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Notations

<< 1is much less than

~ approximately

< for complex valued functions we write f < g if there exists a constant positive
real number number C' such that f < Cyg

C space of complex numbers

space of natural numbers
R™  Euclidean space of dimension n
R,  positive real numbers
S(H™) Schwartz class functions on H"
H"™  2n + 1 dimensional Heisenberg group
a.e  almost everywhere
C°(H™) space of compactly supported infinitely differentiable functions on H™

Im  imaginary part
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Introduction

Consider the circle group defined as the quotient group T = R/Z, where R and Z
are the additive groups of real numbers and integers respectively. For any n € Z, the
function given by x,(t) = €™ t € [0,1] is a unitary representation of T on the one
dimensional unitary group U(1) = {z: z € C,|Z| = 1}. To each function f € L}(T),

~

we associate the sequence {f(k)} of Fourier coefficients of f, defined by

Fin) = / (D (—t) dt.

The trignometric series with these coefficients,

> Fm)xa(t), (1)

n=—oo

is called the Fourier series of f. Note that f — f(n)xn is the spectral projection of

the laplacian (9872 corresponding to the eigencalue —47%n%. One of the fundamental

problem is to determine in what sense (1) represents the function f. We have that
the partial sums given by Sy f = Z]_VN f(n)xn — fin LP(T) norm as N — oo for
feL'NLP(T), 1 < p < co. But this is not true for p = 1, co. Furthermore, one could
also ask if ]\l[zggo Sxf — f almost everywhere if f € L' N LP(T). This problem turned

out to be much more difficult. In 1926, A. Kolmogorov constructed an integrable
function that diverges at every point, and hence a.e convergence is not true for p = 1.
The a.e convergence was established by the well celebrated theorems of L. Carleson
(1965, p = 2) and R. Hunt(1967, 1 < p < oo). Until the result by Carleson, the
answer was unknown even for a continuous function. A slightly easier problem is to
study the convergence of the Abel sums A, f = >°°_rI"lf(n)y, as r — 17. The Abel
sums converge in both LP norm, 1 < p < co and almost everywhere if f € L' N LP(T)

(see [JD] for further details).

The Heisenberg group has its origins in quantum mechanics: it is a group of unitary
operators arising from the ”quantization” of "momentum” and ”position” operators.
It is is extensively studied because it comes up in different facets of mathematics like
partial differential equations, harmonic analysis, sub-Riemannian geometry and so on.

The 2n+1 dimensional Heisenberg group denoted by H" is C" x R with the group
law given by

1
(z,).(w,s) = (z—w,t—s+§ Im zw), Vz,weC"andt,seR.
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The sublaplacian £ (see Defintion 1) on H" is defined analogously to the laplacian
A on the Euclidean space. However, the sublaplacian is not ellitpic unlike the lapla-
cian. Nevertheless, by the seminal theorem of Hérmander ([Hol) £ is hypoellitpic, i.e.
f € C>®(H™) implies Lf € C*(H™). To read about the construction of fundamental
solution for the sublaplacian refer to [Fo2].

In [Strl], R.S. Strichartz proposes a new notion of "harmonic analysis” on H",
namely the joint spectral theory for —£ and ¢T". In the setting of the results in [Strl]
we intend to study spectral theory for the operator (—£) (¢7)"" obtained from the
joint functional calculus of £ and T = i%. Once we have the spectral projections
we can study about the convergence of the spectral resolution, which we study in
detail in this thesis. One of the reasons why (—£) (i)' is an interesting operator to
study is because it has a discrete spectrum. Moreover, it turns out that the spectral
theory for (—£) (iT)~" is also equivalent to studying the representation theory for
the Heisenberg motion group HM,,. (However, we do not discuss Heisenberg motion

group in this thesis. Please refer to [Strl] for more details.

Plan of the thesis: In Chapter 1, we introduce the preliminaries required to
study analysis on the Heisenberg group. In chapter 2, first we provide joint functional
calculus of —£ and T and then compute the spectral projections of the operator
(—=£) (iT)~" denoted by P.f (see Section 2.1). Corresponding to the Fourier series
for the circle group, we wish to obtain a series expansion of f € LP(H") using the
spectral projections Py . in the form

o0

f:ZZ(Pk,1+Pk,—1)f-

e k=0

Once again, we have to determine in what sense does the above equation hold. This is
what we do in the rest of Chapter 2. The following result is proven by R.S. Strichartz
in [Str1]: for a function f € L*(H") the partial sums S 3 (Pot + Po 1) f — f
in L*(H™) norm as N — oo and for f € LP(H"),1 < p < oo the Abel sums
S > o (Pe1 4 Pr—1) f in the LP(H™) norm as 7 — 1.

In Chapter 3, we prove that the Abel sums of the spectral projections of f €
LP(H™) converges to the function f almost everywhere for 1 < p < oo and hence an
extension of the L? spectral theory proven in [Strl]. We prove our result by establish-
ing the L ?oundedness of the Littlewood-Paley g-function for the heat semi-group of
(—=L) (T)".

Future research

Using the LP boundedness of the Littlewood-Paley g-funtion we have established in
Chapter 3, we intend to prove a multiplier theorem for (—£) (¢7)"". In [MRS],
Miiller, Ricci and Stein has already proven a version of muliplier theorem for (—L) (¢7")
However, we intend to do it using Littlewood-Paley g-function for the heat semi-group.

-1



Chapter 1

Preliminaries

1.1 Introduction to the Heisenberg Group

The Harmonic analysis on the Euclidean space revolves around the Euclidean Fourier
transform, correspondingly, the Heisenberg group is also assigned a notion of “Fourier
transform”, which we call as group Fourier transform. Before we formally define the
Heisenberg group let us define the Euclidean Fourier transform and certain other
unitary operators on L*(R™). Let f € L' N L*(R™). Then, we define the Fourier
transform of f as

FU© = [ fayemsan (11)

Using the Plancherel theorem, the Fourier transform F extends as a unitary operator
from F : L?*(R™) — L?(R™). Next, observe that the operators given by

e(x) [ =™ (&), T [(E)=(E+y) (1.2)

are also unitary operators in L? (R") for x,y € R". Moreover, observe that {e () :
r € R"} and 7 (y) : y € R™ are groups under composition of unitary operators isomor-
phic to the group (R", +). The classical Fourier transform given by (1.1) intertwines
these two groups, i.e F7 (y) F ! =e(y).

More importantly, the operators e (x) and 7 (y) are the unitary operators moti-
vated by the position and momentum operators in quantum mechanics. Let @, D;
j =1,...,n be the unbounded operators defined on suitable domains by

Q)1 (6) =61 (€). Djf<§>=—z'a% (©. (1.3)

For every x,y € R" we define

i=1 j=1
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The operators iz.Q) and iy.D are densely defined on L?(R™) and they are skew Her-
mitian. Also, observe that

e(z) =exp(—iz.Q),7 (y) = exp (iy.D).

Hence by the functional calculus for these operators we have that e (x) and 7 (y) are
unitary. The operators @; and D; do not commute and [Q;, D;] = il,j = 1,....,n,
where [ is the identity operator. All other commutators are zero. On the level of the
groups {e(z) : x € R"} and {7 (y) =: y € R"} the commutation relation takes the
form

e(x)7(y) =e 7 (y)e(x). (1.5)

Note that,

e(@)T(y)e(u)T(v)=e ¥ e(x)e(u)T(y)T(v) =e Y e (z+u)T(y+v).

So, the set {e(z)7(y) : x,y € R} is not closed under multiplication. Hence we
introduce another operator x (f) to complete the group structure. Define

XM fE)=e"f(€), teR (1.6)

It can be easily seen that x(t) = exp(it Id), where Id is the identity operator on
L?*(R™). Moreover, ¥ (t) is unitary and also commutes with e (z) and 7 (y). Now, the
set

pol_{e( ) ( ) (t),l’,/yE]Rn,tER} (17)

becomes a group under composition as

e(x)7(y)x (t)e(u)7(v)x(s) =e(x)T(y)e(u)T(v)x(#)x(s)
=e(x)e(u) 7 (u)7(v) X (uy) x () x (s)
=ec(@+u)T(y+v)x(t+s—uy)

This group is also called the polarized Heisenberg group. As one can see that this

group is not symmetric in all the variables, we introduce a slightly modified group
given by

8

{p(z,y,t):z,y € R",t € R}, (1.8)
where
play)=e2™e(@)T(y), plr,y,t)=x{t)p(wy). (1.9)
The group law then becomes
p(x,y,t) p(u,v,8) =x () p(2,y) x () p(u,v) = x(+3s)p(z,y)p(u,v)

; 1
= e s@vturtu), (af+U)x(t+S)T(y+v)=p(ﬂf+u,y+v,t+8—§(U-y—v-$))-
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Hence we can make C™ x R into a group by defining
AT !/ / 1 =/
(z,t) 0 (2, 1) = (z—l—z,t—l—t — §Imz.z> :

which we call as the (2n + 1) dimensional Heisenberg group H". Observe that H™ is
also a simply connected Lie group. The Haar measure on H™ is the product measure
dz dt, where dz and dt are the Lebesgue measures on C" and R respectively. The
vector fields

0 1 0 1
= g =1,...n
1T oy 2%0r I
0 1 0
Vie= — 4+ Zp.— =1,.
J ayj+2x18t7 j ) ,
0
T_ 1.10
at7 ( )

forms a basis for the Lie algebra of left-invariant vector fields on H™. The only
non-trivial commutation relation for these vector fields are

X,V =T j=1,...,n (1.11)
Recall that, a Lie algebra g the lower central series given by

g0 =01 >022> .., (1.12)

where we inductively define go = g and g, = [g,9,-1]. Now, g is said to an n-step
nilpotent Lie algebra if n is the smallest natural number such that g, = 0. In the
case of Heisenberg group, using the commutation relations (1.10) we get that H™ is a
2-step nilpotent Lie group.

Next, we define the sublaplacian for H", which is a formally self-adjoint densely

defined operator on H". To read more about the sublaplacian the reader is referred
to (|[Tv2], Chapter 2).

Definition 1. The sublaplacian for H™ is defined as

L= (X2 477, (1.13)

1.2 The Schrodinger Representation

The representation theory of Heisenberg group is completely understood with the help
of Stone-von Neumann theorem. Here, we will define the Schrodinger representation
for the Heisenberg group [Strl].

Let us first recall a few definitions in representation theory. Let G be a topological
group and ‘H be a Hilbert space. Denote U (H) the unitary operators acting on H.
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A unitary representation of G into the U (H) is a continuous group homomorphism
m : G — U(H). The representation 7 is said to be a strongly continuous unitary
representation of G on H, if for every x € H, the map g — 7 (g)z is continuous.
A subspace M of H is said to be invariant under 7 if 7 (g) z belongs to M for all
g € G whenever z belongs to M. A unitary representation 7 is said to be irreducible
if there is no nontrivial closed subspace of M that is invariant under 7. Two repre-
sentations m and p are said to be unitarily equivalent if there is 7' € U (H) such that
p(g) =Tn (g)T* for all g.

Definition 2. The Schrodinger representation is the group homomorphism wey :
H™ — U (L? (R™)) given by

T (2.9, 8) u (€) = e ARy (¢4 iy ) (1.14)

foree {—1,1}, A e R, and u € L* (R").

We will now prove the irreducibility of m.\, VA € R,. We will do this for the
case €eA = 1; the general case will follow similarly. In order to do this we use
the Plancherel theorem for Euclidean Fourier transform. Let us write m (z,y,t) =
e'm (z) = e (z,9,0), where z = x + iy and

7(2) 6 (&) = e (T30 g (¢ 4 y).

Suppose M C L*(R") is invariant under all 7y (z,y,t). If M # {0} we will show that
M = L*(R™) proving the irreducibility of ;.

If M is a proper subspace of L? (R™) invariant under 7 (z,y, t) for all (z,y,t), then
if we choose non-trivial functions f € M and g € M*(the orthogonal complement of
M in L*(R™)) we have 7 (2) f is perpendicular to g for all z, i.e (7 (2) f, g) = 0 for all
zeCm.

Now, given ¢, € L? (R™), consider the function

Vi (0,2) = (2m) 7" (7 (2) 6, ). (1.15)

This is called the Fourier-Wigner transform of ¢ and 1. Let us calculate the L? (C")
norm of this function. Explicitly,

Vi (6, 2) = (2m) "2 /

Applying Plancherel theorem for Fourier transform in x variable, we get

2
2 s = / NFlo(e- Y
[ W@aPd= | |o(e+5)[ |5 (e-3)
Then by making the change of variable { — & + % becomes

oo+ 2)5 (6-2) deay

n

2
d¢ dy.

[0 (&) [P de | | (€)]* d¢
R” R”
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Thus we have ||V (¢) ||2 = ||#]|2]|¥]|2. Under the assumption that M is non-trivial
and proper, we have V; (¢) (2) = 0, Vz € C", which means that || f||2||g||2 = 0. This
is a contradiction as both f and ¢ are non-trivial. Hence M has to be the whole of
L*(R") and therefore the irreducibility of 7.

Remark 1. Let ¢,1, f,g € L?> (R™). Then by polarization identity we have
(Vs (0), Vi (9)) = (&, /)W, 9)- (1.16)

Next, we state the Stone-von Neumann theorem below, however we do not prove
it here as it is out of the scope of this thesis. For the proof, the reader can the refer
to ([Fol], page 35).

Theorem 1. (The Stone-von Neumann Theorem) Let m be a unitary representation
of H™ on a separable Hilbert space H, such that w(0,0,t) = e I for some A\ € R,
and e € {—1,1}. Then H = @ Ha, where the H, s are mutually orthogonal subspaces
of H, each invariant under 7, such that |y, is unitarily equivalent to m.y for each «,
i.e. there exsits a Hilbert space isomorphism ®, : H — L* (R™) such that

—1
Promod " =T,

where ey s giwven by (1.14). In particular, if m is irreducible then 7 is unitarily
equivalent to Tey.

Remark 2. If the representation 7 is trivial on the centre (0,0,t) then then the all
the unitary irreducible representations on L? (R*") are of the form = (x,y,t) f (£) =
e~ 2miE@Y) £ (&) for some &€ € R?™,

Next, we give a few definitions
Definition 3. The non-isotropic dilation o, on the Heisenberg group is given by
6.(2,t) = (rz,r’t). (1.17)

Definition 4. If f, g are functions on H", then their convolution is defined by

fxg(z,t)= i f(z1). (—w,—s)) g(w,s) dw ds (1.18)

Z/nf((z—w,t—s+%[mz@)>g(w,8)dlUdS NCRT)

1.3 The Fourier and Weyl transforms

It can be easily seen that the Lebesgue measure dz dt of C™ x R is the Haar measure
of H™. With this measure, we form the usual function space L? (H").

First we define the Fourier transform for integrable functions f. For each ¢ €

~

{=1,1} and A € Ry, f (7.) is the operator acting on L? (R") given by

~

f(men) ¢ = . f(zt)mh (2,t) ¢ dz dt. (1.20)
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For the sake of easiness we will denote fA(e)\) instead of f(ﬂg,\) by abuse of notation.
The integral defined above is defined as explained for vector valued integrals in the
Section in the Appendix. If ¢ is another function in L? (R™), then

(FeN o) = | [z) (7 (2,) 6,0)dz dt.
Hn
Since 7 are unitary operators, it follows that

(mex (2, 1) ¢, ) < |[ol]2|[]]2,

and consequently

[(F (eX) &, )] < [[llal[lla] | 11

~

Hence by Riesz representation theorem, the operator f(m.,) is a bounded operator
on L? (R™) and the operator norm satisfies || f (e\) || < ||f||1. We will also show that

~

when f is also in L? (H"), f (e\) is a Hilbert-Schmidt operator (see 4.1 for the defi-
nition of a Hilbert-Scmidt operator).

—iet

Let us write 7y (2,t) = e "My (2), where 7y (2) = mea (2,0) and define

feA(Z):/_oo €i€>\tf(2,t) dt

oo

to be the inverse Fourier transform of f in ¢ variable (slightly different from our notion
of classical Fourier transform). Then it follows that

flene= | fH@)m ()6 dz
Thus we are led to consider operators of the form
Walo) = [ 9217 () ds (1.21)

for functions on C". When e\ = 1, we call it the Weyl transform and denote it by
W (g). We also write 7 (2) in place of 7 (2). Thus

W) = [ g ()6 d=

From the explicit description of the representation, it follows that

W0)o©) = [ oot dCB o 1) doay

Thus W (g) is an integral operator with kernel K, (§,n) given by

Ky (&n) = /n g(x,m—¢) e37-(E4n) o
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where g (z,y) stands for g (x + iy). Therefore , if g € L*NL? (C"), the kernel K, (,7)
belongs to L? (R?"), and hence from the theory of integral operators, it follows that
W (g) is a Hilbert-Schmidt operator whose norm is given by

W () s = / K, (€.n) P de di.

R2n

Using the explicit formula for the kernel and Plancherel theorem for the Fourier trans-
form, we get

W 9) s = @) [ g (e, da dy (122

R2n

This is the Plancherel theorem for Weyl transform.

We can now establish Plancherel theorem for group Fourier transform of the
Heisenberg group.

Theorem 2. For f € L*(H"),
i = 3 / TN s duu(A). (1.23)

Proof. First assume that f € L' N L?(H™). Using the similar steps as we had used
to show (1.22), we can show that for A > 0

1P = oo [ 1) P,

by replacing 7 (z) by 7y (). Now, sum over € and multiply A" on both sides of the
above equation, and then integrate with respect to d\ to get

S [ RN s du ) = S [T 112 @) 1P o
—en [t 1P an

Then by Euclidean Plancherel theorem we get (1.24). As L' N L?(H™) is dense
in L? (H™), it is clear from the equality of the norms that we can extend it to all
feL?Hm). O

The next lemma will provide an important formula to complete the inversion
formula for the group Fourier transform, which will further give us that the group
Fourier transform is an isomorphism.

Lemma 1. If f € L' (H"), then

tr (f(m) o (2, t)) — (27" A" / O; F (2, — 5)€%ds, (1.24)
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Proof. If ¢ € L* (R™), and z = z + iy then ]?(WE,\) ¢ is given by

~

FEa)o©= [ Jnmal-=-00() d= d

f (2,7 t) eie()\t-i-\ﬁ\z{—)\:c.y/Z)(ﬁ <£ _ \/XZ/) dr dydt
H’VL

=27 f (€= m) /A1) ORI () dnde dt
H”l
Thus, f(ﬂg,\) is an integral operator with kernel

K;')\ (5777) _ )\—n/ /f (l’, (5 . 77) /)\,t) eie(/\t+x(£+77)/2) dr dt
—o0 JR

Moreover,
F () mor (z,,1) = f @y ) mon (=2, —y, =t ) wer (2, y,t) do’ dy' dt’
Hn
— an(:p’,y’,t’)ﬂs,\ (x —ay—y,t—1t —%(y'm —m’y)) dx’ dy' dt’
=7 (me)
where

g (Ilv y,7 t,) = f ("E - J'J7 y— y/7 l— t/) 6_%E>\(y/x_x/y)'

Hence the integral kernel of f(we)\) Tex (2,9, 1) 18

-\~ / / é- 7]/)\ t) zekt+z(§+'r]/2dx dt

3 [T plam iy € = By B e
Rn

= / T Py = (€ =) J2, ) e BT 2= ) e NG o= N g

We will assume that f is a Schwartz class function for now. Then, all the integrals
converge nicely. For a general L' function, we take a sequence of Schwartz class
functions converging to f in L'(H™) and then dominated convergence theorem. For
feS(H™), let Fif(x,y,t) denote the n-dimensional Euclidean Fourier transform in
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the first coordinate of f. Now, we have

tr <]?( TexTex (2,9, 1)

/ F (&) dg

— A / / [Tt BN OGO iyt de i

_ )\—neie)\x.y/Q/ / F @,y t) e—ie)\x'.(%—i{)eif)\f.xeis)\(t—t’) do’ de dt’
n Jrn

vy [

@ [ Ry

=\ (2m)" /OO f(z,y,t) e N=ay

=\" (2%)"/ f(z,y,t —s)e' ds.

Fuf <e)\ (g I 5) v, t’) GNET N e gy

n

Using the above lemma we have

(2m) ™'y /0 s (f(m) T (z,t)) Ad\ (1.25)
_ %Z/Oo/f(z,t . S) e—iek(t—s)e-i—ie/\t ds d\

//f Zt—S —iA(t—s) +2)\td8d/\

= f 1) (1.26)

We obtain the above expression by the Fourier inversion formula in one dimension.
For the interchange and well-definedness of all the integrals we take f to be a Schwartz
class function in the above calculations.
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Chapter 2
LP Harmonic Analysis of (—L) (”L'T)_1

In [Strl], R.S. Strichartz proposes a new notion of what Harmonic Analysis on the
Heisenberg group should be; it is the joint spectral theory of the operators —L and
I = i%. It is not difficult to see that the operator i7" commutes with —£. Moreover
they are strongly commuting essentially self adjoint operators and hence they have a
well defined joint spectrum (see [Sm]|, Chapter 5). One of the interesting operators
that arise out of the joint functional calculus of —£ and i7" is the operator (—£) (iT) ",
having a discrete spectrum. To better understand this operator we will compute its
spectral projections and study the LP(H™) boundedness of these spectral projections,
for 1 < p < oo. We will also develop Plancherel theorem and spectral theorem for
LP(H™),1 <p < 0.

2.1 L? spectrum

Let u € L? (R™). Recall that the Schrodinger representation (7.y) is defined as
Mo (2,,1) 0 (€) = e ey (¢4

Let u,v € L? (R"). Then the entry function for the unitary representation is defined
as

Eo\ (u,v) (2,t) = (mer (2, 1) u, v)
_ eie)\teie)\:p.y/Q/ e*ieﬁz.ﬁu (5 + \/Xy> m dé‘
: . 1 1
= e“’\t/ ey, (5 + 5\/Xy) v (5 — 5\/Xy> d¢ (2.1)
Using 7, we also get a representation of the Lie algebra of H™ given by
d
Ay (V) u = —mex (exp tV) uli—o

dt

for any left invariant vector field V and exp is the exponential map for the Lie group.
The above representation of V' is densely defined unbounded skew adjoint operator
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acting on L? (R™). Let u € C* (R"), then

drer (X;) 6 (€) = —ieV 2o (&)

dm%W@zﬁ%ﬂ@

Hence we get that

n

drer (L) = dry (Z (X7 + Yf)) =-A(—A+[EP)

Jj=1

Next, we will give the spectral decomposition of the Hermite operator. The Hermite
functions are defined as (see [T'v1])

ha (§) = Wi ha, (&), €€ R”
where

he (2) = (=1)* (2"ﬁk!)‘% <%{e"”2}ew2> e 2 zeR

We know that Hermite functions are the eigenfunctions of the Hermite operator with
eigenvalue 2 (|a| +n). Hence it is easy to see that they are eigenfunctions of the
Schrodinger representation of £ with eigenvalues — (2|a| +n) A\. Moreover, recall that
the Hermite functions form an orthonormal dense subset of L? (R"). Now observe the
following

Xi(mex (2, 1) u,v) = (X;mex (2, 1) u, v)
— (=i (éj " \/ij) c—iec(AtHVAzErATy/2) (5 I \/Xy> )
= (Tex (2, 1) (d7er) (X;) u, 0)

Note that one could also have simply applied the fact that X; is a left invariant to
get the above equality. Similar calculation for Y} also shows that

Yi{ma (z:0) u,v) = (mar (2,1) (dmer) (V) w, 0)

Since every left invariant differential operator is a polynomial of the left invariant vec-
tor fields ([Va], Chapter 2), we get the above equation for any left invariant differential
operator also. Observe that (m. (z,t)u,v) is the entry function (matrix coefficient)
E.. Hence if we take u = h, and v = hg for some multi index o and /3, we get that

LE (ha,hg) = =X (2|a] +n) Ee\ (ha, hp)

From the explicit form of E.y (2.1) it is easy to see that they are eigenfunctions of the
operator T with eigenvalue eX. Observe that to explicitly compute the joint spectrum
we did not really need the abstract theory of strongly commuting operators. Now for
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the ease of computation we will scale the eigenfunction. The joint spectrum is the
closed subset of R? which we will refer to as the Heisenberg fan, consisting of union
of rays.

Rie={(\7):7= —|—>\2k A >0} (2.2)

fore = +1, k=0,1,2,... and the limit ray

Roo ={(\,7):7=0,A>0}

Now, if {hs} be the Hermite functions, then

(P ma ) =30 [ 116 (ro () oo (6) e

= ZZ ) (Tex (9) has i) (Ton () Fras o) !
= ZZ f2 B (has hs)) Eox (B hs)
a B

Now we can use the explicit form of the trace function in the Fourier inversion formula
for the Heisenberg group Fourier transform of f to get

= (2m) Y /OO NS B (has 1)) Eox (B his) A"dA
€ 0 a B

We invariably use (.) to represent the inner product on L? (H") and L?(R") and
hence they should be interpreted according to the context. From here on, we write
eA/(n+ 2k) as A by abuse of notation. Now we can group together the terms with
|a| = k in the above equation and make the change of variable A — A/ (n + 2k) to
get

(2m)™"" 122/ (n+2k)"" x> > (f.Ex, (ha' b)) Ex,, (hayhg) N'dA.

B o=k
(2.3)

Hence we get the joint spectral decomposition of f written as an integral over the
Heisenberg fan of the joint eigenfunctions E.y (ha, hg). Next, we intend to explicitly
compute the spectral projections denoted by Py such that

(L) (iT) " (Prcf) = (n+2k) Peof, YfeSH"). (2.4)
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Observe that
Z<f7 Eex (h’OM u5)>E/\e,k (hOH hﬁ)
B

- Z f (g,) <7r>\e,k () ha, hﬂ><7r)\e,k (g/) ha, h6>dg/
g JH”

- / (g/> <7T>\e,k () ha, Tk (9/) hoc>dg/

Hn

=/ F () ((mry (6)) oy () B ha)dy’
=[x Ex, (ha, hg)

By the properties of Laguerre polynomials (see [Fol|, page 64-65) we have

ieAt Alz|? Azl
E = — - ), L0 (=
e (e i) (1) 6“’( H%)ew( 4<n+2k>) =1 (2<n+2k>

(2.5)

By using the properties of Laguerre polynomials ([Tv1], Chapter 1) and summing
over |a| = k we get

> H % < 2@%)) =L (2(2|—i|22k))

|a|=k j=1

Substituting these values into the spectral resolution equation of f we get that

F=Y>" /OO f* Oancd), (2.6)
k € 0

where

e (ot) A" | ieht P o1 Alz[?
M S oy 2k P T2k ) T a2k ) Y \2(n+ 2k)

(2.7)

Remark 3. In the above calculations to find the spectral resolution of the sublaplacian
we have taken f to be a Schwartz class function and hence all the equations hold

point-wise. Once we prove the Plancherel theorem, we can extend to any function in
L*(H™).

Plancherel Formula

The Plancherel formula for (—£) (i7)~" is slightly different from the group Placherel
formula as it is not an immediate consequence of (2.6). Observe that we have

Hf||2—ZZ/ (27) " 0+ 26" Y0 3 (. B (e B PN

B laj=k
(2.8)

)
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where we have taken inner product with f on both sides of

f= ZZ/ @)™ 0 2R x D03 B s ) B (s i) N
(2.9)

We also know that

frdare=2m) " (4 28) " XN (f, Ex, (has hp)) B, (hashg) . (2.10)
8 lal=k

We would like to simplify the right side of (2.8) further. A glance at (2.1)
shows that ]EA « (ha, hg)| is independent of ¢ and rapidly decreasing |z|, so that
Jon f( (2,0)dz defines an inner product on the linear combinations of the ma-

trix Coefﬁ(nents of the Schrédinger representation. Moreover, using the orthonormality
of Eey (ha, hg) that we get from (1.16) we have

/ By, (ha,u) (z,0) Ex. . (ha',v) (2,0) dz = a(k, e\) (u, v)0n.0 (2.11)

for |a| = |o/| = k for some constant a (k, e\). Thus to obtain our Plancherel formula
we need to compute the constant a (k,€)), and use it in (2.10).

Theorem 3. For f € L? (H™) we have

1 =20 55" (0 + 28) / / oo (0 dzdr (212)
k=0 e 0 Cn

Proof. To compute the constant a (k,e\) in (2.11) we choose a = o’ and u = v = h,,
so that (u,v) =1 and by (2.5) we have

a(k,eX) = /n exp <2(;A—lf|21)) ]f[l Ly, (2(2’;;‘;@))

The integral breaks up into a product of integrals over C, which we evaluate directly
in polar coordinates using orthogonality formula for Laguerre polynomial (see [Tv1],

page 7)
/ eLY(s)* ds =1
0
to obtain

/ AP\ T Al ‘2 d
AV 2(n+2k) 2(n+2k) :

‘2”/0006”( +2k)fil (Tw) e

d:
rar b\

2

dz.
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hence

27 (n+2k))”' (2.13)

a(k:,e)\):< -

Now applying (2.11) and (2.13) to (2.10) we get

. 5 Gane (2,007 dz = 21) "2 (n4+26) 772N Y (S, By (has Be)) P
8 |al=k
(2.14)

which then easily gives the required result. O]

Spectral Resolution of (—L) (z'T)_1

Next we compute the spectral projection operator associated with the ray Ry . of the
Heisenberg fan. This is just the operator

f s /0 £ % bre

Using Calderon-Zygmund theory we will later show that we can interchange the con-
volution with the integrals for L? functions in the L? sense. Hence it amounts to find
the kernel fooo ®xrke dX. From the generating function for the Laguerre polynomials
([Tv1], page 8) we have

> Ly () = (1 =) e 0, (2.15)
k=0

To find the explicit form of the kernel fooo ke AN\ we first find an explicit expression
for the Taylor series with the coefficients fooo OrkedX and then use (2.15). Using the
definition (2.7) of ¢y .. we get

> o0 o o 2
Z’f‘k/ gb)\’k& (Z,t) d\ = (277‘)7”71 / )\ne—ie)\te—/\|z|2/4zrkLz_1 <)\’22’| ) A\
k=0 0 0

k=0
T CE S /00 AP e M(1212) /4((14r) /(1=r))+iet) g
0
= 2" Al (1 — 1) (|22 + diet + 7 (|2]? — 4iet)) ™"
(2.16)

Note that (2.15) allows us to interchange the sum with the integral using Fubini’s
theorem, for z # 0. Then by differentiating the above k£ times and dividing by k! and
putting r = 0 we get

> e + k) (2] = diet)”
. A\ = 2" 1_—n—1 1 k (n

<[ (o) ()] e
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which is clearly a homogeneous function of degree —2n — 2 with respect to the non-
isotropic dilations of H™ given by Definition 1.17. Let us denote the kernel in (2.17)
by K. Now to establish that the kernel K is a Calderon-Zygmund kernel on the
Heisenberg group (refer to Chapter XII of [St3] for a discussion on singular integrals
on the Heisenberg group) we will show the cancellation property given by

/ (K (2,1) + K (2, 1)) dz = 0. (2.18)
Then the fact that K is homogeneous of degree —2n — 2 will give us that

K (z,t) dz dt = 0.
Hn

Now, observe that to show (2.18) it is sufficient to show that

/ / (Drke (2,1) + Oage (2,—1))dX dz = 0.
nJo

By using the change of variable given by |z|> = w we get

/ / (¢A,k,e (27 1) + ¢/\,k,e (Z, —1>> dX\dz
nJ0

< (w — die)" k w + 4ie 4
= n 1 B " d )
Enik /Oo (w + 4@'5)"+1+k + n+k w — 4ie v v

for some constant ¢, j depending only on n and k. Observe that if we take w to be a
complex number then the integrand has only one pole and that lies in the half space
depending upon € and is given by € I'm w < 0 (The reason is that we have £ > 1 and
hence the term inside the bracket won’t be a problem). Then consider the contour
given by the intersection of the circle |w| = R with the appropriate half space. This
will give us

21 1 ei@ — 44 k k 0 44 R ]
/ —— ( E?HH,Q (1+ ( ) (€.9+ be/ )) G000 g (2.19)
o R? (e + 4ie/R) n+k/) \e?—4ic/R
Now R — oo will give us that (2.19) is 0 and hence we have the required result. Let
us denote the kernel fooo Par.cd\ by K. The kernel is also locally L' in C" x R\{0}

(where 0 is the origin in C" x R). Hence we can associate a convolution operator to
the kernel via principal value integral such as

tim / / F(0o ) K () a . (2.20)
s [t/]|>s J C»

We could have also cut off any other compact neighbourhood of the origin. However
this wouldn’t matter much. Since the kernel is homogeneous of degree —2n — 2 and
hence as a distribution the kernel differs only by a multiple of the delta function. So,
the operator differs only by a multiple of the identity operator. But in our case the
operators are obtained more naturally by a limiting argument, and we will have to do
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some work to relate them to principle value integrals of the above form (2.20).

But as we have told before we cannot directly interchange the integral and the
convolution and hence we have to introduce a summability factor. Observe the fol-
lowing

— 5\ o (n+ k) (|22 = s — diet)"
o (z,1) d)\ =271l (—)k

(2.21)
x[l—i— k |22 + s + diet }
n+k 2|2 — s — diet ) IV
for s > 0. The proof of the above equation follows similarly as we calculated

fooo O ke (2,1) dX using the Taylor series. Even though the above kernel is no more
homogeneous, it is locally integrable.

Proposition 1. For f € L?* (H") we have
> SA —sA
[ reonnern () v [ sy () ).

as L* (H™) functions.

Proof. Observe that the right hand side of (2.21) can be written as the sum of an L!
and L? functions by multiplying with a cut off function supported in a neighbourhood
of origin. Hence the right hand side of (2.22) makes sense. If f € C®°(H™) then
we can apply Fubini’s theorem to interchange integrals to obtains (2.22) as ¢y
is locally integrable. Since, they agree on a dense class it suffices to prove that
F e [0 % dane (2,1) exp (=55) dX is a bounded operator on L? (H™). Then,

[ Oane (2,1)
)\n —iAe it /\

w, s 62/\6 kS~ 2 W 4(n+2k)|z wl? Ln 1 (— Z— W > dw ds
T (n+2k) (2n "+1/ fw,s) 2(n+2k)( )
= e b f sy e (2,0)

Hence

2 o 2
% P (2,1) d)\‘ dt — ek f oy g (2,0) d)\‘ dt

0

_ /OO £ %O (2,0) ‘sz
0

by using the Plancherel theorem in the Euclidean space in one variable. Then,

/n/R‘/Ooof*gbA,k,e (2,t) d)\rdt dz = /n /Ooo ’f*@,k,e (2,0) Fd)\ ds.



CHAPTER 2. L» HARMONIC ANALYSIS OF (—£) (iT)™" 20

But by the Plancherel theorem for Heisenberg group we know that

||f||2_27rzz (n + 2k) / /

Hence we get that

2
[ Pake(2,0)| dz dA.

00 2
/ /]/ f*@,k,e(z,t)cu‘ dt dz < || f|12
Cn JR 0

sA

Now, since exp (—n+2k

) is a bounded function we have

* Ox e (2,1) exp ( —sA ) d\

2

+ 2k

/n/ ‘f*gb,\kezOexp( /Q\k)z

< (2,0 ‘d X
o) oot

< Cllf ez
Hence f = [° f % Oare (2,1) exp (;=5;) d is a bounded operator on L? (H™). O

d\ dz

Lemma 2. Let Py denote the spectral projection operator associated to the ray Ry .
of the Heisenberg fan. Then

, o SA
Puod =t £+ ([ onssenn (~55) ). (2.23)
for f € L3(H™), the limit existing in L> norm. We also have
—1)"" (n+ k) 2 %0
Pk,ef = ( ) (T;‘ ) f + PVf * (/ ¢/\,k,ed)\) ) (224)
! 0

as L*(H™) functions for f € L* (H"), with P.V. convolution given by (2.20).

Proof. We will prove (2.23) using (2.22). We know that Py, is given by

Pk,ef = / f * ¢)\,k,e d)‘a
0

for f € L>(H™). By applying dominated convergence theorem we have

o0

—SA
Pkef—sli%n 0 f*¢)\k‘6<z t)e:Ep (n+2k> d)‘a

as L?(H™) functions. Then, the Proposition 1 easily gives (2.23).
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Now to get (2.24) we first restrict f to a test function and compare the two

distributions
Fio lim f * /Oo¢ LN )N (0)
it Ok S Tk ’

f—= PV.fx (/OOO ¢>\,k,ed)\> (0).

Since the difference of the two distributions is supported at origin and their dif-
ference is homogeneous (i.e. if the difference of the two distributions is D, then
Df.(z,t) = Df, where f.(z,t) = f(rz,7*t)) we have that the difference is a constant
multiple of Dirac delta distribution (see [Rd], Chapter 6). Hence it amounts to find
that constant. To find that constant we first approximate the indicator function Ij_; i
of the strip —1 < ¢ < 1 by restricting z to a ball of radius R and then taking R — oc.
Of course the indicator function is not in L? and the approximation is not L? approx-
imation, nevertheless it wouldn’t be a problem as ¢, ;.  has a good decay in z variable.

and

Recall that the kernel K = fooo Ok AN satisfies

/ K (z,t) dz dt =0, (2.25)
s Jen

for any compact symmetric subset S of R around the origin. Combining (2.23), (2.25)
and the fact that [—1,1] is a symmetric set we get

PV ]1[_171] * (/ ¢A7k7€dA) (0) = 0.
0
Thus we need to compute
, o0 SA
SliTg)}r H[—l,u * </0 ¢A,k,e€$p <_n i Qk) d>\> (O)

1 00 S)\
=1i . — dX\ dz dt.
g [ omen (5 2) e

We first compute the integral with respect to z. We can do this because of Fubini’s
theorem

exp (—iAcxt) / —A3z2/4 7 n—1 2
c(z,t)dz = ’ e IR Az7/2) dz.
[ o)z = SRR [ L (P )

Now we again use the trick of generating function to obtain the above integral

2 /1
St / e NILET (A]2]2/2) d = (1 - >/ “ (’T| (1 - ) dz)
n ' _r
k

= (4m)" (1 +1)".
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Therefore
(—1)* (n+ k)! (4m)"

n!

/C e*’\‘z|2/4LZ*1 (A2]?/2) dz =

Hence

(—=1)" (n + k)27 it
(z,t)dz = - :
cn Prne (2,1) d2 n!(n+2k)m P\ Tt ok

Now substituting the above values we get

—1 (4m)
SlironJr( 7)L'((Z—l—’——l2€k ™) // exp (—iAext) exp (—sA/(n + 2k)) dAdt

(=D (n+ k) (4m)" i /1 dt (1) (n 4 k)2n!

B nlm so0+ | | s +det n!

where, for the last equality we have used

1 1 1
dt
s—=0+ J 1 s+ 1€t s—=0t J_4 52 + ¢2 s—>0+ 1 S2 4 ¢2

= Sl@m (tan™" (1/s) —tan™' (—=1/s)) ==

—0t+
L]
Corollary 1. For any complex r, |r| < 1 we have
. 2t
k=0

with Y o o™ [° dape given by (2.16).

Proof. Multiplying (2.24) by 7* and summing over k will give us the required result.
[

2.2 [P Spectrum of (—L) (iT)"

In this section, we will see to what extent the L?(H™) Harmonic analysis correspond-
ing to the spectral projections for (—£) (i) " can be applied to functions in LP(H™).
We have already seen that spectral projection Py, is a Calderon-Zygmund operator
and hence bounded on LP(H™). However, we would like to find an estimate of the
LP(H™) operator norm.

To obtain LP estimates for Py + Py _1, we will consider Q) = Py 1 — Py 1, which
is the Hilbert transform of Py ; + P, _; in the ¢ variable. The advantage of Q) over
Py is that it is an odd kernel, hence is suited for “method of rotations”. The main
idea is to use the following lemma by M.Christ [C1].
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Lemma 3. Let K (z,t) be an odd function homogeneous of degree —2n — 2 on H™.
Then the operator norm of P.V.f+K on L (H") is bounded by ¢, [, | K (2,1) | dz, 1 <
p < 00, for some constant c, depending only on p.

The proof of the above lemma has been given in a general case of Hilbert space
valued kernels in Theorem 7 in the next chapter.

Lemma 4. The operator norm of Qr = Py — Py —1 is bounded by
Cpe (1+ k)2 /Pmtiote (2.27)
for everye >0, 1 <p< oo

Proof. By Lemma 2, Q) is of the form P.V.f x K, where K is given by the imaginary
part of (2.17). Now, it is easy to estimate [ |K (z,1) | because (|z|? — 4iet) / (|z|* + 4iet)
is of absolute value one, so in fact it is only the constant (n + k)!/k! that contributes
to the growth of k£ variable. Then by Stirling’s approximation and from Christ’s the-
orem we get that the estimate is ¢, (1 + k)". However, for p = 2, we know that the
operator norm is 1 by Plancherel theorem. Hence by applying Marcinkiewicz inter-
polation theorem (see [JD], Chapter 2)for p = 2 and p close to 1 or co we get the
intended estimate. O

Observe that, the polynomial growth in ‘k’ is not sufficient to sum the projection
operators absolutely. Nevertheless, it turns out that Abel sums converge in LP(H"),
ie.

[e.9]

lim Y 1" (Poy+ Po1) f — f in LP(H"). (2.28)
r—0 o

Theorem 4. For any p, 1 < p < oo the operator norm of > ;- r*Qy is uniformly
bounded for 0 < r < 1 (or more generally for approaching r = 1 in a non-tangential
cone).

Proof. By Corollary 2.1 we have that the >, r*Qy, is of the form P.V.f x K with
K given by

2t (1= ) (|2 (L) 4 it (=)™ = (22 () — it (1) ).
(2.29)

Notice that It is sufficient to get a uniform bound of the integral (1 — ) [, [|2|* (1 +r)£
4i (1 —7r)|™""!'dz in r to apply the Lemma 3. By making the change of variable

Z z,/% we get that

1
L—r ZP(L4r)£4i(1—7 "1dz:—n/ z|? + 4i| 7"z
( )CnHI( )£ 4i(1—r)| T Cnyu |

=c,(1+7)",
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for 0 < r < 1. For r complex we write 1 — r = se?, and make the change of variable
2 — 52z to obtain

(1—r) Iz (1 +7)£4i(1—7)| " 'dz = ew/C”\ (2 — se”) [2]” £ 4ie®| " de.
(Cn
It is easy to see that as along as 6 is bounded away from 7/2 the integral remains
bounded as s — 0 by dominated convergence theorem. O]
Before we prove the LP spectral theorem we will prove the following lemma.

Lemma 5. For f € S(H") (the Schwartz class functions on H™, which is same as
the Schwartz class functions on R**1) then we have

Ziio r (Pea+ Pe—1) f— fin L™ (H™).
Proof. Observe that we can write

> rF(Pey+ Pocrf) = fx Ky,

k=0

where

K (z,t)=2""r" "l (1 =) ((|2[%) @ +7) +4it (1 —r) "
+ (|21*) (L +7r) — 4it (1 - ry "

It can be easily seen that K is an L' function for » # 1. Hence, we have that
f«K, e S(H")if fe S(H") and r # 1.

Now, we will show that for g,, € S (H") and Dg,, — 0 in L?(H™) for any polyno-

mial D in £ and T implies ||gm||cc — 0. By the Fourier inversion formula for group
Fourier transform we have

o (211) = @073 [t (@ (ra) T (218) dn (),
—Jo
where du (A) = (27r) """ A"d\ is the Plancherel measure. Then,

o (01 S 3 [ 107 @ ) o (o) s

~ 3 [ S @ ) ma ) )
+Z/O V'” (Gm (Tex) Tex (2,1))] g (M)

) 1/2
<3 (0 @ e ) a0

+Z (/ (A" tr (G (Ter(2,1)) men))? dpe (A))m.
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Now, for A > 1 observe that

’(1 + N2t (G (7ex) Ter (2, t))}
S | (+20a]) " (04 20a)) NG () Tea (2, ) has ha)

= 37 |+ 20al) 0 (G () a2 £) B, (£) D)

= (n+2|a|) (n+2) (m,\(z,t) e, (G (mex))* (2, ) 5 (£) "2 Ry

= 57 (4 2a]) 2 (LD, (1) Tr (2, 1) Ty Bl -

Now, Cauchy-Schwarz inequality will give us

N2 41 (G (1) a2, )|

S+ 2la) 20 (Z) L0 (103) Ter(2:1) o, )

(e}

(Z,t)haIZ)

< | X (ot 2fap 0 (Z)ﬁ@mmm

(e}

S X 0t 2fal) 0 ) || L0 2g,0 ()|

«

Similarly for 0 < A < 1 we get that

X"t (G () ma (2 D) (Z <n+2|a|>2") |27 g

67

25

For any integer k, the number of ordered partitioning of £ into n parts is (”+,':_1). By

Sterling’s formula we have

n—1
kk+1/2 S k :

(TL + k— 1) _ (Tl + k— 1>n+k—1+1/2
k Y

We will show that 3. (n + 2|a|)™*" < co for n > 1, which also implies that
Yoo (n+ 2a)) 2" < oo for n > 1

Z(n+2|0z| ZZ n + 2k) 2"<Zk” L (n + 2k) 2"<Zk3 < oo,

a k=0 |a|=k
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Therefore,

- 1/2
1L g,, (men) s dit <A>> (2.30)

(=t) -

2.

€

+

suplgn ()| £ 3

(/
12750 ) s <A>)
o 1/2
sy ( |1 ) s <A>)
0

€

S ([ 12700 (7o) s <A>)U2

€

+

S|

~

L g, + 1L gl - (2.31)

Hence it is sufficient to show that R.H.S goes to 0 as g,,, — 0 in L* (H™). The operators
Py commutes with £ and hence with any power £7, j > 0 (in fact this holds for any
left invariant differential operator). Therefore, £~Z—7>7% LIS (Per+ Pon) [ =Lf
in L? norm if £7f € L*(H"). Here, we anyway have L2 f L7 f ¢ L?(H") as
f € S(H™). Now, we take a sequence {r,,} such that r,, — 1 as m — oo and let
G = Y peo T (Pea + Pr—1) f — f. Hence, from the above observation for g,, we
have the intended result. O

Corollary 2. For any f € LP (H"), 1 < p < o0,

lim>» 1" (P + Po) f=f, (2.32)

r—1
k=0

the limit existing in LP norm. Similarly we have

(1-r)?

%«Z_T{f Z ™ (Pey+ Poa) f=f, (2.33)
k=0
and
(1-7) (n+2k)/(1—7)
tim Z “f (f * bria + xorims) dA=F  (234)

In particular, if fos f*Oape d\ = for all k,e and s, then f = 0.

Proof. We know that the operators Y ;2 7 (Py1 + Py,—1) are uniformly bounded and
hence to show (2.32) it is sufficient to prove that the same holds for a dense subspace.
Recall that we have (2.32) for p = 2 as we have that the partial sums converge to
f in L? and therefore the Abel sums also converge in L? norm to f. By using the
previous lemma we have the convergence of the Abel sums in L (H") and then by
interpolating L? and L> convergence we have LP convergence for any 2 < p < oo for
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Schwartz class functions.

Next, we will show the equivalence of (2.32) and (2.33) for any p, 1 < p < 0.
From Lemma 4 the operator norm of the tail of the series

Z Tk (Pk,l + Pk,—l)
k:(lfr)_2
is bounded by a multiple of
> e
k:(l—r)f2

where a = 2n|1/p — 1/2| + € for any € > 0. Since 0 < r < 1, we can write r = e¢~* for
some s € R;. Then, it is easy to observe that

o0 1 o0
Z rkkaﬂ/ e Frdr = oc+1/ e Tx%dx
S S

—2 —1
k=(1—r)2 s

I'(a+1)
Sa+1

where ' is standard Gamma function. Therefore, R.H.S goes to 0 as s — oo.

For 1 < p < 2 we will establish (2.33) using duality argument. Similar to the
trignometric functions in Euclidean Harmonic analysis, we consider the subspace S
of functions whose spectral projections are supported in a finite number of rays. i.e,

N
S={f:felP(H") and f = Z(Pk,1+Pk,—1)f for some N € N}

k=0

Observe that (2.33) holds on this subspace S. To prove the density of the subspace
we need to show that for any g € L? (H")(the dual of LP (H™)) , (g, f) for all f
in the subspace S implies that ¢ = 0. Now, we know that the operators P, are
projections on L% (H™), hence on L? for all 1 < p < co. This is not difficult to see as
P,ie = Py extends from the dense subspace L? N L? (H™), since Py ¢ is bounded on
LP (H"). Therefore, for any f € LP (H") we know P f is in the subspace S. Hence,
(Pr.eq, f) = (g9, Pr.ef) = 0 by hypothesis. Thus

(1-r)~2

< > " (Pri+ Pioa) g, f> _o

k=0

Then we can use (2.33) for LP' (H") as 2 < p < co. By using (2.32) and taking r — 1
we get that (g, f) = 0. Since this is true for all f € L? (H™) it follows that g = 0.
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To show (2.34), a similar technique as we did to establish (2.32) works. i.e. we
have the convergence in L? norm by Plancherel theorem. Hence if we can show the
boundedness of the operators

(1-r)—2 (

>

k=0 0

we are done as we have the convergence in L? N LP (H™), which is a dense subspace.

The boundedness of these operators are quite easy to prove. They are obtained by
composing the operators

n+2k)/(1—r

)/(1=r)
(f * Grpa + f*Prg—1) dA,

(1-r)~2
r* (Poq + Pr 1) f (2.35)
=0

with the Fourier multipliers in ¢ variable corresponding to the characteristic function
of the intervals |7| < 1/(1 —r). Moreover, both these operators are bounded on L?
and hence (2.35) too is bounded on LP (H™). O
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Chapter 3

Littlewood-Paley Theory for
(—L) (7)™

3.1 Introduction

In this chapter, the main aim is to develop the Littlewood-Paley theory for the oper-
ator (—L£) (iT)~". One of the applications of Littlewood-Paley theory is to study the
L? boundedness of multiplier operators.

We will first introduce multiplier operators in the Euclidean setting before we move
onto the case of Heisenberg group. Fourier multipliers (or simply multipliers) form a
very important class of linear operators on L? (R™). Given a function m : R" — C,
the multiplier operator given by m on LP (R") is defined as

Fro | m(€)f()erea, (3.1)

R?’L

with sufficient conditions on m and f such that all the integrals are well defined. For
f € L?(R"), it follows from the Fourier inversion formula that the identity function
m = 1 denotes the identity operator on L? (R"). One of the basic questions is to
study the boundedness of the multiplier operators under different conditons imposed
on m. For L?(R™), we have a complete characterization of the bounded multipliers
using Plancherel theorem; an operator given by (3.1) is bounded on L? (R™) if and
only if m € L*> (R").

The boundedness on L' and L* are slightly more complicated, nevertheless it has
been completely resolved; a function m(§) is bounded L'(R") or L>(R") multiplier if
and only if there exists a finite Borel measure p such that m = . For 1 < p < oo, the
question has not been completely settled. However, results are available with sufficient
conditions on m using techniques like Littlewood-Paley theory. For example, we have
the following theorem (see [St2], page 96).

Theorem 5. (Mihlin-Hormander Theorem) Suppose m € C*(R™\{0}), where k is
an integer > n/2. Assume also that for every differential monomial (%)a,a =
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(a1, ..., ), with |a| = a1 + ... + o, we have

(az) e

Then there exists a constant A, such that [|Tf|, < |[f]|,, 1 <p < occ.

< Blz|~l*l whenever |a| < k. (3.2)

To read about Littlewood-Paley theory for Euclidean Laplacian see ([St2], Chap-
ter IV)

Now, we define multiplier operator for (—£) (i) ". Given a function f € S(H")
and m € L>*(R,), the action of the multiplier given by m on f is

f =) m(n+2k) (Pia + Pea) f, (3.3)
k=0

For the case of (—£) (iT)~" too Plancherel theorem will immediately give that m
defines bounded multiplier on L?(H") if and only if m is a bounded function.

3.2 Littelwood-Paley g-function

In this section, first we will define Littlewood-Paley ¢ function, which is the fun-

damental object in Littlewood-Paley theory. Here, we will define Littlewood-Paley
-1

g-function using the heat semi-group associated to the operator (—L) (¢7')" ", using
which we will try give a useful characterization of LP multipliers of H".
The heat semi-group associated to (—£) (iT) " is given by
hy (z,) =Y e "R (P + P ) (2,) (3.4)
k=0

Tl (1 e ) [(|2f + dit - e (| — 4it)) "

=e
+ (|2]* — dit + e (2> + 4it))7n71]

Then we define H, (f) (z,t) = hy * f(2,t) and we define the g,-function for an integer

[ >0 as

9 1/2
! dy) (3.5)

o] al
g (f)(zt)= /‘—Hfz,t
) (1) ( Sl (1)
Observe that for a fixed y, K, := g—yllhy (z,t) takes value in the Hilbert space H =
L? (R+, y2l*1dy).

Theorem 6. For each integer | > 1 and f € L* (H™) there exists ¢; > 0 such that

lgr (£) 12 = all F1l2
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Proof. Observe that

00 al
la(NIE= [ [ |t e

o0 [
-/ / %zeww (P + Pect) (F) (2:)
k

- /n /OOO Z (—n — 2k)l e~ (nt2k)y (Peg+ Pr—1) (f) (2,1)

k

2
vyl dydz dt

2
v dy dz dt

2
vt dy dz dt

By the orthogonality of P (z,t) and Fubini’s theorem we can write the above as

Jud

oo 2
- / / S|t 2w e (B P () 0]y dy dz at
H™ JO k

2
v dy dz dt

N (n+2k) e W (B 4 Py 1) (f) (2,0)
k

- / > / | (n+2k) eV (P + Py () (2,8) 292t dy dz dt
n 0

k
(g [ e ) (Z [ [ e+ nym o dt)

We obtained the last equality by a simple change of variable. Now, by applying
Plancherel’s theorem we get that

ge (£) 12 = allF1l2

1/2

where ¢; = (g [, e Vy? 7t dy) O

Next, we will prove that f — ¢g;f is a bounded on L? (H") for every [ > 0. First,
we will prove a vector valued analogue of Lemma 3.1 of [Strl].

Theorem 7. Let H be a Hilbert space and let K : H"\{0,0} — H be homogeneous
function of degree —2n — 2 and an odd function in the 't' wvariable. Moreover, if
K (z,1) € L' (C",H) (the space of all integrable functions from C" — H, see Section
4.2), then the L? operator norm of P.V.f — [ K is bounded by ¢, [, ||K (2,1) ||» dz
for some constant c, depending onp, 1 <p < oco. i.e

1P.f x Klarnnao < (e [ 1 G0l ) 1l
(Cn

Proof. As in [Strl], the idea is to reduce the problem of L? boundedness of K to the
Euclidean convolution estimate that P.V. [*° f(z —s,y — s?) (ds/s) is bounded on
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LP (R?), 1 < p < oo (see to [SW] for the proof of L? boundedness of Hilbert transform
along a parabola). In fact, the exact same proof as in [Strl] follows through, except
that the integrals in our case are vector valued.

Now, for the integral on (—oo,0), we first make a change of variable s — —s, then
use the fact that K is an odd kernel in 's’ variable. Then, we make the change of
variable s — s? to get

o 1
PV.fx K (z,1) :P.V./ / f <z—w,t—s2+§lm z.@) sK(w,s*) ds dw

o 1
—i—P.V./ / f(z—w,t+32+§fm z.w) sK(w, s?) ds dw,

By using homegeneity and making a change of variable w — w/s we get that the
above integral is,

o 1
:/ P.V(/ f(z—sw,t—52+§s]mz.w) §>K(w,1) dw,
n oo s

+/ PV (/oof<z—sw,t+52+%s Im z.@) Q)K(w,l) dw, (3.6)

00 S

By applying triangle inequality, we will find LP operator bound of the first and second
integral in (3.6) separately. For the first integral in (3.6), by applying Minkowski’s
integral inequality we get that it is sufficient to show that the LP operator bound of

o 1 d
P.V./ f(z—sw,t—52+§slmz.@)—s
. s
is independent of w. Clearly we can rotate w to be of the form (p,0,...0), p is
real without changing the L? norm estimate as [, |[K(w,1)|| dw is invariant under
rotation of w, and hence the issue is the operator bound of

> 1 d
P.V./ f(x—sp,y,t—32+§spy)—8
oo s
on L? (R?), or equivalently the operator bound of

> 1 d
P.V./ f (x —sp,t — 5%+ 58,03/) ?S (3.7)

on L? (R?) for all values of p and y. Since the L? operator norm is invariant under
rotations, we will only consider (3.7). Now, we invoke the conjugation transform by
two parameter family of dilations § (A1, A2) f (x,t) = f (Ax, Aat) which does not alter
the LP(R?) operator bound.

Case 1 (y =0):
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Take Ay = p and Ay = 1 Then

5(/)1,1)0P-V/wf(px—8p,t—sz)%:P.v./_oofG(px—sp),t_SZ)@

—0o0 o0 S
:P.V./ f(:z:—s,t—SZ)% (3.8)

Case 2 (y #0):

First we make a change of variable s — £/s. Then

o 1 d

P.V./ f<a:—sp,t—s2+—spy) @
oo 2 S

o0 1 1 1 d

= P-V-/ fla=pPys,t — <p"7s> + ~—pys | =

e 2 4 4 S

Now, we take \; = %pr and \y = %p2y2 and calculate similarly as in case 1 to get

o g o0 1 1 1 ds
5 (207 %y 4p 2y %) o P-V/ f (w — 5P st— Py Zp2y28) ~

o d
:P.V./ f(J]—S,t—82+S)—S
oo s
The form in the second case can again be converted to the one in the first case
again by conjugation transform by (z,t) — (z,t + ) just as we did before. Now, for

the second integral in (3.6), using the similar calculations we get that it is sufficient
to find the LP(R?) operator bound of

P.V./ f(:z:—s,t—l—sQ)%

—00

Once again we can apply a conjugation by the dilation given by A\; =1 and Ay = —1
to get (3.8). O

Observe that we require K to be an odd function in 't’ variable to apply the
earlier theorem. Hence we will take the Hilbert transform of hy (z,t) in "¢’ variable
to get the kernel Y, e ("+20)v (P | — Py 1) (z,t), which is an odd kernel in ¢ as we
require. Now, by the LP boundedness of Hilbert transform for 1 < p < oo it is
sufficient to show the boundedness of the new convolution operator. It is easy to see
that >, e~ ™*20v (P, — P 1) (2,t) is homogeneous of degree —2n — 2. Therefore,
to show that g, is LP bounded it is sufficient to show that the Hilbert transform of
the corresponding kernel is in L' (H", L? ((0,00) , y*~'dy)).

Lemma 6. For every integer | > 0 and n > 0, the function
Ky(z)=e™ (1—e ) (J2]> +4i+ e (|z]* - 4i))_n_l

is in L' (C", L* ((0,00),y*dy)).
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Proof. Observe that the integral that we have to estimate is

0o e 1/2
/ (/ e—2ny (1 _ 6—2y)2 <|Z|4 (1 + e—2y)2 +16 (1 N 6—2y)2> 1 yQZ—ldy) dz
Cn 0

(3.9)

We will first show the result for [ > 1 as there is a slight variation required for
[ = 0. Now, we fix an ¢ << 1 and we split the integral on C™ into two parts, i.e |z| < €
and it’s complement. Observe that in the case of |z| > ¢ we have

1/2

/ o2y (1 _ 6—2y>2 <|z|4 (1 + €—2y)2 116 (1 . 6—2y)2) —n—1 yQZ_ldy)
0

1 - —2ny (1 . —2y)2 2l—1d V2 < 1
EEEAV/ ¢ € yooay ~ et

which is integrable on |z| > e. To deal with the case of |z| < € we will have to split
the inner integral too. i.e

/ e 2w (1 — 6_29)2 (|z|4 (1 + 6_29)2 + 16 (1 — 6_2y)2) - ' ldy
0

VR

N

|Z|3/(l+1) .
5/ 21 (|z[4+y2) "y
0
- —ony (1 _ —2y\2 4 a2y g
+ e (1—e)" (|zI"+ (1 —e?) y*tdy
|2[3/(+1)

The reason for choosing |z|*/ 1) will be evident as the calculation proceeds. Let us
denote the first and second integral in the right hand side as I; and I, respectively.
For I;, we make the change of variable y — |z|*y to get

|z]4l+4 | 2|3/ (1) =2 |2]4l+4 ]2|6
. < / y2l+1d < ‘Z|6_(4H_4) < .
~ g [anta N [antd ~ |zt
Now,
6 € 3
I 1/2</ ’Z’ d </ .CC— 2n—1d < )
/|z|<6( 1) S ol |2[2n+2 SN 0 x2n+2x L < o0
Next,
) < 41 /oo ef2nyy21+1dy _ |Z|6 /OO 672ny|z\3/(l+1)y2l+1dy < |Z|6 11 .
| 2[4n+4 2B/ 2]ttt f | 2[4+ |2]3/0+D)
Hence

3 €
1/2 < || 1 - 1
\/;|<E (12) ~ [2|<5 ’Z|2n+2 |Z‘3/(2l+2) dz ~ o $3/(2l+2) d-T < 0
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The last integral is finite as 3 < 2l + 2 for [ > 1.

Now, for the case of | = 0 we consider |z|*/? instead of |z|*/(*V. Thus,

[1%\/
0

1 €
/ (11)1/2 < / 372 |z tdz < / 2"* lde < 0o (since n > 1)
|z|<e |z|<e ’Z| 0

For I>, the same calculation as above works, except that

\z|3/2

1
‘Z|3n

P e
y (|2]* + %) dy%/ y "y ~
0

So,

2° 1
2 || 4+ |z]3/2°

Hence,

/ ([2)1/25/ ’Z|3 145/6Ldaj<oo
|2]<e < 12122 [2]3 o w34

Hence, we have the required result in all the cases. O

Remark 4. Forl > n+1 one can alternatively use the theory of Calderon-Zygmund
integrals to prove the LP boundedness of g;. The verification is left to the reader.

Corollary 3. Forl >0, f — g, (f) is a bounded semilinear operator from LP (H™) —
LP (H™), for all 1 < p < oo.

Corollary 4. H,(f) = f asy — 0" a.e, Vf € LP (R"), 1 <p < 0.

Proof. First we will show that if the operator

C(f) = sup |Hyf| (3.10)

y>0

is L? bounded then,

Ly =lim sup|f (z,t) — H, (f) (2,t)| =0 a.e.

y—0+
So, assume that C is bounded on LP(H™). Observe that it is sufficient to show that
that for all € > 0, [{L; > €}| < e. Now, we take g to be a compactly supported
smooth function so that ||f — g||, < eP*V/P. For g we know that H,g — g a.e ( as

we had shown in Lemma 5). Hence Ly < C(f — g) + |f — g|. Since we have assumed
that C is L” bounded, we also have the weak LP boundedness. Therefore

HC(f—g) > e} <ePIf —glb Se

So, all we have to show is the LP boundedness of the operator C. We will show the L
boundedness on a dense class, say compactly supported smooth functions. Suppose
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that f € C° (H™). Then, by fundamental theorem of calculus in one dimension we
get that

(H,f (z.1))* = / ' a% (Hf (z.0)  dy = 2 / " (H,f (1) a% (H,f (z.1)) dy
Then,

Hyf (=.8) P < / I (Hf (2 0) a% (H,f (z.1)) |dy

< [T (s ) (vl s o) v

By Cauchy-Schwarz inequality

[Hyf (2,8) |* S 91 (f) (2,1) .90 (f) (2,8) Yy >0
= ig%?lHyf (201 S (91 (F) (=)' (90 (f) ()"

Again by Cauchy-Schwarz inequality,

P 1/p
(/ (sup |Hy f (2,t) |) dz dt>

< ([ m 0o e a)”
S (/n (g1 (f) (z,0))Pdz dt)mp (/n (60 () (2. 0))° dz dt)l/2p

= llgr () 11 Ngo ) IBZ S AL S 1Al

Therefore, we have shown the LP boundedness of C and hence the a.e convergence of
Hy (f). O

Corollary 5. ), 8 (Poy+ P 1) f— faeasr— 1.

Proof. This is an easy consequence of the earlier corollary that H,f — f a.c as
y — 17. Every r such that 0 < r < 1 can be expressed as e™¥ for some 0 < y < oc.
Hence the result follows immediately. O

Theorem 8. Suppose f € L* (H™) and g, (f) € LP (H"), 1 < p < oo for any integer
[ > 1. Then f € LP (H") and there exists a constant A} such that

A < Mg () 1
Proof. We have

ge (£) 12 = allf1l2
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Hence by polarization identity, for fi, fo € L? (H") we have

F () Ty (2t) dz di = 6 / 0 (1) (20 g1 (f2) (2, 1) d dt.

n

Hn

Suppose now in addition we also have that f; € LP (H") and f, € LY (H") with
l|fall; < 1, and 1/p + 1/q = 1. Now, using Holder’s inequality and the fact that

g (f) g < Agllfllq we get that

‘ . fi(z,0) Jo (2) da| < c?lge (F1) llpllon (f2) g < 7% Agllgn (f) [lp (3.11)

Now take the supremum in the above inequality as fy; ranges over all functions in
L* N LP(H™), with ||f2]|, < 1. We thus obtain the required inequality with with
Al = ¢}/ (Ay) for f € L> N LP(H™). To obtain the inequality for a general functions
in LP (H™) we will use limiting arguments. Let f,, be a sequence of functions in
L?> N LP(H™), which converge to a general function f € LP(H™) in the LP(H™) norm.
Now,

191 (fmi) () = 91 (fimz) (2) |
2 1/2
00 al ol 1 00 al
= (/0 a—ylHyfnn (Z,t) Y : dy) - </0 ‘a_ylHyfmz (th)

00 al
< </O 8_ylHy(fm1 - fm2) (Z7t>

9 1/2
y2l1dy>

9 1/2
yz”dy> = g1 (fn — [fn) -

Hence, by the LP boundedness of g, we get that g; (f,,) converge to g; (f) in LP(H")
for 1 < p < o0. [
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Chapter 4

Appendix

4.1 Hilbert-Schmidt Operator

Definition 5. Let {uy}aca (where A is a countable set) be a complete orthonormal
set in a separable Hilbert space H. A bounded linear operator T is said to be a Hilbert-
Schmidt operator in case the quantity ||T||us defined by the equation

1/2
|T||as = (Z ||Tua||2>

aEA

is finite. The number ||T|| is called the Hilbert-Schmidt norm of T. The class of all
Hilbert-Schmidt operators on H will be denoted by HS.

In the definition of the class HS a particular orthonormal sequence was used.
However, the following lemma will show that HS depends only on the Hilbert space
and not on the basis.

Lemma 7. The Hilbert-Schmidt norm is independent of the orthonormal basis used in
its definition. If T is in HS and U is a unitary operator in H, then U=YTU is in HS
and and ||T||us = [[U'TU||us- In addition, ||T|ly < ||T||lus and ||T*||xs = ||T||us

See [DS], Chapter XI for the proof of above lemma. Now, one can verify that,
given any orthonormal basis {u,} of H

(S.T)s = (T"Sta,us),  S,T€HS (4.1)

«

defines an inner product on H and (T, T*)gs = (T*,T)us = ||T||%5. Moreover, the
inner product is independent of the basis chosen by polarization identity. Now, we
define the trace of a Hilbert-Schmidt operator as

tr (T) =(T,1d)gs, (4.2)

where Id is the identity operator on H. If the Hilbert space H is represented as
L3(S,%, u) for a positive measure p, then the Hilbert-Schmidt operators are those
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operators K having a representation in the form

(K f)(s) = / K(s. 1)/ (1) du(t)

S

where

/S/S (s, 8)[? du(s) du(t) < oo.

They are also called Hilbert-Schmidt integral operators, and ||K||gg, the Hilbert-
Schmidt norm, is equal to [ [ |k(s,t)[* du(s) du(t).

4.2 Vector valued integrals

Let H be a separable Hilbert space. Then, we say that the function f (z) from H" to
H is measurable if (x), ¢) is measurable, wehre (.,.) denotes the inner product on H
and the ¢ is an arbitrary element of . Since the norm |[|.|| function is continuous we
have that ||f|| is also measurable as a real valued function if f is measurable. Now,
we define LP (H™,H) as the equivalence class of measurable functions f from H" to

H such that the norm |||, = ([;. |f (z) [P dz) P i finite, for p = co we have similar
definition with ||f||, = ess supl|f (z) ||.

Next, let H; and Hs be two separable Hilbert spaces and let B (H;, H2) denote
the Banach space of bounded linear operators from H; to H, with the usual operator
norm. We say that the function f from H™ to B (Hi, Hs) is measurable if f¢ is an Hy
valued measurable function for every ¢ € H,. In this case also || f|| g, n.) is measur-
able and we can define L? (H™, B (H1, Hz)) as before. It easy see that the fundamental
results in integration theory like Dominated convergence theorem, Fubini’s theorem,
Young’s integral inequality, Minkowski’s integral inequality for complex valued func-
tions also hold in this case where we replace the |.| function on C with the operator
norm ||.|| g, me). Observe Hy valued functions are a special case of B (Hq,Hz) val-
ued functions if we take H; = C.

Next, we will see what exactly does it mean to integrate Hilbert space valued
functions. Let f € LP(H™,C) and let b € H. Now, we can define the func-
tion f.h : H® — H as (f.-h)(z) = f(x)h. Observe that f.h € LP(H", H) as
-2l Lecem 2y < I fl|oecen o)l |P]|3. Let the subspace of LP (H",H) consisting of finite
linear combinations of functions of this type be denoted as I” ® H. Note that the
functions in I ® H with f being a characteristic function replaces the role of sim-
ple functions in scalar valued integration theory. Hence, a proof similar to the one
in scalar valued integration theory will show that LP ® H is dense in LP (H", H) if
1 <p<oo.
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Given F' = Zj fi-hj € L' @ H, we define its integral to be the element of H given
by

[ r@ a@ =Y ([ 5w ),

The map F — [ F (z) du () extends to L'(H™,H) by continuity. For a function in
L' (H",H), by Riesz representation theorem, this integral is a unique element of H
given by

<h,/nF(x) du(:c)>—/n<h,F(x)> du(z), Vhe
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