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Abstract 
 

Two dimensional perovskites have emerged as interesting candidates for optoelectronic and 

photovoltaic applications due to their enhanced stability and tunability options. Doping 

perovskites enable altering their optoelectronic properties to achieve exciting properties. In 

this thesis, two dimensional perovskites (BA)2PbCl4 was synthesised and doped with 

Copper. Their optical, structural and electronic properties were characterised using DRS, 

PXRD, SEM, EPR, XPS, FTIR and thermal properties were analysed using TGA. Doping 

was found to reduce the bandgap of (BA)2PbCl4 from 3.5 eV to 2.3 eV. The doped 

compound exhibited good thermal and moisture stability and has an optimal bandgap which 

makes them good candidates for photovoltaic applications. 
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Chapter 1      

 

INTRODUCTION 
 

 PEROVSKITES 

Materials with a structure similar to the first discovered perovskite mineral CaTiO3 are 

termed perovskites.1 Metal halide Perovskites have the general formula ABX3 and adopt 

the perovskite structure where A is the large cation occupying the cuboctahedral position. 

B is the small transition metal, usually divalent with a coordination number of 6 occupying 

the centre of the corner-sharing octahedra formed from the halide X ions.2 

 

 

Figure 1. Perovskite structure. 

 

The stability of the perovskite structure is dictated by the Goldschmidt tolerance factor 

given by 

𝑇 =
(𝑟𝐴 + 𝑟𝑥)

√2(𝑟𝐵 + 𝑟𝑥)
 

Where 𝑟𝐴, 𝑟𝑥, 𝑟𝑥 are the ionic radii of the ions. The ideal perovskite has a cubic structure, 

with t=1 but perovskites with orthorhombic, rhombohedral and tetragonal crystal structure 
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having lower t values ranging between 0.75 and 1 are more common.3 This distortion of 

the structure arises from the small A site cations which causes a tilting of the octahedra to 

optimize A-X bonding. The Goldschmidt tolerance constraint restricts the possible 

combination of elements that can form stable 3D perovskites.  

 Perovskites have high optical absorption coefficients and exhibit narrow-band bright 

photoluminescence, in addition to their halide-dependent tunable bandgaps, low exciton 

binding energies, and long-range carrier diffusion4. They exhibit fewer trap states despite 

containing a large number of defects, making them defect tolerant. These materials find 

extensive application in optoelectronics and photovoltaics owing to their easy synthesis and 

processability, near-unity Photoluminescence Quantum Yield (PLQY) and wide absorption 

range.5 

 

 TWO DIMENSIONAL PEROVSKITES           

Two-dimensional perovskites are formed when large A-site cations are incorporated into 

the space between the octahedra. This leads to the breakdown of the structure to 2D where 

insulating A site cations act as spacers between the layers of inorganic BX6- octahedra.  

 

    

            n = 1                                                                      n = 2 

Figure 2. Two dimensional Ruddlesden Popper (RP) perovskites with varying 

number of inorganic layers n=1 and n=2. 

 

This dimensional reduction gives access to a large plethora of hybrid organic-inorganic 

materials with tailorable functionalities and structural complexities which allows for the 

fine-tuning of optoelectronic properties.6 Some of the A site cations include 

butylammonium, ethyl ammonium, benzylammonium, iodobenzylammonium etc.  
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These 2D structures offer large compositional flexibility allowing control of the structural 

distortion, quantum and dielectric confinement, exciton-phonon coupling and Rashba 

splitting, which in turn modulate their optical, electronic and spin properties.6 The 

alternating layers of conducting inorganic layers and insulating organic layers generate a 

quantum well-like structure.7 The presence of the large organic spacer cations in between 

the inorganic halide octahedrons also enhances their moisture stability, which was a major 

concern for 3D perovskite.8 These properties have attracted 2D perovskites for use in 

optoelectronic and photovoltaic applications.  

 

 STRUCTURAL MODES 

Corner sharing between octahedra is the most common connectivity mode among 2D 

perovskites which is further classified into <100>, <110> and <111> oriented structures 

based on the crystallographic orientation of the stacking of the inorganic layers.  <100> and 

<110> oriented forms have the general formula of A′2An−1BnX3n+1 or A′An−1BnX3n+1, A′- 

the large spacer cation, A, the cation filling the octahedral void, B the metal ion and X is 

the halide, where n stands for the number of inorganic layers, while <111> has a general 

formula of A’n+1BnX3n+3.  The <100> oriented structures are further divided into 

Ruddlesden Popper (RP), Dion Jacobson (DJ) and Aurivillius (ACI) phases. The A-site 

cations of RP phases have a charge of +1 and cause the inorganic layers to be staggered by 

half a unit cell. To maintain charge neutrality of the crystals, two layers of organic spacer 

layer occupy in between the inorganic layers. The DJ phase consists of a single layer of +2 

charged spacer cations between vertically stacked inorganic layers.9 In the ACI phase, the 

A-site cation is present inside the octahedral cages as well as in the spacer layer alternating 

between another spacer cation.10 Ruddlesden popper perovskite has been the most explored 

perovskites amongst the three, made using a large variety of spacer cations and synthesis 

methods. 
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  SYNTHETIC ROUTE FOR 2D PEROVSKITES 

 

1.4.1  Synthesis using hydrohalic acid. 

A saturated solution of the metal source and spacer cation is dissolved in hydrohalic acid 

by heating and then cooled to room temperature once a clear solution is obtained. The 

number of inorganic layers can be controlled by changing the stoichiometry of the spacer 

cation added.11 

1.4.2 Colloidal synthesis using organic solvents. 

A saturated solution of the spacer, metal and halide source is made in organic solvent which 

upon cooling or heating depending on the solubility dependence of the precursors in the 

solvent, give rise to mixed-phase perovskite crystals.12 Further optimisation of solvents, 

reaction conditions and stoichiometric control of the precursors need to be done to obtain 

phase pure perovskites. 

1.4.3 Vapour Diffusion 

The stoichiometric ratio of precursors dissolved in a good solvent is kept in a small vial 

which is placed inside a larger vial containing a bad solvent (antisolvent). The vapours of 

the antisolvent diffuse into the good solvent, causing the perovskite crystals to precipitate 

out. 12 

1.4.4 Solvothermal synthesis 

Precursors dissolved in an appropriate solvent is sealed inside an autoclave or pyrex and 

subjected to high pressure, temperature and other reaction conditions to obtain 3D and 2D 

phases of perovskites.13 

1.4.5 Solid-state grinding method 

A stoichiometric amount of the precursors is ground together using a mortar and pestle to 

obtain the desired perovskite which is further annealed to obtain better quality crystals.14 

The crystals made using this method is not suitable for SCXRD.12 
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 PROPERTIES OF 2D PEROVSKITES 

 

1.5.1 Electronic structure 

The valence band of 2D perovskite is predominantly composed of halide p orbitals and s 

orbitals of metals, while its conduction band is composed of p orbitals.15 The presence of 

organic layers with low dielectric constant alternating with inorganic layer of high 

dielectric constant leads to dielectric confinement, resulting in strongly bound excitons with 

enhanced exciton binding energies.16 The large binding energy promotes radiative 

recombination which makes them interesting candidates for high efficiency LEDs.17 The 

band structure and alignment varies according to the metal, halide and the dielectric 

contrast between the organic and inorganic layers. 

1.5.2 Effect of organic layer 

Organic cations change the bandgap energy and lead to different biexciton binding energies 

depending on the dielectric contrast between organic and inorganic layer. The length of the 

alkyl chain of the organic layer also influences the bandgap of the perovskite.18 

1.5.3 Effect of inorganic layer 

The bandgap of 2D perovskite is influenced by both the metal cation and the halide used. 

Substituting lead with Sn leads to lowering of the bandgap and improves conductivity.19 

Using a more electronegative halide in place of Iodine leads to lowering of the valence 

band, resulting in increased bandgap.20The bandgap decreases with increasing layer 

number.21  

1.5.4  Charge transport 

Out of plane charge conductivity is limited due to the presence of high resistivity organic 

layer. As the number of inorganic layers between alternating organic layer increases, 

significant increase in the conductivity along the plane perpendicular to the sheets is 

observed.18 Decreasing the length of the organic spacer can significantly enhance the out -

of -plane charge transport.22 Spacer ligands with aromatic moieties enhance out of plane 

charge conductivity and photovoltaic performance.23 

 



6 
 

 DOPING in 2D PEROVSKITES 

Relatively few works on the effect of doping of 2D perovskites have been done.  Cesium 

doping on the n=3 analogue of the (BA)2(MA)n-1PbnI3n+1 family helped synthesise crystals 

with controlled crystal orientation, increased grain size, and lower surface defects. The 

solar cell manufactured using the doped analogue gave a high power conversion efficiency 

of 13.7% with superior resistance to humidity.24 Anupam.et.al effectively doped Mn2+ in 

(BA)2PbBr4 to obtain intense orange red emission due to enhanced energy transfer from 

the excitons of the host material to the d-electrons of Mn2+ ions.25 Similar work on 

(BA)2PbBr4 single crystalline layered microcrystals was also performed by Dutta et al. 

Doping of Mn2+ on the other halide analogues of this system failed to produce significant 

changes in the emission characteristics.26 (BA)2PbI4 has a bandgap of 2.4 eV12 while 

(BA)2PbCl4 has a high bandgap of 3.6 eV and is non-luminescent27 which restricts its usage 

in optoelectronic applications. 

 

 CURRENT WORK 

(C4H9NH3)2PbCl4 or [(BA)2PbCl4] has a bandgap of 3.5 eV which is very high to be of use 

in photovoltaic applications. The compound is at the same time non-luminescent which 

limits its usage in optoelectronic applications as well. As discussed in previous sections, 

doping has been emerged as a potential tool for increasing the functionality of a perovskite 

material. There have been literature reports of effect of Copper doping on double 

perovskites with bandgap similar to that of (BA)2PbCl4. When white Cs2AgInCl6 with a 

bandgap of 3.6 eV was doped with Copper, the bandgap reduced to 2.19 eV and the 

compound changed its colour to yellow.28 Doping Cs2SbAgCl6 with Copper helped tune its 

bandgap from 2.6 eV to 1 eV.29 The goal of our current work is to explore the opportunities 

to increase the functionality of a 2D halide perovskite compound by appropriate doping. 

Firstly, encouraged by the literature reports on the significantly enhanced stability of 2D 

halide perovskites, we attempted to prepare (BA)2PbCl4 following the reported protocol. 

Secondly, we attempted to dope different metal ions e.g. Mn2+ and Cu2+ in order to 

understand the optical and structural effects, if any, the doping exerts on the system.  

. 
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 INSTRUMENTATION 

Diffuse Reflectance spectra (DRS) of the crystals were measured using Cary 5000 UV-Vis-

NIR spectrophotometer (Agilent technologies) from 280-800 nm range at a scan rate of 1 

nm/s, using BASO4 as the standard. Powder X-ray Diffraction (PXRD) data was recorded 

on Rigaku Ultima IV diffractometer enabled with Cu Kα (1.54 Å) radiation with a scan rate 

of 1o 2θ/min ranging from 5-60o. Field Emission Scanning Electron Microscopy (FESEM) 

was done using JEOL-7600F. Thermal Gravimetric Analysis (TGA) was performed using 

DTG-60H from Shimadzu with a heating rate of 5 ℃/min upto 800 ℃. X-ray photoelectron 

spectroscopy (XPS) was done using PHI 5000 VersaProbe III Model. Electron 

paramagnetic resonance (EPR) was done with a Bruker MicroX spectrometer in X band 

frequency (Microwave frequency 9.44 GHz) at room temperature. Fourier Transform 

Infrared (FTIR) characteristics were examined using Perkin Elmer from 400-4000 cm-1. 
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Chapter 2  

 EXPERIMENTAL SECTION 

2.1.1 Materials 

Lead Chloride (PbCl2, 99%, Alfa Aesar), Copper (II) Chloride dihydrate (CuCl2.2H2O, 

99%, Sigma Aldrich), Copper Chloride (CuCl, 99%, Sigma Aldrich), Butylamine 

(C4H9NH3, 99%, Sigma Aldrich), 1-Octadecene (ODE, 90 %, Sigma Aldrich), 

Hydrochloric acid (HCl, 37%, Emparta, Sigma Aldrich). 

2.1.2 Synthesis of Butylammonium Chloride (BACl) salt 

1ml butylamine was added dropwise to 3 ml of hydrochloric acid kept in an ice bath. The 

reaction was allowed to proceed for 2 hours, following which the reaction mixture was 

heated at 100℃ for 24 hrs to obtain white BACl salt. The obtained salt was washed with 

either acetone or ethanol, filtered using suction and stored in vacuum.  

2.1.3 Synthesis of pure (BA)2PbCl4  

(BA)2PbCl4 was prepared using a high temperature colloidal synthetic method. 0.1 mmol 

PbCl2, 5 mmol BACl was added to a 50 ml round bottom flask with 0.3 ml HCl and 5 ml 

octadecene, heated to 120 0C for 15 min under high N2 flow. The reaction mixture was then 

cooled to room temperature during which time white coloured crystals started precipitating 

down. 6ml ethyl acetate was further added to 5 ml of the reaction mixture and centrifuged 

at 2000 rpm for 2 min. The resulting white semi-crystalline flakes were then washed again 

with hexane by centrifuging at 2000 rpm for 2 min. The obtained crystals were filtered 

using hexane and stored for further characterisation.  

2.1.4  Synthesis of Cu doped (BA)2PbCl4 

0.1 mmol of CuCl2.2H2O or CuCl was added along with reactants above and same reaction 

steps were followed to obtain yellow coloured doped (BA)2CuxPb1-xCl4.  
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 RESULTS AND DISCUSSION 

2.2.1 OPTICAL AND STRUCTURAL FEATURES OF (BA)2PbCl4 

(BA)2PbCl4 contains single layer of inorganic Lead Chloride octahedron spaced using 2 

layers of butylammonium ligand as shown in the schematic. 

 

Figure 3. Schematic representation of (BA)2PbCl4 structure. 

 

(BA)2PbCl4 was made using a high temperature solution based synthetic method. Lead 

Chloride was used as the metal source, BACl as the source of the spacer cation, octadecene 

as the solvent and HCl was used to dissolve the Lead precursor. The obtained crystals were 

white in colour and semicrystalline in nature.  

  

                                    
 

 

Figure 4. (BA)2PbCl4 under visible light and 365 nm UV light. 
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To understand the optical features of the system, diffuse reflectance spectra (DRS) was 

taken. The data obtained in absolute reflectance scale was converted to absorbance using 

Kubelka-Munk transformation30 

                                  𝛼~
(1−𝑅)2

2𝑅
  

                 R- absolute reflectance, α- pseudo absorbance. 

 

 From the absorbance data obtained, Tauc plot was created and bandgap calculated. The 

direct bandgap was measured by taking the intercept obtained by extrapolating the linear 

region of plot of (αhv)2 vs E(eV). 
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Figure 5. (a) DRS spectra of undoped (BA)2PbCl4. (b) Tauc plot of the corresponding 

absorbance spectra. 

 

The undoped system had a sharp absorption peak at around 350 nm. Band gap of the 

undoped (BA)2PbCl4 was found to be 3.52 eV from the Tauc plot, which matches with 

literature values.31 PXRD studies were done to understand the structure of pure sample. 
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Figure 6. PXRD plot of (BA)2PbCl4. 
 

The hkl values of (BA)2PbCl4 were taken from literature.26 (BA)2PbCl4 has an 

orthorhombic crystal system with space group of Cmc21. The unit cell dimensions are 

a=7.98 Å, b=7.86 Å and c=27.79 Å .30 The XRD peaks shows that the crystals formed are 

highly oriented along the c-axis with good crystallinity and purity. 

2.2.2 OPTICAL AND STRUCTURAL PROPERTIES OF COPPER 

DOPED (BA)2PbCl4 

Copper (I) Chloride and Copper (II) Chloride dihydrate (Chloride analogues of the dopant 

source) were selected to keep the halide component in the system same. Copper in both 

oxidation states were chosen to investigate whether changing oxidation state could 

influence the properties of the doped crystals.  It is assumed that dopant Copper would 

replace Lead in the inorganic layers as shown in the figure.  
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Figure 7. Schematic representation of Copper doping in (BA)2PbCl4. 

 

The crystals turned yellow when doped with Cu. However, doping had no effect on the 

luminescent properties of the system. The doped crystals were non luminescent. 

a)                    

 

b)                       

                        

Figure 8. a) Cu2+ doped b) Cu+ doped crystals under sunlight and UV light of 365 nm. 
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Upon doping the system with Copper (Cu2+), the bandgap reduced to 2.3 eV observed from 

the Tauc plot; a broad absorption peak around 550 nm can be observed from the diffuse 

reflectance spectra (DRS) spectra. 
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Figure 9.   DRS spectra (a) and corresponding Tauc plot (b) of the CuCl2.2H20 (Cu2+) 

doped (BA)2PbCl4. 

 

Doping using CuCl also produced similar crystals with a lower bandgap of 2.3 eV and 

broad absorption peak at ~550 nm. From the optical spectral information, it can be inferred 

that both Cu+ and Cu2+ dopants had similar effects on the optical properties of the system. 
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Figure 10. DRS spectra (a) and corresponding tauc plot (b) of Cu+ doped (BA)2PbCl4. 

 

To further study the structural effects of doping, PXRD of the doped samples were taken. 
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Figure 11. PXRD peaks of Cu2+ doped and Cu+ doped (BA)2PbCl4. 

 

 

 

 

Figure 12. PXRD peaks of Cu2+ doped and undoped (BA)2PbCl4. 

 

New peaks started appearing at lower angles with the introduction of Copper. The original 

peaks of the (BA)2PbCl4 diminished in intensity with Copper doping. Cu+ and Cu2+ doped 

systems have similar XRD peaks indicating that the structural effects induced by the 

dopants are the same. 
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2.2.3  CHARACTERISATION OF (BA)2PbCl4 AND COPPER DOPED 

(BA)2PbCl4 

Electronic state of the elements (Pb, Cl, Cu) in the undoped and doped system were 

investigated using XPS.  
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Figure 13. XPS data of (BA)2PbCl4 (a) survey scan (b-c) Cl, Pb. 
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Figure 14. XPS Data of Cu2+ doped (C4H9NH3)2PbCl4 (a) survey scan (b-d) Cl, Pb, Cu. 
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Figure 15. XPS Data of Cu+ doped (C4H9NH3)2PbCl4 (a) survey scan (b-d) Cl, Cu, Pb. 

The binding energy curves of Pb 4f7/2 and Pb 4f5/2 are observed at ~138.5 eV and 143.3 eV 

respectively, while the peaks of Cl 2p3/2 and Cl 2p1/2 are located around 197.7 eV and 199 

eV. These results suggest that the constituent elements (Pb, Cl) are in their normal valence 

+2 and -1 respectively which mimics literature values.32 The XPS data for the Copper 

element in both the Cu+ and Cu2+ sample shows the same kind of strong satellite peaks33 

that are indicative of the Cu2+ oxidation state. It can be concluded that Copper transforms 

into +2 oxidation state for the Cu+ doped (BA)2PbCl4.  

To understand the electronic state and coordination environment of Copper in both Cu+ 

doped and Cu2+ doped (BA)2PbCl4, electron paramagnetic resonance data of both the 

samples were taken. 
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Figure 16. EPR data of Cu+ and Cu2+ doped (BA)2PbCl4. 
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The EPR signal shows a peak centred at 3130 Gauss which indicates Cu2+ presence in the 

system. Both Cu+ doped (BA)2PbCl4 and Cu2+ doped (BA)2PbCl4 has similar EPR peak 

position confirming the similarity of electronic and coordination environment. This is due 

to the presence of 1 unpaired electron in the d9 configuration of Cu2+ with a total electron 

spin of S=1/2. Hyperfine splitting was not observed suggesting interaction between Cu (II) 

centres of the doped system.34 

To further understand the influence of changing dopant concentration, 0.5 mmol, 1 mmol, 

2 mmol, 3 mmol and 4 mmol of CuCl2.2H2O was added along with 0.1 mmol PbCl2 (Cu: 

Pb ratio- 0.5:1, 1:1, 2:1, 3:1, 4:1 respectively.). DRS and XRD of the synthesised 

compounds were taken and compared.  
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Figure 17. (a) DRS and (b) tauc plot of 0.5:1 [Cu:Pb] doped (BA)2PbCl4. 
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Figure 18. (a) DRS and (b) Tauc plot of 2:1 [Cu: Pb] doped (BA)2PbCl4. 
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Figure 19. (a) DRS and (b) tauc plot of 3:1 [Cu:Pb] doped (BA)2PbCl4. 
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Figure 20. (a) DRS and (b) tauc plot of 4:1 [Cu:Pb] doped (BA)2PbCl4. 

 

All the doped samples had a bandgap of ~2.3 eV regardless of the doping concentration. 

Increasing the dopant concentration to higher amounts had negligible effect on the 

absorption properties and bandgap of the system. 
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Figure 21. Variation of bandgap with increasing dopant concentration. 
 

To further understand the structural changes induced by varying the dopant concentration, 

powder XRD of the doped samples were analysed. 
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Figure 22. PXRD of the doped (BA)2PbCl4 with Cu:Pb ratio of (a) 0.5:1 (b) 2:1 (c) 3:1 (d) 

4:1. 
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PXRD was done to compare the peak shifts occurring on varying the dopant concentration 

from low to high concentration. 

5 10 15 20 25 30 35 40 45 50

 

2q (0)

 Cu:Pb 0.5:1

In
te

n
si

ty
(a

.u
)

(0
 0

 2
)

(0
 0

 4
)

(0
 0

 6
)

(0
 0

 8
)

(0
 0

 1
0
)

 

 Cu:Pb 1:1

 

 Cu: Pb 2:1

 

 Cu:Pb 3:1

 

 

 Cu:Pb 4:1

 

5 10 15 20 25 30 35 40 45 50

 

2q (0)

 undoped

In
te

n
si

ty
 (

a.
u

)

(0
 0

 2
)

(0
 0

 4
)

(0
 0

 6
)

(0
 0

 8
)

(0
 0

 1
0
)

(0
 0

 1
2
)

 

 Cu:Pb 0.5:1

 

 Cu:Pb 1:1

 

 

 Cu:Pb 2:1

 

Figure 23. PXRD comparison of doped (BA)2PbCl4 crystals. 

                                                 

On increasing the dopant concentration, new peaks started appearing at lower angles. The 

original peaks of the undoped samples diminished in intensity on incrementing dopant 

concentration and completely disappeared when the amount of Cu in the reaction mixture 

was twice that of the Pb concentration. The d spacing of the undoped samples were 
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calculated to be 14.041 and the d spacing values for the 2:1 Cu:Pb doped samples was 

found to be 15.499. Similar d spacing values and PXRD pattern was observed for 

(BA)2CuCl4, in literature.35 These results indicate that Copper completely replaces Lead in 

the system on increasing the dopant concentration. To further confirm this, SEM, EDS and 

elemental colour mapping of the undoped, 0.5:1, 1:1 and 2:1 doped compounds were taken. 

                                                   

Figure 24. SEM images of undoped (BA)2PbCl4. 
 

   

Figure 25. SEM images of 0.5:1 [Cu:Pb] doped (BA)2PbCl4. 
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Figure 26. SEM images of 1:1 [Cu:Pb] doped (BA)2PbCl4. 
 

   

Figure 27. SEM images of 2:1 [Cu:Pb] doped (BA)2PbCl4. 

                    

The SEM images indicate formation of sheet like microstructures. 
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Figure 28. Elemental colour mapping (b, c, d) and EDS (e) data of undoped (BA)2PbCl4. 
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 Cl K 46.38 83.49 
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Figure 29. Elemental colour mapping (b, c, d) and EDS (e) data of 0.5:1 [Cu:Pb] 

(BA)2PbCl4. 
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Figure 30. Elemental colour mapping (b, c, d) and EDS (e) data of 1:1 [Cu:Pb] 

(BA)2PbCl4. 
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Figure 31. Elemental colour mapping (b, c, d) and EDS (e) data of 2:1 [Cu:Pb] 

(BA)2PbCl4. 

 

The atomic percentage of Lead reduced to 0.44 % from 16.51 % on moving from undoped 

to 2:1 Cu:Pb, while the Copper content increased from 0.63 % to 24.67 %. This 

corroborates the assumption that increasing Cu content in the reaction mixture leads to 

replacement of Lead in the system. 

To understand the lower limit to which Copper doping effectively happened, very low 

concentrations of Copper from 0.01 mmol to 0.04 mmol was added along with 1 mmol of 

Lead. The XRD data obtained is plotted here. 
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Figure 32. PXRD data of (BA)2PbCl4 doped with 0.01 mmol to 0.04 mmol of Cu. 

 

New peaks corresponding to (BA)2CuCl4 starts appearing from 0.04 mmol of Copper. 

Entire planes corresponding to CuCl6 octahedra starts forming from this dopant 

 Element  Weight 

%  

Atomic 

% 

Cl K 55.80 70.90 

Pb M 4.55 0.99 

Cu 39.64 28.11 

 

(e) 



29 
 

concentration.  Lower angle PXRD data was carefully analysed to understand the subtle 

difference in structure occurring due to doping. 
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Figure 33. Low angle PXRD of (BA)2PbCl4 doped with 0.01 mmol to 0.04 mmol Cu. 

 

Shifting of the PXRD peaks to higher angles was observed when 0.02 mmol Cu was doped 

with 1 mmol Pb. This correctly represents lattice contraction due to replacement of a larger 

atom Pb by the smaller atom Cu.36  

It can be concluded from the PXRD analysis that at very low concentrations of Cu, lattice 

contraction occurs, but with increasing Cu content a heterogeneous system consisting of 

two phases forms, corresponding to the CuCl6 and PbCl6 octahedral planes followed by 

complete replacement of the PbCl6 octahedra by the CuCl6 octahedra at higher 

concentrations. A transition from pure (BA)2PbCl4 to pure (BA)2CuCl4 follows through a 

composite system containing both PbCl6 and CuCl6 octahedral planes. 

To understand the effect of increasing dopant concentration on the interaction between the 

organic and inorganic components of the perovskites, Infrared studies were done. 
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Figure 34. Infrared spectra of (a) C4H9NH3Cl (b) (C4H9NH3)2PbCl4 (c) 4:1 [Cu:Pb] 

(C4H9NH3)2PbCl4 . 

The stretching peaks of NH3+ shifts to higher wavenumbers (3167 and 3144 cm-1) in (c) 

compared to C4H9NH3Cl, but is lower than that of butylamine (3332 cm-1). This is due to 

the self-assembling of NH3+ groups leading to a change in the chemical environment. Other 

peaks corresponding to asymmetric stretching (CH3 – 2961 cm-1, CH2- 2933 cm-1); 

symmetric stretching (CH2- 2875 cm-1); NH2 bending (1576 cm-1); is also present.37 

2.2.4 STABILITY TESTS 

To examine the effect of doping on the stability of the system, TGA of undoped (BA)2PbCl4 

and Cu2+ doped (BA)2PbCl4 was done. 



31 
 

0 200 400 600 800 1000

0.00

0.97

1.94

2.91

0.0

1.2

2.4

3.6

200 250 300
1.5

2.0

2.5

3.0

3.5

4.0

Temp (oC)

 (BA)2PbCl4

 Cu2+ doped (BA)2PbCl4

m
as

s 
(m

g
)

204.8
218.29

 

m
as

s 
(m

g
)

Temp(0C)

 (BA)2PbCl4
204.8

 

 

Cu2+doped

218.2

 

Figure 35. TGA data of Cu2+ doped (BA)2PbCl4  and (BA)2PbCl4. 

 

The thermal decomposition temperature of the Cu2+ doped system was slightly higher than 

that of the pure (BA)2PbCl4, doping does not drastically change the degradation 

temperature of the sample. The initial weight loss is attributed to the two step dissociation 

of the organic component. Subsequent loss in weight might be due to the decomposition of 

metal halide.38 

Thermal stability tests of (BA)2PbCl4 and 1:1 Cu:Pb doped (BA)2PbCl4 was done by 

heating both the samples at 110 oC for 6 days. 
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Figure 36. PXRD results for thermal stability test of 1:1 [Cu2+: Pb] doped (BA)2PbCl4. 
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Figure 37. PXRD results for thermal stability test of undoped (BA)2PbCl4. 

 

The XRD peaks of the samples heated at 110 oC did not show any noticeable change 

compared to those kept at ambient temperatures indicative of the fact that both the doped 

and the undoped samples were resistant to exposure to harsh temperatures. 
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Moisture stability tests of the undoped and doped system was conducted by heating in a 

humid chamber at 60 oC for 1 month. 
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Figure 38. PXRD of the samples of moisture test. 

 

The PXRD peaks of pure (BA)2PbCl4 and doped (BA)2PbCl4 did not show any noticeable 

changes. Both (BA)2PbCl4 and doped (BA)2PbCl4 are stable when heated in moisture. 
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 CONCLUSION 

Successful doping of Cu on (C4H9NH3)2PbCl4 was done. White coloured crystals turned 

yellow on doping with a reduction of bandgap from 3.5 eV to 2.3 eV. Both CuCl and CuCl2 

had similar optical and structural effects on the compound, with Cu existing in +2 oxidation 

state in both the samples. The doped and pure (BA)2PbCl4 are found to be thermal and 

moisture stable. Their initial decomposition temperatures started above      200 ℃ indicating 

good thermal stability. Increasing the dopant concentration led to replacement of Lead 

Chloride octahedral with Copper Chloride octahedral resulting in the formation of 

(C4H9NH3)2CuCl4. 
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 FUTURE OUTLOOK 

Further doping studies on the Bromine and Iodine analogues of (BA)2PbCl4 can also be 

done and its effect on the optical and structural properties can be studied. It is expected that 

the higher halide analogues will have a lower bandgap than (BA)2PbCl4. Doping can reduce 

the bandgap even further to enable their efficient usage in photovoltaic applications. 

Fabrication of single junction solar cells using these materials and its efficiency in solar 

devices can be explored. 

 Photocatalytic reactions can be done to compare the use of undoped and doped samples in 

activating various organic reactions. Kinetic studies on their influence on the rate of the 

reaction can be done and further experiments can be designed to elucidate the mechanism 

through which these photocatalysts influence reactions.  
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