show that

the sequence f(ai) converges at infinity. By the lemma 9.0.7, we have dist(x0, [ai, aj]) →
∞ when i and j → ∞.

Lemma 9.0.8. The function f is a quasi-isometry which implies that

(dist(f(x0), f([ai, aj]))) → ∞ when i and j → ∞ (9.10)

Proof. We proceed in a similar manner as in 9.0.7. We see that

|f(x0)− f(t)| ≥ 1

2
(|f(x)− f(x0)|+ |f(y)− f(x0)|− (|f(x)− f(t)|+ |f(y)− f(t)|))

≥ 1

2
(
1

λ
|x− x0|+

1

λ
|y − x0|−

1

λ
|x− y|)− k

2

≥ 1

λ

1

2
(|x− x0|+ |y − x0|− |x− y|)− k

2

≥ (x.y)

λ
− k

2

Hence we get that (x.y)
λ

− k
2
≤ dist(f(x0), f([x, y])) Since we have taken (ai) to be

converging at infinity, we see that (dist(f(x0), f([ai, aj]))) → ∞ when i and j →
∞.

On the other hand we have, from the lemma 9.0.5 and corollary 9.0.6,

|dist(f(x0), [f(ai), f(aj)])− dist(f(x0), f([ai, aj]))| ≤ C1, (9.11)
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where C1 depends only on f . Hence,

dist(f(x0), [f(ai), f(aj)]) → ∞ when i and j → ∞ (9.12)

which implies by the lemma 9.0.7, that (f(ai).f(aj)) converges at infinity. The sequence (f(ai))

is convergent.

Lemma 9.0.9.

(f(x).f(y)) ≤ λ(x.y)

Proof.

(f(x).f(y)) =
1

2
(|f(x)− f(x0)|+ |f(y)− f(x0)|− |f(x)− f(y)|)

≤ 1

2
(λ|x− x0|+ λ|y − x0|− λ|x− y|)

≤ λ(x.y)

We then define a function ∂f : ∂X1 → ∂X2. The properties of ∂f stated in the

theorem are proved analogously.

Since f is a strong quasi-isometry, it is continuous. Hence so is ∂f . Now we show

that it is injective.

[(f(ai))] = [(f(bi))]

=⇒ lim(f(ai).f(bi)) = ∞
=⇒ lim(ai.bi) = ∞

=⇒ [(ai)] = [(bi)]

Hence ∂f is a topological embedding. Now we show that it is surjective. Let (yi) ∈
X2 be a sequence of points such that [(yi)] ∈ ∂X2. Now we can choose for each i,

xi ∈ X1 such that

dX2(f(xi), yi) < �

Now we show that [(xi)] is the required pre-image i.e.,

[(f(xi))] = [(yi)]
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Hence it suffices to show that

lim(f(xi).yi) = ∞ as i → ∞

Now, using the definition of Gromov product,

(f(xi).yi) =
1

2
(d(f(xi), y0) + d(yi, y0)− d(f(xi), yi))

Now since |yi| → ∞ as i → ∞ and dX2(f(xi), yi) < �, we see that lim(f(xi).yi) =

∞. Now using Proposition 7.2.9, we see that [(f(xi))] ∈ ∂Y as well. Hence we are

done.

9.1 Application: The 0-hyperbolic geodesic spaces

are trees

Theorem 9.1.1. The 0-hyperbolic geodesic spaces are real trees.

Proof.

We have already seen that real trees are 0-hyperbolic geodesic spaces. Conversely,

let X be a 0-hyperbolic geodesic space. For all x, y ∈ X, let [x, y] be a geodesic seg-

ment between the two points. We show that if σ is any topological segment(which

is, therefore, injective but is not necessarily geodesic) included between the two

points, we have necessarily σ = [x, y].

For that let, � be a number > 0. As σ is compact, we can, by uniform continuity,

find a sequence x0, ..., xn of consequtive points in σ, with x0 = x and xn = y and

satisfying |xi − xi+1| ≤ �. (This follows by the definition of uniform continuity.)

Consider the broken geodesic [x0, x1]∪[x1, x2]∪...∪[xn−1, xn]. From 8.2.1 before, if X

is δ-hyperbolic, all points of [x, y] is at a distance ≤ 4kδ of the broken geodesic,

where k is an integer satisfying n ≤ 2k. As δ = 0, this implies that [x, y] is contained

in the broken geodesic. As any point of the broken geodesic is at a distance ≤ �
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from a point on σ, we can deduce that [x, y] is contained in the �-neighbourhood

of σ. As this is true for all � = 0, we obtain, by tending � towards 0, that [x, y] is

contained in σ. As [x, y] and σ are both topological paths, we deduce that they are

equal.
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Chapter 10

Hyperbolic Groups

In this chapter, we define the notion of hyperbolic groups, and we see some exam-

ples of such groups. This definition involves a system of generators, but we show

that the definition does not depend on the choice of the system of generators. As

an important example of the hyperbolic groups, we will give that of the group of

isometries of the hyperbolic geodesic spaces, acting properly discontinuous, in this

space and such that the quotient of this action is compact.

We first recall some definitions in the geometric group theory.

Definition 10.0.1. Let Γ be a finitely generated group and G be a finite system of

generators of Γ. We define a metric in this group, named the word metric on Γ(with

respect to G), in the following manner:

If s is a word with alphabets G ∪ G−1(where G−1 is the set of inverses of elements

of G), that is to say, a finite sequence of letters g1, ..., gn with for all i = 1, ..., n

gi ∈ G where g−1
i ∈ G, we define the length of s as being the number n of elements

of the sequence.

For all elements γ of the group Γ, we define then the norm of γ, which we denote

as |γ|, as the infimum of the set of lengths of the word with respect to the alphabets G∪
G−1.

The distance between two elements γ1 and γ2 of Γ is then defined as |γ−1
2 γ1|. We

obtain then a metric on the group Γ, which we call as the word metric associated to

the system of generators G. It is invariant upon the action of Γ on itself by the left

translations.

We say that the group Γ is δ-hyperbolic relative to the system of generators G if it

is δ-hyperbolic with respect to the associated word metric. We will see in section 3

of this chapter that the hyperbolicity of a group does not depend on the choice of

the system of generators.
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To see that a geodesic metric space is hyperbolic, it is often practical to use the cri-

terions shown in section 3 of chapter 1 concerning the thinness, the slimness, the

internal size and the minimal internal size of geodesic triangles in the space. These

criteria can also be utilized for metric spaces which are not geodesic. A way of do-

ing this is to embed such a space in a non-geodesic metric space. For a group Γ,

provided a system of finite generators G, there exists a concrete object in which

we can realize this embedding; it is the Cayley graph K of the group. By defini-

tion, it is a simplicial complex of dimension 1 whose vertices are the elements of the

group, and such that two vertices γ1 and γ2 are lying on a side if and only if we can

write γ2 = γ1.g where g is an element of the system of generators G.

We provide the Cayley graph K with a simplicial metric, which on the vertices are

the word metric on the group and for which the length of the side is equal to 1. We

obtain hence a proper geodesic metric space in which the group Γ is isometric im-

mersion.

We then have the following proposition:

Proposition 10.0.2. The group Γ is hyperbolic(with respect to the system of generators G)

if and only if the Cayley graph associated is hyperbolic metric space.

Proof. The immersion of the group Γ in the Cayley graph is bounded, and we can

apply the Proposition 4.3.1.

Let Γ be a finitely generated group, and let G1 and G2 be two finite systems of gen-

erators of Γ. In this section, we demonstrate
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Theorem 10.0.3. The group Γ is hyperbolic with respect to G1 if and only if it is

hyperbolic with respect to G2.

The demonstration of this theorem makes use of the following two lemmas.

Lemma 10.0.4. Let | |1 be the metric on Γ associated to G1, and | |2 be the metric

associated to G2. There exists a real number C such that

C−1| |2 ≤ | |1 ≤ C| |2 (10.1)

Proof. We consider an integer C such that each element of G1 (respectively G2) can

be written as a word of length ≤ C in the alphabets of G2 ∪G−1
2 (respectively G1 ∪

G−1
1 )(We can do this by taking the maximum of norms of each generating set and

then taking the maximum of both of them). We then have the inequalities above.

Let K1 and K2 be the Cayley Graphs associated respectively to (Γ, G1) and (Γ, G2),

each of these graphs being provided with the simplicial metric which, when restricted

to the vertices, induces the word metric of the group. We define a function f :

K1 → K2 such that the restriction of f to Γ is the identity function and that any

edge of K1 is sent linearly to a geodesic segment of K2 (Note that generally, such a

function is not unique).

Lemma 10.0.5. The function f is a quasi-isometry in the strong sense.

Proof. Notice first that f satisfies the following property( where C is a constant of

10.0.4 above)

∀x1, x2 ∈ K1, |f(x1)− f(x2)| ≤ C|x1 − x2|. (10.2)

To this effect, consider a geodesic segment [x1, x2] joining these points. We have

|f(x1)− f(x2)| ≤ l(f |[x1,x2]) ≤ C|x1 − x2| (10.3)

since each side and each piece of the side dilates by the same factor ≤ C.

Let γ1 and γ2 be two vertices of K1 such that for i = 1, 2, we have

|xi − γi| ≤ 1/2
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We have

|γ1 − γ2| ≤ C|f(γ1)− f(γ2)|
≤ C(|f(γ1)− f(x1)|+ |f(x1)− f(x2)|+ |f(x2)− f(γ2)|)
≤ C(|f(x1)− f(x2)|+ 2C)

Hence,

|x1 − x2| ≤ |x1 − γ1|+ |γ1 − γ2|+ |γ2 − x2| (10.4)

≤ |γ1 − γ2|+ 1 (10.5)

≤ C|f(x1)− f(x2)|+ 2C2 + 1 (10.6)

The inequalities 10.2 and 10.4 gives

C−1|x1 − x2|− 2C − 1/C ≤ |f(x1)− f(x2)| ≤ C|x1 − x2|,

which implies that f is a (C, 2C + 1/C)-quasi isometry in the strong sense. Thus we

are done.

Proof of Theorem 10.0.3. From the Lemma 10.0.5, we obtain the proof of Theorem

10.0.3 thanks to the Proposition 10.0.2 above and to Theorem 9.0.2.

Let us also point out that the Theorem 9.0.2 shows that if Γ is a hyperbolic group,

then there is a boundary ∂Γ canonically attached to Γ.
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Chapter 11

Examples of Hyperbolic Groups

All finite groups are hyperbolic. A free group is hyperbolic. In effect, its Cayley

graph, with respect to a system of finite generators, is a tree, which is 0-hyperbolic

5.1.5.

Consider the abelian free group Zn, with its standard system of generators. We

show that for all n ≥ 2, this group is not hyperbolic. For that, construct in its Cay-

ley graph a sequence of geodesic triangles whose internal size is not bounded. Let

us first take the case when n = 2, and let us look at the Cayley graph of Zn like the

meeting, in the euclidean plane R2, of horizontal and vertical lines passing through

the integer points.

Let (0, 0) be a basepoint for the space. For any positive integer n, we consider the

geodesic triangle Δn defined in the following manner. The vertices of this triangle

are at (n, n), (0, n) and (n, 0). The vertices (n, n) and (n, 0) are joined by a vertical

line segment, the vertices (n, n) and (0, n) are joined by a horizontal segment, and
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the vertices (0, n) and (n, 0) are joined by a vertical segment followed by a horizon-

tal segment (In the above drawing, the triangle is, therefore, a square). Now we see

that for all n

((n, n).(0, n)) =
1

2
(d((n, n), (0, 0)) + d((0, n), (0, 0))− d((n, n), (0, n))) = n

((n, n).(n, 0)) =
1

2
(d((n, n), (0, 0)) + d((n, 0), (0, 0))− d((n, 0), (0, n))) = n/2

((n, 0).(0, n)) =
1

2
(d((n, 0), (0, 0)) + d((0, n), (0, 0))− d((n, 0), (0, n))) = 0

Hence for the space to be hyperbolic, we should have that

0 ≥ min(n, n/2)− δ ∀ n

i.e.,

δ ≥ n/2 ∀ n,

which does not hold. Hence Z2 is not hyperbolic.

For all n ≥ 0, we consider a subspace Z2 of Zn. The Cayley graph of Z2 is con-

tained like a totally geodesic subspace of the Cayley graph of Zn, and the geodesic

triangles of Z2 are geodesic triangles of Zn. By consequence, Zn is not hyperbolic.

Important examples of hyperbolic groups follows from the following theorem:

Theorem 11.0.1. Let X be a proper geodesic space, and Γ the group of isome-

tries of X acting properly discontinuous on this space, and such that the quotient

of the action is compact. Then Γ is hyperbolic if and only if X is. In addition, if Γ

(and X) is hyperbolic, we have a canonical homeomorphism ∂Γ → ∂X.

We recall that a group Γ acts properly discontinuous on a space if for all compact K,

the set {γ ∈ Γ|γ(K) ∩K �= ∅} is finite.

In all that follows, Γ is assumed to satisfy the hypothesis of Theorem 11.0.1. For

showing this theorem, we utilize the techniques mainly due to Milnor.

Fix a points m of X. We define then a function

φ : Γ → X

which to all elements γ of Γ associates the point γ(m) of X. We define the metric
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on X/Γ as follows

d(Γ.x,Γ.y) = min{d(p, q)|p ∈ Γ.x and q ∈ Γ.y}
= min{d(x, γy)|γ ∈ Γ}

If D is the diameter of X/Γ, we denote by Δ the closed ball of radius 2D centred

at m, and we define G as {γ ∈ Γ|γ(Δ) ∩Δ �= ∅}. We then have

Lemma 11.0.2. The set G and the set Δ possesses the following properties:

1) G−1 = G

2) For any point x ∈ X, there exists a point x� ∈ Δ and an element γ ∈ Γ such

that x = γ(x�).

3) G is finite

4) G generates Γ

Proof.

1) If γ ∈ G =⇒ γ(Δ) ∩ Δ �= ∅. Now, ∃ γ−1 ∈ Γ, so that γ−1(γ(Δ) ∩ Δ) =

γ−1(Δ) ∩Δ �= ∅ =⇒ γ−1 ∈ G =⇒ γ ∈ G−1. Hence G ⊆ G−1.

Similarly, if γ ∈ G−1 =⇒ γ−1(Δ) ∩Δ �= ∅. Now ∃ γ ∈ Γ, so that γ(γ−1(Δ) ∩
Δ) = γ(Δ) ∩Δ �= ∅ =⇒ γ ∈ G. Hence G−1 ⊆ G.

2) Let x ∈ X. If x ∈ Δ, then x� = x and γ = id.

If x /∈ Δ, since the diameter of X/Γ is equal to D, we have

d(Γ.x,Γ.m) = min{d(x, γm)|γ ∈ Γ} ≤ D.

Hence ∃ γ such that d(x, γm) ≤ D. Hence x ∈ γ(Δ). Now, since Γ acts by

isometries on X, ∃ x� ∈ Δ such that

d(x, γm) = d(x�,m).

Hence x = γ(x�).

3) This results due to the fact that the action of Γ is properly discontinuous

that Δ is compact because the space X is proper.
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4) Let us show now that G generates Γ.

Given an element γ ∈ Γ, we consider a geodesic segment [m, γ(m)] joining the

points m and γ(m), and we cover [m, γm] by k closed discs S0, ..., Sk, each of

radius D and whose centres xi are on this geodesic segment (we suppose that

the centres are ordered according to the order indicated by the enumeration of

the discs), with

k ≤ [
|m− γ(m)|

2D
] + 1 ( where [ ] designates the integer part)

As the diameter of X/Γ is equal to D, we can find in each of the discs Si a

point of the form gi(m), where gi is an element of Γ( we will take g0 = id

and gk = γ). This follows from part(2).

d(Γ.x,Γ.m) = min{d(x, gm)|g ∈ Γ} ≤ D.

Hence for every disc Si with centre xi, we can find a g ∈ Γ such that d(xi, g(m)) ≤
d. This implies that g(m) ∈ Si.

For any i, gi(Δ) is the disc of radius 2D and the center gi(m). Two succes-

sive points gi(m) and gi+1(m), are situated at a distance ≤ 4D from one an-

other.

d(gi(m), gi+1(m)) ≤ d(gi(m), xi) + d(xi, xi+1) + d(xi+1, gi+1(m))

≤ D + 2D +D = 4D.

We have, ∀i = 0, ..., k−1, gi+1(Δ)∩gi(Δ) �= ∅, which implies g−1
i gi+1(Δ)∩Δ �=

∅, and hence g−1
i gi+1 ∈ G. Hence each element gi is written as the product of

elements of G. Now,

γ = g0(g
−1
0 g1)(g

−1
1 g2)....(g

−1
k−1gk) (11.1)
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This demonstrates the last part of the lemma.

We deduce from the above proof the following lemma, which will be useful to us

later. Consider the Cayley graph, K, of the group Γ equipped with the system of

generators G. We recall that Γ is naturally immersed in K as the set of vertices of

this graph and that this immersion is isometric.

We extend the function φ : Γ → X to Φ : K → X, by sending linearly each edge

joining the vertices γ1 and γ2 to a geodesic segment of X which joins the points φ(γ1)

and φ(γ2).

Lemma 11.0.3. Given two points m = φ(m0) and m� = φ(m�
0) of the image of φ(Γ)

of the group Γ, and a geodesic segment [m,m�] in X joining these points, we can

find a sequence of k elements h1, h2, ..., hk of the system of generators G verify the

following properties:

(4.3.1) k ≤ [ |m−m�|
2D

] + 1, and m and m� are joined by a path of the form Φ(Y )

where Y is a simplicial path in K defined as

Y = [m0, h1m0] ∪ [h1m0, h2h1m0] ∪ ... ∪ [hk−1...h1m0, hkhk−1...h1m0],

(4.3.2) Φ(Y ) is contained in the d�-neighbourhood of the geodesic [m,m�], where d� is

a constant which does not depend on the choice of the two points m and m�.

(4.3.3) Y is a (q, q�)-quasi-geodesic in K, with q and q� independent of m and m�.
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Proof. We utilise the notations which were used in the proof of the Proposition

11.0.2. The first two statements are clear (we can take d� = D + s, with s =

sup |(φ(gi)− φ(Id))|, where gi describes the elements of the system of generators G).

To prove 4.3.3, consider an element γ of Γ such that m�
0 = γm0, and suppose that γ

is written as γ = g�1g
�
2...g

�
l, where for all i = 1, ..., L, g�i ∈ G. We have:

|m− g�1(m)| ≤ 4D,

|m− g�1g
�
2(m)| ≤ |m− g�1(m)|+ |g�1(m)− g�1g

�
2(m)|

. ≤ |m− g�1(m)|+ |m− g�2(m)|
≤ 8D.

Hence we have,

|m− g�1g
�
2...g

�
L(m)| ≤ 4DL

We then have |m−γ(m)|
4D

≤ L.

So if |γ| is the length of γ for the word metric associated to the system of genera-

tors, we have
|m− γ(m)|

4D
≤ |γ| (11.2)

If l(Y ) is the length of the path Y , we have from (4.3.1) and 11.2:

l(Y ) ≤ |m−m�|+ 1 ≤ 4D|γ|+ 1.

Note also that |γ| designates similarly the distance between the extremities of the

path Y . We then deduce easily that Y is a (q, q�)-quasi-geodesic in K, with two

constants, q and q�, independent of the points m and m�.

Consider the system G of generators of Γ. We denote by | |Γ the associated word

metric and | |X the distance in X. We then have the following proposition, due to

Milnor.

Proposition 11.0.4. There exists a constant C > 0 such that for γ1 and γ2 in Γ,

we have

C−1|γ1 − γ2|Γ ≤ |φ(γ1)− φ(γ2)|X ≤ C|γ1 − γ2|Γ

Proof. As Γ acts isometrically on X, it suffices to show that for any element γ ∈ Γ,

we have

C−1|γ| ≤ |m− γ(m)|X ≤ C|γ|.
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Let γ be an element of Γ of length n. We can the write γ = g1.g2...gn with ∀ i =

1, ..., n gi ∈ G. As diam(Δ) ≤ 4D, we have, ∀ g ∈ G, |m − g(m)| ≤ 8D. We can

deduce that |m− γ(m)| ≤ 8nD, and that

∀ γ ∈ Γ, |m− γ(m)| ≤ 8D|γ|. (11.3)

We show next the left-hand side of the inequality.

Let v = min{dist(Δ, γΔ)|γ ∈ Γ and Δ ∩ γΔ = ∅}. As Δ is compact, and as Γ act

properly discontinuously on X, we have v > 0.

Let k be the smallest integer such that |m− γ(m)| < kv, and show that |γ| ≤ k.

Consider a geodesic segment of X joining the points m and γ(m). On this segment,

we can place k + 1 points y0, y1, ..., yk with y0 = m, yk = γ(m), and such that

∀ i = 0, ..., k − 2, we have |yi − yi+1| = v, and |yk−1 − yk| ≤ v.

By the Proposition 11.0.2, we can find, for all i = 0, ..., k a point y�i ∈ Δ and an

element γi ∈ Γ such that yi = γi.y
�
i. (We assume y�0 = y�k = m, γ0 = id and γk = γ.)

As |yi − yi+1| ≤ v, we have |γi(y�i)− γi+1(y
�
i+1)| ≤ v, and hence

γ−1
i γi+1(Δ) ∩Δ �= ∅, and γ−1

i γi+1 ∈ G.

We can write γ = (γ−1
0 .γ1).(γ

−1
1 .γ2)....(γ

−1
k−1.γk). Hence |γ|Γ ≤ k.

By defintion of the integer k, we have on the other hand:

(k − 1)v ≤ |m− γ(m)|
=⇒ |γ| ≤ v−1.|m− γ(m)|+ 1

=⇒ |γ| ≤ v−1.|m− γ(m)|+ (|m− γ(m)|)−1|m− γ(m)|

On taking µ = min{|m− γ(m)|, γ ∈ Γ and γ(m) �= m}, we obtain

|γ| ≤ (v−1 + µ−1).|m− γ(m)| (11.4)

The inequalities 11.3 and 11.4 shows the Proposition 11.0.4

Proof of Theorem 11.0.1 .
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Suppose that the space X is hyperbolic.

From the Proposition 11.0.4, and by the same proof as that of Lemma 10.0.5, we

see that the function Φ is a quasi isometry in the strong sense.

If X is hyperbolic, the Cayley graph K is also hyperbolic(by Theorem 9.0.2), which

implies(by Proposition 10.0.2 before) that the group Γ is then hyperbolic.

Proof of the inverse implication(i.e., K hyperbolic =⇒ X hyperbolic).

For that, we take a geodesic triangle [x1, x2, x3] in X, and we show that the mini-

mal size is uniformly bounded. For each of the points xi, we can find a point x�
i ∈

Γ.m in Φ(Γ) with |xi − x�
i| ≤ D. By utilizing the Lemma 11.0.3, we can, for all i

and j, join the points x�
i and x�

j by a path Y �
ij in Φ(K), with Y �

ij = Φ(Yij), where Yij

is a (k, k�)-quasi-geodesic in K, with k and k� independent of the points xi.

By Theorem 8.2.5, Yij is contained in the d2-neighbourhood of a geodesic segment

in K joining its extremities, where d2 is a uniform constant.

By utilizing the Proposition 11.0.4, we can deduce from the fact that the minimal

size of geodesic triangles Y12 ∪ Y23 ∪ Y13 is uniformly bounded that minimal size

of [x1, x2, x3] is also uniformly bounded (the proof of Theorem 10.0.3). This proves

the theorem.

Corollary 11.0.5. A group Γ is hyperbolic if and only if there exists a hyperbolic

proper geodesic space X on which Γ acts properly discontinuously with X/Γ com-

pact.
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Chapter 12

Hyperbolic Spaces

There are three models for hyperbolic spaces which are equivalent to one another.

We introduce them in the following proposition.

Proposition 12.0.1. For any fixed R > 0, the following Riemannian manifolds are

all mutually isometric.

(a) (HYPERBOLOID MODEL) Hn(R) is the ”upper sheet” {τ > 0} of the

two sheeted hyperboloid in Rn+1 defined in coordinates (ξ1, ..., ξn, τ) by the

equation τ 2 − |ξ|2 = R2, with the metric

g1 = i∗m,

where i : Hn(R) → Rn+1 is inclusion, and m is the Minkowski metric on Rn+1

(b) (POINCARÉ BALL MODEL) Bn(R) is the ball of radius R in Rn, with the

metric given in coordinates (u1, ..., un) by

g2 =
4R4

�n
i=1(dui)

2

(R2 − |u|2)2

(c) (POINCARÉ HALF-SPACE MODEL) Un(R) is the upper half space in Rn

defined in coordinates (x1, .., xn−1, y) by {y > 0}, with the metric

g3 =
R2(

�n−1
i=1 (dxi)

2 + dy2)

y2

Proof.

First consider the Hyperboloid model Hn(R) and the Poincaré model Bn(R). We

construct a diffeomorphism φ1 : Hn(R) → Bn(R) between these spaces called the
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hyperbolic stereographic projection. This would also serve as an isometry between

these spaces.

Let S = (0, 0, ..., 0,−R) ∈ Rn+1 and P = (ξ1, ..., ξn, τ) ∈ Hn(R). Now, let U =

φ1(P ) = (u1, ..., un, 0) be the point where the line joining P and S intersects the

hyperplane τ = 0. Take λ such that

(φ1(P )− S) = λ(P − S)

(u1, ..., un, R) = λ(ξ1, ..., ξn, τ +R)

Then, comparing the coordinates,

ui = λξi

R = λ(τ +R)

Hence,

λ =
R

τ +R

which implies

ui =
Rξi

τ +R
.
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Therefore,

φ1(ξ1, ..., ξn, τ) = (
Rξ1
τ +R

, ...,
Rξn
τ +R

, 0).

Now observe that,

|φ1(P )| = (
R2|ξ|2

(τ +R)2
)1/2

= (
R2(τ 2 −R2)

(τ +R)2
)1/2

= (
R2(τ −R)

τ +R
)1/2 < R =⇒ φ1(P ) ∈ Bn(R)

Now for the inverse. Let φ−1
1 (u1, ..., un, 0) = (ξ1, ..., ξn, τ). Since P has to lie in Hn(R),

(ξ21 + ...+ ξ2n)− τ 2 = −R2. (12.1)

Now consider the line joining U and S. Any point in this line can be represented as

λ�U + (1− λ�)S = (λ�u1, ....,λ
�un,−(1− λ�)R).

Since it has to satisfy 12.1 Therefore,

λ�2u2
1 + λ�2u2

2 + ...+ λ�2u2
n −R2(λ� − 1)2 = −R2

=⇒ λ�2(|u|2 −R2) + 2R2λ� = 0

Hence,

λ� =
−2R2

(|u|2 −R2)
=

2R2

R2 − |u|2 .

Therefore,

ξi =
2R2ui

R2 − |u|2

τ = (
2R2

R2 − |u|2 − 1)R

= R
R2 + |u|2
R2 − |u|2

Therefore,

φ−1
1 (u1, .., un, 0) = (

2R2u1

R2 − |u|2 , ...,
2R2un

R2 − |u|2 , R
R2 + |u|2
R2 − |u|2 )
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To check isometry, we also need to show that,

(φ−1
1 )∗g1 = g2

g1 = (dξ1)
2 + ...+ (dξn)

2 − (dτ)2

Therefore,

(φ−1
1 )∗g1 =

n�

i=1

(d(
2R2ui

R2 − |u|2 ))
2 − (d(R

R2 + |u|2
R2 − |u|2 ))

2

=
n�

i=1

(
2R2dui

R2 − |u|2 +
4R2ui

�
ujduj

(R2 − |u|2)2 )2 − (d(R
R2 + |u|2
R2 − |u|2 ))

2

=
n�

i=1

(
4R4(dui)

2

(R2 − |u|2)2 +
16R4uidui

�
ujduj

(R2 − |u|2)3 +
16R4(ui)

2(
�

ujduj)
2

(R2 − |u|2)4 )− (
4R3

�
ujduj

(R2 − |u|2)2 )
2

=
4R4

�
(dui)

2

(R2 − |u|2)2 +
16R4

(R2 − |u|2)3 (
�

uidui)
2(1 +

|u|2
R2 − |u|2 )−

16R6(
�

ujduj)
2

(R2 − |u|2)4

=
4R4

�
(dui)

2

(R2 − |u|2)2 +
16R4R2

(R2 − |u|2)4 (
�

uidui)
2 − 16R6(

�
ujduj)

2

(R2 − |u|2)4

=
4R4

�
(dui)

2

(R2 − |u|2)2
= g2

Now we construct an isometry φ3 : Un(R) → Bn(R). Let z = (x1, ..., xn−1, y). Con-

sidering the 2-dimensional space. Take z = x + iy. We know the Cayley transform

sends upper half plane to the disk of radius R via

z → iR
z − iR

z + iR

or,

x+ iy → 2R2x

|x|2 + (y +R)2
+ iR

|x|2 + |y|2 −R2

|x|2 + (y +R)2
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Similarly we take the map

φ3(x1, ..., xn−1, y) = (
2R2x1

|x|2 + (y +R)2
, ...,

2R2xn−1

|x|2 + (y +R)2
, R

|x|2 + |y|2 −R2

|x|2 + (y +R)2
)

|φ3(x1, ..., xn−1, y)|2 =
R2(4R2|x|2 + (|x|2 + |y|2 −R2)2)

(|x|2 + (y +R)2)2

<
R2(4R2(|x|2 + y2) + (|x|2 + |y|2 −R2)2)

(|x|2 + (y +R)2)2

< R2

Its inverse can be constructed using the inverse Cayley transform. This takes the

disc of radius R to the upper half plane .

w → −iR
w + iR

w − iR

or,

u1 + iu2 →
2R2u1

|u1|2 + (u2 −R)2
+ iR

R2 − |u1|2 − |u2|2
|u1|2 + (u2 −R)2

φ−1
3 (u1, ..., un−1, un) = (

2R2u1

|u�|2 + (un −R)2
, ...,

2R2un−1

|u�|2 + (un −R)2
, R

R2 − |u�|2 − u2
n

|u�|2 + (un −R)2
)

Therefore, φ3 is a diffeomorphism.

(φ−1
3 )∗g3 = g2 through direct calculation.

(φ−1
3 )∗g3 =

R2(
�n−1

i=1 (d(
2R2ui

|u�|2+(un−R)2
))2 + (d(R R2−|u�|2−u2

n

|u�|2+(un−R)2
))2)

(R R2−|u�|2−u2
n

|u�|2+(un−R)2
)2

=
4R4

�
(dui)

2

(R2 − |u|2)2
= g2

Hence Hn(R)
φ1−→ Bn(R)

φ3←− Un(R). Hence the three models are equivalent.
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