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Abstract

A classical 1-D chain of rotors mimicking Non-Newtonian ⇤uids and showing di⇥erent

⇤ow regimes under di⇥erent parameters is reproduced [Eva+15]. The ends of the 1-D

rotor system are rotated in opposite directions, and it is seen that the phase behaviour

is analogous to a complex ⇤uid system, with the angular velocity distribution of the

rotors representing the shear ⇤ow in ⇤uids. Then upon increasing the dimension, a

2D system of rotors with an added hydrodynamic interaction is studied as a model

for bacterial carpets. Each rotor has an intrinsic angular velocity, and also subjects a

force on the surrounding ⇤uid, which leads to synchronization and spirals formation

in the ⇤uid ⇤ow under di⇥erent cases[UG10].
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Chapter 1

Introduction

The classical XY model, like the Ising model, is a lattice spin model initially developed

to study magnetic systems and equilibrium phase transitions in them [Kos74]. The

XY model has a spin sj = (cos ⌅j, sin ⌅j) at each lattice site j, which is allowed to

rotate in a plane, where ⌅j can take values between �⇧ < sj < ⇧. However, it was

later seen that these models could be used as models to study phenomena far away

from magnetic systems too[TT95; LG85].

1.1 Micro⇥uidics and Bacterial Carpets

Micro⇤uidics refer to the control and manipulation of ⇤uid ⇤ow in the small (⇥micro)

scale, where the surface forces dominate over the volume forces. When active particles

like micropumps or microorganisms are used, it is termed as active micro⇤uidics.

Darnton et al. performed experiments with a system of “bacterial carpets”, with the

head of the bacteria embedded on a substrate and the ⇤agella left to rotate in the

surrounding ⇤uid[Dar+04]. The ⇤agella could coordinate the ⇤ow of the ⇤uid forming

linear and rotational ⇤ows. Bacteria and similar microorganisms have bene�ts of being

used as micro⇤uidic mixers: the cost of power source to run the micro⇤uidic mixers

is reduced, and self-replication of the bacteria within the medium removes the cost of

wear and tear and replacement of mechanical micro⇤uidic rotors.

It cannot be overlooked that a system of embedded bacteria with their heads �xed, is

just essentially a system of rotors in a ⇤uid. Thus a classical XY model can be used

to model this system, with the rotors acting as substitutes to the bacteria. Computa-

tional simulation and analysis of such models can lead to better understanding of the

⇤uid ⇤ow characteristics due to micro⇤uidic mixers. Such an array of rotors coupled

with hydrodynamic interaction was studied by Uchida and Golestanian [UG10], and

part of my work in this thesis is based on this paper.
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1.2 1-D XY model and non-Newtonian phenomena

Before working on the problem of bacterial carpets, I started looking at 1-D classical

XY models. An interesting phenomenon was seen where the classical 1-D XY model

under angular momentum conserving Langevin dynamics, showing phase behaviour

which could be drawn analogous to the behaviour of non-Newtonian ⇤uids.

1.2.1 Non-Newtonian Fluids

Unlike Newtonian ⇤uids where under uniform stress, shear ⇤ow is evenly distributed

throughout the ⇤uid, non-Newtonian ⇤uids show uneven distribution of shear-⇤ow,

in the process forming macroscopic regions with distinct shear rates. These non-

Newtonian ⇤uid ⇤ow transitions have been observed in various complex-⇤uids like

foams, polymers, surfactant solutions and dense colloids[KD08; Haw04; Kun+12;

SMC03].

Newton’s law of viscosity states there exists a linear relation between shear stress(⌃)

and rate of shear(du/dy), where u is the velocity of the ⇤uid :

⌃ = µ
du

dy

Fluids which don’t follow this relation are classi�ed as non-Newtonian ⇤uids. These

⇤uids don’t have a constant viscosity, rather their viscosity depends on the shear stress

applied.

1.3 Organization of the Thesis

Since the 1-D XY model and its analogy to the non-Newtonian ⇤uid behaviour was

interesting enough, I initially studied this system in detail. Under di⇥erent initial

conditions for the 1-D XY model pushed out of equilibrium, four di⇥erent phase

behaviour analogous to the ⇤ow regimes for non-Newtonian ⇤uids were observed:

• Uniform ⇤ow

• Shear Banded ⇤ow

• Solid-Fluid coexistence

• Slip-Plane regime

2



A theoretical analysis was also presented which �nally leads to a constitutive relation

for the ⇤uid. All these have been discussed in Chapter 2.

Subsequently, I worked on a 2-D system of rotors with an added hydrodynamic inter-

action to simulate the bacterial carpet system. Various ⇤ow behaviours were observed

upon changing the geometric frustration in the ⇤uid due to the rotors:

• Global synchronization

• Self-proliferating spiral waves

• Complete disorder.

This part has been discussed in Chapter 3. With the computational basis and surety

of the results, this work can be taken further with the introduction of free swimmers

in the ⇤uid: rotors free to move around in the ⇤uid, with an added excluded volume

interaction.
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Chapter 2

1-D Chain of Rotors

2.1 Model and Dynamics

Figure 2.1: 1-D chain of rotors.

The rotors are placed in a 1-D chain with the plane of rotors perpendicular to the

axis of the chain as shown in Fig(2.1). The only degree of freedom of the system is

the angle of the jth spin ⌅j. There is only nearest neighbour interaction, therefore the

Hamiltonian becomes:

H =
N
X

i=1

[�sj.sj⇥1 +
1

2
⌅⌅j
2
] (2.1)

The �rst term of the Hamiltonian is the interaction energy between the nearest neigh-

bour rotors. The (-) sign is such that the rotors tend to align parallel in the ground

state. The second term is the kinetic energy (angular) of the rotor. The moment of

inertia of the rotors has been taken to be unity.

In equilibrium, the model has trivial behaviour with a single transition to an ordered

state at zero temperature [Mat84]. For checking non-equilibrium properties, Langevin

dynamics is introduced. Newton’s third law is obeyed, and angular momentum is
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conserved. The equations of motion are:

⌅̈j = ⌃j � ⌃j⇥1 (2.2)

⌃j = sin⇧⌅j + µ⇧ ⌅⌅j + ⌥j(t) (2.3)

Here ⌃j is the torque on the jth rotor, ⇧⌅j is the angular di⇥erence between (j + 1)th

and jth rotor. µ is the friction coe⌃cient between the rotors and ⌥j is delta-correlated

noise at temperature T with zero mean and variance given by,

< ⌥i(t)⌥j(t
0) >= 2µT �(t� t0)�ij. (2.4)

The system is driven into non-equilibrium by rotating the end rotors in opposite

directions (giving it a “twist”). This induces rotation throughout the rotor system.

The rotor system is compared to a ⇤uid ⇤ow with the slope of the angular velocity of

the rotors analogous to the shear rate throughout the ⇤uid. The initial twist represents

the shear stress applied. If the rotors start rotating together, they resemble a solid

region (having no shear ⇤ow).

2.2 Simulation

The simulation was performed for N = 1024 rotors. The values of temperature (T ),

coe⌃cient of friction (µ), and twist rate ( ⌅⇥) are changed to obtain di⇥erent ⇤ow

behaviour.

The second order di⇥erential equation Eq.(2.2) is broken into two �rst order di⇥erential

equations for angular velocity and angular position respectively and are evolved using

the Runge-Kutta Fourth Order algorithm. The �rst and last rotors keep rotating with

an angular o⇥set of N ⌅⇥.
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2.3 Flow Behaviour Observed

Varying the Temperature (T), friction coe⌃cient (µ), and global shear rate ( ⌅⇥), leads

to di⇥erent ⇤ow behaviour as observed for Non-Newtonian ⇤uids.

1. Uniform Flow

Figure 2.2: Uniform Flow.(T = 0.02, µ = 50, ⌅⇥ = 0.0098)

The ⇤ow is as expected of Newtonian ⇤uids, the shear is evenly spread through-

out the system. In terms of the ⇤uid analogy, the entire system has constant

viscosity. Here, the global shear rate is equal to the local shear rate throughout

the ⇤uid. ( ⌅⇥ = sj)

2. Shear Banding Flow

Here, the system of rotors starts showing non-Newtonian ⇤ow behaviour. The

shear ⇤ow is unevenly distributed throughout the system. Di⇥erent macroscopic

regions show di⇥erent e⇥ective viscosities.
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Figure 2.3: Shear Banded Flow. (T = 0.02, µ = 10, ⌅⇥ = 0.0078)

3. Solid Fluid Coexistence

The system arranges in regions with sj = 0 (solid regions), where sections of

the rotors rotate together with ⇧⌅ = 0. Between these segments of solid regions

rotating at di⇥erent angular velocities, some shear ⇤ow is seen. These are similar

to ⇤uid regions with a high shear rate (low viscosity). Hence this phase, can be

thought of as a solid-⇤uid coexistence. It can be seen in Fig(2.4).

Figure 2.4: Solid-Fluid Coexistence.(T = 0.001, µ = 1, ⌅⇥ = 0.0078)

4. Slip Plane Regime

The low viscosity ⇤uid regions from the previous phase completely disappear and

the system gets divided into di⇥erent solid regions rotating at di⇥erent angular

8



Figure 2.5: Slip-plane regime. (T = 0.001, µ = 0.5, ⌅⇥ = 0.0058)

velocities. These solid regions are termed as “slip-planes”.

The general trend observed is that as temperature and frictional coe⌃cient is de-

creased, the system transitions from a uniform ⇤ow to the slip plane regime. This is

because at higher values of friction and temperature, the µ⇧ ⌅⌅j and ⌥j(t) term domi-

nates over the interaction term sin⇧⌅j in Eq.(2.3). Intuitonally, it can be seen as the

high friction coe⌃cient between the rotors tend to make the rotors move together. The

high temperature term averages over the structure due to the interaction potential,

leading to a uniform ⇤ow pattern.

2.4 Inter-Rotor Potential

The inter-rotor potential given by

U(⇧⌅) = � cos(⇧⌅)

has been plotted for the slip plane regime, solid-⇤uid coexistence and shear banded

state. The dark regions denote higher potential for the adjacent rotors to overcome.

Time increases vertically in the following plots.

• Slip-plane regime

It can be seen that there are four high-potential lines corresponding to the edges

of each slip-plane in Fig(2.5). Rest of the plot comprises of low potential regions

between the rotors which are easily overcome such that the rotors start rotating

9



Figure 2.6: Inter-rotor Potential for slip-plane.

together. Low potentials between the rotors give rise to the formation of slip-

planes (sj = 0 region).

• Solid-Fluid Coexistence

Figure 2.7: Inter-rotor potential for solid ⇤uid coexistence regime.

The high potential yielding regions are broader, corresponding to the low vis-

cosity ⇤uid regions between the slip-planes in Fig(2.4). Similar to the Fig(2.6),

the low potential regions let the rotors rotate together giving rise to slip-planes.

• Shear Banding Flow

There are not many broad low potential regions between the rotors discouraging

presence of a slip-plane. Shear is distributed amongst the rotors due to the

10



Figure 2.8: Inter-Rotor Potential for a shear banded state

presence of signi�cant potentials throughout the system. However the potentials

are of varying magnitude, which does not allow the shear to be evenly spread

out too, as seen in the angular velocity distribution in Fig(2.3).

2.5 Theoretical Analysis

Combining Eq.(2.2) for ⌅j and ⌅j+1, and using ⇧⌅j = ⌅j+1 � ⌅j,

d2⇧⌅j
dt2

= ⌃j+1 + ⌃j⇥1 � 2⌃j (2.5)

This equation and Eq.(2.3), form a closed set of equations for ⇧⌅j. Time averaging

Eq.(2.5), and using the condition that time-averaged angular acceleration must vanish

since there is no external torque gives,

< ⌃j+1 � ⌃j >=< ⌃j � ⌃j⇥1 >= constant (2.6)

Here < ... > means a temporal average.

Time-averaging Eq.(2.3) gives,

⌃̄ =< sin⇧⌅j > +µsj (2.7)

Here sj ⇤< ⇧ ⌅⌅j >, ⌃̄ is the mean torque.

If the �rst term of the RHS in Eq.(2.7) vanishes, we are left with a Newtonian ⇤uid,

with viscosity µ. However due to noise in the system, < sin⇧⌅j > becomes non-zero,
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leading to non-Newtonian ⇤uid behaviour. Eq.(2.5) and Eq.(2.3) are non-linear in

⇧⌅j. We will try to linearize it, and �nd a constitutive relation for the ⇤uid.

We can write ⇧⌅j as a combination of the shear rate sj, a constant o⇥set cj and a

⇤uctuating term with zero mean �j(t),

⇧⌅j = sjt+ cj + �j(t) (2.8)

Putting this in Eq.(2.5), leads to:

d⇧⌅j
dt

= sj + ⌅�j(t)

d2⇧⌅j
dt2

= ¨�j(t)

�̈j(t) = ⌃j+1 + ⌃j⇥1 � 2⌃j (2.9)

Also Putting Eq.(2.8) in Eq.(2.3) gives,

⌃j = sin(sjt+ cj + �j(t)) + µ(sj + ⌅�j(t)) + ⌥j(t) (2.10)

Now time-averaging Eq.(2.10) gives,

⌃̄ =< sin(sjt+ cj + �j(t)) > +µsj (2.11)

Now we expand �j(t) and ⌃j(t) in Fourier modes, with ˆ�j(!) and ˆ⌃j(!) as the respective

Fourier coe⌃cients,

�j(t) =
X

!

�̂j(!)e
i!t (2.12a)

⌃j(t) =
X

!

⌃̂j(!)e
i!t (2.12b)

Inverse Fourier transformations can be applied to �nd the Fourier coe⌃cients as:

< e⇥i!t�j(t) >=
X

!0

�̂j(!
0) < ei(!

0
⇥!)t >

Since < ei!t >= �(!, 0), where � is the Kronecker delta function. This leads to:

< e⇥i!t�j(t) >= �̂j(!) (2.13)

The �rst Fourier coe⌃cients of �̂j(t) and ⌃̂j(t) are their respective means.

�̂j(0) = 0

12



⌃̂j(0) = ⌃̄

Now we place this Fourier expansion in the equations of motion, Eq.(2.9) and Eq.(2.10).

Eq(2.9) gives,

d2

dt2
(
X

!

�̂j(!)e
i!t) =

X

!

ˆ⌃j+1(!)e
i!t +

X

!

ˆ⌃j⇥1(!)e
i!t

�2
X

!

⌃̂j(!)e
i!t

The double derivative comes out as,

d2

dt2
(
X

!

�̂j(!)e
i!t) = �!2

X

!

�̂j(!)e
i!t

Taking out the summation, and cancelling ei!t from both sides gives,

� !2�̂j(!) = ⌃̂j+1(!) + ⌃̂j⇥1(!)� 2⌃̂j(!) (2.14)

To �nd ⌃̂j(!), we calculate < e⇥i!t⌃j(t) >,

⌃̂j(!) =< e⇥i!t⌃j(t) >=< e⇥i!t sin(sjt+ cj + �j(t)) >

+ < e⇥i!tµsj > + < e⇥i!tµ ⌅�j(t) > + < e⇥i!t⌥j(t) >
(2.15)

Till here, the equations are exact. Now, to linearize, we take the small ⇤uctuation

limit, �j(t) << 1, and write the sin term as sin(A + B), sin[(sjt + cj) + �j(t)] and

expand it.
⌃̂j(!) = µsj�(!, 0) + ⌥̂j(!) + iµ!�̂j(!)+ < e⇥i!t

[sin(sjt+ cj) cos(�j(t)) + cos(sjt+ cj) sin(�j(t))] >
(2.16)

For small �j(t), sin(�j(t)) ⌅ �j(t)) and cos(�j(t)) ⌅ 1,

< e⇥i!t sin(sjt+ cj + �j(t)) >=< e⇥i!t sin(sjt+ cj) > +

< e⇥i!t cos(sjt+ cj)�j(t) >

Using sin(x) = eix⇥e�ix

2i , and cos(x) = eix+e�ix

2 ,

< e⇥i!t sin(sjt+ cj) >=< e⇥i!t e
i(sjt+cj) � e⇥i(sjt+cj)

2i
>

=
1

2i
eicj < e⇥i!teisjt > �

1

2i
e⇥icj < e⇥i!te⇥isjt >

=
1

2i
eicj�(!, sj)�

1

2i
e⇥icj�(!,�sj)

13



Similarly for < e⇥i!t cos(sjt+ cj)�j(t) >,

< e⇥i!t cos(sjt+ cj)�j(t) >=< e⇥i!t e
i(sjt+cj) + e⇥i(sjt+cj)

2
�j(t) >

=
1

2
eicj < ei(sj⇥!)t�j(t) > +

1

2
e⇥icj < e⇥i(sj+!)t�j(t) >

=
1

2
eicj �̂j(! � sj) +

1

2
e⇥icj �̂j(sj + !)

Since �j(t) is real valued, it’s Fourier coe⌃cients must satisfy: �̂j(�!) = �̂⇤j(!) Now

using bj ⇤ eicj , and substituting the expressions obtained in Eq.(2.16),

⌃̂j(!) = µsj�(!, 0) + ⌥̂j(!) + iµ!�̂j(!) +
1

2i
bj�(!, sj)

�(1/2i)b⇤j�(!,�sj) +
1

2
bj �̂j(! � sj) +

1

2
b⇤j �̂j(sj + !)

(2.17)

Thus we have obtained an expression for the Fourier coe⌃cient of torque. To �nd the

mean torque we �nd ⌃̂j(0).

⌃̄ = µsj +
1

2i
(bj � b⇤j)�(sj, 0) +

1

2
bj �̂j(�sj) +

1

2
b⇤j �̂j(sj)

=) ⌃̄ = µsj + sin(cj)�(sj, 0) +
1

2
bj �̂j(�sj) +

1

2
b⇤j �̂j(sj) (2.18)

The �rst term in the expression denotes the Newtonian viscosity, the second term

denotes the torque for a solid region of the chain (sj = 0). The �nal two terms give

rise to the non-Newtonian ⇤uid ⇤ow.

2.5.1 Mean �eld analysis

Applying mean-�eld hypothesis on Eq.(2.14), we replace the torque on the (j+1) and

(j � 1) rotor by the mean torque ⌃̄ (zero frequency component of the torque).

!2�̂j(!) = 2⌃̂j(!)� 2⌃̄ �(!, 0) (2.19)

Since now we are only concerned with the jth rotor, there exists only a single shear

rate, s = sj. Two new coe⌃cients are introduced:

an ⇤ �̂j(ns)

 n ⇤ ⌥̂j(ns)

It is also visible that a0 =  0 = 0 since �̂(0) = ⌥̂(0) = 0 and a⇥n = a⇤n, since �j(t) is a
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real function.

Substituting this in Eq.(2.18),

⌃̄ =
1

2
i(b⇤j � bj)�(s, 0) + µs+

1

2
bja⇥1 +

1

2
b⇤ja1

Now, if sj 6= 0, cj can be arbitrarily taken to be zero. This gives bj = 1. Hence,

⌃̄ = sin(cj)�(s, 0) + µs+ <(a1) (2.20)

For non-zero sj, Eq.(2.19) gives,

(ns)2�̂j(ns) = 2⌃̂j(ns)� 2⌃̄ �(n, 0)

Now using the expression for ⌃̂j(!) from Eq.(2.17) gives,

=) (ns)2an = 2[µs�(n, 0) +  n + iµ(ns)an �
1

2
ibj�(n, 1)+

1

2
ib⇤j�(n,�1) +

1

2
bjan⇥1 +

1

2
b⇤jan+1]� 2⌃̄ �(n, 0)

=) ns(ns� 2iµ)an = 2(µs� ⌃̄)�(n, 0) + i�(n,�1)�

i�(n, 1) + 2 n + an⇥1 + an+1

(2.21)

Taking n = 1, and averaging over the noise term gives,

s(s� 2iµ)a1 = �i+ a2

=) a1 =
i

a2
a1

� s(s� 2iµ)
(2.22)

If Rn ⇤ an
an�1

, for n > 1

ns(ns� 2iµ)an = an⇥1 + an+1

=)
1

Rn

= ns(ns� 2iµ)�Rn+1 (2.23)

Now R1 can be de�ned as,

R1 =
1

s(s� 2iµ)�R2

Writing subsequent expressions for R2, R3 leads to,

R1 =
1

s(s� 2iµ)� 1
2s(2s⇥2iµ)⇥ 1

3s(3s�2iµ)� 1
...

(2.24)
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Figure 2.9: Mean torque plotted according to the constitutive relation.

Now, R2 =
a2
a1
. Comparing the de�nition of R1 with Eq.(2.22), we �nd:

R1 = ia1

Putting this in Eq.(2.20),

⌃̄ = sin(cj)�(s, 0) + µs+ =(R1) (2.25)

This gives the constitutive relation for our ⇤uid. Plots for ⌃̄ vs µs for various values

of µ is shown in Fig(2.9). R1 has been calculated till 100 terms. If s = 0, from

Eq.(2.20), ⌃̄ < 1. So only those values of µ for which the curve goes below 1 in

Fig.(2.9) (µ ⇧ 0.5), allow solid-⇤uid coexistence and slip-planes.
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Chapter 3

2-D Carpet of Rotors

3.1 Model and dynamics

Figure 3.1: Rotors in a 2D plane.

The rotors are placed on a plane, their heads �xed at lattice points distance d

apart, and their arms left free to rotate. The length of the rotor arms are b (b << d).

While rotating they also exert force Fi on the surrounding ⇤uid, which combines with

the hydrodynamic interaction between the rotors. The instantaneous position of the

rotor end is:

ri = r0i + bni (3.1)

Here r0i is the position of the �xed head, and ni is the vector which points along the

orientation of the rotor arm as shown in Fig(3.1). If ⇤i is the angle the ith rotor makes

with the x-axis,

ni = (cos⇤i, sin⇤i)
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The velocity of each rotor:

vi =
dri
dt

= b
dni

dt

dni

dt
=

d(cos⇤i, sin⇤i)

dt
=

d⇤i

dt
(� sin⇤i, cos⇤i)

If (� sin⇤i, cos⇤i) = ti, which points along the tangential direction of the rotor arm,

vi = b
d⇤i

dt
ti (3.2)

The force exerted by the rotor arm of the ith rotor on the ⇤uid can be broken into

radial and tangential components.

Fi = Fnni + Ftti (3.3)

Fn and Ft are the radial and tangential components respectively. Varying �, the

angle between ni and Fi, leads to varying properties between synchronization, spiral

formation and complete disorder.

Now we need to �nd how the force exerted by a rotor on the ⇤uid in⇤uences the rest

of the rotor velocities. Herein enters the Blake-Oseen Tensor G, which describes the

hydrodynamic interaction at a boundary of a ⇤uid with no-slip condition due to a

point force [Bla71]. The velocity �eld of the ⇤uid can be calculated now as

v(r) =
X

i

G(r� ri).Fi (3.4)

Here G(r� ri) is the Blake-Oseen tensor to a O(h2/d2) approximation [Olm99], and

is equal to:

G�⇥(r) =
3h2

2⇧⌥

r�r⇥
|r|5

(3.5)

Here ⌦, ↵ = x, y; h is the depth of the ⇤uid, and ⌥ is the viscosity of the ⇤uid.

Since the rotors are constrained to only rotate, only the tangential component of the

force will a⇥ect the velocity of an individual rotor. Also, we need to remove self-

interaction. If there was no coupling, each ith rotor would rotate with an angular

velocity !i,t, hence vi = b!tti. Introducing rij ⇤ ri � rj, and the hydrodynamic

coupling due to the rest of the rotors gives,

|vi| = |b!tti|+ (
N
X

j=1;j 6=i

3h2

2⇧⌥

rijrij
|rij|5

.Fj).ti (3.6)
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In order to write Fj in a simpli�ed manner, we can invoke Stoke’s law. Drag force F

on a sphere of radius a moving through a ⇤uid of viscosity ⌥ at a speed v is given by,

F = 6⇧⌥av (3.7)

|v| due to the rotor’s internal force is given by b!. Writing 6⇧⌥a =  , as the Stoke’s

drag coe⌃cient,

Ft,n =  b!t,n (3.8)

Substituting v from Eq.(3.2) and Eq.(3.8) into Eq.(3.6), and cancelling b from both

sides gives,
d⇤i

dt
= !t +

X

j 6=i

3h2 

2⇧⌥

rijrij
|rij|5

!.ti

Breaking ! in radial and tangential components, and writing h2 /⌥ = ⇥, the hydro-

dynamic coupling constant (analogies to Kuramoto Model [Kur03]), the equation can

be written as:
d⇤i

dt
= !t +

X

j 6=i

3⇥

2⇧

rijrij
|rij|5

(!nnj + !ttj).ti (3.9)

This is the dynamical equation for how ⇤i changes with time. It can be further

simpli�ed by introducing � = tan⇥1(!t/!n), and |!| =
p

!2
n + !2

t .

d⇤i

dt
= !t +

X

j 6=i

3⇥

2⇧

1

|rij|3
(|!| cos(�)(cos⇤j, sin⇤j)+

|!| sin(�)(� sin⇤j, cos⇤j)).ti

=)
d⇤i

dt
= !t +

3⇥|!|

2⇧

X

j 6=i

1

|rij|3
(cos � cos⇤j � sin � sin⇤j,

cos � sin⇤j + sin � cos⇤j).(� sin⇤i, cos⇤i)

=)
d⇤i

dt
= !t +

3⇥|!|

2⇧

X

j 6=i

1

|rij|3
(cos(� + ⇤j)(� sin⇤i)+

sin(� + ⇤j) cos(⇤i))

=)
d⇤i

dt
= !t +

3⇥|!|

2⇧

X

j 6=i

1

|rij|3
sin(� + ⇤j � ⇤i) (3.10)
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3.2 Simulation

The simulation was performed for a 50 ⌃ 50 lattice. Larger lattice sizes took much

longer time to run with the available computing resources. The di⇥erential equation

Eq.(3.10) is solved via Euler method with time-step, t = 0.1. The rotor arm length

is b = 0.1, and distance between the rotors is d = 1. The coupling constant is taken

to be ⇥ = 0.5. The value of |!| is taken to be 0.1. The initial angular position of the

rotors was uniformly distributed.

3.3 Results

3.3.1 � = 0⌥

Figure 3.2: Snapshots of the rotors for � = 0�. The color range shows the value of
cos⇤i, with black for -1 to yellow for +1.

For � = 0�, the force due to the rotors on the ⇤uid is completely radial. The rotors

initially start from random orientations (distributed uniformly), just pumping into

the ⇤uid, without any rotation. These rotors can be termed as “pumping-driven

rotors”. The movement of the rotors is solely driven by the ⇤uid ⇤ow generated by

the remaining rotors. The rotors globally synchronize after ⌅ 12000 time-steps.

3.3.2 � = 30⌥

For � = 30�, the rotors are both pumping and torque driven. Each rotor exerts a

force ! cos 30� ⌃ ( b) on its surrounding ⇤uid, and rotates with an angular velocity
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Figure 3.3: Snapshots for � = 30�.

! sin 30� initially. The movement of the rotors starts o⇥ only due to the individual

rotor’s tangential force, and then the ⇤uid ⇤ow in⇤uences it. As in the previous case,

this leads to neighbouring areas getting synchronised, seen for t = 4500 and t = 7000

in Fig.(3.3). All the rotors get globally synchronised and start rotating together as a

single unit after ⌅ 12000 time-steps.

3.3.3 � = 60⌥

Even for this case, the rotors are both torque and pumping driven. The angular

velocity becomes ! sin 60�, and the radial force on the ⇤uid is ! cos 60�. Here the
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Figure 3.4: Snapshots of the angular rotors for � = 60�.

rotors don’t completely synchronise, but instead form spiral waves in the ⇤uid ⇤ow.

The spirals appear to be pair based, one ⇤owing clockwise and the other anti-clockwise.

This can be seen intuitively in t = 15000 in Fig(3.4). The spirals spread and give rise

to further spirals in the ⇤ow.

Animations for � = 0�, 30�, 60� for a 50⌃50 lattice, and � = 60� for a 100⌃100 lattice

can be seen in this link. The spiral waves proliferation are better seen in 100 ⌃ 100

lattice, but the code takes a long time to simulate with the given computational

resources. Hence this lattice size wasn’t chosen for the other values of �.

3.3.4 Order Parameters

A Vicsek Model [Vic+95] inspired Order Parameter was taken,

< n >=
1

N
|

N
X

i=1

ni| (3.11)

< n > is plotted for various values of � in Fig.(3.5). Up until, � = 50�, the system

reaches a completely steady synchronized state. The order-parameter does not reach 1

(does not get completely synchronised) for � = 55�, 60�. Spirals were shown for � = 60�

in Fig.(3.4). Hence there should exist a critical degree of frustration, 50� < �c ⇧ 55�

for a 50⌃ 50 lattice. The order parameters have been plotted till t = 20000. Steady

states are not reached for � = 55�, 60�. For � = 90�, the rotors are only torque driven

22



and the ⇤uid ⇤ow remains completely disordered.

Figure 3.5: Order Parameters for various values of �(shown as d in the plot) till 20000
time-steps.
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Chapter 4

Summary

In this MS-thesis I started with a one-dimensional classical XY model pushed away

from equilibrium with angular momentum conserving Langevin dynamics and showed

how the angular velocity distributions closely resemble the shear ⇤ow seen in non-

Newtonian ⇤uids. Four distinct ⇤ow patterns were observed: (i)Uniform ⇤ow (similar

to that for Newtonian ⇤uids), (ii) Shear Banded ⇤ow, (iii) Solid-Fluid coexistence

and (iv) Slip-plane regime. Also the system was theoretically analysed leading to a

constitutive relation for the rotors using mean �eld theory.

Next, I moved up a dimension to a two-dimensional carpet of rotors. Also, the rotors

in this system could interact hydrodynamically (the rotors were placed in a ⇤uid). The

rotors could exert force on the surrounding ⇤uid due to internal degrees of freedom.

Here under maximum frustration , the rotors synchronised in direction instantly. Upon

reducing the frustration, spiral were obtained in the ⇤uid ⇤ow. The order parameters

for various degrees of frustration were also plotted. Such a 2-D XY model also presents

an idea for micro⇤uidic mixers where the ⇤ow behaviour of the ⇤uid can be changed

by just tweaking the frustration in the system.
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Appendix A

C code for 1-D chain of rotors

1 #inc lude <s t d i o . h>

2 #inc lude <math . h>

3 // ran1 and gasdev

4

5 f l o a t gasdev ( long � idum)

6 {

7 f l o a t ran1 ( long � idum) ;

8 s t a t i c i n t i s e t =0;

9 s t a t i c f l o a t g s e t ;

10 f l o a t fac , rsq , v1 , v2 ;

11

12 i f (� idum < 0) i s e t =0;

13 i f ( i s e t == 0) {

14 do {

15 v1=2.0� ran1 ( idum) ⇥1.0;

16 v2=2.0� ran1 ( idum) ⇥1.0;

17 r sq=v1�v1+v2�v2 ;
18 } whi le ( r sq >= 1.0 | | r sq == 0 . 0 ) ;

19 f a c=sq r t (⇥2.0� l og ( r sq ) / rsq ) ;

20 gs e t=v1� f a c ;
21 i s e t =1;

22 r e turn v2� f a c ;
23 } e l s e {

24 i s e t =0;

25 r e turn g s e t ;

26 }

27 }

28

29 // ran1 from Numerical Rec ipes C with uniform Di s t r i bu t i on

30

31 #de f i n e IA 16807

32 #de f i n e IM 2147483647

33 #de f i n e AM (1 . 0/IM)
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34 #de f i n e IQ 127773

35 #de f i n e IR 2836

36 #de f i n e NTAB 32

37 #de f i n e NDIV (1+(IM⇥1)/NTAB)

38 #de f i n e EPS 1 .2 e⇥7

39 #de f i n e RNMX (1.0⇥EPS)

40

41 f l o a t ran1 ( long � idum)

42 {

43 i n t j ;

44 long k ;

45 s t a t i c long iy =0;

46 s t a t i c long iv [NTAB] ;

47 f l o a t temp ;

48

49 i f (� idum <= 0 | | ! i y ) {

50 i f (⇥(� idum) < 1) � idum=1;

51 e l s e � idum = ⇥(�idum) ;

52 f o r ( j=NTAB+7; j>=0;j⇥⇥) {

53 k=(�idum) /IQ ;

54 � idum=IA�(� idum⇥k�IQ)⇥IR�k ;
55 i f (� idum < 0) � idum += IM;

56 i f ( j < NTAB) iv [ j ] = � idum ;

57 }

58 i y=iv [ 0 ] ;

59 }

60 k=(�idum) /IQ ;

61 � idum=IA�(� idum⇥k�IQ)⇥IR�k ;
62 i f (� idum < 0) � idum += IM;

63 j=iy /NDIV;

64 i y=iv [ j ] ;

65 i v [ j ] = � idum ;

66 i f ( ( temp=AM� i y ) > RNMX) return RNMX;

67 e l s e re turn temp ;

68 }

69 //end

70

71

72 double theta [ 1 0 2 4 ] , ang ve l [ 1 0 2 4 ] , avg [ 1 0 2 4 ] ;

73 long seed ;

74 double r , p , q ; // var in acc

75 double mu, T, g s r ; // parameters : g s r=g l oba l shear ra t e

76 double acc ( i n t k , double a , double v ) // a c c e l e r a t i o n func t i on

77 {

78 p=s in ( theta [ k+1]⇥a )+mu�( ang ve l [ k+1]⇥v )+r �gasdev(&seed ) ;

79 q=s i n ( a⇥theta [ k⇥1])+mu�(v⇥ang ve l [ k⇥1])+r �gasdev(&seed ) ;

80 r e turn (p⇥q ) ;
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81 }

82 i n t main ( )

83 {

84 i n t n=1024;

85 seed= ⇥1234;

86 i n t i , j ; // loop var

87 i n t c=0; // counter var

88 mu=10;

89 T=0.02;

90 gs r =0.0078;

91 r=sq r t (2�mu�T) ;

92 double evo l =450000; // time un t i l which system i s evolved

93 double t =0. , dt =0.01; // time var , increment

94 double dx1 , dx2 , dx3 , dx4 , dv1 , dv2 , dv3 , dv4 , dx , dv ; //RK4 vars

95

96 FILE � f p r= fopen ( ” shb pot1 . txt ” , ”w” ) ;

97 FILE �gpr= fopen ( ”EHSW shb . txt ” , ”w” ) ;

98

99 f o r ( i =0; i<n ; i++) // i n i t i a l i s i n g

100 {

101 theta [ i ]=0 . ;

102 ang ve l [ i ]=0 . ;

103 }

104 ang ve l [0]=⇥n� gs r /2 ; // i n i t i a l tw i s t

105 ang ve l [ n⇥1]=n� gs r /2 ;
106 f o r ( i =0; i <500000; i++)

107 {

108 theta [0 ]= theta [0 ]+ dt� ang ve l [ 0 ] ;

109 theta [ n⇥1]=theta [ n⇥1]+dt� ang ve l [ n⇥1] ;

110 f o r ( j =1; j<n⇥1; j++) //RK4

111 {

112 dx1=dt� ang ve l [ j ] ;

113 dv1=dt� acc ( j , theta [ j ] , ang ve l [ j ] ) ;

114 dx2=dt �( ang ve l [ j ]+dv1 /2) ;

115 dv2=dt� acc ( j , theta [ j ]+dx1 /2 , ang ve l [ j ]+dv1 /2) ;

116 dx3=dt �( ang ve l [ j ]+dv2 /2) ;

117 dv3=dt� acc ( j , theta [ j ]+dx2 /3 , ang ve l [ j ]+dv2 /3) ;

118 dx4=dt �( ang ve l [ j ]+dv3 ) ;

119 dv4=dt� acc ( j , theta [ j ]+dx3 , ang ve l [ j ]+dv3 ) ;

120 dx=(dx1+2�dx2+2�dx3+dx4 ) /6 ;
121 dv=(dv1+2�dv2+2�dv3+dv4 ) /6 ;
122 theta [ j ]= theta [ j ]+dx ;

123 ang ve l [ j ]= ang ve l [ j ]+dv ;

124

125 }

126

127 i f ( i >499500)// i n t e r r o t o r p o t e n t i a l p l o t s
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128 {

129 f o r ( j =1; j<n ; j++)

130 {

131 f p r i n t f ( fpr , ”%d\ t%d\ t%l f \n” , j , i ,⇥ cos ( theta [ j ]⇥ theta [ j

⇥1]) ) ;

132 }

133 }

134

135 i f ( i==evo l ) // averag ing

136 {

137 c++;

138 f o r ( j =0; j<n ; j++)

139 {

140 avg [ j ]=avg [ j ]+ ang ve l [ j ] ;

141 }

142 evo l=evo l +100;

143 }

144 }

145

146 f o r ( i =0; i<n ; i++)

147 {

148 f p r i n t f ( gpr , ”%d\ t%l f \ t%l f \n” , i , theta [ i ] , avg [ i ] ) ;

149 }

150 }
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Appendix B

C code for 2-D Carpet of Rotors

with Hydrodynamic Interaction

1 #inc lude <s t d i o . h>

2 #inc lude<math . h>

3 #inc lude <time . h>

4

5 // ran1

6 #de f i n e IA 16807

7 #de f i n e IM 2147483647

8 #de f i n e AM (1 . 0/IM)

9 #de f i n e IQ 127773

10 #de f i n e IR 2836

11 #de f i n e NTAB 32

12 #de f i n e NDIV (1+(IM⇥1)/NTAB)

13 #de f i n e EPS 1 .2 e⇥7

14 #de f i n e RNMX (1.0⇥EPS)

15

16 f l o a t ran1 ( long � idum)

17 {

18 i n t j ;

19 long k ;

20 s t a t i c long iy =0;

21 s t a t i c long iv [NTAB] ;

22 f l o a t temp ;

23

24 i f (� idum <= 0 | | ! i y ) {

25 i f (⇥(� idum) < 1) � idum=1;

26 e l s e � idum = ⇥(�idum) ;

27 f o r ( j=NTAB+7; j>=0;j⇥⇥) {

28 k=(�idum) /IQ ;

29 � idum=IA�(� idum⇥k�IQ)⇥IR�k ;
30 i f (� idum < 0) � idum += IM;

31 i f ( j < NTAB) iv [ j ] = � idum ;
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32 }

33 i y=iv [ 0 ] ;

34 }

35 k=(�idum) /IQ ;

36 � idum=IA�(� idum⇥k�IQ)⇥IR�k ;
37 i f (� idum < 0) � idum += IM;

38 j=iy /NDIV;

39 i y=iv [ j ] ;

40 i v [ j ] = � idum ;

41 i f ( ( temp=AM� i y ) > RNMX) return RNMX;

42 e l s e re turn temp ;

43 }

44 //end

45

46 // gasdev

47 f l o a t gasdev ( long � idum)

48 {

49 f l o a t ran1 ( long � idum) ;

50 s t a t i c i n t i s e t =0;

51 s t a t i c f l o a t g s e t ;

52 f l o a t fac , rsq , v1 , v2 ;

53

54 i f (� idum < 0) i s e t =0;

55 i f ( i s e t == 0) {

56 do {

57 v1=2.0� ran1 ( idum) ⇥1.0;

58 v2=2.0� ran1 ( idum) ⇥1.0;

59 r sq=v1�v1+v2�v2 ;
60 } whi le ( r sq >= 1.0 | | r sq == 0 . 0 ) ;

61 f a c=sq r t (⇥2.0� l og ( r sq ) / rsq ) ;

62 gs e t=v1� f a c ;
63 i s e t =1;

64 r e turn v2� f a c ;
65 } e l s e {

66 i s e t =0;

67 r e turn g s e t ;

68 }

69 }

70

71 //end

72 void main ( )

73 {

74

75 c l o c k t begin= c lock ( ) ;

76 // con s t ru c t i ng 50 � 50 l a t t i c e

77 i n t i , j , k , l ;

78 long seed=⇥12345;
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79 i n t time ;

80 double t =0. , dt =0.1 ;

81 i n t n=50;

82 double phi [ n ] [ n ] ; // ang l e s

83 double phi1 [ n ] [ n ] ;

84 double s ; // summation term

85 double a n g d i f f ;

86 char snum [ 1 0 ] ;

87 double avg nx , avg ny ; // s p a t i a l average o f phi

88 double d i r e c t o r ; //<n>

89 // parameters

90 double b=0.1 ;

91 double w=0.1; // angular f requency

92 double de l t a=(double ) (M PI/3) ; // ang le o f f r u s t r a t i o n

93 p r i n t f ( ” s i n de l t a :% l f \n” , s i n ( d e l t a ) ) ;

94 i n t Time=15001; // t o t a l time

95 double gamma=0.5; // coup l ing constant

96

97 double d i s tx , d i s ty , d i s t ; // d i s t anc e x , y

98 f o r ( i =0; i<n ; i++)

99 {

100 f o r ( j =0; j<n ; j++)

101 {

102 phi [ i ] [ j ]=2�M PI� ran1(&seed ) ;

103 phi1 [ i ] [ j ]=phi [ i ] [ j ] ; // c r e a t i n g a copy

104 }

105 }

106 FILE �gpr=fopen ( ”Order Parameter . txt ” , ”w” ) ;

107 // time evo lu t i on

108 f o r ( time=0; time<Time ; time++)

109 {

110 t=t+dt ;

111 avg nx =0. ;

112 avg ny =0. ;

113 f o r ( i=n⇥1; i>=0; i⇥⇥)

114 {

115 f o r ( j=n⇥1; j>=0;j⇥⇥)

116 {

117 s =0. ;

118 f o r ( k=n⇥1;k>=0;k⇥⇥)

119 {

120 f o r ( l=n⇥1; l>=0; l⇥⇥)

121 {

122 i f ( j != l && i !=k )

123 {

124 d i s t x= i+b� cos ( phi [ i ] [ j ] )⇥(k+b� cos ( phi [ k ] [ l ] ) ) ; //

c a l c u l a t i n g d i s t anc e
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125 i f ( ( f abs ( d i s t x ) )>(n/2) )

126 {

127 d i s t x=n⇥f abs ( d i s t x ) ; // PBC

128 }

129 d i s t y= j+b� s i n ( phi [ i ] [ j ] )⇥( l+b� s i n ( phi [ k ] [ l ] ) ) ; //

c a l c u l a t i n g d i s t anc e

130 i f ( ( f abs ( d i s t y ) )>(n/2) )

131 {

132 d i s t y=n⇥f abs ( d i s t y ) ; //PBC

133 }

134 d i s t=sq r t ( d i s t x � d i s t x+d i s t y � d i s t y ) ; //

135 a n g d i f f=phi [ i ] [ j ]⇥phi [ k ] [ l ]⇥ de l t a ; //

136 s= s+ ( double ) (1/( d i s t � d i s t � d i s t ) ) � s i n ( a n g d i f f ) ;

137 }

138 }

139 }

140 phi1 [ i ] [ j ]=phi [ i ] [ j ]+w� s i n ( de l t a ) �dt⇥((3�gamma�w) /(2�M PI) ) � s �dt ;
141 avg nx=avg nx+(double ) cos ( phi1 [ i ] [ j ] ) /(n�n) ;
142 avg ny=avg ny+(double ) s i n ( phi1 [ i ] [ j ] ) /(n�n) ;
143 }

144 }

145

146

147 s p r i n t f (snum , ”%d . txt ” , time ) ;

148 FILE � f p r=fopen (snum , ”w” ) ;

149 f o r ( i =0; i<n ; i++)

150 {

151 f o r ( j =0; j<n ; j++)

152 {

153 f p r i n t f ( fpr , ”%d\ t%d\ t%l f \n” , i , j , cos ( phi1 [ i ] [ j ] ) ) ;

154 phi [ i ] [ j ]=phi1 [ i ] [ j ] ;

155 }

156 f p r i n t f ( fpr , ”\n” ) ;

157 }

158

159 f c l o s e ( f p r ) ;

160 d i r e c t o r= sq r t ( avg nx�avg nx+avg ny�avg ny ) ;

161 f p r i n t f ( gpr , ”%d\ t%l f \n” , time , d i r e c t o r ) ;

162 p r i n t f ( ”%l f%% done .\n” , ( f l o a t ) time /(Time⇥1) �100 .0 ) ;
163

164

165

166

167

168 }

169 f c l o s e ( gpr ) ;

170 c l o c k t end= c lock ( ) ;
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171 p r i n t f ( ”TIME TAKEN: %l f hours ” , ( double ) ( end⇥begin ) /(CLOCKS PER SEC

�3600) ) ;
172

173 }
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