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Abstract

The thesis aims to discuss various models for option pricing and their calibration in the

Global and Indian market. Construction of Ito integral with respect to Brownian motion

has been carried out rigorously. In discrete-time models, single and multiple period

binomial Model, CRR model, and multinomial model has been discussed. For continuous-

time, Bachelier and BSM model has been discussed. The solution of BSM PDE has been

discussed using two methods, first by converting BSM PDE to heat equation and then

solved it by Fourier transform technique and second is by changing probability measure.

Further implementation and calibration of Apple and Google Stock in Bachelier and

geometric Brownian motion model have been carried out. It has been shown that GBM

Model is a better fit for the stock path rather than the Bachelier model. It has also

been demonstrated that GBM Model also deviates from the real stock path because

of the assumption of the log-normal distribution of return, constant mean, and constant

volatility. Finally, simulation of Infosys option for CRR and BSM Model has been carried

out and it has been shown that the CRR model is a very good estimate for the BSM

model for a large number of time steps.
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Chapter 1

Introduction

Modern theory of mathematical finance starting to emerge after Louis Bachelier defended

his thesis titled “Theórie de la Spećulation” with his work published in a most influential

scientific journal of France [18]. He was the first who recognize the role of Brownian

motion in finance and used it to model stock price. In this thesis, we have presented the

Bachelier model of stock price and compared it to a more robust Black-Scholes model

for Apple and Google stock. Schachermayer, W. and Teichmann, J. carried out a more

mathematically rigorous analysis of these two models [19] and argued that Bachelier’s

model provides good short-time approximations of prices and volatilities for short time.

Brownian motion is also called Wiener process because mathematically rigorus devel-

opment of Brownian motion was done by Norbert Wiener. He provided construction of

Brownian motion by constructing Wiener measure. In this thesis we have omitted the

construction and existence of Brownian motion and can be found [1] with great detail.

After development of modern probability theory by Andrey Nikolaevich Kolmogorov’s in

his book “Foundations of the Theory of Probability” [20] in 1933, Kiyoshi Ito came with

Ito lemma in his widely cited paper “On stochastic differential equations (1951) [21]” and

in his Ito’s representation theorem proved that any square integrable martingale with a

filtration derived by Brownian motion can be expressed as an Ito integral with respect

to Brownian motion.[21] This theorem is essential for derivation of Block Scholes option

pricing formula to prove the existence of hedging portfolio.

In 1973 two paper published, one is titled “The Pricing of Options and Corporate

Liabilities”[22] by Fischer Black and Myron Scholes and other is titled “On the pricing of

corporate debt: the risk structure of interest rates”[23] by Robert Merton. These paper

used Ito calculus and geometric Brownian motion to model to price European options.
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This thesis is divided in 6 chapters including Introduction. Chapter 2 provides the

basic background for probability theory and stochastic process. For more details about

topics discussed in this section one can refer to [1], [2], [14] and [15]. Chapter 3 provides

the foundation of options and includes single period binomial Model, CRR model and

multinomial Model. In chapter 4 we have discussed various property of Brownian mo-

tion and constructed the stochastic integral with respect to Brownian motion for process

whose Riemann integral exist and are square integrable. Although it is possible to define

stochastic Integral with respect to local martingales, but since we require Brownian mo-

tion to model asset price, we restricted it’s construction to Brownian motion. In chapter

5 we have constructed the Black sholes PDE and it’s proof using two methods. First one

is by converting BSM PDE to heat equation. Now solution of heat equation can be found

using Fourier transfer technique. Second method utilize probabilistic approach. It use

Grisanov’s theorem to change the drift of the stock price process to convert discounted

stock price process to martingale. Finally in first part of chapter 6 we have done sim-

ulation,calibration and comparison of Bachelier model to Google and Apple stock price

path. In second part of chapter 6 we simulated CRR and BSM model on Infosys stock

to price Infosys option. It has been shown that CRR price agrees with BSM price for

large value of time steps.
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Chapter 2

Preliminaries

2.1 Essential of Probability Theory

We assume that reader is already familiar with basic Probability theory and Notion

of random variable. In this section we will define concept of probability theory and

stochastic Process which are required to develop our theory. Although we are stating

some definition so that reader can refresh his/her memory but we except that reader is

familiar with introductory measure theoretic foundation of probability theory. Theory in

this section is adapted from [11] and [6].

Definition 2.1.1 (σ-algebra). Let Ω be a nonempty set.A collection F of subset of Ω is

said to be σ-algebra if following condition are satisfied:

(i). φ ∈ F .

(ii). If E ∈ F then Ec ∈ F .

(iii). If sequence of sets E1, E2, ... belongs to F , then ∪Ei ∈ F .

Proposition 2.1.1. Any arbitrary intersection of σ-algebra on Ω is also a σ-algebra on

Ω.

Proof. Proof is fairly straightforward.

Above proposition allows us to define smallest σ-algebra which contains the subset A
of Ω. Precise definition is provided below:
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Definition 2.1.2. Let C(A) be the collection of all σ-algebra that contains A. The σ-

algebra generated by a collection A ⊂ 2Ω, denoted by σ(A), is defined as following:

σ(A) = ∩{F : F ∈ C(A)}

of course σ(A) is a σ-algebra by proposition 2.1.1.

Definition 2.1.3. Consider pair (Ω,F), where Ω is a set which is non empty and F is

a σ-algebra on Ω. Suppose P is a function P : F → [0, 1] such that,

(i). P(Ω) = 1

(ii). For any countable pairwise disjoint collection {Ei}i≥1:

P(∪i≥1Ei) =
∑
i≥1

P(Ei)

Then P is called a probability measure. Triplet (Ω,F ,P) is called a probability space.

Definition 2.1.4. Let (Ω,F ,P) be a probability space. A random variable X is a real-

valued function X : Ω→ R such that inverse image of every Borel set of R under X lies

in σ-algebra F . Alternatively for every borel set B,

{X ∈ B} = {ω ∈ Ω : X(ω) ∈ B} ∈ F

In above definition we already have a σ-algebra and we want to behave random

variable X in a certain way. One can also define σ-algebra generated by random variable

X. Essentially it is the smallest σ-algebra on which we can define X as a random variable.

Mathematically σ-algerba σ(X) generated by random variable X is defined as collection

of all subset of form:

{ω : X(ω) ∈ B‘ ∀B ∈ B}

where B is a set of all borel set in R.

There are various notion of convergence of random variable we will only state that

are of our use.

Definition 2.1.5. A sequence of non negative random variables Xn, n = 1, 2, ..., is said to

converge pointwise almost surely to some random variable X and we write Xn → X (a.s)

if,

P[ω ∈ Ω : limn→∞Xn(ω) = X(ω)] = 1

4



Definition 2.1.6. A sequence of non negative random variables Xn, n = 1, 2, ..., is said

to converge pointwise monotonically almost surely to some random variable X and we

write Xn ↑ X (a.s) if,

P[ω ∈ Ω : X1 ≤ X2... ≤ X] = 1

P[ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)] = 1

Given a sequence of converging random variable one can think that their expectation

will converge. Unfortunately this is not always true. However we do have some restriction

under which their expectation will Always converge. One of which is widely known

monotone convergence theorem(MCT). In-fact we stated definition 2.1.6 only to state

MCT. Proof of theorem is omitted as it can be found in most of the probability theory

text.

Theorem 2.1.1. Monotone convergence Theorem If Xn;n = 1, 2, ... is a sequence of

nonnegative random variables converging pointwise monotonically to X (a.s.) , then

E[Xn] ↑ E[X] almost surely.

Reader might know that expectation in measure theoretic probability defined by no-

tion of lebesgue integral, but computation under this integral is rather difficult than

Riemanian Interal. For this reason one want to know when these integral are equal so

that one can compute in Riemanian environment and still have required result. Below

theorem precisely state when these two notion are equal.

Theorem 2.1.2. (Lebesgue versus Riemann Integration)(Theorem 1.3.8, [6]) Let f :

[a, b]→ R be bounded. Then following hold :

1. f is Riemann-integrable iff f is continuous almost everywhere.

2. If f is Riemann-integrable, then the Lebesgue integral over [a, b] is also defined and

the two integrals are the same.

In determining stock precise one has to include arrived information till a particular

time. To capture this idea Notion of condition expectation is widely used.

Let X be a random variable on probability space (Ω,F ,P) and let G be a sub-σ-

algebra of F .

5



Definition 2.1.7. We say that random variable Y is conditional expectation of X given

G and denote it by Y = E[X|G] if following hold:

1. Y is G measurable random variable, in mathematical notation σ(Y ) ⊂ G.

2. E[XIB] = E[Y IB] for every event B ∈ G

Example 2.1.1. 1. If G = F0 = {φ,Ω}, then E[X|G] = E[X]

2. for a constant random variable C, E[C|G] = C

3. If X is G-measurable then E[X|G] = X.

Definition of conditional expectation raises to immediate question. One is that does

condition expectation always exist? Other is if it does exist will it be unique. Answer to

both these questions is Yes and proof for the same requires Radon-Nikodym Theorem.

Definition 2.1.8. wo probability measures P1, P2 defined on the same space (Ω,F), P2

is said to be absolutely continuous with respect to P1 if for every set A ∈ F , P1(A) =

0 =⇒ P2(A) = 0.

Theorem 2.1.3. Radon-Nikodym Theorem ((Theorem 1.3.8, [6])) Suppose P2 is abso-

lutely continuous with respect to P1. Radon-Nikodym Theorem guarantees the existence

of a non-negative and unique random variable upto measure zero, such that Z : Ω→ R+

and

P2[A] = EP1 [ZIA] =
∫
A
ZdP1

for every A ∈ F .

The proof of existence of condition expectation is given below and is adapted from

appendix of [6]

Theorem 2.1.4. The conditional expectation E[X|G] exists and is unique almost surely.

Proof. Assume X is non constant such that X ≥ 0 and EP[X] <∞. Define a probability

measure P2 on G as follows:

P2(B) = EP[XIB ]
EP[X]

=
∫
B XdP∫
ΩXdP

Where B ∈ G. Note that P2 is absolutely continuous with respect to P.By the Radon-

Nikodym Theorem there exist a random variable Z which is measurable wrt G such that

for every B ∈ G

6



P2[B] = EP[ZIB]

Now take Y = ZEP[X]. We have :

E[Y IB] = E[(ZEP[X])IB] = EP[X]E[ZIB] = EP[XIB].

2.2 Essentials of Stochastic Process

Stochastic process is a way to model randomly occurring phenomena. In case of a deter-

ministic function or any map we have a fix value for an input. But in case of stochastic

process there is no way to predict what will be the output or possible path. Since in case

of stock price path we do not know what will happen in next moment or at a particular

time, this gives us clue that stock price can be modeled by some stochastic process. For

instance Black and Scholes used geometric Brownian motion to describe stock price path.

Theory in this section is adapted [1] and is highly recommended for readers who are more

interested in mathematical rigorous theory of stochastic process in particular Brownian

motion.

Definition 2.2.1 (Stochastic Process). A stochastic process is a collection of random

variables that are all defined on a common sample space Ω and indexed by t ∈ T :

X = {Xt(w)}t∈T , so that ∀t ∈ T Xt : Ω→ R

T can be discrete or continuous.

For a fixed outcome ω, the function t→ Xt(ω) is called the sample path of process X

associate with outcome ω. Two stochastic process X and Y defined on same probability

space (Ω,F ,P) are said to be same if Xt(ω) = Yt(ω) ∀t ∈ Tand ω ∈ Ω.

But by the beauty of probability measure P we can weaken the above requirement to

obtain three different concept of sameness of stochastic process [1]. These are listed as

definition below in order of increasing strongness:

Definition 2.2.2. X and Y are said to be have same distribution if for each borel set B

of R, we have:

P(Xt ∈ B) = P(Yt ∈ B) ∀t ∈ T

Definition 2.2.3. We say that Y is modification of X if ∀t ∈ T , we have P(Xt = Yt) =

1.

7



Definition 2.2.4. We say that X and Y are indistinguishable if almost all their sample

path agree:

P(Xt = Yt) = 1 ∀ t

From now on we will assume that t ∈ [0,∞)

In case of random variable we use σ-algebra for technical reason, but in case of

stochastic process there is extremely important non technical reason to include σ-algebra

that is we need to keep track of information. In definition of stochastic process we can

say that t is a flow of time, so at every t we can talk about past,future or present or in

other words one can ask observer of process that what he knows at present compared to

past or what he will knew in future. Also note that information can only increase over

time.

Above Remark suggest that we need to include a non-decreasing family of σ-algebra,

which we will call filtration. Mathematically precise definition of filtration is provided

below:

Definition 2.2.5 (filtration). A filtration on a sample space (Ω,F) is a non-decreasing

family of {Ft}t≥0 if sub σ-algebra of F i.e. Fs ⊆ Ft ⊆ F for 0 ≤ s ≤ t. Set F∞ =

σ(∪t≥0Ft).

Most natural way to obtain a filtration of a stochastic process {Xt}t≥0 is one that is

generated by process itself :

FXt = σ({Xs : 0 ≤ s ≤ t})

Definition 2.2.6. Let (Ω,F) be a measurable space. We say that random variable X,

which is defined on Ω is F-measurable if we have σ(X) ⊂ F .

Now we define measurability of stochastic process.

Definition 2.2.7. A stochastic process is called measurable if for every B ∈ B(R) the

set {(t, ω) : Xt(ω) ∈ B} belongs to the product σ-field B([0,∞))⊗F

Introduction of filtration open up a new requirement of measurability of process and

in fact this requirement is stronger than above.

Definition 2.2.8. Let F = {Ft}t≥0 be a filtration over Ω. A random process {Xt}t≥0 on

Ω is said to be adapted to filtration F if Xt is Ft-measurable for every t.

8



Given a particular time we want to know that our stock price will rise or decline in

future. Mathematical term for capture this idea is martingale. Notion of martingale is

at core of Modern Theory of Mathematical finance. Intuitively a stochastic process is

martingale if on an average it does not show sign of rise or fall. Martingales also used

to check fairness of game. A game can be viewed as fair game if its profit or loss process

can be modeled as a martingale process.

Definition 2.2.9. Considered an adapted integrable stochastic process Mt defined on

filtered probability space (Ω,F ,P,F) and an. Let 0 ≤ s ≤ t <∞. It is called

1. a martingale iff E[Mt|Fs] =Ms almost surely.

A martingale process can be thought as a process which has no tendency to fall or

rise.

2. a sub-martingale iff E[Mt|Fs] ≤Ms almost surely.

A sub-martingale process can be thought as a process which has no tendency to fall.

3. a super-martingale iff E[Mt|Fs] ≥Ms almost surely.

A super-martingale process can be thought as a process which has no tendency to

rise.

9



Chapter 3

Introduction to Options and

Discrete Time Models

3.1 Properties of Options

Theory in this section is adapted from [3] and [9], but with a more compact approach.

Theory about basic properties of option is restricted to our use. Reader who want to

know more about option can refer to [9].

A derivative is a type of financial contract whose value depends on other variables

(that is why name derivative) called underlying assets. These other variable can be stock

price, interest rate, market indices etc.

There are broadly three type of traders who can be interested in trading derivative

instruments. These are

Hedgeres : Those who trade derivatives product to minimize their risk in future

because of market movement.

speculators : Those who use derivatives to make profit by betting on future market

movement.

There are broadly three type of Derivative instruments. These are : Forward con-

tracts, Futures contract and options. Pricing of first two are relatively easy, but pricing

of options contract require various tools of probability theory, stochastic calculus and

stochastic process. We will discuss various models of pricing option contract.

Option contract (Definition 2.1, [3]) : An option is a contract whose holder not

obligated but have right to buy (if it is call option) or sell (if it is a put option) a pre-

specified asset (called underlying asset) at a pre-specified price (called the strike price)

10



on or before a pre-specified date (called the expiry date or maturity date).

The options are further divided into two categories based on exercise date. A Euro-

pean option can only be exercise at the expiry date while an American option can also

be exercised prior to expiry date.

Now suppose we have an European option whose whose strike price is K, maturity

time is T and let St denote the price of underlying asset at time t, then payoff δ of option

for call and put is given by :

δcall = max(S(T )−K) = (S(T )−K)+, δput = max(K − S(T )) = (K − S(T ))+

Figure 3.1: Payoff diagram of Europian Option

One essential feature of efficient market is that one should not have non zero chance

of getting profit from nothing. Technical term for the same is arbitrage.

Definition 3.1.1. An arbitrage opportunity is a trading opportunity that allows one to

have a non zero chance of getting profit and no chance of loss from zero initial wealth.

In our financial model we denote our set of all possible market scenario as Ω. ω ∈ Ω

is any possible market scenario.

Theorem 3.1.1. The Law of one Price(Theorem 2.3), [3] In an arbitrage free market

if we have have two portfolio
∏x and

∏y with initial price
∏x

0 and
∏y 0 respectively. If

11



at any future time T ≥ 0 they have the price of
∏x and

∏x are equal in all state of the

world i.e
∏x

T =
∏y

T ∀ω ∈ Ω, then their initial price should be same i.e
∏x

0 =
∏y

0.

Proof. Outline of proof : Without loss of generality assume
∏x

0 >
∏y

0 and construct a

portfolio as a combination of these two portfolio such that resulting portfolio give rise to

arbitrage.

Before jumping into models of pricing options lets look at some of relationship between

European put and call options. We start with famous put-call parity.This is an important

relationship between call and put European options called put call parity. Assume that

price of European call option is denoted by CE and European put option is denoted by

PE. Assume a continuous compounding interest rate r. Then relation can be derived

using replicating portfolio and law of one price:

Relation between the arbitrage free prices of European put and call options

Portfolio 1 Portfolio 2

1 European call + cash Ke−rt 1 one European put + one share of stock

At t = T max(S(T )−K) max(S(T )−K)

At t = 0 CE +Ke−rT PE + S(0)
By law of one price we have :

CE +Ke−rT = PE + S(0)← Put-call parity

Below theorem find some upper and lower bound for options :

Theorem 3.1.2. Theorem 4.5, [3] Under the assumption of absence of arbitrage follow-

ings are true :

(S(0)−Ke−rT )+ ≤ CE < S(0) (3.1)

(Ke−rT − S(0))+ ≤ PE < Ke−rT (3.2)

Proof. Proof for the call option is outlined. A similar procedure can give the proof of

put option.

Suppose C(E) ≥ S(0). Consider following portfolio : sell a call option, invest remain-

ing money in risk free market and buy one stock of share. At expiry date sell stock.

sell call option + buy one share

t=0 CE − S(0)

t=T min{S(T ), K}+ (CE − S(0))erT > 0

12



This is an arbitrage opportunity, hence CE < S(0).

Obtain lower bound on call and put using put call parity and non-negativity of option

prices:

CE ≥ 0 and CE = S(0)−Ke−rT + PE ≥ S(0)−Ke−rT

⇓
CE ≥ max{0, S(0)−Ke−rT}

3.2 Single Period Binomial Model

This is the simplest model for pricing options. Assume that there are only two possible

market scenario Ω = {ω+, ω−}. market scenario ω+ can occur with probability p and

market scenario ω− can occur with probability 1 − p.These are called real world proba-

bility. There two tradable asset in market one is underlying asset S and other is risk free

bond B. Since it is a single period model we are assuming that there only two trading

dates, namely t = 0 and t = 1. We wish to find price of a option which gives us payoff

δ(ω+) under scenario ω+ and payoff δ(ω−) under scenario ω−. S0 and B0 are initial price

(at t = 0) of one unit of asset S and bond B respectively. S1(ω+) and S1(ω−) are respec-

tively the price at time t = 1 of asset S under market scenario ω+ and ω− respectively.

risk free one-period interest rate is r, which gives us price of the bond at time t = 1 as

B1 = B0(1 + r). V0 and V1 are price of option at time t = 0 and t = 1 respectively.

One could expect that price of option can be discounted expectation of its payoff.

But we will see that real world probability does not impact the price of option. Kind of

surprising!

Before proceeding further there are certain assumption that are required to construct

our model. These are :

• Fraction quantity of asset and bond is allowed

• any quantity of asset and bond can be sold or bought without disturbing their price

• shorting (negative quantity) of asset and bond is allowed

• there are no transaction cost

13



We will construct a portfolio (x, y) (where x and y are quantity of asset S and bond

B respectively) such that it exactly replicate the payoff of the option, then by law of one

price option value at t = 0 is equal to initial price of that portfolio, otherwise arbitrage

opportunity will arise. Hence we have:

V0 = xS0 + yB0 (3.3)

To find x and y we need to solve following system of linear equation :

xS1(ω+) + yB1 = δ(ω+) (3.4)

xS1(ω−) + yB1 = δ(ω−) (3.5)

Above equations gives us :

x =
δ(ω+)− δ(ω−)

S1(ω+)− S1(ω−)
; y =

δ(ω−)S1(ω+)− δ(ω+)S1(ω−)

B1(S1(ω+)− S1(ω−))
(3.6)

In our model ω+ represent an increase in price of stock S and ω− represent an decrease

in price of stock S. Hence we can write:

S1(ω+) = S0u ;S1(ω−) = S0d (3.7)

Where 0 < d < 1 and u > 1. substitute B1 = B0(1 + r) and 3.7 in 3.6 to get:

x =
δ(ω+)− δ(ω−)

S0(u− d)
; y =

δ(ω−)u− δ(ω+)d

B0(1 + r)(u− d)
(3.8)

Now substitute 3.8 in 3.3 and rearrange to get the following formula :

V0 =
1

1 + r

(
δ(ω+)

1 + r − d
u− d

+ δ(ω−)
u− r − 1

u− d

)
(3.9)

Write 1+r−d
u−d = p̃ to get:

V0 =
1

1 + r
(δ(ω+)p̃+ δ(ω−)(1− p̃)) (3.10)

=
1

1 + r
Ẽ(V1) (3.11)

The number p̃ and 1 − p̃ are called risk neutral probability. One should note that

under this probability measure option value at t = 0 is simply as discounted expectation

of payoff of option at t = 1. We see that real world probability doesn’t appear in pricing

formula.
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Above model is simple but make sense because our one state represent an increase

in stock price and another represent a decrease in stock price. Essentially if we are not

concerned about how much increase or decrease then there are only these state of world

possible. Secondly this model is particularly important for those who are only concerned

about initial and final price. Our trading dates exactly cover this fact.

Now to make our model more realistic, let’s introduce more trading dates in our

model. Let’s suppose our set of maturity date is D = {0, 1, 2, ..., T}. Now for each

trading dates our stock price will evolve according to rule in single period model. It will

rise under market scenario ω+ and fall under market scenario ω−. Hence stock price has

following probability distribution:

P(St = S0u
kdt−k) =

(
t

k

)
pt(1− p)t−k ∀ k ∈ D (3.12)

We wish to price a European option having payoff function δ, which depends on stock

price process. Since price at time t of European option depends on price of stock at that

time, we can write Vt(St).

In binomial tree model stock price at different time can be described as a recombin-

ing binomial tree. This can be thought as a combination of single time binomial tree.

Therefore following recurrence relation find option price for different time period:

Vt(St) =
1

1 + r
(p̃Vt+1(Stu) + (1− p̃)Vt+1(Std)) (3.13)

There are k + 1 nodes in a T -period binomial model. Therefore there are
∑T

k=0 =
(T+1)(T+2)

2
nodes in total. We want to find option price for each node. Following picture

reflect this idea for two period binomial tree model. An example for pricing in two period

binomial tree model is also given to give a clear idea of the picture.

V0(S0)

V1(S0d)

V1(S0u)

V2(S0d
2) = δ(ω−ω−)

V2(S0ud) = δ(ω+ω−)

V0(S0u
2) = δ(ω+ω+)

(1− p̃)

p̃

p̃

1− p̃

p̃

1− p̃
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Theorem 3.2.1. (Theorem 4.8, [3]) In the binomial tree model, the no-arbitrage initial

price of a European option with payoff δ(ST ) at discrete time T > 1, is given by :

V0(S0) =
1

(1 + r)T

T∑
k=0

(
T

k

)
p̃k(1− p̃)T−kδ(S0u

kdT−k)

=
1

(1 + r)T
Ẽ[δ(ST )]

(3.14)

Proof. Followed by induction.

By using Binomial distribution function one can write European call and Put option

price in a more compact form. First recall cumulative distribution function of Binomial

Probability distribution:

B(m;n, p) =
m∑
k=0

(
n

k

)
pk(1− p)n−k

.

Theorem 3.2.2. The Cox-Ross-Rubinstein (CRR) Option Price Formula (Theorem 4.9,

[3]) In the binomial tree model, the no-arbitrage initial price of standard European call

and put options with strike price K and expiry time T are, respectively, given by :

CE
0 (S0) = S0

(
1− B(mT ;T,

d

1 + r
p̃)

)
− K

(1 + r)T

(
1− B(mT ;T,

d

1 + r
p̃)

)
PE

0 (S0) =
K

(1 + r)T
B
(
mT ;T,

d

1 + r
p̃

)
− S0B

(
mT ;T,

d

1 + r
p̃

) (3.15)

where mT = max{m : 0 ≤ m ≤ T ;S0u
mdT−m ≤ K} =

⌊ ln(K/S0)−T ln d
ln(u/d)

⌋

3.3 Multinomial One Period Model

Till now we are assuming that there are only two tradable assets. Now let’s increase

number of tradable asset to n and suppose there are m state of world possible. We will

represent these assets by S1, S2, ..., Sn and state of world by Ω = {ω1, ω2, ..., ωm}. We are

assuming only two trading dates, these are t = 0 and t = T . Suppose pi is probability

of occurring of state ωi. From these probability we can create a probability measure

P : 2Ω → [0, 1] in trivial sense. Now suppose we want to find price of a financial contract.

According to our Model it’s payoff will be a function χ: Ω → R. Since Ω is finite we

can represent it as a m dimensional vector (χ(ω1), χ(ω2), ..., χ(ωm)). This set of vector
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can be considered as a vector space. Denote this vector space by Vχ. It’s standard basis

E = {e1, e2, ..., em} have a special name called AD securities, named after Arrow and

Debreu.

We will represent our initial price of base asset as vector S0 = (S1
0 , S

2
0 , ..., S

m
0 )T . At

time T Payoff from these assets can be represented by a matrix Γ such that:

Γ =


S1
T (ω1) S1

T (ω2) · · · S1
T (ωm)

S2
T (ω1) S2

T (ω2) · · · S2
T (ωm)

...
...

. . .
...

SnT (ω1) SnT (ω2) · · · SnT (ωm)


Number of quantity of each asset is called a portfolio, which we will represent by

φ = (φ1, φ2, · · · , φn), where φi is number of quantity of asset Si (called position in asset

Si). If number of quantity of an asset is positive than it called a long position in that

asset and if it is negative then it called short position in that asset. We will denote

portfolio value by
∏φ

t . At time T there are m possible portfolio value because there are

m state of the world. So we can view
∏φ

T as an m dimensional vector.

If there exist a nonzero portfolio such that
∏φ

T = 0. Then there exist an asset Sj

such that payoff of this asset at time T can be represented by a linear combination of

other asset. This is called a redundant asset. Hence there exist a redundant base asset

iff rank(Γ) < n. It is clear that a nontrivial solution of system of linear equations φΓ = 0

will guarantees that there exist a redundant asset.

If there exist a portfolio for a payoff χ ∈ Vχ, then it is said to be attainable. This

portfolio is called a replicating portfolio or hedge of this payoff. Denote set of all attain-

able payoff by Aχ. Without much difficulty one can prove that Aχ is a vector subspace

of Vχ. We can get a replicating portfolio by solving system of linear equations of φΓ = χ.

Following theorem finds criteria for a unique replicating portfolio. Proof is a standard

practice in linear algebra.

Theorem 3.3.1. For every attainable payoff χ ∈ Aχ there is a unique hedge if and only

if there are no redundant base asset.

Below is immediate corollary of above theorem.

Corollary 3.3.1.1. If there exist a redundant asset then every attainable payoff has

infinitely many Hedge.
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An important property of a financial model is weather it is a complete or not, that is

can we find a hedge for an arbitrary payoff. In other words if every payoff is attainable

i.e. Aχ = Vχ then we say that market is complete. Denote set of all payoff such that

χ(ωi) ≥ 0 ∀ i by V +
χ .

Theorem 3.3.2. The following statements are equivalent:

1. Every payoff is attainable i.e. Vχ = Aχ.

2. V +
χ ⊂ Aχ.

3. Every Arrow-Debreu security is attainable.

Above theorem and preceding discussion provide us useful criterion about the com-

pleteness of a market. If rank(Γ)< m, then market is incomplete. If rank(Γ)< n, then

there are redundant assets. If rank(Γ)< m = n, then market is complete.

Theorem 3.3.3. theorem 5.9, [3] There are no arbitrage portfolios iff there exist a strictly

positive solution ψ = [ψ1, ψ2, . . . , ψm]T � 0 ∈ Rm of systems of linear equations obtained

by

Dψ = S0

Proof. Initial value of portfolio φ ∈ Rn is

Πφ
0 = φS0 = φ(Dψ) = (φD)ψ =

m∑
j=1

Πφ
T (ωj)ψj

The no arbitrage initial price of a payoff X replicated by φX is

π0(X) = ΠφX
0 =

m∑
j=1

ΠφX
T (ωj)ψj =

m∑
j=1

X(ωj)ψj

Suppose there are no arbitrage portfolio.

Rm+1
+ = {x ∈ Rm+1 : x ≥ 0}; L = {[−θS0, θST (ω1), ..., θST (ωm)] : θ ∈ Rn}

Suppose θ ∈ Rn be an arbitrage portfolio (either θS0 < 0 and θD ≥ 0, or θS0 ≤ 0

and θD > 0). then non existence of arbitrage implies T ∩ Rm+1
+ = 0

separating hyperplane theorem There exists a hyperplane H ⊂ Rm+1 ( a linear

subspace of dimensions m) that separates Rm+1 into two half-spaces H+ and H− such

that

Rm+1
+ ⊆ H+, L ⊆ H−, H+ ∩H− = H.
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The general equation for a hyperplane in Rm+1 passing through the origin is

λxT = 0 ⇐⇒ λ0x0 + λ1x1 + · · ·+ λmxm = 0

In our case separating hyperplane theorem implies that either λxT > λyT or λxT >

λyT hold ∀x ∈ Rm+1\{0} and y ∈ L. In particular, the set {λyT : y ∈ L}is bounded

from above or below. This is possible iff λyT = 0, which implies L is contained in H. To

show this, suppose that there exists y ∈ L such that λyT > 0. Since L is a vector space,

the set {aλyT : a ∈ R} = R is unbounded. We arrive at a contradiction.

Now λxT > 0 ∀x ∈ Rm+1
+ . In particular λeTj = λj > 0. Since L ⊆ H

−λ0θS0 +

j=1∑
m

λjθST (ωj) = 0

holds for every portfolio θ ∈ Rn.

Now set θ = ei ∈ Rn for each i = 1, 2, . . . , n to get

−λ0S
i
0 +

j=1∑
m

λjS
i
T (ωj) = 0

This implies that

−λ0S0 +

j=1∑
m

λjST (ωj) = 0

substitute ψj =
λj
λ0

and rearrange to get

S0 =
m∑
j=1

ψjST (ωj)

which in matrix for can be written as Dψ = S0.

Following fundamental theorem from [10] of asset pricing ensures that model is ar-

bitrage free and complete.Refer to definition 1.2.1 For definition Equivalent martingale

measure (EMM) in descrete time sense.

Theorem 3.3.4. (Theorem 1.5.2, [10]) The market is arbitrage-free and complete if and

only if there exists an unique EMM.
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Chapter 4

Brownian Motion and Construction

of Stochastic Integral

4.1 Properties of Brownian Motion

Markove property and martingale property are Two most important property for a

stochastic process. Brownian motion satisfies both of them. For almost all stock, if

we plot distribution of log return of stock it looks like a bell curve. Brownian motion is a

stochastic process which have property that its increment are normally distributed. This

property makes Brownian motion a good model for modeling stock path. It is also turns

out that Brownian motion is also a martingale. If we look at stock price path they tend

to get a positive drift over time. To overcome this deficiency geometric Brownian motion

can be used to model stock path. Black Scholes formula is also based on the assump-

tion that stock price path follow geometric Brownian motion. In recent time geometric

fraction Brownian motion which in fact has dependent increment has been proposed to

model stock price path because of its fatter tales [4],[7]. But it is still not clear under

what condition this model is accurate as it admit arbitrage most of the time. There

is still a lot of research is going on for finding condition under which it is safe to use

geometric fractional Brownian Motion.

We start with the definition of standard Brownian motion. Norbert Wiener fist de-

scribed Brownian motion as a stochastic process, that’s why Brownian motion is usually

denoted by letter W . Theory in this section is adapted from [1],[2], [3],[6] and [10].

Definition 4.1.1. A continuous adapted stochastic process {Wt}t≥0 on a probability space

(Ω,F ,P,Ft) is said to be a standard Brownian motion if following conditions hold:
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1. P[W0 = 0] = 1 (Almost every path starts at origin)

2. For , The increment Bt − Bs, where 0 ≤ s < t, is normally distributed and inde-

pendent of Fs with mean 0 and variance t− s.

3. For almost all ω ∈ Ω, the sample path Wt(ω) is a continuous function of time t.

In this project we will not give proof for existence of Brownian motion. But there

are various ways by it can be constructed. First is to define a distribution using its

property and then construct a probability measure and a process such that it satisfy that

distribution. Second method is that is actually used by Wiener is based on Hilbert space

theory. There is also an another method which is based on weak limit of random walks.

Ioannis Karatzas provides rigorous proof of all these construction. Below are some useful

results for Brownian motion.

Theorem 4.1.1. Assume that W (t) is standard Brownian motion, then followings are

true for Brownian motion :

1. for s > 0, W (t + s) −W (s); t > 0 is a standard Brownian motion. This is called

differential property.

2. for every c ∈ R, cW (t) is Brownian motion with variance c2. This is called scaling

property.

3. for every c > 0
√
cW ( t

c
) is also a standard Brownian motion.

4. Define W ′(0) = 0 and W ′(t) = tW (1
t
) for t > 0, then W ′ is also a standard

Brownian motion.

Figure 4.2: Brownian Sample Paths in 3D
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Figure 4.1: Brownian Sample Paths in 1D and 2D

Covariance of standard Brownian motion

take 0 ≤ s ≤ t

Cov(Ws,Wt) = E[Ws ·Wt]− E[Ws] · E[Wt]

= E[Ws(Wt −Ws) +W 2
s ]

= E[Ws] · E[Wt −Ws] + V ar(Ws)

= 0 + s = s

Brownian motion is Integrable.

E[|Wt|] ≤
√
E[W 2

t ] =
√
t <∞

Assume that {Ft}t≥0 be a filtration of Brownian motion.

Theorem 4.1.2. Brownian motion is martingale w.r.t. filtration {Ft}t≥0.

Proof. Since Brownian motion is integrable we only need to prove E[Wt|Fs] = Ws for

0 ≤ s ≤ t. Now Ws is Fs-measurable and Wt −Ws is independent of Fs, hence :

E[Wt|Fs] = E[(Wt −Ws) +Ws|Fs]

= E[Wt −Ws|Fs] + E[Ws|Fs]

= 0 +Ws = Ws

(4.1)

Theorem 4.1.3. Xt = {W 2
t − t}t≥0 is a martingale w.r.t. any filtration {Ft}t≥0 of

Brownian motion.
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Proof. E[|Xt|] ≤ E[W 2
t ] + t = 2t < ∞.We only need to show E[Xt|Fs] = Xs for s ≤ t.

Now:

E[W 2
t − t|Fs] = E[W 2

t |Fs]− t

Now we need to compute E[W 2
t |Fs]:

Es[W
2
t ] = Es[(Wt −Ws +Ws)

2]

= Es[(Wt −Ws)
2 + 2Ws(Wt −Ws) +W 2

s ]

= Es[(Wt −Ws)
2] + 2Es[Ws(Wt −Ws)] + Es[W

2
s ]

= E[(Wt −Ws)
2] + 2WsE[Wt −Ws] +W 2

s

= V ar(Wt −Ws) + 2Ws · 0 +W 2
s = (t− s) +W 2

s

(4.2)

4.2 Sample Path Analysis of Brownian Motion

In this section we will analyse those property of Brownian motion which hold with prop-

erty one. Assume Wt be a standard Brownian motion. Consider the set of pair of (t, ω)

when sample path hit origin:

Z = {(t, ω) ∈ [0,∞)× Ω | Wt(ω) = 0}

and for any fix ω define:

Zω = {t ∈ [0,∞) | Wt(ω) = 0}

Non-differentiability of Brownian Sample Path

Theorem 4.2.1. For almost all ω ∈ Ω, following is true:

1. set Zω has labesgue measure zero.

2. set Zω is an unbounded closed set

3. set Zω is dense in [0,∞).

Proof. Proof of 1. based on fubini’s theorem, which we will directly use here. Let M
denotes lebesgue measure of a set. Then by fubini’s theorem:

E[M(Zω)] =

∫ ∞
0

P[Wt = 0]dt = 0
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. therefore (Zω) = 0 for almost all ω ∈ Ω. Note that Zω is the inverse image of the closed

set {0} under the almost surely continuous map t→ Wt(ω). Therefore Zω is closed set.

It is unbounded because SBM return to origin infinitely often with probability one (can

be easily proved). Zω is dense in [0,∞) can be proved by showing that it has no isolated

point in [0,∞).

Theorem 4.2.2. [1] The sample path Wt(ω) is monotone in no interval for almost all

ω ∈ Ω.

Theorem 4.2.3. [1] The sample path Wt(ω) of Brownian motion is nowhere differential

for almost all ω ∈ Ω.

Non-Differentiability of Brownian sample path can also be shown by probabilistic

argument shown below:

Wt+δt−Wt

δt

d
=
√
δt Z
δt

= Z√
δt
, Z ∼ N (0, 1)

Now observe that for any c > 0 :

P
[∣∣∣ Z√

δt
> c
∣∣∣] = P[|Z| > c

√
δt]

δt→0−→ P[|Z| > 0] = 1

Therefore the ratio Wt+δt−Wt

δt
is unbounded as δt→ 0 with probability 1.

Quadratic Variation

Definition 4.2.1. For p > 0, p-variation of a function f : R→ R on [a, b] is defined as:

V p
[a,b](f) = lim sup

|Π|n→0

n∑
i=1

|f(xi)− f(xi−1)|p

Where |Π|n = max{(xi − xi−1) : i ∈ {1, 2, ..., n}}.
If V p

[a,b](f) <∞, then f is said to be a function of bounded p-variation on [a, b].

Proposition 4.2.1. Bounded monotone functions have bounded first variation.

Proof. Consider a function f that is non-decreasing on [a, b]. For any partition a = x0 <

x1 < ... < xn = b,
n∑
i=1

|f(xi)− f(xi−1)| =
n∑
i=1

(f(xi)− f(xi−1)) = f(b)− f(a)

Theorem 4.2.4. Differential functions with a bounded derivative have bounded first vari-

ations.
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Proof.

V p
[a,b](f) =

n∑
i=1

|f(xi)− f(xi−1)|

=
n∑
i=1

|f ′(x′i)|(xi − xi−1)

≤M

n∑
i=1

(xi − xi−1) = M(b− a)

(4.3)

Theorem 4.2.5. The quadratic variation of a differential function with a bounded deriva-

tive is zero.

Proof.

n∑
i=1

|f(xi)− f(xi−1)|2 =
n∑
i=1

f ′(x′i)
2
(xi − xi−1)2

≤ |Π|nM2

n∑
i=1

(xi − xi−1) = |Π|nM2(b− a)
|Π|n→0−→ 0

(4.4)

Theorem 4.2.6. First Variation V[0,t](W )1 = ∞ and quadratic variation [W,W ](t) =

t ∀t > 0 for Brownian motion {Wt}t≥0.

Proof. Proof for first variation is trivial. For Quadratic variation Consider Vn =
n∑
i=1

(W (ti)−

W (ti−1))2. Calculate :

E[Vn] =
n∑
i=1

E[(W (ti)−W (ti−1))2] =
n∑
i=1

(ti − ti−1) = t

Var(Vn) =
n∑
i=1

Var((W (ti)−W (ti−1))2) =
n∑
i=1

(ti − ti−1)2Var(Z2) =

n∑
i=1

(ti − ti−1)2(E[Z4]− (E[Z2])2) =
n∑
i=1

(ti − ti−1)2(3− 12) =
n∑
i=1

2(ti − ti−1)2 → 0

Therefore [W,W ](t) = lim
n→∞

= t(a.s.).

Theorem 4.2.7. (Proposition 11.2, [3]) Assume that f and g do not have discontinuities

at the same point in time interval [0, T ]. If p-variation of f and q variation of g are finite

for some p, q > 0 and 1
p

+ 1
q
> 1. Then the Riemann-Stieltjes integral

∫ T
0
f(t)dg(t) exists

and finite.
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We have proved that quadratic variation of Brownian motion is finite and first varia-

tion is infinite. It is also know that p- variation of Brownian motion is infinite for p < 2

and infinite for p ≥ 2. Now we want to calculate Riemann-Stieltjes Integral
∫ t

0
g(s)dWs.

Now since quadratic variation of Brownian motion is finite, apply theorem 4.2.7 for q = 2.

Then
∫ t

0
g(s)dWs exist only if there exist p ∈ (0, 2) such that p-variation of g is finite.

Now if we want to consider integral like
∫ t

0
W (s)dWs, then this integral does not exist in

Riemann-Stieltjes sense. This lead us to develop stochastic calculus.

Let {Ft}t≥0 be a filtration.Define σ-field of events strictly prior to t > 0:

Ft− = σ(
⋃
s<t

Fs)

For t = o, define :

F0− = F0

Define σ-field of events immediately after t ≥ 0:

Ft+ =
⋂
ε>0

Ft+ε

Definition 4.2.2. A filtration Ft is called right continuous (left continuous) if Ft =

F+
t (Ft = F−t ) for every t ≥ 0

Above definition raise one question in our mind. Why the name right continuous

(left continuous)? In case of filtration σ-algebra increase by time. In particular for ε just

greater than 0 we have Ft ⊂ Ft+ε. By imposing above definition one want to be sure

that there is no gap between Ft and Ft+ε and that is why the name continuous.

Definition 4.2.3. A random time T is an F-measurable random variable which takes

value from [0,∞]

Intuitively a stopping time is a strategy that tells us when we should stop a particular

phenomena based on information available till that moment. Suppose one decide that

he will close his position for a certain stock when stock will it at a certain fixed level, is

a stopping time.
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Definition 4.2.4. Let X be a stochastic process and T be random time. Define function

XT on event {T <∞} as follows:

XT (ω) = XT (ω)(ω)

Definition 4.2.5. A random time T is called stopping time of filtration {Ft} if:

∀t ≥ 0, we have {T ≤ t} ∈ Ft

Definition 4.2.6. A random time T is called optional time of filtration {Ft} if:

∀t ≥ 0, we have {T < t} ∈ Ft

Proposition 4.2.2. Every stopping time is optional and in case of right continuous

filtration both these notions are same.

Proof. Let T be stopping time.Note that {T ≤ t − 1
n
} ∈ Ft− 1

n
⊆ Ft for n ≥ 1. Now we

have {T < t} =
∞⋃
n=1

{T ≤ t− 1
n
} ∈ Ft.

Suppose T is an optional time of right-continuous filtration {Ft}. Since T ≤ t} =⋂
ε>0{T < t + ε}. we have {T ≤ t} ∈ Ft+ε for every t ≥ 0 and every ε > 0. Hence

{T ≤ t} ∈ F+
t = Ft.

Chung and Doob (1965) defined another criteria for measurable process given below:

Definition 4.2.7. A stochastic Process X is said to be progressively measurable with

respect to filtration {Ft} if for all B ∈ B(R), {(s, ω) | 0 ≤ s ≤ t, ω ∈ Ω, Xs(ω) ∈ B} ∈
B([0, t])×Ft for each t ≥ 0.

Theorem 4.2.8. A progressively measurable modification exists for a measurable and

adapted stochastic process (Xt,Ft).

Suppose in a gambling game a gambler is able to make profit by leaving game at a

time which is based on some rule which do not depend on future (at stopping time), then

this type of game would not be a fair game. Doob’s Optional sampling theorem provide

condition under which this kind of strategy will not work.

Theorem 4.2.9. Doob’s Optional Sampling Theorem, Theorem 3.22 [1] Suppose Xt is

a submartingale and T be a almost surely bounded stopping time. Then we have:

E[XT ] ≥ E[X0]
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In case if Xt is supermartingale, then

E[XT ] ≤ E[X0]

. Equality will hold if Xt is a martingale.

Martingale property also allow us to find convergence of stochastic process under

certain weak condition then uniform integrable requirement. Below theorem is stated for

supermartingale, a similar resut is also true for submartingale.

Theorem 4.2.10. Supermartingale convergence theorem, [1] If Xt is a supermartingale

such that

supnE[|Xn|] <∞

Then limnXn exist almost surely with finite expectation.

4.3 Construction of Stochastic Integral and Geomet-

ric Brownian Motion

Theory in this section is adapted from [1] and [2]

Definition 4.3.1. An adapted process A is called increasing if for almost all ω ∈ Ω

process starts from origin and function t 7→ At(ω) is a non decreasing right continuous

function.

Definition 4.3.2. Let X be a stochastic process and T be random time. Define function

XT on event {T <∞} as follows:

XT (ω) = XT (ω)(ω)

Let f be a finite number such that f > 0. Let Lf denote the class of all stopping

time T such that P(T ≤ f) = 1 for all such f .

Definition 4.3.3. A right continuous process (Xt,Ft) is said to be of class DL if for

every f , the family {XT}T∈Lf is uniformly intergrable.

Theorem 4.3.1. Doob-Meyer Decomposition If (Xt,Ft) is a right continuous submartin-

gale which belongs to class DL. Then it can be decomposed as a summation of right

continuous martingale and an increasing process At:

Xt = Mt +At , 0 ≤ t <∞ (4.5)
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Definition 4.3.4. A right continuous martingale (Xt,Ft) is said to be square integrable

if E[X2
t ] <∞ and t ≥ 0.

LetM2 denote the space of all square integrable right continuous martingale. Denote

by Mc
2, the subset of M2 consisting of almost surely continuous processes.

Using Doob-Meyer Decomposition we can provide an alternative definition of quadratic

variation and this definition can be proved same as previous one and vice-versa.

Definition 4.3.5. Consider the Doob-Meyer decomposition of X ∈M2 :

Xt = Mt +At

Then At is called the quadratic variation 〈X〉 of X. Clearly X − 〈X〉 is a martingale.

Since quadratic variation of Brownian motion is t, above definition is a direct proof

of martingale property of process {W 2
t − t}t≥0.

Let L2 be the space of all process such that Riemann integral
∫ T

0
Xsds exists almost

surely and E
[∫ T

0
X2(s)ds

]
<∞ for all T > 0.

Definition 4.3.6. We will say that a process X ∈ L2 is simple if there exist countable

partition {tn}n∈N∪{0} such that Xt(ω) = Xtk(ω) ∀ t ∈ [tk, tk+1), where k ∈ N ∪ {0}.

for such type of process we will define its Ito integral by:

It(X) =

∫ t

0

XsdWs =
n−1∑
k=0

Xtk(ω)(Wtk+1
(ω)−Wtk(ω)) +Xtn(ω)(Wt(ω)−Wtn(ω)) (4.6)

where n = max{k ; tk ≤ t}.
To define Ito integral for any arbitrary process from L2, it has been shown that any

process X ∈ L2 can be approximated by sequence of simple process and this sequence

will converge in the sense of following two theorems:

Theorem 4.3.2. For any process X ∈ L2 there exist a sequence of simple process Xn

such that

lim
n→∞

E

[∫ t

0

(Xn(s)−X(s))2ds

]
= 0 (4.7)

Theorem 4.3.3. Assume we have got a sequence of simple process Xn satisfying above.

Then there exist a process Γt ∈Mc
2 such that:

lim
n→∞

E
[
(Γs − Is(Xn))2

]
= 0 ∀ 0 ≤ s ≤ t. (4.8)

This process Γt is unique upto indistinguishable class.
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Theorem 4.3.4. For a stochastic Process Xt ∈ L2, It’s Ito Inegral with respect to Brow-

nian motion is the unique process Γt ∈Mc
2 defined in theorem 4.3.3.

Now to define Ito integral for general process we can just choose a sequence of simple

process by theorem 4.3.2 and this sequence converge by theorem 4.3.3

Theorem 4.3.5. Ito integral satisfies following:

1. It(αX + βY ) = αIt(X) + βIt(Y ).

2. Ito Isometry :E [I2
t (X)] = E

[∫ t
0
X2
sds
]
.

3. It(X) ∈Mc
2.

Definition 4.3.7. If a stochastic process Xt on (Ω,F ,P,Ft) can be written as following:

Xt = X0 +

∫ t

0

αsdWs +

∫ t

0

βsds (4.9)

where α, β ∈ L2, then it is called Ito Process.

As we will see later for making computation handy we will write above as:

dXt = αtdWt + βtdt (4.10)

We will denote α2
tdt by (dXt)

2. This is also convenient since it can be obtain by

simple computation rule. Because

(dXt)
2 = dXt · dXt = (αtdWt + βtdt) · (αtdWt + βtdt) =

Now using dt · dt = dWt · dt = dt · dWt = 0 and dWt · dWt = dt, we will obtain α2
tdt.

Theorem 4.3.6. Ito-Doeblin Formula for Ito Process Let Xt be an Ito process.

Let f(x, t) be a function whose partial derivatives fx(x, t), ft(x, t) and fxx(x, t) exists and

continuous. Then we have:

f(Xt, t) = f(X0, 0) +

∫ t

0

fx(Xs, s)dXs +

∫ t

0

fs(Xs, s)ds+
1

2

∫ t

0

fxx(Xs, s)(dXt)
2 (4.11)

Above can be written as below to make computation handy:

df(Xt, t) = fx(Xt, t)αtdWt + fx(Xt, t)βtdt+ ft(Xt, t)dt+
1

2
fxx(Xt, t)α

2
tdt (4.12)

There are various process which are derived from Brownian motion and have appli-

cations in various area of natural science. We start with drifted Brownian motion.
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Let µ, σ ∈ R, σ > 0 be constant. Consider the following process:

W
(µ,σ)
t = µt+ σWt (4.13)

This is called Brownian motion with drift µ and scale parameter (volatility) σ.

Some Properties of Brownian motion with drift

1. W
(µ,σ)
t ∼ N (µt, σ2t) and Cov(W

(µ,σ)
s ,W

(µ,σ)
t ) = σ2min(s, t).

2. Brownian motion with drift is not a martingale

3. Brownian motion with positive drift is a submartingale

4. Brownian motion with negative drift is a supermartingale

Geometric Brownian motion is defined as the exponential of drifted Brownian motion.

In development of Black-scholes model it is required that asset will follow a geometric

Brownian motion. Hence we will denote this by St :

S(t) = ec+W
(µ,σ)
t = S0e

µt+σWt (4.14)

Figure 4.3: Sample Path of Geometric Brownian motion
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Chapter 5

Black Scholes Option Pricing Model

So far we have developed the machinery which needed for option price Model. The core

idea behind this derivation is based on forming a replicating portfolio which produce

same payoff as option. Thus we will form a portfolio in risk-free bond, underlying stock

and option. Black and Scholes just after their ground braking paper in 1973, provided

a method by which option pricing problem can be transformed to solving a PDE, in

particular parabolic PDE with a terminal condition. There are few assumption that are

required to develop our model. These are :

1. We are assuming that option is European

2. Market that we are dealing with is free of arbitrage.

3. Log returns of stock is normally distributed.

4. We are not considering transaction cost and dividend.

5. risk free rate and volatility are constant and known.

Now in Black Scholes Model there is an assumption that stock price will follow geo-

metric Brownian motion. Which means stock has constant rate of return and volatility.

But in general rate of return and volatility can be time varying. So in general stock

priced as exponential of an Ito process Xt (given below) multiplied by it’s Initial Value.

Xt =

∫ t

0

σ(s)dWs +

∫ t

0

(µ(s)− 1

2
σ2(s))ds (5.1)

As mention Above asset price process St will be given by:

St = S0e
Xt = S0e

(
∫ t
0 σ(s)dWs+

∫ t
0 (µ(s)− 1

2
σ2(s))ds) (5.2)
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Now choose f(x, t) = S0e
x, then we have St = f(Xt, t). Now since Xt is an Ito

process, by using Ito Doeblin formula for Ito process we get:

dSt = df(Xt, t) (5.3)

= fx(Xt, t)σ(t)dWt + fx(Xt, t)

(
µ(t)− 1

2
σ2(t)

)
dt+ ft(Xt, t)dt+

1

2
fxx(Xt, t)σ

2(t)dt

(5.4)

= S0e
Xtσ(t)dWt + S0e

Xt

(
µ(t)− 1

2
σ2(t)

)
dt+

1

2
S0e

Xtσ2(t)dt (5.5)

= Stσ(t)dWt + Stµ(t)dt (5.6)

= µ(t)Stdt+ σ(t)StdWt (5.7)

Now in Black-Sholes model we are assuming volatility and rate of return are not time

varying and random,hence we have:

dSt = µStdt+ σStdWt (5.8)

Now in case of constant rate of return and volatility equation 5.2 becomes:

St = S0e
(σWt+(µ− 1

2
σ2)t) (5.9)

This is the mathematical expression of geometric Brownian motion.

Now this Geometric Brownian motion is considered as a solution of following stochas-

tic differential equation:

dSt = µSt dt+ σSt dWt (5.10)

Solution can also obtained by Using Ito Doeblin formula on function f(x, t) = ln x.

Note that Above equation is just a shorthand Notation of Ito process:

St = S0 +

∫ t

0

SsdWs +

∫ t

0

µSsds (5.11)

Now using Ito-Doeblin formula we get:

d ln(St) =
1

St
(µSt dt+ σSt dWt)−

1

2
× 1

S2
t

σ2S2
t dt

= µ dt+ σ dWt −
1

2
σ2 dt

=

(
µ− 1

2
σ2

)
dt+ σ dWt
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Above will give us:

St = S0e
(σWt+(µ− 1

2
σ2)t) (5.12)

So Now it is clear that In our model stock price is driven by Geometric Brownian

motion which can represented by SDE 5.10.

Let V = V (S, t) denote the value of an option (or a contingent claim) that is suf-

ficiently smooth, namely, its second-order derivatives with respect to S and first-order

derivative with respect to t are continuous.

Apply Ito formula for Ito process St to get:

dV =

(
µS

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW.

Since both stochastic processes S and V are driven by the same Wiener process

(Brownian motion) W , the stochastic term, σS ∂V
∂S
dW , can be eliminated by constructing

a portfolio that consists of the option and the underlying asset. Let P be the wealth of

the portfolio that consists of one short position in option with value V and ∆ units of

the underlying asset with the price S. Now at time t, value of above portfolio will be

P = −V + ∆S,

suppose P0 is the initial capital of the portfolio.

Now the infinitesimal change in the portfolio becomes

dP = −dV + ∆dS

= −
[(
µS

∂V

∂S
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW

]
+ ∆ (µSdt+ σSdW )

= −
(
µS

(
∆− ∂V

∂S

)
+
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt+

(
−∂V
∂S

+ ∆

)
σSdW.

If we choose ∆ = ∂V
∂S

, we can hedge the portfolio by eliminating the stochastic term.

Now the infinitesimal change dP of the portfolio within the time interval dt is:

dP = −
(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt (5.13)

Further, in infinitesimal time dt the portfolio capital will grow by rPdt;

dP = rPdt = r(−V + ∆S)dt (5.14)

= −rV + rS
∂V

∂S
(5.15)
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Now under no arbitrage principle, the two investment should give the same infinites-

imal change dP . Thus we have:

−rV + rS
∂V

∂S
= −

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
(5.16)

Hence,

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (5.17)

This is the celebrated Black-Scholes-Merton equation for European options.

5.1 Solution of the Black-Scholes Equation

We can obtain solution of Black-Scholes equation by two ways, first is by converting it to

heat equation and using Fourier transform technique and other is by changing probability

measure. We first discuss solution by Fourier transform technique.

5.1.1 Solution of BSM PDE by Converting it to Heat Equation

Definition 5.1.1 (Fourier transform). For a function f , the Fourier transform is given

by

f̂(ω) =

∫ ∞
−∞

e−iωxf(x)dx, −∞ < ω <∞.

Definition 5.1.2 (Inverse Fourier transform). The inverse Fourier transform is given by

f̂(x) =
1

2π

∫ ∞
−∞

eiωxf̂(ω)dω.

Example 5.1.1. Suppose f(x) = e−ax
2/2, a > 0. Then

f ′(x) = −axf(x),

taking Fourier transform in both side yields

iωf̂(ω) = −ai d
dω
f̂(ω)

=⇒ d

dω
f̂(ω) = −ω

a
f̂(ω)

=⇒ f ′(ω) = Ae−
ω2

2a .
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To calculate A, put ω = 0, which implies

A = f̂(0) =

∫ ∞
−∞

e−
ax2

2 dx =

√
2π

a
.

Thus

F
(
e−

ax2

2

)
=

√
2π

a
e−

ω2

2a .

Solution of the Heat Equation

The standard heat equation is

∂u

∂t
= c2∂

2u

∂x2
;−∞ < x <∞, t > 0,

u(x, 0) = f(x).

Taking Fourier transform in both hand side implies

d

dt
û(ω, t) = c2(iω)2û(ω, t)

=⇒ û(ω, t) = A(ω)e−c
2ω2t,

where A(ω) is a constant depending on ω.

We have u(x, 0) = f(x), which implies û(ω, 0) = f̂(ω), leading to A(ω) = f̂(ω). Hence

û(ω, t) = f̂(ω)e−c
2ω2t.

Using convolution property of Fourier transform, we have

F(f ∗ g) = F(f)F(g) =⇒ F−1(f̂ ĝ) = f ∗ g.

Thus

u(x, t) = F−1(u(ω, t)) =
1

2c
√
πt

∫ ∞
−∞

f(s)e−
(x−s)2

4c2t ds.

Here, we have used that

F−1(e−c
2ω2t) =

1

2c
√
πt
e−

x2

4c2t .

The Black-Scholes equation is given by,

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (5.18)

where V (0, t) = 0 and V (S, T ) = max{S −K, 0}. PDE of this type are called Parabolic

PDE by below classification.
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Classification of Second Order PDE

Suppose the linear second order PDE has the form

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D = 0,

then this PDE is called

• Parabolic if B2 − AC = 0

• Elliptic if B2 − AC < 0

• Hyperbolic if B2 − AC > 0.

Now make the following change of variables in Black-Scholes PDE

t = T − τ
σ2/2

, which gives τ = σ2

2
(T − t) , S = Kex, which gives x = log( S

K
),

V (S, t) = Kv(x, τ). Thus we have V (S, T ) = Kv(x, 0), since T = T − τ
σ2/2

=⇒ τ = 0.

Now we have ∂V
∂t

= ∂V
∂τ

dτ
dt

= K ∂v
∂τ

(−σ2

2
), ∂V

∂S
= ∂V

∂x
dx
dS

= K ∂v
∂x

( 1
S

)

Also,

∂2V

∂S2
=

∂

∂S

(
∂V

∂S

)
=

∂

∂S

(
K
∂v

∂x

1

S

)
= K

∂v

∂x

(
− 1

S2

)
+K

∂

∂S

(
∂v

∂x

)
1

S

= K
∂v

∂x

(
− 1

S2

)
+K

∂

∂x

(
∂v

∂x

)
dx

dS

1

S
= K

∂v

∂x

(
− 1

S2

)
+K

∂2v

∂x2

(
1

S2

)
.

Further, V (S, T ) = max{S − K, 0} = K max{ex − 1, 0}. But V (S, T ) = Kv(x, 0)

which implies v(x, 0) = max{ex − 1, 0}.
Substituting these values in BS equation, yields

∂v

∂τ
=
∂2v

∂x2
+ (p− 1)

∂v

∂x
− pv = 0, (5.19)

where p = r
σ2/2

and v(x, 0) = max{ex − 1, 0}.
Now above equation has only one parameter p. Now since we have x = log(S/K),

where S,K > 0. Above equation is defined for x ∈ (−∞,∞).

Now substitute

v(x, τ) = eαx+βτu(x, τ) (5.20)

where α and β will be chosen appropriately.

Substituting equation 5.20 in equation 5.19 gives:

uτ = uxx + (2α + p− 1)ux + (α2 + (p− 1)α− p− β)u.
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Choose 2α + p − 1 = 0 and α2 + (p − 1)α − p − β = 0. This gives α = 1−p
2

and

β = −1
4
(p+ 1)2.Now the above PDE reduces to

uτ = uxx,

which is the standard heat equation.

Now, the initial condition will change to

u(x, 0) = e−αxv(x, 0) = e
(p−1)

2
x max{ex − 1, 0}

= max{e
(p+1)

2
x − e

(p−1)
2

x, 0}.

Note that u(x, 0) > 0 when x > 0 and u(x, 0) = 0 for x ≤ 0.

Now the solution of the heat equation is

u(x, τ) =
1

2
√
πτ

∫ ∞
−∞

u0(s)e−
(x−s)2

4t ds.

Take z = (s−x)√
2τ

, which gives dz = − 1√
2τ
dx, to get the following;

u(x, τ) =
1√
2π

∫ ∞
−∞

u0(z
√

2τ + x)e−
z2

2 dz.

Now note that u0 > 0 for z > − x√
2τ
. Hence above integrataion can be written as;

u(x, τ) =
1√
2π

∫ ∞
−x/
√

2τ

e
k+1

2
(x+z

√
2τ)e−

z2

2 dz

− 1√
2π

∫ ∞
−x/
√

2τ

e
k−1

2
(x+z

√
2τ)e−

z2

2 dz

= I1 − I2.

For I1;

I1 =
1√
2π

∫ ∞
−x/
√

2τ

e
k+1

2
(x+z

√
2τ)e−

z2

2 dz

=
1√
2π
e

(k+1)
2

x+τ
(k+1)2

4 )

∫ ∞
−x/
√

2τ

e−
1
2

(z−
√

τ
2

(k+1))2

dz.

Substitute z = z +
√

τ
2
(k + 1))2, to get;

I1 =
1√
2π
e

(k+1)
2

x+τ
(k+1)2

4

∫ ∞
−x/
√

2τ−
√

τ
2

(k+1)

e−
y2

2 dy

= e
(k+1)

2
x+τ

(k+1)2

4 Φ(d1),
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where d1 = x/
√

2τ +
√

τ
2
(k + 1) and Φ is the standard normal CDF.

Similarly get

I2 =
1√
2π
e

(k−1)
2

x+τ
(k−1)2

4

∫ ∞
−x/
√

2τ−
√

τ
2

(k−1)

e−
y2

2 dy

= e
(k−1)

2
x+τ

(k−1)2

4 Φ(d2),

where d2 = x/
√

2τ +
√

τ
2
(k − 1) and Φ is the standard normal CDF.

Thus the transformed heat equation has solution

u(x, τ) = e
(k+1)

2
x+τ

(k+1)2

4 Φ(d1)− e
(k−1)

2
x+τ

(k−1)2

4 Φ(d2).

Now substitute the following in above equation;

v(x, τ) = e−
(k−1)

2
x− (k+1)2

4
τu(x, τ), x = log(S/K), τ = σ2

2
(T − t), V (S, T ) = Kv(x, τ).

This gives us:

V (S,K, r, σ, T, t) = SΦ(d1)−Ke−r(T−t)Φ(d2),

This is the price of Europian call option. where Φ is standard normal CDF and d1

and d2 are defined as

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√

(T − t)
and

d2 =
log(S/K) + (r − σ2/2)(T − t)

σ
√

(T − t)
.

Where S is the price of underlying asset, r is risk free rate, σ is stock volatility, T is

exercise or maturity time and K is strike price.

We can get the price of Put option using put-call parity.

5.1.2 Solution of BSM PDE by Changing Probability Measure

Girsonov theorem is a unique element of stochastic calculus which makes it different from

ordinary calculus. If we have two probability measure we can relate them by theorem

2.1.3, this gives us notion of equivalent measure.

Definition 5.1.3. Suppose P and Q are two probability measures which are defined on

same σ-field F . If for every A ∈ F we have:
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Q(A) =

∫
A

h(ω)dP(ω)

then Q is said to be absolutely continuous with respect to P. we shall call function h to

be density of Q w.r.t. P.

Definition 5.1.4 (Equivalent (martingale) measure). In above definition if P is also

absolutely continuous with respect to Q, then they are called equivalent measure. If there

is a stochastic process Xt which is martingale under Q, then probability measure P and

Q are called equivalent martingale measure.

Theorem 5.1.1 (Girsanov’s Theorem). Consider the probability space (Ω,F ,P). Let

Wt, 0 ≤ t ≤ T be the standard Brownian motion and let Ft, 0 ≤ t ≤ T is associated

filtration with Wt. Suppose Θ(t), 0 ≤ t ≤ T be an adapted process. Define

Z(t) = e−
∫ t
0 Θ(u)dWu− 1

2

∫ t
0 Θ2(u)du.

W̃t = Wt +

∫ t

0

Θ(u)du.

Let Z = Z(T ), we define

Q(A) =

∫
A

ZdP(ω), A ∈ F .

Then EP[Z] = 1 and W̃t is a standard Brownian motion under the measure Q.

For our purpose, We are interested in process of the form

W̃t = Wt + ct.

the process W̃t is not a standard Brownian motion unless c = 0. Girsonov theorem gives

us tool to make it standard Brownian motion. change the probability measure P with

probability measure Q according to Girsanov theorem such that process W̃t becomes a

standard Brownian motion. By Girsanov’s theorem consider

Z := Z(T ) = e−cWT− 1
2
c2T

and

Q(A) =

∫
A

Z(ω)dP(ω), A ∈ F .

Then W̃t is standard Brownian motion under Q.
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We want to have a probability measure Q such that the discounted price process is a

martingale. Thus we want

S̃(t) = e−rtS(t) = e−rtS0e
(µ− 1

2
σ2)t+σWt

= S0e
(µ−r− 1

2
σ2)t+σWt

to be a martingale. We know that if Wt is a standard Brownian motion then eσWt− 1
2
σ2t

is a martingale. Thus the discounted price process is a martingale if µ = r. Thus under

the risk neutral measure Q, the equity price process can be represented as

S(t) = S0e
(r− 1

2
σ2)t+σWt

= S0e
(r− 1

2
σ2)t+σ

√
tZ .

Note that

P(S(t) > K) = P
(
S0e

(r− 1
2
σ2)t+σ

√
tZ > K

)
= P

(
Z >

log(K/S0)− (r − σ2/2)t

σ
√
t

)
= P

(
Z > σ

√
t− ω

)
,

where

ω =
rt+ σ2t/2− log(K/S0)

σ
√
t

.

Let I be the indicator random variable for the event that the option finishes in the

money. That is

I =

{
1 if S(t) > K

0 if S(t) ≤ K.

Then, we have

E(I) = P(S(t) > K)

= P
(
Z > σ

√
t− ω

)
= P(Z ≤ ω − σ

√
t)

= Φ(ω − σ
√
t).
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Let z1 = σ
√
t− ω. The option price is given by

c = e−rTEQ
[
(S(T )−K)+

]
= e−rT

∫ ∞
z1

(
S0e

(r− 1
2
σ2)T+σ

√
Ty −K

) 1√
2π
e−y

2/2dy

= S0e
− 1

2
σ2T 1√

2π

∫ ∞
z1

eσ
√
Ty−y2/2dy −Ke−rT

∫ ∞
z1

1√
2π
e−y

2/2dy

= S0
1√
2π

∫ ∞
z1

e−(y−σ
√
t)2/2dy −Ke−rTΦ(−z1)

= S0
1√
2π

∫ ∞
−ω

e−u
2/2du−Ke−rTΦ(−z1) (by putting u = y − σ

√
t)

= S0P(Z > −ω)−Ke−rTΦ(−z1)

= S0Φ(ω)−Ke−rTΦ(ω − σ
√
T ),

where ω = rT+σ2T/2−log(K/S0)

σ
√
T

.

In general if t is the time to maturity of the European call option then

C(s, t,K, σ, r) = sΦ(ω)−Ke−rtΦ(ω − σ
√
t),

where

ω =
rt+ σ2t/2− log(K/s)

σ
√
t

and s is the initial price of the equity.
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Chapter 6

Simulation of Option Pricing Models

on Global and Indian equity

6.1 Prediction of Stock Price Path for Apple and

Google Under Bachelier Model Using Historical

Volatility1

We predicted the stock price of Apple and Google using Bachelier Model and geometric

Brownian motion of stock. To estimate volatility of stocks 11 year of stock price data

(from 01-02-2010) have been used.

Under Bachlier model stock price is given by:

St = S0 + σWt (6.1)

Where σ is volatility. Now

St − St−1 = σ(Wt −Wt−1).

where σ is volatility term.

which implies that St−St−1 ∼ N(0, σ2). Furthermore, since St−St−1, t = 1, 2, . . . are

independent, we will estimate σ by σ̂ = sd(St − St−1).

Google Stock

Stock price of data of Google is obtained from ”quantmod” library of R. fig 6.1 shows

the closing price data of Google. Daily price change of Google stock is shown in figure

1All the data that has been used in this section for simulation purpose is obtained from ”Yahoo

finance”
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size mean std dv skewness kurtosis skew.2SE kurt.2SE

2811 0.6660389 15.18709 0.1022575 15.84188 1.107264 85.79995

Table 6.1: Some statistics of daily price change of Google stock

6.2 . We can see high volatility after march 2020 because of COVID19 Pandemic. Some

statistics of daily price change of Google stock is also shown in table 6.1

First thing to note is skew.2SE and kurt.2SE are greater than one, suggesting strong

deviation from normality of daily price change. High positive value of kurtosis (also

known as leptokurtic curve) suggests that tail of data will die out slowly and low value

of skewness indicate that data is may be evenly distributed.

Figure 6.1: Google closing price Data of Google from 2010-01-02
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Test Test Value p-value

Jarque–Bera test X-squared = 29449 2.2e-16

Kolmogorov–Smirnov test D = 0.99964 2.2e-16

Shapiro–Wilk test W = 0.7879712 2.453127e-51

Table 6.2: Result of test for normality of daily price change of Google

Figure 6.2: Daily price change of Google stock

Jarque–Bera test, Kolmogorov–Smirnov test and Shapiro–Wilk test performed to

check normality of price change of stock. Table 6.5 represent the result obtained from

these test :

Since value of X-squared is very high, value of D and W is very close to 1 and p-

value is significantly low; All these three test strongly reject the null hypothesis or the

normality of price change data.

We compared daily price change distribution of google stock from real Data and

the distribution which is derived by Bachelier model. For finding distribution under

Bachelier model we have used 11 years of data from 2010. For obtaining distribution

of Empirical data (again same data of 11 years) we have used kernel density estimation
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(KDE) technique. figure 6.3 shows comparison between daily price change distribution

of Empirical data and according to Bachelier model for Google. Bandwidth is selected

by ’density’ function of R which utilise silverman’s rule of thumb. It says bandwidth h

is given by:

h = 0.9×min

(
σ̂;
q3 − q1

1.349

)n− 1
5

(6.2)

Figure 6.3: Empirical and Bachelier model Daily price change distribution comparison

using kernel density estimation of Google stock

Fig 6.3 shows that Bachelier model of stock price is a very bad fit for a leptokurtic

curve of daily price change of Google stock. To test the fitness of Bachelier model to

Empirical data we used ”Two-sample Kolmogorov-Smirnov test”. Result of the test is

shown in table 6.6 and test strongly reject the null hypothesis that they came from same

population.
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Test Test Value p-value

Two-sample

Kolmogorov-Smirnov test

D = 0.16578 2.2e-16

Table 6.3: Goodness of fit test for Bachelier Model of Google stock

We predicted Google stock price based on 11 years of volatility and compared it to

observed price. Figure 6.4 shows possible paths for Google stock price under Bachelier

model. In Figure 6.4 we generated very large number of possible Bachelier model path to

get a good estimate of mean Bachelier path. Clearly mean Bachelier model path deviates

strongly from observed stock price for Google.

Figure 6.4: Comparison of Bachelier model and observed closing price for Google stock

Apple Stock

Stock price data of Apple is also obtained from ”quantmod” library of R. fig 6.5 shows

the closing price data of Apple. Daily price change of Apple stock is also shown in figure

6.6 . Like Google, in Apple also, We can see high volatility in 2020 because of COVID19

pandemic. Some statistics of daily price change of Apple stock is also shown in table 6.4
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Note that magnitude of skew.2SE and kurt.2SE are greater than one, suggesting

strong deviation from normality of daily price change. High positive value of kurtosis

suggests that tail of data will die out very slowly and low value of skewness indicate that

data is somewhat evenly distributed.

While Google daily price change data has positive skewness, Apple daily price change

shows negative skewness. Hence Google dpc (daily price change) data has slightly high

density on left side and Apple dpc has slightly high density on the right side of the bell

curve.

size mean std dv skewness kurtosis skew.2SE kurt.2SE

2811 0.04162559 0.9717078 -0.145019 24.97615 -1.570298 135.2714

Table 6.4: Some statistics of daily price change of Apple stock

Figure 6.5: Closing price path of Apple from 2010-01-02
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Test Test Value p-value

Jarque–Bera test X-squared = 73190 2.2e-16

Kolmogorov–Smirnov test D = 0.99643 2.2e-16

Shapiro–Wilk test W = 0.6746677 7.972452e-59

Table 6.5: Result of test for normality of daily price change of Apple stock

Figure 6.6: Daily price change of Apple stock

Similar to Google; Jarque–Bera test, Kolmogorov–Smirnov test and Shapiro–Wilk

test performed to check normality of price change of Apple stock. Table 6.5 represent

the result obtained from these test :

Since value of X-squared is very high, value of D and W is very close to 1 and p-

value is significantly low; All these three test strongly reject the null hypothesis or the

normality of daily price change data of Apple.

Similar to Google, We compared daily price change distribution of Apple stock from

real Data and the distribution which is derived by Bachelier Model. For finding distri-

bution under Bachelier model we have used 11 years of data from 2010. For obtaining
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distribution of Empirical data (again same data of 11 years) we have used kernel density

estimation (KDE) technique. figure 6.7 shows comparison between daily price change

distribution of Empirical data and according to Bachelier model for Apple.

Figure 6.7: Empirical and Bachelier model Daily price change distribution comparison

using kernel density estimation of Apple stock

Figure 6.7 shows that Bachelier model of stock price is a very bad fit for a leptokurtic

curve of daily price change of Apple stock as we got in Google stock. To test the fitness

of Bachelier model to Empirical data we used ”Two-sample Kolmogorov-Smirnov test”.

Result of the test is shown in table 6.6 and test strongly reject the null hypothesis that

they came from same population.

Test Test Value p-value

Two-sample

Kolmogorov-Smirnov test

D = 0.38278 2.2e-16

Table 6.6: Goodness of fit test for Bachelier Model of Google stock

Similar to Google, We predicted Apple stock price based on 11 years of volatility

and compared it to observed price. Figure 6.8 shows possible paths for Apple stock price
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under Bachelier model. In figure 6.8 we generated very large number of possible Bachelier

model path to get a good estimate of mean Bachelier path. Clearly mean Bachelier model

path deviates strongly from observed stock price for Google.

Figure 6.8: Comparison of Bachelier model and observed closing price for Apple stock
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6.2 Prediction of Stock Price Path for Apple and

Google Under BSM Model Using Historical Volatil-

ity2

Recall that under Black-scholes model stock price process can be described by below

SDE:

dSt = µSt dt+ σSt dWt (6.3)

We obtained below geometric Brownian motion as the solution of above SDE:

St = S0e
(σWt+(µ− 1

2
σ2)t) (6.4)

Which gives us:

St+1

St
=
e(σWt+1+(µ− 1

2
σ2)(t+1))

e(σWt+(µ− 1
2
σ2)t)

St+1

St
= eσ(Wt+1−Wt)+(µ− 1

2
σ2)

ln

(
St+1

St

)
= σ(Wt+1 −Wt) + (µ− 1

2
σ2)

Hence we have

ln

(
St+1

St

)
= (µ− 1

2
σ2) + ε (6.5)

where ε ∼ N (0, σ2).

For estimating mean and volatility of log return we have used 11 years of log return

data of Google and apple. Let µ̂ and σ̂ be our estimated mean and volatility respectively

of log return then µ in equation 6.4 is given by

µ = µ̂+
1

2
σ̂2 (6.6)

Some statistics of log return of Google and Apple stock is give in table 6.7 and table

6.8 respectively.

size mean std dv skewness kurtosis skew.2SE kurt.2SE

2811 7.420273e-

04

1.639007e-

02

0.3164235 9.822617 3.426298 5.319951

Table 6.7: Some statistics of log return of Google stock

2All the data that has been used in this section for simulation purpose is obtained from ”Yahoo

finance”
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size mean std dv skewness kurtosis skew.2SE kurt.2SE

2811 1.075067e-

03

1.787012e-

02

-0.306114 6.267043 -3.314668 33.94244

Table 6.8: Some statistics of log return of Apple stock

Daily log return of Google and Apple is shown in figure 6.9 and figure 6.10 respectively.

Similar to daily change price the magnitude of skew.2SE and kurt.2SE in case of log

return are also greater than one, suggesting deviation from normality of daily log return

distribution. High positive value of kurtosis suggests that tail of data will die out very

slowly and low value of skewness indicate that data is somewhat evenly distributed.

Also similar to daily change price, while Google daily price change data has positive

skewness, Apple daily price change shows negative skewness. Hence Google log return

data has slightly high density on left side whereas Apple log return data has slightly high

density on the right side of the bell curve.

Figure 6.9: Daily log return of Google stock
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Figure 6.10: Daily log return of Apple stock

Jarque–Bera test, Kolmogorov–Smirnov test and Shapiro–Wilk test performed to

check normality of daily log return of Google and Apple stock. Table 6.9 and table

6.10 represent the result obtained from these test for Google and Apple stock respec-

tively.

Test Test Value p-value

Jarque–Bera test X-squared = 11369 2.2e-16

Kolmogorov–Smirnov test D = 0.50988 2.2e-16

Shapiro–Wilk test W = 0.9026485 4.553790e-39

Table 6.9: Result of test for normality of Daily log return of le Google stock
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Test Test Value p-value

Jarque–Bera test X-squared = 4653.8 2.2e-16

Kolmogorov–Smirnov test D = 0.51057 2.2e-16

Shapiro–Wilk test W = 0.9347182 1.918410e-33

Table 6.10: Result of test for normality of Daily log return of Apple stock

Since value of X-squared is high and W is close to 1 and p-value is significantly low

for Jarque-Bera test and Shapiro-wilk test hypothesis or the normality of log returns is

rejected by these test for both stocks

For Kolmorogov-Smirnov p-value is significantly low, test D value is close to 0.5 which

is also less than it’s critical value for 95% confidence interval which is 0.077552 for both

stocks. Hence it is also safe to reject normality of Daily log return of these stocks for this

test.

We compared daily log return distribution of both stock from real Data and the

distribution which is derived under GBM Model using kernel density estimation (KDE)

technique. Figure 6.11 6.12 shows comparison between daily log return distribution of

Empirical data and according to GBM model for Google and Apple respectively.

KDE plot shows that GBM model of stock price is although not a perfect fit to

Empirical data, but still is very good fit compared to Bachelier Model. The imperfection

came because we are assuming constant drift and volatility which is in general not true.

To test the fitness of GBM model to Empirical data we used ”Two-sample Kolmogorov-

Smirnov test”.Table 6.11 and table 6.12 respectively shows the result of the test for

Google and Apple. The test strongly reject the null hypothesis that they came from

same population.

Test Test Value p-value

Two-sample

Kolmogorov-Smirnov test

D = 0.079331 4.149e-08

Table 6.11: Goodness of fit test for GBM Model of Google stock
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Test Test Value p-value

Two-sample

Kolmogorov-Smirnov test

D = 0.077552 9.092e-08

Table 6.12: Goodness of fit test for GBM Model of Google stock

Figure 6.11: Empirical and GBM model Daily log return distribution comparison using

kernel density estimation of Google stock

56



Figure 6.12: Empirical and GBM model Daily log return distribution comparison using

kernel density estimation of Apple stock

We predicted the both stock prices according to GBM model based on 11 years

of volatility using Monte Carlo simulation and compared it to observed price. Figure

6.13 6.14 shows possible paths for Google and Apple stock price under GBM model

respectively. we generated 3000 samples get a good estimate of mean GBM path.

There is deviation from the GBM path from 2020 because of COVID19 Pandemic.

In all other time period both stock GBM price path is a good estimate of observed price

path. Again some imperfection because we are using constant drift and volatility. Also

note that compared to Google, Apple stock price path fit better in GBM model.
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Figure 6.13: Comparison of GBM model and observed closing price for Google stock

Figure 6.14: Comparison of GBM model and observed closing price for Apple stock
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6.3 Prediction of Option Price of Infosys Stock Un-

der CRR and BSM Model3

In this section Cox, Ross and Rubinstein (CRR) approach of pricing option is presented

and we implemented same model on Infosys option.

CRR Model is a Binomial tree based model such when time period ∆ between two

consecutive tradeble period approaches zero, model approaches to Black-scholes Model.

To accomplish this first discretize time such that t0 = 0, t1 = ∆, t2 = 2∆, ..., tn = n∆ = T ,

where ∆ = T
n
.

Let σ is the volatility of stock. If we restrict u and d such that u · d = 1, then by

choosing below value for parameter u and p̃, we get a good approximation of Black-scholes

model:

u = eσ
√

∆, p̃ =
(er∆ − d)

(u− d)
≈ 1

2
+

1

2
(r − 1

2
σ2)

√
∆

σ
,

Example 6.3.1. Find the Initial price of European call option with no dividend whose

features are given in table 6.13

Initial stock price S0 150

Strike price K 135

risk free rate r 0.045

Expiration Time T 0.4

volatility σ 0.20

time steps n 5

Table 6.13: European call with no dividend

We get ∆ = T/n = 0.08, u = eσ
√

∆ = e0.2
√

0.08 = 1.0823, and d = 1/u = 0.9234..

Figure 6.15 is Recombining tree generated by a R program shows option price evolution

at different node.

In this example if we consider continuous time i.e n→∞ then option price found by

Black scholes model is 18.96391. Which is close to CRR price. In CRR model if we keep

increasing n then we keep getting a better estimate of option price. Figure 6.16 shows

3All the data that has been used in this section for simulation purpose is obtained from ”Yahoo

finance”
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trajectory of option price for increasing n. We found option price equal to 18.94796 for

n = 50

Figure 6.15: Option price Evolution as a recombining Binomial tree

Figure 6.16: CRR option price with increasing n

Pricing Infosys Option under CRR model Using Recent Historical Volatil-

ity (5 years)

We priced Infosys Limited (INFY.NS) call option and put option using historical

volatility of last 5 years. We obtained historical data from yahoo finance server using

quantmod library of R. We priced Infosys option which will expire on 1 June 2021 i.e. 54

days from 6 April 2021. Table 6.14 represent features of Infosys stock on 6 April 2021:
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Initial stock price S0 1409.900024

Strike price K From 1300 to 1500

risk free rate r 0.031

Expiration Time T 54
365

volatility σ 0.2908

time steps n 9

Table 6.14: Infosys call option with no dividend

Table 6.15 Provides Price of Infosys option with given strike price for CRR Model of

step size 9 and Black Scholes Model.

Strike Price K CRR Model BSM Model

1300 136.15439 135.09051

1339 107.38090 107.22709

1379 82.96576 82.42351

1419 63.30096 61.64829

1459 43.63616 44.84517

1499 32.63268 31.72608

Table 6.15: Price of Infosys option under CRR and BSM Model for different strike price

Figure 6.17 shows the comparison of Infosys option price with feature mentioned in

table 6.14 for CRR and BSM Model with strike price between 1300-1500.

When we increased the step size to 50, we got the figure 6.18. From figure 6.18 it is

clear that CRR Model price is almost equal to BSM Model price for Infosys option.
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Figure 6.17: Infosys Option price comparison for CRR (step size = 9) and BSM Model

Figure 6.18: Infosys Option price comparison for CRR (step size = 50) and BSM Model
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Appendix A

Source Code Used for Simulations

A.1 R Code Used to Simulate Google Price Path

and All Other Plot of Google for GBM Model

l ibrary ( pa s t e c s )

l ibrary ( quantmod )

l ibrary ( s t a t s )

l ibrary ( t s e r i e s )

l ibrary ( quantmod )

goog = getSymbols ( ’GOOG’ , s r c=’ yahoo ’ , from = ”2010−02−01” )

data = GOOG[ , 6 ]

goog . l r = d i f f ( log (data ) ) [ −1 ]

goog . sd = sd ( goog . l r )

N = as . numeric (nrow(GOOG) )

mu = mean( goog . l r ) + 0 .5∗ ( goog . sd∗goog . sd )

S0 = as . numeric (GOOG[ 1 5 0 1 , 4 ] )

Wt = cumsum(rnorm(N−1500 ,0 ,1) ) ;

t = (1500 :N) ;

p1 = (mu − 0 .5∗ ( goog . sd∗goog . sd ) )∗ ( t −1501);

p2 = goog . sd∗Wt

St = S0∗ exp( p1 + p2 ) ;

op days = length ( goog . l r )
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stat . desc ( goog . l r $GOOG. Adjusted , ba s i c=TRUE,

desc=TRUE, norm=TRUE)

ks . t e s t ( goog . l r $GOOG. Adjusted , ’ pnorm ’ )

ja rque . bera . t e s t ( goog . l r $GOOG. Adjusted )

plot ( index (data [ 2 :N] ) , goog . l r , type = ” l ” , main =

” Dai ly l og re turn o f Google from 2010−02−01” ,

xlab = ”Time” , ylab= ” Dai ly l og re turn ” , col=” black ” , lwd=2)

dates = index (data )

axis (1 , at = 1 :N, padj = 1 , labels=dates )

plot ( t , St , type= ” l ” , main = ” Pred i c t i on o f

Google s tock p r i c e path under GBM Model” , xlab =

”Time I n t e r v a l ” , y lab= ” Pred ic ted Value” , ylim =

c (350 ,2500) , xl im=c (1400 ,2700) , col=” red ” )

dates = index (data )

#a x i s (1 , a t = 1 :N, l a b e l s=d a t e s )

dates = index (data )

j =30

TSt = 0

for ( i in 1 : j ){
Wt = cumsum(rnorm(N−1500 ,0 ,1) ) ;

t = (1500 :N) ;

p1 = (mu − 0 .5∗ ( goog . sd∗goog . sd ) )∗ ( t −1500);

p2 = goog . sd∗Wt;

St = S0∗ exp( p1 + p2 ) ;

TSt = TSt + St ;
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l ines ( t , St , col=” red ” )

}
l ines ( t , TSt/ j , col=” green ” , lwd=2)

l ines ( 1 :N,GOOG[ , 4 ] , col=” blue ” , lwd=2)

legend (1400 ,2400 , c ( ”GBM stock p r i c e

path” , ” Empir ica l s tock p r i c e path” , ”Average o f

GBM stock p r i c e path” ) , col=c ( ” red ” ,

” blue ” , ” green ” ) , l t y =1:1 , cex =0.8)

#a x i s (1 , a t = 1 :N, l a b e l s=d a t e s )

‘ ‘ ‘

l ibrary ( quantmod )

goog = getSymbols ( ’GOOG’ , s r c=’ yahoo ’ , from = ”2010−02−01” )

data = GOOG[ , 6 ]

goog . l r = d i f f ( log (data ) ) [ −1 ]

goog . sd = sd ( goog . l r )

N = as . numeric (nrow(GOOG) )

mu = mean( goog . l r ) + 0 .5∗goog . sd∗goog . sd

p1 = (mu − 0 .5∗ ( goog . sd∗goog . sd ) ) ;

p2 = goog . sd∗goog . sd

theor = rnorm(2811 , p1 , goog . sd )

emp d<−density ( goog . l r )

theor d <− density ( theor )

plot (emp d , col = ’ blue ’ , type= ” l ” , main =
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” Empir ica l and BS Model Log Returns d i s t r i b u t i o n

f o r Google” )

l ines ( theor d , col = ’ red ’ )

legend ( −0.12 ,35 , c ( ” Empir ica l ” , ”BS

Model” ) , col=c ( ” blue ” , ” red ” ) , l t y =1:1 , cex =0.8)

goog . l r core = coredata ( goog . l r )

ks . t e s t ( goog . l r core , theor )

ch i sq . t e s t ( table ( goog . l r core , theor ) , c o r r e c t = FALSE)

#ks . t e s t ( goog . r , theor )

‘ ‘ ‘

A.2 R Code Used to Simulate Apple Price Path and

All Other Plot of Apple for GBM Model

l ibrary ( pa s t e c s )

l ibrary ( quantmod )

l ibrary ( s t a t s )

l ibrary ( t s e r i e s )

l ibrary ( quantmod )

appl = getSymbols ( ’AAPL’ , s r c=’ yahoo ’ , from =

”2010−02−01” )

data = AAPL[ , 6 ]

class (data )

appl . l r = d i f f ( log (data ) ) [ −1 ]

class ( appl . l r )

appl . sd = sd ( appl . l r )
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N = as . numeric (nrow(AAPL) )

c l p r i c e = AAPL[ , 4 ]

mu = mean( appl . l r ) + 0 .5∗ ( appl . sd∗appl . sd )

S0 = as . numeric (AAPL[ 1 5 0 1 , 4 ] )

Wt = cumsum(rnorm(N−1500 ,0 ,1) ) ;

t = (1500 :N) ;

p1 = (mu − 0 .5∗ ( appl . sd∗appl . sd ) )∗ ( t −1501);

p2 = appl . sd∗Wt

St = S0∗ exp( p1 + p2 ) ;

op days = length ( appl . l r )

stat . desc ( appl . l r $AAPL. Adjusted , ba s i c=TRUE,

desc=TRUE, norm=TRUE)

ks . t e s t ( appl . l r $AAPL. Adjusted , ’ pnorm ’ )

ja rque . bera . t e s t ( appl . l r $AAPL. Adjusted )

plot ( index (data [ 2 :N] ) , appl . l r , type = ” l ” , main =

” Dai ly l og re turn o f Apple from 2010−02−01” ,

xlab = ”Time” , ylab= ” Dai ly l og re turn ” ,

col=” black ” , lwd=2)

dates = index (data )

axis (1 , at = 1 :N, padj = 1 , labels=dates )

#a p c l cr = coredata (AAPL[ , 4 ] )
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#p l o t ( t , a p c l cr [ 1 5 0 1 :N]−St , type = ” l ” , main =

” Dai ly p r i c e change o f Google from 2010−02−01” ,

xlab = ”Time” , ylab= ” Dai ly p r i c e change” ,

col=” black ” , lwd=2)

#d a t e s = index ( data )

#a x i s (1 , a t = 1 :N, padj = 1 , l a b e l s=d a t e s )

plot ( t , St , type= ” l ” , main = ” Pred i c t i on o f

Apple s tock p r i c e path under GBM Model” , xlab =

”Time(No . o f working days from 2010−02−01)” ,

ylab= ” Pred ic ted Value” , ylim =

c ( 0 , 200 ) , xl im=c (1400 ,2700) , col=” red ” )

dates = index (data )

#a x i s (1 , a t = 1 :N, l a b e l s=d a t e s )

dates = index (data )

j =30

TSt = 0

for ( i in 1 : j ){
Wt = cumsum(rnorm(N−1500 ,0 ,1) ) ;

t = (1500 :N) ;

p1 = (mu − 0 .5∗ ( goog . sd∗goog . sd ) )∗ ( t −1500);

p2 = goog . sd∗Wt;

St = S0∗ exp( p1 + p2 ) ;

TSt = TSt + St ;

l ines ( t , St , col=” red ” )
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}
l ines ( t , TSt/ j , col=” green ” , lwd=2)

l ines ( 1 :N,AAPL[ , 4 ] , col=” blue ” , lwd=2)

legend (1400 ,190 , c ( ”GBM stock p r i c e

path” , ” Empir ica l s tock p r i c e path” , ”Average o f

GBM stock p r i c e path” ) , col=c ( ” red ” , ” blue ” ,

” green ” ) , l t y =1:1 , cex =0.8)

A.3 R Code Used to Simulate Google Price Path and

All Other Plot of Google for Bachelier Model

l ibrary ( pa s t e c s )

l ibrary ( quantmod )

l ibrary ( s t a t s )

l ibrary ( t s e r i e s )

getSymbols ( ’GOOG’ , s r c=’ yahoo ’ , from = ”2010−02−01” )

data = GOOG[ , 6 ]

goog . d i f f = d i f f (data ) [ −1]

sd = sd ( goog . d i f f )

S0 = as . numeric (GOOG[ 1 5 0 1 , 4 ] )

l a s t P r i c e = GOOG[ , 4 ]

N = as . numeric (nrow( l a s t P r i c e ) )

St = cumsum(rnorm(N−1500 ,0 , sd ) )

St= St+S0

t = (1501 :N) ;

op days = length ( goog . d i f f )

stat . desc ( goog . d i f f$GOOG. Adjusted , ba s i c=TRUE,
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desc=TRUE, norm=TRUE)

ks . t e s t ( goog . d i f f$GOOG. Adjusted , ’ pnorm ’ )

ja rque . bera . t e s t ( goog . d i f f$GOOG. Adjusted )

dates = index (data )

axis (1 , at = 1 :N, padj = 1 , labels=dates )

plot ( index (data ) , l a s t P r i c e , type = ” l ” , main =

” Clos ing p r i c e o f Google from 2010−02−01” , xlab

= ”Time” , ylab= ” Clos ing p r i c e ” , col=” blue ” , lwd=2)

dates = index (data )

axis (1 , at = 1 :N, padj = 1 , labels=dates )

j =30

TSt=0

for ( i in 1 : j ){
t = (1501 :N) ;

St = S0 + cumsum(rnorm(N−1500 ,0 ,sd ) )

TSt = TSt + St

l ines ( t , St , col=” red ” )

}
l ines ( t , TSt/ j , col=” green ” , lwd=2)

l ines ( 1 :N, l a s t P r i c e , col=” blue ” , lwd=2)
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# Comparison o f KDE

theor = rnorm( op days , 0 , sd )

emp d<−density ( goog . d i f f )

theor d <− density ( theor )

l ines ( theor d , col = ’ red ’ )

goog . d i f f core = coredata ( goog . d i f f )

ks . t e s t ( goog . d i f f core , theor )

ch i sq . t e s t ( table ( goog . d i f f core , theor ) , c o r r e c t = FALSE)

A.4 R Code Used to Simulate Apple Price Path and

All Other Plot of Apple for Bachelier Model

l i b r a r y ( pa s t e c s )

l i b r a r y ( quantmod )

l i b r a r y ( s t a t s )

l i b r a r y ( t s e r i e s )

l i b r a r y ( quantmod )

appl = getSymbols ( ’AAPL’ , s r c =’yahoo ’ , from = ”2010−02−01”)

data = AAPL[ , 6 ]

c l a s s ( data )

appl . l r = d i f f ( l og ( data ) ) [ −1 ]

c l a s s ( appl . l r )

appl . sd = sd ( appl . l r )

N = as . numeric ( nrow (AAPL) )
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c l p r i c e = AAPL[ , 4 ]

mu = mean( appl . l r ) + 0 . 5∗ ( appl . sd∗ appl . sd )

S0 = as . numeric (AAPL[ 1 5 0 1 , 4 ] )

Wt = cumsum( rnorm (N−1500 ,0 ,1) ) ;

t = (1500 :N) ;

p1 = (mu − 0 . 5∗ ( appl . sd∗ appl . sd ) )∗ ( t −1501);

p2 = appl . sd∗Wt

St = S0∗ exp ( p1 + p2 ) ;

op days = length ( appl . l r )

s t a t . desc ( appl . lr$AAPL . Adjusted , ba s i c=TRUE,

desc=TRUE, norm=TRUE)

ks . t e s t ( appl . lr$AAPL . Adjusted , ’pnorm ’ )

ja rque . bera . t e s t ( appl . lr$AAPL . Adjusted )

p l o t ( index ( data [ 2 :N] ) , appl . l r , type = ” l ” , main =

” Dai ly l og re turn o f Apple from 2010−02−01”,

xlab = ”Time” , ylab= ” Dai ly l og re turn ” ,

c o l=”black ” , lwd=2)

dates = index ( data )

a x i s (1 , at = 1 :N, padj = 1 , l a b e l s=dates )

#a p c l c r = coredata (AAPL[ , 4 ] )

#p lo t ( t , a p c l c r [ 1 5 0 1 :N]−St , type = ” l ” , main =
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” Dai ly p r i c e change o f Google from 2010−02−01”,

xlab = ”Time” , ylab= ” Dai ly p r i c e change ” ,

c o l=”black ” , lwd=2)

#dates = index ( data )

#a x i s (1 , at = 1 :N, padj = 1 , l a b e l s=dates )

dates = index ( data )

#a x i s (1 , at = 1 :N, l a b e l s=dates )

dates = index ( data )

j =30

TSt = 0

f o r ( i in 1 : j ){
Wt = cumsum( rnorm (N−1500 ,0 ,1) ) ;

t = (1500 :N) ;

p1 = (mu − 0 . 5∗ ( goog . sd∗goog . sd ) )∗ ( t −1500);

p2 = goog . sd∗Wt;

St = S0∗ exp ( p1 + p2 ) ;

TSt = TSt + St ;

l i n e s ( t , St , c o l=”red ”)

}
l i n e s ( t , TSt/ j , c o l=”green ” , lwd=2)

l i n e s ( 1 :N,AAPL[ , 4 ] , c o l=”blue ” , lwd=2)

A.5 R Code Used to Simulate Infosys Option Price

and All Other Plot in Section 6.3

m = 50
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CRRV = rep (NA, t imes = n)

f o r (n in 3 :m) \{

CRRV[ n ] = CRRBinomialTreeOption ( TypeFlag = ” ce ” , S = 150 ,

X = 135 , Time =0.4 , r = 0 .045 , b = 0 .045 , sigma

= 0 .20 , n = n) @price

\}

CRRV

plo t (CRRV[ 3 :m] , type = ” l ” , c o l = ” red ” , xlab =

”No . o f s tep ” , ylab = ” Value o f opt ion ”)

CRRV[m]

GBSOption ( TypeFlag = ”c ” , S = 150 ,

X = 135 , Time =0.4 , r = 0 .04335 , b = 0.03335 , sigma = 0 .20 )

l i b r a r y ( quantmod )

l i b r a r y (” fOpt ions ”)

getSymbols ( ’ INFY.NS’ , s r c =’yahoo ’ , from = ”2016−11−01”)

INFY = INFY.NS [ , 6 ]

INFY. r e t s = d i f f ( l og (INFY)) [ −1 ]
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# Annualized V o l a t i l i t y by Dai ly V o l a t i l i t y

INFY. sd = sd (INFY. re t s , na . rm=TRUE)∗ s q r t (252)

p r i n t ( c (” Value o f annual v o l a t i i t y i s ” , INFY. sd ) )

S = as . numeric (INFY.NS[ nrow (INFY.NS) , 4 ] )

p r i n t ( c (” Value o f S i s ” , S ) )

k = 54

T = k /365 ;

r = . 0 3 1 ;

b = r ;

sigma = INFY. sd ;

n=50;

GBSV = rep (NA, t imes = 201)

CRRV = rep (NA, t imes = 201)

f o r ( i in 1300 :1500){

CRRV[ i −1299] = CRRBinomialTreeOption ( TypeFlag =

” ce ” , S = S , X = i , Time = T, r = r , b = r , sigma

= sigma , n = n) @price

GBSV[ i −1299] = GBSOption ( TypeFlag = ”c ” , S = S ,

X = i , Time = T, r = r , b = r , sigma =
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sigma ) @price

}

t = c (1 ,40 ,80 ,120 ,160 ,200)

p r i n t ( c ( t +1299 ,CRRV[ t ] ) )

p r i n t ( c ( t +1299 ,GBSV[ t ] ) )

l i n e s (1300 :1500 ,GBSV[ 1 : 2 0 1 ] , c o l=”green ”)

l i b r a r y (” fOpt ions ”)

#CRRBinomialTreeOption ( TypeFlag = ” ce ” , S = 150 ,

X = 135 ,Time = 0 . 4 , r = 0 .04335 , b = 0.03335 ,

sigma = 0 .20 , n = 4 ) ;

#CRRBinomialTreeOption ( TypeFlag = ” ce ” , S = 100 , X = 100 ,

#Time = 1 , r = 0 . 1 , b = 0 . 1 , sigma = 0 .25 , n = 50)

#GBSOption ( TypeFlag = ”c ” , S = 100 , X = 100 ,

#Time = 1 , r = 0 . 1 , b = 0 . 1 , sigma = 0 .25 )

s t ep s = 50

CRRV = rep (NA, t imes = s t ep s )

f o r (n in 3 : s t ep s ) {
CRRV[ n ] = CRRBinomialTreeOption ( TypeFlag = ” ce ” ,

S = 150 ,
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X = 135 , Time =0.4 , r = 0 .045 , b = 0 .045 , sigma

= 0 .20 , n = n) @price

}
CRRV

plo t (CRRVe[ 3 : s t ep s ] , type = ” l ” , c o l =

” red ” , xlab = ”No . o f time step ” , ylab = ”Option

Value ”)

CRRV[ s t ep s ]

GBSOption ( TypeFlag = ”c ” , S = 150 ,

X = 135 , Time =0.4 , r = 0 .04335 , b = 0.03335 ,

sigma = 0 .20 )

l i b r a r y ( quantmod )

l i b r a r y (” fOpt ions ”)

getSymbols ( ’ INFY.NS’ , s r c =’yahoo ’ , from = ”2016−11−01”)

# Read Data from Computer

#INFY.NS <− read . csv (”INFY NS6M . csv ”)

t a i l (INFY.NS, 5)

# S e l e c t the Adjusted Pr i ce

INFY = INFY.NS [ , 6 ]

# Ca lcu la te Dai ly Log Returns

INFY. r e t s = d i f f ( l og (INFY)) [ −1 ]

# Annualized V o l a t i l i t y by Dai ly V o l a t i l i t y

INFY. sd = sd (INFY. re t s , na . rm=TRUE)∗ s q r t (252)

p r i n t ( c (” Value o f annual v o l a t i i t y i s ” , INFY. sd ) )
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S = as . numeric (INFY.NS[ nrow (INFY.NS) , 4 ] )

p r i n t ( c (” Value o f S i s ” , S ) )

k = 54

T = k /365 ;

r = . 0 3 1 ;

b = r ;

sigma = INFY. sd ;

n=50;

GBSV = rep (NA, t imes = 201)

CRRV = rep (NA, t imes = 201)

f o r ( i in 1300 :1500){

CRRV[ i −1299] = CRRBinomialTreeOption ( TypeFlag =

” ce ” , S = S , X = i , Time = T, r = r , b = r , sigma

= sigma , n = n) @price

GBSV[ i −1299] = GBSOption ( TypeFlag = ”c ” , S = S ,

X = i , Time = T, r = r , b = r , sigma =

sigma ) @price

}
t = c (1 ,40 ,80 ,120 ,160 ,200)

p r i n t ( c ( t +1299 ,CRRV[ t ] ) )

p r i n t ( c ( t +1299 ,GBSV[ t ] ) )

p l o t (1300 :1500 ,CRRV[ 1 : 2 0 1 ] , type =

” l ” , c o l = ” red ” , xlab = ” S t r i k e Pr i ce ” , ylab =
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” I n f o s y s Option Value ”)

l i n e s (1300 :1500 ,GBSV[ 1 : 2 0 1 ] , c o l=”green ”)
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