
Primality Testing and Factorization

Satender

MS16069

A dissertation submitted for the partial fulfillment
of BS-MS dual degree in Mathematical Science

Indian Institute of Science Education and Research Mohali
May 2021

i

Certificate of Examination

This is to certify that the dissertation titled “Primality Testing and Factorization” submit-
ted by Mr. Satender (Reg. No. MS16069) for the partial fulfilment of BS-MS dual degree
program of the Institute, has been examined by the thesis committee duly appointed by
the Institute. The committee finds the work done by the candidate satisfactory and rec-
ommends that the report be accepted.

Prof. Kapil Hari Pranjape Dr. Amit Kulshrestha Dr. Chandrakant S. Aribam

(Supervisor)

Dated : May 27, 2021

ii

Declaration

The work presented in this dissertation has been carried out by me under the guidance
of Dr. Chandrakant S. Aribam at the Indian Institute of Science Education and Research
Mohali.
This work has not been submitted in part or in full for a degree, a diploma, or a fellowship
to any other university or institute. Whenever contributions of others are involved, every
effort is made to indicate this clearly, with due acknowledgement of collaborative research
and discussions. This thesis is a bonafide record of original work done by me and all
sources listed within have been detailed in the bibliography.

Satender
(Candidate)

Dated: May 27, 2021

iii

ABSTRACT

Primality Testing and
Factorization

by
Satender

Indian Institute of Science Education and Research, Mohali, 2021

This thesis is a detailed study of primality testing and factorization algorithms.
In the first part, we study about famous algorithms such as Fermat’s factorization
scheme, Robin-Miller Test, Solovay-Strassen Test, Continued Fraction Factoring Algo-
rithm, Pollard-rho and p− 1 test etc., then we study deterministic polynomial time AKS-
Algorithm. In, second part we study about Quadratic sieve algorithm and polynomial
time lattice reduction algorithm, The LLL-Algorithm. Then we study in detail about poly-
nomial factorization in finite field Z/pZ and in field of rationals, Q. In the last part, we
study polynomial factorization using the LLL-Algorithm.

iv

TABLE OF CONTENTS

PAGE

ABSTRACT . iii

ACKNOWLEDGMENTS . vi

NOTATIONS . vii

CHAPTER

1 Some Primality Testing and Factoring Algorithms . 1

1.1 Some Tests for Primality and Compositeness . 1

1.1.1 Lucas and Pocklington Tests . 1

1.1.2 Miller-Rabin Test . 3

1.1.3 Solovay-Strassen Test . 4

1.2 Some Factorization Algorithms . 11

1.2.1 Fermat-Kraitchik Factorization Method. 11

1.2.2 Pollard’s Methods . 12

1.2.3 Continued Fraction Factoring Algorithm(CFFA) . 14

1.2.4 Quadratic Sieve Algorithm. 17

2 The AKS-Algorithm . 20

3 The LLL-ALGORITHM .. 25

3.1 Gram-Schmidt Orthogonalization(GSO) . 25

3.2 The LLL-Algorithm . 27

3.3 LLL-Algorithm with Deep Insertion and for Linearly depen-
dent Vectors . 29

3.4 LLL-Algorithm Termination . 30

4 Polynomial Factorization . 33

4.1 Polynomial Factorization in field Fp . 33

4.2 Polynomial Factorization over Z or Q . 37

4.2.1 Hensel Lifting . 41

4.2.2 Factorization in Z[X] . 44

4.2.3 Polynomial Factorization in Z[X] Using LLL-Algorithm 46

v

APPENDICES

A Algorithms . 51

B Some Python Implementations . 60

BIBLIOGRAPHY . 95

vi

ACKNOWLEDGMENTS

First and foremost I would like to express my special thanks to my thesis supervi-
sor Dr. Chandrakant S. Aribam. It was a great experience working under his guidance
throughout the year. I very much appreciate his way of handling students by letting
them learn on their own pace in a stress free environment. I thank him for his time and
the guidance without which I would not have learned as much.

I am grateful to Professor Kapil Hari Paranjape for his insightful comments and
guidance for better implementation of my work. I thank my committee member Dr.
Amit Kulshrestha for his valuable feedback.

I am thankful to IISER Mohali library for providing me with academic resources
required for my thesis and allowing students to avail library services in these difficult
times.

And, I am deeply thankful to my friends and family for their love and support
which has always boosted me and kept me motivated to achieve my goals.

vii

NOTATIONS

Fp : Finite field with p number of elements.

R : Field of real numbers.

Z : Ring of integers.

bac : Greatest integer less than or equal to a.

dae : Least integer greater than or equal to a.

bae : Nearest integer to a, also known as round of a.

φ(n) : Number of integer less than or equal to n that are coprime with n.

gcd(a, b) : Greatest common divisor of a and b.

lcm(a, b) : Least common multiple of a and b

Z/nZ : Ring of integers modulo n.

‖.‖ : Euclidean norm

i f f : If and only if.

1

CHAPTER 1

SOME PRIMALITY TESTING AND FACTORING

ALGORITHMS

1.1 SOME TESTS FOR PRIMALITY AND

COMPOSITENESS

From Fermat’s theorem [6, page 88] we get that if p is a prime, then ap ≡ a (mod p)
for any integer a. This provides us with a way of recognizing most composite numbers.
We need a converse of this theorem which was first given by Edouard Lucas in 1876.

1.1.1 LUCAS AND POCKLINGTON TESTS

Theorem 1.1 (Lucas Test). If xN−1 (mod N) = 1 and x(N−1)/p (mod N) 6= 1 for some
integer x and for all prime factors p of N − 1, then N is prime.

Proof. Let k be the order of x modulo N. Hence k | (N − 1) =⇒ (N − 1) = kj for some
j. If j > 1, then let q be a prime divisor of j. Thus, there exists some integer j1 such that
j = qj1. We have:

x(N−1)/q = (xk)j1 ≡ 1j1 = 1 (mod N)

Which contradicts our second condition. Hence, we have j = 1 =⇒ k = (N − 1). But
as we know φ(N) ≤ (N − 1), so here φ(N) = (N − 1) =⇒ N is prime, where φ(N) is
the Euler’s totient function which gives us the number of integers less than or equal to N
that are coprime with N.

Example 1.2. We need to search for some integer x as defined above which can be a lot of
work sometimes. Let N = 1000000007, then we have (N − 1) = 2× 500000003. Taking
base x = 2, we see that 21000000006/2 (mod 1000000007) = 1. But 1000000007 is lower of
the twin prime pair, primes of form (p, p + 2). Base x = 5 successfully tells us that it is a
prime.

2

For algorithm refer to [A.1.3]. Above test was improved in late 1960s in which
instead of finding a suitable single integer, a, suitable bases are allowed for each prime
factor pi of (N − 1).

Theorem 1.3. If there exists an integer xi for each prime factor pi of (N − 1) satisfying
x(N−1)

i (mod N) = 1 and x(N−1)/pi
i (mod N) 6= 1, then N is a prime integer.

Proof. Let (N − 1) = {pki
i }

r
i=1 be the prime factorization of (N − 1) and hi be the order of

xi modulo N. As hi | (N − 1) but hi - (N − 1)/pi, we get pki
i as one of the factors of hi.

But, as for all i, hi | φ(N) =⇒ pki
i | φ(N) =⇒ (N − 1) | φ(N). As φ(N) ≥ (N − 1), we

have N a prime integer.

Later in 1914, Henry Pocklington showed that we do not need complete prime
factorization of (N − 1) but we only need to factor it such that the factored part exceeds√

N.

Theorem 1.4 (Pocklington Test). Let m1m2 = N − 1 with gcd(m1, m2) = 1 and m1 ≥
√

N
such that m1 = pk1

1 pk2
2pkr

r . If there exists some xi ∈ Z for each prime factor pi satisfying
xN−1

i (mod N) = 1 and gcd(x(N−1)/pi
i − 1, N) = 1, then N is a prime integer.

Proof. We give proof by contradiction, assume that p is any prime divisor of N. And
take hi to be the order of xi modulo p . Then we have hi | (p− 1) but xN−1

i (mod N) =

1 =⇒ xN−1
i (mod p) = 1 which implies hi | (N − 1). From second condition we get

x(N−1)/pi
i (mod p) 6= 1 =⇒ hi - (N − 1)/pi. So we have pki

i | hi ∀ i ∈ {1, 2,, r}
=⇒ mi | (p− 1). But mi ≥

√
N, thus all the prime factors of N must be greater than

√
N,

a contradiction. Hence, N is prime.

Example 1.5. Taking N = 1000000009, next prime to the one in example (1.2). N − 1 =

54936 × 18203 with gcd(54936, 18203) = 1. Take m = 54936 having prime factors
{2, 3, 7, 109}. We do not have to find single base satisfying both the conditions as we
did in Lucas test, but distinct x for each factor would do. Here, for x = 2 we have
21000000008 (mod 1000000009) = 1 and gcd(21000000008/p − 1, 1000000009) = 1 only for
p = 3, 7 and 109. Whereas x = 13 satisfies both the conditions for all prime factors of
1000000008.

3

1.1.2 MILLER-RABIN TEST

It is a direct test for compositeness which announces that either n is definitely
composite or of undecided nature. Miller-Rabin Test is also called a probabilistic primality
test because for a chosen base x, the coming theorem is satisfied in case of composite
integers also, such bases are called liars for compositeness for given composite integer.

Theorem 1.6. Let p be an odd prime with (p− 1) = 2sm, where m is odd and s ≥ 1. Then
any integer 1 < x < p− 1 will satisfy xm ≡ 1 (mod p) or x2jm ≡ −1 (mod p) for some
0 ≤ j < s.

Proof. If an integer x has order k modulo p then k | (p− 1). Let k to be odd then k | m =⇒
m = kk1 for some integer k1. So we have

xm = (xk)k1 ≡ 1 (mod p)

Now assume k to be even. Write k = 2j+1d, j ≥ 0 with d an odd integer. Then 2j+1d |
2sm =⇒ j + 1 ≤ s and d | m and from x2j+1d ≡ 1 (mod p) we get x2jd ≡ −1 (mod p). Now
take m = dt for some odd t then:

x2jm = (x2jd)t ≡ −1 (mod p)

As required.

Test for compositeness : First, choose a random integer 1 < x < N for given
integer N. Then if xm 6≡ 1 (mod N) and x2jm 6≡ −1 (mod N) ∀j = 0, 1, ..., s− 1, where s
and m are calculated as in (1.6), then N is definitely composite by above theorem. Such
base x is called a witness for compositeness of N.
For some composite N, let W(N) be the set of all base satisfying (1.6) then |W(N)| <
φ(N)/4 [20], where |W(N)| denotes number of elements in set W(N). For algorithm
refer [A.1.2].

Example 1.7. Consider N = 69741. Then N − 1 = 69740 = 22 × 17435. Then taking x = 3
both the conditions of Miller-Rabin test are not satisfied, hence 69741 is composite. See
that for bases x = 11908, 17011, 18712, 39124 we have x17435 (mod 69741) = 1 but not for
all bases 1 < x < N − 1.

4

1.1.3 SOLOVAY-STRASSEN TEST

This test is similar to Miller-Rabin Test as it is also a probabilistic primality test
which recognizes composites with probability at least 1

2 . Before this we need few lemmas
regarding primitive roots and quadratic residues which are discusses below in brief.

Definition 1.8. 1. If for some x ∈ Z satisfying gcd(x, N) = 1 we have order of x equals
φ(N) modulo N i.e. xφ(N) ≡ 1 (mod N) but xr 6≡ 1 (mod N) ∀ r < φ(N), then x is
said to be a primitive root modulo N.

2. If for some x ∈ Z we have x2 ≡ x (mod N); x ∈ Z, for integer N ≥ 2 with
gcd(x, N) = 1 then x is called a quadratic residue of N. If gcd(x, N) = 1 but x2 6≡
x (mod N) For any x ∈ Z then it is called a quadratic nonresidue of N.

Theorem 1.9. If K is a finite field, then K∗ is a cyclic group. Here K∗ = K− {0}.

Proof. Let number of elements in K, denoted as |K|, be p. Then |K∗| = p − 1. Let
Bd = {b ∈ K∗ | ordK∗(b) = d} be the sets for all divisors d of p − 1 where ordK∗(b)
denotes the order of element b in group K∗. Take an arbitrary element x ∈ Bd. Denote
the cyclic group generated by x as 〈x〉. Then we have |〈x〉| = d and for all 0 ≤ i < d we
have (xi)d = 1. So, all the roots of polynomial Xd − 1 in K are the elements of 〈x〉. Now,
if b ∈ Bd then we have bd = 1 in K, making it a root of Xd − 1 which implies b ∈ 〈x〉.
Therefore, Bd ⊆ 〈x〉. As number of elements in group 〈x〉 of order d is φ(d)[13, page 65],
where φ is Euler’s totient function. So, |Bd| = φ(d).
Hence, we have a disjoint partition of group K∗ in terms of Bd’s containing order d ele-
ments for all divisors d of p− 1. So, we have

|K∗| = p− 1 = ∑
d|p−1

|Bd|

And as we have p− 1 = ∑d|p−1 φ(d) [13, page 70], thus all of the Bd’s are non-empty sets.
So, Bp−1 will be a non-empty set with each of φ(p− 1) elements b ∈ Bp−1 as generators
of K∗.

So, by above theorem we see that for prime number p, Z∗p is a cyclic group with
φ(p− 1) generators (also called primitive elements modulo p).

Lemma 1.10 (Euler’s Criteria). Let p be an odd prime number. Then set, S, of quadratic
residues of p is a subgroup of Z∗p with |S| = (p− 1)/2. Also, for x ∈ Z∗p we have:

xp−1/2 (mod p) =

{
1, If x is a quadratic residue mod p
−1, If x is a quadratic non-residue mod p.

5

Proof. As p is prime, we have Z∗p a cyclic group by (1.9). Let g be a generator of Z∗p
such that Z∗p = {1, g, g2, ..., gp−2}. As g(p−1)/2 = 1 but g(p−1)/2 6= 1 in Z∗p then we must
have g(p−1)/2 = −1. Then all (p − 1)/2 even powered elements g2i, 0 ≤ i < (p − 1),
are squares in Z∗p with (g2i)(p−1)/2 = gi(p−1) = 1 and we have odd powered elements
satisfying (g2i+1)=gi(p−1)g(p−1)/2.

Remark 1.11. All 1 ≤ x < N satisfying Euler’s criteria for odd composite N are called
E − liars, otherwise, E − witnesses. Similarly, F − liar if Fermat’s test is satisfied and
F− witness otherwise.

Example 1.12. Let N = 47, then number of quadratic residues = number of quadratic
non-residues = 23. If N = 49, an odd composite, then we get [1, 18, 19, 30, 31, 48] as our
set of E− liars.

Now we will define an established notation for indicating whether a number x ∈ Z

is a quadratic residue modulo p or not.

Definition 1.13. 1. For a prime number p ≥ 3 and some x ∈ Z, let

(
x
p

)
=


0, If x = k.p for some integer k
1, If x is a quadratic residue mod p
−1, If x is a quadratic non-residue mod p.

Then we call
(x

p
)

the Legendre Symbol o f x and p.

2. We can generalize Legendre symbol for an odd integer N, it is called the Jacobi
Symbol. For some odd N ∈ Z with prime factorization N = pe1

1 pe2
2 pe3

3per
r we

define Jacobi symbol as:(
x
N

)
=

(
x
p1

)e1(x
p2

)e2(x
p3

)e3

.......
(

x
pr

)er

Calculating Jacobi symbol

First we will give few properties of Jacobi symbol in following remark and then see
how to compute Jacobi symbol for some odd integer N without factoring it into primes.

Remark 1.14. Let N, M ≥ 3 be odd integers. Then if x, y ∈ Z, then we have:

1.
(xy

N
)
=
(x

N
)(y

N
)

2.
(x

NM
)
=
(x

N
)(x

M
)

6

3.
(x

N
)
=
(x mod N

N
)

4.
(0

N
)
= 0 and

(1
N
)
= 1.

Above properties can be seen easily from 1.13 and 1.10.

Lemma 1.15 (Gauss’s Lemma). Let Hp = {1, 2, ..., p−1
2 } for some odd prime p and for

some x ∈ Z with gcd(p, x) = 1 consider the set

Sp(x) = {x (mod p), 2x (mod p),,
p− 1

2
x (mod p)}

If kp(x) denotes the elements in Sp(x) that belong to Z∗p − Hp then(
x
p

)
= (−1)kp(x)

Proof. See that all elements in Sp(x) are distinct as Z∗p is a field. Let r1, r2, ..., rkp(x) be the
elements in Sp(x) that exceed p/2, and s1, s2,, st, t = 1

2(p− 1)− kp(x), be the remaining
elements such that 0 < si < p/2. Then we have {p− ri | 1 ≤ i ≤ kp(a)} ⊆ Hp. Now we
will show that Hp is a disjoint union of (p− ri)

′s and s′js as defined above. We only need
to show that no (p − ri) is equal to sj. We will show that by contradiction. So, assume
(p − ri) = sj for some i and j. Then for some u, v ∈ Hp we have ri = ux (mod p) and
sj = vx (mod p). Then we have 0 ≡ p ≡ ri + sj ≡ (u + v)x (mod p). Which implies
(u + v) ≡ 0 (mod p), which can not happen as 1 < u + v ≤ p− 1.
Thus we have

∏
h∈Hp

h =
kp(x)

∏
i=1

(p− ri)
t

∏
j=1

si

≡ (−1)kp(x)
kp(x)

∏
i=1

ri

t

∏
j=1

si (mod p)

≡ (−1)kp(x)x(p−1)/2 ∏
h∈Hp

h

The last equivalence follows after putting values if ri and sj from Sp(x). After cancelling

∏h∈Hp h, we get x(p−1)/2 (mod p) = (−1)kp(x). Now, by applying 1.10 we have
(x

p
)
=

(−1)kp(x).

Corollary 1.16. Let p ≥ 3 be an odd prime number, then(
2
p

)
= (−1)(p2−1)/8

7

Proof. By 1.15 we get
(2

p
)
= (−1)kp(2). We have Sp(2) = {2, 4,, p− 1}. As elements in

Sp(2) are less than p, we only need to count the number of elements that exceed p/2. See
that 2k < p/2 if and only if we have k < p/4. So kp(2) =

p−1
2 − b

p
4 c where b.c denoted

the greatest integer function. Now we have the following cases for p (mod 8), for any odd
prime p, and kp(2)

1. p = 8m + 1, then kp(2) = 4m− 2m = 2m

2. p = 8m + 3, then kp(2) = 4m + 1− 2m = 2m + 1

3. p = 8m + 5, then kp(2) = 4m + 2− 2m− 1 = 2m + 1

4. p = 8m + 7, then kp(2) = 4m + 3− (2m + 1) = 2m + 2

Hence, kp(2) is even if and only if p ≡ 1 or 7 (mod 8). Thus we have

For p = 8m± 1,
p2 − 1

8
=

(8m± 1)2 − 1
8

= 8m2 ± 2m, which is even.

For p = 8m± 3,
p2 − 1

8
=

(8m± 3)2 − 1
8

= 8m2 ± 6m + 1, which is odd.

So, corollary follows.

Proposition 1.17. Let N ≥ 3 be an odd integer, then(
2
N

)
= (−1)(N2−1)/8

Proof. Assume prime factorization of N = p1p2....pm. Then we proceed by induction on
m. Proposition follows for m = 1 by 1.16. Now assume that it holds for m ≥ 2, that is
for integers with less than m primes. If N = n1n2, then 1.17 holds for both n1 and n2 by
assumption. Thus, we have(

2
N

)
=

(
2
n1

)(
2
n2

)
= (−1)(n

2
1−1)/8+(n2

2−1)/8

And as 8 divides (n2
1−1)(n2

2−1)
8 , we have

N2 − 1
8

=
(n2

1 − 1)(n2
2 − 1) + n2

1 + n2
2 − 2

8
≡

(n2
1 − 1)

8
+

(n2
2 − 1)

8
(mod 2)

Which concludes our proof.

8

Now we will give the steps for the computation of Jacobi symbol for an arbitrary
integer x and odd number N ≥ 3.

1. set
(x

N
)
←
(x (mod N)

N
)
. (By 1.14(3))

2. If x = 0 output 0, if x = 1 output 1. (By 1.14(4))

3. While 4 | x set
(x

N
)
←
(x/4

N
)
.

4. While 2 | x, set
(x

N
)
←

(x/2
N
)

if N (mod 8) = 1 or 7, else
(x

N
)
← −

(x/2
N
)

if
N (mod 8) = 3 or 5 . (Follows from 1.17)

5. If x or N ≡ 1 (mod 4), set
(x

N
)
←
(N (mod x)

x
)
.

6. If x and N ≡ 3 (mod 4), set
(x

N
)
← −

(N (mod x)
x

)
.

For step 3, see that if 4 | x then x = 4x1 for some integer x1, then
(x

N
)
=
(2

N
)2(x1

N
)
=
(x1

N
)
.

Step 5 and 6 follow from 1.14(3) and quadratic reciprocity law for odd integers [13, page
90].

Solovay-Strassen Test

Lemma 1.18. Let p be an odd prime, then

x(p−1/2)
(

x
p

)
≡ 1 (mod p) ∀ x ∈ {1, ..., p− 1}.

Proof. Can be seen directly from Lemma 1.10 and de f inition 1.13.

Given an odd integer N, Steps for Solovay-Strassen primality test are as follows:

1. Choose a random base x ∈ {2, ..., N − 1}.

2. if x(N−1)/2(x
N
)
(mod p) 6= 1, output composite.

3. else output probable prime.

The algorithm is given in [A.1.4].

Remark 1.19. Every E − liar is also an F − liar for N. It can be easily seen as if x is an
E− liar =⇒ x(N−1/2)(x

N
)

mod N = 1. Then on squaring we get xN−1 mod N = 1. And
clearly, F-witness implies E− witness.

9

Now from below lemmas we will see that in case of composite integers there exists
E-witnesses and there is more than 1/2 probability of encountering such witness in case
of composite integers.

Lemma 1.20. Let N be odd composite positive integer, then there exists x ∈ Z∗N such that
gcd(x, N) = 1 and x(N−1/2) 6≡

(x
N
)
(mod N).

Proof. Case 1: Assume N to be product of several distinct primes. Take N = p.m, for odd
m ≥ 3 and odd prime p such that p - m. Let b ∈ Z∗p such that

(b
p
)
= −1. Applying

Chinese remainder theorem, we see that x, 1 ≤ x < N, satisfies:

x ≡ b (mod p), and

x ≡ 1 (mod N)

Claim: x ∈ Z∗N and is an E− witness.
Proof: Clearly, p - x and gcd(x, m) = 1. So, x ∈ Z∗N and(

x
N

)
=

(
x
p

)(
x
m

)
=

(
b
p

)(
1
m

)
= −1

Assume x to be E− liar =⇒ xN−1/2 ≡ −1 as
(x

N
)
≡ −1 (mod N). And as m | N we

have xN−1/2 ≡ −1 (mod m), a contradiction as x ≡ 1 (mod m).
Case 2: Assume N is divisible by p2, p ≥ 3. Write N = pkm f or k ≥ 2 and odd m such that
p - m. Then m = 1, x = 1 + p works. For m ≥ 3, on using Chinese remainder theorem,
we have x, 1 ≤ x < p2.m ≤ N with:

x ≡ 1 + p (mod p2), and

x ≡ 1 (mod m)

Clearly, p2 | x and gcd(x, m) = 1 =⇒ gcd(x, N) = 1, hence x ∈ Z∗N. Now, assume
x to be F− liar =⇒ xN−1 ≡ 1 (mod N). As p2 | N we have xN−1 ≡ 1 (mod p2). Then on
using binomial theorem we get:

xN−1 ≡ (1 + p)N−1 ≡ 1 + (N − 1)p (mod p2)

Hence, (N − 1)p ≡ 0 (mod p2) implying p2 | N − 1 = pk.m − 1, which is not possible.
Thus, x is a F-witness which implies it is an E-witness also.

Below lemma shows that the probability that a randomly chosen integer x for
Solovay-Strassen test would be an E-witness for odd composite integer N is more than
1/2.

10

Lemma 1.21. Let N ≥ 3 be an odd composite integer with 1 ≤ x ≤ N − 1, then

|{x | gcd(x, N) = 1 and xN−1/2 ≡
(x

N
)
(mod N)}|

N − 1
<

1
2

Proof. Lets split N into disjoint sets as:

A = {a | gcd(a, N) = 1, a is a E− liar}
B = {b | gcd(b, N) = 1, b is a E− witness}
C = {c | gcd(c, N) > 1}

Where 1 ≤ a, b, c < N. As N is composite, |C| > 0, and |B| > 0 by Lemma 1.20. Take some
b0 ∈ B. Then Ab0 = {ab0 mod N | a ∈ A}. As

gcd(a, N) = 1, gcd(b0, N) = 1 =⇒ gcd(ab0, N) = 1.

Then we have,

(ab0)
N−1/2 ≡ aN−1/2bN−1/2

0 ≡
(

a
N

)
bN−1/2

0 (mod N)

As ab0 (mod N) ∈ A or B, first assume that ab0 (mod N) ∈ A. Then,

(ab0)
N−1/2 ≡

(
ab0

N

)
=

(
a
N

)(
b0

N

)
≡
(

a
N

)
bN−1/2

0 (mod N).

Means
(b0

N
)
≡ bN−1/2

0 (mod N), a contradiction as b0 ∈ B =⇒ Ab0 ⊂ B. Take a, a′ ∈ A,
if ab0 ≡ a′b0 (mod N) =⇒ a ≡ a′ (mod N) =⇒ a = a′ in A. Hence any two elements
ab0, a′b0 ∈ Ab0 for distinct a, a′ ∈ A are distinct. Thus |Ab0| = |A| but, |A| = |Ab0| ≤ |B|.
So, N − 1 = |A| + |B| + |C| ≥ |A| + |A| + 1 = 2|A| + 1 > 2|A| which implies |A| <
(N − 1)/2.

Example 1.22. Taking N = 49, as we have [1, 18, 19, 30, 31, 48] as our set of E − liars,
remaining integers x such that gcd(x, N) = 1 are 36 in number. Hence probability that
randomly chosen base 1 ≤ x ≤ N − 1 will be an E− liar here is 6

48 = 1
8 .

11

1.2 SOME FACTORIZATION ALGORITHMS

1.2.1 FERMAT-KRAITCHIK FACTORIZATION METHOD

The idea for Fermat’s factorization scheme is that for any odd integer N, on solving
N = x2− y2 we can get factorization N = (x− y)(x+ y) . Conversely, for any odd N = ab
, a ≥ b ≥ 1 we have N =

(a+b
2

)2 −
(a−b

2

)2. See that (a + b)/2 and (a− b)/2 will be non-
negative integers because N is taken to be odd.
Now we look at the implementation of the above idea. Start from an integer k such that
k2 ≥ N. Then look successively at:

k2 − N, (k + 1)2 − N,, (k + j)2 − N ; j = 0, 1, 2,

Until we find a perfect square. The algorithm for checking a perfect square is given in
[A.2.5]. This process is finite because eventually we will arrive at trivial factorization
N = N.1 when k + j = N+1

2 .

It returns large factors which are not necessarily prime. Direct method of trying to
factor by numbers less than

√
N works better for integers with small factors but in case

of large integers
√

N is large, increasing the number of computations to find factors near√
N.

A generalization of above method makes things simpler in theory but it can be
more time consuming practically. Instead of solving for x2 − y2 = N, we solve for x2 −
y2 = k.N, x 6≡ ±y (mod N) for some integer k. Which means:

x2 ≡ y2 (mod N) =⇒ x2 − y2 ≡ 0 (mod N) i.e. (x− y)(x + y) ≡ 0 (mod N)

Hence, we get gcd(x− y, N) and gcd(x + y, N) as our non-trivial divisors of N.

It is better in theory as now we need to check for x2 − k.N for perfect square for
any value of k whereas earlier x2 − N had to be a square so we would need to calculate
x2 every time. While implementing we can put a bound on k value to avoid running loop
for longer time.

Maurice Kraitchik introduced a more efficient variant of Fermat’s factorization
scheme in 1920. Instead of looking for a perfect square from x2 − N directly we look
for a sequence (x2

1 − N), (x2
2 − N),, (x2

r − N) with product of these quantities forming

12

a perfect square, say y2. Then, we have:

(x2
1 − N)(x2

2 − N)......(x2
r − N) = y2

=⇒ (x1x2.....xr)
2 = y2 (mod N)

Which will give us non-trivial factors gcd(x1x2....xr − y, N) and gcd(x1x2....xr +

y, N) if (x1x2....xr) 6≡ ±y (mod N). This technique became a basis for modern methods
such as quadratic sieve algorithm. Algorithms for both generalized and non-generalised
factorization are given in [A.2.1].

Example 1.23. Take N = 3471. Then we start with k = 59 >
√

3471. After 5 steps we get
k = 59+ 5 = 64 with 642− 3471 ≡ 252 (mod 3471). Thus, we have gcd(64− 25, 3471) = 39
and gcd(64 + 25, 3471) = 89 as our divisors as 3471 = 39× 89.

1.2.2 POLLARD’S METHODS

Pollard’s rho-method

John Pollard proposed an efficient method for finding factors up to 20 digits. Assume that
we know N to be a composite odd integer. In this method, first we choose some degree ≥ 2
polynomial A(x) with integer coefficients. For example, a quadratic polynomial A(x) =
x2 + q, q 6= 0,−2. Then take an initial value x0 and form sequence x1, x2, x3.... computed
as:

xk+1 ≡ A(xk) (mod N) (1.1)

If m is a non-trivial divisor of N then there may exists xi, xj such that xi ≡ xj (mod m) but
xi 6≡ xj (mod N) as number of congruence classes modulo m is less than that of modulo
N. If so, then m | (xi − xj) but N - (xi − xj) which implies m1 = gcd(xi − xj, N) is a non-
trivial divisor of n.
It becomes more time consuming to compute gcd(xi − xj, N) as i increases(i > j) so it is
more efficient if we check for cases where i = 2j as then we would have x2j ≡ xj (mod m),
m is yet undiscovered. If xi ≡ xj (mod m) (i > j) then we have A(xi) ≡ A(xj) (mod m)

which implies xi+1 ≡ xj+1 (mod m). Means we have a repetition of values with some
finite period i− j. So we will keep checking for m = gcd(x2j− xj, N), j ≥ 1 and there will
exist an integer j such that 1 < m < N. This is popularly known as Pollard’s rho-method,
it was used to factor Fermat number F8 by Brent and Pollard in 1980 using A(x) = x210

+ 1
and x0 = 3 in only 2 hours of computer time.

A Brent’s modification to above method is as follows. Let T be the period of se-
quence (1.1) and M be such that for all j ≥ M we have xj+T ≡ xj (mod m). Define

13

L(k) = 2r such that 2r ≤ k < 2r+1. Then we have L(k) = 2blog2 kc.
Claim : There exists an k such that xk ≡ xL(k)−1 (mod m).

Proof. If we take k = 2r + T − 1 where r = dlog2 max(M+ 1, T)e then

2r = 2dlog2 max(M+1,T)e ≥ 2log2 max(M+1,T)

≥ max(M+ 1, T)
> T − 1

(1.2)

Then from (1.2) we get L(k) = 2r. Thus k− (L(k)− 1) = 2r + T − 1− 2r + 1 = T . Hence,
xk ≡ xL(k)−1 (mod m), which proves the existence of k.

For algorithm using Brent’s modification refer to [A.2.2], Where we look at xj val-
ues for j = 2r − 1 for some integer r, and for all 2r ≤ k < 2r+1 check if gcd(xk − x2r−1, N)

is a non-trivial factor of N.

Example 1.24. Assume N = 3267 with A(x) = x2 + 2x + 1, x0 = 2. Using Brent’s method
we see that for r = 2, we have x22−1 = A(x2) = 100. Now going over 22 ≤ k < 23, we get
gcd(x4 − 100, 3267) = gcd(300, 3267) = 3 as a non-trivial factor of 3267.

Pollard’s p− 1 Method

First we need the definition below.

Definition 1.25. A positive integer N = pe1
1 pe2

2per
r is called B-smooth if for all i ∈

{1, 2, ..., r} we have pi ≤ B for some positive integer B. It is called B-powersmooth if
pei

i ≤ B ∀ i ∈ {1, 2, ..., r}.

Now the idea behind this method is as following. Let p be a prime factor of N.
Choose integer x > 1 randomly such that gcd(x, N) = 1. Then by Fermat’s theorem
we have xp−1 ≡ 1 (mod p). And if we have an positive integer B such that (p − 1)
is B-powersmooth, then (p − 1) | L where L = lcm(1, 2,,B). Hence, we will have
xL ≡ 1 (mod p) which implies gcd(xL − 1, N) > 1 and we will have a non-trivial divisor
as long as xL 6≡ 1 (mod N). If not then choose another such x and go again. Note that this
method could also fail if we do not have any prime p such that p− 1 is B-powersmooth.
For algorithm refer to [A.2.2].

Example 1.26. Taking N = 57845 and bound B = 4 such that L = lcm(1, 2, 3, 4) =

12. Then choosing base x randomly between 1 and N − 1, we get x = 17941 with
gcd(17941, 57845) = 1. Now, we have 1794112 (mod 57845) = 14836. Thus, a divisor

14

of 57845 is gcd(14836− 1, 57845) = 115. Our bound worked perfectly as for one of the
prime factors of N, 5, we have 5− 1 = 4 = 22 ≤ B.

1.2.3 CONTINUED FRACTION FACTORING ALGORITHM(CFFA)

Continued Fractions

Continued fractions provide us surprisingly good rational approximations to real num-
bers. Any rational number can be written as a finite simple continued fraction. Continued
fractions are mainly used to solve linear diophantine equations and Pell-type equations.
Finite continued f ractions are of the form:

b0 +
1

b1 +
1

b2 +
1

. . .
1

bn−1 +
1
bn

where bi ∈ R, all are positive except possibly b0. We call a continued fraction simple if
bi ∈ Z. We will denote a finite continued fraction as [b0; b1, b2, ..., bn] and similarly write
infinite continued fraction as [b0; b1, b2, b3,]

If we expand a rational number p/q, q > 0 using Euclid’s algorithm then we get
the equations:

p = qp0 + r1 0 < r1 < q

q = r1p1 + r2 0 < r2 < r1

r1 = r2p2 + r3 0 < r3 < r2

.

.

rn−1 = rn pn + 0

From above equations see that we can write p/q as [p0; p1, p2, ..., pn].

15

Similarly, for an irrational b =
√

N, we define infinite continued fraction
[b0; b1, b2, b3,] as bi = bXic where Xi is defined as:

Xi =
1

Xi−1 − bi−1
, where X0 = b ; i ≥ 1 (1.3)

Here bX c represents greatest integer function less than or equal to X .

Definition 1.27. We define kth convergent, Ck, for continued fraction [b0; b1, b2, ..., bn] as :

Ck = [b0; b1, b2, ..., bk] 1 ≤ k ≤ n (1.4)

Remark 1.28. 1. The kth convergents form strictly increasing and decreasing sequences
for even and odd k values respectively.

2. Codd < Ceven, Means all odd subscript convergents are greater than even subscript
convergents.

Theorem 1.29. Let Ck be as in (1.4), then Ck = Pk/Qk. Where Pk and Qk, with conditions
P−2 = Q−1 = 0 and P−1 = Q−2 = 1, are defined as:

Pk = bkPk−1 + Pk−2

Qk = bkQk−1 +Qk−2
(1.5)

With k = 0, 1,, n.

Proof. See [6, page 312].

Theorem 1.30. Let Pk and Qk be as in (1.5), then:

PkQk−1 −QkPk−1 = (−1)k−1 1 ≤ k ≤ n

Proof. Proof is simply by induction on k, [6, page 314].

Lemma 1.31. For
√

N = [b0; b1, b2, b3,] and Xk as in (1.3), if we define Sk and Tk as:

S0 = 0 T0 = 1 (1.6)

Sk+1 = bkTk − Sk Tk+1 =
N − S2

k+1
Tk

, k = 0, 1, 2, 3, ... (1.7)

Then Sk and Tk are integers and

16

1. Tk | (N − S2
k)

2. Xk = (Sk +
√

N)/Tk, k ≥ 0

Proof. Refer [6, page 344].

The use of infinite continued fractions in finding solution to the Pell-Fermat equa-
tion x2 − Ny2 = 1, where N is a positive non-square integer, asserts that any positive
solution (x, y) is (P ,Q) where P/Q is a convergent of infinite continued fraction expan-
sion of

√
N [6, page 340]. We will now prove a theorem from which the solution to the

equation x2 − Ny2 = 1 is clear.

Theorem 1.32. Let Ck,Pk,Qk, Tk be as in (1.4), (1.5), (1.6) and (1.7), then we have P2
k −

NQ2
k = (−1)k+1Tk+1, k = 0, 1, 2, .., where Tk+1 > 0.

Proof. If we write
√

N as [b0; b1, b2,, bk,Xk+1], then we have
√

N = (Xk+1Pk +

Pk−1)/(Xk+1Qk +Qk−1). On using Xk+1 value from condition 2 of lemma 1.31 and sim-
plifying we get:

√
N(Sk+1Qk + Tk+1Qk−1 − pk) = (Sk+1Pk + Tk+1Pk−1 − dQk)

As RHS is rational but
√

N is not, we must have Sk+1Qk + Tk+1Qk−1 = Pk and Sk+1Pk +

Tk+1Pk−1 = dQk. Then

P2
k − NQ2

k = Pk(Sk+1Qk + Tk+1Qk−1)−Qk(Sk+1Pk + Tk+1Pk−1)

= Tk+1(PkQk−1 −Pk−1Qk)

By Theorem 1.30, we get P2
k − NQ2

k = (−1)k+1Tk+1. Now we have to prove Tk+1 >

0. From Remark 1.28 we get C2K <
√

N < C2k+1, k ≥ 0. Then from equation (P2
k −

NQ2
k)/(P2

k−1−NQ2
k−1) = −(Tk+1/Tk), see that (Tk+1/Tk) is always positive. So, starting

from T1 > 0 we climb to Tk+1 > 0 as required.b

Continued fraction factoring algorithm

The continued fraction factoring algorithm is given in [A.2.3]. The description for algo-
rithm is as follows. For a non-square positive integer N assume its continued fraction
expansion be [b0; b1, b2,]. Then with Pk,Qk, Tk as in (1.5), (1.6) and (1.7), we have:

P2
k−1 − NQ2

k−1 = (−1)kTk, (k ≥ 1)

Hence, P2
k−1 ≡ (−1)kTk (mod N). So, if Tk = y2, a perfect square, for some even k with

Pk−1 6≡ ±y (mod N) then we have gcd(Pk−1 + y, N) and gcd(Pk−1 − y, N) as non-trivial

17

divisors of N. If we get trivial factors then look for another such Tk and try again.
If we do not arrive at required Tk after a lot of iterations, then we can look for set of Tki

values making a perfect square, (Tk1Tk2Tkr) = y2 with ∑r
i=1 ki (mod 2) = 0, such that:

y2 = Tk1Tk2Tkr ≡ (Pk1−1Pk2−1....Pkr−1)
2 (mod N)

And then look at gcd((Pk1−1Pk2−1....Pkr−1)± y, N) for non-trivial factors.

Example 1.33. Take N = 2059. See that T2T8 = 3252. Thus, required congruences are

P2
1 = 912 ≡ (−1)245 (mod 2059), and P2

7 = 17582 ≡ 5 (mod 2059)

Hence, we get after reducing modulo 2059, 14352 ≡ 152 (mod 2059). So, divisors are
gcd(1435± 15, 2059) = 29, 71.

1.2.4 QUADRATIC SIEVE ALGORITHM

The idea for Quadratic sieve algorithm is similar as in the factorization methods
discussed above. To factor N we need to get a solution to x2 ≡ y2 (mod N) and then
compute gcd(x− y, N) and gcd(x+ y, N) to see if these are non-trivial divisors of N. Here,
we will use a quadratic polynomial A(x) = x2 − N to work with and compute the set
A = A(x1), A(x2),, A(xi) for some x′is and pick a subset S = A(xi1), A(xi2),, A(xir)

such that ∏r
j=1 A(xij) = y2 for some y ∈ Z. Then we get:

y2 = A(xi1)A(xi2)....A(xir) ≡ (xi1 xi2xir)
2 (mod N) (1.8)

Hence, we check for gcd(y− (xi1 xi2xir), n) to be non-trivial. If not, then we look
for another subset S and repeat the process.

For efficient implementation we need smaller A(xi) values which can be factored
within a small factor base, say F . For this we will calculate A(xi) for xi ∈ X where
X = [b

√
Nc −M, b

√
Nc +M] with M ∈ N. Here [−M,M] is our sieving interval.

Now, fix some bound B ∈ N such that for prime p ∈ F we have p ≤ B. Also, any prime
p will divide any A(xi) if and only if the Legendre symbol

(N
p
)
= 1, so we will only add

such primes to F . To see this, assume for some p ∈ F that p | A(xi) with xi as defined
above. Then A(xi) ≡ 0 (mod p) which implies x2

i ≡ N (mod p). So, N is a quadratic
residue modulo p. Converse can be easily seen.

Let F = {p1, p2, p3,, pk} be our factor base satisfying above discussed condi-
tions. Now let A = {A(x1), A(x2), A(x3),, A(xr)} such that all A(xi) ∈ A are F -

18

smooth with factorization as:

A(x1) = (−1)e10 pe11
1 pe12

2 pe13
3pe1k

k

A(x2) = (−1)e20 pe21
1 pe22

2 pe23
3pe2k

k

.

.

A(xr) = (−1)er0 per1
1 per2

2 per3
3perk

k

(1.9)

Now to find a set S ⊂ A with product of its elements forming a perfect square we
need to use Gaussian elimination in Z/2Z. Reduce all the powers of primes from (1.9) to
modulo 2, means, eij ← eij (mod 2), 1 ≤ i ≤ r, 0 ≤ j ≤ k. Let Mr×k+1 be the matrix of
such values.

Use identity matrix Nr×r to keep track of rows of matrix M multiplied. Find first
row in M with entry 1 in first column and add it to all other rows with 1 in first column
and then remove that row from matrix M. Do the same with the rows of matrix N. Note
that addition in both matrices is modulo 2. Again find such such row for column 2 and
so on. See that after going through particular column, the rows below have zero in that
column. We repeat the above steps until we get a row with all zero entries, which will
eventually happen if |A| ≥ |F|. After we have required row in M then check the same
row in N, in which entries corresponds to the rows from M that were used to get the
square, hence we now have our required set S . Find factors using (1.8). If we do not get a
non-trivial factor then we repeat the process further we find another such row. The code
for algorithm is given in [A.2.4].

Example 1.34. Let N = 9487. Choose our factor base to be F =

{−1, 2, 3, 7, 11, 13, 17, 19, 29}. See that for all primes p ∈ F we have
(N

p
)
= 1. Choose

M = 16.

19

xi A(xi) -1 2 3 7 11 13 17 19 29
81 −2926 = −1.2.7.11.19 1 1 0 1 1 0 0 1 0
84 −2431 = −1.11.13.17 1 0 0 0 1 1 1 0 0
85 −2262 =−1.2.3.13.29 1 1 1 0 0 1 0 0 1
89 −1566 = −1.2.33.29 1 1 1 0 0 0 0 0 1
95 −462 = −1.2.3.7.11 1 1 1 1 1 0 0 0 0
97 −78 = −1.2.3.13 1 1 1 0 0 1 0 0 0
98 117= 32.13 0 0 0 0 0 1 0 0 0
100 513 = 33.19 0 0 1 0 0 0 0 1 0
101 714 = 2.3.7.17 0 1 1 1 0 0 1 0 0
103 1122= 2.3.11.17 0 1 1 0 1 0 1 0 0
109 2394 = 2.32.7.19 0 1 0 1 0 0 0 1 0

First potential combination we get is A(85), A(89), A(98), from which we get
(85.89.98)2 ≡ (2.27.13.29)2 (mod 9487) =⇒ 7413702 ≡ 203582 (mod 9487) but see
that 741370 (mod 9487) = 20358 (mod 9487). So we have to look for another combina-
tion. We get another suitable values for A(81), A(95), A(100) such that (81.95.100)2 ≡
(2.9.7.11.19)2 (mod 9487) =⇒ 10532 ≡ 73602 (mod 9487). From this we get divisors
gcd(1053± 7360, 9487) = 179, 53.

20

CHAPTER 2

THE AKS-ALGORITHM

The AKS-Algorithm is the first primality testing algorithm that is unconditional,
deterministic, runs in polynomial time and works on any general number. The AKS Test
is based on the following lemma for prime integers which is a generalisation of Fermat’s
theorem:

Lemma 2.1. Let n ∈N ≥ 2 and take some a ∈ Z such that gcd(a, n) = 1. Then n is prime
if and only if

(X + a)n = Xn + a in Z/nZ[X]

Proof. Using binomial theorem:

(X + a)n = Xn + ∑
0<i<n

(
n
i

)
aiXn−i + an.

First, assume n to be a prime integer then (n
i)(mod n) = 0 , 0 < i < n, and an ≡ a (mod n)

by Fermat’s theorem. Thus (X + a)n = Xn + a. Now, assume n to be a composite integer
and take a prime integer p dividing n such that ps | n but ps+1 - n for some s ≥ 1. Now
take coefficient of Xn−p, (n

p)ap, and from ps - (n
p) and gcd(a, n) = 1 we have p - ap. Hence,

(X + a)n 6= (Xn + a) in Z/nZ[X].

We will denote Z/nZ[X] as Zn[X] from here on. Reducing modulo n becomes
time consuming as n increases because then we have to evaluate n coefficients in worst
case in the LHS. Hence, a simple way to reduce coefficients of polynomials is to reduce
modulo some polynomial Xr − 1 for appropriately small r. Then we will have to check
the following equivalence relation:

(X + a)n ≡ Xn + a (mod Xr − 1, n)

See that, Xn + a (mod Xr − 1, n) = Xn (mod r) + a. Hence, when n is prime, we have, in
Zn[X], (X + a)n(mod Xr − 1) = Xn (mod r) + a for every a and r. There are various bounds
on r for which it is sufficient to run AKS-test. We will use log for base 2 logarithms and
ln for base e in this chapter. One such lemma is given below without proof:

21

Lemma 2.2. For all n ∈ N ≥ 2 we have a prime integer r ≤ 20dlog ne5 such that either
r divides n or r - n and ordr(n) > 4dlog ne2, where ordr(n) denotes the smallest positive
integer, say k, such that nk ≡ 1 (mod r).

Proof. Refer [13, page 120].

One another improvement in bound of r suggests that above lemma also holds for
r ≤ 8dlog ne3(log(log n))3[13, page 121]. Now we will look at the main theorem proving
that with certain conditions satisfied by integers a and r for some n, we can be sure that n
is a power of a prime.

Theorem 2.3 (Main Theorem). Take integer n ≥ 3 and a prime integer r < n satisfying
the following conditions:

a) a - n for 2 ≤ a ≤ r

b) ordr(n) > 4(log(n))2 , and

c) (X + a)n ≡ Xn + a (mod Xr − 1, n) for 1 ≤ a ≤ 2
√

rlog(n).

Then n is a power of a prime.

The proof of above theorem is build gradually from various lemmas and remarks
that are given below.

Remark 2.4. Assume L = b2
√

rlog(n)c with p ≤ n/2, a prime factor of n. Then we have:
(i) p > r, and r - n (ii) r > L (iii) 1 ≤ (a′ − a) < p for 1 ≤ a < a′ ≤ L
We can get other conditions from ii, which is as: r > ordr(n) > 4(log(n))2 which implies
√

r > 2log(n). Hence, r > 2
√

rlog(n) ≥ L.

Definition 2.5. For some polynomial f (X) ∈ Zp[X] and u ∈ N we say that u is
introspective for f (x) if [f (X)]u ≡ f (Xu) (mod Xr − 1, p).

Lemma 2.6. 1. If u and u′ are introspective numbers for polynomial f (X), then mm′ is
also introspective for f (X)

2. If u is an introspective number for polynomials f (X) and g(X) then it is also intro-
spective for f (X)g(X).

Proof. Refer [1, page 786-787].

22

Notice that the prime divisor p of n assumed in Remark 2.4 is used throughout the
proof. Now we will construct sets P and U which will assist us in our proof further:

P =

{
∏

1≤a≤L
(X + a)βa |βa ≥ 0 f or 1 ≤ a ≤ L}

}
⊆ Zp[X], and

U =

{
ni pj |i, j ≥ 0

}
Then from results of Lemma 2.6, we get the following lemma which doesn’t require

proof:

Lemma 2.7. For some polynomial f (X) ∈ P and u ∈ U we have (in Zp[X])

f (X)u ≡ f (Xu) (mod Xr − 1, p)

Now, recall some basis structures and properties from polynomials over rings and
fields. Take h ∈ Zp[X] to a be monic, irreducible polynomial such that d = deg(h) which
is equal to orderr(p) > 1. Also, as h is taken to be the divisor of (Xr−1 + Xr−2 + ...+ X + 1)
then h | (Xr − 1). And take finite field F = Zp[X]/(h). Then we have |F| = pd. Now,
take subgroup G = { f (X) mod h| f (X) ∈ P} of F∗, the multiplicative group. Now, let us
see the following proposition regarding our field F.

Proposition 2.8. Linear polynomials X + a, 1 ≤ a ≤ p are different in Zp[X] and in F,
and X + a (mod h) 6= 0.

Proof. As (X + a′)− (X + a) = a′ − a > 0 for 1 ≤ a < a′ ≤ L, by (iii), Remark 2.4. Then
X + 1, X + 2,, X + L are distinct in Zp[X] and F.
Now if h | (X + a). Since h is monic and non-constant we have h = X + a, which is not
possible as deg(h) = orderr(p) > 1. Hence, h - (X + a).

Now take the root of polynomial h(X), ζ = X mod h and recall that it is also the
primitive rth root of unity in Zp (i.e. ζr = 1 and ζr′ 6= 1 ∀ r′ < r).

Lemma 2.9. Let g(X) ∈ G, (i.e. g(X) = f (X) mod h(X)), then in F = Zp[X]/(h) we have
gu = f (ζu) ∀ u ∈ U.

Proof. Clearly (in Zp[X]), gu ≡ f u (mod h). Then By Lemma 2.7 we have f u ≡
f (Xu) (mod Xr − 1). As h | (Xr − 1), we have,

f u ≡ f (Xu) (mod h) (2.1)

23

From ζ ≡ X (mod h) we have Xu ≡ ζu (mod h). On substituting it in above equation, we
get

gu ≡ f u ≡ f (ζu mod h) (mod h) = f (ζu) (mod h)

Hence, in F, gu = f (ζu) ∀ u ∈ U.

Remark 2.10. If two polynomials f1 and f2 are distinct elements of P, then f1 6≡ f2 (mod h).
[13, page 128-129]

Let’s define another set T = {ζu | u ∈ U}, |T| = t, which will be helpful in
following Lemmas.

Lemma 2.11. 1. r > t > 4(log n)2

2. |G| > 1
2 n2
√

t

3. If U0 = {ni pj | 0 ≤ i, j ≤ b
√

tc} ⊆ U. then |U0| ≤ t

Proof. 1. As ζr = 1 we have T ⊆ 〈ζ〉 = {1, ζ,, ζr−1}. And ζu 6= 1 ∀ u ∈ U (Note:
r - ni pj for any i, j ≥ 0). Hence, t = |T| ≤ (r − 1). Now we have ζni 6= ζnk

iff
ni 6≡ nk (mod r). Thus, by definition we have:

|{ζni | i ≤ 0}| = |{ni mod r | i ≥ 0}| = ordr(n)

Thus t = |T| ≥ orderr(n) > 4(log(n))2.

2. Take µ = min{L, t− 1}, and take

pi, pj ∈ ∏
1≤a≤µ

(X + a)βa , βa ∈ {0, 1} f or 1 ≤ a ≤ µ

So, pi, pj ∈ P and pi 6= pj in Zp[X] and P, as these are products of different sets of
irreducible factors. By Remark 2.10, pi 6≡ pj (mod h) =⇒ |G| ≥ 2µ. So, we have
two cases:
Case 1: µ = L, as r > t from proof of 1, we have µ = b2

√
rlog nc > 2

√
rlog n− 1 >

2
√

tlog n− 1.
Case 2 : µ = t− 1, as t > 4(log n)2 [From 1], µ = t− 1 > 2

√
tlog n− 1. So, in both

cases, |G| ≥ 2µ > 22
√

tlog n−1 = 1
2 n2
√

t.

3. First, we will prove the following claim:
Claim : ∀ u ∈ U0, u < |G|.

24

Proo f : With p ≤ n/2, i, j ≤ b
√

tc we have

ni pj ≤ n
√

t
(

1
2

n
)√t

=

(
1
2

n2
)√t

≤ 1
2

n2
√

t < |G|

Now, as t = |T| = |{ζu | u ∈ U}|, if we show mapping u 7−→ ζu to be injective we
get |U0| ≤ |T| = t. Assume, for distinct u, v ∈ U0, ζu = ζv. And let g = f mod h ∈ G.
Then by Lemma 2.9 we have:

gu = f (ζu) = f (ζv) = gv

Hence, g ∈ G is a root of Xu − Xv ∈ Zp[X]. But it means that all elements of G are
roots of Xu − Xv. As deg(Xu − Xv) ≤ max{u, v} < |G| from claim above we have
Xu − Xv a zero polynomial which implies u = v, a contradiction.

Now we will give the proof of our main theorem:

Main Theorem Proof. From definition, |U0| = (b
√

tc+ 1)2 > (
√

t)2 = t for 0 ≤ i, j ≤
√

t.
But from (3)-Lemma 2.11, we have |U0| ≤ t. Then by pigeonhole principle there exist
distinct pairs (i, j), (k, m) such that ni pj = nk pm. But i 6= k (if so, j = m =⇒ (i, j) =

(k, m)). Thus, we have
ni−k = pm−j; i > k, m > j

Therefore, n does not have any prime factor other than p.

The algorithm structure is as given in [A.1.5], which if runs for some integer n ≥ 2
then output is prime if and only if n is a prime integer. [13, page 122-123]

25

CHAPTER 3

THE LLL-ALGORITHM

The LLL-Algorithm is an important algorithm for lattice basis reduction which
gives an α-reduced lattice basis of any normal basis of a lattice in Rn. We will discuss in
brief its application in solving closest vector problem and its variants with deep insertion
and linearly dependent vectors. Let’s start with the definition of lattice.

Definition 3.1. A subset L of Rn with basis {xi}n
i=1 of Rn is called a lattice if

L =

{ n

∑
i=1

rixi : Where ri ∈ Z ∀ 1 ≤ i ≤ n
}

{xi}n
i=1 is called the basis of L and n the rank of lattice L.

Note : We will work with only full-rank lattices unless specified, means, n-
dimensional lattices in Rn.
Remark : If {x1, x2, ..., xn} and {y1, y2, ..., yn} are two bases for lattice L in Rn with corre-
sponding matrices X and Y (vectors as rows). Then Y = CX for Cn×n s.t. Cij ∈ Z with
det(C) = ±1 (Unimodular).

3.1 GRAM-SCHMIDT ORTHOGONALIZATION(GSO)

GSO is used to convert a given arbitrary basis vector, {x1, x2, ..., xn} of Rn, into a
new orthogonal basis vector.

Definition 3.2. Let {x1, x2, ..., xn} be a basis in Rn, then the GSO of this basis is the vector
{x∗1 , x∗2 , ..., x∗n} defined as :

x∗1 = x1

x∗2 = x2 −
< x2, x∗1 >

< x∗1 , x∗1 >
x∗1

x∗n = xn −
n−1

∑
j=1

µnjx∗j

Where,

µnj =
< xn, x∗j >

< x∗j , x∗j >

26

Where < xi, xj > is inner dot product of vectors xi and Xj.

Note 3.3. See that ||x∗k || ≤ ||xk|| for 1 ≤ k ≤ n. As ||xk||2 = ||x∗k + ∑k−1
j=1 µkjx∗j ||2 =

||x∗k ||+ δ where δ = ∑k−1
j=1 µ2

kj||x∗j ||2 by orthogonality of GSO vectors.

Theorem 3.4 (Hadamard’s Inequality). Let X = (xij) be n × n matrix over R and let
B = maxi,j{|xij|}. Then |det(X)| ≤ nn/2Bn.

Proof. If we denote rows by (xi), 1 ≤ i ≤ n, then det(X) = 0 if rows are linearly
dependent. If not then assume X∗ = (x∗i) be matrix by GSO vectors. Then as we
know det(X) = det(X∗). See that det(X∗(X∗)T) = ‖x∗1‖

2 ... ‖x∗n‖
2 by orthogonality

of GSO vectors. Then we have |det(X∗)| = ‖x∗1‖ ... ‖x∗n‖. By Note − 3.3, we see that
|det(X)| = |det(X∗)| ≤ ‖x1‖ ... ‖xn‖ ≤ (nB2)n/2 = nn/2Bn.

Proposition 3.5. Let {xi}n
i=1 be a basis of Rn with corresponding GSO vector being

{x∗i }n
i=1. Let L be the lattice generated by {xi}n

i=1, then for any non-zero y ∈ L we have:

||y|| ≥ min{||x∗1 ||, ||x∗2 ||,, ||x∗n||}

Proof. See [4, page 51].

Now we will give definition of an α-reduce lattice basis vector for which first de-
fine α to be our Reduction Parameter such that 1

4 < α < 1, Standard value used for α is 3
4 .

Definition 3.6. Let {xi}n
i=1 be an ordered basis of lattice L in Rn, with GSO being {x∗i }n

i=1

and µij as defined above, it is called LLL-reduced with parameter α if it satisfies:

|µij| ≤
1
2

f or 1 ≤ j < i ≤ n (3.1)

||x∗i − µi,i−1x∗i−1||2 ≥ α||x∗i−1||2 f or 2 ≤ i ≤ n (3.2)

Condition 3.1 is SizeCondition whereas 3.2 is called LovaszCondition.

Theorem 3.7 (LLL-Theorem). Let {xi}n
1 be an α-reduced lattice basis for L. Then for any

non-zero y ∈ L we have:
‖x1‖ ≤ β(n−1)/2 ‖y‖

Proof. From 3.6 we see that
∥∥x∗i
∥∥2 ≥ 1

β

∥∥x∗i−1

∥∥2. So, ‖x1‖2 = ‖x∗1‖
2 ≤ β ‖x∗2‖

2 ≤ ≤
β(n−1) ‖x∗n‖

2. Hence, for 1 ≤ i ≤ n,
∥∥x∗i
∥∥2 ≥ β(1−i) ‖x1‖2. By proposition 3.5, ‖y‖ ≥

27

min{‖x∗1‖ , ‖x∗2‖ ,, ‖x∗n‖. Let ‖xi‖ = max{{‖xi‖}n
i=1}. Then, ‖y‖ ≥ β(1−i)/2 ‖x1‖ ≥

β(1−n)/2 ‖x1‖.

3.2 THE LLL-ALGORITHM

First look at the function reduce(k, l) which is called when SizeCondition is not
satisfied. It performs best possible reduction as bµkje is the nearest integer to µkl. See that
after reducing yk it still belongs to the basis.

Algorithm 1 reduce(k, j) for reducing µkj (j < k)

if µkj >
1
2 then

set yk ← yk − bµkjeyj

for l = 1, 2, ..., j− 1 do
set µkl ← µkl − bµkjeµjl

end
set µk,j ← µkj − bµkje

else
continue

end

Lemma 3.8. Assume {y∗k}n
k=1 be GSO vectors for lattice basis {yk}n

k=1. Then on calling
function reduce(k, j), vectors {y∗k}n

k=1 remain unchanged.

Proof. On calling reduce(k, j) we do yk ← yk − bµkjeyj i.e. let zk = yk − bµkjeyj . Now, z∗k is
calculated as :

z∗k = zk −
k−1

∑
l=1

< zk, y∗l >

< y∗l , y∗l >
y∗l

= (yk − bµkjeyj)−
k−1

∑
l=1

< yk − bµkjeyj, y∗l >

< y∗l , y∗l >
y∗l

= (yk − bµkjeyj)−
k−1

∑
l=1

µkly∗l +
(j−1

∑
l=1

µjly∗l + y∗j
)
bµkje

=
(

yk −
k−1

∑
l=1

µkly∗l
)
− bµkjeyj + bµkjeyj

= y∗k

28

Above lemma shows us that we only need to update µkl ; l = 1, 2, ..., j, as imple-
mented in function reduce(k, j). The calculation can be easily done by replacing yk as
yk − bµkjeyj in the definition of µkl.

Algorithm 2 The LLL-Algorithm
Data: Basis {xi}n

i=1 of lattice L ∈ Rn with reduction parameter α

Result: An α− reduced basis {yi}n
i=1 of L.

set yi ← xi

calculate GSO, i.e. {y∗i }n
i=1

set k← 2
while k ≤ n do

call reduce(k, k− 1)
if LovaszCondition(k) then

For j = k− 2, .., 1 ; Do : Call reduce(k, j)
set k← k + 1

else
swap(yk, yk−1)
update GSO
set k← max(k− 1, 2)

end

end

Our loop for LovaszCondition does not increase k if condition is not met, we swap
vector yk and yk−1 instead and reduce k by 1 and then run the loop again. If the condition
is not met again then we keep exchanging the vectors and update GSO in every step.
Actually, we do not need to update whole GSO but only µ′ijs and new y∗k and y∗k−1 which
will be clear from lemma below.

Lemma 3.9. Let Y and Z be the basis before and after exchanging vectors at positions k
and k− 1 respectively. And let Y∗ and Z∗ be their corresponding GSO vectors. Then we
get:

1. z∗i = y∗i (i 6= k− 1, k)

2. ||z∗k−1||2 < α||y∗k−1||2

29

Proof. We have all the vectors same excepts from the exchanged vectors so zi = yi∀i 6=
(k − 1), k. And as by definition, y∗i and z∗i are the projections of yi and Zi respectively
onto orthogonal complement of the span({yj}i−1

j=1) and span({Zj}i−1
j=1) respectively. But

span({yj}i−1
j=1) =span({Zj}i−1

j=1) =⇒ (1).

We have z∗k−1 = yk − ∑k−2
l=1 µkly∗l . Putting value yk = y∗k + ∑k−1

l=1 µkly∗l , we get z∗k−1 =

y∗k + µk(k−1)y∗k−1 =⇒
∥∥z∗k−1

∥∥2
=
∥∥y∗k
∥∥2

+ µ2
k(k−1)

∥∥y∗k−1

∥∥2. Now, as LovaszCondition(k)

is not satisfied, we have
∥∥y∗k
∥∥2

< (α − µ2
k(k−1))

∥∥y∗k−1

∥∥2. Which implies that
∥∥z∗k−1

∥∥2
<

(α− µ2
k(k−1))

∥∥y∗k−1

∥∥2
+ µ2

k(k−1)

∥∥y∗k−1

∥∥2
= α

∥∥y∗k−1

∥∥2.

Now, we know know that if the algorithm terminates then resulting set of vectors
will be our reduced basis. So, now we prove that the steps in our algorithm have finite
upper bound.

Closest Vector Problem(CVP): For a lattice L ∈ Rn which basis {xi}n
i=1, CVP is the

problem of finding a closest vector y ∈ L to some vector z ∈ Rn. Let {x∗i }n
i=1 be the GSO

of basis vectors of L. Now consider the sublattice L′ = L ∩U with basis {xi}n−1
i=1 where

U ⊂ Rn is the hyperplane. Nearest plane algorithm suggests that for any given arbitrary
vector z ∈ Rn we can find a vector y ∈ L such that the orthogonal distance between z and
translated hyperplane U + y is as small as possible.
So, if z = ∑n

i=1 aix∗i then take the nearest integer to an, bane ∈ Zn. Thus we have z∗ =

∑n−1
i=1 aix∗i + y, where y = banexn ∈ L, the orthogonal projection of z into U + y. Then see

that z∗ − y ∈ L. Now, recursively find vector y′ ∈ L′ closest to z− y and set y ← y′ + y.
In the end we will have to find the closest integer multiple of one non-zero real number
to another. For details refer [2].

3.3 LLL-ALGORITHM WITH DEEP INSERTION AND

FOR LINEARLY DEPENDENT VECTORS

I. In case of deep insertion instead of swap(yk, yk−1) we swap yk with yi vector
such that i is the least such index not following the LovaszCondition. Doing this comes
up with an computational disadvantage as now instead of just updating |y∗i |2 we have to
update whole GSO again and in worst case it is no longer in polynomial time. Advantage
of deep insertion that Schnorr and Euchner [7] reported is that in many cases it outputs
considerably shorter lattice vectors than original algorithm.

30

II. Take lattice L ∈ Rn with dimension dim(L) ≤ n and some linearly dependent
vectors {xi}m

i=1. And take the standard basis {e1, e2,, em} in Rm. Then see that we have
the following linearly independent embedded vectors in Rm+n:

[e1, x1], [e2, x2],, [em.xm]

And define vectors yi ∈ Rm+n, 1 ≤ i ≤ m, as yi = [ei, βlxi] where l is some positive
integral scaling factor. Recall that β = 4/(4α − 1). See that yi are linearly independent
vectors. Now take L′ be the lattice in Rm+n with y′is as basis vectors with {zi}m

i=1 being
their reduced basis vectors. Now take

M = min{||x||2 where, x ∈ L, x 6= 0}
N = min{||y||2 where, y ∈ L′, y 6= 0}

Then by Theorem 3.7, we have ||z1|| ≤ βm−1N where z1 = [c, βlx] for some c ∈ Zm

and x ∈ L. Hence, ||z1||2 = ||c||2 + β2l||x||2. Thus,

||c||2 + β2l||x||2 ≤ βm−1N

Now we want to choose l such that above inequality implies x = 0. In other words, if l
satisfies

β2l M ≥ βm−1N (3.3)

then we can say that x = 0. And as {xi}m
i=1 are linearly dependent then we have

∑m
i=1 cixi = 0 for some vector [c1, ..., cm] 6= 0. And as [c1, ..., cm, 0, ..., 0] ∈ L′, we have

N ≤ mC2. Therefore, from equation 3.3 we get:

β2l M ≥ βm−1mC2

=⇒ l ≥ 1
2

(
(m− 1) + logβ

(
mC2

M

))

For such l we will have x = 0 and hence, z1 = [c, 0, 0, 0,, 0]. One of the major
problem with this modification is that it is very hard to find the values of M and C which
are required for l bound.

3.4 LLL-ALGORITHM TERMINATION

Choose {xi}k
i=1 out of {xi}n

i=1, k ≤ n, basis vectors. Then we define kth− gram
determinant to be :

dk = det(GkGt
k) =

k

∏
i=1
||x∗i ||2 [16]

31

Where Gk is the matrix with k-basis vectors, {xi}k
i=1 as rows and {x∗i }k

i=1 are corre-
sponding GSO vectors.

Lemma 3.10. Function reduce(k, j) does not change {di}n
i=1 and after swap(yk, yk−1), di

changes only for i = k− 1 s.t d′k−1 ≤ αdk−1.

Proof. First part can be seen directly from 3.8. Now for second part, after swapping yk

and yk−1, {y∗i }
k−2
i=1 remains same so no change in {di}k−2

i=1 . Now for i ≥ k, let d′i be new
ith− gram determinant. We swap rows yk and yk−1 in Gi and corresponding columns in
Gt

i =⇒ d′i = (−1)2det(GiGt
i) = det(GiGt

i) = di.
Now for i = k− 1, if {y∗i }

k−1
i=1 and {z∗i }

k−1
i=1 are GSO′s before and after swap(yk, yk−1) then,

d′k−1 =
k−1

∏
i=1
||z∗i ||

= ||z∗k−1||2
k−2

∏
i=1
||y∗i ||2 (By 3.9(1))

≤ α||y∗k−1||2
k−2

∏
i=1
||y∗i ||2 (By 3.9(2))

≤ αdk−1

Lemma 3.11. Define D = ∏n−1
k=1 dk with D0 being its value at the start of LLL− Algorithm.

Then D0 ≤ Bn(n−1) where B = max({|xi|}n
i=1), {xi}n

i=1 being the input basis vectors.

Proof.

D0 =
n−1

∏
k=1

dk

= (||x∗1 ||)(||x∗1 ||||x∗2 ||)...(||x∗1 ||||x∗2 ||...||x∗n−1||)

=
n−1

∏
k=1
||x∗k ||2(n−k)

≤
n−1

∏
k=1
||xk||2(n−k)

≤
n−1

∏
k=1
B2(n−k)

≤ B2(n−1+n−2+....+1) = Bn(n−1)

32

Remark 3.12. There exists non-zero z ∈ L s.t. ||z||2 ≤
(4

3

) i−1
2 d

1
i
i (1 ≤ i ≤ n)[8, page 31].

So, D > 0 always. Hence, di ≥
(3

4

) i(i−1)
2 ||z||2 > 0 where z is the shortest non-zero vector

in lattice L.

Theorem 3.13 (Termination). Total number of passes through ’LovaszCondition(k)’ loop
is atmost

−2 logB
log α

n(n− 1) + (n− 1)

Proof. Let E be the total number of calls to swap(yk, yk−1) and D as defined in 3.11. Then
by 3.10, D decreases to atmost αD after each call. Then after E passes we have D ≤ αED0.
By use of Remark 3.12 we can write:

α−E ≤ D0

α−E ≤ Bn(n−1) (By Lemma 3.11)

−E log α ≤ n(n− 1)log B

=⇒ E ≤ −log B
log α

n(n− 1) (as− log α > 0)

If E′ are the total number of passes for reduce(k, j), then E+ E′ are the total required
passes. See that E ← E + 1 =⇒ k ← k − 1 and E′ ← E + 1 =⇒ k ← k + 1. Thus,
E − E′ + k is always a constant and as k = 2 in the start when E = E′ = 0, we have
E− E′ + k = 2 always. Now, at the end k = n + 1 so, E− E′ = (n− 1) which implies that

E + E′ = 2E + (n− 1) = −2log B
log α

n(n− 1) + (n− 1)

as required.

33

CHAPTER 4

POLYNOMIAL FACTORIZATION

In this section we will describe algorithm for factoring polynomials with coeffi-
cients in ring Z (or Q) and field Z/pZ. Factorization over base rings Z and Q is equiva-
lent which is shown in section 4.2. For factorization over Z, we first need factor polyno-
mials over finite field Z/pZ for some prime p and then work with obtained factors to get
to irreducible factors over Z. We will start with the following definition.

Definition 4.1. Let polynomial A = anxn + an−1xn−1 + + a0, then we define Content
of A to be gcd(a0, a1,, an) and denote it as cont(A). We say polynomial A is primitive if
cont(A) = 1.

Note 4.2. We denote formal derivative of a polynomial A as A′ and we will denote poly-
nomials as A and A(x) interchangeably. Assume that we have algorithms for polynomial
GCD at our disposal [9, page 113-117].

4.1 POLYNOMIAL FACTORIZATION IN FIELD Fp

Field Z/pZ is denoted as Fp and all polynomials are taken in single variable.
Take A(x) ∈ Fp[X], primitive and monic. Being in field does not restrict the generality as
all elements have units. First we do a square-free factorization of A i.e. A = ∏k

i=1 Ai(x)i,
where k is the total number of square free factors A′is with multiplicity i, such that
gcd(Ai, Aj) = 1, i 6= j, for i, j ∈ {1, 2, ..., k}. Then we perform a distinct degree factoriza-
tion on each square-free factor as factors that are product of similar degree irreducible
factors. Then we will finally factor each polynomial obtained from distinct degree
factorization into irreducible polynomials of equal degree by using a method given by
Cantor and Zassenhaus.

34

I. Yun’s Square-free Factorization: Let A = ∏k
i=1 Ai

i, A, Ai ∈ Fp[X]. See that
T = gcd(A, A′) = ∏p-i Ai−1

i ∏p|i Ai
i, i ∈ {1, 2, ..., k}. Now take:

W =
A
T

= ∏
p-i

Ai , and

Y =
A′

T
=

k

∑
i=1(p-i)

iA′i
k

∏
j=1(j 6=i,p-j)

Aj , and

Z = Y−W ′ = A1

(
k

∑
i=2,(p-i)

(i− 1)A′i
k

∏
j=2(6=i,p-j)

Aj

)
, We get

gcd(W, Z) = A1

Similarly, repeating the above process by upgrading values in order as, W ← W
A1

,
Y ← Z

A1
and Z ← Y−W ′. Hence, we will get gcd(W, Z) = A2 and so on.

Steps for algorithm are as follows:
SFF(A(x)) : Returns square-free factors of primitive and monic A(x) as shows above.

1. set T ← gcd(A, A′)

2. set W ← A(x)/T(x), Y ← A′(x)/T(x)

3. set Z ← Y(x)−W ′(x)

4. set A1 ← gcd(W, Z)

5. Store A1 and set A← A/A1

6. a) set W ←W/A1, Y ← Z/A1

b) repeat steps (3) to (6a) until we get A = 1 in step (5).

II. Distinct Degree Factorization: We now have square-free and primitive A′is
which we will factors as Ai = ∏ Aid where each Aid = ∏j f jd, f ′jds are irreducible factors
with degree d and j runs over all such factors.

Let fd ∈ Fp[X] be an irreducible factor s.t. deg(fd) = d. Then consider the field K
generated by fd, K = Fp[X]/ fd(x)Fp[X] with |K| = pd. Now, ∀ x ∈ K we have xpd

= x
as order of any non-zero element from multiplicative group K∗ divides pd − 1. Hence,
polynomial Xpd − X = 0 in K which means fd | Xpd − X.

35

Remark 4.3. Every irreducible factor of Xpd − X that is not a factor of Xpe − X for any
e < d has degree exactly d.

Now below are the steps for distinct degree factorization of each Ai:

DDF(Ai): Returns factors of Ai, Aid, each of which is a product of irreducible factors of
degree d.

1. Set d← 1. Then calculate Aid ← gcd(Ai, Xpd − X).

2. Store Aid, d and then set Ai ← Ai
Aid

.

3. Make d← d + 1. If Ai = 1 Terminate, else repeat Step 1 to 3.

Note 4.4. If pd is very large, we should calculate gcd(Ai, Xpd − X), as in step 1, using the
following steps:
a). set B← Xp (mod Ai)

b). Repeatedly set B← Bp (mod Ai), (d− 1) times.
See that every time we are raising some polynomial B, with deg(B) < Ai, to power p. If
Ai(x) has large degree then we can raise the power in smaller steps in step (b) to reduce
the running time of algorithm.

III. Equal-Degree Factorization: Now we have each Aid as product of irreducible
factors fd with deg(fd) = d. So, we need to factor Aid to find all irreducible factors and
we will have have full factorization of A. We have deg(Aid) = kd where k is the total
number of irreducible factors fd. See that if deg(Aid) = d then we are done so assume
otherwise. We denote finite field with pd elements by Fpd . We will factor Aid for p < 2
and p > 2 separately by following propositions:

For p > 2 :

Proposition 4.5. Take Aid as above, then for any T ∈ Fp[X] we have

Aid = gcd(Aid, T).gcd(Aid, T
pd−1

2 + 1).gcd(Aid, T
pd−1

2 − 1)

Proof. As roots of Xpd − X are elements of field Fpd , they are distinct.

Claim: The set of roots of Tpd − T contains the roots of Xpd − X (or elements of Fpd).

Proof: Assume T(x) = anxn + an−1xn−1 + + a0 where each ai ∈ Fp. Then Tpd
=

apd

n xpdn + apd

n−1xpdn−1 + + apd

0 . Hence, ai ∈ Fp =⇒ ap
i ≡ ai (mod p) =⇒

36

apd

i ≡ ai (mod p) and let x ∈ Fpd then xpd
= x in Fpd . So, for such x, we have

Tpd
= anxn + an−1xn−1 + + a0 = T.

Our claim implies that Xpd − X | Tpd − T. And as we saw earlier that for all irre-
ducible fd ∈ Fp[X], with deg(fd) = d, fd | Xpd − X =⇒ fd | Tpd − T. Note
that Aid is square-free and all f ′ds are factors of Tpd − T. Now write, Tpd − T =

T.
(
T

pd−1
2 + 1

)
.
(
T

pd−1
2 − 1

)
, see that these factors are pairwise co-prime. Which implies

that Aid = gcd(Aid, T).gcd(Aid, T
pd−1

2 + 1).gcd(Aid, T
pd−1

2 − 1).

For p = 2 :

Proposition 4.6. Take polynomial U(x) = X + X2 + X4 + + X2d−1. If p = 2 and Aid is
as above, the for any T(x) ∈ F2[X] we have,

Aid = gcd(Aid, U(T)).gcd(Aid, U(T) + 1)

Proof. In F2[X] we have, U(T)2 = T2 + T4 + + T2d
. Then inside F2[X],

U(T).(U(T) + 1) = (T2 + T4 + + T2d
) + (T + T2 + + T2d−1)

= T + 2(T2 + + T2d−1) + T2d

= T2d
+ T

= T2d − T (as + 1 ≡ −1 (mod 2))

And from proof of prop 4.5, we know that all elements of F2d [X](i.e. roots of Aid)
are roots of T2d − T. Hence, Aid = gcd(Aid, U(T)).gcd(Aid, U(T) + 1).

The steps for equal degree factorization, also known as Cantor and Zassenhaus
split, are as follows:
EDF(Aid): (For p > 2) Returns deg(Aid)/d irreducible factors of Aid.

1. If deg(Aid) = d, result is Aid, else,

2. Choose T ∈ Fp randomly.

3. Set B(x)← gcd(Aid, T
pd−1

2 − 1), if deg(B) = 0 or deg(Aid), repeat steps 2 and 3.

4. Repeat steps 1 to 3 for B(x) and A(x)/B(x) recursively.

EDF(Aid): (For p = 2) Returns deg(Aid)/d irreducible factors of Aid.

37

1. If deg(Aid) = d, result is Aid, otherwise, set T ← X.

2. set U ← T and then set U ← T + U2 (mod A), (d− 1) times.

3. set B(x)← gcd(A, U)

4. if deg(B) = 0 or deg(Aid), set T ← T.X2 and goto step 2.

5. Repeat step 1 to 4 for B(x) and A(x)/B(x) recursively.

4.2 POLYNOMIAL FACTORIZATION OVER Z OR Q

Factorization of a primitive polynomial in Z[X] is equivalent to factoring in Q[X].
Let A ∈ Z[X] be a primitive polynomial with irreducible factorization A = A1A2....Ar

with Ai ∈ Q[X] ∀ i = 1, 2, ..., r. Let li be the LCM of denominators of the coefficients of
irreducible polynomial Ai, then li Ai ∈ Z[X]. And, let ci = cont(li Ai). Write each Ai as
primitive Ãi =

li
ci

Ai ∈ Z[X]. Hence, we have

A = aÃ1Ã2.....Ãr ; where, a ∈ Q

But both A and Ai are primitive, so a = 1. We have :

A = Ã1Ã2.....Ãr ; Ãi ∈ Z[X]

Conversely, let A(x) ∈ Q[X] and d be the LCM of denominators of coefficients of A. Then
dA(x) ∈ Z[X] and let c = cont(dA(x)). Hence, we have d

c A(x) primitive and in Z[X].

So, we only need to factor A(x) ∈ Z[X] such that A = Ae1
1 Ae2

2Aer
r with Ai(x) ∈

Z[X]. Now we reduce our problem further to factoring a square-free polynomial in Z[X].
Notice that,

gcd(A, A′) =
r

∏
i=1

Aei−1
i

Hence, we are now are left with following square-free polynomial to factor,

B(x) =
A

gcd(A, A′)
=

r

∏
i=1

Ai

Definition 4.7 (s-norm). We define s− norm (s > 0) for a polynomial A(x) = ∑n
i=1 aixi,

A(x) ∈ C[x], ai ∈ C as

‖A‖s =

(n

∑
i=1
|ai|s

)1/s

38

Where |ai| denotes the absolute value of ai. We call ‖A‖∞ = max{|a0|, |a1|,, |an|} the
max-norm of A(x).

For example, We write 1− norm and 2− norm as :

‖A‖1 = |a0|+ |a1|+ + |an|

‖A‖2 =
(
|a0|2 + |a1|2 + + |an|2

)1/2

Remark 4.8. See that, ‖A‖∞ ≤ ‖A‖2 ≤ ‖A‖1 ≤ (n + 1) ‖A‖∞.

Before we proceed with a factorization algorithm we will prove the following
bound for factors of a polynomial in Z[X] by first proving few lemmas.

Theorem 4.9 (Mignotte’s Bound). Let A(x), B(x), C(x) ∈ Z[X] satisfying A(x) =

B(x)C(x) with deg(A) = n, deg(B) = m deg(C) = k then :

‖B‖1 ‖C‖1 ≤ 2m+k ‖A‖2 ≤ (n + 1)1/22n ‖A‖∞

Lemma 4.10. For A(x) ∈ C[X] and z ∈ C, we have

‖(x− z)A(x)‖2 = ‖(zx− 1)A(x)‖2

Proof. Let A = ∑n
i=0 aixi ∈ C[X] and set a−1 = an+1 = 0 and denote complex conjugate of

z, ai ∈ C as z, ai. Then we have,

‖(x− z)A(x)‖2
2 = ‖xA(x)− zA(x)‖ =

n+1

∑
i=0
|ai−1 − zai|2

=
n+1

∑
i=0

(ai−1 − zai)(ai−1 − zai)

=
n+1

∑
i=0
|ai−1|2 + |z|2|ai|2 − (zai−1ai + zai−1ai)

=
n+1

∑
i=0
|ai|2 + |z|2|ai−1|2 − (zai−1ai + zai−1ai)

=
n+1

∑
i=0

(zai−1 − ai)(zai−1 − ai)

=
n+1

∑
i=0
|zai−1 − ai|2

= ‖(zx− 1)A(x)‖2
2

39

Notation: Let A(x) = ∑n
i=0 aixi = an ∏n

i=1(x − zi), A(x) ∈ C[X] and ai, zi ∈ C.
Where z′is are the roots of A(x). Then we will use M(A) = |an|. ∏n

i=1 max{1, |zi|}. See
that if A(x) = B(x)C(x) then M(A) = M(B)M(C).

Lemma 4.11 (Landau’s Inequality). For any polynomial A(x) ∈ C[X] we have M(A) ≤
‖A(x)‖2.

Proof. Arrange the roots such that |z1|, |z2|,, |zk| > 1 and |zk+1|, |zk+2|,, |zn| < 1 for
some k ∈ {1, 2,, n}. Then M(A) = |an.z1z2.....zk|. Let

B(x) = an

k

∏
i=1

(zix− 1)
n

∏
i=k+1

(x− zi) = bnxn + bn−1xn−1 + + b0 ∈ C[X]

Then,
M(A)2 = |an.z1z2.....zk|2 = |bn|2 ≤ ‖B‖2

2

Now applying lemma 4.10 repeatedly we get:

‖B‖2
2 =

∥∥∥∥ B
(z1x− 1)

(x− z1)

∥∥∥∥ =

∥∥∥∥ B
(z1x− 1).z2x− 2)

(x− z1)(x− z2)

∥∥∥∥ =

=

∥∥∥∥∥ B

∏k
i=1(zix− 1)

k

∏
i=1

(x− zi)

∥∥∥∥∥
=

∥∥∥∥∥ an ∏k
i=1(zix− 1)∏n

i=k+1(x− zi)

∏k
i=1(zix− i)

k

∏
i=1

(x− zi)

∥∥∥∥∥
=

∥∥∥∥∥an

n

∏
i=1

(x− zi)

∥∥∥∥∥
= ‖A‖2

2

Hence, M(A) ≤ ‖A‖2.

Lemma 4.12. Let A(x) = ∑n
i=0 aixi and B(x) = ∑m

i=0 bixi, A(x), B(x) ∈ C[X] such that
B(x) divides A(x)(m ≤ n). Then we have :

‖B‖2 ≤ ‖B‖1 ≤ 2mM(B) ≤
∣∣∣∣bm

an

∣∣∣∣2m ‖A‖2

40

Proof. First, write B(x) = bm ∏m
i=1(x− αi), αi ∈ C. Expressing the coefficients of B(x) in

terms of roots:
bi = (−1)m−ibm ∑

S⊆{1,..,m}
|S|=m−i

∏
j∈S

αj

So,

|bi| = |bm|
∣∣∑

S
∏
j∈S

αj
∣∣ ≤ |bm|∑

S
∏
j∈S
|αj|

≤
(

m
i

)
M(B)

(4.1)

Hence, we have

‖B‖1 =
m

∑
i=0
|bi| ≤ M(B)

m

∑
i=0

(
m
i

)
= 2mM(B)

As the roots of B(x) are also the roots of A(x), let α1, ...αm be the roots of B(x) and
αm+1, ..., αn be the remaining roots of A(x) (roots are counted with multiplicity). Then,
we have

M(A) =

∣∣∣∣ an

bm

∣∣∣∣M(B).
n

∏
i=m+1

max{1, |αi|}

≥
∣∣∣∣ an

bm

∣∣∣∣M(B)

Therefore we have :

M(B) ≤
∣∣∣∣bm

an

∣∣∣∣M(A) (4.2)

After combining the above results we get,

‖B‖1 ≤ 2mM(B) ≤ 2m
∣∣∣∣bm

an

∣∣∣∣M(A)

≤
∣∣∣∣bm

an

∣∣∣∣2m ‖A‖2 (By Lemma 4.11)

Now we are all set to prove the Mignotte′s Bound.

Theorem 4.9. Using Lemma 4.12 we get:

‖B‖1 ‖C‖1 ≤ 2m+k M(B)M(C) = 2m+k M(A)

≤ 2m+k ‖A‖2 (By Lemma 4.11)

≤ 2n(n + 1)1/2 ‖A‖∞

41

Now we will prove a lemma that will be required later when factoring polynomial
using LLL-algorithm.

Lemma 4.13 (Landau-Mignotte). If A(x) = ∑n
i=0 aixi and B(x) = ∑m

i=0 bixi, A(x), B(x) ∈
Z[X] such that B(x) | A(x), then we have:

‖B‖2 ≤
(

2m
m

)1/2

‖A‖2 (4.3)

Proof. From (4.1) we have |bi| ≤ (m
i)M(B). From (4.2) we have M(B) ≤ |bm|

|an|M(A), and as

B | A we have |bm|
|an| ≤ 1. Thus, above inequality becomes

|bi| ≤
(

m
i

)
M(A) ≤

(
m
i

)
‖A‖2 (By [4.11])

Therefore, we have ‖B‖2 =
(

∑m
i=0 |bi|2

)1/2 ≤
(

∑m
i=0 (

m
i)

2)1/2 ‖A‖2 = (2m
m)

1/2 ‖A‖2.

Now, at first we will factor polynomials modulo pk for large enough k and then
compute factors corresponding to factorization in Z[X]. For factorization modulo pk we
will lift our factorization from polynomial ring (Z/pZ)[X] to ring (Z/pkZ)[X] using
Hensel Lifting given below.

4.2.1 HENSEL LIFTING

I. First we will discuss the following theorem which provides us with a way to lift
factorization of some polynomial from modulo p, for some prime p, to modulo pk, k ≥ 1.
However, it is done by lifting factorization to only one power of p at a time. Later, we will
give an efficient method of lifting the factorization.
The steps for the algorithms can be followed easily from the proof for all the methods
given below.

Theorem 4.14. Let p be any prime and let polynomials C, Ae, Be, U, V in Z[X] s.t.

C = AeBe (mod pe) e ≥ 1

UAe + VBe ≡ 1(mod p) with,

deg(U) < deg(Be) and deg(V) < deg(Ae)

Assume Ae monic then ∃ Ae+1, Be+1 ∈ Z[X], unique modulo pe+1, satisfying the
above conditions for e + 1, s.t. Ae ≡ Ae+1 (mod pe) and Be ≡ Be+1 (mod pe)

42

Proof. Let D = (C− Aebe)/pe and let Ae+1 = Ae + peS and Be+1 = Be + peT with S, T ∈
Z[X]. Now we prove the following claim which gives us the possible values of S and T:
Claim: S ≡ VD + WAe (mod p) and T ≡ UD + WBe (mod p) for some W ∈ Z[X]. Proof:
We need to show that C = Ae+1Be+1 (mod pe+1). Further putting the values:

peD + AeBe ≡ Ae+1Be+1 (mod pe+1)

≡ AeBe + pe(AeT + BeS) (mod pe+1)

Hence,

peD ≡ pe(AeT + BeS) (mod pe+1)

=⇒ D ≡ AeT + BeS (mod p)

Satisfying above equation with S and T values from our claim would prove our
claim and hence the theorem as S, T being unique modulo p implies that Ae+1 and Be+1

are unique modulo pe+1. We have

AeT + BeS ≡ Ae(UD + WBe) + Be(VD + WAe) (mod p)

≡ AeUD + BeVD (mod p)

≡ D(AeU + BeV) (mod p)

≡ D (mod p)

as required.

II. Given integers p and q, need not be prime, we will look at following theorem
that helps us in lifting the factorization from modulo q to modulo qr where r = gcd(p, q).

Theorem 4.15. Assume that

C(x) = A(x)B(x) (mod q), UA + VB = 1 (mod p)

where deg(U) < deg(B), deg(V) < deg(A), deg(C) = deg(A)+ deg(B), for C, A, B, U, V ∈
Z[X]. Let gcd(l(A), r) = 1, where l(A) indicates the leading coefficient of A(x). Then
there exists some polynomials A1, B1 ∈ Z[X] congruent to A, B modulo q with l(A1) =

l(A), deg(A1) = deg(A), deg(B1) = deg(B) such that

C(x) = A1(x)B1(x) (mod qr)

Further, if r is prime, the result is unique modulo qr.

43

Proof. Our problem is to find some S(x), T(x) ∈ Z[X] such that A1 = A+ qS, B1 = B+ qT
with deg(S) < deg(A), deg(T) ≤ deg(B), degree conditions follow from the condition that
we want deg(A1) = deg(A) and deg(B1) = deg(B). We want S, T to also satisfy

A1B1 = (A + qS)(B + qT) ≡ C (mod qr), which implies,

q(AT + BS) + q2(ST) ≡ qP (mod qr)

(As C− AB = qP (mod qr) f or some P(x) ∈ Z[X])

AT + BS + q(ST) ≡ P (mod r) (as gcd(qr, q) = q)

AT + BS ≡ P (mod r)

(4.4)

Claim: We have T = UP + RB and S = VP− RA for all R(x) ∈ Z[X] satisfying equation
(4.4).
Proof : Putting values of T(x) and S(x) in LHS of last condition of equation (4.4) we get

AT + BS = A(UP + RB) + B(VP− RA)

= P(UA + VB)

≡ P (mod r) (as UA + VB ≡ 1 (mod p)and r | p)

(4.5)

As l(A) has an inverse modulo r, we can get a quotient R(x), satisfying above conditions,
such that deg(VP− RA) < deg(A) by polynomial division with remainder. We can set
R(x) as quotient when VP is divided by A(x). For this choice of R(x) we have deg(UP +

RB) ≤ deg(B) as deg(AT + BS) ≤ deg(C) by definition of T, S, then rest follows from
equation (4.5).
uniqueness: solution obtained in claim for S and T value is unique when r is prime. For
this see that if S1 and T1 is some other solution then we must have AT + BS ≡ AT1 +

BS1 (mod r) which implies A(T− T1) ≡ B(S1− S) (mod r). So, we must have A | (S1− S)
but deg(A) > deg(S1 − S). Therefore, solution is unique.

III Now we will look at another method which lifts factorization from modulo p to
p2. Let A ∈ Z[X] and p be a prime number s.t. p - l(A) (leading coefficient of polynomial
A). And, we have B1, C1 ∈ Z[X] s.t. A = B1C1 (mod p) with gcd(B1, C1) = 1 =⇒
∃U, V ∈ Z[X] s.t. UB1 +VC1 = 1 (P (mod p) is denoted as P for polynomial P). We have
A = B1C1 + pV1 for some V1 ∈ Z[X]. Let A− B1C1 = pV1 = R and UB1 +VC1 = 1+ pV2

for some V2 ∈ Z[X].
Claim: Set B2 = B1 + VR and C2 = C1 + UR in Z[X]. Then we have A ≡ B2C2 (mod p2).

44

Proof:

B2C2 = (B1 + VR)(C1 + UR)

= B1C1 + R(UB1 + VC1) + VUR2

= A− (A− B1C1) + (A− B1C1)(1 + pV2) + VUR2

= A + (pV1)(pV2) + p2VUV2
1

≡ A (mod p2)

We can use this method to list from any pn to p2n. Using any or combination of
multiple factors based of our possible exponents can make out task efficient. See that in
second algorithm taking pair as (pn, pn) lifts our factorization to p2n.

4.2.2 FACTORIZATION IN Z[X]

If A(x) = ∑n
i=0 aixi ∈ Z[X] and B(x) = ∑m

j=0 bjxj ∈ Z[X] are two polynomials
then the matrix representing the linear map:

ψA,B : Vm ×Vn −→ Vm+n ; ψA,B(F, G) = FA + GB (4.6)

is called the Sylvester Matrix, S(A, B), where Vm and Vn are m and n dimensional vector
spaces over Q with basis {1, x, ..., xm−1} and {1, x, ..., xn−1} respectively.

Definition 4.16. The resultant, res(A, B), of polynomials A, B ∈ Z[X] is the integer de-
terminant of S(A, B). And we define discriminant of any polynomial A ∈ Z[X] to be
res(A, A′), where A′ denotes the formal derivative of A(x).

Refer to [9, page 122] for algorithm to compute resultant of two polynomials.

Lemma 4.17. Let A(x), B(x) ∈ Z[X] then gcd(A, B) = 1 if and only if det(S(A, B)) 6= 0.

Proof. Let G(x) = gcd(A, B) 6= 1. Then for some non-zero S = B/G ∈ Z[X] and T =

−A/G ∈ Z[X] we have SA+ TB = 0 =⇒ ψA,B, as in (4.6), is not an injective map. Thus,
det(S(A, B)) = 0.
Conversely, assume that there exists non-zero (S, T) ∈ Vm ×Vn such that ψA,B(S, T) = 0.
Then we have SA + TB = 0. First, let S 6= 0, then as gcd(A, B) = 1 and TB = −SA we
must have B a divisor of S, which is a contradiction as deg(S) < deg(B). Similarly, we
can’t have t 6= 0. Therefore, gcd(A, B) = 1 ⇐⇒ det(S(A, B)) = 0.

45

We only have to factor square-free and primitive polynomial A(x) ∈ Z[X] with
deg(A) = n. Set a bound s = (n + 1)1/22n ‖A‖∞ |l(A)|, where l(A) denotes the leading
coefficient of A(x). First we have to choose a prime p such that A (mod p) ∈ (Z/pZ)[X]

is also square-free. Such a p would have to satisfy gcd(A, A′) = 1 and p - l(A). From 4.17
we can see that gcd(A, A′) = 1 ⇐⇒ disc(A) 6= 0. Now, take k ∈ Z such that pk > 2s
and using Hensel lifting raise factorization to ring (Z/pkZ)[X] s.t.

A(x) = l(A).A1.A2....Ar (mod pk), Ai ∈ Z[X], l(Ai) = 1

Where we will use symmetric representation for coefficients of polynomials inside
(Z/pkZ)[X]. Let S ⊆ {1, 2,, r} and Sc be its complement. Take B, C ∈ Z[X] such
that:

B ≡ l(A)∏
i∈S

Ai (mod pk) , C ≡ l(A) ∏
i∈Sc

Ai (mod pk)

See that ‖B‖∞ , ‖C‖∞ < pk

2 . Now we will prove the following claim to complete our
factorization.
Claim : ‖B‖1 ‖C‖1 ≤ s ⇐⇒ l(A)A = BC.

Proof. First, let l(A)A = BC. Applying Theorem 4.9 on polynomial l(A)A we get

‖B‖1 ‖C‖1 ≤ |l(A)| ‖A‖∞ (n + 1)1/22n = s

Conversely, let ‖B‖1 ‖C‖1 ≤ s. Then we have, by definition of B and C, l(A)A ≡
BC (mod pk). As we choose pk > 2s, we have

‖BC‖∞ ≤ ‖BC‖1 ≤ ‖B‖1 ‖C‖1 ≤ s <
pk

2

Which means coefficients of BC belong to interval (−pk/2, pk/2). So we have l(A)A =

BC.

The steps for Zassenhaus factorization algorithm are as follows: Let A(x) ∈ Z[X]

be a square-free and primitive polynomial with degree n.

1. set s← (n + 1)1/22n ‖A‖∞ |l(A)|

2. find p such that p - l(A) and disc(A) 6= 0

3. set k← dlogp(2s + 1)e (as pk > 2s)

4. Factor A (mod p) into irreducible factors as shown in section 4.1.

46

5. Lift factorizaion of A(x) from modulo p to modulo pk as A(x) =

l(A)A1A2...Ar (mod pk) using Hensel lifting shown in section 4.2.1. (Note that
‖Ai‖∞ < pk/2)

6. set T ← {1, 2, ..., r}

7. For m = 1, 2, ..., r, for all m− element subsets of T, say S.
(i) set B← l(A)∏i∈S Ai (mod pk)

(ii) set C ← l(A)∏i∈Sc Ai (mod pk)

(iii) if ‖B‖1 ‖C‖1 ≤ s
output B/cont(B) as a factor
Set T ← T − S, A← C/cont(C)

8. output A as final remaining factor

4.2.3 POLYNOMIAL FACTORIZATION IN Z[X] USING LLL-ALGORITHM

Take A(x) ∈ Z[X], primitive and square-free polynomial with deg(A) = n >

0. First we will factor A(x) into irreducible polynomials in Fp[X] and select a monic
polynomial B(x) ∈ Z[X] such that B(x) (mod p) is irreducible in Fp[X] with conditions:

B (mod pk) divides A (mod pk) in (Z/pkZ)[X]

B (mod p)2 does not divide A (mod p) in Fp[X]
(4.7)

See that B (mod p) | A (mod p) as from (4.7) we get B (mod pk) | A (mod pk). Hence,
we have (B mod pk) mod p | (A mod pk) mod p which gives us B (mod p) | A (mod p).
We can get such B(x) by lifting factorization of A(x) (mod p) from Fp[X] to (Z/pkZ[X]).
Now, let deg(B(x)) = m1, 0 < m1 ≤ n.

Proposition 4.18. There exists an irreducible factor P(x) ∈ Z[X] of A(x) such that
B (mod p) | P (mod p), and P(x) is unique upto sign. Further, if Q(x) | A(x) in Z[X]

then the following are equivalent:

1. B (mod p) | Q (mod p) in Fp[X],

2. B (mod pk) | Q (mod pk) in (Z/pkZ)[X],

3. P(x) | Q(x) in Z[X].

Proof. Existence follows from B (mod p) being irreducible in Fp[X] and equation (4.7).
If P(x) = B(x) then irreducibility follows from definition of B(x). And, Uniqueness

47

follows from equation (4.7). Now we look as equivalences:
(2)→ (1) : As B (mod pk) | Q (mod pk) we have (B mod pk) mod p | (Q mod pk) mod p =⇒
B (mod p) | Q (mod p).
(3)→ (1) : As P | Q we have P (mod p) | Q (mod p). Thus, B (mod p) | P (mod p) =⇒
B (mod p) | Q (mod p).
(1)→ (3) : By (1) and equation (4.7) we get that B (mod p) - A/Q (mod p) in Fp[X].
Thus, P - (A/Q) in Z[X] =⇒ P | Q.
(1)→ (2) : By definition of B(x) and previous discussion we have
gcd(B (mod p), A/Q (mod p)) = 1, hence, there exist some λ1, µ1 ∈ Z[X] such
that λ1 (mod p).B (mod p) + µ1 (mod p).A/Q (mod p) = 1. Therefore, we have

λ1.B + µ1.A/Q = 1− pv1 f or some v1 ∈ Z[X] (4.8)

On multiplying (4.8) with Q(1 + pv1 + ... + pk−1vk−1
1) we get:

λ2.B + µ2.A = (1− pv1).Q(1 + .. + pk−1vk−1
1)

λ2.B + µ2.A = (1− pkvk
1)Q, λ2, µ2 ∈ Z[X]

λ2.B (mod pk) + µ2.A (mod pk) = Q (mod pk)

As B (mod pk) | A (mod pk), because V ∈ M and B (mod pk) | b (mod pk) ,we get LHS of
above equation divisible by B (mod pk). Hence, B (mod pk) | Q (mod pk).
See that, putting Q = P gives us B (mod pk) | P (mod pk)

Now, fix an integer m ≥ deg(B) = m1. Take L to be the set of all degree ≤ m
polynomials C(x) such that B (mod pk) | C(x) (mod pk), which also implies B (mod p) |
C(x) (mod p). See that the basis for L is given by the coefficients of following polynomials

{pkXi : 0 ≤ i < deg(B) = m1} ∪ {BX j : 0 ≤ m− deg(B)} (4.9)

Identify a polynomial ∑m
i=0 aixi as (a0, a1, ..., am) in vector form. See that B | BX j and

pkXi ≡ 0 (mod p). And that these are linearly independent elements which are total
m1 + m−m1 + 1 = m + 1 in number. Thus, L with above basis is a lattice inRm+1. Also,
notice that the basis vectors forms an upper triangular matrix with pk as first m1 diagonal
entries and 1 as rest as B(x) is monic, therefore det(L) = pk.deg(B) = pkm1 .

Proposition 4.19. If some b ∈ L satisfies :

pkm1 > ‖A‖m
2 ‖b‖

n
2 (4.10)

Then P | b in Z[X], where P(x), A(x) are as in 4.18, and gcd(A, b) 6= 1.

48

Proof. Assume b 6= 0 and G = gcd(A, b). If we show that B (mod p) | G (mod p), then by
4.18 (1) → (3), we have P | G and hence P | b. We prove this by contradiction. Assume
that B (mod p) - G (mod p), then for some S1, T1, V1 ∈ Z[X] we have

S1B + T1G = 1− pV1 (4.11)

Now define

M = {SA + Tb : S, T ∈ Z[X], deg(S) < deg(b)− deg(G) and deg(T) < deg(A)− deg(G)}

And, call projection of M on ZXdeg(G) + ZXdeg(G)+1 + + ZXdeg(A)+deg(b)−deg(G)−1 be
M1.
Claim : Kernel of above projection is trivial, thus image has same rank as M.
Proof: Let SA + Tb ∈ M goes to 0 in M1, then deg(SA + Tb) < deg(G). But as G | A and
G | b we have G | SA + Tb =⇒ SA + Tb = 0.
Further, as SA + Tb = 0 =⇒ SA/G + Tb/G = 0. As gcd(A/G, b/G) = 1, we have
(A/G) | T but this can’t happen as deg(T) < deg(A/G), by definition. Thus, T = 0, and
similarly, S = 0. Therefore we have the projections of {Xi A : 0 ≤ i < deg(b)− deg(G)} ∪
{X jb : 0 ≤ j < deg(A)− deg(G)} on M1 linearly independent and spanning M1. Hence,
M1 is a lattice of rank deg(A) + deg(b)− 2deg(G). And from Hadamard′s inequality and
condition given in proposition we have

det(M1) ≤ ‖A‖deg(b)−deg(G)
2 ‖b‖deg(A)−deg(G)

2 ≤ ‖A‖m
2 ‖b‖

deg(A)
2 < pkm1 (4.12)

Claim : {V ∈ M : deg(V) < deg(G) + deg(B)} ⊂ pkZ[X]

Proof: Let V be as in claim then we have G | V. On multiplying (4.11) by V/G(1 + pV1 +

... + pk−1Vk−1
1) we get

S2B + T2V ≡ V/G (mod pk), S2, T2 ∈ Z[X] (4.13)

As B (mod pk) | V (mod pk) we have from (4.13), B (mod pk) | (V/G) (mod pk) but
deg(B (mod pk)) = deg(B) as it is monic whereas deg((V/G) (mod pk)) < deg(G) +

deg(B)− deg(G) = deg(B), thus V/G ≡ 0 (mod pk) =⇒ V ≡ 0 (mod pk) =⇒ claim.
Now choose a basis {bdeg(G), ..., bdeg(A)+deg(b)−deg(G)−1} of M1 such that bi has degree i.
Notice that the matrix from above basis will be an upper triangular matrix, hence de-
terminant can be calculated by multiplying the leading coefficients of each basis vector.
From previous claim we get that the leading coefficients of bi are divisible by pk. Thus,
deg(M1) ≥ pkm1 , but on comparing with (4.12) we get a contradiction.

49

Proposition 4.20. If {x1, x2,, xm+1} is a reduced basis of lattice L, as in (4.9), with

pkm1 > 2mn/2
(

2m
m

)n/2

‖A‖m+n
2 (4.14)

Then deg(P(x)) ≤ m ⇐⇒ ‖x1‖2 < (pkm1/ ‖A‖m
2)

1/n. Where P(x), A(x), p, k are as in
[4.18], deg(A(x)) = n, deg(B(x)) = m1.

Proof. If ‖x1‖2 < (pkm1/ ‖A‖m
2)

1/n then by [4.19] we have P | x1 =⇒ deg(P) ≤ m
as deg(x1) ≤ m. Now, assume deg(x1) ≤ m then x1 ∈ L. And, on applying (4.3), we
have ‖x1‖2 ≤ (2m

m)
1/2 ‖A‖2. By Hadamard′s inequality we have ‖x1‖2 ≤ 2m/2 ‖P‖2 ≤

2m/2(2m
m)

1/2 ‖A‖2 < (pkm1/ ‖A‖m
2)

1/n by (4.14).

Proposition 4.21. Let the notations be same as in [4.20], along with condition (4.14).
And let t ∈ {1, 2, ..., m + 1} be the largest such value for which we have ‖xt‖2 <

(pkm1/ ‖A‖m
2)

1/n, then deg(P(x)) = m − t + 1 with P(x) = gcd(x1, ..., xt) and ‖xi‖2 <

(pkm1/ ‖A‖m
2)

1/n ∀ 1 ≤ i ≤ t.

Proof. Let set I be set of all indices such that i ∈ I i f f ‖xi‖2 < (pkm1/ ‖A‖m
2)

1/n. By
[4.19], P | xi ∀ i ∈ I and so we have P | P1 where P1 = gcd({xi}i∈I). As P1 | xi ∀ i ∈ I
with deg(xi) ≤ m, so, xi ⊂ ZP1 + ZP1X + ... + ZP1Xm−deg(P1). And as x′is are linearly
independent they are atmost m + 1 − deg(P1) in number for i ∈ I , so |I| ≤ m + 1 −
deg(P1). From (4.3) result,

∥∥PX j
∥∥

2 = ‖P‖2 ≤ (2m
m)

1/2 ‖A‖2 ∀j ≥ 0, and we have PX j ∈ L
for 0 ≤ j ≤ m− deg(P), so we now have

‖xi‖2 ≤ 2m/2
(

2m
m

)1/2

‖A‖2 , 1 ≤ i ≤ m− deg(P) + 1

And by (4.14), we have i ∈ I ∀ i ∈ {1, 2, ..., m− deg(P) + 1}. From this and as number of
elements in I are ≤ m− deg(P1) + 1 but P | P1 =⇒ deg(P) = deg(P1) = m + 1− t, I =

{1, 2,, t}. Now, if we prove that P1 is primitive than as P | P1 and are of same degree
we must have P = P1. Choose some i ∈ I and ci the content for corresponding xi. Then
as P is primitive, we must have P | xi

ci
=⇒ xi

ci
∈ L as P ∈ L. But xi is a basis of lattice L,

so ci = 1. So, xi is primitive and P1 | xi so P1 must be primitive also, this completes the
proof of proposition.

Algorithm Steps: For given square-free and primitive A(x) ∈ Z[X] the steps for
algorithm are as follows:

1. Choose smallest p such that p - l(A) and disc(A) 6= 0

50

2. Factor A(x) (mod p) in Fp[X] (as shown in section 4.1) and store irreducible factors,
B(x) mod p, in set B.

3. Choose an arbitrary B(x) mod p ∈ B, set d = deg(B(x) mod p).

4. if d = deg(A), output A(x) and terminate, otherwise, go to step 5

5. Choose smallest k such that pkd > 2(n−1)n(2(n−1)
n−1)

n/2
‖A‖2n−1

2

6. set m← b(n− 1)/2uc such that u = max{l | d ≤ (n− 1)/2l}.

7. Lift factorization A(x) = B(x)B1(x) (mod p) from modulo p to modulo pk, set
Q(x)← C (mod pk) such that C ≡ B (mod p). (by Hensel lifting).

8. By LLL− Algorithm get reduced basis {x1, x2,, xm+1} of lattice L given in (4.9).

9. if ‖x1‖ ≥ (pkd/ ‖A‖m
2)

1/n, then set u ← u − 1 and m ← b(n − 1)/2uc, and goto
step 7, otherwise, go to step 10.

10. set t← max{j | j ∈ {1, 2, ..., m + 1} s.t.
∥∥xj
∥∥ < (pkd/ ‖A‖m

2)
1/n}.

11. output irreducible factor P(x) = gcd(x1, x2,, xt).

12. if A(x) = 1, Terminate. Otherwise, remove all such B mod p from B such that
B (mod p) | P (mod p), set A(x)← A(x)/P(x) and go to step 3.

In Step 1 we are choosing a prime p such that primitive, squarefree polynomial
A(x) ∈ Z[X] is square-free modulo p also. Which means disc(A) 6= 0 by [4.17]. Hence,
we will choose a smallest such p. In Step 5 we are choosing minimum such k satisfying
(4.14) for worst case m ≥ deg(B(x)), which will be n − 1 (n = deg(A(x))). Step 6 runs
for m values less than or equal to n− 1 for reducing the runtime of algorithm. Sooner or
later will get required factor as in step 11. Step 9 can be seen directly as a result of 4.20.
Step 10 follows from 4.21. As by 4.18, the obtained factor P(x) in step 11 is unique upto
sign for some chosen B mod p from set B, we will remove all such factors from B as done
in step 12 and after removing P(x) from A(x) we will go through step 3 to 12 until A(x)
is completely factored.

Note 4.22. If A(x) ∈ Z[X] is not a square free polynomial then we let D(x) =

gcd(A(x), A′(x)). We will factor A0(x) = A(x)/D(x) using above algorithm. See that
each irreducible factor of D(x) in Z[X] divides A0(x). We will take each irreducible fac-
tor from A0(x) and by trial division get its exponent in D(x). Thus, we will have complete
factorization of A(x).

51

APPENDIX A

ALGORITHMS

52

ALGORITHMS

A.1 PRIMALITY TESTING ALGORITHMS

A.1.1 FERMAT’S LITTLE TEST

Algorithm 3 Fermat’s Test
Data: An integer N ≥ 2.
Result: Returns whether N is probable prime or definite composite.
set x ← random integer ∈ [2, N − 1]
if xp 6≡ x (mod p) then

output De f inite Composite
else

output Probable Prime
end

A.1.2 MILLER-RABIN TEST

Algorithm 4 Miller-Rabin Test
Data: An odd integer N ≥ 2.
Result: Returns whether N definite composite or undecided.
factor N − 1 as 2km, k ≥ 1
set x ← random integer ∈ [2, N − 2]
if xm (mod N) 6= 1 then

if x2jm (mod N) 6= N − 1 ∀ j ∈ {0, ..., k− 1} then
output De f inite Composite

else
output Undecided

end

else
output Undecided

end

53

A.1.3 LUCAS TEST

Algorithm 5 Lucas Test
Data: An integer N > 2, Bound B for base values.
Result: Returns whether N is definite prime or undecided.
set x ← 2
while x < B
if xN−1 (mod N) = 1 and x(N−1)/p (mod N) 6= 1 ∀ primes p | (N − 1) then

output De f inite Prime
Terminate

else
x = x + 1

end
output Undecided

A.1.4 SOLOVAY STRASSEN TEST

Algorithm 6 Solovay-Strassen Test
Data: An odd integer N > 2.
Result: Returns whether N is definite composite or probable prime.
set x ← random integer ∈ [2, N − 1]
calculate

(x
N
)

by steps given in subsection 1.1.3 .
if xN−1/2.

(x
N
)
(mod N) 6= 1 then

output De f inite Composite
Terminate

else
output Probable prime

end

54

A.1.5 THE AKS-ALGORITHM

Algorithm 7 AKS-Algorithm
Data: An integer N ≥ 2.
Result: Returns whether N is prime or composite.
if N = ab for a ∈N and b > 1; output Composite
Find smallest r s.t. orderr(N) > 4dlog Ne2

if 1 < gcd(a, N) < N for some a ≤ r; output Composite
if N ≤ r; output Prime
for 1 ≤ a ≤ 2dredlog Ne; Do :

if (X + a)N 6= XN + a (mod Xr − 1, N); output Composite
Return Prime

A.2 FACTORIZATION ALGORITHMS

A.2.1 FERMAT’S FACTORIZATION SCHEME(FFS)

Algorithm 8 Non-Generalized FFS
Data: An odd positive integer n > 2.
Result: Returns factors, not necessarily prime, of n.
set k← b

√
nc

if k <
√

n; set k← k + 1
set y← bk2 − nc
while y2 ! = (k2 − n)

set k← k + 1
set y← bk2 − nc

Return (k + y), (k− y)

55

Algorithm 9 Generalized FFS
Data: An odd positive integer n > 2.
Result: Returns factors, not necessarily prime, of n.
set k← b

√
nc

if k <
√

n; set k← k + 1
set y← bk2 − nc
set r = 2
while y2 ! = (k2 − n)

if k2 > rn then
set y← bk2 − rnc
set k← k + 1

else
set k← k + 1
set y← bk2 − nc

Return gcd(k + y, n), gcd(k− y, n)

A.2.2 POLLARD’S ALGORITHMS

Algorithm 10 Pollard-rho with Brent’s Modification
Data: An odd integer N > 2, Bound B for sequence calculations.
Result: Returns divisor, not necessarily prime, of N, if found.
set j← 1
while j < B do
if j is of form 2r − 1 then

Calculate all k s.t. 2r ≤ k < 2r+1

if if gcd(xk − x2r−1, N) is non-trivial for any k then
output divisor = gcd(xk − x2r−1, N)

Terminate
else

j = j + 1
end

else
j = j + 1

end

56

Algorithm 11 Pollard (p− 1) Algorithm
Data: An odd integer N > 2, Bound B for lcm calculation.
Result: Returns divisor, not necessarily prime, of N, if found.
set x ← random integer from [2, n− 2]
set L← lcm(1, 2, ...,B)
set M← xL (mod N)

if gcd(M− 1, N) is non-trivial then
output divisor=gcd(M− 1, N)

else
output Choose another x or B value

end

57

A.2.3 CONTINUED FRACTION FACTORING ALGORITHM

Algorithm 12 CFFA
Data: An positive integer N > 2, A bound B for calculations.
Result: Returns factors (not necessarily prime) of N, if found.
set X0 ←

√
N

set b0 ← b
√

Nc
if b0 = X0 then

output Divisors = X0,X0 Terminate
else

calculate bj,Xi using (1.3)
calculate Pk, Qk using (1.5)
calculate Sk, Tk using (1.6),(1.7)
set k← 1
while k < B
if Tk is a perfect square for even k then

if Pk−1 6≡ ±
√
Tk (mod N) then

output Divisors = gcd(Pk−1 +
√
Tk, N) and gcd(Pk−1 −

√
Tk, N) Terminate

else
k = k + 1

end

else
k = k + 1

end

end

58

A.2.4 QUADRATIC SIEVE ALGORITHM

Algorithm 13 QSA
Data: An integer N ≥ 2, Bound B for primes in factor base andM for sieve interval.
Result: Returns divisors, not necessarily prime, of N, if found.
set F = {−1, 2}
for primes p ≤ B do

if
(N

p
)
= 1; add p to F

set A(x) = x2 − N
set X = { b

√
Nc −M,, b

√
Nc+M}, A = { }

set M|A|×|F| as empty matrix, N|A|×|A| as identity matrix
for x ∈ X do

add A(x) to A i f it is F -smooth
for A(xi) ∈ A do

f actor A(xi) as (−1)ei1 pei2
1 pei3

2p
ei|F |
|F | ; 1 ≤ i ≤ |A|

set [ei1 (mod 2), ei2 (mod 2),, ei|F | (mod 2)] as ith row o f M
for column j = {1, 2, ..., |F |}o f M

if ri is the f irst row with 1 at jth place
set rj ← rj + ri (mod 2) ∀ i < j < |A| and then remove ri f rom M
do previous step with similar rows o f N
if some ith row, o f M, ri = [0, 0, ..., 0]

set y2 = A . riN (dot product), riN is ith row o f N
set x = ∏|A|l=1 xl where xl are s.t. A(xl) ∈ A
if gcd(y− x, N) is non− trivial

output divisors = gcd(y− x, N) gcd(y + x, N)

Terminate
output try di f f erent values o f B andM

59

A.2.5 OTHER ALGORITHMS

Algorithm 14 Binary search for checking perfect square
Data: An integer N > 1.
Result: Returns "True" if N is a perfect square, otherwise, returns "False"
set le f t← 1
set right← N
while le f t ≤ right, do

set mid← (le f t + right)/2
if (mid)2 = N; output True; Terminate
if (mid)2 < N; set le f t← mid + 1
else; set right← mid− 1

output False

60

APPENDIX B

SOME PYTHON IMPLEMENTATIONS

61

SOME PYTHON IMPLEMENTATIONS

B.1 PRIMALITY TESTING ALGORITHMS

B.1.1 FERMAT’S LITTLE TEST

Input: A number n that is to be tested and an integer k for the number of times Fermat’s
test runs before it outputs ’Probable Prime’.
Output: Returns ′De f inite Composite′ if n is composite else, returns ′Probable Prime′.

[45]: import random

def fermat(n,k):

for i in range(k):

a = random.randint(2,n)

if pow(a,n,n)!= pow(a,1,n):

return "Definite Composite"

return "Probable Prime"

[47]: fermat(232354763543765732524573257,5)

[47]: 'Definite Composite'

[48]: fermat(8489327852164434890945021112361,15)

[48]: 'Probable Prime'

Time analysis

Here we show how time of the execution of above program varies. We check run-
ning time of the program for a random n-digit number where 3 ≤ n ≤ B. B is given as an
input to following program.

[26]: import matplotlib.pyplot as plt

import time

def analysis(B):

62

x = []

y = []

for n in range(2,B):

start = 10**(n)

end = 10**(n+1)

x.append(n)

L = random.randint(start,end)

strt = time.perf_counter()

ans = fermat(L,10)

end = time.perf_counter()

y.append(end-strt)

plt.figure(figsize=(15,10))

plt.plot(x,y, color = 'b')

plt.title("Time variation for fermat(n,k)")

plt.xlabel('No. of Digits in N')

plt.ylabel('Time (in seconds)')

plt.show()

[27]: analysis(500)

Note B.1. We do not provide functions used for analysis as above for further tests as those
will be some close variations of above program.

63

B.2 MILLER-RABIN TEST FOR COMPOSITENESS

Input: An odd number N, being tested for compositeness, and integer k such that test
runs k times before returning Undecided.
Output: Returns Composite if n is composite, else, returns Undecided.

[55]: import random

def rabin_miller(N,k): # N : Any odd integer

m=(N-1)/2

h=1

while m%2==0:

m=int(m/2)

h = h+1

m = int(m)

for i in range(k):

x = random.randint(2,N-1)

if pow(x,m,N)!=1:

64

l=0

for j in range(h):

if pow(x,pow(2,j)*m,N)!=N-1:

l=l+1

if l==h:

return "Composite"

return "Undecided"

[27]: rabin_miller(100123456789,5)

[27]: 'Undecided'

[30]: rabin_miller(232354763543765732524573251,15)

[30]: 'Composite'

Time analysis

Below graph shows the variation of running time by above algorithm along with increase
in number of digits of random input number. y − axis denotes the execution time of
program in seconds and x− axis denotes the number of digits in input N. k was taken to
be 10 for each input.

65

B.2.1 SOLOVAY-STRASSEN TEST

Input: An odd number N ≥ 3 and x ∈N for Jacobi symbol calculation.

Output: Returns Jacobi symbol
(

x
N

)
Jacobi Symbol

[1]: def jacobi(N,x):

b=x%N

c=N

s=1

while b>=2:

while b%4==0:

b = b/4

if b%2 == 0:

if c%8==3 or c%8==5:

s = -s

66

b=b/2

if b==1:

break

if b%4==c%4==3:

s=-s

b1=b

b=c%b

c=b1

return s

Solovay-Strassen(SS) Test

Input: An odd number N to test for compositeness.
Output: Returns Composite if n is composite, else, returns Probable Prime.

[2]: import math as m

import random as r

def sstest(number):

base = r.randint(2,number-1)

print("Base=",base)

gcd = m.gcd(base,number)

if gcd!=1:

print("Composite")

else:

euler = pow(base,int((number-1)/2),number)

jacob = jacobi(number,base)

if euler != 1:

if euler!= number-1:

print("Composite")

else:

if jacob != -1:

print("Composite")

else:

print("Probable Prime")

else:

if jacob!=1:

67

print("Composite")

else:

print("Probable Prime")

[3]: sstest(20991129234731)

Base= 4471304183471

Probable Prime

[4]: sstest(9487897987986068049)

Base= 1018217905385428701

Composite

Time analysis

Variation of time taken by above algorithm along with increase in number of digits of
input number. A random integer is selected for each digit value and time is calculated.

68

B.2.2 LUCAS TEST

Input: An integer N > 2 and k for number of Lucas test on N.
Output: Returns ′prime′ if suitable base is found in k-trials, otherwise, returns
′undecided′.

[17]: from sympy import primefactors as pf

import random

def lucas(N,k): # N>2

factors = pf(N-1)

m = len(factors)

for i in range(k):

if m != 0:

a = random.randint(1,N)

if pow(a,N-1,N) == 1: # Condition 1

for factor in factors:

if pow(a,int((N-1)/factor),N) == 1: # Condition 2

break

else:

m = m-1

if m == 0:

return 'prime'

return 'undecided'

[18]: lucas(244446464646677,10)

[18]: 'prime'

[19]: lucas(855937339524071340192676159497,10)

[19]: 'undecided'

Running Time

There are many factors that effect the running time of above algorithm. When a
composite number does not satisfy first condition, it immediately goes out of the loop in
search for another base a. If composites satisfy condition 1 (called, pseudoprimes with
respect to that base) then they have to go through condition 2 for all prime factors of

69

N − 1. First we see running time for some composites of different below degrees then
analyse running time for prime number in next section.

B.2.2.0.0.1 Some non-prime inputs:
[54]: import time

Digits : 10,20,30,40,50,60,70,100

Non_primes =␣

↪→[7227163127,15054625465523761479,654243355136412450156070938749,

84864089872746563832232915164613072532741,

363056972346495169984662724961225802171007333049369,

9267733525776697034821258986418149535338114226853703138834442,

␣

↪→77317252851078874734257181329266724732094714837071451541449947282457165,

498523959978661725433272790579179890981705009015590378158593894656953326700

54916982897264999507263037]

for number in Non_primes:

s = time.perf_counter()

res = lucas(number,10)

e = time.perf_counter()

print(e-s,res)

0.0008512999993399717 undecided

0.007540399999925285 undecided

0.09417779999967024 undecided

1.5742758999986108 undecided

1.4906166000000667 undecided

20.290683299999728 undecided

3.5245419000002585 undecided

10.123875099998259 undecided

B.2.2.0.0.2 Prime inputs: Graph below indicates the running time variation with respect
to number of digits of input numbers in ”lucas(N, 10)”, where N is taken to be prime to
reduce irregularities in running time. A running time for a particular digit d is considered
to be the average running time of randomly chosen 50 primes from 50 disjoint intervals,
of equal length, from set (10d−1, 10d]. Number of digits in graph, on x− axis, vary from 3
to 30.

70

Some primes also take comparatively larger running time through Lucas test if the base
for a prime number satisfying both the conditions is not encountered in k-runs.

B.3 FACTORIZATION ALGORITHMS

B.3.1 FERMAT’S FACTORIZATION SCHEME(FFS)

Input: An integer n ≥ 2 .
Output: Returns factors of n, not necessary prime.

Non-Generalized FFS

[8]: import math as m

def fermat1(n):

factors = []

if n%2 == 0:

while n%2 == 0:

n = n/2

factors.append(2)

n_root = m.sqrt(n)

k = m.ceil(n_root)

71

if k == n_root:

factors.append([n_root,n_root])

else:

y2 = int(k*k-n)

y = m.isqrt(y2)

while y*y!=y2:

k=k+1

y2=int(k*k-n)

y=m.isqrt(y2)

factors.append([k+y,k-y])

return factors

[12]: import time

strt = time.perf_counter()

print(fermat1(1234567895341))

end = time.perf_counter()

print(f'Time taken = {end-strt}')

strt = time.perf_counter()

print(fermat1(3478283691346587))

end = time.perf_counter()

print(f'Time taken = {end-strt}')

[[9924259, 124399]]

Time taken = 1.8144788999998127

[[149343049, 23290563]]

Time taken = 12.809771000000183

Time analysis

Fermat’s factorization scheme, ” f ermat1(n)” searches for a perfect square, where
if n is prime then the trivial factorization is reached. So, for primes the running time
directly depends on the size of n.
The following plot indicates the running time for prime values ranging from 3 to 8 digits.
Particular d-digit values are taken from equal length disjoint intervals of sets (10d−1, 10d].
10 values(1 value per interval) per digit are taken and their graph is plotted with their
running time(in seconds) on y− axis.

72

Now to see change in running time for odd non-prime numbers we plot a graph
of average running time of 50 values, chosen as above, of a particular digit with respect
to their digits. Digits range from 3 to 10.

73

Generalised FFS

Input: An integer N ≥ 2.
Output: Returns factors of n, not necessary prime.

[44]: import math as m

def fermat2(n):

factors = []

if n%2 == 0:

while n%2 == 0:

n = n/2

factors.append(2)

n = int(n)

root_n = m.sqrt(n)

x = m.ceil(root_n)

if x == root_n:

factors.append([x,x])

else:

x2 = x*x

y2 = x2-n

root_y2 = m.sqrt(y2)

y = m.ceil(root_y2)

k=2

while y*y!=y2:

if x2>k*n:

y2 = x2-k*n

root_y2 = m.sqrt(y2)

y = m.ceil(root_y2)

k=k+1

else:

x= x+1

x2 = x*x

y2 = x2-n

root_y2 = m.sqrt(y2)

y = m.ceil(root_y2)

factors.append([m.gcd(int(x-y),n),m.gcd(int(x+y),n)])

return factors

74

[36]: import time

strt = time.perf_counter()

print(fermat2(1234567895341))

end = time.perf_counter()

print(f'Time taken = {end-strt}')

strt = time.perf_counter()

print(fermat2(3478283691346587))

end = time.perf_counter()

print(f'Time taken = {end-strt}')

[[124399, 9924259]]

Time taken = 3.5098799999977928

[[23290563, 149343049]]

Time taken = 23.459397400001762

Time taken by non-generalised FFS for above factors was 1.8144788999998127 and
12.809771000000183 seconds respectively. Generalised factoring method comes in handy
in theory while searching for a perfect square as we need to make k2− rn a perfect square
for some r ≥ 1 and k, k ≥ d

√
ne, instead of k2 − n as done in case of non-generalised FFS.

B.3.2 POLLARD’S (p− 1) ALGORITHM

Input: An odd integer n > 2. A q value, large enough s.t. for some prime divisor p we
have p− 1 | lcm(1, 2..., q).
Output: Returns a divisor of n, not necessary prime. Returns "Failure" if divisor is not
found for some base or if "q" value is not large enough.

[2]: import math

import random as r

def pollard1(n,q): # Enter odd n

list1 = [i for i in range(1,q+1)]

lcm = 1

for i in list1:

lcm = lcm*i//math.gcd(lcm, i)

base = r.randint(2,n-1)

m=pow(base,lcm,n)

gcd=math.gcd(m-1,n)

75

if gcd != n and gcd != 1:

return 'Factor=',gcd

else:

return 'Failure'

[7]: # Works better if factors are small

import time

st = time.perf_counter()

print(pollard1(1234567895341,100))

end = time.perf_counter()

print(end-st)

st = time.perf_counter()

print(pollard1(3478283691346587,100))

end = time.perf_counter()

print(end-st)

('Factor=', 473)

0.00041449999997666964

('Factor=', 43)

0.0001553000000171778

B.3.3 POLLARD’S RHO ALGORITHM

Input: An integer n ≥ 2. Initial value x1 for sequence. a ∈ Z for polynomial
f (x) = x2 + a, a 6= 0,−2 and a bound for total number of sequence calculations.
Output: Returns a divisor of n, not necessary prime, along with the period of sequence.
Returns "None" if divisor is not found for input entries.

[115]: # f(x) = x^2 + a

import math

def pollard2(n,x1,a,bound): # a!= 0 and -2, x1 = initial value of␣

↪→sequence {x_i}

list1=[x1]

for i in range(1,bound):

x1=(pow(x1,2)+a)%n

list1.append(x1)

76

for i in range(1,int(bound/2)):

n1=list1[2*i]-list1[i]

gc=math.gcd(n1,n)

if n1%n!=0 and gc>1:

print("Period(w.r.t. Divisor)=",i)

return "Divisor=",gc

break

[120]: import time

st = time.perf_counter()

print(pollard2(3478283691346587,1,1,100))

end = time.perf_counter()

print(end-st)

Period(w.r.t. Divisor)= 1

('Divisor=', 3)

0.0005506999987119343

[116]: # Inputs are semiprimes

print("Pollard p-1 Method")

st = time.perf_counter()

pollard1(100004653457,500) #factoring a aemi-prime

end = time.perf_counter()

print(end-st)

st = time.perf_counter()

pollard1(1000000000099987889,6000) #factoring a aemi-prime

end = time.perf_counter()

print(end-st)

print("Pollard rho Method")

st = time.perf_counter()

pollard2(100004653457,1,1,200) #factoring a aemi-prime

end = time.perf_counter()

print(end-st)

st = time.perf_counter()

77

pollard2(1000000000099987889,1,1,9500) #factoring a aemi-prime

end = time.perf_counter()

print(end-st)

Pollard p-1 Method

0.0005899999996472616

0.020680599998740945

Pollard rho Method

Period(w.r.t. Divisor)= 78

0.0002509000005375128

Period(w.r.t. Divisor)= 4622

0.00977720000082627

Note B.2. No separate graph analysis was done as parameters given as input in both
algorithms vary with input numbers.

B.3.4 CONTINUED FRACTION FACTORING ALGORITHM

Input: An integer n > 2. Bound B for total number of recursive calculations before
termination.
Output: Returns two divisors of n, not necessary prime.

[130]: import math as m

import sympy as sp

def cffa(n,b): # b is bound for calculations

xo=sp.sqrt(n)

ao=m.floor(xo)

if xo==ao:

return xo,xo

else:

x1=1/(xo-ao)

a1=m.floor(x1)

po=ao

p1=a1*po+1

qo=1

q1=a1

k=1

78

while k<b:

k=k+1

p=p1

q=q1

x1=1/(x1-a1)

a1=m.floor(x1)

p1=a1*p1+po

q1=a1*q1+qo

k1=(p1*p1)%n

sq=sp.sqrt(k1)

sq1=m.floor(sq)

if sq==sq1:

f1 = m.gcd(p1-sq1,n)

if f1%n != 1 and f1%n != 0:

return f1,m.gcd(p1+sq1,n)

po=p

qo=q

[135]: import time

strt = time.perf_counter()

print(cffa(1234567895341,1000))

end = time.perf_counter()

print(f'Time taken = {end-strt}')

(263, 4694174507)

Time taken = 0.4328593999998702

Time taken by fermat’s non-generalized scheme ~ 1.8144788999998127

Time analysis

Plot below is a comparison between continued fraction factoring algorithm(CFFA)
and fermat’s non-generalised factorization scheme. x − axis has the number of digits
ranging from 3 to 8. y− axis denotes the running time. For a specific digit, the running
time is considered to be the average running time of 50 random odd non-prime numbers
for both the algorithms. Although CFFA taken bound value as an input which can vary
with input size but we return divisors as soon as they are found so we can choose a large
bound so that all entries are factored.

79

B.3.5 QUADRATIC SIEVE ALGORITHM

Creating Factor Base

Note : Function ′ jacobi()′ for Jacobi symbol is given in B.2.1 which gives us value of
Legendre symbol for prime numbers.

[69]: def primes(B,n):

factor_base = [2]

for num in range(3,B + 1):

for i in range(2, num):

if (num % i) == 0:

break

else:

if jacobi(num,n) == 1:

factor_base.append(num)

return factor_base

Working with Sieving Interval

80

[70]: import math

def factoring(B,M,n): # B- Bound for prime factor base, M- sieving␣

↪→interval bound, n- number to be factored

power = 0

dic = {}

list_final=[]

fx_list=[]

x_list=[]

gif = math.floor(pow(n,1/2))

factor_base = primes(B,n)

for i in range(gif-M,gif+M+1):

num = i*i-n

for j in factor_base: # collecting powers of primes of␣

↪→factor base

while num%j == 0:

power += 1

num = num/j

dic["{}".format(j)]= power

power = 0

num = i*i-n

number = 1

for j in factor_base: # checking if number factored␣

↪→within our factor base or not

number = number*pow(j,dic["{}".format(j)])

if number == abs(num):

x_list.append(i)

fx_list.append(abs(num))

list_final.append(dic.copy())

return list_final,x_list,fx_list

Gaussian Elimination Step to get factors

[71]: import numpy as np

def qsa(B,M,n): # Bound for factor base,␣

↪→Bound for sieving interval, odd integer to be factored

81

list1 = []

final_list,x_values,fx_values = factoring(B,M,n) # vectors list,␣

↪→x-values, f(x) values

factor_base = primes(B,n)

len_final_list = len(final_list) # no. of rows

len_factor_base= len(factor_base) # factor_base length

#....... Setting Matrices

for i in range(len_final_list):

list1.append(list(final_list[i].values()))

main_matrix = np.array(list1) # Matrix with␣

↪→vectors corresponding to factors powers before modulo 2

#..

working_matrix = (main_matrix.copy()) % 2 # Matrix After␣

↪→modulo 2 calculation

tracking_matrix = np.identity(len_final_list) # Identity matrix␣

↪→for row operations history

worked_row_list = [] # List of row␣

↪→numbers that have been eliminated.

for column_no in range(len_factor_base):

for row_no in range(len_final_list):

if row_no not in worked_row_list:

curr_row = working_matrix[row_no,]

for row in range(row_no,len_final_list):

if row not in worked_row_list:

if all([i==0 for i in (working_matrix[row,]%2)]):

.............FINAL X VALUE..............

x_value = 1

82

for i,j in␣

↪→zip(tracking_matrix[row,],x_values):

if i!= 0:

x_value = (x_value*j)%n

#.............FINAL Y VALUE............

y_value = 1

sum_rows=np.zeros((1,len_factor_base))

for i in range(len_final_list):

if tracking_matrix[row,i]==1:

sum_rows += main_matrix[i,]

for power,factor in␣

↪→zip(sum_rows[0],factor_base):

y_value *= pow(factor,int(power/2),n)

.... Checking if Non-trivial Divisor...... ␣

↪→

divisor = math.gcd(x_value+y_value,n)

if divisor not in [1,n]:

return "Divisors of {} are = {} and {} ".

↪→format(n,divisor,int(n/divisor))

break

#....... Gaussian Elimination..............

if working_matrix[row_no,column_no] == 1:

for r in range(row_no+1,len_final_list):

if working_matrix[r,column_no]==1:

␣

↪→working_matrix[r,]=(working_matrix[r,]+curr_row)%2

tracking_matrix[r,]=(tracking_matrix[r,]+␣

↪→tracking_matrix[row_no,])%2

worked_row_list.append(row_no)

[72]: import time

strt = time.perf_counter()

83

print(qsa(10,10,4295229443))

end = time.perf_counter()

print(f'Time taken = {end-strt}')

Divisors of 4295229443 are = 65539 and 65537

Time taken = 0.0007643000008101808

[73]: strt = time.perf_counter()

print(qsa(80,1720,1234567895341))

end = time.perf_counter()

print(f'Time taken = {end-strt}')

Divisors of 1234567895341 are = 28710881287 and 43

Time taken = 0.055301099999269354

Time taken by continued fraction factoring algorithm ~ 0.4328593999998702

Time taken by fermat’s non-generalized scheme ~ 1.8144788999998127

B.4 POLYNOMIAL FACTORIZATION IN Z[X] USING

LLL−ALGORITHM

Example : Finding irreducible factors of
f (x) = 8x10 + 28x9 + 24x8 + 36x7 + 14x6 + 35x5 − 12x4 + 22x3 − 13x2 + 5x− 3 in Z[X]

Solution: Factors are: (x + 3), (2x− 1), (2x2 + 1), (x4 + x3 + x2 + 1)

[35]: import sympy as sp

from sympy import prime

from sympy.abc import x

from sympy import *

from sympy import GF

from sympy import sqf_part

from sympy import factor_list

from sympy import ZZ

84

[34]: f = Poly(8*x**10 + 28*x**9 + 24*x**8 + 36*x**7 + 14*x**6 + 35*x**5 -␣

↪→12*x**4 + 22*x**3 - 13*x**2 + 5*x - 3, x, domain='ZZ')

Note: f is a global variable.

B.4.0.0.0.0.1 Getting square-free part of f (x).

[36]: f = sqf_part(f)

f

[36]:
Poly

(
4x8 + 14x7 + 10x6 + 11x5 + 2x4 + 12x3 − 7x2 + 5x− 3, x, domain = Z

)
B.4.0.0.0.1 Choosing suitable ′p′ values such that f (x) (modp) is square-free in Zp[X].

[52]: def factor_base(f, pbound):

factor_base = []

poly_list = []

prime_list = [prime(i) for i in range(1,pbound+1)]

for num in prime_list:

coeff_f = f.all_coeffs()

if coeff_f[0]%num != 0:

#Reducing f(x) mod(num)

K = GF(num)

g = sp.Poly(coeff_f,x,domain = K)

Checking if square_free

if sp.discriminant(g)!= 0:

poly_list.append(g)

factor_base.append(num)

return factor_base,poly_list

[38]: factor_base(f,10)

[38]: ([5, 13, 17, 29],

[Poly(-x**8 - x**7 + x**5 + 2*x**4 + 2*x**3 - 2*x**2 + 2, x, modulus=5),

85

Poly(4*x**8 + x**7 - 3*x**6 - 2*x**5 + 2*x**4 - x**3 + 6*x**2 + 5*x -␣

↪→3, x,

modulus=13),

Poly(4*x**8 - 3*x**7 - 7*x**6 - 6*x**5 + 2*x**4 - 5*x**3 - 7*x**2 + 5*x␣

↪→- 3,

x, modulus=17),

Poly(4*x**8 + 14*x**7 + 10*x**6 + 11*x**5 + 2*x**4 + 12*x**3 - 7*x**2 +␣

↪→5*x -

3, x, modulus=29)])

B.4.0.1 FACTORING f (x) mod(p) IN Zp[X].

B.4.0.1.0.1 Distinct-degree Factorization(DDF)
[39]: from sympy import monic

def DDF(f,p): # Enter 'square-free', 'primitive' f(x) \in Z[X].

K = GF(p)

f_modp = Poly(f, domain = K)

f = monic(f_modp,domain=K) # Converting to Monic in K.

f_coef = f_modp.all_coeffs()

degree_f = f.degree()

We have monic,square-free POLYNOMIAL = f, COEFFICIENTS = f_coef,␣

↪→PRIME = p

F = f

DDF_list = []

degree = 1

deg_list = []

total_deg = 0

while total_deg != degree_f:

if p**degree > f.degree():

B = sp.poly(x**p)

for i in range(1,degree):

86

B = sp.rem(B**p,f,domain = K)

else:

B = sp.poly(x**(p**degree),domain = K)

factor = sp.gcd(f,Poly(B-sp.Poly([1,0],x)),domain = K)

if factor != 1:

deg_list.append(degree)

DDF_list.append(factor)

total_deg = total_deg + degree

degree = degree+1

f = sp.quo(f,factor)

if f == 1:

break

return DDF_list, deg_list,p

B.4.0.1.0.2 Equal-Degree Factorization(EDF)
[40]: def EDF(f,p):

A_d,deg_list,p = DDF(f,p)

factors_list = []

irr_factors_list = []

K = GF(p)

n_factors = 0

if p>2:

for (poly,deg) in zip(A_d,deg_list):

Checking if Poly is an irreducible polynomial

if deg == poly.degree():

irr_factors_list.append(poly)

n_factors = n_factors +1

else:

n_factors = n_factors + (poly.degree()/deg)

T = sp.random_poly(x,poly.degree(),inf = 0,sup = p,domain␣

↪→= K)

87

d = 2

d1 = ((p**deg)-1)/2

T_2 = T**2

while d <= d1:

T_2 = sp.rem(T_2,poly)*T

d = d+1

F1 = sp.gcd(T_2+1,poly,domain = K)

F2 = sp.gcd(T_2-1,poly,domain = K)

F3 = sp.quo(poly,F1*F2,domain = K)

deg_f1 = F1.degree()

deg_f2 = F2.degree()

deg_f3 = F3.degree()

if deg_f1 != 0:

if deg_f1 == deg:

irr_factors_list.append(F1)

else:

factors_list.append([F1,deg])

if deg_f2 != 0:

if deg_f2 == deg:

irr_factors_list.append(F2)

else:

factors_list.append([F2,deg])

if deg_f3 != 0:

if deg_f3 == deg:

irr_factors_list.append(F3)

else:

factors_list.append([F3,deg])

return factors_list,irr_factors_list,p, n_factors

B.4.0.1.0.3 Factoring completely using DDF and EDF as above

Programs below are to be hadled for each prime p separately.
===

88

[53]: factors_list, irr_factors_list,p,n_factors = EDF(f,5) # Input :␣

↪→polynomial in Z[X], primes bound, prime number

K = GF(p)

while len(irr_factors_list) != n_factors:

list2 = []

for elt in factors_list:

polynomial = elt[0]

degree = elt[1]

T = sp.random_poly(x,degree,inf = 0,sup = p,domain = K)

d = 2

d1 = ((p**degree)-1)/2

T_2 = T**2

while d <= d1:

T_2 = sp.rem(T_2,polynomial)*T

d = d+1

F1 = sp.gcd(T_2+1,polynomial,domain = K)

F2 = sp.gcd(T_2-1,polynomial,domain = K)

F3 = sp.quo(polynomial,F1*F2,domain = K)

deg_f1 = F1.degree()

deg_f2 = F2.degree()

deg_f3 = F3.degree()

if deg_f1 != 0:

if deg_f1 == degree:

irr_factors_list.append(F1)

else:

list2.append([F1,degree])

if deg_f2 != 0:

if deg_f2 == degree:

irr_factors_list.append(F2)

else:

list2.append([F2,degree])

if deg_f3 != 0:

if deg_f3 == degree:

irr_factors_list.append(F3)

else:

89

list2.append([F3,degree])

factors_list = list2.copy()

print("FACTORS=", irr_factors_list)

FACTORS= [Poly(x**2 - 2, x, modulus=5), Poly(x**4 + x**3 + x**2 + 1, x,

modulus=5), Poly(x - 2, x, modulus=5), Poly(x + 2, x, modulus=5)]

B.4.0.1.0.3.1 Storing all possible (h modp) in list H
[42]: H = []

irr_factors_list

for factor in irr_factors_list:

if sp.rem(f,Poly(factor,domain = ZZ)) != 0:

H.append(factor)

H

[42]: [Poly(x - 2, x, modulus=5),

Poly(x + 2, x, modulus=5),

Poly(x**2 - 2, x, modulus=5)]

B.4.0.1.0.3.2 Irreducible factors so far, (in Z[X]). Stored in irr_factors_list.
[43]: for poly in H:

irr_factors_list.remove(poly)

irr_factors_list

[43]: [Poly(x**4 + x**3 + x**2 + 1, x, modulus=5)]

Note: Lists ’H’ and ’irr_factors_list’ are global variables.
===

B.4.0.1.0.4 Calculating k for suitable pˆk value
[54]: import scipy.special as ss

from sympy import Matrix

from sympy import ceiling,Float

def start(f,H,r,p): # Input : f - polynomial, H[r]- Entries from H, p -␣

↪→prime number from factor_base.

h = H[r]

90

deg_h = h.degree()

n = f.degree()

m = n-1

M = Matrix(list(f.coeffs()))

B = 2**(m*n/2) * (ss.binom(2*m,m))**(n/2) * M.norm()**(m+n)

k = ceiling(ceiling(sp.log(B+1,p))/deg_h)

return k

B.4.0.1.0.5 Hensel lifting

B.4.0.1.0.6 Lifting (modp) to (modp2).
[55]: def hensel_1(f,g,p): # Input: f - Polynomial, g - Monic factor in Z_p[X],␣

↪→p - Prime from factor base

K = GF(p)

K_1 = GF(p*p)

h = Poly(sp.quo(f,g,domain = K),domain = ZZ)

t,s,l = sp.gcdex(g,h,domain = K)

g = Poly(g,domain = ZZ)

e = Poly(f-g*h,domain = K_1)

q,r = sp.div(s*e,g,domain = K_1)

g1 = Poly(g+r,domain = K_1)

h1 = Poly(h+t*e+q*h,domain = K_1)

return g1,h1

B.4.0.1.0.7 Lifting (modq) to (modqr) where r = gcd(p, q) for some p, q (not necessarily
prime).

[56]: import math as m

def hensel_2(u,v,q,p): # u = vw in Z_q s.t. av+bw = 1 in Z_p

r = m.gcd(q,p)

K = GF(q)

K_1 = GF(q*r)

w = Poly(sp.quo(u,v,domain = K),domain = ZZ)

a,b,l = sp.gcdex(v,w,domain = GF(p))

b = Poly(b,domain = ZZ)

v = Poly(v,domain = ZZ)

91

f = Poly(sp.quo(u-v*w,sp.Poly([q],x),domain = ZZ))

t= sp.quo(b*f,v)

v_1 = b*f - t*v

w_1 = a*f + t*w

V = v + q*v_1

W = w + q*w_1

V = Poly(V,domain = K_1)

W = Poly(W,domain = K_1)

return V,W

[47]: def hmodpk(f,H,r,p): # Input : f,H[r],p as in above programs

k = start(f,H,r,p)

h = Poly(H[r],domain = ZZ)

o = 1

while 2**o < k: # k factored as p^(2^(r-1)).p^(k-2^(r-1))

o = o+1

n = 1

q = p

while n != o:

h_1,g_1 = hensel_1(f,h,q)

q = q*q

h = Poly(h_1,domain = ZZ)

n = n+1

h_1,g_1 = hensel_2(f,h,q,int(p**(k-2**(o-1))))

return h_1

B.4.0.2 GETTING IRREDUCIBLE FACTOR IN Z[X] FOR EACH SUITABLE

h (mod p)

[48]: import olll

def red_lattice(f,H,r,p):

h_mod_pk = hmodpk(f,H,r,p)

92

n = f.degree()

l = h_mod_pk.degree()

Creating set of m values

u = 0

M = []

while l <= (n-1)/(2**u):

M.append(int((n-1)/(2**u)))

u = u+1

M.reverse()

k = start(f,H,r,p)

f_norm = Matrix(list(f.all_coeffs())).norm()

for m in M:

CREATING LATTICE BASIS VECTORS

P1 = []

P2 = []

for i in range(l):

if i != 0:

P1.append((p**k)*sp.poly(x**i))

else:

P1.append((p**k)*sp.Poly([1],x))

for j in range(m-l+1):

if j != 0:

P2.append(Poly(h_mod_pk,domain = ZZ)*sp.poly(x**j))

else:

P2.append(Poly(h_mod_pk,domain = ZZ)*sp.Poly([1],x))

Managing dimension of vectors and collecting in one list ␣

↪→

Lattice = []

dim_vectors = m+1

for poly in P1:

poly_list = poly.all_coeffs()

93

poly_list.reverse()

for i in range(m+1):

if i > len(poly_list)-1:

poly_list.append(0)

Lattice.append(poly_list)

for poly in P2:

poly_list = poly.all_coeffs()

poly_list.reverse()

for i in range(m+1):

if i > len(poly_list)-1:

poly_list.append(0)

Lattice.append(poly_list)

GETTING REDUCED LATTICE BASIS VECTORS

Lattice2 = []

for vec in Lattice:

L = []

for num in vec:

L.append(int(num))

Lattice2.append(L)

reduced_lattice = olll.reduction(Lattice2,3/4)

CHECKING IF deg(h0) <= m

lattice_poly = []

bound = (p**(k*l)/(f_norm**m))**(1/n)

t = 0

for vector in reduced_lattice:

if Matrix(vector).norm() < bound:

vector = list(vector)

vector.reverse()

lattice_poly.append(sp.Poly(vector,x,domain = ZZ))

t = t+1

else:

94

break

if t != 0:

H_0 = lattice_poly[0]

for i in range(t):

H_0 = sp.gcd(H_0,lattice_poly[i])

return H_0

B.4.0.3 FACTORING COMPLETELY INTO IRREDUCIBLES IN Z[X]

[49]: def factorization(f,H,p):

h_0 = red_lattice(f,H,0,p)

print(h_0)

fact_check = [h_0]

for i in range(1,len(H)):

if sp.rem(h_0,H[i]) != 0:

h_0 = red_lattice(f,H,i,p)

if h_0 not in fact_check:

print(h_0)

[50]: factorization(f,H,5)

print(irr_factors_list)

Poly(x + 3, x, domain='ZZ')

Poly(2*x - 1, x, domain='ZZ')

Poly(2*x**2 + 1, x, domain='ZZ')

[Poly(x**4 + x**3 + x**2 + 1, x, modulus=5)]

95

BIBLIOGRAPHY

[1] M. AGRAWAL, N. KAYAL, AND N. SAXENA, Primes is in p, Annals of Mathematics,
160 (2004), pp. 781–793.

[2] L. BABAI, On lovász’ lattice reduction and the nearest lattice point problem, Combinator-
ica, 6 (1986), pp. 1–13.

[3] E. BERLEKAMP, Factoring polynomials over large finite fields, Mathematics of Computa-
tion, 24 (1970), pp. 713–735.

[4] M. R. BREMNER, Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its
Applications, CRC Press, Boca Raton, 2011.

[5] D. M. BRESSOUD, Factorization and Primality Testing, Springer-Verlag, Berlin, Heidel-
berg, 1989.

[6] D. M. BURTON, Elementary Number Theory, McGraw Hill Education, LLC, New York,
7 ed., 2012.

[7] M. E. C. P. SCHNORR, Lattice basis reduction: improved practical algorithms and solving
subset sum problems, Mathematical Programming, 66 (1994), pp. 181–199.

[8] J. CASSELS, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, Hei-
delberg, 1971.

[9] H. COHEN, A Course in Computational Algebraic Number Theory, Springer-Verlag,
Berlin, Heidelberg, 1993.

[10] A. DAS, Computational Number Theory, CRC Press, first edition ed., 2013.

[11] L. DICKSON, History of the theory of numbers, vol-1, G.E. Stechert and company, 1934.

[12] U. DIETER, How to calculate shortest vectors in a lattice, Mathematics of Computation,
29 (1975), pp. 827–833.

[13] M. DIETZFELBINGER, Primality Testing in Polynomial Time : From randomized algo-
rithms to primes is in P, Springer, Berlin, Heidelberg, 1 ed., 1973.

[14] DUMMIT AND FOOTE, Abstract Algebra, John Wiley and Sons inc., second edition ed.,
1999.

[15] N. GOPALAKRISHNAN, University Algebra, New Age International Ltd., third edi-
tion ed., 2015.

[16] M. H. GUNAWAN, W. SETYA-BUDHI AND S. GEMAWATI, On volumes of
n-dimensional parallelepipeds in lpspaces, Publikacije Elektrotehnickog f akulteta −
serijamatematika, (2005), pp. 48−−54.

[17] I. HERSTEIN, Topics in Algebra, John Wiley and Sons, second edition ed., 1975.

[18] K. H. HOFFMAN AND R. KUNZE, Linear Algebra, Prentice Hall, second edition ed.,

96

1971.

[19] T. W. HUNGERFORD, Algebra, Springer-Verlag, New York, first edition ed., 2004.

[20] R. R. ISHMUKHAMETOV ST, MUBARAKOV BG, On the number of witnesses in the
miller–rabin primality test, Symmetry, 12.

[21] H. KEMPFERT, On the factorization of polynomials, Journal of Number Theory, 1 (1969),
pp. 116–120.

[22] N. KOBLITZ, A Course in Number Theory and Cryptography, Springer-Verlag,New
York, second edition ed., 2010.

[23] A. K. LENSTRA, H. W. L. JR, AND L. LOVÁSZ, Factoring polynomials with rational
coefficients, Mathematische Annalen, 261 (1982), pp. 515–534.

[24] W. J. LEVEQUE, Topics in Number Theory, Volumes I and II, Addison Wesley, 1956.

[25] F. T. LUK AND D. M. TRACY, An improved lll algorithm, Linear Algebra and its Ap-
plications, 428 (2008), pp. 441–452.

[26] M. MIGNOTTE, An inequality about irreducible factors of integer polynomials, Journal of
Number Theory, 30 (1988), pp. 156–166.

[27] P. Q. NGUYEN AND B. V. (EDITORS), The LLL Algorithm: Survey and Applications,
Springer, Heidelberg, 2010.

[28] M. POHST, A modification of the lll reduction algorithm, Journal of Symbolic Computa-
tion, 4(1) (1987), pp. 123–127.

[29] H. RIESEL, Prime numbers and computer methods of factorization, Progress in mathemat-
ics,Birkhausar, Boston, 126 (1994).

[30] A. S.H.FRIEDBERG AND L.E.SPENCE, Linear Algebra, Prentice-Hall, Englewood
Cliffs, New Jersey, second edition ed., 1989.

[31] V. SHOP, A Computational Introduction to number theory and algebra, Cambridge uni-
versity press, 2005.

[32] R. SILVERMAN, The multiple polynomial quadratic sieve, Mathematics of Computation,
48 (1987), pp. 329–340.

[33] J. VON ZUR GATHEN AND J. GERHARD, Modern Computer Algebra, Cambridge Uni-
versity Press, New York, 3 ed., 2013.

