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Abstract

In this thesis, we revisit asymptotic symmetries in electrodynamics and gravity. Our goal is

to study the existence of asymptotic symmetries in higher even dimensions. We first analyse

the case of electromagnetism and study large gauge transformations. We prove the conser-

vation of large gauge transformation charges by following the procedure in [CE17]. This

conservation is related to the soft photon theorem [HMPS14]. Next we study asymptotically

flat spacetimes in four and higher even dimensions. We do a full non-linear analysis of the

phase space in higher dimensional asymptotically flat spacetimes and study the existence

of BMS symmetries.
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Chapter 1

Introduction

Lately, there has been renewed interest in studying asymptotic symmetries because of

emerging connections between quantum soft theorems in studies of scattering amplitudes,

asymptotic symmetries and the memory effect (see [Str18] for a review). Quantum soft

theorems describe universal feature of the S matrix in gauge theory or gravity when a finite

number of gauge bosons or gravitons become soft, i.e. have energies much less than the

characteristic energy of the scattering. The universality of the S matrix in such a kinematic

region (where certain number of particles are soft) has an analog in classical scattering.

That is, in any classical scattering in which gravitational or electromagnetic radiation is

emitted, the soft (low frequency) limit of the radiation displays certain universal features

which are independent of the details of the scattering. In the case of gravitational scattering,

this universality goes under the name of classical soft graviton theorem [Wei65]. Consider

a classical scattering process with n incoming objects with momenta p1, . . . , pn and m out-

going objects with momenta pn+1, . . . , pm. The scattering states can be composite objects

such as black holes or neutron stars and pi defines the (initial or final) momentum of the

center of mass of these objects which may interact via gravitational and other interactions

including contact interactions such as collision. In general, the radiative gravitational field

hµν(t, x̄) (or it’s Fourier transform in the time coordinate hµν(ω, x̂)) depends on the de-

tails of the scattering with no closed form expression. But in the low frequency expansion

(which corresponds to the gravitational radiation emitted during the scattering at early and

late retarded time ), we get an interesting result at leading order [Wei65], [SSS20]

hµν(ω, x̂) =
m+n

∑
a=1

p(a)µ p(a)ν
pa · k

(1.1)
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with kµ = ω(1, x̂) and x̂ the direction at which the radiation is being measured. This state-

ment is universal in the sense that it does not depend on the details of the scattering process.

In fact this (leading) soft behaviour of radiative gravitational field is true in all dimensions

D ≥ 4. Generically in a scattering process, universal constraints on scattering are asso-

ciated to conservation laws and symmetries. Simplest example is that of conservation of

energy during a scattering event which arises from time translation symmetries in the La-

grangian. The soft graviton theorem is a statement of energy conservation at every angle

and should have an underlying symmetry associated with it.

In four dimensions, it turns out that such a connection does exist. The conservation of so

called super-translation charges (that generate super-translation symmetries) in a gravita-

tional scattering that occurs in asymptotically flat spacetime is associated with the classical

soft graviton theorem [HLMS15]. In fact, this is not the whole story. The classical soft

graviton theorem of (1.1) also describes the so called memory effect due to point particles.

The memory effect is the permanent displacement in the relative positions of inertial ob-

serves due to a radiation epoch. It turns out that the shift in the metric components due

to the radiation epoch is the same metric fluctuation that one gets from the soft graviton

theorem in four dimensions. The soft graviton theorem is precisely the memory effect in

four dimensions [SZ14].

Classical soft graviton theorem is thus on one hand conservation of super-translation charges

and on the other hand, describes the memory effect. This obviously implies that the grav-

itational memory effect is nothing but a statement about conservation of super-translation

charges.1 The metric before and after the radiation epoch can actually be related through

asymptotic symmetries. We can ask what happens to this trinity of relations in D > 4 di-

mensions. The classical soft graviton theorem in (1.1)) is a dimension independent result.

So our naive expectation would be that the relation between asymptotic symmetries and

soft theorems should also trivially generalise to higher dimensions. But it turns out that

in higher dimensions, the existence of asymptotic symmetries is a rather subtle issue. Our

goal in this thesis is to study the existence of asymptotic symmetries in higher even dimen-

sions. The case of odd dimensions is far more subtle as it is not clear if there is a definition

1Although for the sake of pedagogy, we restrict ourselves to a statement about gravitational radiation due
to point particles, the results can be trivially generalised to emission of gravitational radiation due to fields
including gravitational field itself [LS20]
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of null infinity for odd-dimensional spacetimes which contain radiation [HW04] 2 As grav-

itational physics is rather complicated due to the non-linear nature of Einstein equations,

we start by analysing the universality of soft Electro-magnetic radiation in four dimen-

sional Minkowski spacetime. A structure analogous to gravity exists here as well. The

conservation law associated with asymptotic symmetries is related to the so-called classical

soft photon theorem [Wei65]. Since the ED case is more simpler and cleaner, we use it

to introduce some key concepts important for the gravity analysis. More specifically, we

introduce the notion of asymptotic symmetries or Large Gauge Transformations (LGTs)

through this example. We also introduce the powerful covariant phase space formalism

which is perhaps the most efficient language to understand the Hamiltonian framework for

corresponding charges.

Next, we explicitly prove the conservation of the LGT charges. Equipped with these tools,

we then move on to four dimensional gravity. We find the asymptotic symmetry group of

asymptotically flat spacetimes, also called the BMS group. We discuss why the four di-

mensional case is special and the issues associated with extending the analysis to higher

dimensions. In the higher dimensional analysis, we first do a linearised analysis of the

phase space and asymptotic symmetries. We find from the linearized analysis that a con-

servation law exists even in higher dimensions. But this presents a new confusion that we

try to explain. We finally present a complete non-linear analysis and state our results so far.

2There has been interesting recent progress in analysing the case of odd-dimensions [HM19] but the
analysis in these works is outside the scope of this thesis.
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Chapter 2

Electrodynamics

In this chapter, we will look at Electrodynamics (ED) in 4-dimensional Minkowski space-

time. We will start by reviewing aspects of Minkowski spacetime. Next we will study mass-

less charged matter in this background. After analysing the Equation of Motion (EOM)s,

we will move on to the phase space analysis and use it to find charges generating asymp-

totic symmetries (or Large Gauge Transformations (LGTs) in this context). We will then

analyse the EOMs at spatial infinity to prove the conservation of these charges.

2.1 Minkowski spacetime

The metric for a d +2 dimensional Minkowski spacetime can be written as

ds2 =−dt2 +dr2 + r2
γABdxAdxB (2.1)

where γAB is the unit round metric on the d sphere. Note that the higher dimensional

space-time has additional non-compact dimensions with respect to the four dimensional

Minkowski space. That is, we are adding a new dimension in the sense of adding a new

spatial direction (for instance going to 5 dimensions from 4 dimensions means adding w to

(t,x,y,z) to get (t,x,y,z,w) in the cartesian sense. Then r is defined as r =
√

x2 + y2 + z2 +w2

and in the corresponding spherical co-ordinates, the celestial sphere is d dimensional. Now

in order to represent the spacetime in a finite portion of area, we “compactify” the space-

time and represent it using what is called the Penrose diagram. Distances are not repre-

sented faithfully in the Penrose diagram but the causal structure does not get affected by

compactification brought about through conformal transformations. We can see this from

the fact that light rays still travel at 45 degrees in this diagram. Every pair of points on the
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left and right side of this diagram is a d sphere labelled by constant (r > 0, t) and matched

antipodally1 to each other. Figure 2.1 shows the Penrose diagram. In this diagram the labels

represent the following:

• Timelike infinity i±: This represents the d-sphere that is reached by taking t →±∞

while keeping r constant. Since massive particles cannot move faster than the speed

of light, they will always end up being crossed by a light ray which will move to a

larger radius r. Hence, they will always end up at i+.

• Spacelike infinity i0: This represents the d-sphere reached by taking r → ∞ while

keeping t constant.

• Null infinity I ±: This represents the codimension-1 hypersurface at r→ ∞ formed

by the starting and ending points of null geodesics. I − is where these null geodesics

start and I + is where they end.

Figure 2.1: Penrose diagram of Minkowski spacetime. Here, red lines represent constant-t
surfaces and blue lines represent constant-r surfaces. The trajectory of a massive particle
is shown by the thick gray line and the curly line shows a light ray. Timelike infinities are
shown by i± and spacelike infinity by i0. I ± label future and past null infinities. Every
d-sphere of constant-r > 0, t is denoted by two antipodally related points in the diagram.
[Str18]

1The antipodal map A : Sd → Sd is defined by A(x) = −x and sends every point on the sphere to its
antipodal point
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Since t and r both tend to infinity as we go towards I ±, we introduce advanced and retarded

null coordinates u and v defined as

u = t− r v = t + r (2.2)

So I + can be parameterized by (u, x̂) and I − by (v, x̂). We can put further labels to denote

the u→±∞ limit as I +
± and similarly for v→±∞ as I −± . These points are all shown in

2.1. The Minkowski metric in these coordinates takes the form

ds2 =−du2−2dudr+ r2
γABdxAdxB (2.3)

for advanced null coordinates (u,r, x̂) and

ds2 =−dv2 +2dvdr+ r2
γABdxAdxB (2.4)

for retarded null coordinates (v,r, x̂).

In this chapter, we will study scattering i.e. we will be interested in understanding how

the phase space prescribed on the Cauchy slice i− ∪I − is mapped to the phase space

defined on i+∪I + and try to see if we get any conservation laws. In simpler words, we

would like to understand the evolution of particles/wavepackets starting in the past towards

the future i.e. how particles starting out in the past at i− ∪I −, interact with each other

and finally come out in the futute at i+∪I +. Most of our analysis will deal with massless

particles and so we will neglect i±.

Studying this scattering problem will require us to analyse equations near spatial infinity

i0. In the conformal description given above, the points i0 and i± are singular and values

of fields in these regions often depend on the order of limits taken to reach these regions.

Or in other words, fields are multivalued in these regions. Resolving these points can help

solve this issue. For this purpose, we introduce a second set of coordinates that in some

sense “blow up” the region near i0 and i±. We will introduce coordinates (ρ,τ, x̂) such that

in the |r|> t region,

ρ ≡
√

r2− t2 τ ≡ t√
r2− t2

(2.5)

and the Minkowski metric in these coordinates becomes

ds2 = dρ
2 +ρ

2dσ
2 (2.6)

6



with the dσ2 the (d +1)-dimensional de Sitter metric given as

dσ
2 =− dτ2

1+ τ2 +(1+ τ
2)γABdxAdxB ≡ hαβ dyαdyβ (2.7)

here yα = (τ,xA). We can think of the region |r|> t as being foliated by dSd+1 slices.

Figure 2.2: Foliation of 4D Minkowski spacetime with dS3 slices (drawn in blue) and AdS3
slices (drawn in red) [CF19]

We can similarly also foliate other regions of the spacetime. Figure 2.2 shows this for

Minkowski in 4D.

At this point we would also like to introduce some notation that will be used for the rest

of the chapter. We will mostly follow [CE17] for notations and analysis of the EOMs at

spatial infinity.

• spacetime Rd+2: xa, gab, ∇a

• sphere Sd: xA, γAB, DA

• spatial infinity i0: yα = (τ,xA), hαβ , Dα

• future null infinity I +: (u,xA), qAB, (∂u,DA)

As noted above also, (ρ,τ) are defined differently depending on the region of analysis.
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2.2 Field equations and solutions

We are interested in studying Maxwell fields Aa in four dimensional flat spacetime coupled

to massless charged fields φ .

The field equations are

∇
aFab = Jb (2.8)

DaDa
φ = 0 (2.9)

where Fab = ∂aAb− ∂bAa is the field strength, ∇a is the spacetime covariant derivative,

Daφ = ∂aφ − iAµφ is the gauge-covariant derivative and Ja is the conserved matter current

given by

Ja = φ(Daφ)∗+ c.c. (2.10)

Local U(1) gauge transformations, parameterized by scalar Λ act on the fields in the fol-

lowing way leaving the equations unchanged

δΛAa = ∂aΛ δΛφ = iΛφ (2.11)

2.3 Electrodynamics (ED) at null infinity

2.3.1 Field expansion near null infinity

In this section, we study fields near I + i.e. as r → ∞ with (u, x̂) finite. The metric in

coordinates (u,r, x̂) as noted before in (2.3) is

gab =

 −1 −1 0
−1 0 0
0 0 r2γAB

 , gab =

 0 −1 0
−1 1 0
0 0 r−2γAB

 (2.12)

The EOMs in these coordinates are

1
r2 ∂r(r2Fru)−∂uFru +

1
r2 DAFAu = Ju (2.13)

1
r2 ∂r(r2Fru)+

1
r2 DAFAr = Jr (2.14)

∂r(FrA−FuA)−∂uFrA +
1
r2 DAFBA = JA (2.15)

where DA denotes derivative w.r.t the sphere metric γAB.

To decide the falloff for the fields near I +, we set some physical constraints. We would

8



want the total energy, momentum and charge to be finite. Keeping these constraints in mind,

we use the following falloffs:

FAB(u,r, x̂) =
∞

∑
n=0

F(n)
AB (u, x̂)

rn (2.16)

Fur(u,r, x̂) =
∞

∑
n=2

F(n)
ur (u, x̂)

rn (2.17)

FuA(u,r, x̂) =
∞

∑
n=0

F(n)
uA (u, x̂)

rn (2.18)

FrA(u,r, x̂) =
∞

∑
n=2

F(n)
rA (u, x̂)

rn (2.19)

This also gives the falloffs for the massless matter current

Ju(u,r, x̂) = ∑
n=2

J(n)u (u, x̂)
rn (2.20)

JA(u,r, x̂) = ∑
n=2

J(n)A (u, x̂)
rn (2.21)

Jr(u,r, x̂) = ∑
n=4

J(n)r (u, x̂)
rn (2.22)

With these falloffs, we can solve the field equations near I +. We will work in the radial

gauge i.e.

Ar = 0 (2.23)

We can write the falloffs in terms of the components of the gauge field as,

AI(u,r, x̂) =
∞

∑
n=0

A(n)
I (u, x̂)

rn (2.24)

Au(u,r, x̂) =
∞

∑
n=1

A(n)
u (u, x̂)

rn (2.25)

On substituting the above falloffs in the EOMs (2.13)-(2.15), we see that A(0)
I (u, x̂) is uncon-

strained free data and all the components can be evaluated in terms of A(0)
I and integration

constants at u = −∞. We further assume the following behaviour for A(0)
I as u→±∞.

A(0)
I = DIΦ(x̂)+ ÂI(u, x̂) (2.26)
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where ÂI(u, x̂) ∼ O(|u|−ε). The reason we can write the u-independent piece as DIφ is

because we assume that the magnetic field vanishes as u → ∞. To determine the u-falloffs

for a general A(n)
I , the following equation (derived from (2.15)) will be useful

∂uA(n)
I =

1
2n

DJF(n−1)
IJ n≥ 1 (2.27)

Using the equation above and A(0)
I ∼ O(u0), we get

A(n)
I = O(|u|n) (2.28)

Then (2.14) tells us

A(n)
u =

1
n

D ·A(n−1) (2.29)

And so A(n)
u ∼ O(|u|n−1). Thus,

F(n)
ur = A(n−1)

u = O(|u|n−2) (2.30)

as u→±∞.

Radial gauge does not completely fix the gauge and there are residual gauge transforma-

tions left in the theory. We can also determine the large-r behaviour of the gauge parameter

associated to the residual gauge symmetries. It has an expansion of the form

Λ(u,r, x̂) = λ (u, x̂)+O(r−1) (2.31)

If λ (u, x̂) = 0 then we obtain the so-called trivial gauge transformations. These gauge

transformations are redundancies of the theory and the Noether charge associated to them is

zero. On the other hand, the group of gauge transformations generated by Λ with λ (u, x̂) 6=

0 are the so-called Large Gauge Transformations (LGTs).

In our case, when we fix the radial gauge, we get on using (2.11),

δΛAr = ∂rλ = 0 δλ A(0)
u = ∂uλ = 0 (2.32)

And so

λ ≡ λ (x̂) in radial gauge (2.33)

To make a distinction between trivial gauge transformations and LGT, we usually need

to calculate the charge associated with the transformation (which we will do in the next
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section). The reason these are called “large” gauge transformations is because the gauge

parameter Λ does not die off at infinity. Instead what we get is an angle dependent parameter

λ as seen above. The action of the gauge parameter λ on the fields is as follows then

δλ A(0)
I = DIλ ; δλ A(1)

I = 0 (2.34)

δλ φ = iλφ (2.35)

2.3.2 Phase space at null infinity

We will start with reviewing the covariant phase space formalism in this section and then

use it to analyse the phase space at I + of massless ED. [HI87] and [HM21] are good

references to study this in greater detail.

Covariant phase space formalism is an entirely classical construct. Given the Lagrangian,

it tells us how to construct the phase space. Consider a simple example where we have

L≡ L(φ ,∂µφ) in a flat background. Then the Euler-Lagrange (EL) is given by

∂µ

(
∂L

∂ (∂µφ)

)
=

∂L
∂φ

(2.36)

and we define π = ∂L
∂ φ̇

. Since it is a second order equation, the phase space or the solution

space Γ is parameterized by 2 variables/functions (φ(x̄),π(x̄))t=t0 . We can then define the

Poisson bracket structure

{φ(x̄),π(ȳ)}= δ (x̄− ȳ) (2.37)

{φ(x̄),φ(ȳ)}= 0 (2.38)

{π(x̄),π(ȳ)}= 0 (2.39)

where all these Poisson brackets are evaluated on a time slice. This procedure can also be

understood in a more geometric way. We start with varying the Lagrangian L≡ L(φ ,∂µφ),

δL =
[∂L

∂φ
−∂µ

∂L
∂ (∂µφ)

]
δφ +∂µ

[ ∂L
∂ (∂µφ)

δφ
]

(2.40)

The first term is just the Euler Lagrange equation (EL) and the second term which is a

boundary term gives what we call the symplectic potential. We integrate it over a constant-t
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surface with normal nµ = (1, 0̄).

Θ(δ ) =
∫

dx̄nµ

∂L
∂ (∂µφ(x̄))

δφ(x̄) (2.41)

=
∫

dx̄nµ

∂L
∂ (φ̇(x̄))

δφ(x̄)

=
∫

dx̄π(x̄)δφ(x̄)

From here we can calculate what we call the symplectic form by performing a variation

over the field space,

Ω(δ ,δ ′) =
∫

dx̄
[
δ
′
π(x̄)∧δφ(x̄)

]
(2.42)

The symplectic form is a closed and invertible two-form on the field space and helps us get

the Poisson bracket structure. We can also think of it as a matrix

Ωab =

[
0 1
−1 0

]
(2.43)

where we have Ωφφ = Ωπ,π = 0, Ωφ ,π = 1 and Ωπ,φ = −1. We can invert this matrix to

find the Poisson bracket structure. In general we have

{A,B}= Ω
ab

∂aA∂bB (2.44)

This gives us for the fields φ(x̂) and π(ŷ) from (2.43),

{φ(x̄),π(ȳ)}= Ω
ab

∂aφ(x̄)∂bπ(ȳ) (2.45)

= δ
3(x̄− ȳ)

This procedure can be generalised to find the phase space of theories in any arbitrary space-

time, with any Lagrangians and on any Cauchy surfaces. In our case, we are interested in

analysing the theory at null infinity I +. The advantage of doing our analysis at null infin-

ity is that all interactions die down at these large distances and so the theory is essentially

free. Since we are working with massless fields, we can also neglect i± and just work with

defining our initial data on a null slice. For free ED the symplectic form is given by

ΩΣ =
∫

Σ

dΣ
aJa =

∫
Σ

dΣ
a√−gδFab∧δ

′Ab (2.46)

In our case, we are interested in analysing ED with massless matter at I +. The interaction

terms in the Lagrangian do not contribute to the symplectic form at leading order and the
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symplectic form factorizes into the matter part and pure ED part. We can see this from the

fact that the symplectic form at I + will have terms of the form

√
−g
∫

duddx
(
δφ ∧δ

′Duφ
)
=

1
rd

∫
duddx

(
δφ ∧δ

′
∂uφ − iδφ ∧δ

′Auφ
)

(2.47)

with Dµ = ∂µ − iAµ the gauge covariant derivative. Now for the symplectic form to be

finite, we would want φ ∼ 1
rd/2 . We know that Au ∼ 1

rk where k ≥ 1 in any dimension.

So the second term does not contribute at leading order to the symplectic form and the

symplectic form factorizes into pure ED part and matter field part.

ΩI ± = Ω
A
I ±+Ω

mat
I ± (2.48)

where we can calculate ΩA
I + from (2.46). We can reach I + by taking a constant-t slice

and taking the limit t→ ∞ while keeping u fixed.

ΩΣt =
∫

Σt

dΣtJt (2.49)

Now Jt = Ju + Jr =−Ju. So then,

Ω
A
I +(δ ,δ ′) =−

∫
duddx

√
−gδFua∧δ

′Aa (2.50)

=−
∫
I +

duddx
√
−g(δFua∧δ

′Aa)

=−
∫
I +

duddx
√
−g
(
δFur∧δ

′Ar +δFuI ∧δ
′AI)

For d = 2, we get at leading order

Ω
A
I +(δ ,δ ′) =

∫
I +

dud2x
(
δF(0)

Iu ∧δ
′AI(0)) (2.51)

We write A(0)
I as in (2.26) and substitute in the symplectic form

Ω
A
I +(δ ,δ ′) =

∫
I +

dud2x
(
δF(0)

Iu ∧δ
′AI(0)) (2.52)

=
∫
I +

dud2x
(
δ∂uÂ(0)

I ∧δ
′ÂI(0)+δF(0)

uI ∧δ
′DIΦ

)
=
∫
I +

dud2x
(
δ∂uÂ(0)

I ∧δ
′ÂI(0)−δDIF

(0)
uI ∧δ

′
Φ
)

The matter field symplectic form is given as

Ω
mat
I +(δ ,δ

′) =
∫
I +

dud2x(δ∂uφ ∧δ
′
φ) (2.53)
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This gives us

ΩI +(δ ,δ ′) =
∫
I +

dud2x
(
δ∂uÂ(0)

I ∧δ
′ÂI(0)−δDIF

(0)
uI ∧δ

′
Φ
)
+
∫
I +

dud2xδ∂uφ ∧δ
′
φ

(2.54)

Once we have the symplectic structure, we can also define the Poisson bracket structure.

Before doing that, we define some more notation that might be useful later. We define

DIN =
∫

∞

−∞

duF(0)
uI (2.55)

So then the ED part of the symplectic form can also be written as

Ω
A
I + =

∫
I +

dud2x
(
δ∂uÂ(0)

I ∧δ
′ÂI(0)+δF(0)

uI ∧δ
′DIΦ

)
(2.56)

=
∫
I +

dud2x
(
δ∂uÂ(0)

I ∧δ
′ÂI(0))+∫ d2x(DIN∧δ

′DIΦ
)

=
∫
I +

dud2x
(
δ∂uÂ(0)

I ∧δ
′ÂI(0))−∫ d2x(N∧δ

′D2
Φ
)

where the first equation comes from the second line of (2.52). We then get the following

Poisson brackets

{∂uA(0)
I (u, x̂),A(0)

I (u′, x̂′)}= δ (u−u′)δ (x̂− x̂′) (2.57)

{DIφ(x̂),DJN(x̂′)}= γIJδ (x̂− x̂′) (2.58)

{φ(u, x̂),∂uφ(u′, x̂′)}= δ (u−u′)δ (x̂− x̂′) (2.59)

2.4 Scattering and conservation laws

Towards the end of 2.1, we discussed about the scattering process. We will now try to work

that out explicitly. We are interested to see how solutions at I +
− match with the solutions

at I −+ . For this we will analyse the field equations at spatial infinity.

2.4.1 Fields near null infinity

In this section, we will study fields near spatial infinity i0. As seen before, coordinates

(ρ,τ, x̂) as defined in (2.5) are useful in this region. The Minkowski metric in these coor-
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dinates can be written as in (2.6)

gab =

 1 0 0
0 −ρ2/(1+ τ2) 0
0 0 ρ2(1+ τ2)γAB

 , gab =

 1 0 0
0 −(1+ τ2)/ρ2 0
0 0 1/ρ2(1+ τ2)γAB


(2.60)

In these coordinates the field equations (2.8) take the following form

1√
−g

∂τ

(√
−g

(1+ τ2)

ρ2 Fτρ

)
+

1
ρ2(1+ τ2)

DJFJρ

]
= Jρ (2.61)

ρ2

1+ τ2

[ 1√
−g

∂ρ(
√
−g

1+ τ2

ρ2 Fρτ)+
1

ρ4 DJFJτ

]
= Jτ (2.62)

ρ
2(1+ τ

2)
1√
−g

[
∂ρ(

√
−g

ρ2(1+ τ2)
FρI)+∂τ(

√
−g

ρ4 FτI)
]
= JI (2.63)

Here
√
−g= ρd+1

(1+τ2)(d−1)/2 in D= d+2 dimensions. If we assume that the matter field has no

“soft” component i.e. φ ∼ 1
u , then we can see that the above equations are essentially free

near spatial infinity [CL19]. From coordinate transformations, we can see that Jρ ,JA ∼ 1
ρ2

and Jτ ∼ 1
ρ3 .

We can set the field falloffs here using EOMs. Consider the τ component of the EOM

(2.62). We can simplify it further to get

lim
ρ→∞

Fρτ(ρ,τ, x̂) =
F(k)

ρτ

ρk +O(1/ρ
k+1) (2.64)

We solve it in the large ρ limit. Say this admits a solution with the leading term for Fρτ as,

lim
ρ→∞

Fρτ(ρ,τ, x̂) =
F(k)

ρτ

ρk +O(1/ρ
k+1). (2.65)

And say FIτ starts as,

FIτ =
F(l)

Iτ

ρ l +O(1/ρ
l+1) (2.66)

Then the leading order equation of motion gives us something like,{
(1+ τ2)

ρk−1

[
(d−1)− k

]
F(k)

ρτ +O(1/ρ
k+1)

}
+

{
1
ρ l D̄IFIτ +O(1/ρ

l+1)

}
= 0. (2.67)
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Now say if l > k− 1 then we must have k = d− 1. Hence we have the fall off for Fρτ in

general dimensions for large ρ as,

lim
ρ→∞

Fρτ(ρ,τ, x̂) =
F(d−1)

ρτ

ρd−1 +O(ρd). (2.68)

This for d = 2 gives us

Fρτ(ρ,y) =
∞

∑
n=1

F(n)
ρτ (y)
ρn (2.69)

This matches with [CE17] where they use the following falloffs

Fαβ (ρ,y) =
∞

∑
n=0

F(n)
αβ

(y)

ρn (2.70)

Fαρ(ρ,y) =
∞

∑
n=1

F(n)
αρ (y)
ρn (2.71)

We can also expand the gauge parameter Λ in the ρ → ∞ limit

Λ(ρ,y) = λ (y)+O(ρ−1) (2.72)

After determining these falloffs, we can solve the EOMs near spatial infinity. While work-

ing near spatial infinity, equations simplify in the Lorenz gauge and so we will be working

in this gauge. The equations (2.8) simplify to

�Aa =
(
∇

2
ρ +

σ µν

ρ2 ∇a∇b
)
Aa (2.73)

where ∇a denotes the derivative on the whole of spacetime and σ µν is the dSd+1 metric as

defined in (2.7). We can use these equations to derive the τ falloffs for the fields in the limit

τ →±∞. We get that

F(n)
ρτ (y) = O(|τ|n−4) (2.74)

We show this derivation for a general d in A.

Working in the Lorenz gauge would imply that the gauge parameter is also further con-

strained and has to satisfy the Lorenz gauge condition i.e.

∇
aAa = 0 =⇒ ∇

a
∇aΛ = 0 (2.75)

This in ρ → ∞ limit will give

DαDαλ = 0 (2.76)
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We are interested in solving the EOM at spatial infinity and then matching the solutions

at τ → ∞. This will help us match solutions at I +
− with solutions at I −+ . For now we

are interested in analysing only the leading order equations at spatial infinity. A similar

analysis works at higher orders too [CL19]

DαF(−1)
αρ = 0 D[αF(−1)

β ]ρ
= 0 (2.77)

Dβ F(0)
αβ

= 0 D[αF(0)
βγ]

= 0 (2.78)

where Dα as defined in 2.1 is the covariant derivative on i0. The Bianchi identity (i.e. the

second equation in (2.77)) admits a solution of the form

F(−1)
αρ = Dαψ (2.79)

where ψ ≡ ψ(y). The first equation in (2.77) would then give

DαDαψ = 0 (2.80)

A similar analysis works for (2.78) where we can define a function ψ̃ and write

F(0)
αβ

= εαβγDγ
ψ̃ DαDα ψ̃ = 0 (2.81)

We see that the gauge parameter λ and the function ψ satisfy the same wave equation

(2.76). When we solve the wave equation in the limit τ → ±∞ (done in B), we get two

types of solutions one corresponding to the large τ behaviour of λ and the other to the large

τ behaviour of ψ

λ (τ, x̂) = λ±(x̂)+O(|τ|−2 ln |τ|) (2.82)

ψ(τ, x̂) =
1
τ2 ψ±(x̂)+O(τ(−4)) (2.83)

2.4.2 Matching solutions at I +
− and I −+

We are interested to see how solutions at I +
− match with the solutions at I −+ . For this we

will use our knowledge of field equations at spatial infinity. The limits τ →±∞ at spatial

infinity correspond to I +
− and I −+ respectively. So by matching the solutions in these two

limits and doing appropriate coordinate transformation to go to null coordinates, we can

see how the solutions evolve.
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(ρ,τ) are related to (r, t) as given in (2.5) which gives us

r = ρ

√
1+ τ2 u = ρ(τ−

√
1+ τ2) (2.84)

We can relate the field strengths Fur and Fρτ at I ±∓ by doing just coordinate transformations

Fαβ (ρ,τ, x̂) = Fµν

∂xµ

∂xα

∂ ν

∂ β
(2.85)

Using this we get that in the limit τ → ∞

Fur =
τ

ρ
Fρτ (2.86)

This combined with (2.30) and (2.74), we get

lim
τ→∞

τ
3[ lim

ρ→∞
ρFρτ(ρ,τ, x̂)] = lim

u→−∞
[ lim
r→∞

r2Fru(u,r, x̂)] (2.87)

=⇒ F(1,3)
ρτ = F(2,0)

ru (2.88)

Similarly we also get

lim
τ→−∞

τ
3[ lim

ρ→∞
ρFρτ(ρ,τ, x̂)] = lim

v→∞
[ lim
r→∞

r2Fru(u,r, x̂)] (2.89)

=⇒ F(1,3)
ρτ = F(2,0)

rv (2.90)

From (2.83) and the fact that F(−1)
αρ = Dαψ we can write

ψ(τ, x̂) τ→±∞−−−−→ k±+
1
τ2 ψ±(x̂)+ · · · (2.91)

where k± are just constants. Now

F(2)
ru (u =−∞, x̂) = lim

τ→∞
τ

3F(1)
ρτ (2.92)

= lim
τ→∞

τ
3
∂τψ

= 2ψ+ (2.93)

Similarly we get

Frv(v =+∞, x̂) =−2ψ−(x̂) (2.94)

So now our problem reduces to seeing how ψ−(x̂) evolves to ψ+(x̂). It turns out that

ψ+(x̂) =−ψ−(−̂x) (2.95)
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The calculation is given in B. This implies

F(2)
ur (u =−∞, x̂) = F(2)

vr (v = ∞,−x̂) (2.96)

Thus we have shown that at leading order the fields at I +
− and I −+ match.

A similar analysis for the gauge parameter λ (x̂) gives us that

λ+(x̂) = λ−(−x̂) (2.97)

We can then define the following charges

Q+
λ
≡
∫

S2
d2xλ+(x̂)F

(2)
ru (u =−∞, x̂) (2.98)

=
∫

dud2xλ+(x̂)∂uF(2)
ru (u, x̂)

=
∫

dud2xλ+(x̂)
(
DIF(0)

Iu − J(2)u
)

where in the last line we have used the EOM ∇µFµr = Jr

∂uFur =
1
r2 DI(FIr−FIu)+ Jr (2.99)

=⇒ ∂uF(2)
ru = DIF(0)

Iu − J(2)u

and we have used the current falloffs in (2.20) and (2.22). We can analogously define Q−
λ

.

From the matching conditions (2.96) and (2.97), we get

Q+
λ
= Q−

λ
(2.100)

Note that these are infinitely many conserved charges each corresponding to a function λ (x̂)

on the 2-sphere.

2.5 Charges associated with Large Gauge Transformations
(LGTs)

We expect infinitely many symmetries associated with the infinitely many conserved charges

in (2.100). In this section we will show that these conserved charges are the same charges

that generate LGT thus showing that LGT charges are conserved. We had found the sym-

plectic form for ED with massless matter in (2.54). We can find the charge that generates
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LGT from the symplectic form

Qλ = Ω(δ ,δλ ) (2.101)

=
∫
I +

dud2x
(
δ∂uÂ(0)

I ∧δ
′
λ

ÂI(0)−δDIF
(0)
uI ∧δ

′
λ

Φ
)
+
∫
I +

dud2xδ∂uφ ∧δ
′
λ

φ

=
∫
I +

dud2xλ (x̂)
(
DIF(0)

Iu − J(2)u
)

where we have used (2.34) and (2.10). We see that it matches exactly with (2.98).

Now using the symplectic form (2.52) and the form of the charge above, we can get

useful commutators

{Q+
λ
,Φ(x̂)}= λ (x̂) (2.102)

{Q+
λ
, Â(u, x̂)}= 0 (2.103)

{Q+
λ
,N(x̂)}= 0 (2.104)

From these we can calculate

{Qλ ,A
(0)
I }= DIλ (2.105)

Hence we have seen that these charges indeed generate LGTs and are the same as the

conserved charges found from our spatial infinity approach. From the commutators above,

we can see that even though AI gets shifted non-trivially, the associated field FuI remains

the same. Since the physical field remains unchanged under these charges, we might think

that these symmetries are trivial. But the fact that the vector field AI changes also has a

physical manifestation, in the form of what is also called the “electromagnetic memory

effect” [Pas17]. Integrating (2.99) w.r.t u, and taking the variation, we can see that the field

Fur gets shifted under a LGT.

A note on conservation and symmetries: Since LGTs keep the action invariant, they

are symmetries of the theory. Unlike small gauge transformations which have vanishing

Noether charges, every generator of LGT has a non-zero charge associated with it. We

however note that these charges are defined on the sphere at I +
− or I −+ . In order to ensure

that the charge is conserved in accordance with Noether’s theorem we require a mapping

of the large gauge parameter from I +
− to I −+ . We note that unlike the charges associated

to global symmetries, the charges associated to asymptotic symmetries are not defined on

a space-like Cauchy slice at finite time as the large gauge parameters do not have an unam-
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biguous extension in the interior of space-time. The conservation law that we thus aim to

prove relates the charges (integrated over 2-sphere at infinity) at u = −∞ and v = ∞.
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Chapter 3

Asymptotic Symmetries of Gravity in
D = 4 dimensions

We started the last chapter with discussing flat Minkwoski space and based our entire dis-

cussion of ED in this background. We are now interested in studying gravitational theories

where the metric asymptotically approaches the flat metric at large distances. We basically

want to study spacetimes that approach a notion of I +. We will work in the Bondi gauge

with coordinates (u,r, x̂), where the most general metric takes the form

ds2 = e2β Mdu2−2e2β dudr+gAB(dxA−UAdu)(dxB−UBdu) (3.1)

and the Bondi gauge condition is given by

grr = 0; grA = 0; ∂r det
(gAB

r2

)
= 0 (3.2)

Now to impose asymptotic flatness condition, we need to impose falloffs. These falloffs are

set keeping two conditions in mind [HIW17]:

• the falloff conditions should not exclude any physical spacetimes

• total mass and radiated energy flux should be well defined

We set the following falloffs in any even dimension [KLPS17]:

guu =−1+O(r−1) gur =−1+O(r−2) guA = O(1) gAB = r2
γAB +O(r) (3.3)
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where γAB is the d-sphere metric. The parameters in the metric fall off as

M =−1+
∞

∑
n=1

M(n)(u, x̂)
rn (3.4)

β =
∞

∑
n=2

β (n)(u, x̂)
rn (3.5)

UA =
∞

∑
n=0

U (n)
A
rn (3.6)

gAB = r2
γAB +

∞

∑
n=−1

C(n)
AB (u,z)

rn (3.7)

The falloffs here are set keeping (3.3) in mind. For instance β ∼ O(r−2) because we want

gur =−1+O(r−2). We introduce some notation here for convenience: We will be referring

to the O(r) component of gAB as CAB i.e. C(−1)
AB ≡CAB. Similarly, C(0)

AB ≡ DAB.

Once we have the falloffs, we can solve the Einstein’s equations near I + to get constraints

Gab ≡ Rab−
1
2

Rgab = Tab (3.8)

Assuming there are no matter sources and noting the fact that we are in Bondi gauge where

grr = and grA = 0, we will get Rrr = 0 and RrA = 0. Moreover, it can be shown that R, the

Ricci tensor will not contribute to the EOM. Let us look at the contribution to R from our

calculation for various terms. From the non-zero values of gab, we have,

R = 2gurRur +grrRrr +2grARrA +gABRAB. (3.9)

From the EOM, Rrr = 0, RrA = 0. Therefore, we have a simplified equation for R,

R = 2gurRur +gABRAB. (3.10)

Thus the Einstein equations,

Gur = 0, GAB = 0 (3.11)

would reduce to,

Rur = 0, RAB = 0. (3.12)

This is simple to see. If we consider Gur = 0 then we have,

Gur = Rur−
1
2

gur
[
2gurRur +gABRAB

]
= 0 =⇒ RAB = 0. (3.13)
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Therefore, using this result, RAB = 0, we can see that,

GAB = RAB−
1
2

gAB
[
gABRAB +2gurRur

]
= 0 =⇒ Rur = 0. (3.14)

We also have the Bondi gauge condition which constrains the trace of the tensors in gAB.

We get from the condition:

CA
A = 0 DA

A =
1
2

CCDCCD C(1)A
A =CM

A DA
M−

1
3

CM
A CN

MCA
N ≡C ·D− 1

3
C3 (3.15)

On solving the EOM in 4D, we can write the metric at leading order as (note that everything

that we will say from here will be in 4D unless stated otherwise)

ds2 =−du2−2dudr+2r2
γABdxAdxB (3.16)

+
2mB

r
du2 + rCABdxAdxB +DBCABdudxA +

1
16r2CABCABdudr+ · · ·

where DA is the sphere derivative and all indices are raised and lowered with γAB. We have

written M(1) = 2mB and ∂uCAB = NAB. We have also used the following EOMs

U (0)
A =−1

2
DBCAB (3.17)

β
(2) =− 1

64
CABCAB (3.18)

∂umB =
1
8
(2DADB−NAB)NAB (3.19)

Here the fields and tensors have the following physical interpretation:

• mB(u, x̂) is called the Bondi mass aspect. Integrating it over the sphere gives what is

called the Bondi mass M(u). The Bondi mass aspect measures the angular density of

energy from a point on I +. At I +
− , the Bondi mass is the same as the ADM energy.

• CAB is the shear mode. It is traceless as we saw above and symmetric. It contains

information about gravitational radiation near I +. CAB is analogous to A(0)
I from

ED.

• NAB is the news tensor. In ED we had F(0)
uI and DIN =

∫
d2xF(0)

uI . The news tensor is

analogous to F(0)
uI and its square is proportional to the energy flux across I +.

If we assume that the news tensor NAB(u, x̂) ∼ 1
u1+δ

near I +
± , then we can determine

CAB(u, x̂) upto an integration constant from the news tensor by just integrating it. Infact
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this falloff for NAB was proven by Christodoulou and Klainerman to hold in a finite neigh-

bourhood of flat space [CK93]. Next if we assume that there are no “magnetic charges” i.e.

the magnetic part of Weyl tensor is zero, then we get the condition [Str14]

[DAUB−DBUA]I +
±
= 0 (3.20)

=⇒ [DADCCCB−DBDCCAC]I +
±
= 0 (3.21)

This gives us

CAB|I +
−
=−2DADBψ|I +

−
(3.22)

So we can take ψ|I +
−

to be the integration constant while trying to get CAB from NAB. In

other regions on I +, CAB = −2DADBψ(u, x̂)+ γABD2ψ(u, x̂). This condition is the same

like in ED, where by demanding no magnetic charges we got (2.26). Once we have NAB

and CAB, we can integrate (3.19) to get mB upto integration constant mB(x̂)|I +
−

. Hence we

see that all data can be specified in terms of the intial data

{NAB(u, x̂),ψ(x̂)|I +
−
,mB(x̂)|I +

−
} (3.23)

which in other words is the Cauchy data. An analogous construction holds at I − too and

we define the Cauchy data there as

{NAB(v, x̂),ψ(x̂)|I −+ ,mB(x̂)|I −+ } (3.24)

3.1 BMS group

In the ED case we had found LGTs by trying to preserve the gauge conditions and falloffs.

Here also we are interested to find diffeomorphisms that preserve the Bondi gauge con-

ditions and the falloffs. We would expect that since the spacetime is almost flat here, we

should recover the Poincare group. But it turns out that we get an infinite dimensional group

call the BMS group.

Let ξ be the generator of these diffeomorphisms. To preserve the Bondi gauge, we need

to impose the following conditions:

Lξ grr = 0, Lξ grA = 0, Lξ ∂r det
(gAB

r2

)
= 0 (3.25)
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and to preserve the falloffs we need,

Lξ guu = O(r−2), Lξ gur = O(r−2), Lξ guA = O(r0), Lξ gAB = O(r) (3.26)

From the above conditions we get that

ξ = f ∂u +D2 f ∂r−
1
r

DA f DA + · · · (3.27)

where f ≡ f (x) is a function on the 2-sphere and the · · · represent higher order terms. These

transformations generated by ξ are parameterized by f and are called supertranslations.

They can be understood as generalizations of the four translations in Minkowski spacetime

given by f = constant,Y1,±1,Y1,0. Here f = constant generates u-translations and f = Yl,m

for l = 1 generates spatial translations.

We can also calculate the action of supertranslation on other components of the metric

by calculating the lie derivative of the appropriate component of the metric and then picking

the right order. For instance to calculate LξCAB, we will need to extract the O(r) component

in gAB. Doing this gives us

LξCAB = f ∂uCAB−2DADB f + γABD2 f (3.28)

Lξ mB = f ∂umB +
1
4
[
NABDADB f +2DANABDB f

]
(3.29)

Lξ NAB = f ∂uNAB (3.30)

From here we can see that if we were to start with Minkowski spacetime i.e. where mB =

NAB = CAB = 0 and supertranslate it, the resultant spacetime would still have zero Bondi

mass and news tensor. This agrees with our understanding that a diffeomorphism cannot

create mass or gravitational radiation. The shear mode CAB as we can see will shift by

LξCAB = −2DADB f + γABD2 f . Since in a non-radiative configuration NAB = 0, it means

CAB is u-independent and we have

CAB =−2DADBψ(x̂)+ γABD2
ψ(x̂) (3.31)

This tells us that the field ψ is shifted as follows under a supertranslation

δξ f
ψ(x̂) = f (x̂) (3.32)

So, ψ(x̂) labels the degenerate vacuum states upto the first 4 spherical harmonics which
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label translations. By vacuum we mean non-radiative configurations.

As we mentioned above, time translations here are generated by f = constant. What we

mean by time translation here is translation in u along I +. This certainly commutes with

other supertranslations and so as a result the associated charges (generating these transfor-

mations) should also commute. But note that this is not a statement of the conservation

of charge. When we say time translation here, we are really just moving along I + and

changing u. In order to establish charge conservation, we would have to show that charges

on different Cauchy slices are equal. Or in other words, the generator that takes us from

one Cauchy slice to the other commutes with supertranslation charges. But showing that

the commutator is zero is difficult because LGT charges are unambiguously defined in the

bulk. We could add a small gauge transformation to the generator in the bulk and end up

getting the same large gauge transformation at the boundary. On the other hand, showing

an explicit matching of the charges like in the ED case turns out to be easier. Analogous to

the ED construction, one analyses the Weyl tensor components at spatial infinity to get the

conservation laws [Pra19].

3.2 Phase space analysis and supertranslation charge

We now move on to finding the symplectic form. The symplectic current is given by

Jα = δΓ
α
µνδgµν −δΓ

ν
µνδgαµ (3.33)

Like before, we will calculate the symplectic form on a constant-t slice and take t → ∞

while keeping u fixed. We have Jt = Jr + Ju. We get the symplectic form at leading order

as

ΩI + =
∫

dud2x
√

γ
[
δCAB∧δ

′NAB] (3.34)

=
∫

dud2x
√

γ
[
−2δDADBψ(x̂)∧δ

′NAB +δĈAB(u, x̂)∧δ
′NAB]

where
√

γ is the determinant of the sphere metric. In the last line we have decomposed the

shear mode into a “soft” mode (i.e. u independent) and hard mode that falls off as 1/uε .

Here CAB is like the A(0)
I mode in ED

CAB(u, x̂) =−2DADBψ(x̂)+ĈAB(u, x̂) (3.35)
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We can also define a mode analogous to N in (2.55)

DADBN =
∫

∞

−∞

duNAB (3.36)

giving us

ΩI +(δ ,δ ′) =
∫

dud2x
√

γδĈAB(u, x̂)∧δ
′NAB−2

∫
dud2x

√
γδDADBψ(x̂)∧δ

′DADBN

(3.37)

We can find the supertranslation charge from the symplectic form. We use (3.28) and the

fact that CAB is traceless to get

Qξ = ΩI +(δξ ,δ ) (3.38)

=
∫

dud2x
√

γ f
(
NABNAB−2DADBNAB)

= k
∫

d2x
√

γ f mB (3.39)

where k is some constant that can be fixed by (3.19). Note that in all our analysis we have

used 8πG = 1. It was shown in [Pra19] that these charges are conserved. The analysis

is similar to the one in ED where we study the EOMs at spatial infinity to prove the con-

servation law. In [HLMS15], it was shown that this conservation law is related to the soft

graviton theorem. Not only that, supertranslations in four dimensions are also related to the

memory effect [SZ14]. The memory effect can be understood as follows: say we have two

inertial observers near I +. They are localized in a region where there is no gravitational

radiation initially. Then say some radiation is turned on at u = ui and stopped at u = u f .

It can then be shown that these inertial observers are permanently shifted from each other

because of the null radiation. It turns out that the shifted metric after the radiation epoch

can be related with the metric before it through a supertranslation.
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Chapter 4

BMS in higher dimensions

We would like to now extend our analysis of asymptotically flat spacetimes to higher di-

mensions. One would think that this is just a direct extension of our results in 4 dimensions.

But it turns out that the extension is in fact not so straightforward both due to physical and

technical reasons that we will list out in this chapter. To start with, one is not even sure

if supertranslations or the BMS group exists in higher dimensions. In all our discussions

here, we will work with even dimensions. In the case of odd dimensions, there are fractional

r-falloffs near I ± and we leave that analysis for later.

4.1 BMS-to exist or not to exist?

If we start with the metric in Bondi gauge (3.1) and the falloffs (3.4)-(3.7), we see that even

in higher even dimensions, the mode affected non-trivially by supertranslations is CAB i.e.

supertranslations cause a change at O(r−1) of the metric in all dimensions. On the other

hand, the radiative data, in general d+2 dimensions is stored at O(r−d/2) [LS20]. For d=2,

these two match. So it is the radiative mode that is shifted non-trivially by supertranslations

in 4 dimensions. This means that if we eliminate supertranslations by fixing CAB, we also

end up removing radiative solutions. So in 4 dimensions, supertranslations or the BMS

group is inevitable. But this is not the case in higher dimensions. We can set CAB = 0 to

eliminate supertranslations without affecting any radiative solutions.

In [HIW17], it was argued unlike in four dimensions, existence of supertranslations is

not mandated by gravitational radiation in higher dimensions. More in detail, it was shown

in [HIW17] that there is no memory effect in higher dimensions at leading order in 1
r .

Since radiative data is stored at O(r−d/2), during the radiation epoch, the radiative metric

components appear at this order. And as shown in [HIW17], the difference in the metric
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components before and after the radiation is at O(r−d+1). For d = 2, these two are equal.

But in higher dimensions, d/2 < d− 1. So the change in the metric components due to

the radiation epoch is not detected at leading order by observers at I +. Hence there is no

memory effect at leading order in higher dimensions.

For d = 2, it can be shown that the change in the metric components is related to su-

pertranslations such that the metric before and after the radiation epoch are related through

a supertranslation [SZ14]. So the presence of supertranslations is necessary if we want to

hold the metrics before and after the radiation epoch at the same footing. But in higher

dimensions, since there is no memory effect, existence of supertranslations is a necessary.

We can just do away with supertranslations by setting appropriate boundary conditions and

setting CAB = 0. We can choose to thus only work with the Poincare group in higher di-

mensions. Furthermore, even if we were to have supertranslations, the authors of [HIW17]

claimed that the associated charge generating them would diverge.

But, if we look at it from the perspective of classical soft theorem, we expect supertrans-

lations to exist. Soft theorems are dimension independent results. So if they are related to a

conservation law of asymptotic symmetries in four dimensions, as shown in [HLMS15], it

is natural to ask if a similar relation holds in higher dimensions too. Or in other words we

want to ask if there are asymptotic symmetries in higher dimensions whose conservation

laws are equivalent to the soft theorem. Moreover, there has been no explicit calculation

done that completely rules out the possibility of having supertranslations with carefully

chosen counter terms at the boundary to regularize the divergences. In our work, we at-

tempted to do this analysis in full non-linear General Relativity and tried to analyse the role

of relaxed boundary conditions that allow for supertranslations.

We start with a linearized analysis of the phase space of asymptotically flat spacetimes

in higher even dimensions. What we mean by that is that we will only keep terms that con-

tribute to terms linear in metric fluctuations in the final computation of the supertranslation

charge. After stating major results here, we move on to a complete non-linear analysis.
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4.2 Linearized Gravity

We will mostly follow the analysis done in [Agg19] and state major results. The metric

(3.1) gets simplified in the linearized limit and we have

ds2 = Mdu2−2dudr+gABdxBdxB−2UAdxAdu (4.1)

and its inverse

gab =

 0 −1 0
−1 −M −UB

0 −UA gAB

 (4.2)

We assume the same falloffs stated in (3.3). M, UA and gAB have the falloffs stated in

(3.4)-(3.7).

The Bondi gauge condition in the linearized limit gives the constraint that all C(n)
AB are

traceless. We will state results for six dimensions here but they can be generalized to

arbitrary even dimensions as done in [Agg19]. In six dimensions, radiative data is carried

by DAB. As we will see from the EOMs, all metric components can be entirely specfied in

terms of DAB and CAB. In the linearized limit, the EOMs give the following constraints

Rur = 0 =⇒ M(1) = 0; M(2) =−1
2

D ·U (1) (4.3)

RrA = 0 =⇒ U (0)
A =−1

6
DBCAB; U (1)

A =−1
3

DBDAB (4.4)

RAB = 0 =⇒ ∂uCAB = 0 (4.5)

4.2.1 Phase space analysis

As usual, we will calculate the symplectic form on a constant-t slice and then take t → ∞

while keeping u fixed. The symplectic current Jt = Ju + Jr can be calculated using (3.33).

We can split this into a finite and divergent piece

Jt = Jt
div + Jt

f in (4.6)

After using (3.33) and the EOM (4.5), we get(
2
√

g

)
Jt

div =
1
r3

[
δCAB∧δ

′(D(AU (0)
B) +

1
2

∂uDAB
)]

(4.7)
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This can be further simplified by using (4.4) and noting that the first term becomes a total

derivative. And so the only term that contributes is(
2
√

g

)
Jt

div =
r
4

δ∂uDAB∧δ
′CAB (4.8)

=
(t−u)

√
γ

4
δ∂uDAB∧δ

′CAB

=

√
γ

4
δDAB∧δ

′CAB +∂u
((t−u)

√
γ

4
δDAB∧δ

′CAB)
Similarly,(

2
√

g

)
Jt

f in =
1
r4

[
δU (1)A∧δ

′U (0)
A +δCAB∧δ

′DAU (1)
B −δDAU (0)

B ∧δ
′DAB (4.9)

+
1
2
(δ∂uC(1)

AB ∧δ
′CAB +δ∂uDAB∧δ

′DAB)

]

4.2.2 Supertranslation Charge

We can find the vector field that generates supertranslations like in the four dimensional

case. We get a form similar to (3.27)

ξ = f ∂u +
1
4

D2 f ∂r−
1
r

γ
ABDA f DB + · · · (4.10)

We can see that even in higher dimensions, supertranslations are entirely parameterized

by f (x̂). We derive this in D for the full non-linear metric. For our purpose, we need to

calculate δξCAB and δξ DAB to compute the supertranslation charge from the symplectic

form. We have

δ fCAB =
1
2

γABD2 f − (DADB +DBDA) f (4.11)

The expression for δ f DAB is slightly more complicated. But the good thing is that it does

not contribute to the charge in the linearized limit. After substituting the variation above in

the symplectic form we get that

Ωdiv(δ ,δξ )= lim
t→∞

[
−
∫
I +

dud4x
√

γ

2
δDABDADB f−

∫
I +

dud4x∂u
((t−u)

√
γ

4
δDAB∧δ

′CAB)]
(4.12)

This diverges as t→ ∞. But if we assume that

DADBDAB(u =−∞, x̂) = O(|u|−1−ε) (4.13)
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we can avoid the divergence. Note that satisfying this condition under supertranslations

requires a redefinition of DAB. We will discuss this in more detail during the non-linear

analysis. On imposing the above condition, we get a finite contribution to the charge from

the divergent piece of the symplectic form

QD
ξ
=−

∫
dud4x f DADBDAB (4.14)

where the superscript D denotes that this is the contribution from the divergent piece. Sim-

ilarly the finite piece gives on substituting the EOM (4.4)

QF
ξ
=
∫
I +

√
γ

3
f
(D2

4
+1
)
DADBDAB (4.15)

Hence the total soft charge (i.e. without matter) is

Qξ =
∫
I +

√
γ

12
f (D2−2)DADBDAB (4.16)

As is evident, at least in the linear theory, there are no divergences and one can define a

finite supertranslation charge. This charge matches with what was derived in [KLPS17]

from writing the soft theorem as a Ward identity and identifying the conserved charge.

This presents a confusion. The derivation of the supertranslation charge as seen above,

requires CAB 6= 0. But the derivation of the soft theorem does not require CAB at all. So

it is confusing what role CAB plays in higher dimensions. Since non-linearities contribute

even at higher order terms, we probably shouldn’t ignore them. And it is possible that a

complete non-linear analysis will provide insight into the role CAB plays.

4.3 Non-linear analysis

We explicitly work out everything in the non-linear theory. We will work in six dimensions

but all the results can be generalized to higher dimensions too. We will work with the full

non-linear metric (3.1),

gµν =

 Me2β +U2 −e2β −UA

−e2β 0 0
−UB 0 gAB

 , gµν =

 0 −e−2β 0
−e−2β −e−2β M −e−2βUA

0 −e−2βUB gAB


(4.17)
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The inverse gAB can be calculated by using gACgBC = δ A
B . This gives us upto O(r−5)

gAB =
γAB

r2 −
CAB

r3 +
CA

CCBC−DAB

r4 +
CACDB

C +DACCB
C−CA

MCMNCB
N−C(1)AB

r5 . (4.18)

Here UA is raised with gAB but U (n)
A is raised with γAB. In the non-linear theory, the Bondi

gauge condition implies that

CA
A = 0 , DA

A =
1
2

CABCAB, C(1)A
A =C ·D− 1

3
C3. (4.19)

4.3.1 Equations of Motion

The EOM in the non-linear analysis give the following constraints. We list out all the

Christoffel symbols used in the calculation in C.

Rrr

We can use the definition of Rrr

Rrr =−∂rΓ
A
rA +Γ

A
rAΓ

r
rr−Γ

A
BrΓ

B
Ar. (4.20)

to compute it to Rrr to subleading order.

β
(2) =− 1

64
CABCAB (4.21)

And,

β
(3) =

1
48

(C3−2C ·D) (4.22)

RrA

We start with

RrA =
1
2

∂r
(
gru

∂rguA +grB
∂rgAB−gur

∂Agur
)

(4.23)

+
1
2
[
∂B(gBC

∂rgAC)−∂r(gBC
∂AgBC)

]
+

1
2

gCD
∂rgCDΓ

r
rA

+
1
2
(
gCD

∂BgCD−gur
∂rguB−grC

∂rgBC +gur
∂Bgur

)
Γ

B
rA−Γ

B
urΓ

u
AB−Γ

C
BrΓ

B
AC

From here we get,

U (0)
A =−1

6
DBCB

A (4.24)
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And at O(1/r3),

3U (1)
A =−DBDB

A +CABU (0)B +
1
2

DB(CBMCAM)+6DAβ
(2)+

1
8

DA(CBCCBC) (4.25)

Rur

This is given as,

Rur =
(
∂rΓ

r
ur +∂AΓ

A
ur
)
−
(
∂uΓ

r
rr +∂uΓ

A
Ar
)
+
(
Γ

A
rAΓ

r
ur +Γ

B
ABΓ

A
ur
)
−
(
Γ

A
uBΓ

B
rA
)
. (4.26)

From here we get,

M(1) = 0. (4.27)

And,

−M(2) =
1
2

DAU (1)
A +D2

β
(2)−2β

(2)+U (0)2 . (4.28)

RAB

The expansion for this is given as,

RAB = ∂aΓ
a
AB−∂AΓ

a
aB +Γ

a
abΓ

b
AB−Γ

a
AbΓ

b
aB. (4.29)

From here we get

∂uCAB = 0 (4.30)

And,

∂uC(1)
AB =−M(2)+2β

(2)−2DADBβ
(2)−U (0)CDBCAC (4.31)

+DBU (1)
A +

1
2

CABDCU (0)C +DC

[
γAB(U (1)C−CCDU (0)

D )

− 1
2

CCD(2DBCAD−DDCBA)+
1
2
(2DBDC

A−DCDAB)
]

−5U (0)
A U (0)

B −D(ACD
C)D(BCC

D)+DDCACD(BCC
D)−

1
4

DDCACDCCBD

− 1
2

CC
B DAU (0)

C +
3
2

CC
B DCU (0)

A +CM
B ∂uDAM +2DAB−CAMCM

B

Demanding that the magnetic part of the Weyl tensor be zero gives us the same constraint

like in four dimensions (3.21). Since ∂uCAB = 0, we can define CAB as

CAB =−2DADBψ(x̂)+
1
2

γABD2
ψ (4.32)
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We can see from the EOMs above that all quantities can be defined in terms of DAB and

CAB. Since CAB is also described in terms of ψ(x̂), we see that DAB and ψ(x̂) determine all

the quantities upto integration constants.

4.3.2 Supertranslations

Transformations preserving the Bondi gauge and falloffs are generated by

ξ = f ∂u +
[1

4
D2 f − 1

8r
(
4
3

DACABDB f −CABDADB f )
]
∂r (4.33)

+
(
− 1

r
DA f +

1
2r2CABDB f

)
DA (4.34)

This is derived in D. The action of supertranslations on the metric components is also

calculated there. At O(r), we get

δ fCAB =−2
(

DADB f − 1
4

γABD2 f
)

(4.35)

From (4.32), we then see that

δ f ψ = f (4.36)

At O(r0), we get

δ f DAB = f ∂uDAB +
1
4

γAB

[
−4

3
DCCCDDD f −CCDDCDD f

]
(4.37)

+
1
4

CABD2 f −DCCABDC f − 1
2
(
CBCDADC f +CACDBDC f

)
+

1
2
[
DACBCDC f +DBCACDC f

]
+

1
6
[
DCCBCDA f +DCCACDB f

]
During the linear analysis in six dimensions, we had imposed the condition that the radiative

data DAB should have a certain falloff in u near I +
± for the symplectic form to be finite

(4.13). But from the form of δ f DAB above, it is clear that such a falloff is violated not just

for supertranslations but even simple translations. The CAB terms in δ f DAB go as O(u0)

thus violating the 1
|u| falloff of DAB. This requires us to redefine DAB. We define D̂AB such

that δ f D̂AB = f ∂uD̂AB

D̂AB = DAB−
1
4

CACCC
B (4.38)
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Since the trace of this renormalized tensor D̂AB can be expressed in terms of CAB,

Tr
(
D̂AB

)
=

1
4

C2 (4.39)

it is the trace free part which is the free data,

D̂t f
AB = D̂AB−

1
16

γABC2 (4.40)

= DAB−
1
4

CACCC
B −

1
16

γABC2

And we demand that D̂t f
AB ∼

1
|u| .

4.3.3 Phase Space analysis

Next we find the symplectic form using the full non-linear metric (3.1). All the relevant

Christoffel symbols used are given in C and the EOMs in 4.3.1. It was claimed in [HIW17]

that given the falloffs in higher dimensions, the supertranslation charge would diverge.

In the linear analysis we saw that even though the symplectic form was diverging, the

supertranslation charge found from it was finite. We want to see if this still holds true in the

full non-linear analysis. We will calculate like always Jt = Ju + Jr.

Ju =

√
g

2

{
δgru

δ

[
gur

∂rgru

]
− 1

2
δgAB

δ

[
gur

∂rgAB

]
−δgur

δ

[
gur

∂rgur

]
− 1

2
δgur

δ

[
gAB

∂rgAB

]}
(4.41)

=−
√

g
4

{
δgAB

δ

[
gur

∂rgAB

]
+δgur

δ

[
gAB

∂rgAB

]}

This comes out as,(
2
√

g

)
Ju =− 1

2r4 δDAB∧δ
′CAB (4.42)

=− 1
2r4

(
δ D̂t f

AB∧δ
′CAB +

1
4

δCACCB
C ∧δ

′CAB
)
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And,

Jr =

√
g

2

{
δgur∧δ

[
− e−2β

(
∂r(Me2β )+UA

∂rUA +∂ue2β
)
−2UA

∂Aβ − 1
2

gAB
∂ugAB

]
(4.43)

− 1
2

δgrr∧δ (gAB
∂rgAB)

+δgrA∧δ

[
e−2β

∂rUA− e−2βUB
∂rgAB−

1
2

gBC
∂AgBC

]
+

1
2

δgAB∧δ

[
gru(

∂AguB +∂BguA−∂ugAB
)
−grr(∂rgAB)+grC(

∂AgBC +∂BgAC−∂CgAB
)]}

This has a finite piece and a divergent piece,(
2
√

g

)
Jr

div =−
1

2r3 δCAB∧δ
′(∂uDAB) (4.44)

=− 1
2r3 δCAB∧δ

′(∂uD̂t f
AB)

This is the same divergent term we had in the linear case as well. On working with renor-

malised DAB i.e. D̂t f
AB, this term vanishes when integrated over whole I + due to fall-off

conditions satisfied by D̂t f
AB. The finite part of Jr is given by,(

2
√

g

)
Jr

f inite =
1
r4 δU (0)A∧δ

′[U (1)
A +CB

AU (0)
B
]

(4.45)

− 1
2r4

{[
δDAB−δ (CA

CCBC)
]
∧δ
′[2DAU (0)

B −∂uDAB−CAB
]

+δCAB∧δ
′
[

2DAU (1)
B −∂uC(1)

AB −U (0)C(DACBC +DBCAC−DCCAB
)]}

=
1
r4 δU (0)A∧δ

′[U (1)
A +CB

AU (0)
B
]

− 1
2r4

{
δ
[
D̂ABt f − 3

4
(CA

CCBC)+
1

16
γ

ABC2]∧δ
′
[
2DAU (0)

B −∂uD̂t f
AB−CAB

]
+δCAB∧δ

′
[
2DAU (1)

B −∂uC(1)
AB −U (0)C (DACBC +DBCAC−DCCAB)

]}
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where in the second line, we have rexpressed it in terms of D̂t f
AB. Hence, we get

Jt = Ju + Jr =
1
r4

[
δU (0)A∧δ

′U (1)
A −δCAB∧δ D̂AU (1)

B −δ D̂ABt f ∧δ
′D̂AU (0)

B (4.46)

+
1
2

δCAB∧δ
′
∂uC(1)

AB +δ D̂ABt f ∧δ
′
∂uD̂ABt f

]
+

1
r4

[
δU (0)A∧δ

′CB
AU (0)

B −
1
2

δ (CA
CCBC)∧δ

′CAB

−δCAB∧δ
′U (0)C (DACBC +DBCAC−DCCAB)

−δ
(3

4
(CA

CCBC)+
1

16
γ

ABC2)∧δ
′DAU (0)

B

+
1
2

δ
(3

4
(CA

CCBC)− 1
16

γ
ABC2)∧δ

′
∂uD̂t f

AB

]
where the last line does not contribute to the symplectic structure because D̂t f

AB ∼
1
u . We can

see that the finite (in r) part of symplectic structure has a set of terms which are independent

of DAB and hence diverge when integrated over u. As these terms are sphere integrals of

local functionals, we assume that there is a counter-term that can be added to the action such

that the effect on Ω(δ ,δ ′) is to precisely cancel the divergent terms. Although investigation

of such a boundary term is outside the scope of this thesis, we conjecture that there is a

regularisation of the radiative symplectic structure which is finite. This symplectic structure

then has the same form as in linearised gravity with the crucial difference being that DAB

is renormalised to D̂t f
AB. Thus in terms of such a renormalised DAB, the super-translation

charge takes the same form as in the linearised theory and the resulting conservation law is

equivalent to classical soft graviton theorem.
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Chapter 5

Conclusion and Future Prospects

In this project, we were interested in studying asymptotic symmetries in higher even dimen-

sions. We drew our motivation from the fact that the universal soft graviton (and photon)

theorem is related to the conservation of these symmetries in four dimensions. While look-

ing for such connections in higher dimensions, we realized that even proving the existence

of these symmetries in higher dimensions was a non-trivial task. We started with studying

these symmetries in four dimensions. On the way, we also introduced several new tools

such as the covariant phase space formalism to study the phase space of a given theory.

Next, we moved on to studying these symmetries in higher dimensions. While we were

able to show that such symmetries can exist in higher dimensions by arguing that the diver-

gent pieces in the charge can be cancelled by adding appropriate terms to the action, there

are still some issues that remain unresolved.

To start with, it is not clear what counter terms have to be added to the action to exactly

cancel the divergences in the symplectic form and therefore the supertranslation charge. It

is also not understood what physical significance the O(r−1) mode in the metric, CAB has.

It is intriguing that irrespective of the dimension we work in, existence of super transla-

tions implies existence of CAB as Super-translation acts on this mode in homogeneously.

On the other hand, the radiative gravitational field in D > 4 dimensions does not require

existence of such a mode. Thus if we are to understand the classical soft graviton theorem

as a consequence of asymptotic conservation laws, we need to expand the radiative data to

include CAB, even though this mode is not explicitly present in soft radiation in a classical

scattering.

Similarly, the issue of memory and its relation with asymptotic symmetries at I in

higher dimensions is not completel understood. It is indeed possible that CAB 6= 0 allows for
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memory (gravitational field at 1
rD−3 in higher dimensions. But to the best of understanding,

this has not been shown before. A detailed analysis of this issue will help us in establishing

the classical version of the so-called IR triangle in higher dimensions which equates (clas-

sical) soft graviton theorem, super translation conservation law and the memory effect on

equal footing [PRS18].

We hope to address these issues in the near future.
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Appendix A

Deriving (2.74)

We want to solve �Aρ in the limit τ →±∞ to get the τ falloffs for Aρ and consecutively

other fields in this limit. The Christoffel symbols that will be useful here can be written in

a compact form

Γ
ρ

µν =−ρσµν Γ
µ

νρ =
1
ρ

δ
µ

ν Γ
µ

αβ
(A.1)

Note that as defined in the notations in 2.1, Latin indices run over (ρ,τ, x̂) and Greek indices

run over (τ, x̂). We are interested in solving

�Aρ = ∇
2
ρAρ +

σαβ

ρ2 ∇α∇β Aρ = ∂
2
ρ Aρ +

σαβ

ρ2 ∇α∇β Aρ (A.2)

Now, let us look at the second term in this, namely,

σ
αβ

∇α∇β Aρ = σ
αβ

∂α(∇β Aρ)−σ
αβ

Γ
γ

αβ
∇γAρ −σ

αβ
Γ

γ

αρ∇β Aγ . (A.3)

Consider the three terms in this individually.

1. σαβ ∂α(∇β Aρ) This can be written as,

σ
αβ

∂α(∇β Aρ) = σ
αβ

∂α∂β Aρ −
1
ρ

σ
αβ

∂αAβ . (A.4)

2. σαβ Γ
γ

αβ
∇γAρ

σ
αβ

Γ
γ

αβ
∇γAρ =−ρ (d +1)∂ρAρ +σ

αβ
Γ

µ

αβ
∂µAρ −

1
ρ

σ
αβ

Γ
µ

αβ
Aµ (A.5)

3. σαβ Γa
αρ∇β Aa

σ
αβ

Γ
a
αρ∇β Aa = (d +1)Aρ +

1
ρ

σ
αβ Dβ Aα (A.6)
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Upon combining these, you get,

σ
αβ

∇α∇β Aρ = σ
αβ

∂α∂β Aρ −
2
ρ

σ
αβ DαAβ −σ

αβ
Γ

µ

αβ
∂µAρ +(d +1)

[
ρ∂ρAρ −Aρ

]
.

(A.7)

Hence we have,

�Aρ = ∂
2
ρ Aρ +

(d +1)
ρ2

[
ρ∂ρAρ −Aρ

]
+

1
ρ2

[
D2Aρ −

2
ρ

σ
αβ DαAβ

]
(A.8)

We also need the Lorenz gauge condition, through which we will be able to simplify the

final term in that.

∇
aAa = 0 =⇒ DαAα =−ρ

2
∂ρAρ −ρ(d +1)Aρ . (A.9)

Using the condition above, the equation can be simplified to give,

DαAα = σ
αβ DαAβ =−ρ

2
∂ρAρ −ρ(d +1)Aρ . (A.10)

Here Aα is lowered with σαβ . This gives us �Aρ = 0 for any ρ as,

D2A(n)
ρ +(n−1)(n−d−1)A(n)

ρ = 0. (A.11)

We also need to know the value of (here
√
−σ = (1+ τ2)

d−1
2 ),

D2A(n)
ρ =

1√
−σ

∂α(
√
−σσ

αβ
∂β A(n)

ρ ) (A.12)

=− 1

(1+ τ2)
d−1

2
∂τ

(
(1+ τ

2)
d+1

2 ∂τA(n)
ρ

)
+ lower order in τ

=−(1+d)τ∂τA(n)
ρ (τ)− (1+ τ

2)∂ 2
τ A(n)

ρ (τ)+ · · ·

For large τ we have,

lim
τ→∞

D2A(n)
ρ =−(1+d)τ∂τA(n)

ρ − τ
2
∂

2
τ A(n)

ρ (A.13)

This gives us two solutions,

A(n)
ρ = O(τ1−n), A(n)

ρ = O(τn−d−1). (A.14)

The first one leads to divergent charges, and hence the one we choose is the second one.

Thus, A(n)
ρ = O(τn−d−1). This leads to F(n)

ρτ = O(τn−d−2). This for d = 2, gives us F(n)
ρτ =
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O(τn−4) which matches with (2.74).
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Appendix B

Laplacian on dSd+1

We know that λ and ψ satisfy the wave equation

DαDαφ = 0 (B.1)

=⇒ −∂τ [(1+ τ
2)

d+1
2 ∂tφ ]+ (1+ τ

2)
d−3

2 DADA
φ = 0

Solving this in the large τ limit and assuming φ ∼ O(τ−k), we get in the limit τ → ∞

dk− k2 = 0 =⇒ k = 0,d (B.2)

The k = 0 solution corresponds to the large τ behaviour of λ while k = d corresponds to

the large τ limit of ψ . So we have (2.83) and (2.82)

λ (τ, x̂) = λ−(x̂)+ · · · (B.3)

ψ(τ, x̂) =
1
τd ψ−(x̂)+ · · · (B.4)

where · · · represent higher order terms in τ . We can use Green’s functions to determine the

solution in terms of λ− and ψ−

λ (y) =
∫

d2V ′G(0)(y, x̂′)λ−(x̂′) (B.5)

ψ(y) =
∫

d2V ′G(2)(y, x̂′)ψ−(x̂′) (B.6)

We will now analyse the Green’s functions in terms of following variables

Y µ ≡ (τ,
√

1+ τ2x̂) (B.7)

σ ≡ τ +
√

1+ τ2x̂ · x̂′ (B.8)

P = Y µY ′µ (B.9)
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From the assumption that the dSd+1 vacuum is invariant under SO(d+1,1) de Sitter group,

G(y,y′) is also expected to be de Sitter invariant. This then tells us that G(y,y′)≡G(P) and

it satisfies the following equation [SSV01].

(P2−1)∂ 2
PG+(d +1)P∂PG = 0 (B.10)

This gives a hypergeometric solution

GSd
(P) = cdP(P2−1)

1−d
2 F [1,1− d

2
;
3
2

;P2]. (B.11)

Here cd is a constant, which depends on d. For d = 2, this gives us,

GS2
(P) =

c2P√
P2−1

. (B.12)

Taking the discontinuities across the branch cuts we get

GS2

R (P) =
c2P√
P2−1

Θ(τ− τ
′)Θ(P−1). (B.13)

This matches with [CE17] where they have c = 1/2π . Now in the limit when τ →−∞ we

get,

lim
τ ′→−∞

P =−|τ ′|(1+ x · x̂
√

1+ τ2) =−|τ ′|σ , (B.14)

So GS2

R (P) for d = 2 in this limit becomes

GS2

R (P) =
1

2π
Θ(σ) (B.15)

Now we will use Kirchoff’s integral representation for ψ(y)

ψ(y) = lim
τ ′→−∞

|τ ′|3
∫

τ ′=const
ddV ′

[
GR(y,y′)∂τ ′ψ(y′)−∂τ ′GR(y,y′)ψ(y′)

]
. (B.16)

We look at the terms in the Green function separately. First consider the term GS2

R (y,y′)∂τ ′ψ(y′).

This in the limit τ →−∞ becomes,

lim
τ ′→−∞

|τ ′|3GS2

R (y,y′)∂τ ′ψ(y′) = |τ ′|3× 1
2π

Θ(σ)

(
2
|τ ′|3

ψ−(x̂′)
)
=

1
π

Θ(σ)ψ−(x̂′). (B.17)
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The other term, which is ∂τ ′GS2

R (y,y′)ψ(y′) becomes 0. This is because of the derivative

acting on the Green function here,

∂τ ′G
S2

R (y,y′) =
1

2π
∂τ ′Θ(σ) =

1
2π

δ (σ)
∂σ

∂τ ′
∼ (1− x̂ · x̂′)δ (τ ′(1− x̂ · x̂′)) = 0. (B.18)

In concluding that the equation above does not result in a contribution to the final result of

ψ(y), there is an assumption that ψ−(x̂′) is a smooth function. Thus we have the equation,

ψ(x̂,τ) =
1
π

∫
d2V ′Θ(σ)ψ−(x̂′). (B.19)

Now, in order to do this integral we need to study the Θ(σ) function, and where it is non-

vanishing. This can be easily done by noticing that this is non-zero only when σ > 0. And

from the definition of σ in B.14 and σ > 0 we have,

x̂ · x̂′ >− τ√
1+ τ2

. (B.20)

We can study this inequality in various limits of τ . For the case when τ →−∞ we have,

lim
τ→−∞

− τ√
1+ τ2

≈ 1− 1
2τ2 +O(1/τ

3). (B.21)

This implies that we have,

x̂ · x̂′ > 1− 1
2τ2 =⇒ 2x̂ · x̂′ > 2− 1

τ2 =⇒ 1
τ2 > 2−2x̂ · x̂′ = |x̂− x̂′|2. (B.22)

Here we have |x̂|2 = |x̂′|2 = 1. Note that the integral is over the variable x̂′. Diagrammati-

cally we have this region as,

This integral will clearly click only when x̂′ is centered around x̂, and that should give

us a delta function over that. Along with it, we will get the volume of the 2d sphere (disk),

which is πτ−2. Therefore, in the case when τ →−∞ B.19 becomes,

ψ(x̂) = τ
−2

ψ−(x̂′) (B.23)

as expected when k− = 0.

And with this in place, we should now explore the region τ → ∞. In this case, we have,

lim
τ→∞
− τ√

1+ τ2
≈−1+

1
2τ2 +O(1/τ

3). (B.24)
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×x̂
τ−1

∠x̂′

Figure B.1: The blue region, inside the circle of radius τ−1 and centered about x̂, denotes
the domain of integration for the variable x̂′.

Which implies that σ > 0 gives us,

x̂ · x̂′ >−1+
1

2τ2 =⇒ 2x̂ · x̂′ >−2+
1
τ2 =⇒ |x̂′+ x̂′|2 = 1

τ2 . (B.25)

This region is shown in the diagram below,

×−x̂
τ−1

∠x̂′

Figure B.2: The blue region, outside the circle of radius τ−1 and centered about −x̂,
denotes the domain of integration for the variable x̂′.

Thus, the integral in the region shown above can be decomposed into an integral over

51



the whole region S2 subtracted by an integral inside the circle. Therefore, we have,

lim
τ→∞

ψ(x̂,τ) =
1
π

∫
d2V ′Θ(σ)ψ−(x̂′) =

1
π

∫
S2

d2V ′ψ−(x̂′)−
1
π

∫
d2V ′Θ(−σ)ψ−(x̂′)

(B.26)

=
1
π

(∫
S2

d2V ′ψ−(x̂′)−πτ
−2

ψ−(−x̂′)
)
≡ k++ τ

−2
ψ+(x̂).

Therefore, from the equation above, we have,

k+ =
1
π

∫
S2

d2V ′ψ−(x̂′), (B.27)

ψ+(x̂) =−ψ−(−x̂). (B.28)
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Appendix C

Tools for gravity calculations

C.1 Christoffel Symbols

We list here all the relevant christoffel symbols used in our computation of the EOMs and

symplectic form. All the non-zero Christoffel symbols are

Γ
u
uu =

1
2

gur (2∂ugur−∂rguu) (C.1)

Γ
u
uA =

1
2

gur (∂Agur−∂rguA) (C.2)

Γ
u
AB =−1

2
gur

∂rgAB (C.3)

Γ
r
rr = gur

∂rgur (C.4)

Γ
r
ur =

1
2

[
gur

∂rguu +grA (∂rguA−∂Agur)
]

(C.5)

Γ
r
uA =

1
2
[
gur

∂Aguu +grr (∂Agur−∂rguA)+grB (∂AguB−∂BguA +∂ugAB)
]

(C.6)

Γ
r
rA =

1
2
[
gru (∂rguA +∂Agur)+grB

∂rgAB
]

(C.7)

Γ
r
uu =

1
2

[
gru

∂uguu +grr (2∂ugur−∂rguu)+grA (2∂uguA−∂Aguu)
]

(C.8)

Γ
r
AB =

1
2
[gur (∂BguA +∂AguB−∂ugAB)−grr

∂rgAB +grc (∂BgCA +∂AgCB−∂CgAB)] (C.9)

Γ
A
uu =

1
2

[
gAr (2∂ugur−∂rguu)+gAB (2∂uguB−∂Bguu)

]
(C.10)

Γ
A
ur =

1
2

gAB (∂rguB−∂Bgur) (C.11)

Γ
A
uB =

1
2

[
gAr (∂Bgur−∂rguB)+gAC (∂ugBC +∂BguC−∂CguB)

]
(C.12)

Γ
A
rB =

1
2

gAC
∂rgCB (C.13)

Γ
A
BC =

1
2

[
−gAr

∂rgBC +gAD (∂BgDC +∂CgBD−∂DgBC)
]

(C.14)
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We next substitute the metric components and evaluate the Christoffel symbols upto the

order needed for our analysis.

List of Christoffel symbols computed below are,

Γ
A
Br, Γ

A
Ar, Γ

r
rr, Γ

r
ur, Γ

A
ur, Γ

A
uB, Γ

u
AB, Γ

r
AB, Γ

A
BC, Γ

a
aB, ∂AΓ

a
aB, Γ

a
ar, Γ

a
au (C.15)

C.1.1 ΓA
Br

Γ
A
Br =

1
2

gAC
∂rgBC. (C.16)

Here we have,

gAC =
γAC

r2 −
CAC

r3 +
CA

DCCD−DAC

r4 +
g(2)AC

r5 . (C.17)

where,

g(2)AC =CAMDC
M +CMCDA

M−CA
MCMNCC

N−C(1)AC (C.18)

=⇒ g(2)AB =CAMDBM +CBMDAM−CA
MCMNCNB−C(1)A

B . (C.19)

And,

∂rgBC = 2rγBC +CBC−
C(1)

BC
r2 . (C.20)

Therefore,

Γ
A
Br =

1
2

(
γAC

r2 −
CAC

r3 +
CA

DCCD−DAC

r4 +
g(2)AC

r5

)(
2rγBC +CBC−

C(1)
BC
r2

)
(C.21)

=
δ A

B
r
− CA

B
2r2 +

CACCBC−2DA
B

2r3 +
1

2r4

(
2g(2)AB +CBC(CA

DCCD−DAC)−C(1)A
B

)
=

δ A
B
r
− CA

B
2r2 +

CACCBC−2DA
B

2r3

+
1

2r4

(
2CAMDBM +2CBMDAM−2CA

MCMNCNB−2C(1)A
B +CBN(CA

MCNM−DAN)−C(1)A
B

)
(C.22)

=
δ A

B
r
− CA

B
2r2 +

CACCBC−2DA
B

2r3 +
2CAMDBM +CBMDAM−CA

MCMNCNB−3C(1)A
B

2r4 .

Final result,

Γ
A
Br =

δ A
B
r
− CA

B
2r2 +

CACCBC−2DA
B

2r3 +
2CAMDBM +CBMDAM−CA

MCMNCNB−3C(1)A
B

2r4 .

(C.23)
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C.1.2 ΓA
Ar

This is easily computed using the previous one,

Γ
A
Ar =

4
r
+

3C ·D−C3−3C(1)

2r4 . (C.24)

Using 3C ·D−3C(1) =C3 we get,

Γ
A
Ar =

4
r
+O(r−5). (C.25)

C.1.3 Γr
rr

This is simple to compute and is,

Γ
r
rr =−

4β (2)

r3 − 6β (3)

r4 . (C.26)

C.1.4 Γr
ur

Γ
r
ur =

1
2

[
gur

∂rguu +grA(∂rguA−∂Agur)
]

(C.27)

In this we first have,

gur
∂rguu =−e−2β

∂r(Me2β +U2) (C.28)

=−

(
1− 2β (2)

r2 − 2β (3)

r3

)
∂r

(
−2β (2)

r2 +
M(2)

r2

(
1+

2β (2)

r2 +
2β (3)

r3

)
+

U (0)2

r2

)

=−

(
1− 2β (2)

r2 − 2β (3)

r3

)[
4β (2)

r3 − 2M(2)

r3 − 2U (0)2

r3

]

=−4β (2)

r3 +
2M(2)

r3 +
2U (0)2

r3 .

Next we have,

grA
∂rguA =UAe−2β

∂rUA = O(r−4). (C.29)

The last one,

grA
∂Agur =UAe−2β

∂Ae2β = O(r−4). (C.30)
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And therefore we finally have,

Γ
r
ur =

1
r3

(
M(2)+U (0)2−2β

(2)
)
. (C.31)

C.1.5 ΓA
ur

Γ
A
ur =

1
2

gAB(∂rguB−∂Bgur) (C.32)

Here we have,

Γ
A
ur =

1
2

γAB

r2

(U (1)
B
r2 +

2
r2 ∂Bβ

(2)
)

(C.33)

=
1

2r4

(UA(1)

r2 +
2
r2 DA

β
(2)
)
.

Thus we have,

Γ
A
ur =

1
2r4

[
UA(1)+2DA

β
(2)]. (C.34)

C.1.6 ΓA
uB

This is,

Γ
A
uB =

γAC

2r2

(
−DBU (0)

C +DCU (0)
B +∂uDBC

)
(C.35)

+
1

2r3

[
−CAC(−DBU (0)

C +DCU (0)
B +∂uDBC)+(−DBU (1)A +DAU (1)B +∂uC(1)A

B )
]

C.1.7 Γu
uA

This is given as,

Γ
u
Au =

1
2

gur(
∂Agur−∂rguA

)
(C.36)

=
1
2

e−2β
∂Ae2β − 1

2
e−2β

∂rUA

=
1
r2 ∂Aβ

(2)− 1
r3 ∂Aβ

(3)− 1
2

(
1− 2β (2)

r2 − 2β (3)

r3

)(
−

U (1)
A
r2

)
=

U (1)
A +2∂Aβ (2)

2r2 +O(r−3)
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Thus,

Γ
u
Au =

U (1)
A +2∂Aβ (2)

2r2 +O(r−3). (C.37)

C.1.8 Γr
Ar

This is simple and is given as,

Γ
r
Ar =

1
2

[
gru(∂rguA +∂Agur)+grB

∂rgAB

]
(C.38)

The terms in this are given as follows. Consider the first,

gru
∂rguA = e−2β

∂rUA =−
U (1)

A
r2 (C.39)

We consider the other terms,

gru
∂Agur = e−2β

∂Ae2β =
2
r2 ∂Aβ

(2)+O(r−3), (C.40)

and

grB
∂rgAB =−UBe−2β (2rγAB +CAB) (C.41)

=−

[
U (0)B

r2 +
1
r3 (U

(1)B−CCBU (0)
C )

](
1− 2β (2)

r2

)
(2rγAB +CAB)

=−

[
U (0)B

r2 +
1
r3 (U

(1)B−CCBU (0)
C )

]
(2rγAB +CAB)

=−
2U (0)

B
r
− 1

r2

(
U (0)BCAB +2(U (1)

A −CACU (0)C)
)

=−
2U (0)

B
r
− 1

r2

(
2U (1)

A −CACU (0)C
)
.

Therefore,

Γ
r
Ar =

1
2

[
−

2U (0)
B
r
− 1

r2

(
3U (1)

A −CACU (0)C−∂Aβ
(2)
)]

. (C.42)

C.1.9 Γu
AB

This is given as,

Γ
u
AB = rγAB +

CAB

2
+

2β (2)γAB

r
− 1

r2

(1
2

C(1)
AB +CABβ

(2)+2β
(3)

γAB

)
. (C.43)
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Γ
u
AB = rγAB +

CAB

2
− 2β (2)γAB

r
− 1

r2

(1
2

C(1)
AB +CABβ

(2)+2β
(3)

γAB

)
. (C.44)

C.1.10 Γr
AB

This is slightly long and is given as,

Γ
r
AB = rγAB +

1
2

[
DBU (0)

A +DAU (0)
B +∂uDAB +CAB

]
(C.45)

+
1
2r

[
2γAB(+M(2)−2β

(2))−U (0)C(DBCAC +DACBC−DCCAB
)

+DBU (1)
A +DAU (1)

B +∂uC(1)
AB

]
.

C.1.11 ΓA
BC

This is given as,

Γ
A
BC =

1
2r

[
2U (0)A

γBC +(DBCA
C +DCCA

B−DACBC)
]

(C.46)

+
1

2r2

[
U (0)ACBC +2γBC(U (1)A−CADU (0)

D )−CAD(DBCCD +DCCBD−DDCBC)

+(DBDA
C +DCDA

B−DADBC)
]
.

C.1.12 ΓA
AB

This follows in a simple way from the expression above if we use DA
A = 1/2C2. Thus we

have,

Γ
A
AB =

U(0)B

r
+

1
2r2

[
2U (1)

B −CBDU (0)D
]
. (C.47)

C.1.13 Γa
aB

This can be written as,

Γ
a
aB =

1
2
(2gur

∂Bgur +gCD
∂BgCD). (C.48)
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These terms can be written as follows,

gur
∂Bgur = e−2β

∂Be2β =
2
r2 DBβ

(2)+
2
r3 DBβ

(3). (C.49)

The other term is,

gCD
∂BgCD =

[
γCD

r2 −
CCD

r3 +
CCMCD

M−DCD

r4

][
rDBCCD +DBDCD +

DBC(1)
CD

r

]
(C.50)

=
1
r3

[
DBC(1)A

A −CMNDBDMN +(CCMCD
M−DCD)DBCCD

]
=

1
r3

[
DB(CMNDMN−

1
3

CMNCNACA
M)−CMNDBDMN +(CCMCD

M−DCD)DBCCD

]
=

1
r3

[
− 1

3
DB(CMNCNACA

M)+CNMCA
MDBCAN

]
= 0.

Hence we have,

Γ
a
aB =

2
r2 DBβ

(2)+
2
r3 DBβ

(3). (C.51)

C.1.14 DAΓa
aB

From the equation derived above, we have,

DAΓ
a
aB =

2
r2 DADBβ

(2)+
2
r3 DADBβ

(3). (C.52)

C.1.15 Γa
ar

This is given as,

Γ
a
ar =

1
2
(2gur

∂rgur +gCD
∂rgCD) (C.53)

Let us compute the terms one by one. The first one is simple to compute,

gur
∂rgur = e−2β

∂re2β =−4β (2)

r3 − 6β (3)

r4 . (C.54)
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The other term is given by,

gCD
∂rgCD =

(
γCD

r2 −
CCD

r3 +
CC

MCMD−DCD

r4 +
g(2)CD

r5

)(
2rγCD +CCD−

C(1)CD

r2

)
(C.55)

=
8
r
+

1
r4

[
−C(1)A

A +C3−C ·D+2g(2)AA

]
=

8
r
+

1
r4

[
−C(1)+C3−C ·D+2(2C ·D−C3−C(1))

]
=

8
r
+

1
r4

[
−C(1)A

A +C3−C ·D+4C ·D−2C3−2C(1)
]

=
8
r
+

1
r4

[
3C ·D−C3−3C(1)

]
=

8
r
+

1
r4

[
3C ·D−C3− (3C ·D−C3)

]
=

8
r

Thus we have,

Γ
a
ar =

4
r
− 4β (2)

r3 . (C.56)

C.1.16 Γa
au

This can be written as,

Γ
a
au =

1
2
(2gur

∂ugur +gCD
∂ugCD) (C.57)

Consider the first term in this.

gur
∂ugur = e−2β

∂ue2β =

(
1− 2β (2)

r2 − 2β (3)

r4

)(
2
r3 ∂uβ

(3)
)
=

2
r3 ∂uβ

(3). (C.58)

The other term is given as,

gCD
∂ugCD =

(
γCD

r2 −
CCD

r3 +
CC

MCMD−DCD

r4

)(
∂uDCD +

∂uC(1)CD

r

)
(C.59)

=
1
r3

[
∂uC(1)−CCD

∂uDCD

]
=

1
r3

[
∂u(C ·D−1/3C3)−CCD

∂uDCD

]
= O(1/r4).

Hence,

Γ
a
au =

2
r3 ∂uβ

(3)+O(r−4). (C.60)

60



Appendix D

Deriving BMS generator and its action
on metric components

We will first derive the vector that generates supertranslations in six dimensions and then

look at its action on metric components. The procedure we follow here is quite general and

holds in all dimensions.

D.1 Deriving ξ

Supertranslations preserve gauge choice and falloffs. Let ξ be the generator of supertrans-

lations. To preserve the Bondi gauge, we need to impose the following conditions

Lξ grr = 0, Lξ grA = 0, Lξ ∂r det
(gAB

r2

)
= 0 (D.1)

and to preserve the falloffs we need,

Lξ guu = O(r−2), Lξ gur = O(r−2), Lξ guA = O(r0), Lξ gAB = O(r) (D.2)

Starting with the Bondi gauge condition grr = 0, we get

1. Lξ grr

Lξ grr = ξ
α

∂αgrr +grα∂rξ
α +gαr∂rξ

α = 0 (D.3)

=⇒ gru∂rξ
u = 0

=⇒ ∂rξ
u = 0.

Hence ξ u is independent of r.

∂rξ
u = 0. (D.4)
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Which means that we only have the following power in the r-expansion,

ξ
u = ξ

(0)u. (D.5)

2. Lξ gur The fall off on this is Lξ gur = O(r−2).

Lξ gur = ξ
α

∂αgur +guα∂rξ
α +grα∂uξ

α (D.6)

= ξ
α

∂αgur +guα∂rξ
α +gru∂uξ

u

= ξ
α

∂αgur +guα∂rξ
α +gru∂uξ

u.

Then at O(r0) we have,

gru∂uξ
(0)u = 0 =⇒ ∂uξ

(0)u = 0. (D.7)

Therefore let us choose,

ξ
(0)u = f (xA) (D.8)

At O(r−1), the equation above is trivially satisfied.

3. Lξ grA. This should be zero at all orders in r.

Lξ grA = ξ
α

∂αgrA +grα∂Aξ
α +gαA∂rξ

α = 0 (D.9)

=⇒ grα∂Aξ
α +gαA∂rξ

α = 0

=⇒ gru∂Aξ
u +guA∂rξ

u +gAB∂rξ
B = 0

=⇒ gru∂Aξ
u +gAB∂rξ

B = 0.

Now at O(r0) we have,

−∂A f − γABξ
(1)B = 0 =⇒ ξ

(1)A =−DA f . (D.10)

At the next order, i.e O(r−1), we have,

(r2
γAB + rCAB)

[
−ξ (1)B

r2 −
2ξ (2)B

r3

]
= 0 =⇒ −2γABξ

(2)B−CABξ
(1)B = 0. (D.11)

Thus we have,

ξ
(2)A =

1
2

CABDB f . (D.12)
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4. Lξ guu. The fall off on this is Lξ guu = O(r−2).

Lξ guu = ξ
α

∂αguu +guα∂uξ
α +gαu∂uξ

α (D.13)

= 2guα∂uξ
α +O(r−2)

= 2
[
guu∂uξ

u +gur∂uξ
r +guA∂uξ

A
]
+O(r−2).

At O(r0) we have,

guu∂uξ
(0)u +gur∂uξ

(0)r +g(0)uA ∂uξ
(0)A = 0 (D.14)

=⇒ −∂uξ
(0)r−U (0)

A ∂uξ
(0)A = 0

=⇒ −∂uξ
(0)r−U (0)

A ∂uξ
(0)A = 0.

If ξ (0)A = 0 (since we want to eliminate boosts and rotations), then we have,

∂uξ
(0)r = 0. (D.15)

At O(r−1) we have,

−∂uξ
(1)u−∂uξ

(1)r +g(0)uA ∂uξ
(1)A = 0 (D.16)

=⇒ −∂uξ
(1)r +g(0)uA ∂uξ

(1)A = 0

=⇒ −∂uξ
(1)r−g(0)uA ∂uDA f = 0.

But this just tells us that,

∂uξ
(1)r = 0. (D.17)

5. Lξ gAB. This allows us to fix ξ r(0) and ξ r(1). These are fixed by using the trace

conditions on Lξ gA
A. From the computation of δ fCAB we get,

δ fCAB = 2ξ
(0)r

γAB +2g(−2)
C(A DB)ξ

C(1). (D.18)

And from the trace condition we get,

8ξ
r(0)+2g(−2)

CA DA
ξ

C(1) = 0 =⇒ ξ
r(0) =

1
4

γACDADC f =
1
4

D2 f . (D.19)
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For getting ξ r(1), we need the value of δ f DAB, which is given as,

δ f DAB = f ∂uDAB +
[
2γABξ

r(1)+ξ
C(1)αDCCAB +ξ

r(0)CAB

]
(D.20)

+2
[
g(−2)

C(A DB)ξ
C(2)+g(−1)

C(A DB)ξ
C(1)+g(0)u(ADB)ξ

u(0)
]
.

And the trace condition now gives,

δ f DA
A =CAB

δ fCAB =
[
8ξ

r(1)
]
+2
[
g(−2)

C(A DA)
ξ

C(2)+g(−1)
C(A DA)

ξ
C(1)+g(0)u(ADA)

ξ
u(0)
]
.

(D.21)

Thus,

−8ξ
r(1) =−CAB

δ fCAB +2
[
DAξ

A(2)+CACDA
ξ

C(1)−U (0)
A DA

ξ
u(0)
]

(D.22)

= 2CABDADB f +2
[1

2
DA(CABDB f )−CABDADB f +

1
6

DBCABDA f
]

= 2
[1

2
(DACABDB f +CABDADB f )+

1
6

DBCABDA f
]

=
4
3

DACABDB f +CABDADB f .

Thus,

ξ
r(1) =

1
8

[
− 4

3
DACABDB f −CABDADB f

]
(D.23)

D.2 Calculating δ f DAB and δ fCAB

We can calculate this by picking components at the right order from Lξ gAB.

Lξ gAB = δ f gAB = rδ fCAB +δ f DAB +O(r−1) (D.24)

We have

LxigAB = ξ
u
∂ugAB +ξ

r
∂rgAB +ξ

CDCgAB +gu(ADB)ξ
u (D.25)

At O(r) then we get

δ fCAB =−2DADB f +2γABξ
r(0) (D.26)

=−2
(

DADB f − 1
4

γABD2 f
)
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At O(r0), we get

δ f DAB = f ∂uDAB +
1
4

γAB

[
−4

3
DCCCDDD f −CCDDCDD f

]
(D.27)

+
1
4

CABD2 f −DCCABDC f − 1
2
(
CBCDADC f +CACDBDC f

)
+

1
2
[
DACBCDC f +DBCACDC f

]
+

1
6
[
DCCBCDA f +DCCACDB f

]
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