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Abstract

Quantum Teleportation allows the transfer of an unknown quantum state between

two distant physical systems. Here we consider the teleportation of a quantum state

using various non-Gaussian entangled resource states, which are generated by a set

of non-Gaussian operations on the two mode squeezed coherent (TMSC) state. To

that end, we derive the Wigner characteristic function of the resource states, which

is utilised in the derivation of the fidelity of teleportation. We show that coherence,

defined as the amount of displacement of the vacuum state, yields better fidelity of

teleportation in certain cases, when compared to non-Gaussian two mode squeezed

vacuum (TMSV) state. Our analysis is very general and therefore, many previous

results can be generated as a special case of our result.

xi



xii



Contents

1 Introduction 1

1.1 Quantum Optical Systems . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Field Quantization . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Continuous Variable System . . . . . . . . . . . . . . . . . . . 9

1.2 Continuous Variable Teleportation . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Teleportation using TMSV state . . . . . . . . . . . . . . . . . 14

2 Non-Gaussian Operations on TMSC state 17

2.1 Non-Gaussian operations on one mode . . . . . . . . . . . . . . . . . 17

2.2 Non-Gaussian operations on both modes . . . . . . . . . . . . . . . . 20

3 Non-Gaussian Resource States in CV Teleportation 25

3.1 Asymmetric Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Photon Subtraction on one mode of TMSC state . . . . . . . . 25

3.1.2 Photon Addition on one mode of TMSC state . . . . . . . . . 27

3.1.3 Photon Catalysis on one mode of TMSC state . . . . . . . . . 28

3.2 Symmetric Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Photon Subtraction on both modes of TMSC state . . . . . . 30

3.2.2 Photon Addition on both modes of TMSC state . . . . . . . . 31

3.2.3 Photon Catalysis on both modes of TMSC state . . . . . . . . 33

4 Conclusion 35

Bibliography 37

xiii



xiv



List of Figures

1.1 A single-mode radiation field in a one-dimensional cavity. . . . . . . . 4

1.2 The energy levels in a quantum harmonic oscillator. . . . . . . . . . . 5

2.1 Schematic for non-Gaussian operation on one of the modes of two mode

squeezed coherent (TMSC) state. . . . . . . . . . . . . . . . . . . . . 18

2.2 Schematic for non-Gaussian operation on both of the modes of two

mode squeezed coherent (TMSC) state. . . . . . . . . . . . . . . . . . 21

3.1 Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-

subtracted two mode squeezed coherent (1-PSTMSC) state. . . . . . 26

3.2 Fidelity (F) vs displacement (d) of teleportation for one-photon-subtracted

two mode squeezed coherent (1-PSTMSC) state. . . . . . . . . . . . . 26

3.3 Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-

added two mode squeezed coherent (1-PATMSC) state. . . . . . . . . 27

3.4 Fidelity (F) vs displacement (d) of teleportation for one-photon-added

two mode squeezed coherent (1-PATMSC) state. . . . . . . . . . . . . 28

3.5 Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-

catalysed two mode squeezed coherent (1-PCTMSC) state. . . . . . . 29

3.6 Fidelity (F) vs displacement (d) of teleportation for one-photon-catalysed

two mode squeezed coherent (1-PCTMSC) state. . . . . . . . . . . . . 29

3.7 Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-

subtracted (on both modes) two mode squeezed coherent (1,1)-PSTMSC

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Fidelity (F) vs displacement (d) of teleportation for one-photon-subtracted

(on both modes) two mode squeezed coherent (1,1)-PSTMSC state. . 31

xv



3.9 Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-

added (on both modes) two mode squeezed coherent (1,1)-PATMSC

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Fidelity (F) vs displacement (d) of teleportation for one-photon-added

(on both modes) two mode squeezed coherent (1,1)-PATMSC state. . 32

3.11 Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-

catalysed (on both modes) two mode squeezed coherent (1,1)-PCTMSC

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.12 Fidelity (F) vs displacement (d) of teleportation for one-photon-catalysed

(on both modes) two mode squeezed coherent (1,1)-PCTMSC state. . 34

xvi



Chapter 1

Introduction

The notion of the physical state of a system is crucial in physics as well as in other

disciplines. Any physical theory that aims to explain the development of a system

needs to define the state of that system. For example, the state of a solid ball can be

given by its position and momentum, and using Newtonian equations of motion, we

can predict its position and momentum at a future time t. We can also include the

angular momentum of the ball in the state, and use principles of rigid body dynamics

to get a better description of the system with time.

We could consider a macroscopic system, like particles immersed in a viscous fluid

or an air balloon. Such systems can be characterised by quantities like temperature,

pressure, composition etc. This description, however, leaves out some information

about the system, like the details of the microscopic constituents. Instead, if we

consider a single particle or a lower number of particles, both classical and quantum

mechanics assume that a proper physical state should include all possible information

about the system. It is possible to consider and work with a common terminology

of physical states for both classical and quantum systems. But, the difference in

the underlying structure leads to significant points of departure between the two

descriptions at both the mathematical and conceptual levels [12].

In classical mechanics, a system can be described using the Hamiltonian formal-

ism. Here, the basic mathematical object is the phase space Γ of 2n even dimensions.

The physical observable or properties of the system are represented by a dynamical

variable A(q,p), which is a real-valued function on Γ, where q and p are n generalised

coordinates and their conjugate momenta respectively. A pure state is represented by

a single point (q0,p0) ∈ Γ. Every A has a definite numerical value A(q0,p0) corre-

sponding to this state - no spread or dispersion and no need or role for probabilities at

1



CHAPTER 1. INTRODUCTION

the level of pure states. These states are the cases of maximum possible information.

In quantum mechanics, on the other hand, the basic mathematical object is a

Hilbert space H: a complex linear vector space with Hermitian non-negative inner

product. The dimensions of this space H can be finite or infinite, depending on the

quantum mechanical system. The physical observable or properties of the system

are represented by Hermitian operators Â, B̂ etc. acting on H. A pure state is

represented by a non-zero normalised vector |ψ〉 in H. Although this is the state with

maximum possible information, but even for such states probabilities of a quantum

mechanical nature play an essential role. For example, consider a dynamical variable

Â with discrete and real eigenvalues {ai} corresponding to the orthonormal set of

eigenkets {|φi〉}. If we perform a measurement of Â using an appropriate experimental

arrangement, the result comes out to be one of the eigenvalues {ai} and the probability

of getting that ai is |〈φi|ψ〉|2. These are irreducible quantum mechanical probabilities

that are not caused by any inadequacy of knowledge about the system.

As we discussed that even in a state with maximum possible information, prob-

abilities of quantum mechanical nature creep in the description of measurement. As

if in compensation for this, and in fact leading to a great simplification, we have the

principle of superposition of states, while dealing of course with pure states. Here is

a quote from Dirac’s discussion of this important principle in quantum mechanics:

“... assume that between these states there exist peculiar relationships such that

whenever the system is definitely in one state we can consider it as being partly in

each of two or more other states ... the intermediate character of the state formed

by superposition (thus) expresses itself through the probability of a particular re-

sult for an observation being intermediate between the corresponding probabilities

for the original states, not through the result itself being intermediate between the

corresponding results for the original states” [12, 11, 1].

Here we have discussed a rather simple distinction between quantum systems and

classical systems. There are many interesting cases that come up in the composite

systems or mixed states, which have been discussed in the references. Furthermore,

many quantum foundation concepts discuss hidden variable theories that claim that

there is more information in a system than perceived in its physical state [14, 20].
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1.1. QUANTUM OPTICAL SYSTEMS

1.1 Quantum Optical Systems

The seeds of quantum mechanics go back to the minor issues of classical physics

related to the nature of black body radiations and photoelectric effect. Planck,

though an inherently conservative theorist, proposed that thermal radiations were

absorbed and emitted in discrete quanta, to explain the spectra of thermal bodies.

Einstein later generalised this idea, so that the quanta, rather than representing the

absorption-emission process, represented light itself. He further described how matter

and radiation can come into equilibrium, introducing the idea of stimulated emission,

and how the photoelectric effect could be explained [18, 3].

In the early 1960s, the laser was invented and the subsequent development, like

tune-able lasers in 1970s, led to an increase in the precision with which light could

be produced and controlled. This enabled a systematic investigation of quantum

properties of optical fields: quantum optics. The framework for the quantization of

electromagnetic fields was given by Dirac in the early days of quantum mechanics.

But the new technological possibilities led Glauber, Louisell etc. to lay the theoretical

basis for the description of the laser. Signatures of non-classical light were soon

identified, which accelerated the research in this field. Here, we introduce some basic

theoretical ideas related to the quantum mechanical description of light and quantum

states of light [18].

1.1.1 Field Quantization

Consider a single-mode radiation field confined in a one-dimensional cavity of length

L, with perfectly conducting walls as shown in Fig. 1.1. The electric field vanishes

on the boundaries and the mode is selected such that we get a standing wave. We

assume a closed cavity and the field is assumed to be polarised in x-direction. The

single mode field satisfying the Maxwell’s equations and the boundary conditions is

given by

Ex(z, t) =

(
2ω2

V ε0

)1/2

q(t) sin (kz)

By(z, t) =
(µ0ε0

k

)(2ω2

V ε0

)1/2

q̇(t) cos (kz)

(1.1)

3



CHAPTER 1. INTRODUCTION

where ω is the frequency of the mode (mode selection for standing wave implies

ω = c(mπ/L), where m is a natural number) and k is the wave number, such that

k = ω/c, V is the effective volume of the cavity and q(t) is a time-dependent factor

having the dimension of length; this acts as the canonical position. Further, q̇(t) (or

p(t), assuming mass variable to be unity) plays the role of a canonical momentum in

these equations [7].

L

x

y

z

Figure 1.1: A single-mode radiation field in a one-dimensional cavity.

For this single-mode field, the classical field energy or Hamiltonian is given by

H =
1

2

∫
dV

[
ε0E

2
x(z, t) +

1

µ0

B2
y(z, t)

]
=
A

2

∫
dz

[
ε0E

2
x(z, t) +

1

µ0

B2
y(z, t)

]
=
A

2

∫
dz

[(
2ω2

V

)
q2 sin2 kz +

(
2µ0ε0ω

2

V k2

)
q̇2 cos2 kz

]
=
AL

4

[(
2ω2

V

)
q2 +

(
2ω2

V k2c2

)
q̇2
]

=
1

2
(ω2q2 + p2)

(1.2)

It seems from the above simplification of Hamiltonian that a single-mode field is

equivalent to a harmonic oscillator of unit mass. In this equivalence, the electric and

magnetic field play the roles of canonical position and momentum, apart from some

scalar factors.

Quantum Harmonic Oscillator

Having identified the canonical variables q and p for the classical system, we use the

correspondence rule and replace them with their operator equivalents in quantum

4



1.1. QUANTUM OPTICAL SYSTEMS

E0=ℏω/2

E1=3ℏω/2

E2=5ℏω/2

E3=7ℏω/2

Figure 1.2: The energy levels in a quantum harmonic oscillator.

mechanics: q̂ and p̂. These operators satisfy the canonical commutation relation

[q̂, p̂] = i~I. The Hamiltonian finally becomes

Ĥ =
1

2
(ω2q̂2 + p̂2) (1.3)

The operators q̂ and p̂ are self-adjoint (or Hermitian) and hence correspond to observ-

able quantities. However, during the analytical treatment of quantum harmonic os-

cillator, it is convenient and traditional to introduce the annihilation (â) and creation

(â†) operators, which are not self-adjoint and hence do not correspond to observable

quantities.

Ĥ =
1

2
(ω2q̂2 + p̂2)

=
~ω
2

[(
q̂

q0
− i p̂

p0

)(
q̂

q0
+ i

p̂

p0

)
+ 1

]
=~ω

[(
X̂1 − iX̂2√

2

)(
X̂1 + iX̂2√

2

)
+

1

2

]

=~ω
[
â†â+

1

2

]
(1.4)

here q0 =
√
~/2ω and p0 =

√
~ω/2. X̂1 and X̂2 are dimensionless forms of the canon-

ical variables, also known as quadrature operators. The non-Hermitian annihilation

and creation operators follow simple commutation relations: [â, â†] = Î, [â, Ĥ] = ~ωâ
and [â†, Ĥ] = −~ωâ†. Using these relations, we can get the eigenstates of the Hamil-

tonian Ĥ . We can easily see from the following equations that these eigenstates form

a ladder with an energy difference of ~ω.

5



CHAPTER 1. INTRODUCTION

Ĥ|n〉 =En|n〉

Ĥâ|n〉 =(Ĥâ− âĤ + âĤ)|n〉

=(En − ~ω)â|n〉

(1.5)

In the above equations, we see that |n〉 is an eigenstate of Ĥ with eigenvalue En.

We further get the eigenstate of Ĥ with eigenvalue En − ~ω by considering the state

â|n〉. Similarly we see below that â†|n〉 also forms the eigenstate of Ĥ with eigenvalue

En + ~ω for any eigenstate |n〉.

Ĥâ†|n〉 =(En + ~ω)â†|n〉

Ĥ|n+ 1〉 =En+1|n+ 1〉

Ĥâ†|n+ 1〉 =(En+1 + ~ω)â†|n+ 1〉

(1.6)

The reason for the terms creation and annihilation operators must be clear from the

above equations. It could be loosely said that â† creates a quantum (or photon) of

energy ~ω and â destroys or annihilates one such quantum of energy or one photon.

There are two important questions that need to be discussed here. The energy

cannot be arbitrary negative, but Eq. (1.5) tells us that we can always get a lower

energy by using the annihilation operator. The fix is that for the state |0〉 corre-

sponding to the minimum energy E0, â|0〉 = 0. We find that the ground state energy

for the quantum harmonic oscillator is non-zero.

Ĥ|0〉 =~ω
(
â†â+

1

2

)
|0〉 =

1

2
~ω|0〉

En =~ω
(
n+

1

2

) (1.7)

Here â†â = n̂ which is the number operator such that n̂|n〉 = n|n〉

The second problem is how do we know that the ladder of energy given by the energy

eigenvalues is unique. The resolution, here, is that if we have two such ladders, then

there are two different lower bounds and hence two states, which when acted upon by

annihilation operator gives us zero, which is not possible due to the linearity of the

operators. Furthermore, node theorem tells us that there cannot be degeneracy in one

dimension in a bound system. Therefore, the ladder in the Fig. 1.2 is unique. Since

the Hamiltonian Ĥ is Hermitian, the eigenkets form an orthonormal basis. Using the

normalisation 〈n|n〉 = 1, we get

6



1.1. QUANTUM OPTICAL SYSTEMS

â|n〉 =
√
n|n− 1〉

â†|n〉 =
√
n+ 1|n+ 1〉

(1.8)

Quantum Fluctuations in a field

The number states, that we studied above are also called stationary states. Stationary

states are the eigenstates of the Hamiltonian operator and a system in such a state,

remains in the same state when subjected to unitary time evolution. The electric

field and the magnetic field operators do not commute with the Hamiltonian.

Êx(z, t) =

(
2ω2

V ε0

)1/2

q̂(t) sin (kz)

=
√

2E0X̂1(t) sin (kz) = E0(â+ â†) sin (kz)

B̂y(z, t) =
(µ0ε0

k

)(2ω2

V ε0

)1/2

p̂(t) cos (kz)

=
√

2B0X̂2(t) cos (kz) = B0
(â− â†)

i
cos (kz)

(1.9)

Here, X̂1 and X̂2 are the quadrature operators from Eq. (1.4). They satisfy the

commutation relation [X̂1, X̂2] = i, from which it follows that

〈(∆X1)
2〉〈(∆X2)

2〉 ≥ 1

4
. (1.10)

For the number states, 〈n|X̂1|n〉 = 0 = 〈n|X̂2|n〉 but

〈n|X̂2
1 |n〉 =

1

2
〈n|â2 + â†

2

+ â†â+ ââ†|n〉

=
1

2
〈n|â2 + â†

2

+ 2â†â+ Î|n〉

=
1

2
(2n+ 1) = 〈n|X̂2

2 |n〉

(1.11)

Thus for a number state, the uncertainties in both quadrature are the same and

furthermore the vacuum state (n = 0) minimizes the uncertainty product since

〈(∆X̂1)
2〉vac =

1

2
= 〈(∆X̂2)

2〉vac (1.12)

The quadrature operators in Eq. (1.9) depends upon time. However we can deal with

time independent variants of these operators.

7



CHAPTER 1. INTRODUCTION

dâ

dt
=
i

~
[Ĥ, â] = −iωâ

â(t) =â(0)e−iωt

â†(t) =â†(0)eiωt

X̂1(t) =X̂1 cosωt+ X̂2 sinωt

X̂2(t) =X̂2 cosωt− X̂1 sinωt

(1.13)

The time evolution of quadrature operators looks similar to the case of classical har-

monic oscillator. The operators q̂ and p̂ (relabelled quadrature operators for conve-

nience) “oscillate” with angular frequency ω, just like their classical analogues. But

in the case of quantum harmonic oscillator, 〈n|q̂|n〉 = 0 = 〈n|p̂|n〉. Thus, for the

stationary number states, we observe no oscillations. However, we may look at a

superposition of these states and a logical question to ask is that which superposition

of energy eigenkets imitates the classical oscillator most closely? In the language of

wave-function, this implies a wave packet that bounces back and forth without any

spread in shape [20]. This job is done a coherent state |α〉, which is an eigenstate of

annihilation operator â:

â|α〉 = α|α〉 (1.14)

where α is a complex eigenvalue since â is a non-Hermitian operator. The coherent

state can be expressed as a superposition of energy eigenkets.

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (1.15)

The probability of detecting n photons in the coherent state |α〉 is given by

Pα(n) = |〈n|α〉|2 (1.16)

This is a Poisson distribution about |α|2 (or mean n = 〈n̂〉 = 〈α|n̂|α〉 = |α|2). It is to

be noted that although coherent states are normalised, but they are not orthogonal.

Their inner product and the completeness can be expresses as follows

〈α|β〉 = exp

[
−|α|

2

2
− |β|

2

2
+ α∗β

]
〈α|α〉 =1,

∫
d2α|α〉〈α| = πI

(1.17)

They form an over-complete set of states in the Hilbert space [6]. We will deal with

coherent states in the later sections. The phase space representation which turns

8



1.1. QUANTUM OPTICAL SYSTEMS

out to be Gaussian, relation with displacement operator and minimum uncertainty

relation makes them an interesting set of states to study.

1.1.2 Continuous Variable System

The states of a quantum harmonic oscillator lie in Hilbert space. We have different

Hermitian operators in this space e.g. position, momentum [Eq. (1.3)], and num-

ber operator [Eq. (1.7)]; which raises the question about dimensions of the Hilbert

space. Spectral theorem tells us that a self-adjoint operator has an orthonormal basis

of eigenkets [10]. For the position and momentum operator, we get a continuous

spectra of functions which are their eigenvectors. Although these eigenvectors are

orthonormal in a continuous sense where the Kronecker delta is replaced by a Dirac

delta function, they are non-normalizable and these do not lie in the Hilbert space.

Therefore, Hilbert space for a quantum harmonic oscillator has countable infinite di-

mensions corresponding to the number (or fock) basis. The position and momentum

operators are called unbounded operators for the above reason and there are multiple

ways of dealing with them like considering a rigged Hilbert space [19] or a trick by

Weyl that we consider here [4].

Weyl Map

We consider Cartesian quantum systems, or the systems whose basic dynamical vari-

ables are Cartesian positions and conjugate Cartesian momenta. We can write the

state for such a system in position and momentum space [20].

q̂|q〉 = q|q〉, p̂|p〉 = p|p〉, [q, p] = iI

|ψ〉 ∈ H : ψ(q) = 〈q|ψ〉, φ(p) = 〈p|ψ〉

(q̂ψ)(q) = qψ(q), (p̂ψ)(q) = −idψ(q)

dq

(p̂φ)(p) = pφ(p), (q̂φ)(p) = −idφ(p)

dp

φ(p) =
1√
2π

∫
dqe−ipqψ(q)

(1.18)

However as discussed earlier, the states that we consider should be normalizable.

We can alternatively deal with displacement operators D(q, p), which are unitary

9



CHAPTER 1. INTRODUCTION

operators and have no domain problems.

D(q, p) =ei(pq̂−qp̂), −∞ < q, p <∞

D(q, p)†D(q, p) =1
(1.19)

Using Weyl form of commutation relation: eipq̂eiqp̂ = eipq̂+iqp̂−
1
2
iqp = e−iqpeiqp̂eipq̂ (stan-

dard, symmetric and anti-standard respectively), we can derive how displacement

operator acts upon other states and operators.

D(q′, p′)D(q, p) =e
i
2
(p′q−q′p)D(q′ + q, p′ + p)

D(q, p)(q̂ or p̂)D(q, p)−1 =q̂ − q or p̂− p

D(q, p)|q′〉 =ei(q
′+ q

2
)p|q′ + q〉

D(q, p)|p′〉 =e−i(p
′+ p

2
)q|p′ + p〉

(1.20)

Furthermore, the displacement operators form an orthonormal basis in Hilbert space

H, with respect to the ‘Hilbert-Schmidt inner product’: 〈Â|B̂〉 = Tr [Â†B̂].

Tr [D(q′, p′)†D(q, p)] =Tr [D(−q′,−p′)D(q, p)]

= e
i
2
(q′p−p′q) Tr [D(q − q′, p− p′)]

= e
i
2
(q′p−p′q)

∫
dx〈x|D(q − q′, p− p′)|x〉

= e
i
2
(q′p−p′q)

∫
dx〈x|x+ q − q′〉ei(x+

q−q′
2

)(p−p′)

=2π δ(q − q′) δ(p− p′)

(1.21)

Now we illustrate the Weyl Map. The dynamical variables for a classical system are

real functions f(q, p), while for the corresponding quantum system, they are Hermi-

tian operators F̂ acting on the Hilbert space H. Weyl Map is a rule or a convention

that sets up a one-to-one correspondence from f(q, p) to F̂ .

q →q̂, p→ p̂, σq − τp→ σq̂ − τ p̂

qmpn = coefficient of
(m+ n)!

m!n!
σm(−τ)n in (σq − τp)m+n

→(̂qmpn) = coefficient of
(m+ n)!

m!n!
σm(−τ)n in (σq̂ − τ p̂)m+n

(1.22)

10



1.1. QUANTUM OPTICAL SYSTEMS

As examples, we have:

qm → (̂qm) = q̂m ;

qmp→ (̂qmp) =
1

(m+ 1)
(q̂mp̂+ q̂m−1p̂q̂ + q̂m−2p̂q̂2 + · · ·+ p̂q̂m ; . . .

qmpn → (̂qmpn) =

(
1

i

)m(
1

−i

)n
∂m+n

∂σm∂τn
ei(σq̂−τ p̂)

∣∣∣∣
τ=σ=0

; . . .

pn → (̂pn) = p̂n

(1.23)

We can also construct the Inverse Weyl Map. We start by applying Weyl Map on the

Fourier integral representation of a classical function f(q, p) [5].

f(q, p) =
1

2π

∫ ∫
dτdσf̃(τ, σ)ei(σq−τp)

F̂ =
1

2π

∫ ∫
dτdσf̃(τ, σ)ei(σq̂−τ p̂)

=
1

2π

∫ ∫
dτdσf̃(τ, σ)D(τ, σ)

(1.24)

Using Eq. (1.19) and (1.22), we can write Tr [D(τ, σ)†F̂ ] = f̃(τ, σ), which seems like

an expansion of F̂ in displacement operators’ basis. This is also called the quantum

operator form of the Fourier integral representation.

F̂ =
1

2π

∫ ∫
dτdσTr [D(τ, σ)†F̂ ]D(τ, σ) (1.25)

Finally, the Inverse Weyl Map which is a one-to-one correspondence from F̂ to f(q, p)

is given as

f(q, p) =
1

2π

∫ ∫
dτdσTr [D(τ, σ)†F̂ ] ei(σq−τp) (1.26)

The Weyl rule gives a one-to-one correspondence between classical phase functions

and quantum operators, hence f(q, p) and F̂ have the same dimensions f(q, p) →
F̂ = (f(q, p))w. We now give an important consequence of this rule, along with the

Parseval formula, which gives Hilbert-Schmidt inner product of any two operators.

Tr [Ĝ†F̂ ] =
1

2π

∫ ∫
dτdσTr [D(τ, σ)†F̂ ] Tr [Ĝ†D(τ, σ)]

=
1

2π

∫ ∫
dτ dσ f̃(τ, σ)g̃(τ, σ)∗

=
1

2π

∫ ∫
dq dp f(q, p)g(q, p)∗

(1.27)

Thus, the square integrable functions in the classical phase space are mapped to the

operators with finite Hilbert-Schmidt norm by Weyl Rule.

11



CHAPTER 1. INTRODUCTION

Phase Space Distribution

The idea of the Wigner distribution W (q, p) is to express the expectation value of any

observable F̂ in a familiar looking form from classical statistical mechanics. Using the

formalism developed above, we can write the expectation value of F̂ (= [(f(q, p)]w)

for a quantum state with density matrix ρ̂ [24].

〈F̂ 〉 =Tr [ρ̂F̂ ]

=

∫ ∫
dq dp W (q, p)f(q, p)

(W (q, p))w =
1

2π
ρ̂ = (Wigner Distribution)w

(1.28)

The Wigner distribution W (q, p) is called quasi probability distribution in the phase

space because of the reasons that will become clear in the following analysis.

W (q, p) =
1

(2π)2

∫ ∫
dτ dσTr [D(τ, σ)†ρ̂] ei(σq−τp)

=
1

(2π)2

∫ ∫
dτ dσTr [D(τ, σ)ρ̂] e−i(σq−τp)

=
1

(2π)2

∫ ∫
dτ dσ

∫
dx〈x|D(τ, σ)ρ̂|x〉 e−i(σq−τp)

=
1

(2π)2

∫ ∫
dτ dσ

∫
dx〈x|ρ̂|x+ τ〉ei(x+

τ
2
)σ e−i(σq−τp)

=
1

2π

∫ ∫
dτ dx eiτp〈x|ρ̂|x+ τ〉δ(x+

τ

2
− q)

=
1

2π

∫
dτ eipτ 〈q − τ

2
|ρ̂|q +

τ

2
〉

χW (τ, σ) =Tr [D(τ, σ)†ρ̂]

ρ̂† = ρ̂ =⇒ W (q, p) is real∫ ∫
dqdpW (q, p) =

∫
dq〈q|ρ̂|q〉 = Tr [ρ̂] = 1

ρ̂ ≥ 0 ;W (q, p) ≥ 0

(1.29)

The Wigner characteristic function χW (τ, σ), which is a distribution in Fourier trans-

form space of the Wigner function, turns out to be very useful in the next chapter.

We further deal with multi-mode fields and hence need to generalise the phase space

formalism. For n Cartesian canonical pairs, we have 2n operators that can be grouped

together in a column vector. The canonical commutation relation and Wigner distri-

12



1.2. CONTINUOUS VARIABLE TELEPORTATION

bution can be defined accordingly.

ξ̂ = (ξ̂i) = (q̂1, p̂1, . . . , q̂n, p̂n)T , i = 1, 2, . . . , 2n

[ξ̂i, ξ̂j] = iΩij, i, j = 1, 2, . . . , 2n

Ω =
n⊕
k=1

ω, ω =

(
0 1
−1 0

)
W (ξ) = W (~q, ~p) =

1

(2π)n

∫
Rn
dnτ ei~p·~τ 〈~q − ~τ

2
|ρ̂|~q +

~τ

2
〉

(1.30)

The direct sum structure of phase space, as seen in the commutator matrix is impor-

tant. While dealing with the states whose Wigner distribution is Gaussian (Gaussian

states), the second moment is represented by a covariance matrix. These matrices

also follow a similar direct sum structure for multi-mode systems.

1.2 Continuous Variable Teleportation

Quantum teleportation consists of the transfer of an unknown quantum state ρ̂in

from a sender, usually called Alice, to a remote receiver, usually called Bob. This

task is accomplished by dividing the information ρ̂in into two parts: one classical and

the other non-classical, and send them to Bob using a classical and a non-classical

channel, respectively. The former one can be an email and the latter is a bipartite

quantum system with strong long-range correlations. This is an EPR pair or a re-

source state which is distributed between the sender and receiver in advance. After

these transmissions, Bob reconstructs the state ρ̂out(= ρ̂in ideally) by acting on the

quantum channel and the original state at Alice’s is destroyed during the process.

The net result of the quantum teleportation is the removal of the original state ρ̂A

from Alice’s and its appearance in Bob’s lab after some time. This time is limited by

the classical channel [2].

The original protocol for quantum teleportation or discrete variable quantum tele-

portation uses bipartite qubit resource states and Bell measurements in order to

couple Alice’s input qubit state with the quantum channel. On the other hand,

continuous variable quantum teleportation uses linear passive optics and homodyne

measurements in its protocol.

13



CHAPTER 1. INTRODUCTION

1.2.1 Teleportation using TMSV state

Quantum correlation or entanglement in the states is the key resource for implemen-

tation of quantum information and communication protocols. The techniques devel-

oped in quantum optical set-ups to achieve squeezed light makes these correlations

comparatively accessible with optical quantum continuous variables [21].

The analogue of a maximally entangled state in infinite dimensions is not normal-

izable, however it can be approached by a limiting sequence of normalizable states.

The state for this job is a two-mode squeezed vacuum (TMSV) state obtained by ideal,

noiseless degenerate parametric down conversion processes. It can be constructed by

applying a squeezing operation, which is a Gaussian operation (an operation that pre-

serves the Gaussianity of the Wigner function) on a vacuum state (a Gaussian state

centred at origin in phase space) and then operation of a balanced beam-splitter

on two such states. At the limit of squeezing parameter r → ∞, it approaches a

maximally entangled state.

Protocol for teleportation of a Gaussian state

Alice and Bob share a two-mode squeezed vacuum (TMSV) state with squeezing

parameter r. Alice wants to send an unknown Gaussian state C to Bob: first and

second moments of C are r0 and σ0 respectively. The initial Gaussian state in order

B, A, C is given by first moment µBAC and second moment VBAC : 0
0
r0

 ,

cosh(2r)I2 sinh(2r)σz 0
sinh(2r)σz cosh(2r)I2 0

0 0 σ0

 (1.31)

Alice projects the system AC to the following two-mode squeezed state, given by

µA′C′ and VA′C′ : (
0
r

)
,

(
cosh(2r′)I2 sinh(2r′)σz
sinh(2r′)σz cosh(2r′)I2

)
(1.32)

Here, Gaussian states have been represented by their first and second moments only.

The Wigner function and Wigner characteristic function for Gaussian states with

mean vector µ and covariance matrix V are given by

W (ξ) =
exp[−(1/2)(ξ − µ)TV −1(ξ − µ)]

2π
√

detV

χ(Λ) = exp[−1

2
ΛT (ΩV ΩT )Λ− i(Ωµ)TΛ]

(1.33)

14



1.2. CONTINUOUS VARIABLE TELEPORTATION

The projection by Alice is achieved by a double-homodyne measurement. The exper-

imental details can be found in the reference [17]. We can use general-dyne filtering

calculations [21] to find Bob’s state after this measurement.

WB =

∫
WBACWA′C′dxAdpAdxCdpC∫

WBACWA′C′dxBdpBdxAdpAdxCdpC

rB =− sinh(2r)[cosh(2r)I2 + σ0]−1(r− r0)

σB = cosh(2r)I2 − [sinh(2r)]2[cosh(2r)I2 + σ0]−1

(1.34)

We have used the approximation r′ → ∞ during the measurement. Further, the

measurement outcome r is sent to Bob by a classical channel. Bob does a feed-

forward unitary operation on his state depending upon r.

rB =− sinh(2r)[cosh(2r)I2 + σ0]−1(r− r0) + f(r)

σB = cosh(2r)I2 − [sinh(2r)]2[cosh(2r)I2 + σ0]−1
(1.35)

The fidelity can be optimised with respect to f(r) to get a maximum value. However,

throughout our calculations, we assume f(r) = r (the optimal feed-forward for the

case of maximally entangled resource).

Calculations using Wigner Characteristic Function

Before doing the fidelity calculations, we give here an alternative approach using

Wigner characteristic functions for teleportation of a Gaussian state (specifically,

coherent state) using TMSV state as the resource state [13].

χin =e−
1
4(τ2+σ2)e−i(τσ0−στ0) = χcoherent

χEPR(Λ1,Λ2) =χEPR(τ1, σ1, τ2, σ2) = χTMSV

=e−
1
4(τ21+σ2

1+τ
2
2+σ

2
2) cosh(2r)e−

1
2
(σ1σ2−τ1τ2) sinh(2r)

χout(τ, σ) =χin(τ, σ)χEPR(τ,−σ, τ, σ)

=
[
e−

1
4(τ2+σ2)e−i(τσ0−στ0)

] [
e−

1
2(τ2+σ2) cosh(2r)

]
×
[
e

1
2(σ2+τ2) sinh(2r)

]
= exp

[
−2e−2r + 1

4

(
τ 2 + σ2

)
− iτσ0 + iστ0

]
(1.36)
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Fidelity (F) =
1

2π

∫ ∫
dτ dσ χin(τ, σ)χout(−τ,−σ)

=
1

2π

∫ ∫
dτ dσ

[
e−

1
4(τ2+σ2)e−i(τσ0−στ0)

]
× exp

[
−2e−2r + 1

4

(
τ 2 + σ2

)
+ iτσ0 − iστ0

]
=

1

2π

∫ ∫
dτ dσ exp

[
−e
−2r + 1

2

(
τ 2 + σ2

)]
=

1

e−2r + 1

(1.37)

This is the fidelity that will be used as reference in the future calculations. The fidelity

of teleportation for the case of different non-Gaussian resource states is compared to

the above expression.
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Chapter 2

Non-Gaussian Operations on
two-mode squeezed Coherent State

2.1 Non-Gaussian operations on one mode

The teleportation protocol considered in the last chapter considers only Gaussian

states: vacuum state is a Gaussian state centered at the origin of the phase space

with minimum (symmetric) quadrature uncertainty and coherent state is a displaced

vacuum state; and the double homodyne measurement, which is a Gaussian mea-

surement. The squeezed states are Gaussian states where the canonical quadra-

ture have uncertainties below the vacuum noise (still respecting the total uncertainty

∆x∆p = 1/2).

However, Gaussian states are often criticized for the fact that the statistics ob-

tained from Gaussian measurements on these states can be reproduced by classical

probability distributions [21]. There exist non-Gaussian states like other fock states

and photon subtracted squeezed states that we consider in this section. We expect

that introducing non-Gaussianity in the entangled squeezed states can give stronger

correlations. Here we consider a non-Gaussian operation on one of the modes of a

two mode squeezed coherent state.

Protocol

As discussed in the previous chapter, the Wigner characteristic function for a Gaussian

state with mean vector µ and covariance matrix V is given by

χ(Λ) = exp[−1

2
ΛT (ΩV ΩT )Λ− i(Ωµ)TΛ] (2.1)
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CHAPTER 2. NON-GAUSSIAN OPERATIONS ON TMSC STATE

|m〉〈m| |n〉〈n|

A1

A2

F0

Figure 2.1: Schematic for non-Gaussian operation on one of the modes of two mode
squeezed coherent (TMSC) state.

We can compute the Wigner characteristic function of a two-mode coherent state,

which comes out to be the product of the Wigner characteristic function of two

single-mode coherent states because of the direct sum structure of the phase space.

We can assume the same displacement for both modes (d1 = d, d2 = 0).

χ(τ1, σ1, τ2, σ2) =e−(1/4)(τ
2
1+σ

2
1)e−i(τ1d2−σ1d1)e−(1/4)(τ

2
2+σ

2
2)e−i(τ2d2−σ2d1)

=e−(1/4)(τ
2
1+σ

2
1)eiσ1de−(1/4)(τ

2
2+σ

2
2)eiσ2d

(2.2)

The two mode squeezed coherent state can be obtained by applying the two mode

squeezing operation S12 on the quadrature. The characteristic function changes as

χ(Λ)→ χ(S−112 Λ).
τ1
σ1
τ2
σ2

 S−1
12 (r)
−−−−→

(
cosh r I sinh rZ
sinh rZ cosh r I

)−1
τ1
σ1
τ2
σ2


χTMSC = exp

[
−τ

2
1 + σ2

1 + τ 22 + σ2
2

4
cosh(2r)

]
× exp

[
τ1τ2 − σ1σ2

2
sinh(2r) + i(σ1 + σ2) d e

r

]
=χA1A2(τ1, σ1, τ2, σ2)

(2.3)

We mix the mode A2 of the TMSC state, with an auxiliary mode F0, initiated to fock

state |m〉〈m| as given in the Fig. 2.1 using a beam-splitter of transmissivity T . We

write the characteristic function for a fock state in terms of Laguerre Polynomial Lm

here.

χ|m〉(τ, σ) = exp

(
−τ

2

4
− σ2

4

)
Lm

(
τ 2

2
+
σ2

2

)
18



2.1. NON-GAUSSIAN OPERATIONS ON ONE MODE

The characteristic function post the beam-splitter operation B23 can be calculated in

a similar fashion as above.

χA1A2F0(Λ) =χA1A2(τ1, σ1, τ2, σ2)χ|m〉(τ3, σ3)

=e
−
(
τ21
4
+
σ21
4

)
e
−
(
τ22
4
+
σ22
4

)
ei(σ1+σ2)d

× e
−
(
τ23
4
+
σ23
4

)
Lm

(
τ 23
2

+
σ2
3

2

)
Λ1

Λ2

Λ3

 B−1
23 (T )
−−−−→

I 0 0

0
√
T I

√
1− T I

0 −
√

1− T I
√
T I

−1Λ1

Λ2

Λ3


χA1A2F0(Λ)

B23(T )−−−−→χA1A
′
2F
′
0
(Λ) = χA1A

′
2F
′
0
(τ1, σ1, τ2, σ2, τ3, σ3)

(2.4)

We project one of the modes that comes out of the beam splitter on the fock basis

|n〉〈n|. The final two mode state obtained is the resultant of the two mode squeezed co-

herent (TMSC) state post the above non-Gaussian operation on one of its modes. We

can compute the unnormalised Wigner characteristic function for this non-Gaussian

state.

χA1A′2
(Λ1,Λ2) =

1

2π

∫
dτ3dσ3 χA1A

′
2F
′
0
(τ1, σ1, τ2, σ2, τ3, σ3)︸ ︷︷ ︸

Three mode entangled state

χ|n〉(τ3, σ3)︸ ︷︷ ︸
Projection on |n〉〈n|

k!Lk

(
τ 2

2
+
σ2

2

)
=∂ks ∂

k
t exp

[
st+ s

τ + iσ√
2
− tτ − iσ√

2

] ∣∣∣∣
s=t=0

(2.5)

The unnormalised Wigner characteristic function can be converted into a Gaussian

integral using a substitution of generating functions for the Laguerre Polynomials.

Results

The unnormalised Wigner characteristic function post one mode non-Gaussian oper-

ation on the TMSC state comes out to be

χA1A′2
(τ1, σ1, τ2, σ2) =

1

1− α2(T − 1)
∂ms1 ∂

m
t1
∂ns3 ∂

n
t3
e[a1s1+a2t1+a3s3+a4t3]

× e[a5s1t1+a6s3t3+a7(s3t1+s1t3)]
∣∣∣∣
s1=t1=s3=t3=0

(2.6)

The coefficients in the above expression are listed below. The F0 state which is the

fock state |m〉〈m| is written in Laguerre Polynomials substitution using the variables
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CHAPTER 2. NON-GAUSSIAN OPERATIONS ON TMSC STATE

s1 and t1, whereas the projection operator |n〉〈n| uses the variables s3 and t3.

a1 =
[(−τ2(1 + α2)− iσ2(1 + α2) + [(τ1 − iσ1)α

√
1 + α2 − d(α +

√
1 + α2)]

√
T )
√

1− T ]√
2[α2(T − 1)− 1]

a2 =
((τ2(1 + α2)− iσ2(1 + α2)− ((τ1 + iσ1)α

√
1 + α2 + d(α +

√
1 + α2))

√
T )
√

1− T )

(
√

2(−1 + α2(T − 1)))

a3 =
((d(α +

√
1 + α2) + α(−(τ1 − iσ1)

√
1 + α2 + (τ2 + iσ2)α

√
T ))
√

1− T )

(
√

2(−1 + α2(T − 1)))

a4 =
((−d(α +

√
1 + α2) + α(−(τ1 + iσ1)

√
1 + α2 + (τ2 − iσ2)α

√
T ))
√

1− T )

(
√

2(−1 + α2(T − 1)))

a5 =
(1 + α2)(T − 1)

−1 + α2(T − 1)
a6 = 1 +

1

−1 + α2(T − 1)
a7 =

√
T

−1 + α2(T − 1)
(2.7)

In these expressions, T is transmissivity of the beam splitter, d is the displacement

of the coherent state as defined earlier and α = sinh (r). We can give the normalised

characteristic function by dividing the unnormalised function by the given probability

P such that χFinal = χA1A′2
/P .

P =χA1A′2
(Λ1,Λ2)

∣∣∣∣
τ1=σ1=τ2=σ2=0

=
1

1− α2(τ − 1)
∂ms1 ∂

m
t1
∂ns3 ∂

n
t3
e[b1s1+b1t1+b2s3+b2t3]

× e[b3s1t1+b4s3t3+b5(s3t1+s1t3)]
∣∣∣∣
s1=t1=s3=t3=0

(2.8)

The coefficients in the above equations have the following expressions:

b1 =−
(
√

2d(α +
√

1 + α2)
√
−(T − 1)T )

(−2 + 2α2(T − 1))
b2 = −(d(α +

√
1 + α2)

√
2− 2T )

(−2 + 2α2(T − 1))

b3 =
(1 + α2)(T − 1)

−1 + α2(T − 1)
b4 = 1 +

1

−1 + α2(T − 1)
b5 =

√
T

−1 + α2(T − 1)

(2.9)

We can write the above expression back in the original form expressed as the Laguerre

Polynomials. However, given the non-triviality of the task, we leave this for the next

draft of the document.

2.2 Non-Gaussian operations on both modes

Now we consider four modes for the non-Gaussian operation as given in the Fig. 2.2:

A1, A2, F0 and F1 respectively.
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|m1〉〈m1|

|m2〉〈m2|

|n1〉〈n1|

|n2〉〈n2|

A1

F1

A2

F0

Figure 2.2: Schematic for non-Gaussian operation on both of the modes of two mode
squeezed coherent (TMSC) state.

Protocol

We recall the Wigner characteristic function of two-mode squeezed coherent state

and again mix its mode A2 with auxiliary mode F0, a fock state |m1〉〈m1| using the

beam-splitter B23 of transmissivity T . But this time, we also mix the second mode A1

of TMSC state with an auxiliary mode F1, a fock state |m2〉〈m2| using another beam-

splitter B14 of transmissivity T , as shown in the Fig. 2.2. We write the characteristic

function of the state post beam-splitter as below.

χA1A2F0F1(Λ) =χA1A2(τ1, σ1, τ2, σ2)χ|m1〉(τ3, σ3)χ|m2〉(τ4, σ4)

=e
−
(
τ21
4
+
σ21
4

)
e
−
(
τ22
4
+
σ22
4

)
ei(σ1+σ2)d e

−
(
τ23
4
+
σ23
4

)

× Lm1

(
τ 23
2

+
σ2
3

2

)
e
−
(
τ24
4
+
σ24
4

)
Lm2

(
τ 24
2

+
σ2
4

2

)
χA1A2F0F1(Λ)

B14⊕B23−−−−−→ χA′1A
′
2F
′
0F
′
1
(τ1, σ1, τ2, σ2, τ3, σ3, τ4, σ4)

(2.10)

We project one of the modes that comes out of the beam splitter B23 on the fock

basis |n1〉〈n1| and that comes out of the beam splitter B14 on the fock basis |n2〉〈n2|.
The final two mode state obtained is the resultant of the two mode squeezed coherent

(TMSC) state post the above non-Gaussian operation on both of its modes. We can
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CHAPTER 2. NON-GAUSSIAN OPERATIONS ON TMSC STATE

compute the unnormalised Wigner characteristic function for this non-Gaussian state.

χA′1A′2(Λ1,Λ2) =
1

(2π)2

∫
dτ3dσ3 dτ4dσ4 χA′1A

′
2F
′
0F
′
1
(τ1, σ1, τ2, σ2, τ3, σ3, τ4, σ4)︸ ︷︷ ︸

Four mode entangled state

× χ|n1〉(τ3, σ3)︸ ︷︷ ︸
Projecting F

′
0 on |n1〉〈n1|

χ|n2〉(τ4, σ4)︸ ︷︷ ︸
Projecting F

′
1 on |n2〉〈n2|

k!Lk

(
τ 2

2
+
σ2

2

)
=∂ks ∂

k
t exp

[
st+ s

τ + iσ√
2
− tτ − iσ√

2

] ∣∣∣∣
s=t=0

(2.11)

The unnormalised Wigner characteristic function can be converted into a Gaussian

integral using the substitution of generating functions for the Laguerre Polynomials.

Results

The unnormalised Wigner characteristic function post two mode non-Gaussian oper-

ation on the TMSC state comes out to be

χA′1A′2(τ1, σ1, τ2, σ2) =
1

1− α2(T 2 − 1)
∂m1
s1
∂m1
t1 ∂n1

s3
∂n1
t3 ∂

m2
s2
∂m2
t2 ∂n2

s4
∂n2
t4

× e[a1s1+a2t1+a3s2+a4t2+a5s3+a6t3+a7s4+a8t4+b1(s1t1+s2t2)+b2(s3t3+s4t4)]

× e[b3(s1s2+t1t2)+b4(s2s3+s1s4+t2t3+t1t4)+b5(s3s4+t3t4)]

× e[b6(s1t3+s2t4+s3t1+s4t2)]
∣∣∣∣
s1=t1=s2=t2=s3=t3=s4=t4=0

(2.12)

a1 =− (
√

1− T (τ2(1 + α2) + iσ2(1 + α2) +
√

1 + α2(d
√
T − (τ1 − iσ1)αT ) + dαT 3/2))

(
√

2(−1 + α2(T 2 − 1)))

a2 =− (
√

1− T (−τ2(1 + α2) + iσ2(1 + α2) +
√

1 + α2(d
√
T + (τ1 − iσ1)αT ) + dαT 3/2))

(
√

2(−1 + α2(T 2 − 1)))

a3 =− (
√

1− T (τ1(1 + α2) + iσ1(1 + α2) +
√

1 + α2(d
√
T − (τ2 − iσ2)αT ) + dαT 3/2))

(
√

2(−1 + α2(T 2 − 1)))

a4 =− (
√

1− T (−τ1(1 + α2) + iσ1(1 + α2) +
√

1 + α2(d
√
T + (τ2 − iσ2)αT ) + dαT 3/2))

(
√

2(−1 + α2(T 2 − 1)))
(2.13)
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a5 =− (
√

1− T (d(
√

1 + α2 + αT ) + α
√
T (−(τ1 − iσ1)

√
1 + α2 + (τ2 + iσ2)α

√
T )))

(
√

2(−1 + α2(T 2 − 1)))

a6 =− (
√

1− T (d(
√

1 + α2 + αT ) + α
√
T ((τ1 + iσ1)

√
1 + α2 − (τ2 − iσ2)α

√
T )))

(
√

2(−1 + α2(T 2 − 1)))

a7 =− (
√

1− T (d(
√

1 + α2 + αT ) + α
√
T (−(τ2 − iσ2)

√
1 + α2 + (τ1 + iσ1)α

√
T )))

(
√

2(−1 + α2(T 2 − 1)))

a8 =− (
√

1− T (d(
√

1 + α2 + αT ) + α
√
T ((τ2 + iσ2)

√
1 + α2 − (τ1 − iσ1)α

√
T )))

(
√

2(−1 + α2(T 2 − 1)))

b1 =
(1 + α2)(T − 1)

−1 + α2(T 2 − 1)
b2 =

α2(T − 1)T

−1 + α2(T 2 − 1)
b3 =

α
√

1 + α2(T − 1)T

−1 + α2(T 2 − 1)

b4 =
α
√

1 + α2(T − 1)
√
T

−1 + α2(T 2 − 1)
b5 =

α
√

1 + α2(T − 1)

−1 + α2(T 2 − 1)
b6 =

(−1 + α2(T − 1))
√
T

−1 + α2(T 2 − 1)
(2.14)

In these expressions, T is transmissivity of the beam splitter, d is the displacement

of the coherent state as defined earlier and α = sinh (r). We can give the normalised

characteristic function by dividing the unnormalised function by the given probability

P such that χFinal = χA′1A′2/P .

P =χA′1A′2(Λ1,Λ2)

∣∣∣∣
τ1=σ1=τ2=σ2=0

=
1

1− α2(T 2 − 1)
∂m1
s1
∂m1
t1 ∂n1

s3
∂n1
t3 ∂

m2
s2
∂m2
t2 ∂n2

s4
∂n2
t4

× e[c0+c1(s1+t1+s2+t2)+c2(s3+t3+s4+t4)+b1(s1t1+s2t2)]

× e[b2(s3t3+s4t4)+b3(s1s2+t1t2)+b4(s2s3+s1s4+t2t3+t1t4)]

× e[b5(s3s4+t3t4)+b6(s1t3+s2t4+s3t1+s4t2)]
∣∣∣∣
s1=t1=s2=t2=s3=t3=s4=t4=0

(2.15)

The other coefficients used in the above equations have the following expressions:

b7 =− (d2(T − 1)(1 + α(α +
√

1 + α2(1 + T )))

(−1 + α2(T 2 − 1)

b8 =−
(d
√
−(T − 1)T (

√
1 + α2 + αT ))

(
√

2(−1 + α2(T 2 − 1)))

b9 =− d
√

2− 2T (
√

1 + α2 + αT )

−2 + 2α2(T 2 − 1)

(2.16)

The teleportation fidelity and output state calculations to be done in the next chapter

relies on the Wigner characteristic function formalism. The resource states considered
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CHAPTER 2. NON-GAUSSIAN OPERATIONS ON TMSC STATE

in this chapter will be used for those protocols. The expressions for the Wigner

characteristic function derived here are in the general form, for a variable |m〉〈m|
and a random detector |n〉〈n|. Different types of non-Gaussian operations arise for

different values of these variables as we shall see in the next chapter.
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Chapter 3

Non-Gaussian Resource States in
Continuous Variable Quantum
Teleportation

The resource states in this chapter (two mode squeezed coherent states) represent

the set of Gaussian pure states with minimum (symmetric) uncertainty in the phase

space, characterised by the displacement d. The generalised non-Gaussian operations,

defined in the previous chapter, are used on the two mode squeezed coherent (TMSC)

state in the given manner:

• Photon Subtraction on TMSC (m = 0), (n = 1, 2)

• Photon Addition on TMSC (m = 1, 2), (n = 0)

• Photon Catalysis on TMSC (m = n), (n = 1, 2)

3.1 Asymmetric Case

If the non-Gaussian operation is done on one of the modes of the TMSC state and

it is used as a resource for teleportation of a Gaussian state, we get the Asymmetric

case. The fidelity for different non-Gaussian operations is given as individual cases

below.

3.1.1 Photon Subtraction on one mode of TMSC state

In this case, we take m = 0 and n = 1 in the Fig. 2.1. One photon is subtracted

from the two mode squeezed coherent state at the output. The output state is called
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CHAPTER 3. NON-GAUSSIAN RESOURCE STATES IN CV TELEPORTATION

one-photon subtracted two mode squeezed coherent (1-PSTMSC) state. The charac-

teristic function can be found by putting the appropriate values of m and n in the

Eq. (2.6). Further we use Eq. (1.36) and (1.37) to get the fidelity of teleportation.

The expressions for the fidelity are too complicated and long to be included in this

document therefore we directly provide the plots of the Fidelity (F ) with respect to

squeezing parameter (r). Higher r represents higher entanglement between the two

modes of the squeezed state. Since, the resource state represents a family of states

TMSV

1-PSTMSV

1-PSTMSC

0 0.5 1.0 1.5 2,0
0.2

0.4

0.6

0.8

1.0

r

F

Figure 3.1: Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-
subtracted two mode squeezed coherent (1-PSTMSC) state.

which is characterised by d, we can also plot Fidelity (F ) for different displacements

(d) which shows a trend for different state functions in phase space. As seen in the

0 5 10 15 20 25 30

0.76

0.78

0.80

0.82

0.84

0.86

d

F

Figure 3.2: Fidelity (F) vs displacement (d) of teleportation for one-photon-
subtracted two mode squeezed coherent (1-PSTMSC) state.

trends above, the fidelity increases initially as we move away from the origin of phase

space, then for higher displacements it starts decreasing. The graph is drawn for the
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fixed squeezing parameter r = 1. Furthermore, for lower squeezing parameters (r) the

difference between the fidelity of the photon subtracted TMSV and TMSC is large

which closes down for higher squeezing. The Gaussian state outperforms both the

non-Gaussian PSTMSV and PSTMSC states. The PSTMSC outperforms PSTMSV

as seen in the figure, for d = 10. Results of several papers can be reproduced as spe-

cial cases of our general result. We can obtain the fidelity expression for ideal photon

subtraction on one mode of TMSV state by taking the limit τ → 1 and d→ 0 [22, 23].

F =
1

4(1 + α2 − α
√

1 + α2)2

where α = sinh r

(3.1)

3.1.2 Photon Addition on one mode of TMSC state

In this case, we take m = 1 and n = 0 in the Fig. 2.1. One photon is added to the two

mode squeezed coherent state at the output. The output state is called one-photon

added two mode squeezed coherent (1-PATMSC) state. The characteristic function

can be found by putting the appropriate values of m and n in the Eq. (2.6). Further

we use Eq. (1.36) and (1.37) to get the fidelity of teleportation. The expressions for

the fidelity are too complicated and long to be included in this document therefore

we directly provide the plots of the Fidelity (F ) with respect to squeezing parameter

(r). Higher r represents higher entanglement between the two modes of the squeezed

state. Since, the resource state represents a family of states which is characterised

TMSV

1-PATMSV

1-PATMSC

0 0.5 1.0 1.5 2,0

0.4

0.6

0.8

1.0

r

F

Figure 3.3: Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-
added two mode squeezed coherent (1-PATMSC) state.

by d, we can also plot Fidelity (F ) for different displacements (d) which shows a
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0 5 10 15 20 25 30

0.76

0.78

0.80

0.82

0.84

0.86

d

F

Figure 3.4: Fidelity (F) vs displacement (d) of teleportation for one-photon-added
two mode squeezed coherent (1-PATMSC) state.

trend for different state functions in phase space. As seen in the trends above, the

fidelity increases initially as we move away from the origin of phase space, then for

higher displacements it starts decreasing. The graph is drawn for the fixed squeezing

parameter r = 1. Furthermore, for lower squeezing parameters (r) the difference

between the fidelity of the photon added TMSV and TMSC is large which closes

down for higher squeezing. The Gaussian state TMSV outperforms both the non-

Gaussian PATMSV and PATMSC states. The PATMSC outperforms PATMSV as

seen in the figure, for d = 10. Results of several papers can be reproduced as special

cases of our general result. We can obtain the fidelity expression for ideal photon

addition on one mode of TMSV state by taking the limit τ → 1 and d→ 0 [22, 23].

F = − 1 + α2 − α
√

1 + α2

4(−1− α2 + α
√

1 + α2)3

where α = sinh r

(3.2)

3.1.3 Photon Catalysis on one mode of TMSC state

In this case, we take m = 1 and n = 1 in the Fig. 2.1. One photon is catalysed

to the two mode squeezed coherent state at the output. The output state is called

one-photon catalysed two mode squeezed coherent (1-PCTMSC) state. The charac-

teristic function can be found by putting the appropriate values of m and n in the

Eq. (2.6). Further we use Eq. (1.36) and (1.37) to get the fidelity of teleportation.

The expressions for the fidelity are too complicated and long to be included in this

document therefore we directly provide the plots of the Fidelity (F ) with respect to

squeezing parameter (r). Higher r represents higher entanglement between the two
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modes of the squeezed state. Since, the resource state represents a family of states

TMSV

1-PCTMSV

1-PCTMSC
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Figure 3.5: Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-
catalysed two mode squeezed coherent (1-PCTMSC) state.

which is characterised by d, we can also plot Fidelity (F ) for different displacements

(d) which shows a trend for different state functions in phase space. As seen in the
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Figure 3.6: Fidelity (F) vs displacement (d) of teleportation for one-photon-catalysed
two mode squeezed coherent (1-PCTMSC) state.

trends above, the fidelity decreases initially as we move away from the origin of phase

space, there is a sharp dip around d between 2 and 3, it increases after the dip and

finally for higher displacements it starts decreasing. The graph is drawn for the fixed

squeezing parameter r = 1. Furthermore, for lower squeezing parameters (r) the dif-

ference between the fidelity of the photon catalysed TMSV and TMSC is less which

increases for higher squeezing. The Gaussian state TMSV outperforms both the non-

Gaussian PCTMSV and PCTMSC states. The PCTMSC outperforms PCTMSV as

seen in the plots, for d = 10 [25, 8].
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3.2 Symmetric Case

If the non-Gaussian operation is done on both of the modes of the TMSC and it is

used as a resource for teleportation of a Gaussian state, we get the Symmetric case.

The fidelity for different non-Gaussian operations is given as individual cases below.

3.2.1 Photon Subtraction on both modes of TMSC state

In this case, we take m1 = m2 = 0 and n1 = n2 = 1 in the Fig. 2.2. One photon is

subtracted from each mode of the two mode squeezed coherent state at the output.

The output state is called one-one-photon subtracted two mode squeezed coherent

(1,1)-PSTMSC state. The characteristic function can be found by putting the ap-

TMSV

(1,1)-PSTMSV

(1,1)-PSTMSC

0 0.5 1.0 1.5 2,0
0.2

0.4

0.6

0.8

1.0

r

F

Figure 3.7: Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-
subtracted (on both modes) two mode squeezed coherent (1,1)-PSTMSC state.

propriate values of m1, m2, n1 and n2 in the Eq. (2.12). Further we use Eq. (1.36)

and (1.37) to get the fidelity of teleportation. The expressions for the fidelity are

too complicated and long to be included in this document therefore we directly pro-

vide the plots of the Fidelity (F ) with respect to squeezing parameter (r). Higher r

represents higher entanglement between the two modes of the squeezed state.

Since, the resource state represents a family of states which is characterised by

d, we can also plot Fidelity (F ) for different displacements (d) which shows a trend

for different state functions in phase space. As seen in the trends, the fidelity de-

creases as we move away from the origin of phase space. The graph is drawn for the

fixed squeezing parameter r = 1. Furthermore, for lower squeezing parameters (r)

the photon subtracted TMSV outperforms both photon subtracted TMSC and the

Gaussian TMSV state. The difference between the fidelity of the photon subtracted
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Figure 3.8: Fidelity (F) vs displacement (d) of teleportation for one-photon-
subtracted (on both modes) two mode squeezed coherent (1,1)-PSTMSC state.

TMSV and TMSC is more initially which decreases for higher squeezing. The (1,1)-

PSTMSV outperforms (1,1)-PSTMSC as seen in the figure, where d = 10. Results

of several papers can be reproduced as special cases of our general result. We can

obtain the fidelity expression for ideal photon subtraction on both modes of TMSV

state by taking the limit τ → 1 and d→ 0 [22, 23].

F =
(1 + α2 + α

√
1 + α2)(2 + α(2

√
1 + α2 + α(3 + 2α2 + 2α

√
1 + α2)))

4(1 + α2)2(1 + 2α2)

where α = sinh r

(3.3)

3.2.2 Photon Addition on both modes of TMSC state

In this case, we take m1 = m2 = 1 and n1 = n2 = 0 in the Fig. 2.2. One photon is

added to each mode of the two mode squeezed coherent state at the output. The out-

put state is called one-one-photon added two mode squeezed coherent (1,1)-PATMSC

state. The characteristic function can be found by putting the appropriate values

of m1, m2, n1 and n2 in the Eq. (2.12). Further we use Eq. (1.36) and (1.37) to

get the fidelity of teleportation. The expressions for the fidelity are too complicated

and long to be included in this document therefore we directly provide the plots of

the Fidelity (F ) with respect to squeezing parameter (r). Higher r represents higher

entanglement between the two modes of the squeezed state. Since, the resource state

represents a family of states which is characterised by d, we can also plot Fidelity

(F ) for different displacements (d) which shows a trend for different state functions

in phase space. As seen in the trends, the fidelity increases as we move away from the

origin of phase space. The graph is drawn for the fixed squeezing parameter r = 1.
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TMSV
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(1,1)-PATMSC
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Figure 3.9: Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-
added (on both modes) two mode squeezed coherent (1,1)-PATMSC state.
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Figure 3.10: Fidelity (F) vs displacement (d) of teleportation for one-photon-added
(on both modes) two mode squeezed coherent (1,1)-PATMSC state.

Furthermore, for lower squeezing parameters (r) the photon added TMSC outper-

forms both photon added TMSV, both of which are outperformed by the Gaussian

TMSV state. The difference between the fidelity of the photon added TMSV and

TMSC is more initially which decreases for higher squeezing. The (1,1)-PATMSC

outperforms (1,1)-PATMSV as seen in the figure, where d = 10. Results of several

papers can be reproduced as special cases of our general result. We can obtain the

fidelity expression for ideal photon addition on both mode of TMSV state by taking

the limit τ → 1 and d→ 0 [22, 23].

F = − 1 + α2

4(1 + 2α2)(−1− α2 + α
√

1 + α2)3

where α = sinh r

(3.4)
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3.2.3 Photon Catalysis on both modes of TMSC state

In this case, we take m1 = m2 = 1 and n1 = n2 = 1 in the Fig. 2.2. One photon is

catalysed to each mode of the two mode squeezed coherent state at the output. The

output state is called one-one-photon catalysed two mode squeezed coherent (1,1)-

PCTMSC state. The characteristic function can be found by putting the appropriate

values of m1, m2, n1 and n2 in the Eq. (2.12). Further we use Eq. (1.36) and (1.37) to

get the fidelity of teleportation. The expressions for the fidelity are too complicated

and long to be included in this document therefore we directly provide the plots of

the Fidelity (F ) with respect to squeezing parameter (r). Higher r represents higher

entanglement between the two modes of the squeezed state. Since, the resource state

TMSV

(1,1)-PCTMSV

(1,1)-PCTMSC
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Figure 3.11: Fidelity (F) vs squeezing parameter (r) of teleportation for one-photon-
catalysed (on both modes) two mode squeezed coherent (1,1)-PCTMSC state.

represents a family of states which is characterised by d, we can also plot Fidelity

(F ) for different displacements (d) which shows a trend for different state functions

in phase space. As seen in the trends, the fidelity decreases initially as we move away

from the origin of phase space and then increases to a constant value. The graph is

drawn for the fixed squeezing parameter r = 1. Furthermore, for lower squeezing pa-

rameters (r) the photon catalysed TMSV outperforms both photon catalysed TMSC

and the Gaussian TMSV state. The difference between the fidelity of the photon

subtracted TMSV and TMSC is more initially which dips a little and then maintains

a difference for higher squeezing. The (1,1)-PCTMSV outperforms (1,1)-PCTMSC

as seen in the figure, where d = 10 [9, 8].

To summarise the results, for a non-Gaussian operation on one of the modes of the

TMSC state, we get a teleportation fidelity which is better than its two mode squeezed
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0 5 10 15 20 25 30

d

F

Figure 3.12: Fidelity (F) vs displacement (d) of teleportation for one-photon-catalysed
(on both modes) two mode squeezed coherent (1,1)-PCTMSC state.

vacuum (TMSV) counterpart. A similar situation occurs for the two mode photon

addition on the TMSC state. However, for both the above cases, the Gaussian TMSV

state gives the best fidelity overall. For a symmetric photon subtraction and catalysis

on the TMSV state, teleportation fidelity exceeds that of the Gaussian TMSV state

and the non-Gaussian TMSC state. The role of coherence in teleportation study has

not been explored before. The better yield of generation for the squeezed coherent

states makes our investigation particularly important.
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Conclusion

In this thesis, we explored the role of coherence in the quantum teleportation of a

coherent state. To this end, we explicitly derived the Wigner characteristic function

of the non-Gaussian two mode squeezed coherent (NG-TMSC) state, which to the

best of our knowledge does not exist in the literature. The non-Gaussian operations

utilised in this thesis are photon subtraction, photon addition and photon catalysis

on one and both the modes of a TMSC state. This general class of non-Gaussian

operations, result in a NG-TMSC state. We use this as a resource state for the

teleportation of a coherent state. The special case of NG-TMSV state can be derived

by putting displacement d = 0. When non-Gaussian operations are performed on one

mode of TMSC state, coherence indeed provides an advantage. In the case of non-

Gaussian operations on both modes of TMSC state, the results are mixed. We get a

situation similar to the asymmetric case for the symmetric photon addition. However,

for symmetric photon subtraction and catalysis, NG-TMSV yields better fidelity than

both the TMSV state and the NG-TMSC state for lower squeezing parameter.

Since the TMSC states can be generated by feeding coherent states, which are

readily available from well phase-stabilised lasers, in the down-converter, they are

easier to prepare than TMSV states, where one needs to deal with vacuum states.

In this thesis, we have considered ideal photon detectors for the generation of

non-Gaussian states. It is of paramount importance to find the effect of non-unit

efficiency detectors [16, 15] on the teleportation fidelity. The POVM of the photon

number detectors (PNRD) can be taken such that the efficiency is considered in

the expression itself. Furthermore, we could analyse the effect of environment by

considering decoherence of quantum states. We also plan to analyse the necessary

and sufficient criteria for non-Gaussian quantum teleportation by analysing several
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quantum resources such as non-classicality, non-Gaussianity, EPR correlations, and

HZ correlations.
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