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Abstract

A classical 1-D chain of rotors mimicking Non-Newtonian fluids and showing different
flow regimes under different parameters is reproduced [Eva+15]. The ends of the 1-D
rotor system are rotated in opposite directions, and it is seen that the phase behaviour
is analogous to a complex fluid system, with the angular velocity distribution of the
rotors representing the shear flow in fluids. Then upon increasing the dimension, a
2D system of rotors with an added hydrodynamic interaction is studied as a model
for bacterial carpets. Each rotor has an intrinsic angular velocity, and also subjects a
force on the surrounding fluid, which leads to synchronization and spirals formation
in the fluid flow under different cases[UG10].
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Chapter 1
Introduction

The classical XY model, like the Ising model, is a lattice spin model initially developed
to study magnetic systems and equilibrium phase transitions in them [Kos74]. The
XY model has a spin s; = (cosf;,sinf;) at each lattice site j, which is allowed to
rotate in a plane, where 6, can take values between —m < s; < . However, it was
later seen that these models could be used as models to study phenomena far away

from magnetic systems too[TT95; LG85].

1.1 Microfluidics and Bacterial Carpets

Microfluidics refer to the control and manipulation of fluid flow in the small (~micro)
scale, where the surface forces dominate over the volume forces. When active particles

like micropumps or microorganisms are used, it is termed as active microfluidics.

Darnton et al. performed experiments with a system of “bacterial carpets”, with the
head of the bacteria embedded on a substrate and the flagella left to rotate in the
surrounding fluid[Dar+04]. The flagella could coordinate the flow of the fluid forming
linear and rotational flows. Bacteria and similar microorganisms have benefits of being
used as microfluidic mixers: the cost of power source to run the microfluidic mixers
is reduced, and self-replication of the bacteria within the medium removes the cost of

wear and tear and replacement of mechanical microfluidic rotors.

It cannot be overlooked that a system of embedded bacteria with their heads fixed, is
just essentially a system of rotors in a fluid. Thus a classical XY model can be used
to model this system, with the rotors acting as substitutes to the bacteria. Computa-
tional simulation and analysis of such models can lead to better understanding of the
fluid flow characteristics due to microfluidic mixers. Such an array of rotors coupled
with hydrodynamic interaction was studied by Uchida and Golestanian [UG10], and

part of my work in this thesis is based on this paper.



1.2 1-D XY model and non-Newtonian phenomena

Before working on the problem of bacterial carpets, I started looking at 1-D classical
XY models. An interesting phenomenon was seen where the classical 1-D XY model
under angular momentum conserving Langevin dynamics, showing phase behaviour

which could be drawn analogous to the behaviour of non-Newtonian fluids.

1.2.1 Non-Newtonian Fluids

Unlike Newtonian fluids where under uniform stress, shear flow is evenly distributed
throughout the fluid, non-Newtonian fluids show uneven distribution of shear-flow,
in the process forming macroscopic regions with distinct shear rates. These non-
Newtonian fluid flow transitions have been observed in various complex-fluids like
foams, polymers, surfactant solutions and dense colloids[KD08; Haw04; Kun+12;
SMCO03].

Newton’s law of viscosity states there exists a linear relation between shear stress(7)

and rate of shear(du/dy), where u is the velocity of the fluid :

du
T:,ud—y

Fluids which don’t follow this relation are classified as non-Newtonian fluids. These
fluids don’t have a constant viscosity, rather their viscosity depends on the shear stress

applied.

1.3 Organization of the Thesis

Since the 1-D XY model and its analogy to the non-Newtonian fluid behaviour was
interesting enough, I initially studied this system in detail. Under different initial
conditions for the 1-D XY model pushed out of equilibrium, four different phase

behaviour analogous to the flow regimes for non-Newtonian fluids were observed:
e Uniform flow
e Shear Banded flow
e Solid-Fluid coexistence

e Slip-Plane regime



A theoretical analysis was also presented which finally leads to a constitutive relation
for the fluid. All these have been discussed in Chapter 2.

Subsequently, I worked on a 2-D system of rotors with an added hydrodynamic inter-
action to simulate the bacterial carpet system. Various flow behaviours were observed

upon changing the geometric frustration in the fluid due to the rotors:
e Global synchronization
e Self-proliferating spiral waves

e Complete disorder.

This part has been discussed in Chapter 3. With the computational basis and surety
of the results, this work can be taken further with the introduction of free swimmers
in the fluid: rotors free to move around in the fluid, with an added excluded volume

interaction.






Chapter 2

1-D Chain of Rotors

2.1 Model and Dynamics

Figure 2.1: 1-D chain of rotors.

The rotors are placed in a 1-D chain with the plane of rotors perpendicular to the
axis of the chain as shown in Fig(2.1). The only degree of freedom of the system is
the angle of the j* spin 6;. There is only nearest neighbour interaction, therefore the

Hamiltonian becomes:
N

H=3 s+ 5] 2.1)

i=1
The first term of the Hamiltonian is the interaction energy between the nearest neigh-
bour rotors. The (-) sign is such that the rotors tend to align parallel in the ground
state. The second term is the kinetic energy (angular) of the rotor. The moment of

inertia of the rotors has been taken to be unity.

In equilibrium, the model has trivial behaviour with a single transition to an ordered
state at zero temperature [Mat84]. For checking non-equilibrium properties, Langevin

dynamics is introduced. Newton’s third law is obeyed, and angular momentum is
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conserved. The equations of motion are:
9] =T; — Tj-1 (2'2)

T, = sin AHJ + ,UAHJ + 1 (t) (23)

Here 7; is the torque on the 5t rotor, Af; is the angular difference between (j + 1)th
and j' rotor. p is the friction coefficient between the rotors and n; is delta-correlated

noise at temperature 7" with zero mean and variance given by,

< (), (t') >=2uTo(t — t')d;;. (2.4)

The system is driven into non-equilibrium by rotating the end rotors in opposite
directions (giving it a “twist”). This induces rotation throughout the rotor system.
The rotor system is compared to a fluid flow with the slope of the angular velocity of
the rotors analogous to the shear rate throughout the fluid. The initial twist represents
the shear stress applied. If the rotors start rotating together, they resemble a solid

region (having no shear flow).

2.2 Simulation

The simulation was performed for N = 1024 rotors. The values of temperature (1),
coefficient of friction (u), and twist rate (4) are changed to obtain different flow

behaviour.

The second order differential equation Eq.(2.2) is broken into two first order differential
equations for angular velocity and angular position respectively and are evolved using
the Runge-Kutta Fourth Order algorithm. The first and last rotors keep rotating with
an angular offset of N+.



2.3 Flow Behaviour Observed

Varying the Temperature (T), friction coefficient (u), and global shear rate (%), leads

to different flow behaviour as observed for Non-Newtonian fluids.

1. Uniform Flow

(0.02,50,0.0098)
3000
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Figure 2.2: Uniform Flow.(T = 0.02, u = 50, ¥ = 0.0098)

The flow is as expected of Newtonian fluids, the shear is evenly spread through-
out the system. In terms of the fluid analogy, the entire system has constant

viscosity. Here, the global shear rate is equal to the local shear rate throughout
the fluid. (¥ = s;)

2. Shear Banding Flow

Here, the system of rotors starts showing non-Newtonian flow behaviour. The
shear flow is unevenly distributed throughout the system. Different macroscopic

regions show different effective viscosities.
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Figure 2.3: Shear Banded Flow. (7' = 0.02, . = 10, 4 = 0.0078)

Solid Fluid Coexistence

The system arranges in regions with s; = 0 (solid regions), where sections of
the rotors rotate together with A = 0. Between these segments of solid regions
rotating at different angular velocities, some shear flow is seen. These are similar
to fluid regions with a high shear rate (low viscosity). Hence this phase, can be

thought of as a solid-fluid coexistence. It can be seen in Fig(2.4).

(0.001,1,0.0078)

EHSW_SExt" u 13 @

l.....w

. . . | .
200 400 600 800 1000
Rotor Position

Figure 2.4: Solid-Fluid Coexistence.(T" = 0.001, u = 1, 4 = 0.0078)

4. Slip Plane Regime

The low viscosity fluid regions from the previous phase completely disappear and

the system gets divided into different solid regions rotating at different angular



(0.001,0.5,0.0058)
1500

/Est,sp.txt" ul3 e

1000 -

500 - . 4

Z

g 0

g L

Ko} -—

>

5

S 500 |- 4
c

3 a—

-1000 -

-1500¢-

-2000

. . . . .
200 400 600 800 1000 1200
Rotor Position

Figure 2.5: Slip-plane regime. (7' = 0.001, u = 0.5,4 = 0.0058)

velocities. These solid regions are termed as “slip-planes”.

The general trend observed is that as temperature and frictional coefficient is de-
creased, the system transitions from a uniform flow to the slip plane regime. This is
because at higher values of friction and temperature, the uAéj and 7;(¢) term domi-
nates over the interaction term sin Af; in Eq.(2.3). Intuitonally, it can be seen as the
high friction coefficient between the rotors tend to make the rotors move together. The
high temperature term averages over the structure due to the interaction potential,

leading to a uniform flow pattern.

2.4 Inter-Rotor Potential

The inter-rotor potential given by
U(AB) = — cos(A0)

has been plotted for the slip plane regime, solid-fluid coexistence and shear banded
state. The dark regions denote higher potential for the adjacent rotors to overcome.

Time increases vertically in the following plots.

e Slip-plane regime

It can be seen that there are four high-potential lines corresponding to the edges
of each slip-plane in Fig(2.5). Rest of the plot comprises of low potential regions

between the rotors which are easily overcome such that the rotors start rotating
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Figure 2.6: Inter-rotor Potential for slip-plane.

together. Low potentials between the rotors give rise to the formation of slip-

planes (s; = 0 region).

e Solid-Fluid Coexistence
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Figure 2.7: Inter-rotor potential for solid fluid coexistence regime.

The high potential yielding regions are broader, corresponding to the low vis-
cosity fluid regions between the slip-planes in Fig(2.4). Similar to the Fig(2.6),
the low potential regions let the rotors rotate together giving rise to slip-planes.

e Shear Banding Flow

There are not many broad low potential regions between the rotors discouraging

presence of a slip-plane. Shear is distributed amongst the rotors due to the
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Figure 2.8: Inter-Rotor Potential for a shear banded state

presence of significant potentials throughout the system. However the potentials
are of varying magnitude, which does not allow the shear to be evenly spread

out too, as seen in the angular velocity distribution in Fig(2.3).

2.5 Theoretical Analysis
Combining Eq.(2.2) for 6; and 6.1, and using Af; = 6,41 — 6,

N

W = ’Tj+1 + Tj—l — 2Tj (25)

This equation and Eq.(2.3), form a closed set of equations for Af;. Time averaging
Eq.(2.5), and using the condition that time-averaged angular acceleration must vanish

since there is no external torque gives,
< Tjyq — Tj >=<T; — Tj_1 >= constant (2.6)
Here < ... > means a temporal average.
Time-averaging Eq.(2.3) gives,
T =<sin Ad; > +pus; (2.7)
Here s5; =< Aéj >, T is the mean torque.

If the first term of the RHS in Eq.(2.7) vanishes, we are left with a Newtonian fluid,

with viscosity p. However due to noise in the system, < sin Af; > becomes non-zero,

11



leading to non-Newtonian fluid behaviour. Eq.(2.5) and Eq.(2.3) are non-linear in

Af;. We will try to linearize it, and find a constitutive relation for the fluid.

We can write Af; as a combination of the shear rate s;, a constant offset ¢; and a

fluctuating term with zero mean €;(t),
AHJ- = Sjt + Cj + €j<t) (28)

Putting this in Eq.(2.5), leads to:

dA0; .
- = si+e(t)

dt2 T = ej(t)

€i(t) = Tjp1 + 7j-1 — 27; (2.9)

Also Putting Eq.(2.8) in Eq.(2.3) gives,

7; = sin(s;t + ¢ + €;(t)) + p(s; +€(t)) +n;(t) (2.10)
Now time-averaging FEq.(2.10) gives,
T =<sin(s;t + ¢; +€;(t)) > +pus; (2.11)

~ ~

Now we expand €;(t) and 7;(¢) in Fourier modes, with ¢;(w) and 7;(w) as the respective

Fourier coefficients,

ei(t) = é(w)e™ (2.12a)

w

7;(t) = Z 7j(w)e™ (2.12b)

Inverse Fourier transformations can be applied to find the Fourier coefficients as:
< e Mei(t) >= Z (W) < @t >
Since < ! >= §(w, 0), where ¢ is the Kronecker delta function. This leads to:
< e Mei(t) >= é(w) (2.13)
The first Fourier coefficients of €;(¢) and 7;(t) are their respective means.

€(0) =0

12



Now we place this Fourier expansion in the equations of motion, Eq.(2.9) and Eq.(2.10).

Eq(2.9) gives,

2
22 (Z zwt Z 7_]+1 zwt Z lel(w)eiwt

The double derivative comes out as,
d2
~ zwt zwt
a7 2 G = = ) 6l

Taking out the summation, and cancelling e** from both sides gives,
— w?j(w) = Ty (w) + Tj-1(w) — 275(w)
To find 7;(w), we calculate < e™™“i7;(t) >,

7i(w) =< e ™'7;(t) >=< e “ sin(s;t + ¢; +¢;(t)) >

+ < 67iwt,u$j > + < e*lwtlJLGJ(t) > + < e*iwtnj(t> >

(2.14)

(2.15)

Till here, the equations are exact. Now, to linearize, we take the small fluctuation
limit, €;(t) << 1, and write the sin term as sin(A + B), sin[(s;t + ¢;) + €;(t)] and

expand it.
£5(w) = 15;8(,0) + 75 (w) + ipeoés (w)+ < e~
[sin(s;t + ¢;) cos(e;j(t)) + cos(s;t + ¢;) sin(e;(t))] >

For small €;(), sin(e;(t)) = €;(t)) and cos(e;(t)) ~ 1,

< e sin(st + ¢ + (1) >=< e sin(s;t +¢5) > +

< e ™ cos(s;t + ¢j)e;(t) >

Using sin(z) = % and cos(x) = —i“r;_“”,
< it sin(s;t + ¢;) >=< — eilsitte;) _ o—ilsjttes) .
ro 2i
— ?eicj- < e—z‘wtez‘s]'t > _%6—1’@ < e—iwte—isjt =
¢ )
1 icj 1 —ics
= 5;¢ 15(w, s5) — ¢ 16(w, —s;)

13
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Similarly for < e cos(s;t + ¢;)e;(t) >,

. o pilsstte) —i(s;jt+c;)
< e ™ eos(sit + ¢j)e;(t) >=< et +2€ €;(t) >
1 . . 1 . .
_ §€ij < ez(s]vfw)tej (t) > +§€7ch' < e*Z(SjJrUJ)t?j (t) >

1 1
=€ 76w = 55) + e e (s +w)

Since €;(t) is real valued, it’s Fourier coefficients must satisfy: &;(—w) = €;(w) Now

using b; = ', and substituting the expressions obtained in Eq.(2.16),

. R . 1

7;(w) = ps;o(w, 0) + 0j(w) + ipwé;(w) + ijé(w, S;) 2.17)
. 1 1.,. )
—(1/20)b56(w, —s;) + §bj€j(w — 8j) + §bj€j(3j +w)

Thus we have obtained an expression for the Fourier coefficient of torque. To find the

mean torque we find 7;(0).

_ 1 . 1 . 1.,.
T = psj + 57 (b5 = 07)0(s5,0) + 5b;€;(=s5) + Sb3&;(s5)

_ : . 1,
= 7= psj +sin(e;)0(s5,0) + 5b;€;(=s5) + S05&(s;) (2.18)

The first term in the expression denotes the Newtonian viscosity, the second term
denotes the torque for a solid region of the chain (s; = 0). The final two terms give

rise to the non-Newtonian fluid flow.

2.5.1 Mean field analysis

Applying mean-field hypothesis on Eq.(2.14), we replace the torque on the (j+ 1) and

(j — 1) rotor by the mean torque 7 (zero frequency component of the torque).
w?é;(w) = 27j(w) — 276 (w, 0) (2.19)
Since now we are only concerned with the j* rotor, there exists only a single shear
rate, s = s;. Two new coefficients are introduced:
an, = €;(ns)

Cn = 1j(ns)

It is also visible that ag = (o = 0 since €(0) = 7(0) = 0 and a_,, = a},, since €;(t) is a

14



real function.

Substituting this in Eq.(2.18),

1, 1 1,
T = §Z(bj — bj)é(s, O) + uSs + Ebja_l + §bja1

Now, if s; # 0, ¢; can be arbitrarily taken to be zero. This gives b; = 1. Hence,

T = sin(c¢;)d(s,0) + pus + R(aq)
For non-zero s;, Eq.(2.19) gives,
(ns)?€j(ns) = 27;(ns) — 276(n, 0)

Now using the expression for 7;(w) from Eq.(2.17) gives,

1
= (ns)*a, = 2[usé(n,0) + ¢, + iu(ns)a, — éébjé(n, 1)+

1. 1 1, )
ézbjd(n, —1)+ ébjan_l + §bjan+1} —276(n,0)

= ns(ns — 2ip)a, = 2(us — 7)0(n,0) +id(n, —1)—
Z(S(?’L, 1) + 2Cn + n-—1 + An+1

Taking n = 1, and averaging over the noise term gives,

s(s — 2ip)ay = —i + as

1
:>a1:

92— 5(s — 2ip)

al

If R, =% forn>1

nfl’
ns(ns — 2ip)a, = ap_1 + api1
1
= — =ns(ns — 2ip) — Ry

n

Now R; can be defined as,
1

R pu
"7 s(s — 2ip) — Ry

Writing subsequent expressions for Ry, R3 leads to,

1
R1: 1

s(s — 2ip) — 25(25—2ip)— I

3s(3s—2ip)— L

15
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Mean Torque
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Figure 2.9: Mean torque plotted according to the constitutive relation.

Now, Ry = 2. Comparing the definition of R; with Eq.(2.22), we find:
Rl = ia1
Putting this in Eq.(2.20),

71

= sin(c;)0(s,0) + pus + S(Ry)

(2.25)

This gives the constitutive relation for our fluid. Plots for 7 vs us for various values

of p is shown in Fig(2.9). R; has been calculated till 100 terms. If
Eq.(2.20), 7 < 1.
Fig.(2.9) (

.
w1 < 0.5), allow solid-fluid coexistence and slip-planes.

16
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Chapter 3

2-D Carpet of Rotors

3.1 Model and dynamics

000
Sfere
1300

X

N,

Figure 3.1: Rotors in a 2D plane.

The rotors are placed on a plane, their heads fixed at lattice points distance d
apart, and their arms left free to rotate. The length of the rotor arms are b (b << d).
While rotating they also exert force F; on the surrounding fluid, which combines with
the hydrodynamic interaction between the rotors. The instantaneous position of the
rotor end is:

r; = Tro; + bny (3.1)

Here rg; is the position of the fixed head, and n; is the vector which points along the
orientation of the rotor arm as shown in Fig(3.1). If ¢; is the angle the i"* rotor makes
with the x-axis,

n; = (cos ¢;, sin ¢;)
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The velocity of each rotor:

— dri _ bdni
Yodt dt
dn;  d(cos ¢;,sing;)  do; .
= - == (— sin ¢y, cos ¢;)

If (—sin ¢;, cos ¢;) = t;, which points along the tangential direction of the rotor arm,

_ 30y,

) 7 3.2
v o (3.2)

The force exerted by the rotor arm of the i rotor on the fluid can be broken into

radial and tangential components.

F, and F; are the radial and tangential components respectively. Varying ¢, the
angle between n; and F;, leads to varying properties between synchronization, spiral

formation and complete disorder.

Now we need to find how the force exerted by a rotor on the fluid influences the rest
of the rotor velocities. Herein enters the Blake-Oseen Tensor G, which describes the
hydrodynamic interaction at a boundary of a fluid with no-slip condition due to a

point force [Bla71]. The velocity field of the fluid can be calculated now as
v(r) =Y G(r—r).F; (3.4)

Here G(r — ;) is the Blake-Oseen tensor to a O(h?/d?) approximation [Olm99], and

is equal to:
_ 3h%rarg
~2m P

Here o, 8 = x,y; h is the depth of the fluid, and 7 is the viscosity of the fluid.

Gag(r)

(3.5)

Since the rotors are constrained to only rotate, only the tangential component of the
force will affect the velocity of an individual rotor. Also, we need to remove self-
interaction. If there was no coupling, each " rotor would rotate with an angular
velocity w;y, hence v; = bwt;. Introducing r;; = r; — r;, and the hydrodynamic

coupling due to the rest of the rotors gives,

N

[vil = [bwrts| + (D

=L

3h2 rijrij
— Fot; 3.6
2 v i) (3.6)
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In order to write F; in a simplified manner, we can invoke Stoke’s law. Drag force F

on a sphere of radius a moving through a fluid of viscosity 7 at a speed v is given by,
F = 6mnav (3.7)

|v| due to the rotor’s internal force is given by bw. Writing 67na = (, as the Stoke’s
drag coefficient,
th = wat,n (38)

Substituting v from Eq.(3.2) and Eq.(3.8) into Eq.(3.6), and cancelling b from both

sides gives,

d(bz 3h2 r;,;r;;
TR : s
Breaking w in radial and tangential components, and writing h?¢/n = v, the hydro-

dynamic coupling constant (analogies to Kuramoto Model [Kur03]), the equation can

be written as:

doi 37 TjTi;
% = w; + ]ZZ % |I‘z-j|5 (wnnj -+ wttj).ti (39)

This is the dynamical equation for how ¢; changes with time. It can be further

simplified by introducing § = tan™!(w;/w,), and |w| = \/w?2 + w?.

do; 3 1 )
Dt > o el eos(9)(cos 0 sin )+

|w| sin(9)(— sin ¢}, cos ¢;)).t;

do; 1
_— % =w, + 3’;|:| ; |I‘¢j|3(COS(5COS ¢; — sin 0 sin ¢,
cos d sin ¢; + sin d cos ¢;).(— sin ¢, cos ¢;)
do; 3y|w| 1 )
T T Ty Lo
sin(d + ¢;) cos(¢;))
do; 3y|w| 1 .
A AT ; vy (065 =01 (3.10)
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3.2 Simulation

The simulation was performed for a 50 x 50 lattice. Larger lattice sizes took much
longer time to run with the available computing resources. The differential equation
Eq.(3.10) is solved via Euler method with time-step, ¢ = 0.1. The rotor arm length
is b = 0.1, and distance between the rotors is d = 1. The coupling constant is taken
to be v = 0.5. The value of |w]| is taken to be 0.1. The initial angular position of the

rotors was uniformly distributed.

3.3 Results

331 6=0°

t=100 t=12600

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Figure 3.2: Snapshots of the rotors for 6 = 0°. The color range shows the value of
cos ¢;, with black for -1 to yellow for +1.

For 9 = 0°, the force due to the rotors on the fluid is completely radial. The rotors
initially start from random orientations (distributed uniformly), just pumping into
the fluid, without any rotation. These rotors can be termed as “pumping-driven
rotors”. The movement of the rotors is solely driven by the fluid flow generated by

the remaining rotors. The rotors globally synchronize after ~ 12000 time-steps.

3.3.2 6=30°

For 6 = 30°, the rotors are both pumping and torque driven. Each rotor exerts a

force wcos30° x (¢b) on its surrounding fluid, and rotates with an angular velocity

20
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0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

t=7000 t=12000

) 11 e e—E———y |
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Figure 3.3: Snapshots for o = 30°.

wsin 30° initially. The movement of the rotors starts off only due to the individual
rotor’s tangential force, and then the fluid flow influences it. As in the previous case,
this leads to neighbouring areas getting synchronised, seen for ¢ = 4500 and ¢t = 7000
in Fig.(3.3). All the rotors get globally synchronised and start rotating together as a

single unit after ~ 12000 time-steps.

3.3.3 0=060°

Even for this case, the rotors are both torque and pumping driven. The angular

velocity becomes wsin 60°, and the radial force on the fluid is wcos60°. Here the
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t=7940 t=15000

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Figure 3.4: Snapshots of the angular rotors for § = 60°.

rotors don’t completely synchronise, but instead form spiral waves in the fluid flow.
The spirals appear to be pair based, one flowing clockwise and the other anti-clockwise.
This can be seen intuitively in ¢ = 15000 in Fig(3.4). The spirals spread and give rise

to further spirals in the flow.

Animations for § = 0°,30°,60° for a 50 x 50 lattice, and § = 60° for a 100 x 100 lattice
can be seen in this link. The spiral waves proliferation are better seen in 100 x 100
lattice, but the code takes a long time to simulate with the given computational

resources. Hence this lattice size wasn’t chosen for the other values of §.

3.3.4 Order Parameters

A Vicsek Model [Vic+95] inspired Order Parameter was taken,

N
1
<n>:N|;ni| (3.11)

< n > is plotted for various values of ¢ in Fig.(3.5). Up until, § = 50°, the system
reaches a completely steady synchronized state. The order-parameter does not reach 1
(does not get completely synchronised) for 6 = 55°,60°. Spirals were shown for 6 = 60°
in Fig.(3.4). Hence there should exist a critical degree of frustration, 50° < ¢, < 55°
for a 50 x 50 lattice. The order parameters have been plotted till £ = 20000. Steady

states are not reached for 6 = 55°,60°. For § = 90°, the rotors are only torque driven
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and the fluid flow remains completely disordered.

1 T — —
09 9.42
55¥txt" every 500 —=—
08 L £60).txt" every 500 —=— |

"OP{d=90).txt" every 500

0.7 "OP(d=50).txt" every 500 —e—=-{

0.6

<n>

0.5

0.4

0.3

0.2

0.1

0 5000 10000 15000 20000
time-steps

Figure 3.5: Order Parameters for various values of (shown as d in the plot) till 20000
time-steps.
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Chapter 4
Summary

In this MS-thesis I started with a one-dimensional classical XY model pushed away
from equilibrium with angular momentum conserving Langevin dynamics and showed
how the angular velocity distributions closely resemble the shear flow seen in non-
Newtonian fluids. Four distinct flow patterns were observed: (i)Uniform flow (similar
to that for Newtonian fluids), (ii) Shear Banded flow, (iii) Solid-Fluid coexistence
and (iv) Slip-plane regime. Also the system was theoretically analysed leading to a

constitutive relation for the rotors using mean field theory.

Next, I moved up a dimension to a two-dimensional carpet of rotors. Also, the rotors
in this system could interact hydrodynamically (the rotors were placed in a fluid). The
rotors could exert force on the surrounding fluid due to internal degrees of freedom.
Here under maximum frustration , the rotors synchronised in direction instantly. Upon
reducing the frustration, spiral were obtained in the fluid low. The order parameters
for various degrees of frustration were also plotted. Such a 2-D XY model also presents
an idea for microfluidic mixers where the flow behaviour of the fluid can be changed

by just tweaking the frustration in the system.

25



26



Bibliography

[Bla71]

[Dar+-04]

[Eva+15]

[Haw04]

[KDOS]

[Kos74]

[Kun+12]

[Kur03]

J. R. Blake. “A note on the image system for a stokeslet in a no-slip
boundary”. In: Mathematical Proceedings of the Cambridge Philosophical
Society 70.2 (1971), pp. 303-310. pOI: 10.1017/50305004100049902.

Nicholas Darnton et al. “Moving fluid with bacterial carpets”. In: Bio-

physical journal 86.3 (2004), pp. 1863-1870.

R. M. L. Evans et al. “Classical XY Model with Conserved Angular Mo-
mentum is an Archetypal Non-Newtonian Fluid”. In: Phys. Rev. Lett. 114
(13 Apr. 2015), p. 138301. DOI: 10.1103/PhysRevLett.114.138301. URL:
https://link.aps.org/doi/10.1103/PhysRevlett.114.138301.

M. D. Haw. “Jamming, Two-Fluid Behavior, and “Self-Filtration” in Con-
centrated Particulate Suspensions”. In: Phys. Rev. Lett. 92 (18 May 2004),
p. 185506. DOI: 10.1103/PhysRevLlett.92.185506. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.92.185506.

Kapilanjan Krishan and Michael Dennin. “Viscous shear banding in foam”.
In: Phys. Rev. E 78 (5 Nov. 2008), p. 051504. DOI: 10.1103/PhysRevE.
78.051504. URL: https://link.aps.org/doi/10.1103/PhysRevE.78.
051504.

J M Kosterlitz. “The critical properties of the two-dimensional xy model”.
In: Journal of Physics C: Solid State Physics 7.6 (Mar. 1974), pp. 1046—
1060. por: 10.1088/0022-3719/7/6/005. URL: https://doi.org/10.
1088/0022-3719/7/6/005.

Itsuki Kunita et al. “Shear Banding in an F-Actin Solution”. In: Phys.
Rev. Lett. 109 (24 Dec. 2012), p. 248303. DOL: 10.1103/PhysRevLett .
109.248303. URL: https://link.aps.org/doi/10.1103/PhysRevLlett.
109.248303.

Yoshiki Kuramoto. Chemical oscillations, waves, and turbulence. Chem-
istry Series. originally published: Springer Berlin, New York, Heidelberg,
1984. Dover Publications, 2003. 1SBN: 978-0-486-42881-9.

27



[LG85]

[Mat84]

[O1m99)]

[SMC03]

[TT95]

[UG10]

[Vic+95]

D. H. Lee and G. Grinstein. “Strings in two-dimensional classical XY
models”. In: Phys. Rev. Lett. 55 (5 July 1985), pp. 541-544. por: 10 .
1103 /PhysRevLett . 55.541. URL: https://link. aps.org/doi/10.
1103/PhysRevLett.55.541.

Daniel C. Mattis. “Transfer matrix in plane-rotator model”. In: Physics
Letters A 104.6 (1984), pp. 357-360. 1sSN: 0375-9601. DOIL: https: //
doi . org/10. 1016 /0375-9601(84) 90816 - 8. URL: https : //www .
sciencedirect.com/science/article/pii/0375960184908168.

Peter D Olmsted. “Two-state shear diagrams for complex fluids in shear
flow”. In: EPL (Europhysics Letters) 48.3 (1999), p. 339.

Jean-Baptiste Salmon, Sébastien Manneville, and Annie Colin. “Shear
banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles”.
In: Phys. Rev. E 68 (5 Nov. 2003), p. 051503. DOI: 10.1103/PhysRevE.
68.051503. URL: https://link.aps.org/doi/10.1103/PhysRevE.68.
051503.

John Toner and Yuhai Tu. “Long-Range Order in a Two-Dimensional
Dynamical XY Model: How Birds Fly Together”. In: Phys. Rev. Lett. 75
(23 Dec. 1995), pp. 4326-4329. DOI: 10.1103/PhysRevlett .75 .4326.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.75.4326.

Nariya Uchida and Ramin Golestanian. “Synchronization and Collective
Dynamics in a Carpet of Microfluidic Rotors”. In: Phys. Rev. Lett. 104 (17
Apr. 2010), p. 178103. pOI: 10.1103/PhysRevLett . 104.178103. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.104.178103.

Tamés Vicsek et al. “Novel type of phase transition in a system of self-
driven particles”. In: Physical review letters 75.6 (1995), p. 1226.

28



Appendix A

C code for 1-D chain of rotors

1 #include <stdio.h>
2 #include <math.h>

; //ranl and gasdev

5 float gasdev(long *idum)
6 {

7 float ranl(long *idum);
8 static int iset =0;

9 static float gset;

10 float fac,rsq,vl,v2;

12 if (xidum < 0) iset=0;

13 if (iset = 0) {

14 do {

15 vl=2.0%xranl (idum) —1.0;
16 v2=2.0*xranl (idum) —1.0;
17 rsq=vl*vl4+v2xv2;

18 } while (rsq >= 1.0 || rsq = 0.0);
19 fac=sqrt (—2.0xlog(rsq)/rsq);

20 gset=vlxfac;

21 iset =1;

22 return v2xfac;

23} else {

24 iset =0;

25 return gset;

20 // ranl from Numerical Recipes C with uniform Distribution

31 #define TA 16807
32 #define IM 2147483647
33 #define AM (1.0/IM)

29



34 #define 1Q 127773

35 #define IR 2836

36 #define NTAB 32

s7 #define NDIV (1+(IM—1)/NTAB)
3s #define EPS 1.2e—7

30 #define RNMX (1.0—EPS)

40

float ranl(long *idum)

{

}

int j;

long k;

static long iy =0;
static long iv [NTAB];

float temp;

if (*idum <=0 || liy) {
if (—(xidum) < 1) =*idum=1;
else *idum = —(*idum) ;

for (jJENTAB+7;j>=0;j—) {
k=(*idum) /IQ;
*xidum=IA x (xidum—k=+IQ)—IRxk;
if (#idum < 0) =sidum += IM;
if (j < NTAB) iv[j] = *idum;
}
iy=iv [0];
}
k=(xidum) /1Q;
*x1dum=IA * (*idum—k=*IQ)—IRxk;
if (xidum < 0) xidum += IM;
j=iy /NDIV;
ly=iv[j];
iv[j] = *idum;
if ((temp=AMxiy) > RNMX) return RNMX;

else return temp;

//end

double theta[1024],ang_vel[1024], avg[1024];
long seed;

double r,p,q; //var in acc

double mu, T, gsr;//parameters: gsr=global shear rate

{

76 double acc(int k, double a, double v) //acceleration function

p=sin (theta [k+1]—a)+mux(ang_vel [k+1]—v)+r*xgasdev(&seed) ;
g=sin (a—theta [k—1])+mux(v—ang_vel [k—1])+r*xgasdev(&seed) ;
return (p—q) ;

30



81

82

96

int

main ()

int n=1024;

seed= —1234;

int i,j; //loop var

int ¢=0; //counter var

mu=10;

T=0.02;

gsr=0.0078;

r=sqrt (2xmuxT) ;

double evol=450000; // time until which system is evolved
double t=0., dt=0.01; //time var, increment

double dx1,dx2,dx3,dx4,dvl,dv2,dv3,dv4,dx,dv; //RK4 vars

FILE xfpr= fopen(”shb_potl.txt” ,”w”);
FILE *gPr—= fopen (77 EHSW shb. txt” ,”W” ) :

for (i=0;i<n;i++) //initialising
{
theta[1]=0.;
ang_vel [1]=0.;
}
ang_vel[0]=—n*gsr /2; //initial twist
ang_vel [n—1]=nxgsr /2;
for (i=0;i <500000;i++)
{
theta[0]=theta[0]+dtxang_vel [0];
theta [n—1]=theta [n—1]+dt*xang_vel [n—1];
for (j=1;j<n—1;j++) //RK4
{
dxl=dt+xang_vel[j];
dvl=dtxacc(j,theta[j],ang_-vel[]j]);
dx2=dt*(ang_vel [j]+dvl/2);
dv2=dtxacc(j,theta[j]+dx1/2,ang _vel [j]+dvl/2);
dx3=dt*(ang_vel [j]4+dv2/2);
dv3=dt=xacc(j,theta[j]+dx2/3,ang_vel [j]+dv2/3);
dx4=dt*(ang_vel [j]+dv3);
dvd=dt=xacc(j,theta[j]+dx3,ang_vel [j]+dv3);
dx=(dx1+2*dx2+2+dx3+dx4) /6;
dv=(dv1+2%dv2+2+dv3+dv4d) /6;
theta [j]=theta[j]+dx;
ang_vel[j]=ang_vel [j]+dv;

if (i>499500)//inter rotor potential plots
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129

130

131

138

139

140

141

148

149

150

for (j=1;j<u;j++)
{
fprintf (fpr,”%d\t%d\t%1f\n” ,j,i,—cos(theta[j]—theta[]

if (i=evol)//averaging

{

c++;
for (j=0;j<n;j++)
{
avg[j]=avg[j]+ang-vel[j];

}

evol=evol+100;

for (i=0;i<n;i++)

{

fprintf (gpr,”%d\t%1f\t%1f\n” ,i,theta[i],avg[i]);
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Appendix B

C code for 2-D Carpet of Rotors

with Hydrodynamic Interaction

1 #include <stdio .h>
2 #include <math . h>
3 #include <time.h>

1

5 //ranl

6 #define TA 16807

7 #define IM 2147483647
s #define AM (1.0/IM)

9 #define 1Q 127773

10 #define TR 2836

11 #define NTAB 32
12 #define NDIV (1+(IM—1)/NTAB)
13 #define EPS 1.2e—7
14 #define RNMX (1.0—EPS)
15
16 float ranl(long xidum)
17 {

18 int j;

19 long k;
20 static long iy=0;
21 static long iv [NTAB];
22 float temp;

24 if (*idum <=0 H !iy) {

25 if (—(xidum) < 1) *idum=1;

26 else *idum = —(xidum);

27 for (j=NTAB+7;j>=0;j—) {

28 k=(xidum) /IQ;

29 *xidum=IA (¥ idum—k*IQ)—IRxk;
30 if (#idum < 0) xidum += IM;
31 if (j < NTAB) iv[j] = *idum;

33



}

iy=iv [0];
}
k=(*idum) /1Q;
*xidum=IA * (*idum—k=*IQ)—IRxk;
if (*idum < 0) *idum += IM;
j=iy /NDIV;
iy=iv[j];
iv[j] = *idum;
if ((temp=AMxiy) > RNMX) return RNMX;
else return temp;

}
//end

s //gasdev

r float gasdev(long *idum)

{
float ranl(long *idum);
static int iset=0;
static float gset;

float fac,rsq,vl,v2;

if (*idum < 0) iset=0;
if (iset = 0) {
do {
vl=2.0xranl (idum) —1.0;
v2=2.0%ranl (idum) —1.0;
rsq=vil*v1+v2xv2;
} while (rsq >= 1.0 || rsq = 0.0);
fac=sqrt (—2.0xlog(rsq)/rsq);
gset=vlxfac;
iset =1;
return v2xfac;
} oelse {
iset =0;

return gset;

//end
void main ()

{

clock_t begin= clock();
//constructing 50 * 50 lattice
int i,j,k,;

long seed=—12345;
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79 int time;

80 double t=0., dt=0.1;

81 int n=50;

82 double phi[n][n]; //angles

83 double phil[n][n];

84 double s; // summation term

85 double ang_diff;

86 char snum [10];

87 double avg.nx, avg.-ny; //spatial average of phi
88 double director; //<n>

89 //parameters

90 double b=0.1;

91 double w=0.1; //angular frequency

02 double delta=(double)(M-PI/3); // angle of frustration
93 printf(”sin delta:%1f\n”,sin(delta));

94 int Time=15001; //total time

95 double gamma=0.5;//coupling constant

96

97 double distx, disty, dist; //distance x, y

98 for (i=0;i<n;i++)

99 {

100 for (j=0;j<n;j++)

101 {

102 phi[i][]j]=2xM_PIxranl(&seed);

103 phil[i][j]=phi[i][]j]; //creating a copy

104 }
105 }

106 FILE xgpr=fopen (”Order Parameter.txt” ,”w”);
107 //time evolution

108 for (time=0;time<Time; time++)

109 {

110 t=t+dt ;

111 avg_nx=0.;

112 avg_ny =0.;

113 for (i=n—1;i>=0;i—)

114 {

115 for (j=n—1;j >=0;j —)

116 {

117 s=0.;

118 for (k:nfl;k>=0;kff)

119 {

120 for (1=n—1;1>=0;1—)

121 {

122 if(jl=1 & il=k)

123 {

124 distx= i+bxcos(phi[i][j])—(k+bxcos(phi[k][1])); //

calculating distance
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125 if ((fabs(distx))>(n/2))

126 {

127 distx=n—fabs(distx); // PBC

128 }

129 disty= j4bxsin (phi[i][j])—(14+bxsin (phi[k][1])); //
calculating distance

130 if ((fabs(disty))>(1n/2))

131 {

132 disty=n—fabs(disty); //PBC

133 }

134 dist=sqrt (distxxdistx+disty*xdisty); //

135 ang_diff=phi[i][j]—phi[k][l]—delta; //

136 s= s+ (double) (1/(distxdist*dist))*sin(ang_diff);

137 }

138 }

139 }

140 phil[i][j]=phi[i][j]+w*sin (delta)x*dt—((3*gammaxw) /(2xM_PI))*sxdt;

141 avg_nx=avg_nx+(double)cos (phil[i][j]) /(n*n);

142 avg_ny=avg_-ny+(double)sin (phil[i][j]) /(n*n);

143 }

144 }

145

146

147 sprintf (snum, "%d.txt”  time);

148 FILE «fpr=fopen (snum,”’w”);

149 for (i=0;i<n;i++)

150 {

151 for (j=0;j<n;j++)

152 {

153 fprintf (fpr,”%d\t%d\t%lf\n” ,i,j,cos(phil[i][j]));

154 phi[i][j]l=phil [i][]];

155 }

156 fprintf (fpr,”\n”);

157 }

158

50 fclose (fpr);

60 director= sqrt(avg_.nxxavg_nxtavg ny*avg_ny);

161 fprintf (gpr,”%d\t%1f\n” ,time , director);

62 printf ("%1{%% done.\n” ,(float )time/(Time—1)*100.0) ;

163

164

165

166

167

168 }

169 fclose (gpr);

170 clock_t end= clock ();
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printf (?TIME TAKEN: %] f
¥3600) ) ;

hours”, (double) (end—begin) /(CLOCKS_PER_SEC

37



