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Abstract 

 

 

 

The human genome vastly consists of non-coding DNA, and this portion contains variants 

associated with diseases, as shown by GWAS studies. Many studies have shown that the 

SNPs for diseases often lie in the regulatory elements of other genes. This creates a 

gaping hole in our understanding of how Trans regulation among genes happens inside 

our genome and how these phenotypes manifest as a result of this regulatory propagation 

in the genome. Recent studies have shown that certain promoters interact with each other, 

much like enhancers and promoers interact spatio-temporally. Several other studies have 

shown that a small proportion of promoters display enhancer activity. This evidence 

along with studies that blur the classical architectural demarcations between enhancers 

and promoters indicate that gene regulation is much more complex that earlier thought of, 

and how these promoter-promoter interactions could amplify in the genome due to 

network effect. 

In this thesis, we study the epigenomic markers associated with Enhancer-like promoters, 

namely Histone modification and Transcription factor marks in two ENCODE human cell 

lines – K562 and HeLa-S3. We also analyse how Enhancer-like promoters are temporally 

expressed with respect to regular promoters in the presence of environmental stimuli, and 

their position in the 3-D genome with respect to CTCF loops. We hypothesize that these 

promoters with enhancer activity are associated with inducible genes and kick-start the 

developmental program in the cell. They are enriched within CTCF loops; which 

constrain the transcriptional induction of ELPs and stop ripple effect. 
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Chapter 1 

Introduction 

Gene expression in eukaryotes is regulated spatio-temporally through gene-regulatory 

elements – Enhancers and promoters. Classically, promoters have been defined as TSS-

proximal gene regulatory elements, which consist of TATA box, initiator and 

downstream core promoter element and interact with RNA polymerase II. These elements 

have the capacity to induce gene expression locally. Whereas, enhancers have been 

defined as TSS-distal gene regulatory elements which induce gene expression at a 

distance, independent of the distance and the orientation with respect to the promoter 

(Atchison, 1988). This classification has also been supported by studies that showed that 

several epigenomic marks are associated with these regulatory elements. A 2007 study 

showed that H3K4me3 (H3 lysine 4 trimethylation) is enriched in regions proximal to the 

5‟ end of genes ,i.e., around active gene promoters, whereas H3K4me1 was found to be 

enriched in the distal gene regulatory elements (Heintzman et al., 2007). This implies that 

the signal ratio (H3K4me1:H3K4me3) could be used to distinguish between enhancers 

and promoters and H3K27ac has been shown to be associated with active promoters and 

enhancers (Creyghton et al., 2010). However, many studies challenge these conventional 

ideas and have shown that broad similarities exist between these regulatory elements. 

Although association with RNAPII has been defined to be the key property of promoters, 

it has been shown that enhancers bind with RNAPII as well, leading to the formation of 

non-coding enhancer RNAs (eRNAs). These eRNAs are often transcribed bi-

directionally, which is a feature of many mammalian promoters resulting in the formation 

of short anti-sense non-coding RNAs (Kim et al., 2010), (Seila et al., 2008).Besides these 

structural similarities between enhancers and promoters, it has also been shown that some 

promoters exhibit enhancer activity as well. In a 2012 study, the authors used genome-

wide CHIA-PET methodology to map long range chromatin interactions associated 
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with RNAPII, and found that there exists a widespread phenomenon of promoter-centred 

intragenic, extragenic and intergenic interactions in the human genome (Li et al., 2012). 

These interactions led to the formation of clusters, which led to the interaction of 

proximal and distal genes through promoter-promoter interactions. More recently, many 

novel techniques have been developed to identify enhancers and quantify their activity in 

the genome. One such technique is CapStarr-seq (Vanhille et al., 2015), which captures 

genomic sequences of interest for high-throughput assessment of enhancer activity in 

mammals. Using this technique, a research group carried out a genome-wide assessment 

of promoters in mammalian cell lines to quantify the enhancer activity of mammalian 

promoters, discovering a set of promoters displaying enhancer potential in the studies cell 

lines (Dao et al., 2017). 

A major implication of the presence of these Enhancer-like promoters is that it adds one 

more layer of complexity to the already complex process of transcriptional regulation of 

genes and to our understanding of genotype to phenotype associations in complex 

disorders. Genome Wide Association Studies (GWAS) studies have been used in the 

recent past as an effective method to identify genomic loci associated with common 

diseases, which have identified a lot of noncoding variants associated with common 

diseases/ phenotypes (Maurano et al., 2012). This also alludes to the fact that if these 

variants are found inside enhancer like promoters (ELPs) they could lead to disease 

related phenotypes associated with distal genes, via promoter-promoter interactions.  

A variant associated with Type 2 Diabetes – rs11603334 lies within the ARAP1 promoter 

and affects the PAX6/PAX4 binding in pancreatic islets. Interestingly enough, the 

ARAP1 promoter also displayed Enhancer activity in STARR-seq assays (Kulzer et al., 

2014), (Dao et al., 2017). 

Since Enhancer like promoters can have such a strong network effect in the genome, in 

this study, we analyse in two mammalian cell-lines, HeLa-S3 and K562, the features of 

these promoters displaying enhancer activity and compare them with regular promoters. 

We also study their temporal expression patterns when induced by external factors, in 

order to gain insights about their role in the development.  
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Chapter 2 

Materials and Methods 

2.1 Dataset for Enhancer potential of promoters 

The dataset for enhancer activity of promoters was taken from a 2017 paper (Dao 

et al., 2017), wherein the authors had performed CapStarr-seq assay for all 

promoters of  RefSeq-defined human coding genes to characterize ELPs ( 

Enhancer-Like Promoters) in an unbiased manner for two ENCODE cell lines – 

HeLa-S3 (Human Cervix carcinoma cell line) and K562 (Human myelogenous 

lukemia cell line). The fold change of the CapStarr-seq signal over input for two 

replicates was considered to be the quantification of enhancer potential of these 

promoters. We used this data such that we took the average of this fold change 

value for each gene (for both replicates) and defined the promoter region to be 

TSS±500 bp.  

For classifying the 20720 promoters as ELPs or PLPs, we found the inflection 

point of the average FC dataset for both the cell lines. This was done by plotting 

the FC values versus gene rank, and determining the diagonal line of the curve 

from the end points. This line was then slid on the curve to see where it is 

tangential and that point was considered to be the inflection point (Vanhille et al., 

2015). 

2.2 Histone and Transcription factor CHIP-SEQ datasets  

In order to find out which histone modifications and transcription factors are 

associated with ELPs in both the cell lines, we downloaded the CHIP-SEQ 

datasets from the ENCODE consortium (Davis et al., 2018) for both the cell lines 

in the BigWig format (Accession IDs : Ref. Table A1, A2), which were converted 

into to continuous BedGraph files using BEDTools (RRID:SCR_006646). Due to 
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the large size of the files, each file was fragmented chromosome wise using 

BEDOps (Neph et al., 2012) and mapping was done onto the promoter regions as 

described in section 2.1 using  Bioconductor (Gentleman et al., 2004) in R. We 

converted the BedGraph data frame into Genomic ranges (GRanges) and took the 

mean of enrichment values across the length of the promoter region. These 

chromosomally segregated files for each histone modification and Transcription 

factor binding dataset were then combined using BEDTools. Finally, X and Y 

matrices were obtained for each cell line such that: 
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2.3 Quantile normalization of the datasets 

Normalization is essential before any analysis which involves comparison of 

multiple datasets. Here, the final matrices (obtained after mapping the histone and 

transcription factor CHIP-SEQ datasets to the refseq promoter coordinates) were 

quantile normalized in R, using the preprocesscore library (Bolstad B 2021). 

This method allows us to optimally compare and analyse datasets generated from 

different platforms. Following is the algorithm (Bolstad, Irizarry, Åstrand, & 
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Speed, 2003)  for normalizing a set of data vectors by giving them the same 

distribution: 

i) Given n arrays of length p, form X of dimension p x n where each array is 

a column 

ii) Sort each column of X to give Xs 

iii) Take means across rows of Xs and assign the mean to each element in the 

row to get X‟s. 

iv) Get Xnorm by rearranging each column of X‟s to have the same ordering as 

original X matrix. 

 

2.4 Performing Partial Least Squares regression analysis  

PLS is a great analysis tool for high-dimensional datasets and has been widely 

used for chemometric data analysis. It is a technique which reduces predictors into 

a smaller set of uncorrelated components, especially for such datasets where the 

predictors are often highly correlated with each other. We used the pls package 

(CRAN) in R to carry out PLS regression on our datasets. The algorithm is as 

follows (Mutalik & Venkatesh, 2005): 

i) First, the design matrix (Xnorm) and the response matrix (Y) are centred to 

column mean zero, resulting in matrices X‟ and Y‟. 

ii) Then, using linear dimension reduction T = XR, and the n predictors of X 

are mapped onto c  ≤  rank (X‟) ≤ min (n,p) latent components in T ( p x 

c). SIMPLS algorithm was used to achieve this. 

iii) Assuming the model Y‟ = TQ‟ + E, Y‟ is regressed by Ordinary least 

squares regression against T (the X-scores) to get the loadings Q (m x c), 

where Q = Y‟‟T(T‟T)
-1

. 

iv) Then, the estimate of coefficients B in Y‟ =  X‟B + E is computed from 

estimates of the weight matrix R and Y-loadings  Q via  B = RQ‟. 
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v) Lastly, the coefficients for the original equation are computed by rescaling 

B. 

2.5 Time course gene expression 

The time series RLE normalized CAGE dataset for K562  ( subject to hemin 

stimulation ) was obtained from FANTOM‟s TET (Table Extraction Tool) for the 

hg19 assembly (Lizio et al., 2019). The expression values were obtained for all the 

genes across regular time intervals.  

Time course expression data for HeLa-S3 (subject to EGF stimulation) was 

obtained from NCBI‟s GEO database (Amit et al., 2007). This dataset consisted of 

expression values across time intervals using microarray expression profiling.  

Since the experiment was conducted on the „GPL96 Affymetrix Human Genome 

U133A Array‟ platform, we used the Affy package in R Bioconductor to extract 

the time course gene expression matrix from the .CEL format. After extracting the 

matrix, the affymetrix ID for each gene was substituted with gene names using the 

GPL96 platform‟s annotation file.These time course matrices for both the cell 

lines were mapped onto the RefSeq promoters (ref section 2.1) in order to obtain 

segregated datasets for time course gene expression for genes associated with 

ELPs and PLPs. 

2.6 Calculating enrichment in CTCF loops using CTCF CHIA-PET data 

We used CTCF CHIA-PET data for K562 cell line from the ENCODE portal 

(Dunham et al., 2012), File accession : ENCFF001THV  and obtained the CHIA-

PET data for HeLa-S3 from NCBI‟s GEO database (Tang et al., 2015). From the 

CHIA-PET datasets for both the cell lines, we didn‟t consider Trans loops ( inter 

chromosomal CHIA-PET interactions ) and Cis (intra chromosomal CHIA-PET 

interactions) beyond 1 Mb, hence only Cis interactions with length < 1 Mb were 

taken into account as the number of observed interactions at or below this length 

significantly exceeds the number of interactions expected from stochastic 

interaction events or random ligation (DeMare et al., 2013). 

In order to investigate the CTCF loops as well as their loop flanking regions, each 

loop was extended on either side by the size of the loop itself. 



7 
 

   

 

 

                               Gap                                        Loop                                         Gap 

These extended regions were then divided into bins equal to 10% of the loop 

length and average enrichment of ELPs and PLPs was calculated in these regions. 

Statistical analysis was done in R and Python was used for handling files.  
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Chapter 3 

Results 

3.1 Inflection point of the CapStarr-seq dataset 

In order to classify the promoters of all the RefSeq defined human coding genes as 

Enhancer-Like Promoters (ELPs) or Promoter Like Promoters (PLPs), we plotted the 

average fold change values on the y-axis and rank-wise promoters on the x-axis to find 

the inflection point of the dataset. The promoters having a fold change value greater than 

or equal to this cut-off were defined as ELPs, whereas the ones having a fold change 

value less than the cut-off were defined as PLPs. 

                                      

Fig. 3.1 (A) Infection point of fold change values for Enhancer activity of promoters for 

the cell line Hela-S3.         
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Fig.3.1 (B) Infection point of fold change values for Enhancer activity of promoters for 

the cell line Hela-S3. 

We observed that the inflection point for HeLa-S3 turned out to be 2.15, with 676 ELPs 

and 20044 PLPs ( ~3.26 % ELPs). For the cell line K562, the inflection point was 1.76 

with 754 ELPs and 19966 PLPs ( ~ 3.64 % ELPs). 

 

3.2 Histone modifications and Transcription factors associated with ELPs 

To look at the trends and correlations in the dataset graphically, we made correlograms 

(Hierarchical clustering method) using the Xnorm and Y matrices (ref. section 2.3), which 

consist of the Histone modifications / Transcription factor enrichment, and FC values 

respectively, reflecting enhancer activity of the promoters respectively.  

We observed that for HeLa-S3, enhancer activity showed high correlation with H3K27ac, 

H3K9ac, H3K4me3, H2AF.Z and H3K79me2 (Fig. 3.2(A)), whereas in the case of K562 

we only observed very weak correlations among enhancer activity and histone 

modifications. 
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                      Fig. 3.2 (A)                                                                        Fig. 3.2 (B) 

Fig. 3.2 : Correlogram for various histone modifications and enhancer potential of 

promoters for (A) HeLa-S3 (B) K562 

In figures 3.2 and 3.5, we see that some of the predictors ( Histone modifications/ 

Transcription factors) are highly correlated with each other as well. We therefore used 

PLS regression, which reduces the predictors into a set of smaller set of uncorrelated 

components and then performs regression on these components. We made biplots with 

component 1 and 2, plotting the X loadings (Predictor variables) and Y loadings 

(response variables) so obtained with respect to Component 1 and 2 (Fig. 3.3). Since 

component 1 explained maximum variance of the response variable, we plotted the X-

loadings along the first component for all the predictors to see which ones are best 

associated with enhancer activity of promoters (Fig 3.4). For HeLa-S3, H3K27ac, 

H3K9ac, H3K4me3, H2Af.Z and H3K4me2 turn out to be the best predictors with highest 

values for X-loadings. However, in case of K562, the trend is completely opposite as 

compared to HeLa-S3, wherein H3K27ac, H3K9ac, H3K4me3, H2Af.Z and H3K4me2, 

have magnitudes of X-loading similar to HeLa-S3 but they‟re negative. This is an 

interesting result; however we don‟t know how to explain it yet. 
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                                                         Fig 3.3 (A) 

                      

                                                         Fig. 3.3 (B) 

Fig. 3.3 : Partial least squares regression biplots for PLSR performed on Histone 

modification matrix and Enhancer of ELPs in (A) HeLa-S3 (B) K562 
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                         Fig. 3.4 (A)                                                       Fig. 3.4 (B) 

Fig. 3.4 : Barplots of  X loadings along component 1 for histone modifications in (A) 

HeLa-S3 and (B) K562 

The same procedure as above was followed for Transcription factor datasets and it was 

found that in the case of HeLa-S3, transcription factors like ZHX1,EP300, NFE2L2, 

MAFF, TAF1, GABPA and POLR2A were correlated with the enhancer potential, and in 

K562, EP300 and STAT5A showed a relatively higher correlation than others (Fig 3.5). 

 

                                 Fig. 3.5 (A)                                                    Fig. 3.5 (B)     

Fig. 3.5: Correlogram for Transcription factors and enhancer potential of promoters for (A) 

HeLa-S3 (B) K562 
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 From PLSR results, we obtained that NFE2L2, DEK, EP300, MAFF, ZHX1 are the key 

Transcription factors associated with ELPs in HeLa-S3, and EP300 and STAT5A were 

found to be    important in the case of K562 (Fig. 3.6, 3.7). 

                        

                                                        Fig. 3.6(A)  

                              

                                                         Fig. 3.6 (B) 

Fig. 3.6 : Partial least squares regression biplots for PLSR performed on Transcription 

factor matrix and Enhancer potential of ELPs in (A) HeLa-S3 (B) K562. 
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                    Fig. 3.7 (A)                                                        Fig. 3.7 (B) 

Fig. 3.7: Barplots of X loadings along component 1 for Transcription factors in (A) HeLa-

S3 and (B) K562 

3.3 ELPs are inducible promoters and are associated with early response genes 

Having obtained time course gene expression data for both the cell lines, we divided the 

dataset into two – for ELPs and PLPs. For both ELP and PLP datasets, we calculated 

Average fold change expression for all time points across promoters. It was observed that 

ELPs are more inducible than PLPs in both cell lines and are associated with early 

expressing genes (Fig. 3.8). 
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Fig. 3.8 (A) : Time course gene expression plots of ELPs and PLPs for K562 cell line 

stimulated by Hemin. Wilcoxin signed rank test was used to test the difference between 

them. 

 

      Fig. 3.8 (B): Time course gene expression data of ELPs and PLPs for HeLa-S3 cell 

line stimulated by EGF. Wilcoxin signed rank test was used to test the difference between 

them. 

We further wanted to understand what could be the possible action mechanism of these 

ELPs. Since they‟re associated with early expressing genes, we wanted to check if they‟re 

involved with genes coding for transcription factors. We pulled down data for genes 

coding for transcription factors from FANTOM to find out what proportion of ELPs and 

PLPs are associated with TF coding genes. We found that there is no significant 

difference in either cell lines (Fig. 3.9). Hence, we conclude that ELPs act through 

chromatin interactions instead of gene products. 

 



16 
 

                          

            Fig. 3.9 (A)                                                                  Fig. 3.9 (B) 

Fig. 3.9: Stacked bar plots showing the proportion of ELPs and PLPs associated with 

Transcription factor encoding genes for (A) K562 and (B) HeLa-S3 

3.4 ELPs are enriched inside CTCF loops 

From out previous results, we found out that ELPs are inducible promoters, have 

enhancer potential, and act through chromatin-chromatin interactions; we wanted to 

check if they are restricted by boundary elements. Enrichment of ELPs and PLPs was 

calculated using the method as described in section 2.6, and the results indicate that ELPs 

are enriched in CTCF loops in both the cell lines.    

         

                            Fig. 3.10 (A)                                                    Fig. 3.10 (B) 

Fig. 3.10: Plot for enrichment of ELPs and PLPs within and outside CTCF loops for (A) 

K562 and (B) HeLa-S3. Plots were made using sliding averages (window =5) across 300 

bins. p-values was calculated by taking 20% of the loop length on either boundaries and 

applying the wilcoxin signed rank test in both the cases. 
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Chapter 3 

Discussion 

From these results, it is evident that in both the cell lines – HeLa-S3 and K562, Enhancer 

like promoters  are more inducible as compared to regular promoters  when stimulated by 

environmental factors. These are also associated with early response genes which are 

among the first ones to be transcribed during the development of an organism and in a 

way kick-start the developmental program. They initiate a downstream wave of 

transcriptional response and pave way for other genes to be expressed sequentially.  

Enhancer-like promoters seem to affect the transcription of other downstream genes 

through promoter-promoter interactions, as the case for their action mechanism through 

protein products (i.e., via transcription factors) was ruled out. There seemed to be 

virtually no difference between the proportion of ELPs or PLPs which were associated 

with genes encoding for transcription factors, hence reaffirming that these ELPs indeed 

act as true enhancers.  

ELPs are also observed to be highly enriched within the boundaries of CTCF loops 

throughout the genome. CTCF protein is involved in organisation of the genome and also 

mediates three dimensional chromatin interactions. Enrichment of ELPs inside CTCF 

loops could be facilitating their action mechanism in two ways. One - that the target 

promoters with which ELPs interact don‟t necessarily reside in their vicinity and their 

early transcription could lead to a ripple effect propagating in the genome which would 

mean untimely transcription of other genes. The fact that ELPs are bound inside CTCF 

loops prevents this ripple effect as CTCF act as insulator proteins. Second – CTCF loops 

also facilitate the interaction of distal genomic elements in space hence bringing ELPs 

and their actual targets closer. 
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Histone modifications like H3K27ac, H3K9ac, H3K4me3, H2Af.Z and H3K4me2 were 

found to be associated with enhancer potential of ELPs in HeLa-S3. H3K4me1, which is 

considered to be the hallmark of enhancers, did not turn out to be strongly associated with 

ELPs however H3k4me2 which is again a mark for enhancers (Lokody, 2013) was one of 

the strong predictors according to PLSR. H3K27ac is known to be associated with active 

regulatory elements and H3K4me3 is a mark associated with promoters. The case for 

K562 was a bit curious, because the trends of histone modifications were completely 

opposite as compared to HeLa-S3. Transcription factors like NFE2L2, DEK, EP300, 

MAFF, ZHX1 were found to be best associated with ELPs in HeLa-S3, and EP300 and 

STAT5A in the case of K562. These Transcription factors have been known to be 

associated with enhancers in literature. It is difficult to extrapolate these associations 

based on these two datasets because of lack of coherence in the results. More data from 

various other cell-lines need to be analysed to see whether trends exist or if these 

associations are dependent on the nature of biological samples used.           
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Appendix 

 

 

 

 

Table A1: Encode Accession IDs                            Table A2: Encode Accession IDs for K562 for 

Histone and TF CHIP-SEQ                                      HeLa S3 Histone and TF CHIP-SEQ 

experiments.                                                              experiments. 

ENCFF527JUP H3K9ac 

ENCFF439ZCI H3K4me1 

ENCFF526UWC H3K9me1 

ENCFF834YLI H3K9me3 

ENCFF689TMV H3K4me3 

ENCFF486DJY H3K27me3 

ENCFF745HXR H3K36me3 

ENCFF143CUR H4K20me1 

ENCFF003CLZ H3K79me2 

ENCFF010PHG H3K27ac 

ENCFF191EXE H2AFZ 

ENCFF118MMT H3K4me2 

ENCFF279WBA BRCA1 

ENCFF813TKO CREBBP 

ENCFF933ZLL CTCF 

ENCFF357GGL EP300 

ENCFF380ABG FUS 

ENCFF869WSZ GABPA 

ENCFF992YWK IRF1 

ENCFF223ARA JUND 

ENCFF931BLV MAFF 

ENCFF964KPV MAFK 

ENCFF348UKA POLR2A 

ENCFF571ECM REST 

ENCFF832FFP STAT5A 

ENCFF488POX TAF1 

ENCFF442LQQ H2AFZ 

ENCFF131OIJ H3K27ac 

ENCFF837PIH H3K27me3 

ENCFF236IFZ H3K36me3 

ENCFF065HNK H3K4me1 

ENCFF790RUR H3K4me2 

ENCFF045NNJ H3K4me3 

ENCFF216CWP H3K79me2 

ENCFF019ETS H3K9ac 

ENCFF603RCV H3K9me3 

ENCFF094AQR H4K20me1 

ENCFF980IVM ZFP36 

ENCFF078EDJ EZH2 

ENCFF308NHO CTCF 

ENCFF428DLR MAFF 

ENCFF630LNK SREBF2 

ENCFF739HNF MAFK 

ENCFF710PXV REST 

ENCFF893YQO UBTF 

ENCFF721OKD ZHX1 

ENCFF043NAS GABPA 

ENCFF776MXK DEK 

ENCFF701YXF TAF1 

ENCFF796RLG EP300 

ENCFF522IZP MYC 

ENCFF360MQA SUPT20H 
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