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Abstract

This thesis is divided into two parts. The first part talks about Single-Particle Entan-

glement, while the rest talks about Weak Value Amplification. A state in a quantum

system with at least two degrees of freedom is said to entangled when it has a particu-

lar non-separable form. Usually, entanglement is described in bipartite or multipartite

systems. In single particle hybrid entanglement, this quantum correlation is seen in

same particle but in different Hilbert spaces of spin, polarization, orbital angular

momentum etc. The basics of Quantum Entanglement will be discussed together

contrasting Single-Particle Entanglement with the regular entanglement. A major

portion deals with the applications of Single-Particle Entanglement highlighting its

resource-friendliness. The other part of this thesis is on a novel work which shows that

one can achieve exponential enhancement in the post-selection probability for a fixed

weak-value in Weak Value Amplification with the selection of certain entanglement

generating operator.
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Part I

Single-Particle Entanglement
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Motivation

Entanglement is one of the key features of quantum systems. An entangled state was

first discussed by Einstein in a joint paper with Podolsky and Rosen in 1935 discussing

the famous EPR paradox without coining the word entanglement. Entanglement is

now considered to be the source of non-locality and is regarded as a crucial ingredient

of storage and distribution in the area of quantum information. Entanglement can

also be seen where the non-classical correlations between two different parties require

different degrees of freedom, which is termed as hybrid entanglement. If the entan-

glement is realised in different degrees of freedom within the same particle, then this

is referred as intraparticle entanglement or single-particle entanglement [Azz+20].

Entanglement was first realised in terms of position-momentum variables and was

later realised in other variables spin, photon polarization, orbital angular momentum,

nuclear spins etc. Entanglement has been used as a resource for many quantum in-

formation processing protocols as teleportation,cryptography, super-dense coding etc.

All these different types of entanglement can be easily realised quantum mechanically,

but the concept of single-particle entanglement still remains under-appreciated.
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Background

The first experimental study on such a locally entangled state was the mesoscopic

Schrödinger cat-like state of cold atoms which was realized with trapped Be ions

by the group of Wineland, in 1996[Mon+96]. They were able to entangle the local

spatial position of the atom wave packet inside the trap with its hyper fine ground

state. The violation of the Bell-Clauser, Horne, Shimony and Holt(BCHSH) inequal-

ity for measurements performed on different degrees of freedom of a single particle

is a demonstration of intraparticle entanglement and of contextual behavior of any

realistic hidden variable theory. This idea was introduced by Home and colleagues in

1984 [HS84].The first experiment with single photons was performed by Zukowski and

colleagues, and published in 2000[MWŻ00].Then came the articles on applications of

single particle entanglement in Teleportation by Pramanik et al. (2010) [Pra+10],

Entanglement swapping by Adhikari et al. (2010) [Adh+10] and QKD by Y. Sun et

al.(2011)[SWY11]. Finally, a review article is published on single particle entangle-

ment in 2020 by Azzini et al [Azz+20].
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Chapter 1

Single-Particle Entanglement

To describe the mathematical formulation of entanglement, let us consider two arbi-

trary quantum subsystems A and B, belonging to Hilbert spaces HA and HB. The

Hilbert space of the composite system is given by the tensor product of these two

individual Hilbert spaces HA ⊗ HB . Considering the case of pure states, if the state

of the subsystem A is |ψA〉 and the state of the subsystem is |ψB〉, then the state of

the composite system is represented by |ψA〉 ⊗ |ψB〉. Such states of the composite

system are known as separable or product states. Fixing the basis |iA〉 for HA and

|iB〉 for HB, the most general state of this composite system is given by

|ψAB〉 =
∑
ij

cij |iA〉 ⊗ |jB〉

This general state remains separable if cij = cAi c
B
j yielding |ψA〉 =

∑
i c
A
i |iA〉 and

|ψB〉 =
∑

j c
B
j |iB〉. There is a class of state which do not satisfy this condition and

remain inseparable as cij 6= cAi c
B
j for all values of i and j. Such states are known as

entangled states. For example, considering |0A〉 and |1A〉 as basis states for HA and

|0B〉 and |1B〉 as basis states for HB, the following is an entangled state:

|ψAB〉 = 1/
√

2(|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉)

This kind of entanglement can be realised in multiple ways. It can be realized in

multipartite systems with entanglement within same degree of freedom. It can also

be realized in multipartite systems with entanglement between different degrees of

freedom, which is known as hybrid entanglement. The entanglement Further, it can

also be realized within a single particle with entanglement between same or different
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Chapter 1 – Single-Particle Entanglement

degrees of freedom, which is termed as single-particle entanglement or single particle-

hybrid entanglement respectively. It is important to note that mathematical formula-

tion of this single particle entanglement stands same as the conventional interparticle

entanglement.

Experimentally, this intraparticle entanglement has been realized in systems as

photons, neutrons and atoms. Unlike interparticle entanglement which involves cor-

relations between different particles, one advantage of single particle entanglement is

that these entangled states are easier to produce and remain robust under decoher-

ence and dephasing [Pra+10].An interesting point to note is that in the case of single

particle entanglement, the system is not comprised of two space-like separated subsys-

tems and the EPR phenomenology does no longer give rise to the non-locality issues

[Pra+10]. Since only single particles are needed, the technique utilizing single parti-

cle entanglement consumes less resources than those using interparticle entanglement

[Pra+10].

1.1 Applications of Single Particle Entanglement

There are many applications of intraparticle entanglement in quantum information

processing like Teleportation [Pra+10], Entanglement Swapping [Adh+10], Quantum

Key Distribution [SWY11] etc. Three of these application are discussed below.

1.1.1 Teleportation

The first theoretical proposal of implementing teleportation using a intraparticle en-

tangled state was given by Pramanik et al. in 2010[]. This protocol is briefly described

as follows:

Let us consider a spin-1/2 particle corresponding to an initial spin polarized state

along the +z-axis(|0〉). Considering the particle’s path variable, the joint spin-path

state is given by

|S〉1ps = |ψ0〉p ⊗ |0〉s (1.1)

where the subscripts s and p represent the spin and path variables respectively.

Now this state is made to pass through a beam splitter with reflected and transmitted

channels designated as |0〉p and |1〉p respectively. This transforms the initial state into
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Chapter 1 – Single-Particle Entanglement

|S〉1ps → (α |1〉p + iβ |0〉p)⊗ |0〉s (1.2)

where the coefficients α and β represent real numbers corresponding to α2 and β2 as

reflection and transmissions probabilities.

On passing this above state through a spin-flipper through one of the channels(here

considered on path channel 0) results in a single particle hybrid entangled state given

by

α |0〉s ⊗ |1〉p + iβ |1〉s ⊗ |0〉p (1.3)

Before the beginning of protocol for teleportation Alice possesses three particles

in her lab; the first being the hybrid intraparticle entangled state shown above, an

auxiliary particle present in |0〉as and the particle which is meant to be teleported

γ |0〉2s + δ |1〉2s whereas Bob possesses only a single particle in state |0〉3s. The whole

protocol can be described in five simple steps briefly as follow:

1. Alice makes a CNOT operation with 1st particle’s spin state as control and

auxiliary particle’s spin state as target resulting as

α |1〉1p |0〉
1
s |0〉

a
s + iβ |1〉1p |1〉

1
s |1〉

a
s (1.4)

2. Alice then makes a CNOT operation with 1st particle’s spin state as control and

2nd particle’s spin state as target. The resulting state after this operation is

αγ |1〉1p |0〉
1
s | |0〉

2
s |0〉

a
s + iβγ |0〉1p |1〉

1
s |0〉

2
s |0〉

a
s

+ αδ |1〉1p |0〉
1
s |1〉

2
s |0〉

a
s + iβδ |0〉1p |1〉

1
s |s〉

2
s |1〉

a
s (1.5)

3. Next, Alice sends 1st particle to Bob. After Bob confirms that he has received the

particle, Alice measures spin of her both 2nd particle along z-axis and auxiliary

particle along x-axis. The above state in the expression (5) can be rewritten as:

(αγ |1〉1p |0〉
1
s + iβδ |0〉1p |1〉

1
s) |0〉

2
s |0x〉

a
s

+ (αγ |1〉1p |0〉
1
s − iβδ |0〉

1
p |1〉

1
s) |0〉

2
s |1x〉

a
s

+ (iβγ |0〉1p |1〉
1
s + αδ |1〉1p |0〉

1
s) |1〉

2
s |0x〉

a
s

+ (−iβγ |0〉1p |1〉
1
s + αδ |1〉1p |0〉

1
s) |1〉

2
s |1x〉

a
s (1.6)
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Chapter 1 – Single-Particle Entanglement

Assuming that both the spin measurements of Alice resulted in |0〉2s |0x〉
a
s state, the

state of the 1st particle collapses to

αγ |1〉1p |0〉
1
s + iβδ |0〉1p |1〉

1
s (1.7)

After Bob receives the 1st particle, he sends it through a 50-50 beam splitter,

which gives rise to two different paths |a〉p and |b〉p. The action of Beam splitter is

given by |0〉 → (|a〉p+i|bp〉)√
2

and |1〉 → (|b〉p+i|ap〉)√
2

. Then Bob applies a CNOT gate with

1st particle’s spin state as control and 3rd particle’s spin state as target. Omitting the

normalization constants, the resultant state is

αγ |b〉1p |0〉
1
s |0〉

3
s + βδ |b〉1p |1〉

1
s |1〉

3
s + iαγ |a〉1p |0〉

1
s |0〉

3
s + iβδ |a〉1p |1〉

1
s |1〉

3
s (1.8)

Bobs finally makes a measurement on 1st particles spin state along x-axis. Assuming

the resultant state is in |a〉1p |0x〉
1
s, state of the third particle is given by

iαγ |0〉3s –iβδ |1〉3s (1.9)

which on application of a unitary operator is transformed to αγ |0〉3s + βδ |1〉3s which

is similar to the 2nd particle (2) whose state was meant to be teleported.

The fidelity(F) of this teleportation protocol is given by

F = | 〈ψin| |ψout〉 |2 =
(αγ2 + βδ2)2

α2γ2 + β2δ2
(1.10)

Similarly, the cases where the result of Bob’s measurement are other than the one

mentioned above can be dealt in the related way accordingly.

This protocol is similar to the standard teleportation scheme for a single qubit.

The difference here is that the intraparticle entanglement is not be initially shared

between the two distant parties(as it is not possible), the particle itself is transferred

from Alice to Bob in between the protocol. The particle whose state is teleported

remains with Alice, and its initial state is destroyed by Alice’s measurement, thus

avoiding any conflict with the no-cloning theorem.

It is interesting to note that, even if the particle gets intercepted by Eve in between

the protocol, it is not possible for Eve to decode the information encoded in the qubit

which is being shared. This can be realized by rewriting Eq. (5) as follows:

α |1〉1p |0〉
1
s (γ |0〉2s + δ |1〉2s) |0〉

a
s + iβ |0〉1p |1〉

1
s (γ |1〉2s + δ |0〉2s) |1〉

a
s (1.11)
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Chapter 1 – Single-Particle Entanglement

It can be clearly seen from the state above, that even if Eve intercepts the 1st particle

and measures it, she gains no sort of information of the state that was intended to be

teleported.

1.1.2 Entanglement Swapping

Interparticle entanglement is widely used in quantum information processing because

of the fact that an entanglement partner can be shared over distances which isn’t the

case with single particle entanglement. This Entanglement swapping from intraparti-

cle to interparticle shall resolve the issue mentioned above. A protocol for swapping

the entanglement from intra to inter was given by Adhikari et al. in 2010 [Adh+10].

This protocol is briefly outlined as follows

At the beginning of this protocol, Alice has two particles, one is the spin-path

hybrid entangled state and other is an up-spin state. Bob also has a up-spin state to

begin with.

1. Alice prepares spin-path hybrid entangled state as described in previous sub-

section, which is

α |0〉s ⊗ |1〉p + iβ |1〉s ⊗ |0〉p (1.12)

The joint state of the particles present with Alice is given by

α |0〉1s |0〉
2
s ⊗ |1〉

1
p + iβ |1〉1s |0〉

2
s ⊗ |0〉

1
p (1.13)

Now Alice performs a CNOT gate considering spin of the 1st particle as source

and the 2nd particle as the target qubit. The resultant state is given by

α |0〉1s |0〉
2
s ⊗ |1〉

1
p + iβ |1〉1s |1〉

2
s ⊗ |0〉

1
p (1.14)

2. Alice sends particle 1 to her spatially distant friend Bob who posses another

particle ‘3’ in spin up state with him. Bob then performs a CNOT operation on

spin part of particle 1 and qubit 3 by considering qubit 3 as the target qubit.

Note that, particle ‘1’ and qubit ‘3’ are physically present with Bob whereas

particle ‘2’ is sent to a distant party Charlie. After this operation, the joint four

qubit state is given by

α |0〉1s |0〉
2
s |0〉

3
s ⊗ |1〉

1
p + iβ |1〉1s |1〉

2
s |1〉

3
s ⊗ |0〉

1
p (1.15)
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Chapter 1 – Single-Particle Entanglement

3. Bob then uses a 50-50 beam splitter to recombine the paths 1 and 0. The action

of beam splitter is in the similar way as described in the previous section; |0〉

→ (|a〉p+i|bp〉)√
2

and |1〉 → (|b〉p+i|ap〉)√
2

. Using this transformation, the above state is

rearranged as

i√
2

[(α |0〉1s |0〉
2
s |0〉

3
s + β |1〉1s |1〉

2
s |1〉

3
s)⊗ |a〉

1
p]

+
1√
2

[(|0〉1s |0〉
2
s |0〉

3
s − β |1〉

1
s |1〉

2
s |1〉

3
s)⊗ |b〉

1
p] (1.16)

4. Bob then measures the path of the particle 1 and also measures spin qubit of

particle 1 along x-axis. Let us assume the particle travels along |a〉p, then after

its interaction of Stern-Gerlach apparatus, the joint state is given by

1√
2

[|0x〉1s ⊗ (α |0〉2s |0〉
3
s + β |1〉2s |1〉

3
s) + |1x〉1s ⊗ (α |0〉2s |0〉

3
s − β |1〉

2
s |1〉

3
s)] (1.17)

5. If the outcome of the Bob’s spin measurement was |0x〉1, then the resultant joint

state of qubit 2 and 3 is

α |0〉2s |0〉
3
s + β |1〉2s |1〉

3
s (1.18)

This state is similar to the spin-path hybrid entangled state we began with,

a simple unitary operation I ⊗ S (S is a phase flip operator) can result the

above state same as the hybrid entangled state. Similarly, in other cases on

application of other unitary operators we get the desired entangled state shared

between Charlie and Bob. It should be noted that the particles ‘2’ and ‘3’ are

kept separated and never interact with each other in this protocol.

1.2 Future Outlook

• One can study along this line of single particle hybrid entanglement by involving

three different degrees of freedom within the same particle as was shown between

spin, trajectory and energy in [She+20] . By continuing in this one can achieve

the benefits of multipartite entanglement by mimicking it in a single particle.

• Other potential research along this line of study is to generate multipartite inter-

particle entanglement beginning with a single particle entangled state (having

12



Chapter 1 – Single-Particle Entanglement

entanglement over multiple degrees of freedom like spin, path, orbital angular

momentum etc.) whose entanglement can be transformed to multipartite en-

tanglement between different particles using the above entanglement swapping

protocol mentioned above [Adh+10; Kum+19].
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Weak Value Amplification
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Background

In 1988, Aharonov, Albert, and Vaidman(AAV) [AAV88] claimed in an article titled

””How the result of a measurement of a component of the spin of a spin-1/2 particle

can turn out to be 100” that certain procedure consisting of preparation of states and

post selection, can lead to a result of an measurement observable whose value can lie

outside the range of eigenvalues of the observables. Most of the people around the

world thought then that it was an impossible task. This thinking was strengthened

as there were multiple errors in the article. After careful study Duck, Stevenson and

Sudharshan had shown in their article [DSS89] the validity of the main point of AAV’s

article still remains and clarified it to put out the clear picture.

Weak measurement is widely accepted as one of the most potential research tools

in quantum physics. Weak value amplification is one of the important applications of

Weak values which can be used to amplify signals in experimental studies.
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Chapter 2

Weak Value Amplification

2.1 Weak Measurement

There are many inspirations behind generalizing the usual quantum projective mea-

surements into weak measurements. Some of them are to determine the state of the

system between two strong measurements, disclosing the abnormal weak values etc

[TC13]. In this process of weak measurement both the measurement device and the

system under consideration are quantum in nature. This process is of two steps. At

first, one weakly couples the quantum system to the measurement device and then

finally one strongly measures the measurement device. The weakly couple means, the

standard deviation of the outcome of measurement should be more than the difference

between eigenvalues of the quantum system. Tasks believed to be self contradictory

by nature such as ‘determining a particle’s state between two measurements’ prove to

be perfectly possible with the aid of this technique. Weak measurements can reveal

some information about the amplitudes of a quantum state without collapsing the

state into eigenvectors. Weak measurements generalize ordinary quantum (projec-

tive) measurements: following the weak coupling the state vector is not collapsed but

biased by a small angle, and the measurement device does not show a clear eigenvalue,

but a superposition of several values.

Weak measurement has found many ways into application is used in real life now-

a-days. One of the first realisations of the importance of weak measurements was

given in the article titled ”The sense in which a ’weak measurement’ of a spin1/2

particle’s spin component yields a value 100”[DSS89]. This can be briefly described
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Chapter 2 – Weak Value Amplification

as follows.

• Consider the standard von Neumann model of measurement in which a quantum

system is coupled with measuring apparatus. The coupling Hamilton is given

by

H = −g(t)q̂ ⊗ Â (2.1)

where q is the canonical variable, g(t) is a relevant coupling constant whose

integral over time is unity and A is the operator that is to be measured on the

quantum system.

• Consider the initial state of the measuring device as |Φin〉 whose p-representation

of wave function φ̃in(p) is a Gaussian centred at p=0 with a spread of ∆p. In von

Neumann Measurement, the Hamiltonian has a coupling between the quantum

system whose observable is supposed to be measured and the measuring device

itself. The ideal measuring device has well-defined initial and final values of p̂

where the difference between these values is the pointer reading which registers

the value of Â. The p and q representations of wave forms are Fourier transforms

of each other, and as we know that the Fourier transform of a Gaussian is also

a Gaussian.

|Φin〉 =


∫
dqφin(q)(q − representation)∫
dpφ̃in(p)(p− representation)

(2.2)

where

φin(q) ≡ 〈q|Φin〉 = exp[
−q2

4∆2
],

φ̃in(p) = 〈p|Φin〉 = exp[−∆2p2], ∆q ≡ ∆

and ∆p = 1/2∆ with h̄ = 1

• Consider the quantum system to be in a definite state |Ψin〉 which can be a

superposition of eigenstates of Â.

|Ψin〉 =
∑
n

αn |A = an〉 (2.3)

By choosing the superposition of the eigenstates of variable Â as the quantum

state and acting coupled Hamiltonian on it, the whole system evolves unitarily.
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Chapter 2 – Weak Value Amplification

The effects of “weak measurement” is only seen when the ∆p is much greater

than the spread of a
′
ns and the effects of ideal measurement are seen when this

∆ p tends to zero with measurement always producing one of the eigenvalues

instead of the superposition of the states.

• When the coupling Hamiltonian acts for short duration of measurement, during

which it is assumed to dominate over other terms of full Hamiltonian, the whole

system is evolved into

exp[−i
∫
Ĥdt] |Ψin〉 |Φin〉 =

∑
n

αne
iqanexp[

−q2

4∆2
] |A = an |q〉〉

=
∑
n

αn

∫
dpexp[−∆2(p− an)2] |A = an〉 |p〉

using Î =

∫
dp |p〉 〈p|

(2.4)

• When ∆p is small when compared to the spacing between the eigenvalues an’s,

then the above equation shows that the whole state in a superposition of widely

separated peaks centred at each eigenvalues. One should note that when ∆ p

→ 0 this process tends to the ideal measurement process. When ∆ p is much

larger when compared to spread of an’s the case referred by AAV as the “weak

measurement”, the equation above approximates to a single broad Gaussian

peaked at mean value of Â, which is 〈A〉 =
∑

n |α2
n|an.

• Interesting results appear on post selection of the state of the quantum system.

Just after the “weak measurement” of Â, make a strong measurement of some

other observable B̂ and select one outcome ’b’, which puts the quantum state in

|Ψf〉 = |B = b〉, which can be written as a state which is composed of eigenvec-

tors of Â;
∑

n α
′
n |A = an〉. This post selection puts the final state of measuring

device in

|Φf〉 = 〈Ψf |exp[−i
∫
Ĥdt]|Ψin〉 |Φin〉

=
∑
n

αnα
′∗
n

∫
dqeiqanexp[

−q2

4∆2
] |q〉

=
∑
n

αnα
′∗
n

∫
dpexp[−∆2(p− an)2] |p〉

(2.5)

• AAV introduced a quantity Aw, which is called the weak value of Â

Aw ≡
〈Ψf |A|Ψin〉
〈Ψf |Ψin〉

(2.6)
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and showed that the final state of the measuring device can be approximately

given by

|Φf〉 ≈ 〈Ψf |Ψin〉
∫
dpexp[−∆2(p− Aw)2] |p〉 (2.7)

This above wave function is a single Gaussian peaked at Aw. What makes it

interesting is by considering Ψf and Ψin almost orthogonal and a non-zero ma-

trix element 〈Ψf |Â|Ψin〉 makes Aw lie far outside the range of eigenvalues an.

How can a superposition of Gaussians peaked at eigenvalues be approximate to

a single Gaussian peaked at Aw, when Aw can itself lie far away from any value

of an? This paradox can be explained by the complex nature of the coefficients

involved in the state.

2.1.1 Example

• Consider a beam of spin-1/2 particles moving along y-axis, having their spins

aligned at an angle α with the x-axis in the xz-plane and the spatial wave

function of the particles is Gaussian with a width of ∆p in z direction.

• Consider the coupling Hamiltonian as Ĥ = −λg(t)σ̂z where λ is proportional

to the particle’s magnetic moment. Following the previous notations, |ψ〉 corre-

sponds to particle’s spin state and |φ〉 corresponds to its spatial wavefunction,

Â = λσ̂z and q = z.

|ψin〉 =
1√
2

cos(α/2) + sin(α/2)

cos(α/2)− sin(α/2)

 (2.8)

|ψf〉 =
1√
2

1

1

 (2.9)

=⇒ 〈ψf |ψin〉 = cos(α/2)

=⇒ 〈ψf |σ̂z|ψin〉 = sin(α/2) &

=⇒ Aw = λtan(α/2)

• The initial spatial wave function in z direction is

φin(q) = exp[−z2/4∆2] (2.10)
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Figure 2.1: The above plot shows how the summation of two Guassians results in a

Guassian with it peak at 1/ε.

Figure 2.2: The shifthing of the peak increases with smaller values of ε only util AAV’s

approximations hold true.
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• The final wave function is

φ̃f (p) ≈ (cos(α/2))exp[−∆2(pz − λtanα/2)2] (AAV form) (2.11)

On substituting α = π − 2ε where ε << 1 and λ∆ << 1, the above equation is

approximated to

φ̃f (p) = εexp[−∆2(pz − λ/ε)2] (2.12)

• The final wave function according to Eq. 2.5 is given by

φ ≡ 1/2
(
(1 + ε)exp[−∆2(p− λ2)]− (1− ε)exp[−∆2(p+ λ2)]

)
(2.13)

ignoring the scaling constants, the above equation can be scaled as

≡ (1 + ε)exp[−∆2λ2(P 2 − 1)]− (1− ε)exp[−∆2λ2(P 2 + 1)] (2.14)

where p/λ is considered as P. These plots are shown in Figs. 2.1 & 2.2.

2.2 Weak Value Amplification

Weak Value Amplification is one of the important applications of Weak Measurement.

As mentioned in the earlier section, choosing Ψf almost orthogonal to Ψin, |Aw| can

be amplified to the desired extent.

Following an article published by Sangshi Pang et al.[PDB14], which describes

about quadratic enhancement of post-selection probability for a fixed weak value in

weak value amplification, we plan to show that it is possible to achieve exponential

enhancement in Ps by using a suitable entanglement generating operator.

Consider an interaction Hamiltonian of the form

Hint = gÂ⊗ F̂ δ(t− t0) (2.15)

where A is the ancilla observable, F is the meter observable and g is the coupling

parameter that one would estimate. The time factor δ(t− t0) indicates that the inter-

action between the two observables is impulsive. Considering a pure meter state |φ〉, a

pure ancilla state |ψi〉, then weakly coupling them using the interaction Hamiltonian
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and post selecting the ancilla state in |ψf〉. This procedures changes the meter state

to

|φ′〉 = M̂ |φ〉 /||M̂ |φ〉 || (2.16)

where M̂ = 〈ψf | |exp(−igÂ⊗ F̂ | |ψi〉)

For a new meter observable R̂ and for small g, the average of the observable in

the updated meter state is given by

〈R̂〉|φ′ 〉 =
2gIm(αAw) + g2β|Aw|2

1 + g2σ2|A2|2
(2.17)

where α = 〈R̂F̂ 〉|φ〉, β = 〈F̂ R̂F̂ 〉|φ〉 and σ2 = 〈F̂ 2〉|φ〉
Ignoring the second order terms, the above equation can be rewritten as

〈R̂〉|φ′ 〉 = 2g[ReAwImα + ImAwReα] (2.18)

This shows how larger weak value can amplify the sensitivity of the meter for small

changes in g.

As mentioned above, post selection probability and weak value do not go hand in

hand, i.e., they are inversely proportional, where | 〈Ψf |Ψi〉 |2 ∼ post-selection proba-

bility (Ps). Note that |ψf〉 is orthogonal to (Â− Aw) |ψi〉.

According to the article published by Shangshi Pang et al., maximization of Ps is

done over subspace where |ψf〉 is orthogonal to (Â− Aw) |ψi〉 results with

maxPs =
V ar(Â)|ψi〉

〈ψi|Â2|ψi〉 − 2〈ψi|Â|ψi〉ReAw + |Aw|2
(2.19)

To enhance this post-selection probability the authors consider a joint ancilla

observable such as

Â = Â1 + Â2 + Â3 + Â4......+ Ân (2.20)

where Âk = I ⊗ ......â.....⊗ I is shorthand for the observable â of the kth ancilla.

It was shown that on considering an above observable, the maximum variance of

Â, one could attain has a quadratic scaling in n.

maxV ar(Â|ψi〉) =
n2

4
(λmax − λmin)2 (2.21)

where λmax and λmin are the maximum and minimum eigenvalues of observable â.

The states which show such kind of quadratic scaling of variance are entangled.

|ψi〉 =
1√
2

(|λ⊗nmax〉+ eiθ |λ⊗nmin〉) (2.22)
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|ψf〉 ∝ (nλmin − A∗w) |λmax〉⊗n + eiθ(nλmax − A∗w) |λmin〉⊗n (2.23)

2.2.1 Exponential Enhancement of Post-selection probability

for a fixed weak value

Following an article by S. M. Roy et al. [RB08], we consider our ancilla observable to

be of certain form whose variance has an exponential dependence on n.

X̂ = (σx + iσy)
⊗n = Ĥ ′ + iÂ′ (2.24)

The observables Ĥ ′ and Â′ have an average of zero and variance with an exponential

dependence on n.

Unlike the above method, as we know that the maxPs depends on the variance of

the operator, it was shown by S.M Roy et al. [RB08] that the maximum variance is

achieved for the state which is not entangled i.e., separable in nature.

n=2

Considering the |ψin〉= |00〉

(σx + iσy)
1 ⊗ (σx + iσy)

2

= (σ1
xσ

2
x − σ1

yσ
2
y) + i(σ1

xσ
2
y + σ1

yσ
2
x)

=⇒ H ′ = σ1
xσ

2
x − σ1

yσ
2
y&A

′ = σ1
xσ

2
y + σ1

yσ
2
x

Considering A = A’ or H’

〈ψf |A|ψin〉 = 0

〈ψf |A2|ψin〉 = 4

=⇒ maxPs =
4

4 + |Aw|2

n=3

|ψin〉 = |000〉

(σx + iσy)
1 ⊗ (σx + iσy)

2 ⊗ (σx + iσy)
3
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= [(σ1
xσ

2
x − σ1

yσ
2
y) + i(σ1

xσ
2
y + σ1

yσ
2
x)]⊗ (σx + iσy)

3

=⇒ H ′ = σ1
xσ

2
xσ

3
x − σ1

yσ
2
yσ

3
x − σ1

xσ
2
yσ

3
y − σ1

yσ
2
xσ

3
y

A′ = σ1
xσ

2
yσ

3
x + σ1

yσ
2
xσ

3
x + σ1

xσ
2
xσ

3
y − σ1

yσ
2
yσ

3
y

Considering A = A’ or H’

〈ψf |A|ψin〉 = 0

〈ψf |A2|ψin〉 = 16

=⇒ maxPs =
16

16 + |Aw|2

For general n,

maxPs =
22n−2

22n−2 + |Aw|2
(2.25)

The result above shows this approach is better than the one given by authors of

[PDB14], considering â = σz, gives the maximum value of post-selection probability

for a fixed weak value as

maxPs =
n2

n2 + |Aw|2
(2.26)

Observations and Outlook

• It is important to note that exponential dependence on variance is obtained for

a initial state which is separable unlike the previous method where it uses a

entangled state, showing that this method is more resource friendly.

• Due to the nature of exponential enhancement of this method, the maximum

post selection probability quickly saturates to 1 with respect to n when compared

to the previous method as shown in the Figs. 2.3 & 2.4.

• This work is still in progress and soon there shall be a pre-print of this work

online.
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Figure 2.3: It can be clearly seen that for a fixed value of |Aw| = 10, method of

exponential enhancement saturates the post-selection probability close to n = 11,

whereas the quadratic enhancement method doesn’t even get saturated after 100

qubits.

Figure 2.4: Similar to the previous graph, it can be clearly seen that for a fixed

value of |Aw| = 100, method of exponential enhancement saturates the post-selection

probability close to n = 20, whereas the quadratic enhancement method doesn’t even

get saturated after 200 qubits.

28



Bibliography

[AAV88] Yakir Aharonov, David Z Albert, and Lev Vaidman. “How the result of a

measurement of a component of the spin of a spin-1/2 particle can turn

out to be 100”. In: Physical review letters 60.14 (1988), p. 1351.

[Adh+10] S Adhikari et al. “Swapping path-spin intraparticle entanglement onto

spin-spin interparticle entanglement”. In: EPL (Europhysics Letters) 89.1

(2010), p. 10005.

[Azz+20] Stefano Azzini et al. “Single-Particle Entanglement”. In: Advanced Quan-

tum Technologies 3.10 (2020), p. 2000014.

[DSS89] IM Duck, Paul M Stevenson, and ECG Sudarshan. “The sense in which

a” weak measurement” of a spin-1/2 particle’s spin component yields a

value 100”. In: Physical Review D 40.6 (1989), p. 2112.

[HS84] Dipankar Home and S Sengupta. “Bell’s inequality and non-contextual

dispersion-free states”. In: Physics Letters A 102.4 (1984), pp. 159–162.

[Kum+19] Asmita Kumari et al. “Swapping intraphoton entanglement to interpho-

ton entanglement using linear optical devices”. In: Physical Review A

99.3 (2019), p. 032118.

[Mon+96] Christopher Monroe et al. “A “Schrödinger cat” superposition state of

an atom”. In: Science 272.5265 (1996), pp. 1131–1136.

29



Chapter 2 – BIBLIOGRAPHY
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