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Abstract

The universe is known to be expanding, the cause of which is said to be a mysterious, dark

energy, named so, as it is of unknown origin. There are several candidate models, each of

which bring with them their own set of free parameters that can be tuned to fit available

data. In fact, too many such models exist; that is the problem — not enough of them have

been falsified.

In this thesis, we will look at two ways to recreate dark energy — a parametric and a non-

parametric, model independent approach. Along the way, we will learn about Bayesian

statistics, multi-variate probability distributions, Markov Chain Monte Carlo methods, and

Gaussian processes — tools we will use to analyze data from observations in an attempt to

nail down the origin of dark energy.
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Chapter 1

Introduction

The universe is expanding, this much we know. The origin of this expansion however is an

entirely separate matter, and its investigation is what is contained in this thesis.

In this thesis, we will encounter a historical account of events that have led to the postula-

tion of dark energy, we will learn the theory behind Cosmology - the study of the universe,

its origins, and its dynamics; we will also get familiar with some of the statistical tech-

niques needed to make use of the wealth of data that has been made available thanks to

recent developments in observational techniques, and finally we will learn to make use of

computational methods that are needed to implement those statistical techniques.

1.1 A Historical Perspective

Einstein’s theory of General Relativity gave us a description of spacetime as a dynamic,

ever-changing backdrop against which events took place, while also giving us a prescription

for exactly how those changes were brought on by the presence of matter and energy. At

the time however, common sense guided him to assume a universe that was static; changing

in shape and curvature due to the presence of matter, but fixed in size. This was not a

universe his own theory allowed for, and to enforce it, he made what in his own words was

the ”greatest blunder of his life” - the introduction of a cosmological constant into his field

equations - something to counter the attractive force of gravity, and keep the universe from

shrinking or expanding.

This cosmological constant, Λ, is a free parameter, and its value was fine tuned to achieve
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equilibrium against the force of gravity. This equilibrium solution to the Field Equations

was valid, but unstable. No matter what, a stable, static universe was not something his

own theory allowed for [Wei89].

This problem however, was not a problem for long, as observations confirmed that the

universe was far from static - it was expanding, and accelerating in fact. The problem was

then turned on its head. The cosmological constant that was earlier being used to force

a static solution was now required to better fit the accelerated, expanding model of the

universe, no longer a cohesive but a repulsive factor. This mysterious new mathematical

addition to the energy densities that made up the universe was dubbed Dark Energy.

In chapter 2, we will learn about the Cosmology required to understand the problem more

rigorously. We will talk about how the distribution of matter and energy affect the evolu-

tion of the universe as a whole, and how we can measure that effect in the form of two

cosmological observables, the Hubble parameter and the Luminosity Distance.

Chapters 3 and 4 will be spent learning about the methods we will be employing to tackle

our phenomenological problem - Markov Chain Monte Carlo as an alternative to a brute

force grid search in order to reconstruct dark energy parametrically, and Gaussian Processes

to do the same independent of any particular dark energy model.

Finally, in chapter 5 we will encounter a restatement of our problem in terms of the methods

described above, and the results that follow.
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Chapter 2

Cosmology

Cosmology is the study of the universe itself - it’s past, present, and future. On these

unfathomable scales, a few assumptions go a long way, and reduce the complexity of this

study to just a couple of simple equations, what we call the Friedman Equations, and that is

where we will begin too. We will take our knowledge of general relativity, and add on to it

what we learn about the distribution of matter and energy in the universe, which will lead us

to the Friedmann Equations. This discussion of distributions, and the final equations would

finally pave the way to really appreciating the problem of the origin of dark energy as we

begin to learn about some of the observables of cosmology.

For more details on the mathematics contained in this chapter, refer to [Car19] [Pad02]

[Wei72].

2.1 The Friedmann Equations

Einstein’s theory of general relativity gave us a system of equations, called the Einstein

Field Equations,

Rµν −
1

2
Rgµν = 8πGTµν . (2.1)

The left and right hand sides (LHS & RHS) of this equation can be thought of to represent

two distinct things. On the LHS, the presence of the Ricci tensor, Rµν , the Ricci scalar, R,

and the metric tensor, gµν , translate into that part of the equation holding the geometrical

properties of space-time. On the RHS, we have the stress energy tensor, Tµν , which holds

the information about the distribution of the various matter or energy densities, the presence

of which affect the geometrical properties of space-time, and that relation is what is held in
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this equation.

The Ricci tensor can be obtained as a contraction of the Riemannian tensor, Rρ
σµν , which

is defined by,

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (2.2)

where the Γ terms are the Christoffel Symbols. Contracting the indices using tensor cal-

culus rules,

Rµν = ∂λΓ
λ
µν − ∂µΓλλν + ΓλλδΓ

δ
µν − ΓλµδΓ

δ
λν . (2.3)

The final term of interest on the left hand side is the familiar metric tensor. As an note,

when talking about Lorentzian space-time, we will take the form of the tensor to be, ηµν =

diag (−1, 1, 1, 1), instead of the general gµν .

On the right hand side, we have G, Newton’s gravitational constant, and the stress energy

tensor. The particular form of the stress energy tensor depends on the form of the matter

and energy distributions we choose to work with. This choice is guided by what is known

as The Cosmological Principle.

2.1.1 The Cosmological Principle

This is one of the most fundamental assumption that cosmology works under, that no place

or direction in the universe is special. In more concrete terms, the universe is

• homogeneous, so there are no special points in space where the geometric properties

of space would be different from any other point.

• isotropic, meaning that there are no special direction, where measurements would

yield results different from any other direction.

2.1.2 The Distribution of Matter and Energy

Given the homogeneous, isotropic universe, we can go ahead and assume the matter and

energy distributions to behave as a perfect fluid at cosmic scales. This simplifies our job

greatly, as the form for the stress energy tensor simply becomes,

T = diag (−ρ, p, p, p), (2.4)
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where ρ is the energy density, and p is the flux associated with the momentum of that

particular energy density.

When we attempt to conserve energy, and apply the condition that,

∇νT
µν = 0, (2.5)

we find that its zeroth, time component tells us,

∇µT
0µ = −∂0ρ− 3

ȧ

a
(p+ ρ) = 0. (2.6)

We can simplify that relation by assuming an equation of state that relates ρ and p,

p = ωρ, (2.7)

which allows us to conclude that,

ρ̇

ρ
= −3(1 + ω)

ȧ

a
, (2.8)

which can be integrated to give a simple relation,

ρ ∝ a−3(1+ω). (2.9)

Here, a is the scale factor of the universe. What this equation tells us is how the energy

density changes as the universe changes in scale. We know for a fact that the universe is

expanding, but so far in this thesis we have not yet introduced that, and so it suffices to treat

this equation in general.

The actual value of the term to which the scale factor is raised depends on what particular

energy density is being considered. We will now look at two examples of the same - matter,

and radiation.

Matter in the universe is modelled as a pressure-less dust, and so for it, p = 0. So, for the

relation, ω ρM = 0, to make sense, we must have ω = 0. Which allows us to conclude that,

ρM ∝ a−3. (2.10)

Radiation follows Maxwell’s laws. When written in their field theoretic, tensor forms, we

know that the trace of perfect fluid energy momentum tensor would be equal to that of the

trace of the tensor for electromagnetic radiation,

T µµ = −ρ+ 3p = F µλFµλ −
1

4
gµµF λσFλσ = 0. (2.11)
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Simplifying, we can get, pR = 1
3
ρR, which gives us,

ρR ∝ a−4. (2.12)

Both of these relations make intuitive sense too; if we imagine the universe expanding,

any cube in space would have it’s volume increase as a power of three, but the matter in it

remains the same, and so the density of that matter would fall of as an inverse cube. For

radiation, a similar dilation of photon density would take place, but on top of that, individual

photons would also lose energy as they get red-shifted because of the expansion of the

universe and the apparent motion of the source of said photon away from the observers.

2.1.3 The Equations

Assuming several different energy densities, overlaid on top of each other, all obeying

the perfect fluid condition, we can take the combination of them, and plug the resulting

energy momentum tensor in Einstein’s Field Equations (insert label and link here) that

we encountered earlier. Doing this and simplifying gives us two equations, namely the

Friedmann Equations. (
ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (2.13)

ä

a
= −4πG

3
(ρ+ 3p). (2.14)

Here, p and ρ have their usual meanings, as does a, and the κ term represents the curvature

of space-time. It takes values −1, 0, 1 depending on whether the universe is closed, flat,

or open respectively.

Individually, these equations are creatively called the first and second Friedmann equations.

For our purposes, we will mainly be focusing on the former, as it will bring us to our very

first observable, the Hubble Parameter.

2.2 The Hubble Parameter

The equations we obtained in the previous section, can be written down in a simpler way

by introducing a few new parameters. We define the Hubble Parameter, H , as,

H =
ȧ

a
. (2.15)
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This allows us to write down the first Friedmann equation as,

H2 =
8πG

3
ρ− κ

a2
.

We also introduce the density parameter, Ω,

Ω =
8πG

3H2
ρ, (2.16)

using which we can introduce a energy density for the curvature term in the Friedmann

equations. So we say that,

Ωc = − κ

H2a2
, (2.17)

which we can either work with as is, and write down the first Friedmann equation as,∑
Ωi = 1, (2.18)

or we can ”reverse engineer” the definition for Ωc, to get,

H2 =
8πG

3

∑
ρi, (2.19)

where in both cases, the summation over index i represents the different energy densities

we would like to consider in our model (including curvature).

This parameter, H, measures the rate at which the scale of the universe is changing, whether

it is expanding or contracting, accelerating or decelerating. The Hubble parameter actually

comes in two ”varieties”, H0 and H(z), depending on whether we fix a frame of reference

or not, as explained below and visualised in figure 2.1 [Col18]. To understand the difference

between the two, let us assume that the universe is expanding. What this means is that every

other point in the universe is moving away from every other point as the space between

them expands, irregardless of any other velocities they might have had. If there existed

some kind of lattice in space with a separation of one unit, after expansion, the separation

between each point on the lattice would be two units. No particular point on the lattice

moved away from another point specifically. But, if we were to focus on only one of such

points, and overlay our standard lattice with the expanded lattice, such that the point we had

chosen was aligned to itself in both lattices, then we would see that the expansion appears

to be radially away from that one particular point on the lattice.

The Hubble Parameter at current epoch, H0, is a measure of the actual change in scale,

at the current point in the universe’s age; while H(z) measures the apparent rate of other
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Figure 2.1: Once we choose a special point in space, it appears that the rest of the universe

is expanding away from that point.

points in the universe moving farther or closer with respect to a particular point - like the

Earth, as a function of z, the red-shift, which in cosmology is used as a measure of distance.

2.3 Luminosity Distance

This will serve as the second cosmological observable we will be making use of. Consider

a bright object, like a light-bulb in one corner of a room. We know that the intensity of the

light will be falling off as an inverse square law as the light-bulb would serve as a point

source of light from which photons would be radiating radially. Having that knowledge in

hand, and at least approximate knowledge of what the brightness of the light-bulb source

might be, we could deduce the distance that the light-bulb would be from us by measuring

its apparent brightness as the light reaches us. Now, imagine the same on a cosmic scale,

with light-bulbs replaced by supernovae, and the room replaced by the expanding universe

itself. The distance so measured, is called the luminosity distance and is denoted by dL.

For the former light-bulb, existing in Euclidean space, we define the luminosity distance as,

d2L =
L

4πF
, (2.20)

where L is the brightness or luminosity at the source, and F is the flux measured at the

receiver.

Before we go ahead and define the luminosity distance for an FRW universe, we should
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take a moment and loop back to the density parameters we encountered before. We know

the relation between ρ and a from equation (2.9); using that and the definition of Ω, we can

write,

Ωi = Ω0i(1 + z)ni , (2.21)

where 1 + z = a, and ni = −3(1 + ωi).

With this new notation, our first Friedmann equation can be written down in a form that we

will be making use of most,

H(z) = H0

{∑
i

Ω0i(1 + z)ni

} 1
2
. (2.22)

We can now also introduce the luminosity distance for an FRW universe,

dL(z) =
1 + z

H0

∫ z

0

{∑
i

Ω0i(1 + z′)ni

}− 1
2
dz′. (2.23)

This quantity is not directly used in calculations however, as logarithmic quantities are

preferred, and so we define the Distance Modulus,

µ = 5 log(dL)− 5. (2.24)

2.4 The Problem

Figure 2.2: Observed data for the reduced Hubble Parameter.
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Figure 2.2 shows us the observed values for the Hubble Parameter. As we can see, the size

of the universe is not a constant. It is in fact, expanding at an accelerated rate. To account

for this accelerated expansion, we add in another energy density to our model universe

along with matter and radiation, and that new ingredient is what is called Dark Energy.

Several models of this newly introduced energy density exists, each characterized by their

own forms of the equation of state parameter for dark energy, ω(z). To name a few, we

have Λ-Cold Dark Matter (CDM), ωCDM, Quintessence, etc. There are a number of poly-

nomial, exponential, and logarithmic functions that serve the purpose as well. However, the

existence of such a large number of possible candidates is the problem, as they have not yet

been excluded by existing observations, and so the origin of dark energy is a mystery.

10



Chapter 3

Markov Chain Monte Carlo Methods

In this work, the main computational problem encountered is one of finding values of free

parameters to get our models to fit the data best. To that end, we can follow two approaches,

the first being a brute force method called a grid search, where we methodically run through

the entire parameter space, calculating likelihoods for each point in the space to find the one

most suited to data; the second approach, which is much more powerful, is to use Markov

Chain Monte Carlo methods to do the same [CM01] [LB02] [Ver07].

3.1 The Likelihood

Let us assume that we have some observable F , which can be theoretically modelled as

F(ΘΘΘ, X), where ΘΘΘ is the set of free parameters in the model, and X is the set of variables

that F depends on. We need to be able to gauge at any of the given independent variables

of F , how far away the model with a given set of values for ΘΘΘ is, and to do that, we define

an error function,

χ2(ΘΘΘ) =
∑(Fcalc(ΘΘΘ, Xi)−Fobs(Xi)

σi

)2
, (3.1)

where σ is the actual error in measurement, and the index i runs over all possible values for

the independent variables for which we have measurements.

This chi-squared function, can be thought of as a summation over the indices of ratios of

theoretical and experimental error. If the point in parameter space is close to its true value,

then this ratio would ideally be close to one. That is why it is easy to judge whether a

parameter is a good fit, as the value for chi-squared at that point would be close to the

number of data points considered.
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Now, depending on what we wish to do with this error function, we can either use it to

define simple functions like,

L =
1

χ2
,

such that the higher the error, the lesser the likelihood of that particular point in the param-

eter space being the one closest to the true value.

If our goal was simply to find the most likely point in the parameter space, the above

definition of likelihood, along with any other that preserved the shape of that distribution

would work. However, our goals are not so simple, as we would also like to be able to gauge

how confident we are in our estimation of the most likely parameter set, which means that

we would like to be able to marginalize and normalize our resultant probability distributions

with ease.

To that end, we reasonably assume that our errors are distributed normally, and define an

exponential likelihood function,

L(ΘΘΘ) = exp
(
− χ2(ΘΘΘ)

2

)
, (3.2)

to make our integrals simpler.

3.2 Grid Search

As the name suggests, in this method we divide up our m-dimensional parameter space

into a grid, be it coarse or fine, and traverse the entire space, calculating the exponential

likelihood value and assigning it to each point on the grid. What this ends up giving us is a

distribution function, which we can turn into a probability distribution by integrating over

the entire space and normalizing our distribution.

While this method is easy to implement, for larger dimension parameter spaces it is pro-

hibitively slow. In practice it is only used as a preliminary tool to get a rough idea of

what the likelihood surface looks like, traversed by a very coarse grid. The integration

over the entire space is a very computationally expensive process. Further, if we have a

multi-dimensional distribution, and wish to only look at a few important parameters after

marginalization, that is another computationally expensive series of integrals that need to

be performed.
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All in all, it is best to not try to use this for actually getting results, as we have something

much more powerful at our disposal - Markov Chain Monte Carlo methods.

3.3 Markov Chain Monte Carlo

Monte Carlo methods are a wide class of computational methods that rely on randomly

sampling extremely large number of points, be it to integrate a function and calculate areas

or in optimization problems.

Markov Chains refer to a sequence of events where the future path is not affected by the

path taken previously, but only on the current position. More technically, the probability

of taking a particular step in a chain is only affected by the current state of the system.

Markovian systems are therefore also known as memory-less systems.

Put together, they give us ways to traverse only the interesting parts of a probability dis-

tribution, foregoing the need to sample the entire space to find the hills or valleys on our

likelihood surface. One of those methods is called the Metropolis-Hastings Algorithm.

3.3.1 Metropolis-Hastings Algorithm

Starting at any random point in the parameter space, the algorithm tells us the fastest way to

reach any peaks that might exist on our likelihood surface. Much like a mountain climber,

the Markov chain in this algorithm generally prefers to climb towards the peak, but often-

times will move to a point that takes it away from the peak, to keep checking for easier

paths to the top in the vicinity. More concretely, the algorithm is as follows,

1. Define a likelihood function, L.

2. Choose a random point in the sample space, θ1, and calculate the likelihood, L1.

3. Propose to move to a new point, θ2, in the parameter space chosen at random, and

calculate its likelihood, L2.

4. (a) If the point is more likely, that is, if L2 > L1, accept that point as a point in the

chain.

(b) If on the other hand, L2 < L1, draw a random number r, and accept that point

if r < L2
L1 .
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(c) If the point is rejected, stay at the same position in the chain.

5. Repeat steps 2 - 4 till convergence.

It is important to note the role that step 4. b) plays in this algorithm. If we were to only

take the steps that bring us closer to the peak, we would reach the peak and get stuck. We

would have the maximum likelihood point we were seeking, but would have no idea about

the distribution around it to be able to infer any confidence estimate about our newly found

most likely point. Since we occasionally step away from the peak, we get the chance to

sample the space around it.

For our purpose, we will use the definition of L given in equation (3.2). Since we will

only be dealing with ratios of likelihoods, we don’t need to worry about any prefactors that

would serve the purpose of normalizing an otherwise unnormalized probability distribution.

A possible challenge that can come up is if we are dealing with very large data sets, then

the value of χ2 can be extremely large, in which case exp(−χ2) would be a ridiculously

small value, and the ratio of the two likelihoods would be indeterminate. In that case, we

can make use of a reduced χ2,

χ2
red =

χ2

N
, (3.3)

where N is the number of data points we have. Since this transformation is not a linear

operation considering the likelihood function - as it’s being performed in the exponent -

it would alter the shape of the likelihood distribution, and so needs to be reverted back to

obtain the actual ratio,
L2

L1

= exp
(
− (χ2

2 − χ2
1)
)
. (3.4)

So, after calculating the ratio with the χ2
red, we can raise it to a power of N , to obtain the

correct ratio.

3.3.2 Convergence

Finally, we discuss convergence; once we know our chains have reached convergence, the

statistical information we obtain from it doesn’t change the longer the chains keep going.

In other words, the chains have spent enough time to sample the distribution, and running

them longer will not change the resultant distribution any further. To check for convergence,

various algorithms exist, but we’ll be focusing on one used most commonly, and that is the
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Gelman-Rubin Convergence Criteria [GR+92]. This is much easier to implement in multi-

threaded approaches, as we can have one thread run its own individual chain through the

parameter space.

Figure 3.1: A 2 dimensional and a 3 dimensional rendition of several chains run on a

likelihood surface that is a Gaussian near the bottom left hand corner, which is where the

chains eventually converge. The top row shows chains that have not yet converged to the

distribution, and the bottom row is when they’re allowed to run for slightly longer.

For the algorithm, we assume that there are M individual chains in total, each containing

2N points. Of these, we will only take the last N for our calculation. We define the mean

of the chain, ȳj , and the mean of the entire distribution, ȳ, as,

ȳj =
1

N

N∑
i=1

yji , ȳ =
1

NM

NM∑
ij=1

yji , (3.5)

using which we can define two variances,

B =
1

M − 1

M∑
j=1

(ȳj − ȳ)2, (3.6)

and,

W =
1

M(N − 1)

∑
ij

(yji − ȳj)2, (3.7)

where B is the variance between chains, and W is the variance within a chain. Finally, we

define,

R =
N−1
N
W + 1+M

M
B

W
. (3.8)

When the value of R < 1.03, we say that the chains have sufficiently converged [Ver07].
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Chapter 4

Gaussian Processes

While Markov Chain Monte Carlo methods can give us constraints on the free parame-

ters in different parameterizations of dark energy, they cannot really give us information

about which one is correct. To take the model out of the picture therefore, we employ

non-parametric methods. Where previously we were concerned with constraining free pa-

rameters, we will now look at a method to reconstruct our observables independent of any

underlying assumptions of dark energy models [QCR05] [Wan20].

4.1 Gaussian Distributions

A one dimensional, normally distributed random variable follows what we call the Gaussian

Distribution,

P (x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
. (4.1)

Similarly, if we wanted to model a multi-variate Gaussian distribution of dimension D, we

say,

N (x | µµµ, ΣΣΣ) =
1

(2π)D/2|ΣΣΣ|1/2
exp
(
− 1

2
(x− µµµ)TΣΣΣ(x− µµµ)

)
, (4.2)

where x and µµµ are D dimensional vectors, and ΣΣΣ is a D ×D matrix. ΣΣΣ is called the corre-

lation matrix, and encodes information about how some of the variables affect the others.
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Figure 4.1: Samples drawn from two different bi-variate distributions, one with a non-zero

correlation and one where both dimensions are independent of each other.

4.2 Generating Random Functions

At the most fundamental level, Gaussian Processes is a method to generate random func-

tions. Like how a Gaussian distribution is a distribution of a random variable, a Gaussian

process is a distribution of a random function; it is analogously defined by a mean function

with the associated error.

More formally, a Gaussian process is nothing but a multi-variate Gaussian distribution with

a label associated to each of its dimensions such that it can be ”unfolded” on the x axis.

Figure 4.2: Imagine cutting the x axis into slices, and there being a Gaussian distribution

along the y axis for every slice in x. An uncorrelated multi-variate Gaussian distribution

”unfolded”.

For each slice of the x axis as given in figure 4.2, we can draw a sample, and connect each

of those points. Such a sample is said to be drawn from a Gaussian process.If we make the
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slices fine enough, we can make this sample smooth enough to model analytically smooth

functions.

Figure 4.3: Samples drawn from an uncorrelated Gaussian process. On the left, we have

one where the x axis was coarsely sliced, and on the right, it was done more finely.

As can be seen from figure 4.3, when samples are drawn from an uncorrelated Gaussian

process, the resultant functions can be very jagged. This makes sense, as no point on x is

affected by any of its nearby points, and therefore each point is sampled independently.

To obtain smoother samples, we need to introduce correlations between neighbouring points

on the x axis, and to do that, we use what we call Kernel functions. Several such functions

exist, the most commonly used being the Radial Basis Function,

k(x, x′) = exp(−(x− x′)2), (4.3)

which is calculated for each point on the x axis, and corresponding values are inserted into

the correlation matrix.

When this particular Kernel function is applied and samples are drawn from this new Gaus-

sian process, they turn out to be much smoother, as the probability for picking up a points

that are close to each other both in x and in y is increased, as we can see in figure 4.4.

So far, we have only been generating random functions, with no input about the data they’re

meant to model. Functions obtained in such a way are called priors. What we need however,

is samples from a distribution that is conditional on the data present.
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Figure 4.4: Samples drawn from a smoothed Gaussian process where correlations were

given by the Radial Basis Function. On the left, we have one where the x axis was coarsely

sliced, and on the right, it was done more finely.

4.3 Sampling From The Posterior Distribution

When we perform Bayesian analysis on a previously unconditioned distribution, the resul-

tant distribution is called the posterior. Let us consider a multi-variate distribution,

P (f |X) = N (f | µµµ, K), (4.4)

where X = [x1, x2, ..., xn], f = [f(x1), f(x2), ..., f(x3)], Kij = k(xi, xj), and µµµ =

[m(x1), m(x2), ..., m(xn)]. Here, X represents the independent variable, f is the function

we are modelling, µµµ is the mean function of the multi-variate distribution, and K is the

correlation matrix, the elements of which are given by the kernel, k(xi, xj).

We are now ready to introduce the data we have from observations, denoted by non-starred

symbols. The starred symbols are the points at which we are going to be sampling our

posterior function at. We can write down the joint probability distribution, f
f∗

 ∼ N(
m(X)

m(X∗)

 ,
 K K∗

KT
∗ K∗∗

), (4.5)

where K∗ = K(X, X∗), with the rest of the correlation matrix defined similarly. In

most cases, the mean function for the prior is set to zero, especially when the function

we are trying to model is oscillatory around it. From this joint probability distribution,

P (f , f∗ |X, X∗), we can calculate the conditional distribution P (f∗ | f , X, X∗) as,

f∗ | f , X, X∗ ∼ N (KT
∗K

−1f , K∗∗ −KT
∗K

−1K∗). (4.6)

The distribution on the RHS of this equation is the posterior distribution we need. However,

this is only valid for the very rare case of when our observations have no error or noise
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associated with them. Assuming the error is given by σ2
i , we simply add it to the K quadrant

of the correlation matrix,

K→ K + σ2
i I.

Figure 4.5: 100 samples drawn from the posterior distribution after performing Bayesian

analysis on simulated data, which is simply randomly chosen points of a sine function.

So, Gaussian Processes can be used as a valuable tool to reconstruct underlying functions

if we have enough data to model off of. As we can see in figure 4.6, at the points where

there was no available data, the mean is far off from the true function, as it tends to stay

close to the prior mean that was fed to it. Another point to note is that this was only for

the case when the data we had was noiseless; in the case where our data has inherent errors

associated with it, we get a much better fit, as seen in figure 4.7.

4.4 Hyperparameter Selection

The kernel function we had encountered in equation (4.3) was only a very simplified version

of the real Radial Basis function,

k(xi, xj) = σ2 exp
(
− |xi − xj|

2

2l2

)
. (4.7)

The additional parameters, σ and l, are known as hyperparameters, called so to differ-

entiate them from parameters that may be present in whatever true function we are trying
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Figure 4.6: The mean function we obtain after averaging over all the randomly sampled

functions from figure 4.5 along with the associated error, and the actual function from

which our data points were derived.

to estimate. Finding the values for these hyperparameters is another regression problem in

itself, for which we can either use a grid search or the Metropolis-Hastings algorithm.

For the same, we need to define an appropriate error function, and for that we use,

ξ(ΦΦΦ) =
∑
i

{∑
j

|fdata(xi)− fcalc(xi, ΦΦΦ)| ∗ exp((xi − xj)2)
}
, (4.8)

where ΦΦΦ is the set of hyperparameters, and the indices i and j run over the observed data

points and the entire length of the x axis respectively.

Once we have the correct hyperparameters, we are fully equipped to start sampling from the

posterior and generate a mean function from it along with the relevant confidence intervals.
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Figure 4.7: A much better estimate of the true function is obtained in a more realistic

situation, with data that is slightly noisy.

23



24



Chapter 5

Results and Conclusions

Let us now turn to a restatement of the problem, and the results that follow.

5.1 Comparison of MCMC and Gaussian Process Meth-

ods

As we now understand the methods we will be employing, we are ready to restate the

problem in terms that make it evident how we’ll be tackling it. What we are attempting

to tackle in this thesis is two-fold; an approach with defined parametric forms of the dark

energy equation of state parameter where we will attempt to constraint the free parameters

by using Markov Chain Monte Carlo methods to find the most likely set of values for them

in order to reconstruct cosmological observables, and a non-parametric approach given by

Gaussian processes, where we will use randomly drawn functions from a posterior distri-

bution for the same cosmological observables, relying purely on observed data and not on

any specific model for dark energy.

5.1.1 Parametric Reconstruction

For the parametric reconstruction, we will be following what was done in [TSJ17], with the

two differences being using the Metropolis-Hastings algorithm, and that we will only be

considering the simplest of dark energy models, the ωCDM model, where the ω is simply

an undetermined, to-be-constrained constant, not dependent on the red-shift. For the same,
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our observables can be defined as the Hubble parameter,

H(z) = H0

{
Ωm(1 + z)3 + ΩDE(1 + z)3(1+ω)

} 1
2 , (5.1)

and the Luminosity Distance,

dL(z) =
c

H0

(1 + z)

∫ z

0

{
Ωm(1 + z′)3 + ΩDE(1 + z′)3(1+ω)

} 1
2dz′, (5.2)

which can be written in its more commonly used form, the Distance Modulus,

µ = 5 log(dL)− 5. (5.3)

The density parameters follow the Friedmann equation, and give us another constraint on

our equations,

Ωm + ΩDE = 1. (5.4)

This means that we now have three free parameters to constrain, H0, Ωm, ω. The priors we

input into the Metropolis-Hastings algorithm are taken to be uniform,

Minimum Parameter Maximum

0.01 Ωm 0.60

−4.00 ω 0.00

65.00 H0 75.00

Table 5.1: Priors for the ωCDM model.

The data we use for the distance modulus reconstruction is the Union data [ALR+10],

compiled by the Supernova Cosmology Project, and has 580 data points collected together

from various observations over the years. For the Hubble parameter as well, we have a

collection of 38 data points [FMCR17].

Given the priors and the data, we can obtain the posterior distribution for the three parame-

ters, marginalize it as needed, and calculate confidence intervals.

5.1.2 Non-parametric Reconstruction

Observations do not currently rule out any model of dark energy, and hence it is reasonable

to search for methods which do not a priori assume any Dark Energy properties. For this, we

can use Gaussian processes to obtain a mean function for the Hubble parameter along with
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the relevant confidence intervals. We can then compare the reconstructed Hubble parameter

forms from the previous approach, using different models, and see if any of those models

fall outside the confidence intervals, they would be falsified, but if they don’t the method

is flexible enough that we can wait for more observations in the future that would help

narrow down our error margins. For this, we use the same data we did for the parametric

reconstruction.

Since there are no models we depend on, there are no free parameters to constrain; instead,

we have what we call hyperparameters - the parameters that help define the Gaussian Pro-

cess from which we will be drawing samples. For the kernel we are using, as defined in

equation (4.7), there are two hyperparameters to constrain, σ and l. σ represents how corre-

lated the values are on the y axis, and l defines it for the x axis. For this, we can either use

MCMC methods, or we can just use a grid search. Since in this case the dimension of our

hyperparameter space is not that large, we can safely use a grid search algorithm. A note

however, since there will matrix inversions involved, it would be advisable to employ the

Gauss-Jordan elimination to calculate the inverse, as the dimension of the matrices involved

will be the same as the number of data points, which in our case can go up to 580, and the

recursive algorithm would take infinitely long to be completed for a matrix that large.

The priors we use for the hyperparameters are,

Minimum Hyperparameter Maximum

0.01 σ 1

0.01 l 1

Table 5.2: Hyperparameter priors.

Traversing the hyperparameter space, we can calculate our error as given in equation (4.8),

and use the set of hyperparameters with the minimum error.

5.2 Results

Now that we understand the problem and our approach to it, we can attempt to finally

reconstruct our observables, first taking the ωCDM model of dark energy, and then relying

purely on observed data to obtain a non-parametric reconstruction.
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5.2.1 Parametric Reconstruction

For the parametric reconstruction using the ωCDM model, we use the Metropolis-Hastings

algorithm to constraint the values of w and ΩM for both observables. The resultant confi-

dence intervals can be seen in figures 5.1 and 5.2.

For the parametric reconstruction using the ωCDM model, we use the Metropolis-Hastings

algorithm to constraint the values of w and ΩM for both observables. The resultant confi-

dence intervals can be seen in figures 5.1 and 5.2.

Figure 5.1: 1, 2, and 3-σ contours for the Hubble parameter data.

We can marginalize over each of the parameters to get a distribution for them separately as

can be seen in figures 5.3 and 5.4. This would allow us to get a quantitative idea of how

good our fit is with respect to the individual parameters.

The final values of the parameters and the corresponding confidence intervals can be sum-
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Figure 5.2: 1, 2, and 3-σ contours for the SN1a data.

29



Figure 5.3: The final distribution we get for the parameter ΩM after marginalizing over ω

(and H0 for the Hubble parameter data) and normalization.

marized as below,

Data Set Mean Value

ΩM H(z) 0.250± 0.017

SN1a 0.267± 0.016

ω H(z) −1.000± 0.067

SN1a −1.000± 0.133

Table 5.3: Mean values of the parameters after marginalization along with error margins of

1 standard deviation, assuming a Gaussian fit.

5.2.2 Non-Parametric Reconstruction

Fitting the Gaussian Process to the data by finding the correct set of hyperparameters, we

draw randomly sampled functions from it till the mean we recover does not change appre-

ciably - in other words, till the sampled distribution converges to the underlying posterior

we obtained from fitting.

As we can see from figures 5.5 and 5.6, the reconstruction fits the data well. Gaussian
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Figure 5.4: The final distribution for ω, the equation of state parameter in the ωCDM model

for dark energy after marginalization and normalization.

Processes can therefore be used as a reliable tool to reconstruct cosmological observable

independent of any dark energy model.

It is very clear that wherever we have more data points, the confidence interval is much

tighter, and so as observational techniques improve in the future, we will be able to get ever

smaller bounds on these reconstructed observables.

We can also compare these results with the reconstructed observables from the parametric

approach we used earlier, with the goal in mind that if we can get the confidence intervals

small enough with our Gaussian process approach, they can rule out various models of dark

energy.

5.3 Conclusion

We have seen that with the parametric approach we can obtain a probability distribution for

the parameters to be tuned, and found out that the distributions - their mean and variance -

are in agreement with what is currently accepted in literature. The ωCDM model, tends to

pick out a value of -1, which is equal to the equation of state parameter in the ΛCDM model.
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Although the confidence intervals may not be an improvement over the current values, the

computation time taken by MCMC methods is much, much smaller (by several orders of

magnitude) than if we had used a grid search, and can also be scaled with dimension of our

parameter space. It is therefore a viable substitute, as the models we wish to check and the

data available with which to check them improve.

In the non-parametric approach as well, Gaussian processes have given us a reasonable re-

construction of our observables, along with a posterior distribution to gauge our confidence

in said reconstruction.
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Figure 5.5: At the top, 400 samples that are randomly drawn from the posterior distribution

fitted to the reduced Hubble parameter data, reduced by scaling down by a factor of 100.

At the bottom, the mean of all of the functions, along with a standard deviation calculation,

which gives us a 1-σ region.
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Figure 5.6: At the top, 400 samples that are randomly drawn from the posterior distribution

fitted to the SN1a distance modulus data, reduced by scaling down by a factor of 100. At

the bottom, the mean of all of the functions, along with a standard deviation calculation,

which gives us a 1-σ region.
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