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Abstract

Quantum thermodynamics has opened a new world for us. It aims studying laws

of thermodynamics in the quantum world. The study of open quantum systems

is another benchmark that is being set in recent times. As we are inching towards

making e�cient quantum thermal machines, we have to encounter the problems that

become dominant in quantum domain. Shortening the duration of a process leads

to more power generation in the process and that introduces irreversibility in the

evolution of the system. Our main interest in this thesis is to study the e↵ects of

quantum coherence in fast driving protocols, especially dividing the irreversible en-

tropy production into two di↵erent components, coherent and non-coherent, and to

study the coherent contribution in detail for di↵erent kind of driving Hamiltonians.

In recent years, it has been found that the relative entropy of coherence is a useful

measure of the amount of coherence generated in a system. In this thesis, we have

measured relative entropy of coherence for di↵erent driving potential and studies its

time dependence.
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Chapter 1

Introduction

Recent advancement in nanotechnologies, miniaturization helped us building ex-

tremely small and sophisticated machines. Now as we are constantly demanding to

produce smaller system it is better to know the thermodynamics of the system prop-

erly. Sometimes the system consists of only few atoms then it could not be described

by the laws of thermodynamics that is used to describe system on a macroscopic

point of view.

Thermodynamics could possibly be stated as one of the best theory ever pro-

duced. It is mainly developed in the 19th century as the industrial revolution was

taking place and humans were being replaced by machines as workforce. As people

started building macroscopic engines thermodynamics became a hot topic of scien-

tific research. At first this theory was built to understand heat to work conversion of

these thermal machines but the work of Carnot has led Clasius to discover Clasius’s

law of thermodynamics [Thomas 11] and for the first time in the history entropy

was introduced.

Meanwhile quantum theory also started developing at 20th century and made

huge progress throughout the last century and now believed more fundamentally

accepted than classical mechanics.

The general question that would struck to any of the newcomers to this field

would be - What are the requirements to simultaneously describe the quantum

nature and the statistical nature of the system? Do laws of thermodynamics change

in quantum domain where coherence, correlation, quantum fluctuation are dominant

or remain intact? How do quantum phenomenon impacts the performance of a heat

engine? How on asymptotic limit these quantum e↵ect vanishes? How Quantum

Lubrication impacts the performance of a thermal engine through an additional

dephasing noise?
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In thermodynamics we generally address adiabatic processes through time de-

pendent Hamiltonians. But sometimes the internal time scale doesn’t match with

external time scale or the Hamiltonian doesn’t commute at di↵erent times that re-

sults irreversibility in quantum system. Infinitely slow process is required to attain

adiabaticity on a fundamental level. But we cannot run a thermal process for such a

long time and long time process doesn’t even considered as a better power resource.

So for that we need to study thermal systems at finite time [Dann 20] and that’s

when the inner friction and irreversible work come into picture.

Generally friction could be viewed as loss of energy for moving too fast. A rapid

change in any system would generate an additional entropy and will be compensated

with energy cost. For example if we take a non smooth surface and try to slide a

body on it , then the surface would resist and as a result of that heat will get gen-

erated and the body will eventually loose its kinetic energy and would be unable to

reach its destination. Another example could be the driven gas compression process.

After making it a closed system if we rapidly change the position of the piston it

would cause heating in the gas and cause unwanted energy generation. To bring

THE final state of the system to its quasi-static equivalent state we have to remove

heat from the system. This extra work is named as frictional work.

One could ask that friction is generally a classical phenomenon so how does it

work in quantum domain? How using models could we describe friction in quantum

domain? As we see so many examples about quantum friction in superfluid theory ,

quantum cosmology etc one could ask that is friction really a quantum phenomenon

or it is just classical friction embedded also in quantum domain or is there really

something called quantum friction? We could see that generally quantum friction

adds frictional e↵ects beyond and above classical friction. So we a quantum system

would experience more friction.

To study inner friction generated in a close quantum system we need to get the

system far out from equilibrium through changing the control parameters at a fi-

nite time. As inner friction is the intrinsic properties of the system it would resist

us to get to the desired result. Now the extra amount of work that we need to do

in order to attain the expected result is frictional work or inner friction of the system.

The thesis is written in the following way: at first we have a chapter dedicated

to understanding the basic concepts of quantum thermodynamics and quantum

information theory. It would provide basic skill-set for grasping the concepts at a

deeper level. In the next chapter we tried to compare finite time thermodynamic

processes with infinite time reversible processes to find the correlations between these

2



processes. Surprisingly the amount of irreversibility associated and the amount of

inner friction generated could be calculated provided we know the end state of the

processes. There are two cause for this generation on friction in quantum systems one

is diabatic transition and another one is coherence generation between states. In the

next chapter we have calculated the role of coherence in introducing irreversibility

to the system. For that case we have taken a Hamiltonian and driven the system in

finite time and calculated the amount of coherence generated in the process. The

next chapter displays the role of coherence generating friction in quantum systems.

So in our case we have taken a system and then we brought the system far from

equilibrium and then measure the frictional work and relative entropy of coherence

as a measure of the contribution of coherence in the frictional work.
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Chapter 2

Basics of Quantum

Thermodynamics

2.1 Introduction

Quantum Thermodynamics generally deals with heat, work, entropy and other ther-

mal properties of quantum systems. This field has grown rapidly in the last two

decades. Recent inclusion of equilibrium experiments and studying physical system

at cold temperature and findings about the relationship between non equilibrium

statistical physics and quantum information theory, resource theory has led this field

to great heights. With development of fast quantum system the boundaries of limit

of conventional thermodynamics is constantly getting pushed and understanding

thermodynamics of these system would benefit miniaturization of technologies to

nanoscale.

As this field is considered interdisciplinary in nature various perspective has

emerged and each of them contributes di↵erent kinds of insight to this field. This

chapter includes necessary mathematical tools that has been very useful throughout

this project.

2.2 Density Operator

To describe quantum systems(open and closed) we have to incorporate the sources

from where randomness is coming other than the intrinsic randomness of the system

e.g, the correlations built by the system though interaction with the environment

or the lack of understanding about the state of the environment that surrounds the

system. Other than that we eager to know about the preparation procedure of the

system to gain some insight how the system will behave under certain conditions.
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Density operator describes a statistical state of a quantum system

⇢ =
NX

k=1

pk | ki h k| (2.1)

where pk’s are the probability of the system being in the  k state and | ki h k| is

the projection operator on the | ki state. It is a positive semidefinite (⇢ � 0),self

adjoint(⇢ = ⇢
†) operator and Tr[⇢] = 1.

Density operator could be su�cient to calculate the outcome of the measurements

correspond to an observable. Expectation value of any observable A could be written

as

hAi = tr(Â⇢̂) =
X

k

pk h k|A| ki (2.2)

2.3 Thermal State

Generally for grand canonical ensemble we have open system where energy and

particle number get fluctuated then the thermal state(Gibbs state) of the system

could be described by the following density matrix

⇢� =
e
��(Ĥ�µN̂)

Tr
n
e��(Ĥ�µN̂)

o (2.3)

Where Ĥ denotes the Hamiltonian of the system, N̂ the particle number operator

acting of the system, � the inverse temperature, µ referred as chemical potential

and Z is the partition function of the system .

If a system is in equilibrium with its environment means it could exchange both

particle and energy with the environment then the system could be well described

by the thermal state. The thermal state maximizes Von Neumann entropy under

certain conditions and it is the only completely passive state.

2.4 First and Second Laws of thermodynamics

Thermodynamics generally concerns with energy and we identify change in energy

in terms of heat and work. Now, for a quantum system that is in a state ⇢ with

Hamiltonian H the amount of internal energy or average energy of the system could

be written as U = Tr{⇢H}. Changes in the system with respect to time brings

change on the state of the system and on its Hamiltonian too. If both state and

Hamiltonian(⇢(t), H(t)) changes with time on an interval t 2 [0, ⌧ ], the change in
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systems internal energy could be

�U = Tr
�
⇢
(⌧)
H

(⌧)
�
� Tr

�
⇢
(0)
H

(0)
�

(2.4)

The change in internal energy could generate two types of energy transfer work

and heat. First one of them is fully useful and directed source of energy and the

second one is not fully controllable rather could be termed as wasteful quantity. As

the system Hamiltonian get changed by control parameters and could be changed

in a directed way so the change in energy due to change in Hamiltonian is identified

as work and the change in the state of system due to change in Hamiltonian or the

correlations it builds with environment is identified as heat. By definition the heat

absorbed by the system and the work done on the system could be written as

hQi =

Z
⌧

0

Tr
h

˙
⇢(t)H

(t)
i
dt hW i =

Z
⌧

0

Tr
h
⇢
(t) ˙
H(t)

i
dt (2.5)

So the first law of thermodynamics states that mean internal energy change in a

system is equal to sum of average heat and the amount of work done on the system.

It’s important to note that internal energy does depends only on final and initial

states and corresponding Hamiltonian of the system but heat and work are path

dependent quantity.

hQi+ hW i =

Z
⌧

0

d

dt
Tr

�
⇢
(t)
H

(t)
�
dt = Tr

�
⇢
(⌧)
H

(⌧)
�
� Tr

�
⇢
(0)
H

(0)
�
= �U (2.6)

The second law of thermodynamics generally governs the work extraction from

a process and introduces irreversibility in thermodynamics. At 1965 Clasius first

introduced a function named entropy is useful to study heat transfer from envi-

ronment to system through interaction at di↵erent temperatures. If h�Qiis the heat

absorbed by the system through a reversible thermodynamic process at temperature

T then entropy could be defined as

�Sth =

Z

rev

h�Qi

T
(2.7)

As any cyclic process obeys
H h�Qi

T
 0 with equality for reversible processes we

could write the Clasius law(2nd law)of thermodynamics widely known as Clasius’s

inequality

Z
h�Qi

T
 �Sth or hQi  T�Sth for T = constant (2.8)

It just states that the net change in entropy of the system is more or equal to

the heat taken by the system divided by the temperature at which the heat got

6



exchanged.

If a system having Hamiltonian H and in contact with a thermal bath at tem-

perature T its free energy could be written as a function of state

F (⇢) = U(⇢)� TS(⇢) (2.9)

Clasius statement could be reflected as the upper bound of the extracted work

hWexti = �hW i = ��U � hQi  ��U + T�Sth = ��F (2.10)

But the amount of actual work extracted would depend on the process for some

process it is equal to change in free energy and for some cases it’s not equal to

change in free energy [Vinjanampathy 16].

2.5 Dynamics of Closed Quantum System

In quantum mechanics the state of a system is represented by state vector | i,where

| i 2 H.

The time evolution of a system could easily be described by the Schrodinger Equation-

i~ d

dt
| (t)i = ˆH(t)| (t)i (2.11)

where H(t) is the time dependent Hamiltonian of the system and the solution of

the Schrodinger equation then becomes-

| (t)i = U(t, t0)| (t0)i (2.12)

where U(t, t0) and | (t0)i are the time evolution operator and the initial state of

the system respectively. Fore-mentioned unitary operator also satisfies the relation

U(t, t0)U
†(t, t0) = U

†(t, t0)U(t, t0) = 1.

Substituting | (t)i in the previous equation we get

i~ d

dt
U(t, t0) = ˆH(t)U(t, t0) (2.13)

From the Schrodinger we could easily derive time evoltion of the density operator

and this equation is known as Liouville-Von Neumann equation

d⇢(t)

dt
= �◆~[H(t), ⇢(t)] (2.14)

This equation is equivalent to the classical Liouville equation and could be writ-

7



ten in the following form
d⇢(t)

dt
= L(t)⇢(t) (2.15)

where L(t) is the Liouville super-operator acting on the density operator to produce

a new operator

L(t)⇢(t) = �◆~[H(t), ⇢(t)] (2.16)

If we solve the previous equation then we get a solution for the density matrix

at any instantaneous time

⇢(t) = T e
R
t

to
L(s)ds

⇢(t0) (2.17)

For any kind of time varying Hamiltonian the Liouville super-operator also be-

come time dependent then the solution becomes

⇢(t) = e
L(t�t0)⇢(t0) (2.18)

If we solve the Lieuville-Von Neumann equation we would get instantaneous

density matrix as

⇢(t) = U(t, t0)⇢(t0)U
†(t, t0) (2.19)

For closed and isolated system the Hamiltonian is time-independent and could be

calculated through integrating this equation. If we integrate the previous equation

we would get unitary in the following form-

U(t, t0) = e
� iH(t � t0)/~ (2.20)

• When Hamiltonian doesn’t commute at di↵erent times([H(t1), H(t2)] 6= 0)

Most of the physical process the Hamiltonian is driven by a control parameter

that could be controlled externally. If the Hamiltonian contains time dependent

components then it could be controlled by changing the corresponding time depen-

dent component. In order to calculate the dynamics of a time dependent Hamilto-

nian H(t) the evolution operator needs to be calculated. In this case the evolution

operator could be expressed as

U(t, t0) = T e
� i/~

R
t

t0
H(t0)dt0 (2.21)

If we simplify the unitary from previous equation we would get

8



U(t, t0) =
X

n

Un(t, t0) =
X

n

(
�i

h
)n

Z
t

t0

dt1

Z
t1

t0

dt2 · · ·

Z
tn�1

t0

dtn T H(t1)H(t2) · · ·H(tn).

(2.22)

If we consider a system that is prepared as mixed state could be written through

a density matrix ⇢. At time t0 the density matrix could be written as

⇢(t0) =
X

k

pk | k(t0)i h k(t0)| (2.23)

Where pk’s are the probabilities of the system being on | k(t0)i state and | k(t0)i

are evolving states. Now after time t the density state(⇢t) of the system could be

defined as

⇢t =
X

k

pkU(t, t0) | k(t0)i h k(t0)|U
†(t, t0) (2.24)

2.6 Entropy

Entropy is a key concept in information theory and it measures the amount of

certainty in a system. The amount of entropy associated with an observable x

could be viewed from two di↵erent perspective. First one says that the entropy

of an observable would be the amount of information we gain while we measure x

and the second one generally measures the uncertainty associated with it without

knowing the value of x. We generally try to write entropy as a function of probability

distribution.The Shanon entropy of a probability distribution could be defined as

S(x) = S(p1, p2, . . . , pn) = �

X

i

pi ln pi (2.25)

The Shanon entropy measures the uncertainty associated with a classical proba-

bility distribution, Von Neumann entropy measures the uncertainty associated with

a density operator ⇢ because the entries of the matrix is the probability of the system

being on the pure state. Von neumann entropy of the state ⇢ is defined as

S(⇢) = �Tr(⇢ ln ⇢) (2.26)

If the density operator is spectrally decomposed on its eigenstates i.e. ⇢ =
P

i
pi | ii h i|

then Von Neumann entropy of the system is

S(⇢) = �

X

i

pi ln pi (2.27)

9



2.7 Relative Entropy

Relative entropy is a very useful technique that measures closeness of two probability

distributions p(x) and q(x) over the index set x. Now the relative entropy of these

two distribution is defined as

D(p(x)||q(x)) =
X

x

p(x) log
p(x)

q(x)
= �S(p(x))�

X

x

p(x) log q(x) (2.28)

The relative entropy of ⇢ and and � is defined by

S(⇢||�) = Tr(⇢ ln ⇢)� Tr(⇢ ln �) = �S(⇢)� Tr(⇢ ln �) � 0 (2.29)

From Klein’s inequality we could show that quantum relative entropy is always

positive [Allahverdyan 05] and equals to zero when ⇢ equals to �.

2.8 Distance Measures

Sometimes in quantum thermodynamics we need to know how distant two quan-

tum states are to di↵erentiate between the expected state and the resultant state.

There are two kind of distance measures one is Trace Distance and another one is

Fidelity. Fidelity generally measures the distance between two probability distribu-

tions. The fidelity between two probability distributions px and qx could be written

as [M. Nielsen 10]

F (px, qx) =
X

x

p
pxqx (2.30)

To know how close two quantum states are we have to calculate the fidelity between

two quantum states. So the fidelity of state ⇢ and � could be defined as

F (⇢, �) = [Tr
q

p
⇢�

p
⇢]2 (2.31)

2.9 Work from Coherence

To understand role of coherence in a thermodynamic process we take projection

operator as a route to analyse it. Coherence is a basis dependent concept and

there is no preferred basis. These projection operators(dephasing maps) maps a

density state ⇢ that contains coherence in a particular set of eigenbasis ⇧k with

k = 1, 2, 3, . . . to a state ⇢ 7! ⌘ := ⇧k⇢⇧k , where the coherences are removed. So

the maximum extracted work from coherence could be written as

hW
max

ext
i = kT (S(⌘)� S(⇢)) � 0 (2.32)

10



2.10 Conclusion

In this chapter we have learned the mathematical tools useful for studying quantum

friction in details. In the next chapter we could see that irreversible work and

frictional work could be represented as the relative entropy of the final state and the

equilibrium states.
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Chapter 3

Irreversibility and Quantum

Friction in Thermodynamic

Process

3.1 Introduction

Internal friction arises due to rapid change in the external parameters. An external

change could result a change in the semi-classical hamiltonian of the system. If

we change the control parameters slowly then Quantum Adiabatic Theorem assures

that the system will be in equilibrium throughout the process. There will be no

change in the energy populations and therefore the change in total energy is a result

of change in energy levels. Generally such a process is called Quasistatic process

and always reversible.

But if we push the system faster than its thermalization time it causes mis-

match between external degrees of freedom with internal degrees of freedom then

such transformations are irreversible and lead to a final state that is outside of the

manifold of equilibrium states [Jarzynski 11; Esposito 09].

Though the slow processes leads to better heat to work conversion the power

generation of these processes are very low compared to the fast process. As in these

cases we desires better results but it also comes with its own shortcomings. The

irreversibility in these processes leads to better outcome and entropy production

[Esposito 10; Horowitz 13]. To study irreversibility associated with finite time adi-

abatic transformation and the entropy associated with it in the quantum world we

would start with a system initially prepared in equilibrium. At first the state is pre-

pared in contact to a thermal bath then isolated and the hamiltonian of the system

is changed from H(�i) to H(�f ) through a control parameter �.

12



Figure 3.1: Black,Maroon,Blue points denote equilibrium states at di↵erent tem-
peratures respectively. ⇢i = e

��iHi/Z(�i,�i), ⇢B = e
��iHf/Z(�f ,�i), ⇢A = e

��AHf/Z(�f ,�f ).
The Greenish Yellow point denotes the state after the finite time ⌧, ⇢⌧ =
U(⌧, 0)⇢iU †(⌧, 0)

.

3.2 Irreversible Work

If the work performed on the finite time adiabatic process is w then it could be

associated with a probability density function p(w). In these cases the work could

be lower bounded by the change in free energies between the two states and obeys

Jarzynski fluctuation relation [Jarzynski 97]. As the work is lower bounded by the

change in free energy(�F ), this enforces us to introduce the concept of irreversible

work that is defined through the di↵erence in work in any finite time unitary process

and the change in the free energy of the system. Generally it could be considered

as a measure of the irreversibility introduced through the process.

hwirri = hwi ��F (3.1)

The process diagram is sketched in 5.1. Initially the state was in equilibrium

at �i and initial state was ⇢i = e
��iHi/Z(�i,�i). The ⌧ point is related with the state

after the finite time unitary transformation ⇢⌧ = U(⌧, 0)⇢iU †(⌧, 0). Other two points

belongs to equilibrium states and it is shown that though the Hamiltonian of the

system after three di↵erent transitions is same the ⌧ point doesn’t belongs to the

same manifold of the equilibrium states.

13



The system starts in ⇢i with eigenbasis
���✏(i)m

E
and Hamiltonian Hi goes through

unitary transformation and goes to Hf with eigenbasis
���✏(f)m

E
. So the initial prob-

ability is p
i

m
= e

��iEi/Z(�i) and the transition probability is written as p
i!f

m
=

|

D
✏
(f)
m

���U(⌧, 0)
���✏(i)m

E
|
2. Probability function associated with work could be written

in the following way

p(w) =
X

i,f

e
��iEi

Z(�i)
|
⌦
✏
(f)
m

��U(⌧, 0)
��✏(i)

m

↵
|
2
�(w � (Ef � Ei)) (3.2)

The expectation value of the work done by system could be calculated using the

probability distribution

hwi =
X

m,n

(Ef � Ei)p
i

m
p
i!f

m
=

1

�B
(Tr(⇢⌧ ln ⇢⌧ )� Tr(⇢⌧ ln ⇢B))�

1

�B
ln

ZB

Zi

(3.3)

The last term on the right hand side of the equation is equal to the change in free

energy as F = �
1
�
lnZ and the first two terms could be defined as Kullback-Leibler

divergence or relative entropy between the density operator after the time ⌧(⇢⌧ ) and

the density operator of the system after reversible isothermal process(⇢B).

hwi =
1

�B
D(⇢⌧ k ⇢B) +�F (3.4)

Irreversible work generated through this process is

hWirri = ��F + hwi =
1

�B
D(⇢⌧ k ⇢B) (3.5)

Now the amount of irreversible entropy generated throughout the process could be

written as [De↵ner 10]

h�Sirri = �B hWirri = D(⇢⌧ k ⇢B) (3.6)

Using the definition of free energy we could see that the irreversible work is

related to the heat required for thermalization of the system from state ⇢⌧ at tem-

perature T = �
�1
B

as shown in [Apollaro 15]

hWirri = TB(SB � Si)�
⌦
Q

th

⌧!B

↵
(3.7)

where
⌦
Q

th

⌧!B

↵
= Tr{(⇢B � ⇢⌧ )Hf} is the heat taken by the system in time of ther-

malization. We could use these results to compare irreversible work with frictional

work.
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3.3 Inner Friction

On the other side of the picture we would compare our finite time adiabatic transfor-

mation (i ! ⌧) with reversible adiabatic transformation (i ! A). While comparing

finite time, performed after isolating the system would generally introduce the con-

cept of quantum friction that is defined to be the di↵erence in the work performed

between the actual finite time adiabatic process and the ideal (⌧ ! 1) reversible

adiabatic process.

hwfrici = hw⌧ i � hwi!Ai (3.8)

Using the same method that is used for calculating the irreversible work and

the amount of irreversible entropy generated in the process we could quantify the

amount of inner friction and the entropy associated with it.

Though a ideal reversible process or for a quastatic process the Hamiltonian of

the system get changed through the control parameters but the population inversion

doesn’t takes place. If the system started as equilibrium state then population of a

eigenstate |✏i
m
i of the Hamiltonian Hi could be written as pi

m
= e

��i✏
i
m/Z(�i,�i). After

the transformation the population of the states would become p
f

m
= e

��A✏
f
m/Z(�f ,�A)

for Hamiltonian Hf on its eigenbasis
��✏f

m

↵
. Reversible adiabatic transformation

processes demand no population inversion so for transformations from H�i
to H�f

P
(i)
m

= P
(A)
m

) e
��i✏

(i)
m /Z(�i,�i) = e

��A✏
(f)
m /Z(�f ,�A) (3.9)

For a reversible adiabatic process work performed throughout the process could be

written as mean energy di↵erence of the final and initial state hwi!Ai = UA�U i =X

m

P
i

m
(✏(f)

m
� ✏

(i)
m
).

Now from the definition of frictional work we could get a measure of frictional

work through the di↵erence of the work in the finite time of the unitary process and

the ideal adiabatic process

hwfrici = hw⌧ i � hwi!Ai = tr(⇢⌧Hf )�UA =
X

m

✏
(f)
m

[
⌦
✏
(f)
m

��⇢⌧
��✏(f)

m

↵
� P

(A)
m

] (3.10)

Now the relative entropy between the state after unitary transformation ⇢⌧ and

the state after reversible adiabatic process ⇢A is

D(⇢⌧ k ⇢A) = Tr(⇢⌧ ln ⇢⌧ )� Tr(⇢⌧ ln ⇢A) =
X

m

�A✏
(f)
m

[
⌦
✏
(f)
m

��⇢⌧
��✏(f)

m

↵
� P

(A)
m

] (3.11)

We have calculated the irreversible work as relative entropy between two states

in Eq. (3.5), it is shown that the frictional work could be quantified similarly as

the relative entropy between the actual state ⇢⌧ and the equilibrium state after the
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reversible adiabatic transformation[Plastina 14].

hwfrici =
1

�A
D(⇢⌧ k ⇢A) (3.12)

For thermalization process ⌧ �! A the average heat taken by the system at Ta is

�A

⌦
Q

th

⌧�!A

↵
= ��A hwfrici = �D(⇢⌧ k ⇢A)

If we compare the heat exchanges between system and bath for both the cases we

could get
⌦
Q

th

⌧!A

↵
�
⌦
Q

th

⌧!B

↵
= UA�UB and eventually we could derive the relation

between the irreversible work and frictional work.

hwfrici � hwirri = (UA � UB)� Ti(SA � SB) (3.13)

From Kelin’s inequality we could say that frictional work and irreversible work

are always greater than zero. We could have geometric lower bound of frictional

work expressed in terms of Bures length [De↵ner 10]

�a hwfrici �
8L2(⇢⌧ , ⇢A)

⇡2
(3.14)

where for any two density matrix ⇢1 and ⇢2 L is expressed in terms of fidelity

of these two states L(⇢1, ⇢2) = arccos {
p

F (⇢1, ⇢2)}. Fidelity of these two states is

expressed as F (⇢1, ⇢2) = [Tr{
pp

⇢1⇢2
p
⇢1}]2.

3.4 Fluctuation Theorem

Fluctuation theorem generally express universal properties of the probability distri-

bution p(�) of functionals �[x(⌧)] like entropy, heat, work get evaluated through

a fluctuating trajectory that starts with a predetermined probability distribution

like p0(x0). Often times these fluctuation theorems give most beautiful results like

Jarzynski relation states that work done in any arbitrary paths would always be

greater than work done in quasi-stationary process or the free energy di↵erence

between initial state and final state.

Integral Fluctuation Theorem

A non-dimensionalized functional �[x(⌧)] with probability distribution p(�) obeys

the integral fluctuation theorem if

⌦
e
��↵ =

Z
p(�)e��d� = 1 (3.15)

If we use Jensen’s inequality then we could find that � � 0.
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For quasi-stationary and reversible adiabatic process there would be no net en-

tropy change as Von Neumann entropy of these states are the same. For fast pro-

cesses unwanted diabatic transitions could occur that would eventually contribute

to hwfrici. We could fully observe entropy production due to diabatic transitions by

creating a stochastic entropic variable s that could be obtained through measuring

the system through measuring the energy of the system before and after the process.

If the two outcomes are ✏(i)n and ✏(f)m respectively then we could build the variable as

s = �A✏
(f)
m

� �i✏
(i)
n

(3.16)

The probability density function associated with the variable s could be written as

P (s) = p
i

n
P

⌧

n!m
�(s� (�A✏

(f)
m

� �i✏
(i)
n
)) (3.17)

Where the initial probability of the system being in
���✏(i)m

E
state is pi

n
= Z

�1
i

e
��i✏

(i)
n and

the transition probability is P
⌧

n!m
= |

D
✏
(f)
m

���U(⌧, 0)
���✏(i)n

E
|
2. A fluctuation theorem

associated with the variable s could be obtained [Tasaki 00]

hexp{�s}i =
ZA

Zi

⌘ exp{�(�AFA � �iFi)} (3.18)

Using Jensen’s inequality(hexp(f)i � exp(hfi)), we could derive that

hsi � (�AFA � �iFi) (3.19)

Now we would introduce a variable ⌃ that measures the amount of entropy

produced in the actual process.The average amount of entropy produced in the

system is always larger then zero and equals in quasistatic process.

DXE
= hsi � (�AFA � �iFi) � 0 (3.20)

fore-mentioned quantity ⌃ could be easily shown to be related with the frictional

work, so DXE
= �A hwfrici = D(⇢⌧ k ⇢A) (3.21)

The combination of the free energy could be expressed through the cumulants of

the distribution of the variable s taking ln (he�si) as the generator of the cumulants

� (�AFA � �iFi) =
1X

n=1

(�1)n

n!
Cn (3.22)

Finally the inner friction or frictional work could be expressed as the combination

of the cumulants of order more than 2.
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DXE
= �A hwfrici =

C2

2
�

C3

3!
+ . . . (3.23)

where C2 = hs
2
i � hsi

2 is called variance and ,C3 = hs
3
i � 3 hs2i hsi + 2 hsi3 is

called skewness etc.

3.5 Conclusion

In this chapter we have compared the closeness of actual finite time unitary pro-

cesses that is brought far from equilibrium with reversible isothermal and reversible

adiabatic processes. The comparison of work done in the finite time process with the

ideal ones has lead to two di↵erent concepts one is irreversible work and another one

is frictional work or inner friction. It is also shown that both of them are correlated

to the heat exchange in the thermalization process and they are also interrelated

to each other. At the end we could say that the inner friction obeys an integral

fluctuation theorem that intern gives a precise idea about the inner friction.
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Chapter 4

Irreversibility and Coherence

4.1 Introduction

The study of irreversibility and entropy production have been the heart of sta-

tistical theory and now in non-equilibrium thermodynamics and it claims to be

equally important as before. In non-equilibrium quantum thermodynamics fluctu-

ation theorems has been experimentally tested and used for studying irreversibil-

ity in closed system when the system performs work and work is done on system

using external control parameters [Chiara 15; Dorner 13; Talkner 07]. Understand-

ing how irreversibility emerges in a quantum system is a highly convenient issue

[Tasaki 16; Kieu 04] as day by day we are intending to explore more of the quantum

world and this is evident in the current progress in making thermal machines.

Role of coherence in non-equilibrium thermodynamics is extensively studied in

the recent years. In this chapter we would take advantage of a recently intro-

duced quantity called Relative Entropy of Coherence as a measure of coherence

[Streltsov 17; Baumgratz 14] and study the role of coherence in irreversibility. More

specifically we would divide the irreversible entropy into two portions, one of them

is incoherent transitions and the other one is coherence. We would calculate the

coherence generated in a finite time unitary process and study time dependency of

coherence generation for a special type of Hamiltonian that we could control through

external control parameters.[Francica 19]

4.2 Irreversible Work of Coherence

To study role of coherence in generation of irreversibility we would study unitary

process where the systems are driven far from equilibrium from its initial state ⇢0

through some control parameters using time dependent Hamiltonian. We are as

usual dealing with closed systems the process is unitary and the unitary operator is
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generated by the the Hamiltonian H[�(t)], where �(t) is the control parameter that

changes the from �(t) = �0 to �(t) = �f gradually throughout the process [0, ⌧ ].

The Hamiltonian changes from H(�0) to H(�f ) and the instantaneous Hamiltonian

could be written as H(t) =
P

n
✏n(t) |n(t)i hn(t)|, where |n(t)i is the eigenstate of

the Hamiltonian at time t and ✏n(t) is the energy of that state.

Now we define free energy as F�,� = ��
�1 lnZ(�,�) where Z(�,�) = Tr{e

��H(�)
},

with equilibrium state at temperature ��1 is ⇢�(t)
�(t) = e

�(F�,��H(�)). The system starts

at ⇢0 = ⇢
�

�(0) and goes through unitary evolution with ⇢⌧ = U⌧,0(�)⇢0U
†
⌧,0(�). As

the system is closed throughout the process there is dissipation so the work done on

the system by the driving parameter could be written as the mean energy di↵erence

between the final state and the initial state.

hwi = Tr{⇢⌧Hf}� Tr{⇢0Hi} (4.1)

The deviation in work in actual process ⇢0 ! ⇢⌧ and quasi-static isothermal pro-

cess is called irreversible work. An quasi-static isothermal process would bring the

system to the equilibrium state at temperature ��1
i

and Hamiltonian Hf as referred

in Fig. 5.1. Work done in this process is the change in free energy and comparing

the work done in this process with actual process would give the irrversible work

and from that we can derive irreversible entropy

hSirri = �i hwirri = �i(w ��F ) = D(⇢⌧ ||⇢B) (4.2)

This irreversible entropy could be generated due to two reasons. First one is due

to the population mismatch between the two states ⇢⌧ and ⇢B or the unwanted inco-

herent transitions between these two states. And the second reason is the coherence

generated due to the unitary driving of the system. As for slow processes the time

is too less there would possibly be no transition so all the irreversible entropy would

get generated by the coherence.

To explore the role of coherence in this process we need to calculate the relative

entropy of coherence of the state ⇢⌧ denoted by C(⇢⌧ ). The relative entropy of

coherence is defined as

C(⇢⌧ ) = min�2I⌧D(⇢⌧ ||�) (4.3)

where I⌧ is the set of incoherent states on the eigenbasis of the HamiltonianHf , |n(⌧)i.

To quantify the population mismatch of the final state ⇢⌧ and the state after
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quasi-static isothermal process we need to dephase the state with a dephasing map

on the eigenbasis of the instantaneous Hamiltonian.

�t[⇢] =
X

n

|n(t)i hn(t)| ⇢ |n(t)i hn(t)| (4.4)

Now it is known that the minimum in equation 4.3 is acheived when the � state

is equal to �⌧ [⇢⌧ ] [Streltsov 17]. Now the relative entropy of coherence becomes

C(⇢⌧ ) = D(⇢⌧ ||�⌧ [⇢⌧ ]) = S(�⌧ [⇢⌧ ])� S(⇢⌧ ) (4.5)

As the process is closed so the dynamics of the process is unitary,that means

S(⇢⌧ ) = S(⇢0) = S(�0[⇢0]). Then the relative entropy of coherence is coinciding

with diagonal entropy as discussed in this paper by Polkovnikov [Polkovnikov 11].

Now if we write frictional work(entropy) in the form of coherence we get

hSirri =D(⇢⌧ ||⇢B)

=� S(⇢⌧ )� Tr{⇢⌧ ln ⇢B}

=C(⇢⌧ )� S(�⇢⌧ )� Tr{⇢⌧ ln ⇢B}

=C(⇢⌧ ) +D(�⌧ [⇢⌧ ]||⇢B)

(4.6)

This equality tells us that the irreversible entropy either generates coherence be-

tween the states or it initiates unwanted incoherent changes that leads to population

mismatch between the equilibrium state and final state and eventually takes away

the state far from equilibrium.

Now if we want to calculate the coherence generated at any intermediate time

t 2 [0, ⌧ ] we could easily do the same calculations and get the following result

�i hwirr(t)i = C(⇢t) +D(�t[⇢t]||⇢
�(t)
B

) (4.7)

If we do a little bit of calculation we could get the expression of free energy of

the system at any intermediate time through the following expression [Santos 19]

F (⇢t) = F (⇢B) + TC(⇢t) + TD(�t[⇢t]||⇢B) (4.8)

This equation shows that coherence is a part of non-equilibrium free energy of the

system. That’s why it is so important to study role of coherence in non-equilibrium

quantum thermodynamics.
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4.3 Physical Examples

To understand the role of coherence in physical systems in non-equilibrium ther-

modynamics we have taken a system with the following Hamiltonian as studied in

[Batalhão 15; Francica 19].

H = ~w(t)[�x cos(�(t)) + �y sin(�(t))] (4.9)

where �(t) = ⇡t

2⌧ and w(t) = wi(1� t/⌧) + wf
t/⌧, is changed through the external

control parameters. Here we have taken wf = 2wi. Now the system starts with

Hamiltonian H0 = ~w(0)�x and state ⇢0 = e
��iH0/Z, where Z = Tr[e��iH0 ]. Now the

system undergoes an unitary transformation in time [0, ⌧ ] with final Hamiltonian

Hf = ~w(⌧)�y and the final state of the system would be ⇢⌧ = U(0,⌧)⇢0U
†
(0,⌧). We

have calculated the unitary using Dyson Series and then dephased the final state

⇢⌧ on the eigenbasis of the final Hamiltonian. After that we have plotted relative

entropy of coherence as a function of process duration ⌧ as shown in Fig. 4.1.

The second plot gives the instantaneous time dependence of the relative entropy of

coherence when we fixed wi⌧ = 1.

Figure 4.1: Plot of relative entropy of coherence vs total process duration, for
�i~wi = 1

.
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Figure 4.2: Instantaneous time dependence of relative entropy of coherence with
respect to time,where wi⌧ = 1 and �i~wi = 2

4.4 Conclusion

Using the concept of relative entropy of coherence we could show that coherence

plays a vital role in the dynamics of non equilibrium quantum systems. Here we have

studied for a model Hamiltonian but it could be studied for di↵erent time dependent

Hamiltonians like, one can try to understand role of coherence in more generalized

Floquet Systems. Using the same type of calculations one can study the role of

coherence in generation of inner friction. It also obeys integral fluctuation theorem.

One could try to make bridge between non-equilibrium quantum thermodynamics

particularly quantum coherence and quantum chaos.
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Chapter 5

Role of Coherence in friction

5.1 Introduction

Recent advances in nanotechnology have allowed the use of quantum heat engine

for heat to work conversion and information processing purposes. Though it has its

own drawbacks such as engines at those length scales don’t behave classically and

quantum mechanical behaviour and fluctuations becomes dominant. For finite time

scale transformations, quantum friction becomes one of the undesirable features to

pop up. In the present chapter, we would investigate the role of coherence in pro-

ducing internal friction when the system is driven through a finite-time adiabatic

transformation. It is known that coherence plays an important role in quantum

phenomena and we have seen that it is the main contributor when it comes to in-

troducing irreversibility in the system.

5.2 Physical System

We consider a system that goes through a unitary transformation using a time-

dependent Hamiltonian of the form used in [Çakmak 16]

H(t) = B0Iz +B(t)Ix, (5.1)

where B0 is the constant magnetic field in the z direction and B(t) is the time varying

magnetic field applied on the x direction. I↵’s are the spin angular momentum

along the ↵(x, y, z) direction and they obeys the canonical commutation relation

[I↵, I�] = i✏↵��I�. As I↵ = �↵/2, these operators complete a Lie algebra. In this case,

we have taken ~ and Boltzmann’s constant equal to unity. As from Eq. 5.1, we can

calculate that the Hamiltonian doesn’t commute at di↵erent times [H(t1), H(t2)] =

�iB0(B(t1) � B(t2))Iy 6= 0 because the applied magnetic fields are non-uniform
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B(t1) 6= B(t2). The system density matrix doesn’t follow the fast changes in system

Hamiltonian (controlled by an external parameter). As a result, the density matrix

of the system deviates from equilibrium in a fast-driving unitary process.

This driven unitary process is divided into two parts. The first one is called

forward protocol and in this case we would drive the system from an initial Hamil-

tonian Hi to a final Hamiltonian Hf . After that, we would reverse the process

by driving the Hamiltonian from Hf to Hi. Generally, this process is known as

backward protocol.

Figure 5.1: A symbolic diagram of the time evolution of the system.

• Forward Protocol

The system starts with initial Hamiltonian H1 = B0Iz + B1Ix in equilibrium at

temperature ��1 = T . So, the initial state of the system could be written as ⇢0 =

e
��H1/Z, where Z = Tr(e��H1). Now, the system was detached from the bath and

undergoes an adiabatic transformation via a change in the time dependent magnetic

field B(t) = B1+(B2�B1)sin(
⇡t

⌧
). So, at time t = 0, the time dependent magnetic

field component is B(t = 0) = B1. Now, at time t = ⌧

2 , the time dependent magnetic

field would be B( ⌧2 ) = B2. At the end of the forward protocol, the Hamiltonian

becomes H2 = B0Iz + B2Ix and the final density matrix becomes ⇢1. As it is an

isolated process, so the evolution of the density matrix with respect to time could

be defined by the unitary matrix given by the Liouville-von Neumann equation
˙⇢(t) = �◆[H(t), ⇢(t)].

• Backward Protocol

Now in the backward protocol, the unitary process takes back the Hamiltonian

from H2 to H1. The evolution of the density matrix with respect to time could

be defined by the unitary matrix given by the Liouville-von Neumann equation
˙⇢(t) = �◆[H(t), ⇢(t)]. The time dependent component for the backward process
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would be B(t) = B2 + (B1 � B2)sin(
⇡t

⌧
) with B(t = 0) = B2 and B(t = ⌧

2 ) = B1.

The final density matrix of the backward protocol is denoted by ⇢2.

5.3 Inner Friction and Coherence

From earlier chapters, we could say that the definition of frictional work is the

di↵erence between actual work and the work done in ideal diabatic process hwfrici =

hw⌧ i � hw⌧!1i.

We have seen that it could be written as the relative entropy between the initial

state and the final state hwfrici = �
�1
S(⇢⌧ k ⇢⌧!1). The equilibrium state here

would be the initial state ⇢0. If we attach a bath with the system then the heat

taken by the system hq⇢2!⇢0i would be equal to the frictional work.

S(⇢2 k ⇢0) = � hwfrici = �� hq⇢2!⇢0i (5.2)

Frictional entropy could be written as the mean energy di↵erence of final state

and initial state times the inverse temperature S(⇢2 k ⇢0) = �(tr[H1⇢2]� tr[H1⇢0]).

As we have done for irreversible work we could write the inner friction(non-adiabaticity

parameter) as the sum of the coherence generation due to driving measured by C(⇢⌧ )

and D(�⌧ [⇢⌧ ]||⇢A) due to the population change in the system[Francica 19].

hSfrici = C(⇢⌧ ) +D(�⌧ [⇢⌧ ]||⇢A) (5.3)

5.4 Results

We first calculated the Gibbs state at � = 1 with Hamiltonian H1 = B0Iz + B1Ix.

Then, we calculated the unitary generated by the driving pulse through Dyson Series

upto second order. After that we calculated the state after forward protocol using

the unitary we have calculated before. For the backward protocol, we have again

calculated the unitary matrix as before. After applying the unitary to the final

state after forward protocol, we got the final state of the process. We then dephased

the final state on the eigenbasis of the initial Hamiltonian. Then we calculated the

amount of coherence generated throughout the process using the formula stated in

chapter 4. We then plotted the relative entropy of coherence as a function of total

process time as shown in Fig. 5.2 for the parameters B0 = B1 = 0.5, B2 = 0.05.
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Figure 5.2: Coherence generated through the process after finite time parametric
driving denoted as C(⇢⌧ ), as function of total process time ⌧ .

5.5 Conclusion

The relative entropy of coherence is calculated in a simple way for a system driven

out far from equilibrium. It is shown that most of the irreversibility introduced

in the system is generally due to coherence building up between the states of a

quantum system. We have plotted the impact on time in coherence generation in

details. So we could say that transformations in finite time are irreversible in nature

and a density matrix starting from an initial state never goes back to its initial state

after forward-backward protocol.
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Chapter 6

Conclusion and Future plans

Using the Relative Entropy of coherence, we could identify the coherent contribution

to the energetics of system. Given the current interest in the field of non-equilibrium

thermodynamics, relative entropy of coherence could be a vital thing to understand

the details about the role of coherence in systems that are far for equilibrium. Here,

we have taken di↵erent Hamiltonians driven by control parameters and studied the

component of coherence generation in irreversible and frictional work and plotted

them against total process time. From that data, we could see that coherence de-

creasing with time means that if we provide more time to the system to evolve, it

would generate less coherence and eventually less irreversibility in the system.

In this project, we have talked about closed system so the dynamics of the sys-

tem is unitary. We have calculated the unitary evolution operator manually using

Dyson series upto second order. We think that we would get better result if we

could calculate the unitary upto higher terms. Recently, we are trying to calculate

the unitary through a di↵erent method where the quantum problem is addressed

with analogous classical problems.

We could study the role of coherence in quantum Otto engines for di↵erent kind

of Hamiltonians and calculate the impact of coherence in work done by the system

or on the power generation of the system.
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