
Secure Machine Learning

Bhavish Raj Gopal
Roll No: MS16049

A dissertation submitted for the partial fulfilment
of BS-MS dual degree in Science

Under the guidence of

Dr. Satyajit Jena

Indian Institute of Science Education and Research Mohali
Sector - 81, SAS Nagar, Mohali 140306, Punjab, India

April 2021





Certificate of Examination

This is to certify that the dissertation titled “Secure Machine Learning” submitted

by Bhavish Raj Gopal (Reg. No. MS16049) for the partial fulfillment of BS-MS

dual degree programme of the Institute, has been examined by the thesis commit-

tee duly appointed by the Institute. The committee finds the work done by the

candidate satisfactory and recommends that the report be accepted.

Dr. Neeraja Sahasrabudhe Dr. Shane D’Mello Dr. Satyajit Jena

(Supervisor)

Dated: May 24, 2021





Declaration

The work presented in this dissertation has been carried out by me under the

guidance of Dr. Satyajit Jena at the Indian Institute of Science Education and

Research Mohali.

This work has not been submitted in part or in full for a degree, a diploma, or a

fellowship to any other university or institute. Whenever contributions of others

are involved, every effort is made to indicate this clearly, with due acknowledge-

ment of collaborative research and discussions. This thesis is a bonafide record of

original work done by me and all sources listed within have been detailed in the

bibliography.

Bhavish Raj Gopal

(Candidate)

Dated: May 24, 2021

In my capacity as the supervisor of the candidate’s project work, I certify that the

above statements by the candidate are true to the best of my knowledge.

Dr. Satyajit Jena

(Supervisor)





Acknowledgement

First and foremost, I would like to thank my thesis supervisor Dr. Satyajit Jena, without

whose help and supervision, this thesis would have never been possible. The discussions

that I had with him has enhanced my capabilities as a researcher.

I would like to extend my thanks to Dr. Somitra Sanadhya from IIT Ropar for his invaluable

supervision, support and tutelage during the course of my thesis. I would also like to

thank my thesis committee members Dr. Neeraja and Dr. Shane for their encouragement,

insightful comments and questions.

To my dearest friends: Utkarsh, Antriksh, Arpit, Tejaswer and Saswat for their support and

all the sweet memories of IISER life. I would also like to thank members of EHEP lab –

Rohit, Nishat, Ruthik, Asrith, Aman, Bidisha, Shubangi, Sourav and Yogesh for a cherished

time spent together in the lab, and in social settings. My appreciation also goes out to my

family and friends for their encouragement and support all through my studies.

And lastly, I am grateful to INSPIRE for monetary suuport, the IISER Mohali library for

all the resources that helped me in the last 5 years, and MNIST public database for without

these my project would not have been possible.

Bhavish Raj Gopal

MS16049

IISER Mohali.

i





List of Figures

3.1 Recurrent Neural Network Cell . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 CrypTFlow overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 implementing Secure Training in CrypTFlow . . . . . . . . . . . . . . . . 22

5.1 Number of weak learners vs Accuracy . . . . . . . . . . . . . . . . . . . . 29

iii





List of Tables

3.1 Table to test captions and labels . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Table to test captions and labels . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 comparison of communication complexity of various protocols; log p = 8 . 24

4.2 Table to test captions and labels . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Comparison of training accuracy . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Comparison of test accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Comparison of Training and Inference time . . . . . . . . . . . . . . . . . 30

D.1 Network A architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

D.2 Network D: LeNet architecture . . . . . . . . . . . . . . . . . . . . . . . . 39

v





List of Algorithms

1 Matrix Multiplication,
∏

MatMul({P0, P1}, P2) [WGC18] . . . . . . . . . . . 16

2 Compute MSB,
∏

MSB({P0, P1}, P2) . . . . . . . . . . . . . . . . . . . . . 18

3 Compute DTanH,
∏
DTanH({P0, P1}, P2) . . . . . . . . . . . . . . . . . 19

vii





List of Acronyms

AI - Artificial Intelligence

CNN - Convolution Neural Networks

DP - Differential Privacy

FL - Federated Learning

HE - Homomorphic Encryption

ML - Machine Learning

MLaaS - Machine Learning as a Service

MPC - Multi Party Computations

NN - Neural Networks

ReLU - Rectified Linear Unit

RNN - Recurrent Neural Network

TH - Trusted Hardware

ix





Contents

Acknowledgement i

List of Figures iii

List of tables v

List of algorithms vii

List of Acronyms ix

Abstract xv

1 Introduction 1

1.1 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Privacy Enhancing Technologies . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Privacy Advocates . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Multiparty Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Target Applications of MPC . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Works 7

2.1 Mathematical Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Groups, Rings and Fields . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Communication Complexity . . . . . . . . . . . . . . . . . . . . . 8

2.2 Multi-Party Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Adversarial Models . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Arithmetic Secret Sharing . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

xi



2.3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Secure Training and Inference for Recurrent Nueral Networks 13

3.1 SecureNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Protocol Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Compute Matrix Multiplication . . . . . . . . . . . . . . . . . . . 16

3.3.2 Private Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Compute MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.4 Compute DTanH . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.5 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.6 End-to-End Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Theoretical Evaluations . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Secure Training in CrypTFlow 21

4.1 CrypTFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 CrypTFlow Architecture . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Secure Training on CrypTFlow . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Compiling ML models to HLIL . . . . . . . . . . . . . . . . . . . 23

4.2.2 Float to Fixed Conversion . . . . . . . . . . . . . . . . . . . . . . 23

4.2.3 Compiling to MPC protocols . . . . . . . . . . . . . . . . . . . . . 23

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Theoretical Evaluations . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.2 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Limitations of SecureNN and CrypTFlow . . . . . . . . . . . . . . . . . . 25

5 Secure Ensemble Machine Learning 27

5.1 Ensemble learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Bagging Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 28



5.2 Sampling The Training Data . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3.1 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusion 31

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A Chapter 3: Supplementary Material 33

A.1 Fixed-Point Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B Chapter 4: Supplementary Material 35

B.1 Pseudo Random Functions(PRFs) . . . . . . . . . . . . . . . . . . . . . . 35

C Chapter 5: Supplementary Material 37

C.1 Number of weak learners vs Accuracy . . . . . . . . . . . . . . . . . . . . 37

D Network Architecture 39

Bibliography 40



xiv



Abstract

In the last decade, there has been an increase in technologies involving applications of Ma-

chine Learning. For instance, Hospitals use Machine Learning tools to predict a disease;

Navigation systems predict traffic flow using machine Learning. In the heart of all this tech-

nology is sensitive user data, which has led to several privacy concerns. The development

of privacy-enhancing technologies enabled systems to collect and perform computations on

data while preserving privacy.

We can use several cryptographic tools to develop privacy-enhancing technologies. Multi-

party computation(MPC) is one such cryptographic tool where non-colluding parties per-

form joint computation over data. Privacy is preserved by no party having any information

about the data being computed on. In our work, we focus on implementing Multi-Party

Computation(MPC) techniques in Machine Learning setting. More specifically, we fo-

cus on improving SecureNN, a three-party secure computation framework for Neural Net-

works(NN) training, and inference.

The SecureNN framework is state-of-the-art; however, it is mainly limited to Convolutional

Neural Networks(CNN). In our work, we extend the SecureNN framework to other neural

networks such as RNNs, GRU, and LSTMs. We also work on making SecureNN user-

friendly by integrating it with TensorFlow. For this, we make significant improvements to

the CrypTFlow, a framework for secure inference in TensorFlow. We implement secure

training in CrypTFlow by implementing Secure Training functionalities from SecureNN.

We also explore ML algorithms that are computationally less expensive and enable parallel

computations to reduce the overheads of SecureNN.

xv





Chapter 1

Introduction

The development of Machine Learning(ML) has reshaped technology in the last decade.

Today, ML is transforming various sectors like Healthcare, Technology, Social Networks,

and E-Commerce. ML has a wide range of applications like image recognition, speech

recognition, traffic prediction, self-driving cars, virtual assistant, etc. In the heart of any

ML application is data. ML algorithms require a massive amount of data to provide bet-

ter services. Thus an essential part of developing an ML algorithm is dedicated to data

collection.

The data often comes from recording the target users’ behavior. The collection of user in-

formation is easier than ever before due to its prevalence in the digital world. This raises a

privacy concern due to the lack of transparency in how the data is used. Moreover, the user

is rarely made aware of the data collection or given control over this data. Medical records,

email logs, and location history are some of the commonly collected data. The develop-

ment of virtual assistants such as Siri, Google Assistant, and Cortana, who are listening

to the user all the time, has given rise to more privacy concerns. Finally, the development

of IoT services has made user data more accessible without regard for privacy. While ML

technologies focus more and more on data collection and improvement on algorithms, they

rarely address growing privacy issues. The increasing privacy concern can affect data col-

lection and hinder the development of ML technologies.

In this thesis, we focus on private computations - where the data used in the computation is

kept confidential, to build privacy-preserving ML models. This will enable us to use sen-

sitive data for ML while ensuring appropriate privacy for the data. While several tools can

achieve private computation, the use of these tools in ML models suffers from significant

1



communication and computational overheads. Thus, reducing these overheads is essential

to build privacy-preserving ML models.

1.1 Vision

I envision a future where technologies are built with a privacy-first approach. The current

digital infrastructure requires users to submit their private data entirely in return for ser-

vices. A privacy-conscious digital infrastructure would enable users to access ML services

such as medical diagnosis or video surveillance without surrendering their sensitive infor-

mation. It would also allow multiple entities to collaborate without having to reveal their

private information to one another.

Developing a privacy-conscious world requires advances in multiple paradigms. We need to

design efficient cryptographic protocols and privacy-friendly hardware and implement strict

policies that enforce the privacy protection. The current private computation protocols are

inefficient. For example, the state-of-the-art multiparty private computation protocol is 100

times slower than the plaintext protocol [WTB+20]. Thus it is imperative to improve the

existing private computation protocol to lay the foundations of a privacy-conscious world.

To this end, This thesis focuses on improving the existing state-of-the-art private compu-

tation models and making them more accessible for real-life applications. For example, in

chapter 4 we will see how the privacy-preserving cryptographic tools can be made accessi-

ble to ML developers.

1.2 Privacy Enhancing Technologies

Privacy Enhancing Technologies enables systems for data collection while preserving pri-

vacy. There are several cryptographic tools that can be used to build privacy-enhancing

technologies. These tools are called Privacy Advocates. Each tool has different underlying

assumptions and privacy guarantees. So it is essential to understand them before building a

privacy focused system.

2



1.2.1 Privacy Advocates

Privacy advocates are mathematical techniques/tools that help in designing privacy systems.

Multiparty computation(MPC), Federated Learning(FL), Trusted Hardware(TH), Differen-

tial Privacy(DP), and Homomorphic Encryption(HE) are a few commonly used techniques.

Each tool has a set of assumptions and provides privacy guarantees based on the assump-

tions.

For instance, MPC assumes a no collusion assumption along with standard cryptographic

assumptions to provide privacy guarantees. DP assumes a centralized entity with data and

provides privacy in the notion that - the queries performed to the database are independent

of the individual data in the dataset. Similarly, TH has a trust assumption on the part of the

system or a piece of hardware and builds privacy systems upon it.

Each tool has its advantages and disadvantages. For example, MPC provides stronger secu-

rity but suffers from significant communication overheads while FL compromises privacy

for faster computation. In this thesis, we focus on MPC and try to reduce the commu-

nication overheads without compromising the end-to-end privacy of the systems built on

MPC.

1.3 Multiparty Computations

MultiParty computation allows a set of parties with private inputs to compute a joint func-

tion without revealing their private input to one another or anyone else. One of the ear-

liest examples of MPC is Yao’s Millionaires problem introduced by Andrew Yao in 1982

[Yao86]. Consider two millionaires who wish to know who is richer without revealing

any information about their wealth to each other. Normally they would find a trusted third

party to disclose their information and do the computation. Yao, in 1982, laid the foun-

dations of MPC that can solve the millionaires problem without the need for a trusted

third party. Soon, Yao introduced the first set of MPC protocols called the Garbled circuit

[Yao82, Yao86]. This protocol was applicable for any number of parties and any arbitrary

function. However, the protocol suffered from significant overheads due to the lack of

computation power and inefficient algorithms.

Since then, MPC protocols have become more efficient due to the improvements in com-

putation, protocol designs, communication infrastructure, and hardware support. Today,

3



the state-of-the-art MPC protocol FALCON [WTB+20] can solve Yao’s Millionaires prob-

lem in 1.28µs, which is just 1 order of magnitude slower than plaintext comparison. The

progress of MPC has enabled us to scale it for larger and more complex problems.

This thesis focuses on designing and improving MPC protocols specifically for Neural net-

works(NN). Instead of generic protocols, targeting one class of algorithms help us build

more efficient protocols.

1.4 Target Applications of MPC

Neural Networks(NN) is a class of machine learning algorithms widely used for Health-

care, Image classification, Natural Language Processing, etc. The accuracy of a NN model

directly depends on the size of training data. So, multiple contributors may need to pool

their data to train a NN model efficiently. But they may not be able to do so due to the data’s

sensitive nature or compliance requirements. MPC can provide an elegant solution in this

scenario. Moreover, in cases where a service provider has a trained model and provides

inference on sensitive user data, the service provided and the client can execute an MPC

protocol to run a secure inference. MPC guarantees that neither the service provider nor the

client will be able to learn any information about each other. Below we describe a real-life

example where the methods developed in this thesis can be used.

Healthcare Prediction: Suppose a service provider provides a healthcare prediction ser-

vice by monitoring users’ daily activity. The user data collected contains sensitive infor-

mation like sleep patterns, daily routine, etc. The service provider has to pool the user data

to train an efficient ML model. But the sensitive nature of the data here hinders the devel-

opment of the ML service. Using MPC protocols developed in this thesis, we can provide

an elegant solution to this problem. The users and the client can run a secure joint training

protocol. First, each user sends ”secret shares” of their data to private servers using an

arithmetic secret sharing scheme (ref. section 2.2.2). The servers collectively run a MPC

protocol to train a NN over the joint data. The protocol ensures that the parties’ private data

is not revealed to any other party or the service provider. The trained model can now be

used for inference by any party without having to reveal their inputs.

An extended application of the above model is the following: A group of N hospitals wishes

to jointly train a model on sensitive patient data. They can train the NN model using the

4



protocol described above and set up an MLaaS to help predict rare diseases. The service

can be set so that the input and output are revealed only to the patient. Further, it can also

be set such that the NN model’s information is not revealed to the user.

1.5 Summary of Contributions

This thesis aims to improve the efficiency of MPC-based private ML. It proposes new tech-

niques that reduce the communication overheads significantly for adoption. Apart from

building efficient protocols, it also explores private learning from an ML perspective, adopt-

ing computationally less expensive models and parallel learning models to make real-life

applications possible. Specifically, this thesis makes the following contributions:

1. Secure training and inference on Recurrent neural networks: A novel MPC pro-

tocol for private learning on recurrent neural networks. The approach builds upon the

SecureNN [WGC18] framework by improving the underlying protocols and devel-

oping protocols specific for RNNs.

2. Secure Training on CrypTFlow [KRC+20]: A framework to securely train NNs

built on TensorFlow. This framework makes private ML more accessible to ML de-

velopers. It also introduces efficient protocols that reduce communication overheads

by 16%.

3. Secure Ensemble Learning: A framework for securely training ensemble NNs. This

framework reduces neural networks’ training time by more than 50% by training

multiple computationally less expensive models in parallel and combining them.

5



6



Chapter 2

Background and Related Works

In this chapter, we introduce some concepts that help in a deeper understanding of this

thesis work. We will also introduce the notations followed in this thesis along with the

required primitives. We start by going through some basic mathematical concepts like

group theory, and complexity. Later we introduce Multi-Party Computations and describe

the 3-Party Computation(3PC) used in chapters 3, 4, and 5. Finally, we also describe the

Neural Networks used for evaluation.

2.1 Mathematical Concepts

2.1.1 Groups, Rings and Fields
Definition 2.1.1 A Set G equipped with the binary operation ∗ is called a Group if it satis-
fies the following axioms

• Closed under the binary operation ∗: For all a, b ∈ G, a ∗ b ∈ G
• Associative: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)
• Identity:There exist an unique element in G, denoted by e, such that for all a ∈
G, (a ∗ e) = e ∗ a = a

• Inverse: For all a ∈ G, There exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e

The group G is Abelian if all the elements commute under the operation ∗, i.e For all

a, b ∈ G, a ∗ b = b ∗ a

Definition 2.1.2 A Set R equipped with two binary operation (+,×) is called a Ring if it
satisfies the following

• (R,+) is an abelian group
For all a, b, c ∈ G, (a× b)× c = a× (b× c)

7



• Distributive: For all a, b, c ∈ G,

(a+ b)× c = (a× c) + (b× c)

a× (b+ c) = (a× b) + (a× c)

Definition 2.1.3 A Set F equipped with two binary operation (+,×) is called a Field if it
satisfies the following

• (R,+) is an abelian group

• (R− {0},×) is an abelian group

Fields are fundamental to cryptography due to the existence of multiplicative inverse. The

set of integers modulo n, denoted by Zn, is a Ring. Zp is a field when p is a prime number.

We use the Ring Zn as the number space for Fixed Point Representations (ref Appendix A.

2.1.2 Communication Complexity

Communication complexity refers to the amount of communication required to solve a

particular problem. Suppose Alice and Bob have their respective l-bit inputs x and y and

wish to compute a function f(x, y). Then, the communication time refers to the number of

communications required between Alice and Bob to compute f(x, y). Formally,

Definition 2.1.4 Let X = Y = {0, 1}n, Z = {0, 1} and f : X×Y −→ Z be a function. Let
Alice hold a input x ∈ X and bob hold a input y ∈ Y . Alice and Bob can communicate by
transmitting one bit at a and wish to compute f(x,y). Then the worst case communication
complexity is given by D(f).

D(f) = minimum number of communication required in the worst case scenario.

The function D(f) is a function of the input size. We use worst case communication com-

plexity to measure the efficiency of the protocols designed in this thesis.

2.2 Multi-Party Computation

In MPC, a set of parties jointly compute a function without revealing their private inputs. At

the end of the protocol, all parties have the same output, and no subset of parties colluding

with each other should be able to force an incorrect output(Correctness). It is important

to understand MPC does not deal with the amount of information revealed by the function

output as the parties involved are already aware of that risk. Instead, it ensures that the

8



parties involved learn nothing more about the inputs other than what is revealed by the

output(Privacy).

The MPC protocols take place in rounds which consist of a computation phase and a com-

munication phase. In the computation phase, each party performs as much computation

as possible locally. In the communication phase, each party communicates as much data

as possible before moving to the next round. The computations done locally are private

and accessible only to the party performing them. The party can then choose to transmit

the necessary output to other parties during the communication phase. The protocol’s effi-

ciency depends on the number of communication rounds between the parties in computing

a function.

The Adversarial models describe the conditions under which MPC protocols are secure.

The type of Adversarial model may modify the properties(Privacy and Correctness) of MPC

protocols. For instance, a particular model may ensure correctness for collusion between

any proper subset of parties in one adversarial model. In contrast, in another adversarial

model, the property may hold only for a threshold of parties colluding. The following

section discusses the different adversarial models considered in this thesis.

2.2.1 Adversarial Models

The adversarial model is used to quantify the security properties of the MPC protocol.

Several parameters can define the power of the adversary like the computing power, threat

model, threshold of corruption, etc. We will introduce the adversarial model used in this

thesis.

Semi-honest adversary: A semi-honest adversary follows the protocol strictly while try-

ing to infer as much information as possible. For instance, If the protocol describes to chose

a random number and send it to another party, the adversary follows through with it hon-

estly and tries to infer any information from that. Such an adversary is similar to real-life

situations where parties that wish to train a model jointly will not deter from the protocol

to steal information.

The adversary is computationally bounded, meaning it is assumed to run in probabilistic

polynomial time. The security relies on the assumed hardness of some problem( like fac-

toring a large number).

9



2.2.2 Arithmetic Secret Sharing

Secret sharing is a scheme where an `-bit secret is distributed between a set of parties such

that each party has a share of the secret. The distribution is such that the individual party’s

share does not reveal any information about the secret and the secret can be reconstructed

only when a sufficient number of parties combine their share. The secret sharing scheme

was invented by Adi Shamier [Sha79] and George Blakely [Bla79] in 1979. Below we

explain the secret sharing scheme used in this thesis.

2-out-of-2 secret sharing - This is the scheme used to share a secret s between 2-parties.

Given a secret s in a ring Zn, the shares s1, s2 are constructed such that s1+s2 = s(mod n).

3-out-of-3 secret sharing - This is the scheme used to share a secret s between 3-parties.

Given a secret s in a ring Zn, the shares s1, s2, s3 are constructed such that s1 + s2 + s3 =

s(mod n).

2-out-of-3 secret sharing - This is the scheme used to share a secret s between three par-

ties(3PC) such that the secret can be reconstructed from the shares of any two parties. Given

a secret s in a ring Zn, the shares s1, s2, s3 are constructed such that s1+s2+s3 = s(mod n).

Now distributing (s1, s2), (s2, s3), (s3, s1) between the three parties will form a 2-out-of-3

secret sharing scheme.

We will use 〈s〉L to denote secret sharing scheme in ZL and the shares of the secret will be

denoted by 〈s〉L0 ,〈s〉L1 , and 〈s〉L2 .

2.3 Machine Learning

Machine Learning is a subset of AI, where systems learn from data and identify patterns

and inferences. Such algorithms are widely used for health risk predictions, image classifi-

cation and natural language processing. In this thesis we focus specially on a class of ML

algorithms called supervised learning algorithms. In supervised learning the algorithm is

fed enormous amount of data along with the appropriate inference of each data point. The

algorithm iterates over the data and modifies its parameter and converges for a set of values.

This step is called training. The trained model is then evaluated on a test data set that is

independent of the training dataset.

10



2.3.1 Neural Networks

We consider two NN architectures to evaluate our protocols in this thesis:

• Network A: is a simple 3-layered fully connected Neural Network with 118K pa-

rameters. (Ref: D.1)

• Network B: It is the LeNet network propsed in [LBBH98]. The network contains

2 convolution layers followed by 2 fully connected layers and has 431K parameters.

(Ref: D.2)

Depending on the circustances we evaluate the network with either ReLU or TanH activa-

tion Function.

2.3.2 Datasets

All our networks are trained and tested with MNIST [LC10] dataset that is used for image

recognition. The MNIST dataset is a collection of images of hand written digits. The

dataset has 60,000 images in training set and 10,000 images in testing set. Each image is of

28x28 pixel resolution along with a label between 0 to 9.

11



12



Chapter 3

Secure Training and Inference for

Recurrent Nueral Networks

Neural Network is a powerful machine learning tool used for real-life applications. Large

amounts of training data are required to achieve high accuracy of a Neural Network. In real

life, this requires multiple parties to combine their data, and it violates their privacy. This

chapter focuses on building novel Three-Party secure training and inference protocol for

recurrent Neural Networks(RNN) using the SecureNN framework.

SecureNN is a framework for secure training and inference on Neural Networks[WGC18].

However, SecureNN is mostly limited to Convolution Neural Network as it provides secure

computation protocol only for ReLU activation function. This work provides a secure three-

party computation protocol for tanH activation function based on the techniques used in

SecureNN.

We start by building secure MPC protocols for the building blocks of RNN, such as matrix

multiplication, TanH activation, and batch normalization. We then put them together to

create an end-to-end secure computation protocol for RNNs.

3.1 SecureNN Architecture

Traditional Protocols use Beavers Triples or Homomorphic encryption for arithmetic com-

putations and Yao’s Garbled Circuits for boolean computations such as ReLU, Maxpool,

and their derivatives. Additional Share Convert protocols are required to move from arith-

metic encoding to boolean encoding. The communication cost for boolean computation

13



is expensive due to the use of Yao’s Garbled circuit. SecureNN introduces new protocols

for boolean computations that reduce the communication cost and eliminates interconver-

sion gates. We use similar techniques to compute TanH and its derivatives and extend the

SecureNN framework for RNNs.

SecureNN is a three-party system, and P0, P1, and P2 denote the three servers. P0 and

P1 are the parties that wish to execute the secure computation protocol. P2 provides rel-

evant randomness and assists in the computation during the two-party protocol while not

learning any sensitive information. There is an invariant 2-0ut-of-2 secret sharing scheme.

This means that the input and the output of any protocol between P0 andP1 is a secret

shared between them. The Adversarial model used is a computationally bound semi-honest

adversary, Which can also be extended to a malicious adversary[WGC18].

3.2 Recurrent Neural Networks

Figure 3.1: Recurrent Neural Network Cell

A simple RNN cell consists of three building blocks.

• Matrix Multiplication

• Non Linear activation Functions and derivatives

• Normalization (Softmax)

In this section, we describe our ideas for computing each of the building blocks.

Matrix Multiplication: The protocol for matrix multiplication uses Beavers triplets al-

gorithm from [Bea91] generated using pseudo random functions. The protocol is highly

14



efficient and well defined.

Nonlinear Functions: We extend the techniques mentioned in SecureNN for computing

ReLU to other activation functions like TanH. To do so, we first apply a piece-wise linear

approximation for TanH function. The TanH activation function and its derivative is given

by

TanH(x) =
(ex − 1)

(ex + 1)
DTanH(x) = 1− f(x)2

The simplest approximation for TanH is given by the function

TanH(x) ≈ f(x) =


−1 x < −1

x −1 ≤ x ≤ 1

1 x > 1

DTanH(x) ≈ f ′(x) =


0 x < −1

1 −1 ≤ x ≤ 1

0 x > 1

Thus f ′(x) can be represented as

f ′(x) = (x− 1 < 0)⊕ (x+ 1 < 1)

We used fixed-point representation with a precision of 13 to represent the numbers. The

values of the numbers lie in the ring Z264 . The first half elements of the ring represent

positive numbers and the second half represents the negative numbers. Thus for any x in

this number space, the MSB(x) = 0 if x > 0 and MSB(x) = 1 if x < 1. Therefore, our

function f ′(x) can be represented as

f ′(x) = MSB(x)(x− 1)⊕MSB(x)(x+ 1), x ∈ Z264

The MSB computation can be converted to an LSB computation when the shares of the

private input are over an odd ring. Precisely, MSB(a)=LSB(2a)[WGC18]. So, we convert

the shares of x in Z264 to shares in the ring Z264−1. Thus,

f ′(x) = LSB(x)(2(x− 1))⊕ LSB(x)(2(x+ 1)), x ∈ Z264−1

15



Normalization: For a given set of values {x1, x2, . . . , xn}, the normalized values are given

by { xi∑n
j=1 xj

}. We use secure division protocol from [WGC18] for normalization of our

outputs. We perform bit wise long division to compute the normalized value.

3.3 Protocol Construction

In the next section, we present the construction of the protocols required and explain the

intuition behind them. Some of the protocols used are well established and thus we do not

concern ourself with the security proofs. For the protocols that are developed in this thesis

we provide the security proofs in the Appendix B.

3.3.1 Compute Matrix Multiplication

Algorithm 1: describes the protocol for matrix multiplication used in [WGC18]. At the

start of the protocol P0 and P1 hold shares of X, Y ∈ Zm×v
L . P0 and P1 receive shares of

Z = X · Y at the end of the protocol.

Algorithm 1: Matrix Multiplication,
∏

MatMul({P0, P1}, P2) [WGC18]

Input: P0, P1 hold (〈X〉L0 , 〈Y 〉L0 ) and (〈X〉L1 , 〈Y 〉L1 ), respectively
Output: P0, P1 get 〈XY 〉L0 and 〈XY 〉L1

1 P2 picks random matrices A,B ∈ Zm×v
L and generates for j ∈ {0, 1},

〈A〉Lj , 〈B〉Lj , 〈C〉Lj and sends to Pj , where C = A ·B
2 For j ∈ {0, 1},Pj computes 〈E〉Lj = 〈X〉Lj − 〈A〉Lj and 〈F 〉Lj = 〈Y 〉Lj − 〈B〉Lj
3 P0 & P1 reconstruct E & F by exchanging shares.
4 For j ∈ {0, 1}, Pj outputs −jE · F + 〈X〉Lj · F + E · 〈Y 〉Lj + 〈C〉Lj + Uj

Intuition: The algorithm is straightforward. We claim that that the outputs computed by

P0 and P1 in step(4) is their respective share of X · Y . P0 computes,

〈Z〉L0 = 〈X〉L0 · F + E · 〈Y 〉L0 + 〈C〉L0 + U0

and P2 computes

〈Z〉L1 = −E · F + 〈X〉L1 · F + E · 〈Y 〉L1 + 〈C〉L1 + U1

16



. Adding 〈Z〉L0 and 〈Z〉L1 , we get

〈Z〉L0 + 〈Z〉L1 = C +X(Y −B) + Y (X − A)− (X − A)(Y −B) = X · Y

3.3.2 Private Compare

We invoke
∏

PC , The private compare protocol from [WGC18] for comparison. P0 and P1

hold shares of two l-bit integers x and r at the start of the protocol. They also hold share of

a bit α. P2 learns α’= α ⊕ (x > r) at the end of the protocol, where (x > r) is 1 if true.

Note that P2 never learns the value of (x > r) as it is masked by a random bit α. However,

P2 and share the shares of α′ to P0 and P1 and they can compute the shares of (x > r). The

algorithm itself is used as a black box and is omitted from discussion here.

3.3.3 Compute MSB

Algorithm 2: describes the protocol for Computing MSB used in [WGC18].

We first define a wrap function as follows,

wrap(x, y, L) =

0 x+ y ≤ L

1 x+ y ≥ L

The wrap function denotes whether x+ y overflows L. Thus, we can relate

Notice that for x ∈ Z264

MSB(x) = LSB(2x) = wrap(x, x, 264)

With this we compute MSB using Algorithm 2. The parties P0 and P1 have the shares of x

at the start of the protocol and end up with the shares of MSB(x) at the end of the protocol.

Intuition:Notice that for a0, a1 ∈ ZL

a0 + a1(modL) = a0 + a1 − γL,where, γ = wrap(a0, a1, L)

we make use of this relation to calculate θ = wrap(2x0, 2x1, L). P0 and P1 start with

17



Algorithm 2: Compute MSB,
∏

MSB({P0, P1}, P2)

Input: P0, P1 hold (〈x〉0] and (〈x〉1, respectively
Output: P0, P1 compute 〈MSB(x)〉0 and 〈MSB(x)〉1
Common Randomness: P0 and P1 hold a random bit η′′, a random r ∈ ZL,

α = wrap(〈r〉0, 〈r〉1, L) and shares of zero over L denoted
by u0 and u1

1 P0 and P1 compute (〈a〉0) = 2(〈x〉0) and (〈a〉0) = 2(〈x〉1
2 For j ∈ {0, 1}, Pj executes step 3-4.
3 〈a′〉j = 〈a〉j + 〈r〉j
4 Send 〈a′〉j to P2

5 P2 computes y = 〈a′〉0 + 〈a′〉1 and δ = wrap(〈a′〉0, 〈a′〉1, L)
6 P2 generates shares {〈y[i]〉j}i, and 〈δ〉jsends to Pj

7 P0, P1, P2 call
∏

PC({P0, P1}, P2) with Pj , j ∈ {0, 1}, having inputs
({〈y[i]〉j}i∈[l], r − 1, η′′) and P2 learns η′

8 P2 generates 〈η′〉j and sends to Pj for j ∈ {0, 1}.
9 For j ∈ {0, 1}, Pj executes Steps 10–11.

10 〈η〉j = 〈η′〉j + (1− j)η′′ − 2η〈η′〉j
11 outputs: 〈θ〉j = 〈β〉j + (1− j)(−α− 1) + 〈δ〉j + 〈η〉j

common randomness α and r such that α = wrap(r0, r1, L). P0 and P1 compute a0 + r0

and a1 + r1 respectively and send it to P2. P2 then computes δ = wrap(a′0, a
′
1, L) and

y = a′0anda
′
1 and sends shares of δ and bit wise shares ofy to P0 and P1. Now, P2 assists

P0 and P1 in realising the value of η′′ = (x > r − 1). Finally θ can be computed from the

equation,

θ = β0 + β1 − α + δ + η − 1

P0 and P1 contain either the shares or the whole of the components in the above equation.

So, they can compute shares of θ.

3.3.4 Compute DTanH

The protocol for computing DTanH involves computing MSB(x-1) and MSB(x+1). We use

Algorithm 2 to compute MSB.

Intuition: The protocol is straightforward. The parties first compute shares of 2(x−1) and

2(x+ 1). They then invoke
∏

MSB from Section 3.3.3 to get the output.

18



Algorithm 3: Compute DTanH,
∏
DTanH({P0, P1}, P2)

Input: P0, P1 have 〈x〉L0 and 〈x〉L1 , respectively
Output: P0, P1 compute 〈MSB(x− 1)⊕MSB(x+ 1)〉L0 ) and

〈MSB(x− 1)⊕MSB(x+ 1)〉L1 )
1 For j ∈ {0, 1}, parties Pj computes 〈a〉Lj = 2(〈x〉Lj − j) and 〈b〉Lj = 2(〈x〉Lj + j)

2 P0, P1, P2 run
∏

MSB({P0, P1}, P2) with Pj, j ∈ {0, 1} for inputs 〈a〉L−1j , 〈b〉L−1j and
Pj learns 〈α〉Lj = 〈MSB(x− 1)〉Lj and 〈β〉Lj = 〈MSB(x+ 1)〉Lj , resp.

3 Party Pj outputs 〈α〉Lj ⊕ 〈β〉Lj

3.3.5 Division

We invoke
∏

DIV , The private division protocol from [WGC18] for division. At the start of

the protocol, the parties have shares of x and y, and at the end, they receive shares of x/y.

The protocol is used as a black box and is omitted from discussion here.

3.3.6 End-to-End Protocols

The above protocols can be easily put together for secure training and inference in RNNs.

For a single cell of RNN, we first invoke Matrix multiplication protocol, then compute and

store DtanH and then calculate the value of TanH. Finally, we normalize using division

protocol. For back-propagation we use the value of DTanH store and make calls for Matrix

multiplication protocol. The Protocols can be put together easily because of the 2-out-of-2

invariant arithmetic sharing property of all the protocols.

3.4 Results

3.4.1 Theoretical Evaluations

Table 3.1 shows the communication rounds and communication complexity for various

building blocks involved. These evaluations are for `-bit input and p denotes the field size.

MatMul(m,n,v) denotes matrix multiplication between matrices of dimension m × n and

n× v.

19



Protocol Rounds Communications
MatMul(m,n,v) 2 2(2mn+ 2nv +mv)`
PrivateCompare 4 2` log p
Compute MSB 5 4` log p+ 6`

DTanH 8 8` log p+ 12`

Table 3.1: Table to test captions and labels

3.4.2 Experimental Evaluations

We perform training and inference over MNIST data for 2 Networks with a learning rate

of 2−5. We perform an average of 10 iterations. We measured the time for 10 forward-

backward passes in each iteration and used it to extrapolate the numbers for 15 epochs.

(7000 iterations).

Network Training Time(hrs) Inference Time(hrs)
Network A 1.41 0.09
Network B 4.86 0.21

Table 3.2: Table to test captions and labels

3.5 Summary

We extend the SecureNN framework for a new class of NNs. We build on the protocols

of [WGC18] and build slightly efficienct protocol for computing Non-linear Activation

functions. Using the improved protocol we compute TanH activation function. Using the

methods we are able to achieve over 98% accuracy on MNIST datasets.

20



Chapter 4

Secure Training in CrypTFlow

In this chapter, we focus on making SecureNN accessible to ML developers. The main

disadvantage of SecureNN is Fixed Point arithmetic and the use of static language. Many

ML developers use Python or R for developing ML models and are not familiar with the

cryptographic backend. We make SecureNN accessible by integrating it with TensorFlow

using the CrypTFlow Framework. CrypTFlow is a framework for secure inference in Ten-

sorFlow. It is based on SecureNN and converts any TensorFlow inference code into a

Secure Multi-Party Computation protocol. We improve CrypTFlow to compile models for

secure training that will allow parties to jointly train models while preserving privacy. The

improved model makes it more accessible for ML developers. Moreover, this extends the

framework for online learning models.

4.1 CrypTFlow

CrypTFlow consists of three components Athos an end to end compiler that compiles Ten-

sorflow inference code to secure MPC protocols, Porthos which is a semi-honest 3 party

computation protocol based on SecureNN and Aramis which provides malicious security

to any semihonest secure MPC protocol.

4.1.1 CrypTFlow Architecture

CrypTFlow converts any TensorFlow inference code to a Secure MPC protocol. Figure 1

shows the crypTFlow architecture. First, the metadata and graph dump is created while

training the model. The graph dump stores information about the tensors involved and

21



Figure 4.1: CrypTFlow overview

their dimensions, which is required to compile the model to a High-Level Intermediate

Language(HLIL) language. The model is then converted from floating-point to fixed-

point arithmetic and compiled to a C-like language called Low-Level Intermediate Lan-

guage(LLIL). The LLIL calls in functions from Porthos to compile the model into an MPC

protocol. The MPC model is then used to perform secure inference.

4.2 Secure Training on CrypTFlow

Figure 4.2: implementing Secure Training in CrypTFlow

The CrypTFlow framework allows for secure inference on the trained model. We focus

on implementing secure training functionality on the CrypTFLow framework to enable

parties to train a model jointly. This improves the scope for adoption by ML developers.

We introduce two changes to the CrypTFlow framework. First, we enable CrypTFlow to

compile models and generate Metadata and Graph dump without training the model. Next,

we import the secure training functionalities from SecureNN. This allows us to compile the

models to Secure MPC protocol for joint training.

22



4.2.1 Compiling ML models to HLIL

The Athos frontend Compiles ML models into HLIL. The HLIL is statically typed with

explicit tensor dimensions, while TensorFlow is dynamic and does not have tensor dimen-

sions. We run the TensorFlow code on one dummy input and generate the metadata. The

Athos Frontend can then compile the metadata into HLIL. The generation of dummy data

and compiling of the model can be performed by one of the parties and does not affect

privacy. We now explain in detail how to generate and store the metadata.

We use the TensorFlow graph transform tool [TFl] to generate a graph dump: the graph

dump stores all the necessary operations involved and the corresponding tensor dimensions.

We compile the graph dump to a High-Level Intermediate Language(HLIL) that supports

tensor manipulations. The HLIL uses floating point arithmetic hence we perform float-to-

fixed conversion before compiling.

4.2.2 Float to Fixed Conversion

This section explains how we move from floating-point arithmetic in HLIL to fixed-point

arithmetic and then compile the models to Low-Level Intermediate Language(LLIL). MPC

protocols are more efficient with fixed point integers. The translation from float to fixed is

parametrized by a scale parameter s. The parameter s denotes the precision of the fixed-

point numbers and is set to 13. We define a function ρ→ Z264 such that

ρ(r) = br · 213c

For Matrices of real values, the function ρ is applied element-wise to each element of the

matrix. After applying the required conversions for the tensors the model is compiled to

LLIL which is a cryptoaware C-like language. LLIL supports. The LLIL has integer valued

tensors and can make calls to Porthos, ABY and SecureNN. The LLIL program is then

compiled to C++ as an MPC protocol.

4.2.3 Compiling to MPC protocols

We implement Secure Training functionalities from SecureNN to compile the LLIL pro-

gram into MPC protocol for secure training. We make one crucial change to the MSB

23



computation protocol following the ideas from [KRC+20]. The MSB computation pro-

tocol in Chapter 3 requires P2 to send fresh shares of a value to parties P0 and P1. It is

observed that these shares can be generated as a output of Pseudo Random Function(PRF)

B.1 shared between P2 and P0. Say, the PRF outputs a value r which is shared between P2

and P1. then the shares of a value y will be y and y − r. Then P2 has to communicate the

share only to P0 and this reduces the communication cost by half. This reduces the overall

communication cost of ComputeMSB by 25%.

We also make calls to Porthos from [KRC+20] to implement efficient protocols for Conv2D,

Maxpool etc. Finally, we compile the program to C++ as an MPC protocol for Secure

Training.

4.3 Results

4.3.1 Theoretical Evaluations

Table 4.1 shows the comparison between various protocols of Porthos [KRC+20] and the

improved SecureNN. These evaluations are for `-bit input and p denotes the field size.

Protocol Communications(Porthos) Communications(Improved SecureNN)
ComputeMSB 4` log p+ 13` 3` log p+ 4`

ReLU 6` log p+ 19` 6` log p+ 9`
DTanH * 6` log p+ 8`

Table 4.1: comparison of communication complexity of various protocols; log p = 8

4.3.2 Experimental Evaluations

We perform training and inference over MNIST data for 2 Networks with a learning rate of

2−5.

Network Training Time(hrs) Inference Time(hrs)
Network A 1.26 0.09
Network B 4.06 0.21

Table 4.2: Table to test captions and labels

24



4.4 Summary

We implement secure training in CrypTFlow frameworks that allows multiple parties to

jointly train the model. This makes Secure Machine learning accessible for ML develop-

ers. We improve the efficiency of ComputeMSB and ReLU protocol of CrypTFlow. The

improved protocol reduces the overall communications by 16%.

4.5 Limitations of SecureNN and CrypTFlow

MPC protocols developed in this thesis have less communication overheads compared to

prior works. However, they are still inefficient and not relevant for real-life applications.

To make Secure Machine Learning available for real-life applications, we need to focus

not only on improving the efficiency of MPC protocol but also explore ML techniques that

are computationally less expensive. Some recent works focus on altering the training and

inference algorithm to reduce overheads. In the next chapter, we explore ML techniques

that are computationally less expensive and enable parallel computations. We develop MPC

protocols for these techniques to improve the communication overheads and take one step

further in making secure machine learning available for real-life applications.

25



26



Chapter 5

Secure Ensemble Machine Learning

Ensemble Learning [VM02] is a machine learning technique where multiple weak learners

are strategically combined to form a strong learner. Training a weak learner is compu-

tationally less expensive. Certain Ensemble learning models can train the weak learners

parallelly to reduce the training time [VSA+10]. In this chapter, we focus on developing

MPC protocols for such ensemble models. In particular, we focus on Bootstrap Aggregat-

ing or Bagging ensemble model, which allows for parallel computation. Bagging has two

additional steps compared to standard ML models - Splitting the training data and com-

bining the weak learners. We introduce MPC protocols for these two steps in SecureNN

[WGC18] to build an end-to-end secure computation protocol for ensemble learning.

5.1 Ensemble learning

Ensemble Learning is a powerful tool usually used to improve the performance of a model.

It involves training weak learners and combining them to build a better model. But in this

thesis, we use ensemble model for two main reasons.

• Training weak learners is computationally less expensive

• Parallel training of weak models reduces the total training time.

Some commonly used ensemble techniques are Bagging, Boosting, and Stacking [Bü12].

This thesis focuses only on bagging as the weak learners are independent of each other and

can be trained in parallel [Ode19].

27



5.1.1 Bagging Technique

Bagging refers to Bootstrap Aggregating [Bü12]. Suppose we have training dataset T of

size N , bagging generates m new subsets of training datasets (Ti) of size n(≤ N) by

sampling T uniformly with replacements. The subsets are called ”bootstrap” samples.

Sampling with replacement ensures that the m bootstrap samples are independent of each

other.Now, m weak learners are trained using the m bootstrap samples and are aggregated

by majority voting to form an ensemble learning model.

Below we describe our ideas of MPC protocols for sampling the data set and majority

voting.

Sampling the datasets: P0 and P1 haves shares of the training data T = (X1,X2,X3,...,XN )

of size N and wish to train m weak learners using a bootstrap sample of size n(≤ N). P0

chooses n samples from T in random with replacements and sends the index index of the

chosen samples to P1. The process is repeated m times to obtain bootstrap samples for m

weak learners.

The bootstrap samples are used to train the weak models in parallel using the techniques

developed earlier in this thesis (ref. Chapter 3).

Majority voting: The parties P0 and P1 exchange the shares of output and compute the

majority voting separately. This works because of the semi honest nature of the adversary.

In case of a malicious adversary we use PRFs shared between P0 and P1 to generate the

bootstrap samples.

5.2 Sampling The Training Data

We train our model on the MNIST dataset. The total size of the dataset is 70,000, with

60,000 used for training and 10,000 used for validation. We generate a bootstrap sample of

size 10,000 from the training dataset to train Network A and Network B.

The number of bootstrap samples required is the same as the number of weak learners we

want to train. In this section, we analyze how the number of bootstrap samplings/weak

learners affect the accuracy of the ensemble model.

we use ”train until saturation” approach to determine the number of bootstrap samples re-

quired. We train 3 weak learners at a time and keep training until we achieve high accuracy.

28



5.2.1 Experimental Analysis

2 4 6 8 10 12 14
Number of weak learners

0.895

0.900

0.905

0.910

0.915

0.920

0.925

Te
st
 A
cc
ur
ac
y(
%
)

Figure 5.1: Number of weak learners vs Accuracy

Fig 5.1 shows the plot of the number of weak learners versus accuracy. We choose a boot-

strap sample of size 10,000 to train Network A. Each weak model has a learning rate of 2−5

and is trained for only 1 epoch. It is well known that bagging reduces bias [FH07], so we

do not worry about underfitting our weak learners.

Notice that the bagging model reaches its maximum accuracy for 7 weak learners, which

is the expected number of samples required to sample the entire training data (ref: section

5.2.1).

29



5.3 Results

5.3.1 Experimental Evaluations

Training Time vs. Accuracy

Network
Number
of weak
learners

Percentage
of Training
data used

Training Accuracy
Weak

Learner
Ensemble

Standard
Model

Network A 7 72.12 63.7% 90.02% 99.7%
Network A 9 76.12% 70.05% 97.68% 99.8%

Table 5.1: Comparison of training accuracy

Network
Test Accuracy

Weak Learner Ensemble Standard Model
Network A 34.5% 91.58% 96%
Network B 70.05% 94.02% 98.42%

Table 5.2: Comparison of test accuracy

Training and Inference Time

Network
Training time (Hrs) Inference time (s)

Ensemble model Standard model Ensemble model Standard model
Network A 0.35 1.41 0.41 0.09
Network B 1.91 4.86 0.45 0.21

Table 5.3: Comparison of Training and Inference time

Table 5.3 shows the comparison of training and inference time between the standard model

and the ensemble model. There is alteas 50% reduction in the training time of secure

ensemble model. However, The inference time of the ensemble model is slightly higher as

we run the inference on multiple model and take a majority vote.

5.4 Summary

We implement Secure Ensemble Learning in SecureNN framework that allows us to train

models in parallel. Using this we are able to reduce the training time by atleast 50% without

compromising much on the overall accuracy of the model.

30



Chapter 6

Conclusion

Driven by reducing the communication overhead of privacy-preserving machine learning,

we develop efficient protocols that improve the performance of critical building blocks of

such applications. To this end, we develop a secure neural network training and infer-

ence framework for Recurrent Neural Networks(RNN). For this, We adopt a modified and

more efficient variant of techniques used in SecureNN [WGC18]. The methods used rely

on arithmetic computations hence are more efficient when compared to prior works. The

adoption rate of secure machine learning protocols is low. We address this by integrating

secure training protocols with the popular ML library TensorFlow. For this, we modify the

CrypTFlow framework to enable secure training.

The adoption rate of secure machine learning protocols for real-life applications is low due

to the significantly high communication overheads. We propose Secure Ensemble Learn-

ing, a technique that reduces the communication overheads by training computationally

less expensive ML models. Our implementation demonstrates that the Ensemble Learning

model outperforms the Standard Model in MPC setting without significant accuracy loss.

Collectively, these techniques developed here provide a new foundation for the design of

privacy-preserving algorithms. The bidirectional approach of improving secure computa-

tion protocols and modifying ML algorithms for better performance significantly reduces

the overheads, thereby reducing the gap between secure computation and plaintext compu-

tation

31



6.1 Future Work

From here on, The vision of this thesis can be more broadly stated as

”Develop efficient techniques to adopt privacy-preserving machine learning

for Real-life applications.”

I envision a privacy-conscious world that develops technologies and services in a manner

that preserves user privacy. There is still a lot of work to be done on key research areas to

accomplish this broad vision, a few of which I describe below:

Extending the ML base: Moving forward, I would like to extend the SecureNN framework

for other NN classes like unsupervised learning, reinforcement learning, etc.

Adversarial Models: While the techniques developed in this work are for semi-honest

adversarial models, they can be extended to malicious adversaries using techniques men-

tioned in [WTB+20]. However, it is an open line of research further to extend the model

for dishonest majority adversarial model.

32



Appendix A

Chapter 3: Supplementary Material

A.1 Fixed-Point Arithmetic

The NN algorithms are generally encoded in floating point arithmetic. But MPC protocols

work with fixed-point arithmetic. Below, we describe how the floating point numbers are

encoded into integers. We use uint64 t datatype in C++ to map numbers to the integer

ring Z264 . we use a precision of 13 bits which means the first 13 digits from the left inn

the binary representation corresponds to decimals. Since we are using unsigned bit the 1

bit(MSB) from the left is used to denote sign of the nuumber (1 if negative, 0 otherwise).

By this an integer 220 will correspond to float 8(216−213) and an integer 264 will correspond

to -1. Such encoding system is popular with MPC schemes.

Addition of two numbers is straightforward in fixed point. For multiplication, we multi-

ply the decimals and truncate the last digits. Such truncation can also be performed with

arithmetic secret shares[MZ17].

33



34



Appendix B

Chapter 4: Supplementary Material

B.1 Pseudo Random Functions(PRFs)

A pseudorandom function is an efficiently computable function that is indistinguishable

from a random oracle (a function that generates completely random output).

Formal Definition: A function f(K, x) : {0, 1}s ←− {0, 1}s is a PRF if

• f can be computed in polynomial time

• if K is random then f can’t be distinguished from a random function in polynomial

time.

if two parties share the seed K then the output generated by the PRF is also shared between

the parties. We make use of this property to reduce the communication rounds in Chapter

4.2.3.

35



36



Appendix C

Chapter 5: Supplementary Material

C.1 Number of weak learners vs Accuracy

Number of weak learners
Test accuracy

Percentage of data used
Weak learner Ensemble model

1 90.97 90.88 16.6667
2 91.46 90.74 30.5283
3 91.08 92.07 42.0433
4 91.5 91.94 51.86
5 90.84 92.45 59.775
6 91.45 92.28 66.6117
7 91.44 92.39 72.12
8 90.77 92.17 76.8383
9 91.69 92.43 80.615

10 91.31 92.47 83.8
11 91.46 92.52 86.6983
12 91.66 92.28 88.7317
13 91.88 92.54 90.5383
14 91.46 92.59 92.1867
15 91.28 92.69 93.3433
16 90.66 92.48 94.5667
17 90.42 92.23 95.4867
18 91.04 92.49 96.2
19 91.48 92.44 96.77

37



38



Appendix D

Network Architecture

Layer Description Input Size Output
Dense fully-connected layer 28 x 28 128
ReLU/ TanH activation Apply activation on each input 128 128
Dense fully-connected layer 128 128
ReLU/ TanH activation Apply activation on each input 128 128
Dense fully-connected layer 128 10
ReLU/ TanH activation Apply activation on each input 10 10

Table D.1: Network A architecture

Layer Description Input Size Output

Conv2D
Window size 5x5 Stride(1,1),
Padding(0,0), output channels 20

28 x 28 x 1 24x24x20

ReLU Apply activation on each input 24x24x20 24x24x20
MaxPool Window size 2x2, Stride(2,2) 24x24x20 12x12x20

Conv2D
Window size 5x5, Stride(1,1),
Padding(0,0), Output Channels 50

12x12x20 8x8x50

ReLU Apply activation on each input 8x8x50 8x8x50
MaxPool Window suze 2x2, Srtride(2,2) 8x8x50 800
Dense Fully Connected Layer 800 500
Relu Apply activation on each input 500 500
Dense Fully Connected Layer 500 10
ReLU/TanH Apply activation on each input 10 10

Table D.2: Network D: LeNet architecture

39



40



Bibliography

[Bea91] Donald Beaver, Efficient multiparty protocols using circuit randomization, Ad-

vances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceed-

ings, Lecture Notes in Computer Science, vol. 576, Springer, 1991, pp. 420–

432.

[Bla79] G. R. Blakley, Safeguarding cryptographic keys, International Workshop on

Managing Requirements Knowledge (MARK), 1979.

[Bü12] Peter Bühlmann, Bagging, boosting and ensemble methods, Handbook of

Computational Statistics (2012).

[FH07] Jerome H. Friedman and Peter Hall, On bagging and nonlinear estimation,

Journal of Statistical Planning and Inference 137 (2007), no. 3, 669–683, Spe-

cial Issue on Nonparametric Statistics and Related Topics: In honor of M.L.

Puri.

[KRC+20] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem

Rastogi, and Rahul Sharm, Cryptflow : Secure tensorflow inference, IEEE

Symposium on Security and Privacy (2020), 336–353.

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning ap-

plied to document recognition, Proceedings of the IEEE 86 (1998), no. 11,

2278–2324.

[LC10] Yann LeCun and Corinna Cortes, MNIST handwritten digit database.

41



[MZ17] Payman Mohassel and Yupeng Zhang, Secureml: A system for scalable

privacy-preserving machine learning, 2017 IEEE Symposium on Security and

Privacy (SP), 2017, pp. 19–38.

[Ode19] Rising Odegua, An empirical study of ensemble techniques (bagging, boosting

and stacking), 03 2019.

[Sha79] Adi Shamir, How to share a secret, Commun. ACM 22 (1979), no. 11,

612–613.

[TFl] Tensorflow graph transform tool, https://github.com/tensorflow/

tensorflow/tree/master/tensorflow/tools/graph_

transforms.

[VM02] Giorgio Valentini and Francesco Masulli, Ensembles of learning machines, vol.

2486, 05 2002, pp. 3–22.

[VSA+10] Carlos Valle, Francisco Saravia, Héctor Allende, Raul Monge, and César

Fernández, Parallel approach for ensemble learning with locally coupled neu-

ral networks, Neural Processing Letters 32 (2010), 277–291.

[WGC18] Sameer Wagh, Divya Gupta, and Nishanth Chandran, Securenn: Efficient and

private neural network training, Cryptology ePrint Archive, Report 2018/442,

2018, https://eprint.iacr.org/2018/442.

[WTB+20] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek

Mittal, and Tal Rabin, Falcon: Honest-majority maliciously secure framework

for private deep learning, 2020.

[Yao82] A. C. Yao, Protocols for secure computations, 23rd Annual Symposium on

Foundations of Computer Science (sfcs 1982), 1982, pp. 160–164.

[Yao86] , How to generate and exchange secrets, 27th Annual Symposium on

Foundations of Computer Science (sfcs 1986), 1986, pp. 162–167.

42

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms

