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Abstract

While quantum mechanics tells us that states of a given physical system reside in a
Hilbert space and observables correspond to self-adjoint operators acting on that space,
it doesn’t provide a prescription to uniquely associate a Hilbert space and the relevant
self-adjoint observables for any given system. Then, why is the dynamics of a free
particle in one dimension always modelled by the space of complex square integrable
functions with the position and momentum observables acting as the multiplication and
differentiation operators, respectively? It is perfectly reasonable to expect that there
may be other choices of the Hilbert space and of the self-adjoint operators linked with
the position and momentum observables which serve equally as well to model the dy-
namics of the free particle. In this thesis, we aim to answer the aforementioned question
by providing a self-contained account of the seminal Stone-von Neumann uniqueness
theorem for the canonical commutation relation, which shows that it is the nature of the
commutation relation between the position and momentum observables that (uniquely)
fixes both the choice of the Hilbert space and of the self-adjoint operators linked with
the position and momentum observables of the free particle.
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1 Introduction

During the early years of the 20" century, as the stark incapacity of the classical theory
of mechanics to provide a full description of nature — especially at small length scales —
was beginning to get exposed, a new and intriguing quantum theory of the universe was
taking shape. Around the late 1920’s, there were two competing models of quantum me-
chanics, both of which lacked a firm mathematical footing and were desperately in need of
a unification: Schrodinger’s wave mechanics [Sch26] and Heisenberg’s matrix mechanics
[Fla32]. One of the main challenges in this regard was to prove the existence of sufficiently
nice realizations of the canonical commutation relations (CCR) between the position and
momentum observables

QP —PQ =l, (1.1)
and to tackle the question of their equivalence in both the models. It was not until the
seminal work on the ‘“Mathematical Foundations of Quantum Mechanics" by John von
Neumann [VNBW 18] was published in 1932 that the aforementioned problems acquired
a satisfactory solution (after years of crucial efforts, especially by Weyl [Wey27], Stone
[Sto30], and Von Neumann [vN31]). It was in this work where the ideas of formalizing the
theory of quantum mechanics on a Hilbert space finally culminated into a mathematically
precise shape and the stated commutation relations were rigorously and uniquely realized in
terms of unbounded self-adjoint operators on a Hilbert space. The aim of the present thesis
is to provide a self-contained introduction to the theory of linear operators on Hilbert spaces
which is required to fully appreciate the significance of the hallmark equation of quantum
physics as stated in Eq (1.1). We begin our journey in this chapter by laying out the basic
formulation of quantum mechanics and by motivating the need to consider realizations of
the CCR in Eq. (1.1).

For simplicity of exposition, we will mostly restrict ourselves to the case of a single free
particle constrained to move in one dimension. Classically, we model the phase space of
this system by using the cotangent bundle 7*.2 ~ R? of the configuration manifold 2 =R.
The physical observables then correspond to smooth real valued functions f € C*(R?). By
defining the Poisson bracket of f,g € C(R?) as follows

{f.g} =01forg—rf0ig, (1.2)

the vector space C*(R?) endowed with the bracket {-,-} : C*(R?) x C*(R?) — C=(R?)
can be easily shown to become a Lie algebra !. We now define the canonical position
and momentum observables Q, P € C*(R?), whose action on the phase space is to extract
the position and momentum information from the given state (x,p) € R? of the system,
respectively:

V(x,p) € R?: O(x,p)=x and P(x,p)=p. (1.3)

'A Lie algebra is a vector space V equipped with a bilinear, anti-symmetric form [-,-] : V x V — V which
satisfies the Jacobi identity: Vx,y,z €V :  [x,[y,z]] + [z, [x,¥]] + [, [z,x]] = 0.
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The Poisson bracket operation performed on the position and momentum observables gives
us a first glimpse into the structure of the canonical commutation relation

{o,P} =1, (1.4)

where the right hand side denotes the function which identically maps the entire phase space
to one. The above commutation relation can be interpreted as a manifestation of the fact
that the position and momentum observables are modelled as two fundamentally different
and incompatible degrees of freedom in our theory.

Let us now transition into the realm of quantum mechanics, where the state space of
the free particle constrained to move in one dimension is modelled by a separable complex
Hilbert space .77, with the role of observables being acquired by self-adjoint linear oper-
ators T : D(T) — ¢ defined on suitable subspaces D(T) C .. For now, we can think
of self-adjointness of operators as some non-trivial generalization of the finite-dimensional
notion of hermiticity of d X d complex matrices. Let us also, for the moment, restrict our-
selves to the simpler space # () consisting of linear operators T : 5 — J¢ that are
bounded in the sense that for every non-zero T' € #(7), there exists a constant ¢ > 0 such
that

Vxe A ||Tx|| < c|lx||.2
By defining the commutator bracket of two operators A,B € # () as

[A,B] := AB — BA,

the space Z () equipped with [-,-] : B(H) x B(H) — B(H ) becomes a Lie algebra.
At this point, the similarity of % (.#) with the Lie algebra C*(R?) of classical observables
on the phase space should start becoming apparant. Building upon this analogy, it is rea-
sonable to demand that the position and momentum observables Q, P € #() of the free
particle should satisfy the following quantum analogue of Eq. (1.4):

[Q,P] =QP—PQ=cl, (1.5)

where ¢ € C is some complex number and | € () is the identity operator. It is easy
to see that since the operators Q, P are self-adjoint, ¢ € C must be purely imaginary, which
we assume to be equal to the imaginary unit i. With the relevant background in place, we
can now present a slight variant of our primary topic of investigation in the form of the
following question.

Question 1.1. Does there exist self-adjoint linear operators Q,P € B(.7) defined on some
complex separable Hilbert space 7 such that

OP—PQ=il?

Much of the complexity of quantum theory stems from the fact that the above question
cannot be answered in the affirmative. In fact, a slightly weaker version of this fact can be
proven with minimal effort, as we now show.

Proposition 1.2. For a finite dimension Hilbert space € ~ C%, there are no self-adjoint
linear operators Q,P € HB(H) which satisfy [Q,P] = il.

Here, || - || denotes the norm induced by the inner product on 7#: Vx € 57 :  ||x|| = \/(x,x).
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Proof. Assume on the contrary that there are such self-adjoint linear operators Q,P €
B () satisfying [Q, P] = il. Then, taking trace on both sides leads to a contradiction:

0=Tr(QP) —Tr(PQ) =iTr(l) #0.
O

After reviewing the theory of bounded linear operators on Hilbert spaces, we will
present a slightly trickier proof of the above proposition for infinite dimensional Hilbert
spaces in Chapter 2. The natural next step would be to relax the boundedness assump-
tion and consider a more general class of self-adjoint linear operators which can satisfy
the required commutation relation. Fortunately, there do exist realizations of the canonical
commutation relation in this setting. One such realization can be constructed on the Hilbert
space of complex square integrable functions L?(R) by defining the following operators on
suitable domains:

Qv (x) = xy(x)
Py (x) = —iy/'(x). (1.6)

In Chapter 2, we will prove that Q, P as defined above are not bounded and cannot be
defined on all of L?>(R). However, there does exist a common dense domain D C L?*(R)
which stays invariant under both the operators such that Yy € D,

(QP —PQ)y(x) = iy(x). (L.7)

What we have seen above is known as the Schrodinger representation of the canonical
commutation relation, whose precise formulation forms the meat of Chapter 3. Fascinat-
ingly, under some additional assumptions, this representation can be shown to be the only
one! This is the content of the famous Stone-von Neumann uniqueness theorem, whose
proof lies at the heart of the present thesis (Chapter 7) and will provide an apt conclusion
to the theory that we are going to develop in the coming chapters. Unfortunately though,
this means that the relatively easier theory of bounded operators is incapable of describing
the quantum mechanical model of even the simplest possible physical systems. Thus, we
inevitably need to get our hands dirty in the regime of unbounded operators, which is going
to occupy us for a substantial part of this thesis (Chapters 3-6). In particular, the question
of deciding whether the operators Q, P (or, for that matter, any unbounded operator) are
self-adjoint is very subtle, which is why we have conveniently chosen to ignore it in our
discussion above. We will get back to this issue later after developing the general theory of
unbounded operators. Let us now conclude our introduction by briefly presenting an outline
of this thesis.

* Chapter 2 reviews the basic background material on Hilbert spaces and bounded lin-
ear operators on Hilbert spaces, which forms the foundation upon which the following
chapters are laid.

» Chapter 3 develops the theory of unbounded operators on Hilbert spaces and contains
a precise description of the Schrodinger representation of the canonical commutation
relation on L*(R).

* Chapter 4 motivates the study of the uniqueness of the Schrodinger representation of
the canonical commutation relation, which forms the subject matter of the remaining
chapters.



» Chapter 5 recalls the spectral theorem for bounded and unbounded self-adjoint opera-
tors on Hilbert spaces and hence lays the groundwork for the discussing the highlight
theorems of Stone and Von Neumann in the next two chapters.

 Chapter 6 contains the proof of Stone’s theorem on strongly continuous one-parameter
unitary groups on Hilbert spaces.

» Chapter 7 forms the culmination of this thesis and contains the proof of the fundamen-
tal Stone-von Neumann uniquness theorem for the canonical commutation relation.



2 Basic functional analysis

This chapter establishes the basic functional analytic background which will later prove to
be essential in tackling the problems stated in the introductory chapter. In particular, we
review the basic theory of Hilbert spaces and of bounded linear operators on Hilbert spaces.
Since the material covered in this chapter is quite standard, we refrain from giving proofs
for most of the results. Interested readers should refer to the classic texts [Rud91, Con85,
RS12, Sunl16, Sun96] for a more thorough study of these topics.

2.1 Hilbert spaces

Definition 2.1. A Hilbert space 7 is a complex vector space endowed with an inner prod-
uct (-,-) : X I — H such that F€ is complete with respect to the norm ||-|| :  —
[0,00) induced by the inner product: ||x|| = \/{(x,x).

A few remarks about the above definition are in order. Recall that a metric space is
said to be complete if every cauchy sequence in that space converges within the space.
We will follow the physicists’ convention of the inner product being anti-linear in the first
factor. Right at the onset, let us state one of the most useful inequalities in mathematics,
the Cauchy-Schwarz inequality.

Proposition 2.2. For a Hilbert space 7, the following inequality holds:
Ve ye A [y < |xllyll;

with equality occurring if and only if the set {x,y} is linearly independent.

Recall that a closed subspace of any complete normed vector space (i.e., a Banach
space) is itself complete. Hence, any closed subspace of a Hilbert space S C 7 is itself a
Hilbert space. Moreover, if we define the orthogonal complement of S as follows:

Sti={xe#:¥yeSs: (xy) =0}, (2.1)

then the Hilbert space splits up into a direct sum J# = S® S+, i.e., for every x € J#, there
exists unique y € Sand z € S+ such that x = y+z. Now, we introduce the notion of the dual
Hilbert space.

Definition 2.3. Let 57 be a Hilbert space. Then, the collection 7€ of all continuous linear
functionals ¢ : 7 — C is said to be the (topological) dual space of .

A remarkable feature of Hilbert spaces is that their duals have the same structure as the
original spaces themselves. This is the content of the Riesz representation theorem.
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Theorem 2.4. Consider a Hilbert space €. Then, for every ¢ € F*, there exists a unique
y¢ € JH such that
Vx e . O (x) = (vg,x).

In other words, the correspondence yy — ¢ sets up an anti-linear bijection between F’
and F*, which can be used to define the inner product (¢,8). = (ye,yy) on S so that
FC becomes canonically isomorphic to its dual 7.

A Hilbert space 7 is said to be separable if it contains a countable dense subset. All
Hilbert spaces in quantum physics (and in this thesis) are assumed to be separable. The
upshot of this constraint is that it allows us to equip the Hilbert spaces with countable
orthonormal bases.

Theorem 2.5. A Hilbert space F is separable if and only if it admits a countable or-
thonormal basis, i.e., if and only if there exists a countable set {e;}3 | such that

<%w:{LW=j

0, otherwise

Moreover, every x € # can be uniquely represented as x =Y ;> | (ei, x)e;, where the series
converges unconditionally in 7 and ||x||* = ¥, |{ei,x)|* < oo.

In the above theorem, it is important to note that the orthonormal basis of a separable
Hilbert space .7 is not unique. However, the cardinality of the basis set is unique, which
is defined to be the dimension of €.

Let us conclude this section with a few examples of Hilbert spaces.

Example 2.6. Consider 7# = C" equipped with pointwise addition and scalar multiplica-
tion. Define the inner product (x,y) =Y | &;y;. Then, it is easy to see that .7 is a complex
vector space which is complete with respect to the norm induced by the inner product, i.e.,
¢ is a Hilbert space with dim 7 = n.

Example 2.7. Consider the space of all square summable complex sequences
A =P(N) = {(x:)ien : Y i[> < oo}
i=1

With addition and scalar multiplication defined pointwise, it is not too difficult to see that
J is a complex vector space which turns into a separable Hilbert space with dim 7 = oo
when equipped with the inner product

((x)iens (77) jen) = il o

Example 2.8. Consider the space .#?(R) of all square integrable Lebesgue measurable
functions y : R — C with pointwise operations. Two functions Y, ¢ € 7 are said to be
equivalent (denoted y ~ @) if they are equal almost everywhere. Then ~ can be shown to
be an equivalence relation on .#?(R) and we define the quotient space L*(R) := Z2(R)/ ~.
Then, L?(R) inherits all the pointwise operations from .#?(R) and becomes a Hilbert space
with dim = oo when equipped with the inner product:

(v.6) = [ Wi 22)
6



Notice that we’ve followed the usual convention of denoting an equivalence class of
functions by some representative element within the class. It is easy to see that the above
definition of inner product is independent of which elements are used to represent the given
classes.

Remark 2.9. It is perhaps worthwhile to emphasize that the relation in Eq. (2.2) does not
represent a valid inner product on £*(R). This is because for w € Z*(R), (y,y) =0
does not imply that  is the zero function (it only implies that y is zero almost everywhere
and hence lies in the equivalence class which contains the zero function).

2.2 Bounded operators on Hilbert spaces
Definition 2.10. An operator T : 7€ — ¢ is said to be linear if
VA € C\Vx,ye T(Ax+y)=AT(x)+T(y).

Recall that if 7#” = C" is finite dimensional, then linearity of operators suffices to guar-
antee continuity as well. However, this is no longer true in infinite dimensions, as the
following proposition illustrates.

Proposition 2.11. For a linear map T : 7 — F defined on a Hilbert space €, the
following conditions are equivalent:

e T is continuous.
e T is continuous at 0 € .

* T is bounded in the sense that sup| < [|Tx|| = ¢ <.

The final condition is equivalent to saying that T maps bounded sets to bounded sets.

We will denote the space of all bounded linear operators 7' : .77 — .7 on a Hilbert space
S by B(H ). It can be shown that #(.#) turns into a Banach space when equipped with
the the usual pointwise vector space operations and the operator norm

.| - B(HA°) = [0,00)
T — sup) < | 7.

Moreover, the multiplicative structure on (.7 ) behaves nicely with respect to the operator
norm, which turns % (5¢) into a Banach algebra, i.e.,

V1,5 B(A):  |ST| <|[SIIT| and [TS]| < [[S[T]]- (2.3)
We now come to the very important notion of the adjoint of operators in Z ().

Proposition 2.12. Let 77 be a Hilbert space. For every T € B(F), there exists a unique
adjoint operator T* € B(H°) defined by the following relation

Vx,ye A (Tx,y) = (x,T"y).
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It should be noted that if .# = C" is finite dimensional, then the space %#(.7) can
be naturally identified with the familiar space of n x n complex matrices M,(C), with the
operation of conjugate transpose playing the role of the adjoint. We reiterate that in finite
dimensions, the condition of continuity on linear operators is superfluous since every linear
operator is automatically continuous/bounded. However, as we have seen above, continuity
is an important constraint to impose for operators acting on infinite dimensional Hilbert
spaces, which creates room for a rich interplay of techniques from linear algebra and anal-
ysis. We now list some important properties of the adjoint operation in % ().

Proposition 2.13. Let 57 be a Hilbert space. Then, for all S,T € B(H) and A € C, the
following properties of the adjoint operation holds:

s (T) =T, (TS)" =S'T" and (AT +5)" = AT" +§°
« |7||=T*| and |T*T| = ||T|*

Remark 2.14. A Banach algebra B equipped with an involution * : B — B which satisfies
the properties listed in the above proposition is called a C*-algebra.

We now define the most important classes of operators in ().
Definition 2.15. Let 5 be a Hilbert space. An operator T € () is said to be
o self-adjoint if T = T*.

« an orthogonal projection if T = T* = T2.

unitary if TT* =T*T = 1.

* anisometry if T*T = .

normal if T*T =TT".
A few remarks about the above definition are in order.

Remark 2.16. There is a one-one correspondence between orthogonal projections in B(.)
and closed subspaces of 7€. Given any closed subspace S C F, the mapping 7€ > x —
y € S, where x = y+ z is the unique splitting of x corresponding to the direct sum decom-
position A = S® S+, defines an orthogonal projection in PB(H). Conversely, the range
P of any orthogonal projection P € () can be shown to be a closed subspace of 7
so that ¥ = P @ (P)* .

Remark 2.17. IfV € B(I¢) is an isometry, it follows that
Vx,ye : (Vx,Vy) = (x,y).

One can easily show that the converse also holds. Notice that the property of preserving
inner products implies that kerV = {0}. However, since the range of V may not cover the
whole space ¢, V is not necessarily invertible. Unitary operators in B(5) are precisely
those isometries which can be inverted. Hence, it should be clear that unitary operators are
the structure preserving operations on Hilbert spaces, i.e., they are linear bijections which
preserve the inner products. In finite dimensions, there is no difference between an isometry
and a unitary operator.



Taking inspiration from the above remark, we say that two Hilbert spaces .7 and .7
are unitarily equivalent if there exists a linear bijection U : 77 — 7% which preserves inner
products. The following result can be thought of as the fundamental theorem on separable
Hilbert spaces.

Theorem 2.18. Every separable Hilbert space ¢ is unitarily equivalent to either C" (if
dim . = n < o) or I>(N) (if dim H = o).

Now that we have a basic understanding of bounded linear operators on Hilbert spaces,
let us provide a definite answer to Question 1.1 from Chapter 1.

Theorem 2.19. No bounded self-adjoint operators P,Q € () defined on some separa-
ble Hilbert space ¢ can satisfy the canonical commutation relation

OP — PQ = il.

Proof. Suppose there exist self-adjoint P,Q € ZA(°) such that QP — PQ = il. Then, a
simple inductive argument shows that Q"P — PQ" = inQ"~! = 0 for all n € N. Now, since
Q is self-adjoint, it is clear that ||Q"|| = ||Q]|". Taking the operator norm on both sides of
the above equation then yields

nf|Q)"~" = [|@"P—oP"|| < 2[|Q||"||P]l-

Since Q # 0 = [|Q|| # 0, we obtain n < 2||Q||||P]| for any n € N, which cannot be true
since Q, P are bounded. O

Let us conclude this chapter by showing that the Schrodinger representation of the
canonical commutation relation constructed in Chapter 1 consists of operators which are
not bounded. Take .## = L*(R) and define Q,P as in Eq. 1.6. An immediate distinction
from the setting of bounded operators can be noted by observing that Q, P cannot be de-
fined on all of .77, since the derivatives of square integrable functions, for instance, are not
guaranteed to be square integrable again. Let us consider the sequence of functions (f;;)sen
in L?(R) defined as f,(x) = \/ﬁe’"zxz. Then, one can easily show that the derivatives f, are
again square integrable and the following equations hold:

VneN: /an(x)zdx:\/Jt/Z and /Rf,/l(x)zdx:nzx/ﬂ/Z.

Hence, it is clear that P is not bounded on its domain. Similarly, it can be shown that Q
is not bounded as well.



3 Unbounded operators

We have now seen that bounded realizations of the canonical commutation relation on a
separable Hilbert space do not exist. Thus, we expand our horizons in this chapter and
lock horns with the theory of unbounded linear operators T : D(T) — 7 which are typ-
ically only defined on linear subspaces D(T) C . within the Hilbert space /7. We will
quickly see that in order for a sensible notion of adjoint to exist for unbounded operators,
their domains D(T') must at least be dense in 7. Moreover, we will impose some suitable
continuity condition on these operators in order to bring some analytic flavour into an oth-
erwise purely linear algebraic theory. Finally, we will see that the notion of self-adjointness
for unbounded operators is very different and much more subtle than that for the bounded
operators. Without further ado, let us now delve into the good stuff. The readers should
refer to [Rud91, Chapter 13 | and [Sun96, Chapter 5] for more elaborate discussions on
unbounded operators on Hilbert spaces.

3.1 Fundamental concepts

Definition 3.1. A densely defined linear operator T on a Hilbert space 7€ is a linear
mapping T : D(T) — J€ defined on a dense linear subspace D(T) C .

Since we will unanimously be concerned only with those linear operators on Hilbert
spaces T : D(T) — s which are densely defined, the denseness of the domains of all
linear operators will be implicitly assumed to be true throughout this thesis.

Definition 3.2. For linear operators S : D(S) — 5 and T : D(T) — €, we say that T is
an extension of S (denoted S C T) if D(S) C D(T) and Vx € D(S), Sx = Tx.

If a linear operator T : D(T) — ¢ is bounded on its domain, then it can be uniquely
extended to a bounded operator 7 € Z(.5#) as follows. For every x € J#, the denseness
of D(T) implies that there exists a sequence (x,),en in D(T') such that limx, = x. Then,
since T is bounded on D(T), the sequence (Txy),eN is cauchy in .77, which allows us to
define Tx := limT'x,,. It is then straightforward to check that 7" is a well-defined operator
in #(). Since bounded operators are not useful from the point of view of realizing the
canonical commutation relation, we will typically be interested in linear operators which
are unbounded on their dense domains.

In general, linear (unbounded) operators on Hilbert spaces can be very strange. In order
to get some analytic handle on these objects, we need to impose some sort of continuity on
them. Before doing this, let us refresh our memory of continuity of operators in A(.7¢).
For every T € %(#) and an arbitrary sequence (x,) in 2 converging to x, the sequence
(Txy,) converges to Tx. Moreover, the limit 7x is independent of the sequence (x,) and
depends only on x. Now, for an unbounded operator T : D(T) — ., two things can go
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wrong. Firstly, the convergence of a sequence (x,) in . does not guarantee the conver-
gence of (Tx,). Secondly, even if (Tx,) is convergent, the limit may very well depend on
the sequence (x,) in the sense that a different sequence (x],) converging to the same x may
exist such that lim 7'x), # lim T'x,,.

We bypass the above difficulties by defining the following class of linear operators.

Definition 3.3. The graph G(T) of a linear operator T : D(T) — S is defined to be the
subspace G(T) .= {(x,Tx) € 7 x # | x € D(T)}. Then, T is said to be

* closed if G(T) is closed as a subset of 7 x H.
* closable if there exists a closed linear operator S : D(S) — S such that T C S.

Notice that for an arbitrary Hilbert space .77, in order for the usual topological notions
to be well-defined in 77 X .7, we can equip it with pointwise vector space operations and
the inner product {((x1,y1), (x2,y2)) = {x1,y1) + (x2,¥2), so that it again becomes a Hilbert
space.

Let us now try to understand Definition 3.3 in a bit more detail. What does it mean for
the graph G(T') of a linear operator T : D(T) —  to be closed in s x 7 ? It means that
for all sequences (x,),en in D(T') such that limx, = x and lim7'x,, =y, it must be the case
that x € D(T) and y = Tx. If T is not closed but closable, it just means that the domain
D(T) is not large enough to guarantee the aforementioned continuity property but it can
be suitably extended so that there exists a closed extension S : D(S) — .7 of T with the
required continuity. For closable linear operators, it thus sounds reasonable to look for a
minimal closed extension.

Definition 3.4. For a closable linear operator T : D(T) — 7, its closure is defined to be
the closed linear extension T : D(T) — 5 (T C T) with the property that for all closed
linear extensions S : D(S) — S (T C S), it is the case that T C S.

Lemma 3.5. Let T : D(T) — 5 be a closable linear operator. Then, its closure T is the
unique closed linear operator defined by the following property

G(T) =G(T),

where G(T') denotes the topological closure of G(T) in X H.

Proof. Notice that since T is closable, there exists a closed extension 7" C § such that
G(T) C G(S) and G(S) is a closed subspace of .7 x 7. Now, by definition of topolog-

ical closure, G(T') is the minimal closed subset that contains G(7T'). Hence, the following
inclusion holds: G(T) € G(T) C G(S). Moreover, it is easy to check that G(T) is indeed a
graph of some linear operator on .77, since it is a linear subspace of ¢ x .7 which doesn’t
contain a point of the form (0,y) for some y # 0. If such a point did belong in @ and
hence in G(S), it would imply that S(0) =y # 0, which is impossible since S is linear. We
leave an easy proof of the fact that the only condition on a subspace G C JZ x ¢ to repre-
sent the graph of some linear operator on .7¢ is that G must not contain a point of the form

(0,y), where y # 0. O

Let us now extend the notion of the adjoints to the realm of unbounded operators.
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Definition 3.6. For every linear operator T : D(T) — J€, there exists a unique linear
operator (called its adjoint) T* : D(T*) — ¢ with domain

D(T*)={ye s |Nze A :NxeD(T): (y,Tx) = (z,x)},
defined as T*y := z, where y € D(T*) and z € ¢ are as above.

Notice that the domain D(T*) of the adjoint of a linear operator T : D(T) — ¢ is
defined to contain precisely those y € .7 for which the linear mapping

D(T)>x— (y,Tx)eC

is continuous. Now, if and only if the domain D(T') is dense in .7, can we uniquely extend
this mapping to the whole Hilbert space so as to obtain an element of the dual JZ*, see
the discussion following Definition 3.2 for more details on how to obtain this extension.
The Riesz representation theorem (Theorem 2.4) then guarantees the existence of a unique
vector T*y :=z € . for each y € D(T*) with the property that Vx € D(T) : (y,Tx) = (z,x).
This is why it is essential to work with densely defined linear operators. Finally, observe
that if 7 is bounded on its domain, then D(T*) is trivially seen to be equal to the entire
Hilbert space .77, and Definition 3.6 reduces to the one in Proposition 2.12. We note some
interesting properties of adjoints in the following propositions.

Proposition 3.7. For linear operators S : D(S) — # and T : D(T) — H,
SCT = T"CS§™.
Proof. Let us write down the definition of the domains of D(S*) and D(T*):

D(S*)={ye s |3ze A :Vx e D(S): (y,Sx) = (z,x)}
D(T*)={ye s |Izex:NxecD(T): (y,Tx) = (z,x)}

Now, since D(S) C D(T) and Vx € D(S) : Sx = Tx, it is evident that a stricter condition
needs to be checked in order to ensure membership of a given y € J# in D(T*) when
compared to D(S*). Hence, D(T*) C D(S*) and Vy € D(T*) : T*y = S*y. O

Proposition 3.8. For a linear operator T : D(T) — 2, its adjoint T* is always closed.

Proof. We intend to show that the graph of T* is the orthogonal complement of a subspace
in 7 x J, and is hence closed. Let G = {(Tx,—x) € 7 x 7 |x € D(T)}. Then, for
y € D(T*), we have that Vx € D(T) : (y,Tx) = (T*y,x) = (y,T*y) € G* = G(T*) C
G*. Conversely, if (y,z) € G*, then Vx € D(T), we have that (y, Tx) — (z,x) = 0, which
clearly implies that y € D(T*) and T*y = z. Thus, (y,z) € G(T*) and G+ C G(T*). In other
words, if we define the unitary operator % : 5 x H — H x H as % (x,y) = (y,—x), the
following equality holds
G(T*) = [% G(T)]*.

]

Remark 3.9. For a densely defined linear operator T : D(T) — S, its adjoint may not
necessarily be densely defined.

It turns out that there is an intriguing connection between the adjoint of a linear operator
T : D(T) — ¢ and the property of closability of T, as we now illustrate.
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Proposition 3.10. A linear operator T : D(T) — J is closable if and only if its adjoint
T*:D(T*) — S is densely defined, in which case T = T**. Moreover, for a closable linear
operator T : D(T) — 3, the following relation holds: T* = (T)*.

Proof. Assume first that T is closable. Then, if y € D(T*)", it is easy to see that (y,0) €
G(T*)*, which implies that (0,y) € G(T) = G(T), see Proposition 3.8. This in turn implies
that y = 0, see the closing discussion in the proof of Lemma 3.5. Hence D(T*) lies dense
in 2. Conversely, if D(T*) is densely defined, one can define the closed operator 7**
and quickly deduce that T C T**. Moreover, if we take % to be the unitary operator from
Proposition 3.8, we can write

G(T™) = [ G(T")|* = [~ 2" G(T")]" = [~ ( G(T))"]* = [G(T)*]* = G(T),

so that we can exploit Lemma 3.5 to infer that 7** =T.
Finally, if T is a closable operator, Proposition 3.7 informs us that T C T = (T)* C

T*. Hence, to obtain the equality (7)* = T*, we must show that D(7*) C D((T)*). With
this end in sight, assume that x € D(T*). Then, by definition of the adjoint, we have

VyeD(T): (x,Ty)=(T"x,y).

Consider now an arbitrary z € D(T). Then, there exists a sequence (z,),en in D(T) such
that z, — z and Tz, — Tz. Hence, we have that

(x,Tz) = r}i_r>r°1°<x.Tzn) = ,}i_r>lc}0<T*x’Z”> = (T"x,2).

This is precisely the condition that x € D((T)*), which is what we wanted to show. O

3.2 Symmetric and self-adjoint operators

Recall that a bounded operator T € A(.7¢) is said to be self-adjoint if it is equal to its
adjoint, i.e. T = T*. From Proposition 2.12, this is equivalent to saying that

Vx,ye H: (x,Ty) = (Tx,y). 3.1)
The situation is drastically different when the concerned operators are unbounded.
Definition 3.11. A linear operator T : D(T) — J is said to be
e symmetric, if T C T*.
* self-adjoint, if T = T"*.
« essentially self-adjoint, if it is closable and its closure T is self-adjoint.

Note that the symmetry condition for 7' : D(T) — ¢ in the above definition is equiva-
lent to the following property

Vx,y€D(T): (x,Ty) =(Tx,y), (32)

which can be interpreted as a “naive” attempt towards generalizing the notion of self-
adjointness from the bounded to the unbounded regime. The naivety here stems from
the fact that Eq (3.2) only implies 7 C T*, and not T = T*, since although 7 and T*

13



clearly agree on D(T'), the domain of T* can be larger. Hence, we see that self-adjointness
is a strictly stronger notion than symmetricity for unbounded operators. Also notice that
Proposition 2.12 implies that a symmetric operator is closable while a self-adjoint operator
is closed. Finally, essentially self-adjoint operators lie somewhere between the symmetric
and self-adjoint operators, as we now exhibit.

Lemma 3.12. Let T : D(T) — 7 be a closable linear operator. Then,

T is symmetric <= T CT C T".
T is essentially self-adjoint <= T CT =T".
T is self-adjoint <= T =T =T".

Proof. If T is symmetric, we know by definition that 7 C T*. Moreover, since the closure
T is the minimal closed extension of 7" and 7™ is always closed, we obtain

TCTCT*

If T is essentially self-adjoint, we know that the closure 7 is self-adjoint. Moreover,
since T is closable, Proposition 3.10 tells us that 7* = (T')*, so that we obtain the desired
result

TCT=(T)"=T"
If T is self-adjoint, the desired conclusion is trivial to deduce. O]

Let us come back into the physical world for a moment and ask ourselves why only
self-adjoint operators on Hilbert spaces are chosen to be the observables in quantum me-
chanics. A substantial part of the reason has to do with the fact that the spectral theorem
only holds for self-adjoint operators on Hilbert spaces, see Chapter 5. Among other things,
this theorem ensures that a unique subset of the real line can be associated with each ob-
servable, which acts as the set of possible outcomes that one encounters upon measuring the
observable. For now, the important thing to note is that the physically constructed operators
T : D(T) — S are typically only known to be symmetric, since the condition in Eq. (3.2)
is straightforward to check in practice. On the other hand, proving that a given symmetric
operator is self-adjoint is a whole lot harder. One needs to explicitly compute the domain
D(T*) of the adjoint operator and show that it is equal to the original domain D(T'), which
is easier said than done. If the originally chosen domain D(T') is not exactly right, the op-
erator will not turn out to be self-adjoint. In such a scenario, it becomes meaningful to ask
if there are any self-adjoint extensions of the given operator which can act as observables.
Here, the following possibilities can arise:

* There may not exist any self-adjoint extensions of 7.

* There may exist many self-adjoint extensions of 7', in which case it is impossible to
make a unique selection without additional physical insight.

* There may be only one unique self-adjoint extension of 7. This is the desirable
situation which occurs precisely when T is essentially self-adjoint. The closure T
then acts as the unique self-adjoint extension. If we assume that S is another self-
adjoint extension of 7', i.e., T C S, we can easily deduce that S C T* = (7_")* =T by
taking adjoints. But, since S is closed and T is the minimal closed extension, it must
also be the case that T C S. Hence, S=T.

14



The above discussion informs us that it is of utmost physical relevance to decide when a
given symmetric operator is self-adjoint or essentially self-adjoint. The following theorems
are important results in this direction. Let us first state an easy Lemma.

Lemma 3.13. For a linear operator T : D(T) — S, (rangeT)* = kerT*. In addition, if
T is closed, then kerT is a closed subspace of F .

Proof. Trivial, see [Sun96, Lemma 5.2.5]. L]
Theorem 3.14. For a symmetric operator T : D(T) — J, the following are equivalent:

* T is self-adjoint.

* T is closed and ker(T* +i) = ker(T* —i) = {0}.

e range(T +i) =range(T —i) = .

Proof. Assume firstthat 7 = T*. Then, T is automatically closed. Moreover, for a non-zero
A € C\R, if there exists x € D(T') such that Tx = Ax, then we can write

A (x,x) = (x,Tx) = (Tx,x) = A{x,x),

which clearly implies that x = 0, since A # A. Hence, ker(T +2) =0 forall A € C\R.

Now, assume that T is closed and ker(T* & i) = {0}. Then, range(T +i)* = ker(T* F
i) = {0} (see Lemma 3.13) so that both ranges are dense in .7. Moreover, since T is
symmetric, it is easy to see that Vx € D(T):

(T T i)x||? = (T Fi)x,(T Ti)x) = (Tx,Tx) +ilx,Tx) T i(Tx,x) + (x,x)
= | 7> + |12l

Hence, the mapping range(7 £i) > (T £i)x — (Tx,x) € G(T) sets up an isometric cor-
respondence between the given spaces. Since we already know that G(T) is closed, the
previous argument implies that ran(7 £i) = J7.

Finally, assume that ran(7 +i) = .. Now, since T — i is surjective, for every x € D(T*),
we can find y € D(T) such that (T —i)y = (T* —i)x. Moreover, since T is symmetric
(T C T*), we have that y also lies in D(T*) and (T —i)y = (T* — i)y, so that (x —y) €
ker(T* —i) =ran(T +i)* = {0} (see Lemma 3.13). Hence, x =y € D(T) and we arrive at
the conclusion that D(T*) CD(T) = T =T". O

Theorem 3.15. For a symmetric operator T : D(T) — J, the following are equivalent:

» T is essentially self-adjoint.

o ker(T*+1i) =ker(T* —i) = {0}

* range(T +i) = range(T —i) = J7.
Proof. Similar to that of Theorem 3.14. 0

Now that we are equipped with the basic theory of unbounded operators on Hilbert
spaces, let us properly describe the Schrodinger representation of the canonical commuta-
tion relation which was introduced towards the end of Chapter 1.
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Theorem 3.16 (Schrodinger representation). Let 7 = L*(R) and D = C*(R) C L*(R) be
the dense linear subspace of smooth functions with compact support. Let the position and
momentum operators Q,P : D — F be defined as follows

Py(x) = —iy'(x). (3.3)
Then, the following statements hold true:

* O:D—DandP:D — D.

s VYyeD: (QP—PO)y =iy.
* Q and P are essentially self-adjoint on D.

Proof. From the definition Q, P, it is trivial to infer that the domain C°(R) stays invariant
under both of them. The next implication can be obtained with similar ease:

Yy eCO(R):  (QP—PQ)y(x) = —ixy/(x) +iy(x) +ixy’(x) = iy(x).

Now, to show that Q, P are essentially self-adjoint on C2°(R), we will exploit Theorem 3.15.
First of all, just by checking the validity of Eq. (3.2), it is trivial to deduce that both Q and
P are symmetric on C2°(R), so that we know Q C Q* and P C P*.

Now, let us first deal with the momentum operator P. We intend to show that ker(P* +
i) = {0}. To this end, let us assume ¥ € D(P*) is such that P*y = —iy. This is equivalent
to saying that for all ¢ € C°(R):

L0 v ds = (Po.v) = (0.P'y) = (0,~iy) = [ <6y (x)

The above equation can be used to show that y must be the zero function in L*(R), see
[Hall3, Proposition 9.29]. Thus, we have shown that ker(P* +i) = {0}. An identical
argument can be deployed to show that ker(P* —i) = {0} as well, so that Theorem 3.15 can
be employed to conclude that P is essentially self-adjoint on C;°(R).

We now replicate the above argument for Q. Assume that y € D(Q*) is such that
O*y = —iy, so that the following equation holds for all ¢ € C°(R):

[ 9GIwdx= (09 %) = (6.0"v) = (0. -iv) = [ ~i9 v ()

which clearly implies that y = 0 in L?>(R). Hence, ker(Q* 4-i) = {0} and a similar argument
shows that ker(Q* —i) = {0} as well, so that according to Theorem 3.15, Q is essentially
self-adjoint on C2°(R).

[

Motivated by the above theorem, we now conclude this chapter by formally defining
what it means for some self-adjoint operators to form a representation of the canonical
commutation relation.

Definition 3.17. Two self-adjoint linear operators Q : D(Q) — ¢ and P : D(P) —
are said to form a representation of the canonical commutation relation if there exists a
common dense domain D C D(Q) N D(P) with the following properties:
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* Q:D—DandP:D — D.
s VYyeD: (QP—PQ)y =iy.
* Q and P are essentially self-adjoint on D.

This marks the end of the first part of our exposition. We have now explicitly con-
structed and studied one concrete representation of the canonical commutation relation on
the Hilbert space L?(R). From the next chapter onwards, we will question the uniqueness
of this representation, which will lead us finally to the Stone-von Neumann uniqueness
theorem in Chapter 7.
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4 What next?

Is the Schrodinger representation of the canonical commutation relation unique? In its full
generality, the answer is a brutal no. In fact, there exist uncountably many representations
of the CCR which are all inequivalent, see [Phi81] and references therein. However, it turns
out that a closely related uniqueness question has an affirmative answer. This question is
formulated entirely in terms of families of bounded operators, which can be uniquely con-
structed from the self-adjoint operators present in the given representation of the CCR. To
elaborate on this, let us consider two self-adjoint operators Q, P that form a representation
of the CCR in the sense of Definition 3.17. We now define the following one-parameter
families of bounded operators:

{"C:1cRYC B(A) and {*':5scR} C B(H). (4.1)

At this juncture, the reader should be terribly confused. How are we defining the ex-
ponential of an unbounded operator? Why should this exponential be bounded? If Q,P
were in the Banach space #(.#) of bounded operators, then the situation would have been
much saner as we could have easily defined the above families through the usual expo-
nential power series. However, this cannot be done for unbounded operators, as there is
no norm (and hence no notion of convergence) on the space of unbounded operators! Our
aim in Chapter 5 would be to rigorously define a large class of functions (including the ex-
ponentials) of unbounded self-adjoint operators in order to completely decimate the above
confusion. For now, let us assume that a sensible definition of the exponentials exist which
is somewhat similar to the usual power series definition. In that case, a heuristic applica-
tion of the well-known Baker-Hausdorff-Campbell lemma' on the exponentials in Eq (4.1)
yields the following equation

vs,l_ cR: eiSPeil‘Q — eisl‘eilQeiSP7 (42)

which is known as the Weyl relation and can be thought of as the exponential analogue of
the canonical commutation relation

QP — PQ = il. (4.3)

Before proceeding further, it is critical to point out that Equations (4.2) and (4.3) are
not equivalent! In other words, if Q and P form a representation of the CCR as in Def-
inition 3.17, it does not automatically imply that the corresponding exponential families
satisfy Eq (4.2). This provides strong evidence in favour of the following fact:

Heuristic calculations performed in the realm of unbounded operators can lead to
horribly wrong conclusions!

'For bounded operators A, B € (), the BHC lemma says that eA*5 = ¢~ [A.81/26A B,
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That being said, for the special position and momentum operators Q,P forming the
Schrodinger representation of the CCR on L?(R), the corresponding exponential families
of operators {e"?},cr and {e’F'},cr will be rigorously shown to satisfy the Weyl rela-
tions in Chapter 6. In this case, we say that the families {€??};cgr and {e*"},cg form
the Schrodinger representation of the Weyl relation. Conversely, the Stone-von Neumann
theorem tells us that any other representation of the Weyl relation is equivalent to the
Schrodinger representation. Put differently, if Q, P are self-adjoint operators such that the
corresponding families of bounded exponentials satisfy the Weyl relations, then Q, P are
the same as the usual position and momentum operators!

In the next two chapters, our aim is to build enough theory in order to properly formulate
and prove the stated uniqueness theorem, which will form the subject matter of the last
chapter.
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5 Spectral theorem

To say that the spectral theorem is a foundational result in modern operator theory would be
an understatement. The implications of this cornerstone result pervade a variety of realms in
both physics and mathematics. In our case, the spectral theorem will enable us to rigorously
define a huge family of functions of self-adjoint operators (including the exponentials, as in
Eq (4.1)), which will prove to be instrumental in our discussion of the Stone-von Neumann
theorem later. Since the proofs of most of the results in this chapter are fairly involved,
we have decided not to include them explicitly. The interested readers should refer to the
provided references for details on the proofs. We list some excellent references on the
subject here: [Rud91, Chapters 12-13], [Sun16], [Con85, Chapters IX-X], [Bor20] and
[Hal13, Chapters 6-10].

5.1 Spectrum of closed operators

Recall that if 7 is finite dimensional, then each T € () can be identified with a
matrix and the spectrum of 7' consists of the eigenvalues of this matrix. More precisely, the
spectrum o (7') consists of all A € C such that ker(7 — Al) # {0}, which is equivalent to
saying that T — Al is not invertible. We generalize this notion for arbitrary closed operators
in infinite dimensions as follows.

Definition 5.1. Let T : D(T) — S be a closed linear operator. Then, the resolvent set
p(T) is defined as p(T) :={A € C|3S € B(H),S(T —Al) C (T —A)S =1}, and the
spectrum o(T) is defined as o(T) :=C\ p(T).

There can be three distinct ways by which A € C can lie in the spectrum:

* ker(T — Al) # {0}. The collection of all such A € C is called the point spectrum
0,(T), which is nothing but the set of all eigenvalues of T'.

s ker(T — Al) = {0}, range(T — A1) C 7 is dense but (T — Al)~! : range(T — A1) —
D(T) is unbounded. Such A € C are collected in the continuous spectrum o, (7).

* ker(T — Al) = {0} but range(T — Al) C JZ is not dense. The collection of all such
A € Cis called the residual spectrum.

It is easy to see that the spectrum of any closed operator 7' can be decomposed into the
disjoint union: 6(T') = 6,(T) Uo.(T)Uo.(T).

Remark 5.2. The elements of the continuous spectrum of a closed operator T can be
thought of as the approximate eigenvalues of T in the following sense. By definition, if

21



A € 6.(T), then (T — A1)~! : range(T — A1) — D(T) is unbounded, i.e., there exists a se-
quence (x,)neN of unit vectors in range(T — A1) such that |(T — A1)~ \x,|| — e as n — .
Now, if we define another sequence of unit vectors

v = (T =20/ [(T = A0
it should be clear that ||(T — Al)y,|| — 0 as n — oo.

Proposition 5.3. [Con85, Chapter X, Proposition 1.17; Chapter VII, Theorem 3.6]
The spectrum o(T) of a closed operator T : D(T) — S is closed in C. Moreover, if
T € B(IH), then 6(T) is bounded (hence compact) and non-empty.

Let us now conclude this section by making some interesting observations on the spec-
trum of self-adjoint operators.

Proposition 5.4. [Con85, Chapter X, Corollary 2.9] A closed symmetric operator T :
D(T) — A is self-adjoint if and only if o(T) C R. Moreover, the residual spectrum of
a self-adjoint operator is empty.

5.2 Projection-valued measures

For a set A, we denote its power set by Z?(A). Given a choice of topology T C Z?(A) on
A, §(t) C Z(A) is used to denote the c-algebra generated by 7, so that (A, (7)) becomes
a measurable space. We will mostly consider A=R (or A=C) and 7T = 1R (or T = 1¢)
to be the standard topology, so that §(7) becomes the Borel o-algebra on R (or C). For
topological spaces (A,7) and (C,7c), a function f : A — C is said to be measurable if
weF(c) = {AeA|f(A) € o} €F(1).

Definition 5.5. A projection-valued measure (PVM) on a topological space (A, ) is a map
E :§(t) = B(H) with the following properties:

« E0)=0and E(A) = 1.

* Vo € §(1): E(®) is an orthogonal projection.

s Vo, €F(7): E(ojNan)=E(w))E(wm).

* Vdisjoint @1, € §(7): E(0yUwy) =E(w))+E(a).

* Vx,y € A : the function E, , : §(t) — C defined by E ,(®) = (x,E(®)y) is a regular
complex measure. Then Ey , ‘= E, is a regular, positive, and finite measure.

Given a PVM E : §(t) — #(4) on a topological space (A, 1), we define L*(E) as
the space of all bounded measurable functions f : A — C, where any two almost every-
where agreeing functions are identified with each other like in Example 2.8. This space can
be equipped with all the usual pointwise operations (scalar multiplication and vector ad-
dition/multiplication), including an involution defined by pointwise complex conjugation
(denoted f). We also equip this space with the essential supremum norm || - ||c, Which,
for a given f € L*(E), is defined to be the minimal M > 0 such that | f(A)| < M almost
everywhere. The next theorem identifies this space with a special type of subalgebra of

B(H).
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Theorem 5.6. [Rud91, Theorem 12.21]

Let E : §(t) = B(H) define a PVYM on a topological space (A, 7). Then, L*(E) is iso-
metrically *-isomorphic to a closed, commutative, *-subalgebra of (). The mapping
f = [\ fdE sets up the required isomorphism, where the integral is uniquely defined by the
following relation

Vx,y € . (x,/dey) :/dew-
A A

By a closed, commutative, *-subalgebra of %(.7), we mean a (topologically) closed
subspace of Z(s¢) in which operator multiplication is commutative and the subspace is
closed under this multiplication and the adjoint operation. If we denote [, fdE by W¥(f),
then W is an isometric *-isomorphism is equivalent to saying that ¥ is one-one and for all

fag € LOO<E)9
* W(f+g) =Y(f)+¥(g) and ¥(fg) = ¥(f)¥(g)-

* W) =) and [[F(H)] = [ £l

Notice that if f is real valued, then the above property implies that W(f) is self-adjoint.
Finally, it can be shown that

Ve |P(Hul?= /A \fPdE,.

Now, let us see if we can extend the above integration procedure to work even for
unbounded functions f : A — C. In this case, it is natural to expect that the integrals [, fdE
will be also be unbounded.

Theorem 5.7. [Rud91, Theorem 13.24]
Let E : §(t) — B(H) define a PVYM on a topological space (A, ) and let f : A — C be a
measurable function. Then, there exists a (densely defined) closed linear operator

/de:Df%% with Dy = {xe%1/|f\2dEx<oo},
A A
which is uniquely defined by the following relation
Vxe  NyeDy: (x,/dey) = /dex,y.
A A

Moreover, if f € L*(E), then ¥(f) € () and the construction in Theorem 5.6 is recov-
ered.
If we denote [, fdE by W(f) again, the following properties of the integral hold:

« W(f)+¥(g) C¥(f+g) and ¥(f)¥(g) S ¥(fg)-

« W(f) ="¥(f)" and Vx € Dy : [[¥(f)x]| = [4|fI*dE..

Notice that in the first property above, we do not have equality of operators (as was the
case with integrals of bounded functions) since the domains of the concerned operators may
not necessarily be equal. At this point, we should perhaps a common notational convention
regarding integrals. Often, instead of using the function name f inside the integrals, people
use the function values f(A) and change the measure symbol to E(dA), so as to obtain an
expression of the following form:

J f0E@n) = [ raE

23



5.3 The main theorem

Let E : §(1R) — #A() define a PVM on the topological space (R, 7r). Then,

T:/ideE://lE(dz)
R R

defined on Djq as in Theorem 5.7 is self-adjoint, where idg : R — R is the identity mapping.
The celebrated spectral theorem for self-adjoint operators can be interpreted as a converse
to the above statement, as we now see.

Theorem 5.8. [Rud91, Theorem 13.30]
Let T : D(T) — S be a self-adjoint operator. Then, there exists a unique PVM E :
$(To(r)) — B(H) on the topological space (0(T ), To(r)) such that

T:/ id dE:/ AE(dA),
o(r) 9 o) (dA)

where Tq (1) denotes the subset topology that 6(T) C R inherits from (R, 1R).

Out of the many significant applications of the spectral theorem, we will be interested
in the following one.

Definition 5.9. Let T : D(T) — S be a self-adjoint operator and E : §(Tg(1)) — B(H)
be the associated PVM. Then, for a measurable f : 6(T) — C, we define

F(T) ::/ fdE :Dy — € with Dy= {xE%[/ \f|2dEx<00}
o(T) o(T)

as a densely defined closed linear operator using Theorem 5.7.

In the next chapter, we will use families of exponential functions f;(A) = e* (which are
obviously bounded) in Definition 5.9 above to define and study the one-parameter family
of bounded operators {e’ },cr C () for any given self-adjoint operator T.
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6 One parameter unitary groups

In this chapter, we aim to place the introductory discussion of Chapter 4 within a rigor-
ous mathematical framework by employing the spectral theorem. In order to do so, we
must introduce the concept of one-parameter unitary groups, which form the main topic of
investigation in the present chapter.

6.1 Setting the stage

Definition 6.1. A family of unitary operators {U; },cr C B(H) forms a strongly continu-
ous one-parameter unitary group (OPUG) if the following statements hold true:

® U()Z'.
® Vs,tE R: USUt:US—H‘ :UtUs.
e VxeH: |[Ux—x|| —-0ast— 0.

For any such family {U,},cr, we define its infinitesimal generator as a linear operator
A :D(A) — S with D(A) = {x € A | lim,_,0 L Y22 exsits}, and

Tt

1 Upx—
VxeD(A): Axi=lim- o~

t—0 1 t

Note that the continuity condition in the above definition is equivalent to saying that
Vx € A ||Ux — Usx|| — 0 as s — t. Moreover, this strong continuity of the family {U; };cr
is weaker than demanding continuity in the operator norm, i.e.,

U= 1] = 0ast -0 = Vxe 7 : |Ux—x| - 0ast — 0,

but the reverse implication does not hold. An incisive reader would have also observed
that the definition of the infinitesimal generator above mimics that of the derivative of the
operator-valued mapping R >t — U, € B(H) att = 0.

In light of Definition 6.1, the families of operators defined in Eq (4.1) for arbitrary self-
adjoint operators Q, P acting on .7 can be shown to form strongly continuous OPUGs, as
WE NOwW prove.

Theorem 6.2. For a self-adjoint operator T : D(T) — 7, the family {e"T},cr C B(H)
forms a strongly continuous OPUG with T as its infinitesimal generator.

Proof. Spectrally decompose T' = [;7)AE(dA) as in Theorem 5.8. Then, it is clear that
{e"T},cr forms a unitary group, since Vs, € R:

itT\x itT _
(e")7e™ =

efitleit/lE(d/l) :/ E(d?t) _ I% _ (eitT)(eitT>>k,
o(T)

o(T)
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and
ST it T _/ i(s+t 7LE dl) (s—O—t)T.

Strong continuity of the group follows by noting that Vx € 77Vt € R:

2

Uik —x|? = (¢ — 1)E(dA) x :/G(T)|e“—1|2Ex(d/1),

where, since f;(A) = e —1 — 0 pointwise as r — 0 and V#,A € R: |f;(1)]> < 4, we
can apply the dominated convergence theorem ([Rud87, Theorem 1.34]) to conclude that
|Ux —x||> = 0 as t — 0. Now, let A : D(A) — J# be the infinitesimal generator of the
group and let x € D(T). Then,

» i 2
U, uA _
H inb :/ = | Ean),
it o(T) it
and it is straightforward to show that
eitl -1
fi(A) = ——— — A — 0 pointwise as t — 0 and Vr,A € R: |f;(1)|* < 4A°.

i

Moreover, since x € D(T'), we have [z A%E(dA) < oo (see Definition 5.9), which allows
us to apply the dominated convergence theorem again to conclude that

2

—Tx|| —0ast—0.

Ux—x
it

In other words, we have shown that Vx € D(T) :Ax=Tx = T CA and A* C T*. Finally,
since T is self-adjoint and A is symmetric:

Uy — U x—
Vx,y € D(A) : <x,Ay>=}glg)<x, a4 y>=lim<#,y>=<f\x,y>,

i t—0 —1t

we obtain A CA* C T* =T, which when combined with 7 C A implies A =T. O]

6.2 Stone’s theorem

In the last section, we saw that every self-adjoint operator can be used to define a strongly
continuous OPUG via the functional calculus provided by the spectral theorem. We now
explore the converse of this statement, and actually prove that it holds!

Theorem 6.3 (Stone’s theorem). Given a strongly continuous OPUG {U; };,cr C B(I),
its infinitesimal generator A : D(A) — S is densely defined and self-adjoint such that

VieR: U, =¢™.

Proof. We present the proof as a sequence of claims.
Claim 1. Vx € D(A),Vt € R: Uix € D(A).
Proof. Observe that

UUx— U, Ux —
fim DU Ui _ (hm o X):U,Ax.

s—0 A s—0 1S
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Hence, U;x € D(A) and A(U;x) = U;(Ax). Put differently, for a fixed xo € D(A), the function
x(t) = U;xg is the solution to the differential equation x’(r) = iAx(r) with the initial condition
x(0) = xo.

Claim 2. D(A) C 7 is dense.

Proof. For an arbitrary f € C°(R), define By = | f(¢)U,dt € B(F) as follows:

Vx,ye : (x,Bry) = /Rf(t)(x, Uyy)dt.

It should be clear that the above equation defines a bounded functional on 7 x ¢ which
is anti-linear in the first argument and linear in the second. A simple application of the
Theorem 2.4 then implies that By € #(J¢) is well-defined. Now, consider an arbitrary
x € 7. Then,

U,Bx— Byx = /R F(OUUs — £(0)U]xdt = / [f(t = $)Uy — f(1)UsJxdr

R
= [Lft=5) = re)Uixar.
Hence, Vf € CZ(R),Vx € 5 : Byx € D(A), since the following limit exists

Ii [ him L= S0

s—0 S R s—0 —S

U,Bx—B
m ST Upxdt = / 71(0)Upxd
R

Notice that the first equality above was obtained by using the dominated convergence the-
orem. Finally, consider a sequence of non-negative functions (f;),en in C2°(R) such that
for each n, supp f, = [—1/n,1/n] and [ f,(¢)dt = 1. Then, the denseness of D(A) in .7
follows by observing that every x € 7 can be approximated by elements in D(A) to an
arbitrary degree of closeness

< swp [Uix] [ ft) > 0asn - o
R

—1/n<t<1/n

8531 = | [ A0 03— sla

where the strong continuity of {U, },cr is used to obtain the limit.

Claim 3. A : D(A) — J is self-adjoint.

Proof. We already know that A is symmetric from Theorem 6.2, i.e. A C A*. Now, let
y € D(A¥). Then, Vx € D(A) : (y,Ax) = (z,x), where z = A*y. But,

Vx € D(A) : (y,Ax):tlirr(l)<y, U‘x__x>:hm<U‘L,_y,x>:<z,x> 6.1)

it t—0 —it
Uvy—
= <(lim 24 y) —z,x> =0 (6.2)
=0 1
Since the above implication holds for all x € D(A) and D(A) C J# is dense, we conclude
that for each y € D(A*), the aforementioned limit lim,_,o U’fl_y = Ay exists and equals z =

A*y. Therefore, A* C A, and we arrive at the desired result A = A*.

Claim 4. Vr € R: U, = ¢4,

Proof. Let {V; },cr be the strongly continuous OPUG generated by the self-adjoint operator
A as in Theorem 6.2. For an arbitrary x € D(A), define w(r) = U;x — V;x. Then, from Claim
1 and Theorem 6.2, we have that V¢ € R: w(t) € D(A) and

W (t) = iAUx — iAV;x = iAw(t).
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Moreover, if we define the real valued function ro(¢) = ||w(¢)||? = (w(t),w(z)), it is clear
that

VieR: w'(t)= W (t),w()) + W), w (1)) = (iAw(t),w(t)) + (w(t),iAw(t))
= —i(w(t),Aw(t)) + i(w(t),Aw(t))
0

Since w(0) = 0, the above equation implies that w(zr) = 0 = Uyx — Vix for all t € R. As
x € D(A) was arbitrary, we infer that Vz € R,Vx € D(A) : U;x = V;x. Finally, the equality of
U; and V, for all t € R follows from the denseness of D(A) in .77

O

Remark 6.4. It would be insightful for the reader to show that for a given strongly contin-
uous OPUGs, its infinitesimal generator is a bounded self-adjoint operator if and only if
the group is continuous in the operator norm.

Combing the results of Theorems 6.2 and 6.3, we can now say that there is a one-one
correspondence between strongly continuous OPUGs and self-adjoint linear operators.

6.3 Examples

We end this chapter by giving two examples of strongly continuous OPUGs and their corre-
sponding self-adjoint generators, which will turn out to be the familiar position and momen-
tum operators from the Schrodinger representation of the canonical commutation relation,
see Theorem 3.16.

Example 6.5 (The translation group in L?(R)).
Consider .2# = L*(R) and for each s € R, define U; € %() as follows:

Yy e L2(R): Usw(x) = y(x+s). (6.3)

It should be evident that {U}cr forms a OPUG. To show its strong continuity, observe
that for every y € C2°(R) C L?(R), y(x +s) converges uniformly to y(x) as s — 0 [This is
because each y € C°(R) is continuous with a compact support and thus is also uniformly
continuous]. Moreover, since the compact supports of these functions are of finite measure,
it is easy to show that w(x +s) actually converges to y(x) in the L? norm as s — 0. Now,
since C(R) is dense in L?(R), for every € > 0 and ¢ € L*(R), there exists a § > 0 and
y € CZ(R) such that

VseR: |9 —vy| <€e/3 = ||Usp —Usy| < €/3 and |s| <0 = ||Us¢p — ¢|| < €/3.

Hence, for every € > 0, there exists a § > 0 such that for |s| < J, we obtain

1Us¢ = 01| < [|Us¢ = Usyl| + [Usw =yl + [lw — o] <&

Finally, let us investigate how the infinitesimal generator A : D(A) — ¢ of {Uj }scr looks
like. Its action is defined as U

Ay = lim =¥
s—0 A)
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wherever the limit exists in L?(R). If we restrict ourselves to the dense domain C*(R) C
L?(R), it is not too difficult to prove that the above limit converges in L?(R) to the deriva-
tive —iy’. Thus, on D = C*(R), the infinitesimal generator is defined precisely like the
momentum operator from the Schrodinger representation (see Theorem 3.16) and is hence
essentially self-adjoint on D. The actual self-adjoint generator is then obtained by taking
the unique closure.

Example 6.6 (The phase multiplication group in L*(R)).
Consider # = L*(R) and for each ¢ € R, define V; € Z(.J¢) as follows:

Ve P(R): Viy(x) =™y (). (6.4)

It is easy to see that {V;};cr forms a strongly continuous OPUG. Notice that for proving
strong continuity, it suffices to show that e?*y/(x) — w(x) converges to 0 pointwise as  — 0,
since we can bound |e™ y(x) — w(x)|? < 4|y(x)|? to show convergence in the L? norm by
exploiting the dominated convergence theorem. Now, observe that for each y € C°(R) and
xeR:

4 = lim
t—0 it t—0 t 1

lim Y () ~ V(%) il B 71CO N 6.5)

In addition, since for all x,7 € R:

2

ey (x) — y(x) —xy(x)| <4|xy(x)|?

it

and y has compact support so that the RHS above is integrable, the dominated convergence
theorem tells us that the limit in Eq (6.5) converges in the L? norm. Hence, the infinitesimal
generator A of {V; },cr acts on C2°(R) as the position operator from the Schrédinger repre-
sentation, see Theorem 3.16. The same theorem tells us that A is essentially self-adjoint on
CZ(R) and therefore can be closed to obtain the unique self-adjoint generator of {V; };cR.

To conclude this chapter, let us consider the OPUGs {U;}scr and {V;};cr from the
aforementioned examples and show that they satisfy the Weyl relations as in Eq (4.2). For
an arbitrary y € L*(R), we have

(UVip)(x) = (Vi) (x+5) = ™™y (x +) (6.6)
(VUsw)(x) = ™ (Ugy) (x) = ™y (x+5). (6.7)
We know that the self-adjoint infinitesimal generators of {U,}cr and {V;},;cr are the fa-
miliar momentum and position operators P and Q (uniquely extended from their common
domain of essential self-adjointness C°(R) by taking closures), respectively. Hence, we

can write Uy = €F and V, = €€ so that Egs. (6.6) and (6.7) can be recast in the desired
form

VS,t cR: elsPeth — ezstethelsP.
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7 Stone-von Neumann theorem

We have come a long way since we first hinted at the existence of the Schrédinger rep-
resentation of the CCR in Chapter 1. Let us summarize what we have learnt about this
representation so far. By fixing the dense domain D = C*(R) C L?(R), the position and
momentum operators Q, P : D — L?(R) are defined as

Qv (x) = xy(x)
Py (x) = —iy'(x). (7.1)

D serves as a domain of essential self-adjointness for both the operators while also staying
invariant under their actions, see Theorem 3.16. Then, we have

VyeD:  (QP-PQ)y =iy, (7.2)

and we say that the operators Q, P : D — D form the Schrddinger representation of the CCR
on L*(R) (see Definition 3.17). Denoting the unique self-adjoint closures of the aforemen-
tioned operators by the same letters Q and P, we can construct the corresponding strongly
continuous OPUGs {¢"*F} cr and {e?},cr, which have been shown to satisfy the Weyl
relations:

Vs,t €R: 5P e1Q = (i1 it Q ISP (7.3)

We say that {¢""}cr and {€?C},cr form the Schrodinger representation of the Weyl rela-
tions on L?(R). Now, before proceeding further, let us quickly collect a few key definitions
regarding the representations of the Weyl relations below.

Definition 7.1. Two strongly continuous OPUGs {Us}ser,{V; }ier C B(H) are said to
form a representation of the Weyl relations if

Vs,t €R: UV, = €'V, Uj.

Definition 7.2. A representation {Us}ser,{Vi }1er € B(H) of the Weyl relations is said to
be irreducible if Vs,t € R, there is no non-trivial subspace of 7 (i.e., a subspace which is
neither {0} nor ) that stays invariant under the operators U and V.

Definition 7.3. Two representations {Us,V;}ser C B(H) and {U],V/}s,er C B(H)
of the Weyl relations are said to be unitarily equivalent if there exists a unitary bijection
U . H — A such that

Vs,t €ER: wU*=U, and UV, U =V]

We already saw in Chapter 4 that there exist many inequivalent representations of the
CCR in the sense of Definition 3.17. In contrast, all irreducible representations of the Weyl
relations can be shown to be equivalent to one another! We prove this fundamental result in
the present chapter, which singles out the Schrodinger representation of the Weyl relations
as the unique one.
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7.1 Why is the Schrodinger representation special?

This short section examines some key properties of the Schrodinger representation of the
Weyl relations, which will prove to be instrumental in our discussion of the main uniqueness
theorem in the next section.

Lemma 7.4. The Schrodinger representation of the Weyl relations is irreducible, i.e., Vs,t €

R, there is no non-trivial subspace of Lz(R) that stays invariant under the unitary operators
P and "9,

Proof. Suppose that there exists such a non-trivial invariant subspace K C L?(R). Let 0 #
f €Kand0+# g € K+. Then, the invariance condition implies that

Vs,t€R: 0= (g,e"2e"f) = / g(x)e™ f(x + 5)dx.
R
If we define hs(x) = g(x) f(x+s5), then the above equation implies that the fourier transform
hs is identically zero, which inturn implies that & is identically zero for all s € R, since the
fourier transfrom is injective. Thus, we have that for all x,s € R, g(x) f(x+s) = 0, so that
either f or g is identically zero, leading to a contradiction. [

Let us now look at another special property of the Schrodinger representation, namely
the existence of a vacuum state. To this end, let us fix a new domain D = . (R) = {f €
L*(R)|Vn,m € N : sup, g |x"f"™ (x)| < oo} of rapidly decaying functions on R. .#(R) is
also called the Schwarz space. It is straightforward to verify that the position and mo-
mentum operators Q, P as defined in Eq (7.1) keep .(R) invariant. Moreover, since Q, P
are known to be essentially self-adjoint on C°(R) and C*(R) C .(R), the Schwarz space
7(R) also acts as a domain of essential self-adjointness for Q, P and lies dense in L*(R),
see Theorem 3.16. Finally, it is clear that on . (R), we have QP — PQ = il, so that we ob-
tain a proper representation of the CCR in the sense of Definition 3.17. Now, let us define
the creation and annihilation operators as follows:

Q—iP

._Q-iP. g 4o QHIP
@=F SRS R) ad a=S o SRS SR T

Notice that a* acts as the adjoint of a atleast on the domain .(R), since Vy, ¢ € .7 (R) :

XY (x)9(x)+ v/ (x)p(x xy(x)o(x) — y(x

<w’¢>:/ (x)¢ (x) ()()dx:/ (x)9 (x) — w(x)
R V2 R V2

where integration by parts was used to obtain the second equality above and the boundary

term didn’t contribute as Y, ¢ decay rapidly as |x| — oo. It is crucial to note that the CCR
gets translated into the relation [a,a*] = | for a and a*, i.e.,

¢'(x)dx = (y,a"9),

Vye SR): ad'y—a‘ay=y (7.5)
Now, we define the vacuum state Q € .%(R) as follows
aQ =0 = xQx)+Q(x)=0 = Qx) = ce*xz/z, (7.6)

for some ¢ = 1/m'/* so that || Q|| = 1. Observe that Q does not have a compact support,
which is precisely why we extended our domain from C°(R) to .(R). Let us now define
the following ladder (or sequence) of functions:

eg=Q and e,=(a")"¢forneN, (7.7)
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so that ¢* and a do indeed act as creation and annihilation operators on this ladder:
VneNU{0}: da"e,=e,+1 and ae, =ne,_|. (7.8)

The first relation above is trivial to prove and the second can be shown by using an induction
argument along with Eq (7.5). Moreover, span{e, : n € NU{0}} C L?(R) must be dense,
because otherwise its closure would be a non-trivial invariant subspace for the operators
P and 2, which is prohibited by Lemma 7.4. Finally, for n > m:

(ensem) = {(a")"ev.em) = (e0.a"en) = {e0,a" ") = {0 e
n! ifn=m
so that {e,/v/n! }neNuoy forms an orthonormal basis of L*(R).

Let us pause for a moment to appreciate the importance of the above construction. The
properties of the Schrodinger representation of the CCR guarantee the existence of a spe-
cial vacuum state Q € . (R), from which we have cleverly recreated the entire structure of
our Hilbert space L?(R)! In general, if we have an irreducible representation of the CCR
with vacuum, i.e., operators a,a” : D — D satisfying [a,a*] = | on a dense domain D C 57
and there exists € D such that aQ2 = 0, then we can follow the above steps to recover
the entire Hilbert space as the closure of span{(a*)"Q : n € NU{0}} with inner product
defined as ((a*)",(a*)™) = n!d,,,. Hence, we can easily show that the given representa-
tion is unitarily equivalent to the Schrodinger representation by setting up the mapping
H > (a*)"Q + e, € L*(R), where the e, are defined for the Schrodinger representation
as in Eq (7.7). Thus, the equivalence between a given irreducible representation of the
CCR and the Schrodinger representation hinges on the existence of the vacuum state in the
given representation. This fact will prove to be instrumental in our proof of the Stone-von
Neumann uniqueness theorem in the next section.

7.2 The main theorem

We are now finally ready to state and prove the Stone-von Neumann uniqueness theorem
for the canonical commutation relation.

Theorem 7.5 (Stone-von Neumann uniqueness theorem).

Every representation {U,V;}scr € B(IH) of the Weyl relations is unitarily equivalent
to a countable direct sum of Schrodinger representations. More precisely, there exists a
countable family of closed invariant subspaces {}icn and unitary bijections U; : 76 —
L?(R) such that # = @ienH and

VieN,Vs,t €R: WU =T and UV, U =",

where {€"F}cr and {€"2},cr are the translation and multiplication groups on L*(R), re-
spectively (see Examples 6.5 and 6.6).

In particular, every irreducible representation of the Weyl relations is unitarily equiva-
lent to the Schrodinger representation.

Proof. The proof proceeds in several steps.
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Step 1: Studying properties of the Weyl operators W (s,t) = e 12U,
Let us begin by combining the given representation into the following two-parameter family
of Weyl operators defined for s, € R: W(s,1) = e 12UV, Then,

—isqt —isHt,
W (Sl,l‘l)w (Sz,l‘z)ze 1 lUslV;1€ 22U52Vt2
—isity ,—Soty —ispt
e R 1UY1+S2‘/I1+IQ (79)

_ e—i/2(slt2—szl1)W(sl +52,11 +1) (7.10)

Now, given any integrable function i € L'(R?), we associate a bounded operator W, =
Jr2 h(s,t)W (s,t)dsdt € ZB(A) to it by the following relation:

Yy e A (x,Wiy) = /R (1) (. W (5,)y)dsdr.

We now intend to show that the mapping & — Wj, is injective, i.e., W, =0 — h =0.
To this end, observe that if W;, = 0, then for all p,q € R, we have

/ h(s, )W (—p, —q)W (s,0)W (p, q)dsdt = 0 —> / h(s, 1)/ P IW (s,1)dsdt = 0

= Vx,ye X :/h(s,t)ei(ptqs) (x,W(s,t)y)dsdt =0

In other words, the fourier transform of the mapping (s,) — h(s,t)(x,W(s,t)y) is zero for
all x,y € ¢, which implies that the mapping itself must be zero in L' (R?), from which it
is straightforward to deduce that 7 = 0 in L' (R?).

Before proceeding further, let us collect a crucial convolution like property of the map-
ping i — Wj,. We claim that Vhy,hy € L'(R?):

I/VthhZ =W,, where l’l(S,l‘) - /thl (S —5/7t o t’)hz(g’,t’)ei/z(st/—ﬁ”)dsldt’

We leave an easy (but tedious) proof of the above identity to the reader.

Step 2: Defining the projector onto the vacuum subspace.

Let us dive back into our familiar Schrodinger representation, so that W (s,7) = e
where Q, P are the usual position and momentum operators on L>(R). Let us investigate
how the operator

—ist ezsPeth’

1

= ﬁ/ze_(szﬂz)/‘lW(s,t)dsdt
R

acts on L*(R). For y € L*(R), we have

33



Py(x) = — /R e O (s, )y (x) dids
1

T
1

ez
1

ez

_ L / 0=y (y) { / o1/ 012 d,} dy
27 Jr R

1 2 2
. (y—x)7/4 —(xty)7/4
5 /Re v(y) {Zﬁe } dy

1 (2442) /2 eV /2 e /2
:ﬁ/Re &0/ ‘I/(Y)dy:{/RWIV(Y)dy gy

so that Py = (Q, y)Q, where Q(x) = e*"z/z/nl/4 is the vacuum state from Section 7.1.
Hence, P acts as the orthogonal projection onto the one-dimensional subspace spanned by
the vacuum state. Motivated by this calculation, we define the vacuum projection in the
given representation {Us, V; },,cr of the Weyl relations in an identical way

1

T om
It can be easily verified that P satisfies all the properties of an orthogonal projection, see
Definition 2.15. Firstly, note that since e~ +°)/4 stays invariant as (s,¢) = (—s,—1), we
have

/2e—(sz+t2)/4eist/26itxw<x+S) dsdt

R

[0Sy )
R

/R 2 o (024G 020t 2 () iy

/2 e_(s2+t2)/4W(s,t) dsdt.
R

P = . e*(s2+’2)/4W(—s, —t) dsdt = P.
R
Moreover, it is not too difficult to establish the following identity:

Vs,t ER:  PW(s,t)P = H/4p,

which, for s = ¢ = 0, yields P> = P. Finally, since the mapping & — W, is injective, and
h(s,t) = e~ +%)/4 i5 not zero in L! (R?), P =W, is a non-zero projection.

Step 3: Reconstructing the Hilbert space from vacuum.

Since we know that P ## 0, we can construct the non-zero closed vacuum subspace P77,
see Remark 2.16. Let {Q, },en be an (at most countable) orthonormal basis of P.7#. Now,
for each n € N, we define 77, := span{W (s,)Q, |s,r € R}.

* It is easy to see that each 77, is invariant under W (s,7) for all 5,7 € R.
* Forn# mand x,y,s,t € R, we have
(W (x,9) Q0 W (5,1) Q) = (Qu,e PO DW (5 —x,1 — y) Q)
= (PQ,,, e PUST0W (s — x,t —y) PQ)
= (Qy, e PSP (s — x,t — ) PQ,)
(Qn, e—i/Z(ys—xt)e—[(S—X)2+(t—y)2]/4gm>
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Hence, for n # m, J¢, 1. 7.

o If 0 # ©,ent, = A, then the orthogonal complement % - becomes a non-trivial
invariant subspace for all the Weyl operators W (s,t). Hence, {Us| 1, V| 1 }sser C
B (# ) gives another representation of the Weyl relations on the Hilbert space .# .
Going through the same motions as above, we can construct another non-zero vacuum
projector P so that there exists a non-zero ¥ € ¢ such that

H ODPHSIPYy=yeX " = y=0= A" ={0} = =P

neN

Step 4: Showing equivalence of the representations {Us| ,,Vi| 4, }s1er C B(I).

In this final step, our aim is to show that the representations of the Weyl relations obtained
by restricting the original representation to the invariant subspaces {.74, },cN are all equiv-
alent to one another. To prove this, we will reconstruct the entire representation on each
¢, just by using the corresponding vacuum state {, and the Weyl relations. To this end,

we fix n € N and define fs(?) := W (s,1)Q, for s,t € R. Then, it is easy to recover the action
of the Weyl operators as follows:

\V/xayas7t € R: W(x?y) s(,rtl) = eii/Z(Xtin)fS-FX,y—H'

It is equally easy to construct explicit formulas for the inner products:

) F0) = ( QW (—x, —y)W (5,1) )
= (Q, PW (s —x,t — y)an>efi/2(ysfxt)
— o [ls=0)2+(1=y)?] /4 p—i/2(ys—x1)

Now, given {Us| 2, Vi| sz, }sicr © B(,) and {Us| ., Vi| oz, }s.1cr C© B(,) for n # m,

the above computations show that the mapping fs(;') — fs(',“) can be extended to a unitary
bijection U between .77, and .77, such that

Vs,t €R: UW(s,t)| xU" =W (s,1)| 1,

Therefore, all restricted representations are unitarily equivalent to each other. In partic-
ular, for two irreducible representations of the Weyl relations, the direct sum @®,,cN-77;, has
just one term for each irreducible representation and the above constructed U then serves
as the unitary map that implements their equivalence. This finally shows that all irreducible
representations of the Weyl relations are unitarily equivalent to the Schrodinger represen-
tation and any given representation of the Weyl relations splits up into a direct sum of
Schrodinger representations, which is what we wanted to prove. O]

The following corollary is a trivial consequence (or rather, a reformulation) of the Stone-
von Neumann uniquness theorem.

Corollary 7.6. Let 2: D(2) — A and & : D(P) — H be self-adjoint operators such
that the corresponding exponential families {€*” }scr C B(H) and {€"?}1cr C B(H)
form an irreducible representation of the Weyl relations:

VS,Z‘ cR: eis,@eit,@ _ eisteitﬁeisﬁ‘
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Then, there exists a unitary bijection % : ¢ — L*(R) such that
Vs,t eR: USSP U =P and UM U* = M,

where {"F}scr and {e"C},cr are the translation and multiplication groups on L*(R), re-
spectively (see Examples 6.5 and 6.6). Thus, 2 and & are unitarily equivalent to the

position and momentum operators, respectively. In particular, there exists a dense domain
D CD(2)ND(ZP) C H such that

*» 2:D—Dand & :D — D.
sVYyeD: (27 —-Z2)y=iy.
» 2 and & are essentially self-adjoint on D.

Recall that in Chapter 4, we mentioned that the CCR and the Weyl relations
QP_ PQ — lI and eiSPeilQ — eiSteithiSP,

respectively, are not equivalent to each other. However, we have just seen that if two OPUGs
form an irreducible representation of the Weyl relations, then the corresponding infinitesi-
mal generators form a representation of the CCR. Hence, it is the reverse implication which
is not true, i.e., if two self-adjoint operators form a representation of the CCR, the associated
OPUGs need not satisfy the Weyl relations, see [RS12, p. 275].

7.3 Conclusion

Quantum mechanics tells us that there is an associated complex Hilbert space with every
physical system. States of the system are unit vectors in this space, while self-adjoint
(or hermitian) operators play the role of observables. However, the theory does not give
a prescription of uniquely assigning a Hilbert space to any given system. It is purely a
modelling question! Then, why is it that the dynamics of a single particle constrained to
move on a line, for instance, is always modelled on the Hilbert space of complex square
integrable functions L?(R), with the position and momentum operators acting as follows:

Qy(x) = xy(x),
Py(x) = —iy'(x)? (7.11)

Why can’t we choose to model this system on a different Hilbert space, with different kinds
of position and momentum operators? After all, the list of possible choices is so huge that
it is not even countable! If the reader is now able to answer this fundamental question,
then this thesis would have served its purpose. In any case, let us conclude this thesis by
providing a succinct answer to the above question. It is the structure of the commutation
relation: [Q,P] = il, that is imposed on the prospective position and momentum operators
which fixes both the Hilbert space and the action of the operators as stated in Eq. (7.11),
see Theorem 7.5 and Corollary 7.6. This aptly summarizes the content of the Stone-von
Neumann uniqueness theorem, whose proof serves as the centerpiece of this thesis.

Going forward, there are a lot of directions that one can pursue. The Stone-von Neu-
mann theorem can be immediately generalizes to work for finitely many particles moving
freely in three-dimensional space, see [Hall3, Theorem 14.8]. In that case, there will be a
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finite set {Q}, Pj}’]’.:l of position and momentum operators acting on their common domain
of essential self-adjointness C°(R") C L?(R") as follows:

Qjy(x) = xjy(x),
le//(x) = —iajl//(x), (7.12)

and satisfying the following generalization of the CCR and the Weyl relations:
[0i, Pj] = i8;; and eFie1Q) = oi519ij4itQj oI5, (7.13)

However, the Stone-von Neumann theorem breaks down rather dramatically in the
realm of infinitely many degrees of freedom (i.e. when n — oo in the above discussion),
where one can show that there are infinitely many inequivalent representations of the Weyl
relations. This is where quantum mechanics and quantum field theory part ways, and the
reader is referred to [Der06, BRO3] for introductory expositions on this topic.

One can also undertake a rigorous study of the so-called Gaussian continuous variable
quantum systems, whose theory relies heavily on the uniqueness theorem discussed in this
thesis along with a healthy serving of symplectic geometry and has immense applications in
the rapidly progressing domain of quantum information, see [Par10, Par13, dG06, Ser17].
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