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Abstract

To probe any heavy-ion collision(HIC), we need some observables to describe the final state

particles. These observables are then fitted with different distribution functions to obtain

some characteristic quantities using which comparison can be done with other collisions.

The transverse momentum, pT , is often used to describe final state particles as they come

out of a collision. Various distribution functions can describe the transverse momentum

spectra of final-state particles in a heavy-ion collision. The transverse momentum spectra

obtained in HIC are often studied using the Tsallis, Boltzmann, Fermi-Dirac, and Bose-

Einstein distribution functions. In a multi-source thermal model, it is essential to estimate

the parameter as accurately as possible, for which bin-width correlation must be properly

understood. This thesis work aims to optimize the bin width selection pT distribution to

enable a parameter correlation. We define a cost function using the mean integrated squared

error function using the spike counts in each pT bin separated by some bin-width ∆ and then

minimize the cost function by changing the bin-width ∆. In this thesis, we optimize the

bin-width value for pT spectra and fit it with Tsallis distribution. We further check for an

optimized variable bin width histogram for pT spectra. We also check for other observable

such as η and optimize the bin-width for η distributions.

ix





Chapter 1

Introduction

1.1 The Standard Model

In the universe, all the matter can be broken down into some elementary particles. In 1803,

J. Dalton proposed the atomic theory according to which all the matter consisted of an

atom which was the smallest individual and indestructible particle. However, in 1897, J.

J. Thomson suggested that the atom can further be divided into subatomic particles when

he discovered the electron in his cathode ray experiments. In the early 1900s, E. Ruther-

ford, through his gold foil experiments, suggested that these electrons orbit a dense nucleus

having a positive charge, which leads to the discovery of protons. In 1932, J. Chadwick

discovered that the nucleus is actually made up of protons and neutrons, where these neu-

trons are neutral charge particles. In the 1960s, physicists discovered that these protons and

neutrons were not themselves individual particles but instead, they were made up of quarks,

the up and down quarks. The electron, the up quark, and the down quark make up the first

generation of the particles present in the Standard model.

The Standard Model describes all the elementary particles and their interaction with the

fundamentals forces, namely, electromagnetic force, weak nuclear force, strong nuclear

force, and gravity. In the standard model, we have the first generation of particles consist-

ing of the electrons, up and down quarks, and the neutrino particle. However, in the high-

energy experiments, some heavy isotopes of these particles were found. These isotopes

make the second and the third generation of the particles. Besides these matter elementary

particles, there are also the mediator particles that govern the interaction of the matter par-

ticles with the fundamental forces. The mediator particles are the photons (governing the
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Figure 1.1: The Standard Model of elementary particles[MissMJ ],[PDG ].

electromagnetic interaction), the W and Z boson (governing the weak nuclear interaction),

the gluons (governing the strong nuclear interaction), and the recently discovered Higgs bo-

son (related to mass acquisition). Table 1.1 below shows the four fundamental forces along

with their mediator particles, their relative strengths, and their interaction range. All these

elementary matter particles also have their own anti-particle. The first generation particles

are the lightest and do not decay; however, the heavier particles of the second generation

and third generation decay into the first generation particles through mediator particles.

Interactions Theoretical

Description

Associated

Particles

Relative

Strength

Range of In-

teraction (m)

Strong QCD Gluons 1038 10−15

Electromagnetic QED Photons 1036 infinity

Weak Electro-weak W±, Z 1025 10−18

Gravitational General Rela-

tivity

Graviton (hy-

pothesised)

1 infinity

Table 1.1: Fundamental forces and their mediators[Chaudhuri 14].

In nuclear physics, the particles and their interactions are studied at zero temperature and

densities of the order of nucleon densities. However, in high-energy experiments, the nu-
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clear matter reaches a very high temperature and densities. At such extreme conditions of

temperature and densities, the nuclear matter breaks into its constituent particles, namely,

quarks and gluons. This hot soup of quarks and gluons is called ”Quark-Gluon Plasma”

or QGP.

1.2 Quarks, Gluons and QGP

The nuclear matter in extreme condition of temperature and pressure cannot contain its con-

stituents particles together as protons and neutrons, rather they break down into quarks and

gluons. This state of quarks and gluons interacting asymptotically freely is called Quark-

Gluon Plasma. The quarks and gluons interact by strong nuclear force and have a very

defining property of color charge quantum number. This makes their interaction different

from other elementary particles and are described by using Quantum ChromoDynamics

(QCD) lagrangian which is given as,

L = −1

4
F µν
a F a

µν +
∑

flavors

[
iψ̄γµ

(
∂µ − ig

λa
2
Aaµ

)
ψ −mψψ̄

]
(1.1)

with,

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
µ (1.2)

where, Aaµ represents the Gluon field of color a (= 1 to 8), and m denotes the bare quark

mass, fabc is the structure constant of the group, ψ is the quark spinor, and g is the strong

coupling constant [Chaudhuri 14].

QGP is defined as the thermalized quarks and gluons state, where quarks and gluons are

asymptotically free to move and interact over a nuclear volume instead of the nucleonic

volume.

QGP is the deconfined state of strongly interacting matter[Chaudhuri 14]. At low density

or low temperature quarks are confined inside the hadronic volume and at high density or at

high temperature, these quarks become deconfined. This confinement and deconfinement is

explained using ”running coupling constant which is a measure of the coupling strength of

the quarks and gluons in hadrons. After solving the Lagrangian equation and renormalising

the coupling constant in its condensed form can be written as,

αs(Q
2) =

1

β0 lnQ2/Λ2
(1.3)
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where Λ is the QCD scale parameter (≈ 200 MeV) and β0 is given as,

β0 =
1

4π
(11− 2Nf

3
) (1.4)

where Nf is the total number of flavors present.

Figure 1.2: αs v/s E. αs = g2
s/4π [aus tirol ],[PDG ].

Figure 1.2 shows the variation of the running coupling constant with the energy E(in GeV).

As the energy increases, the coupling strength reduces. At low enough value, the quarks

and gluons will become deconfined. And when the energy is lowered again, the running

coupling constant goes high, and the quarks and gluons become confined again. A particular

quark is not able to identify its partner quark, so the new quarks formed are different than

those before.

1.3 High Energy collisions

During a high-energy collision, a large amount of energy is confined in a very small space

for a very brief time period, approximately of microseconds, making the energy density in

that region very high. This high energy density can reach the order higher than the nuclear

energy density and often results in the formation of a deconfined fluid-like state, known

as Quark-Gluon Plasma (QGP). This is one of the most important characteristics of high-

energy collisions. In high-energy collisions, two ultra-relativistic nuclei undergo inelastic

collisions resulting in the formation of QGP, which later results in the formation of new

particles. For the two heavy nuclei, such as Pb or Au, the collisions are called heavy-ion

4



collisions(HIC) or AA-collisions, and for Hydrogen like nuclei, the collisions are stated

as pp-collisions. Figure 1.3 shows a schematic diagram of the Hydrodynamic model with

Figure 1.3: Different stages of high energy nuclear collisions[Chaudhuri 14].

different stages that occur in a collision, namely the Pre-equilibrium stage, the expansion

stage, the hadronization stage, and the freeze-out[Chaudhuri 14].

• Pre-equilibrium stage: In this stage, initial partonic collisions produce a fireball

in a non-equilibrium, highly excited state. Collisions frequently happen to reach a’

local’ equilibrium’ state. The time taken to reach this local equilibrium is known

as thermalization time and is of the order of approximately 0.5-1.0 fm/c. This fast

equilibration can be explained in reference to the Weibel instability of the electro-

magnetic plasma. A non-abelian version of the Weibel instability is often considered

as the cause for the rapid thermalization.

• Expansion stage: In the thermalized state of equilibrium, the thermal pressure acts

against the vacuum surroundings. As a result, the system undergoes expansion. Due

to the expansion, the energy density of the system decreases with the temperature.

The energy-momentum conservation laws govern the expansion and cooling, which

involves an equation of state p = p(e, nB) describing the system. In a QCD phase

transition, at energy density lower than the critical energy density ρcr ∼ 1GeV/fm3,
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or temperature lower than the critical temperature Tcr ∼ 200MeV , the partons

(quarks and gluons) combine to form hadrons.

• Hadronisation stage: For a small temperature range, entropy density decreases very

fast. By the third law of thermodynamics, the total entropy cannot decrease; as a

result, the fireball expands rapidly with an approximately constant temperature. For

a 1st order transition, the QGP and the hadrons co-exist in the system. In the 2nd

transition, the collective flow grows slow, and all the partonic matter gets converted

to hadronic matter.

• Freeze-out stage: The system remains in thermal equilibrium still. The hadrons

continue to collide to maintain local equilibrium while the system expands and cools.

When inelastic collisions, associated with the hadrons identity change, become too

small to keep up with the expansion. This stage is called chemical freeze-out. The

hadrons, after the chemical freeze-out, do not lose their identity in collisions (elastic).

However, due to the elastic collisions, the local equilibrium remains, and the system

expands with fixed hadrons. When the strong interaction range becomes compar-

atively smaller than the mean distance between two successive collisions, the col-

lisions become infrequent, and the local thermal equilibrium is lost. The hadrons

decouple or freeze-out, reaching the kinetic freeze-out. Hadrons from the freeze-out

surface will be detected in the detector.

There are many models to describe high-energy collisions. Hydrodynamics gives a simple

description of relativistic heavy-ion collisions, which assumes that a local (thermal) equi-

librium is established in a heavy-ion collision. At each point in the space-time picture, a

small region exists which maintains equilibrium, and a temperature T(x) can be defined for

this small region at that point in space-time.

1.4 Kinematics of HIC

The figure 1.4 shows a sketch view of the collision inside a collider. The two Lorentz

contracted disc collide with each other. The collisions can be ”head-on” collisions, where

the centers of two nuclei are aligned with each other or ”peripheral” collisions, where the

centers are not aligned with each other horizontally. To discuss the kinematics of a HIC, let
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Figure 1.4: A collision event in side view and beam view. Here, two nuclei A and B collide

with nuclei b distance apart.

us first define some standard notation and units. We will be using natural units through-out

this thesis where,

h = c = kB = 1

Metric : gµν = diag(1,−1,−1,−1)

In this work, the Einstein’s summation convention is used (wherever needed), repeated

indices are summed over, thus

∂µJ
µ =

∑
i=x,y,z,t

∂iJ
i

We define proper time τ , as the time an observer observes in its rest frame.

dτ = dt
√

1− β2, β =
∣∣∣v
c

∣∣∣
In space time phase diagram the collision happens at the origin(t = 0, z = 0) and the QGP

expands into the time-like region where τ 2 = t2 − z2 > 0. The line t = z is the light-

like region along which only light or massless particles can travel. The space-like region

is defined as τ 2 = t2 − z2 < 0 and is not accessible to particle travelling at v < c. For

time-like region, the space rapidity can be defined as,

ηs =
1

2
ln
t+ z

t− z
(1.5)

which goes to infinity along the line t = ±z. Figure 1.5 shows a space-time evolution

picture for a collision event.

7



Figure 1.5: A space time representation of evolution of a collision.[Chaudhuri 14]

1.4.1 Lorentz transformation

A translational Lorentz transformation is known as Lorentz boost. Consider a Lorentz

boost in z-direction in the lab frame. The particle at (t, x, y, z) in frame L is acted on with

a Lorentz boost to L′ frame where it is at (t′, x′, y′, z′) with velocity v. If the collision

happens at t = t′ = 0, then the two coordinates are related as, t′

z′

 =

 γ −βγ

−βγ γ

 t

z

 (1.6)

and,  x′

y′

 =

 x

y

 (1.7)

where β = v/c and γ = 1
√

(1− β2) is the Lorentz boost factor.[Chaudhuri 14][Sahoo 16]

1.4.2 Energy-Momentum four-vector

For a particle, its velocity is defined as distance travelled in a unit time, ~v = d~x
dt

where d~x

is the distance travelled and dt is the time measured in the lab frame [Sahoo 16]. Using

proper time, proper velocity is defined as,

~η =
d~x

dτ
= γ~v (1.8)

8



where d~x is the distance travelled in the laboratory frame and dτ is the proper time. The

momentum is defined as mass × velocity. In relativity mechanics, momentum is defined

using proper velocity [Sahoo 16].

pµ = mηµ (1.9)

with,

~p = γm~v (1.10)

p0 = γmc (1.11)

The relativistic energy, E, is given as,

E = γmc2 = p0c (1.12)

Using the above equation, one can define the energy-momentum 4-vector as,

pµ =

(
E

c
, px, py, pz

)
(1.13)

1.4.3 The Rapidity variable

Two successive Lorentz boost(β and β′) can be defined as a single Lorentz boost as,

β′′ =
β + β′

1 + ββ′
. (1.14)

The velocity is not a linearly additive quantity. The rapidity y is a relative measure of this

velocity, which is linearly additive for successive transformation [Sahoo 16][Chaudhuri 14].

It is defined in terms on β as,

y =
1

2
ln

1 + β

1− β
(1.15)

and is additive in the sense, y′′ = y + y′. In terms of rapidity y,

β = tanh(y)

γ = cosh(y)

then the Lorentz transformation can be written as [Chaudhuri 14][Sahoo 16], t′

z′

 =

 cosh(y) − sinh(y)

− sinh(y) cosh(y)

 t

z

 (1.16)
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In terms of the rapidity variables, particle 4-momenta is defined as,

pµ = (E, px, py, pz) = (mT cosh y, px, py,mT sinh y) (1.17)

where, (mT ) is the transverse mass defined as,

mT =
√
m2 + p2

T =
√
m2 + p2

x + p2
y

For p >> m, i.e., very high energy,

y =
1

2
ln
E + pz
E − pz

(1.18)

=
1

2
ln

√
m2 + p2 + p cos θ√
m2 + p2 − p cos θ

(1.19)

y =
1

2
ln
p+ p cos θ

p− p cos θ
(1.20)

= − ln tan θ/2 ≡ η (1.21)

η is called pseudorapidity. Figure1.6 shows the variation of pseudorapidity with respect

to the polar angle θ. In emulsion experiments, where details of the particle, e.g., mass,

momentum, etc., are unkown, except for the angle of emission, pseudorapidity analysis

gives the significant results. In terms of momentum, pseudorapidity is defines as,

η =
1

2
ln

[
|p|+ pz
|p| − pz

]
(1.22)

1.4.4 Transverse momentum and Invariant yield

The transverse momentum is defined as,

pT =
√
px2 + py2 (1.23)

In a longitudinal Lorentz boost along the z-direction, the transverse momentum remains

invariant. The Lorentz invariant yield is defined as

E
d3N

d3p
= E

d3N

d2pTdpz
=

d3N

d2pTdy
(1.24)
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Figure 1.6: Variation of η w.r.t. θ. As the polar angle increases, the pseudorapidity de-

creases.

where, dpz = Edy comes from Lorentz invariance and pT is the transverse momentum

pT =
√
p2
x + p2

y. In terms of pseudorapidity, this can be transformed as,

dN

dηdpT
=

√
1− m2

mt
2 cosh2 y

dN

dydpT
(1.25)

In terms of measurable quantities, the invariant yield can be defined as,

E
d3N

dp3
=

1

2πpT

d2N

dpTdy
(1.26)

This equation gives us the experimental invariant yield from the collision[Sahoo 16].
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Chapter 2

Measuring Observable from a collision

2.1 Particle detection and measurements

In an accelerator, particles are boosted to high energies before their collision happens inside

the detectors. The detectors then gather information about the particles, such as speed,

mass, and charge – using which a particle is identified. The particle accelerators, which are

circular, such as LHC, have radiofrequency cavities to accelerate charged particles and are

fitted with magnets inside to maintain these particles’ circular orbit[det b] as the particle

moves inside the tube, its speed increases. The more energetic the particles are, the higher

is the possibility of discoveries[det c].

Particles produced in collisions usually travel in straight lines, but in a magnetic field, their

paths become curved. Since the detectors have electromagnets to generate the magnetic

field, particles interact with this field and experience the magnetic Lorentz force.

~F = q(~v × ~B) (2.1)

The curvature of its track tells about the particle’s momentum. A particle with low momen-

tum curves more than a particle with higher momentum.

A particle detector consists of different parts designed for different purposes. It consists

of tracking devices that track the particles’ course after the collision, calorimeters to stop

or absorb a particle and measure its energy, and various particle-identification subdetectors

using various techniques to identify a particle. Tracking devices form the pathway tracks

of electrically charged particles as they pass through interacting with the device. However,

most particle tracks are not visible to the naked eye but can be seen by reconstructing the
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Figure 2.1: A particle detector used in ATLAS experiment at LHC [det a][det c].

recorded electrical signals triggered by particle interaction.

Calorimeters measure the energy of a particle as it passes through and loses it. Its main

function is to stop entirely or ”absorb” most of the particles coming from a collision, and

collecting a deposit of their energy within the detector through layers of ”passive” or ”ab-

sorbing” high-density material, e.g., lead, combined with layers of an ”active” material

such as solid lead-glass or liquid argon. The electromagnetic calorimeters measure electro-

magnetic interacting particles’ energy as they interact with the electrically charged particles

in matter. The hadronic calorimeters measure the energy of hadrons (particles containing

quarks, such as protons and neutrons) produced in the collision as they interact with atomic

nuclei. Most known particles can be stopped in calorimeters except muons and neutrinos.

After passing through the tracking devices and the calorimeters, particles are identified by

detecting radiation emitted by the charged particles. A charged particle traveling at a speed

greater than the phase velocity of light in the given medium emits Cherenkov radiation at

an angle that depends on its velocity[det b]. This angle velocity dependence gives the par-

ticle’s velocity, and then from momentum, its mass is calculated, which is a signature of its

identity. Another method is based on the fact that a fast charged particle, crossing over two

different electrical insulators (with different resistivity) to electric currents emits transition

radiation. This radiation emitted is related to the energy of the particle and can distinguish

between different particles.
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The results from all these different parts of the detector are then collated to build up an

image of how it might have been when the collision happened. The last step is to look for

unusual particles from the collision or to look for results that deviate from what we know

so far.

2.2 Experimental v/s Estimated Obsevables

The quarks and gluons inside the QGP can be thought of as particles in a macroscopic

system. Any macroscopic system can be represented in terms of its characteristic state

variables, such as its number density (n), pressure (P ), energy density (ε), and temperature

(T ). The dynamics of this macro-system can be described in terms of its particle distri-

bution function. Some of these observables we measure directly from experiments, e.g.,

momentum, particle’s energy, charge, etc. These are called as Experimental Observables or

Exact Observables. The other observables, such as temperature, pressure, etc., are obtained

from the exact observables by fitting the data in some functional form. These are called as

Estimated Observables. Some of the distribution functions that are used to give a statistical

description are Maxwell-Boltzmann distribution, Tsallis distribution, Pearson distribution,

and other functional forms.

2.2.1 Boltzmann distribution

A Boltzmann distribution is given by the folllowing equation,

f(p) =
1

(2π)3
exp

(
µ− E
T

)
(2.2)

This is the most fundamental distributions as other distributions, such as Fermi and Bose,

can be written in terms of this distribution. For Boltzmann distribution, the energy density,

number density and pressure is defined as [Chaudhuri 14],

ε =
1

(2π)3

∫
d3pE exp

(
µ− E
T

)
(2.3)

n =
1

(2π)3

∫
d3p exp

(
µ− E
T

)
(2.4)

P =
1

(2π)3

∫
d3p

1

3

|~p|2

E
exp

(
µ− E
T

)
(2.5)
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For dimensionless variables z = m/T and τ = E/T =
√
|~p|2 +m2/T , the above three

equations become,

ε =
T 4

(2π)2
eµ/T

∫ ∞
z

dτ(τ 2 − z2)
1
2 τ 2e−τ (2.6)

n = 4π
T 3

(2π)3
eµ/T

∫ ∞
z

dτ(τ 2 − z2)
1
2 τe−τ (2.7)

P =
T 4

(2π)2
eµ/T

∫ ∞
z

dτ(τ 2 − z2)
3
2 e−τ (2.8)

2.2.2 Tsallis distribution

The Tsallis distribution is another functional form used in analysing the exact observables.

The Tsallis distribution for particles is given as [Chaudhuri 14],

nT (E) ≡ 1

1 + expq
(
E−µ
T

) (2.9)

where the function expq(x) is defined as

expq(x) ≡

 [1 + (q − 1)x]1/(q−1) if x > 0

[1 + (1− q)x]1/(1−q) if x ≤ 0

and, in the limit where q → 1 reduces to the standard exponential:

lim
q→1

expq(x)→ exp(x)

A Boltzmann form Tsallis distribution is given as,

nBT (E) =

[
1 + (q − 1)

E − µ
T

]− 1
q−1

(2.10)

This function reduces to Boltzmann distribution in the limit q → 1. The Tsallis distribution

is always greater than the Boltzmann distribution for q > 1. One of the advantages of using

the Tsallis distribution is that it helps us deal with the non-extensivity of the system. For

Boltzmann or Fermi, or Bose, we need some definite number of particles in the system to

be able to get some definitive results. However, Tsallis lets us work in systems with lesser

particles by introducing a non-extensivity parameter q.

2.2.3 Pearson distribution

The Pearson distribution, in general, is a solution to the following differential equation

[Pearson ][Pollard ],
1

p(x)

dp(x)

dx
+

a+ x

b0 + b1x+ b2x2
= 0 (2.11)
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where a, b0, b1, b2 are defined using the first four moments (m1, m2, m3, m4) of the variable

x as,

a = b1 =
m3(m4 + 3m2

2)

10m2m4 − 18m2
3 − 12m3

2

b0 =
m2(4m2m4 − 3m3

2)

10m2m4 − 18m2
3 − 12m3

2

b2 =
2m2m4 − 6m2

3 − 3m3
2

10m2m4 − 18m2
3 − 12m3

2

with m1 = 0 by construction. The roots to quadratic equation in the denominator leads to

different solutions. The Pearson criterion is given as,

k =
b1

2

4b0b2

(2.12)

and determines the type of equation. A detailed discussion on Pearson distribution is pre-

sented in references [Gupta 20] and [Jena 20]. The solution to equation 2.11 is given as,

p(x) = C(e+ x)f (g + x)h (2.13)

2.3 Making distributions

As already discussed, to know about estimated observables or hidden observables, exact

observables are analyzed as distributions with some functional forms. Most distributions

used are particle number versus some observable type distributions. Such a type of distribu-

tion can be essentially be described in the form of a histogram, where a number of particles

with the same property or same observable value are binned together. For a histogram,

an observable is divided into bins covering the complete range of values for that observ-

ables. The ROOT library by CERN gives us various methods to make a histogram. These

histograms can be 1D or 2D in nature, with one observable or two observables used for

binning. In this thesis, 1D histograms are used with one observable required for binning. A

histogram is defined using the ROOT TH1F or TH1D library as [ROO ],

1 h = TH1D( ” Name ” , ” T i t l e ” , n b i n s , x low , x min , )

2 or

3 h = TH1D( ” Name ” , ” T i t l e ” , n b i n s , b i n e d g e s )

After that, the histogram is filled with particle data extracted from the event(.root) files.

This histogram is then event normalized by dividing the bin counts by the total number of
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events so as to picture the dynamics of a single event.

Event Normalization: When using the data for a different number of events for analysis,

the data we get increases with the number of events, i.e., the larger the number of events

included, the higher is the particle count. While analyzing, comparing two data sets from a

different number of events does not give a meaningful result. At this point, event normal-

ization is needed to bring the data to a common scale per event so that the analysis can be

done on a single event basis. After event normalizing the datasets, two different datasets

from different numbers of events can be compared as they represent the data scaled down

for a single event.

After event normalization, further data analysis is performed.
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Chapter 3

Optimizing Bin Width

The shape of a histogram depends greatly on the chosen bin width. With a bin width that

is too large, one cannot represent the spike rate with good accuracy. And with a bin that is

too small in width, the accuracy is increased but so do the fluctuations, and the spike rate is

difficult to be observed. There is an appropriate bin size for a set of spike sequences, which

is based on the goodness of the fit of the histogram to the hidden spike rate. So far in the pT

spectra analysis, the bin size has been subjectively selected by the authors. In this thesis,

we use one such optimal bin size selection method to use in pT spectra analysis.

3.1 Bin-width optimization

For a rate λ̂t estimated for the hidden spike rate λt over the total observation length T, its fit

goodness is represented using the Mean Integrated Squared Error (MISE),

MISE ≡ 1

T

∫ T

0

E(λ̂t − λt)2dt (3.1)

where E is the expectation over the period T. Since the spike rate λt is unknown, we make

a bar histogram with bin width ∆ over the whole observation period T with N=bT/∆c

intervals. Given a bin size ∆, the expected bar height for interval t ∈ [0,∆] is,

θ =
1

∆

∫ ∆

0

λt dt (3.2)

then the MISE function defined in eq.(3.1) can be written as [Shimazaki 07],

MISE =
1

∆

∫ ∆

0

1

N

N∑
i=1

{E(θ̂i − λt+(i−1)∆)
2
} dt (3.3)
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where θ̂i is the ith bar height. The average over the segmented rate λt+(i−1)∆ is same as

doing the average over an ensemble of (segmented) rate functions {λt} and is defined, on

an interval of t ∈ [0,∆], as

MISE =
1

∆

∫ ∆

0

〈E(θ̂ − λt)2〉 dt (3.4)

3.1.1 Cost function

The MISE can be decomposed into two parts: the stochastic error and the error related to

the function rate.

MISE =
〈
E(θ̂ − θ)2

〉
+

1

∆

∫ ∆

0

〈(λt − θ)2〉dt (3.5)

The first and second terms, respectively, denote the stochastic fluctuations of the fit θ̂ around

the expectation value θ and the averaged fluctuations for λt around its mean value θ over an

interval of length ∆ [Shimazaki 07]. The second term can be decomposed further into two

parts:

1

∆

∫ ∆

0

〈
(λt − 〈θ〉+ 〈θ〉 − θ)2〉 dt =

1

∆

∫ ∆

0

〈
(λt − 〈θ〉)2〉 dt− 〈(θ − 〈θ〉)2

〉
(3.6)

where 〈θ〉 is the mean rate and the first term is the mean squared fluctuation of λt from 〈θ〉,

and is independent of the bin size ∆, since

1

∆

∫ ∆

0

〈
(λt − 〈θ〉)2〉 dt =

1

T

∫ T

0

(λt − 〈θ〉)2 dt. (3.7)

Proof for Equation 3.6:

1

∆

∫ ∆

0

〈
(λt − 〈θ〉+ 〈θ〉 − θ)2〉 dt =

1

∆

∫ ∆

0

〈
((λt − 〈θ〉)− (θ − 〈θ〉))2〉 dt

=
1

∆

∫ ∆

0

〈(
(λt − 〈θ〉)2 + (θ − 〈θ〉)2 − 2(λt − 〈θ〉)(θ − 〈θ〉)

)〉
dt

=
1

∆

∫ ∆

0

〈
(λt − 〈θ〉)2

〉
dt+

1

∆

∫ ∆

0

〈
(θ − 〈θ〉)2

〉
dt− 1

∆

∫ ∆

0

〈2(λt − 〈θ〉)(θ − 〈θ〉)〉 dt

=
1

∆

∫ ∆

0

〈
(λt − 〈θ〉)2

〉
dt+

〈
(θ − 〈θ〉)2

〉
− 2

〈
(θ − 〈θ〉)2

〉
=

1

∆

∫ ∆

0

〈
(λt − 〈θ〉)2

〉
dt−

〈
(θ − 〈θ〉)2

〉
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Subtracting equation (3.7) from equation (3.5), the cost function is defined as,

C(∆) ≡ MISE− 1

T

∫ T

0

(λt − 〈θ〉)2 dt

=
〈
E(θ − θ)2

〉
−
〈
(θ − 〈θ〉)2

〉
Using the decomposition rule for an unbiased estimator (Eθ̂ = θ),

〈
E(θ − 〈Eθ̂〉)2

〉
=
〈
E(θ − θ)2

〉
+
〈
(θ − 〈θ〉)2

〉
(3.8)

then the cost function is transformed into

C(∆) = 2
〈
E(θ̂ − θ)2

〉
−
〈
E(θ̂ − 〈Eθ̂〉)2

〉
(3.9)

Since the hadronisation process and the collisions are random in nature, assuming the num-

ber of particles k counted for each bin obeys Poisson statistics for a random variable,

which means the variance of k is equal to the mean [Shimazaki 07]. For the estimated

rate, θ̂ = k/(∆), this mean-variance relation is analogous to

E(θ̂ − θ)2 =
1

∆
Eθ̂ (3.10)

By using equation 3.10 and equation 3.9 the cost function as a function of the estimator θ̂

is defined as,

C(∆) =
2

∆
〈Eθ̂〉 −

〈
E(θ̂ − 〈Eθ̂〉)2

〉
(3.11)

or in a much simpler form this can be written as,

C(∆) =
2k − V

∆
(3.12)

where V is the variance and k is the mean of the sample.

Minimizing the cost function C(∆), with respect to ∆, gives the optimal bin width.

∆∗ ≡ arg min
∆

C(∆) (3.13)

Using this cost, we define an algorithm given in appendix B and use it to get our optimal

bin width or bin size.
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3.1.2 Toy models and bin optmization

We try this method with some toy models for our better understanding and grasp of how

this method benefits us. Different type of random data is produced using different distribu-

tions and then checked for the fit parameter accuracy using the aforementioned method of

bin width optimization. Some distributions used here include Gaussian, Exponential, and

Power-law distribution.

A Gaussian sample of 100000 entries with their mean =1.75 and their standard deviation =

1.11 was optimized using this method. Figure 3.2 shows the results for the gaussian model.

In fig.3.1, spikes are visible for too small a bin width (the one with 500 bins), whereas, for

too large bin width, the data doesn’t represent the Gaussian model properly. In fig.3.2 the

same model is represented on a log-scale in the y-axis. In this subfigure, for too small bin

width, the edge values can’t be inferred correctly. And for too large bin-width, the sample

looks like an asymmetric step ladder. The sample is best presented with a bin-width of 0.06

with 134 bins.

Figure 3.1: Gaussian model

For an exponential model of same size and approximately same range gap we find the opti-

mal bin-width to be around 0.0989. The figure 3.4 shows the exponential samples presented

with the optimal bin numbers (91 here). The subfigure 3.3 is the sample represented on a

normal y-axis, and the subfigure 3.4 shows the sample on a log scaled y-axis. Again, for
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Figure 3.2: Gaussian model log-scaled

too small bin width too many spikes appear in sample representation and for too large bin-

width not all characteristics of the sample are represented visually.

Figure 3.3: Exponential model

The figure 3.5 shows a power-law distribution of the form λxλ−1 with 100000 samples. The

optimal bin width for this sample was found to be 0.0127 for the x range of 0 - 1.
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Figure 3.4: Exponential model log-scaled

Figure 3.5: A power law distribution (100000 samples) with optimal ∆ = 0.06 represented

on a log scale on the y-axis.

3.2 Bin-width optimization for Variable bin-widths

Histograms are not always with the fixed bin-widths for all bins. Sometimes, to save time

and reduce complexity, data is represented using the variable bin-width histograms. Statis-

tically, a histogram is a graphical representation of tabulated frequencies shown in bins and
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can be used as a density plot. The bin-width of a histogram is generally the same for all

bins; however, sometimes, it may vary from bin to bin. Generally, a fine bin width gives a

good approximation for the underlying distribution for a given dataset, but it also creates

a large number of bins that may cost computation resources. While on the other hand, a

larger bin width might not approximate the distribution well enough. Though, an advan-

tage of large binning is that it creates lesser bins which can be used with lesser computation

cost. This tradeoff between computational cost and accurate description of data distribution

is balanced by using a hybrid histogram. It should have a relatively finer bin width setting

on dense areas but not partition with too many bins on sparse areas. This motivates us to use

a variable bin width, variable bin number histogram in our clustering algorithm [Gao 10].

For a variable bin histogram, the cost function is modified as,

C(N,∆) =
N∑
i=1

(
(2ki − (ki −∆ik̄)2

∆i

)
(3.14)

Using this equation, a variable bin width array can be found while minimizing the cost. In

this thesis, we use the percentile binning method for getting the variable bin width array.

In the percentile binning method, the bins are made in such a way that each bin contains

the same percentage of the data. This makes the binning variable depending on the dataset.

Only for uniform random distribution, the variable bin widths can be of approximately the

same width.
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Chapter 4

Optimizing transverse momentum

spectra

In this thesis work, we optimized bin-width value for pT histograms and checked whether

it deviated from the analysis researchers have been doing using their own defined binning.

First, let’s discuss transverse momentum spectra or pT spectra.

4.1 Transverse momentum spectra

After the kinetic freeze-out, elastic collisions become very low as the mean free path in-

creases for the particles. There is no change in transverse momentum pT, which convey the

system kinetic freeze-out properties. The invariant yield plotted as a function of transverse

momentum, pT is called pT spectrum, and the particle distribution represented as a function

of pT is called pT distribution. Mathematically,

dN

dpT
=

dN

2π |pT | d |pT |
where dN is the particle numbers in a particular pT -bin. Here pT is used as a scalar

quantity. To understand a pT spectra, various mathematical distribution functions are used

such as the Tsallis distribution and the Pearson distribution.

4.1.1 Tsallis distribution for pT-spectra

The most simplest description for pT distribution is given by the Boltzmann Gibbs statistics,

1

2πpT

d2N

dpTdy
=
gV mT

(2π)3 exp
(
−mT

T

)
(4.1)
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where mT is the transverse mass of the particle given as
√
pT 2 +m2.

Boltzmann-Gibbs statistics is only good approximation to study an extensive system. How-

ever, it fails where the system is non-extensive or the entropy is non-additive.

The Tsallis distribution solves the problem of non-extensivity in the system by introducing

a non-extensivity parameter q, and changing the exponential to a q-exponential which is

given as,

exq = [1 + (q − 1)x]
1

q−1 (4.2)

Therefore, in terms of Tsallis distribution the pT distribution at mid rapidity(y = 0) is

defined as [Cleymans 13],

1

2πpT

d2N

dpTdy
=
gV mT

(2π)3

[
1 + (q − 1)

mT

T

]− q
q−1

(4.3)

4.1.2 Pearson distribution for pT-spectra

The Pearson distribution is a further more generalization of the Tsallis distribution. As

discussed in Chapter 2, a pearson distribution is a given as,

p(x) = B
(

1 +
x

e

)f(
1 +

x

g

)h
(4.4)

where B = Cefgh is a normalization constant. Replacing e, f , g, and h with p0, -n, T
q−1

,

and − q
q−1

respectively gives us the pearson form for pT distribution as,

1

2πpT

d2N

dpTdy
= B

(
1 +

pT
T

)−n[
1 + (q − 1)

pT
p0

]− q
q−1

(4.5)

where,

B = C
1

p0
n

(
T

q − 1

)− q
q−1

The Pearson distribution reduces to Tsallis distribution when n = -1 and p0 = 0, keeping

all the thermodynamic properties intact [Jena 20] [Gupta 20][]. Pearson distribution is very

helpful in explaining the higher-pT region which is mostly related to jets.

4.2 Optimizing bin-width

In this work, we have optimized pT distribution binning over the low-pT range of 0-3

GeV/c. The data used is generated using the UrQMD KASCADE event simulator to sim-

ulate event by event Pb-Pb collisions at
√
sNN = 2.76 TeV. The data used in this work is
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for π+ particles which are abundantly produced in collision events, with a pseudorapidity

cut of -0.5 to 0.5. The optimized bin width, for the range 0-3 GeV/c, was found to be of

0.1111 GeV/c for fixed bin width histogram with a total of 27 bins. While optimizing the

bin-width, changing the number of events doesn’t change the optimal bin-width value. The

figure 4.1 shows the cost v/s bin-width distribution for pT distributions.

We used Tsallis and Pearson distributions for studying the distributions and for the chi-
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Figure 4.1: Cost vs Bin-width graph plotted for fixed bin-width pT spectra.

squared check.

In the figure 4.2, are shown the pT for different number of events with data points shifted

by a multiplier for a clear understanding. On the y-axis is the event averaged invariant yield

plotted against pT on the x-axis, and fitted with Pearson (fig. 4.2a) and Tsallis (fig. 4.2b)

distributions. The table 4.1 shows the chi-squared values for both the distributions.

No. of Events Tsallis Pearson

50,000 0.347685 0.049979

250,000 0.337071 0.026144

500,000 0.315487 0.023130

1,000,000 0.321809 0.022758

Table 4.1: Chi-squared/NDF values for the pT distributions.
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(a) Using Pearson distribution.
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(b) Using Tsallis distribution.

Figure 4.2: pT distribution for π+ particles in range |η| < 0.5 for N (= 50K, 250K, 500K,

1M) events in the pT range of 0-3 GeV with the optimal bin-width ∆ = 0.1111 GeV/c.

It is clear from the plots and the chi-squared values that optimal binning results in good fit

values. Also, one can see that all data points for different number of events line coincide,

which means there is no number of event dependence on binning.
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Figure 4.3: pT distribution for π+ particles in range |η| < 0.5 for N (= 50K, 250K, 500K,

1M) events in the pT range of 0-3 GeV with the optimal variable bin-width.

For variable binning, the percentile based binning method is used and bin edges were found

to be 6.66 percentile apart with a total of 15 bins. The figure 4.3 shows the variable

bin-width distribution of the pT distribution with bin edges as [0.0, 0.117105, 0.158122,
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0.192790, 0.225549, 0.258199, 0.291905, 0.327654, 0.366533, 0.410062, 0.460290, 0.520606,

0.597546, 0.705596, 0.891956, 3.0]. The figure 4.4 shows the cost v/s bin-width distribu-

tion for pT distributions.
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Figure 4.4: Cost v/s Bin-width graph for variable bin-width distribution.

Following from the graphs and table, it is visible that variable binning lowers the accuracy

of the fitting for both cases, Tsallis and Pearson. However, chi-squared/NDF values for

Pearson distribution are still considerably low, which suggests that a rough estimate for the

estimated observable such as T can still be made using Pearson distribution.//

No. of Events Tsallis Pearson

25,000 4.226795 0.644638

50,000 4.255385 0.649264

250,000 4.260996 0.629012

500,000 4.257882 0.635844

Table 4.2: Chi-squared/NDF values for the pT distributions with variable bin width.

Further, a comparison of the binning used in transverse momentum spectrum analysis

against the optimal fixed binning and the optimal variable binning for 250K events was

made. The figure 4.5 shows the comparison and the table 4.3 shows the chi-squared value

for the comparison.
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Figure 4.5: A binning comparison for pT distribution for π+ particles in range |η| < 0.5 for

250K events in the pT range of 0-3 GeV/c.

This proves that using the optimal binning reduces the random error related to the data

and the results obtained are more accurate. The optimal fixed binning presents better ac-

curacy than both the binning, the binning used in experimental analysis by physicists and
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Tsallis Pearson

Binning in Use 0.422864 0.050224

Optimal fixed binning 0.337084 0.026142

Optimal variable binning 0.593990 0.218882

Table 4.3: Chi-squared/NDF values for the pT distributions binning comparison for 250K

events.

the optimal variable binning. Using the variable binning reduces the accuracy, while the

computation time does not reduce significantly for 250K events. However, it may reduce if

number of events increases to millions or so.
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Chapter 5

Optimizing Pseudorapidity spectra

Apart from optimizing bin-width for pT, bin-width optimization for pseudorapidity, η was

also done in this thesis work.

First let’s discuss pseudorapidity spectra or η spectra.

5.1 Pseudorapidity spectra

We know, the invariant yield is given as,

E
d3N

dp3
=

1

2πpT

d2N

dpTdy
(5.1)

Taking 1
2πpT

to the other side and integrating with respect to pT we get,

dN

dy
=

∫
2πpTE

d3N

dp3
dpT (5.2)

Using the rapidity to pseudorapidity transformation given in equation 1.25, we get

dN

dη
=

∫ √
1− m2

mT
2 cosh2 y

2πpTE
d3N

dp3
dpT (5.3)

This equation defines the pseudorapidity spectra or the pseudorapidity distribution. Similar

to transverse momentum, for pseudorapidity we apply same distribution models of tsallis

and pearson.

5.1.1 Tsallis distribution for η-spectra

In terms of Tsallis, the pT distribution is defined as,

1

2πpT

d2N

dpTdy
=
gV mT cosh y

(2π)3

[
1 + (q − 1)

mT cosh y − µ
T

]− q
q−1

(5.4)
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Around midrapidity region where y = 0, and setting µ = 0 (since very low chemical po-

tentials are found at LHC energies), this equation reduces to equation 4.3 [Cleymans 13].

Integrating over the transverse momentum and using the rapidity and pseudorpaidity trans-

formation relation [Cleymans 13], we get

d2N

pTdpTdη
=
N

A

√
1− m0

2

mT
2 cosh2 y

×
∫ ∞
−∞

ν(yf )
mT cosh(y − yf )

(2π)2

[
1 + (q − 1)

mT cosh(y − yf )
T

]− q
q−1

(5.5)

On doing numerical integration, we finally get

dN

dη
=
N

A

∫ ∞
−∞

dyf

∫ ∞
0

dpTpT

√
1− m0

2

mT
2 cosh2 y

× ν(yf )
mT cosh(y − yf )

(2π)2

[
1 + (q − 1)

mT cosh(y − yf )
T

]− q
q−1

(5.6)

where, y is the rapidity, yf is the fireball rapidity in lab frame and ν(yf ) is the distribution

for fireball rapidity, defined as,

ν(yf ) =
1√
2πσ

[
1 + (q′ − 1)

(yf − y0)2

2σ2

]− 1
q′−1

+
1√
2πσ

[
1 + (q′ − 1)

(yf + y0)2

2σ2

]− 1
q′−1

(5.7)

In reference[], a complete derivation for tsallis distribution of pseudorapidity is discussed.

5.1.2 Pearson distribution for η-spectra

The pT distribution in pearson form is written as

1

2πpT

d2N

dpTdy
= B

(
1 +

mT cosh y

p0

)−n [
1 + (q − 1)

mT cosh y

T

]− q
q−1

(5.8)

where,

B = C
1

pn0

(
T

q − 1

)− q
q−1

For a fireball moving in lab frame with rapidity yf , rapidity distribution is given as.

dN

dy
= A

∫ ∞
0

dpTpT

[
1 +

mT cosh (y − yf )
p0

]−n [
1 + (q − 1)

mT cosh (y − yf )
T

]− q
q−1

(5.9)
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Incorporating the rapidity distribution ν (yf ) and integrating similar to what we did in tsallis

distribution case, we get the pseudorapidity distribution as,

dN

dη
=A

∫ ∞
−∞

dyf

∫ ∞
0

dpTpT

√
1− m2

0

m2
T cosh2 y

× ν (yf )

[
1 +

mT cosh (y − yf )
p0

]−n [
1 + (q − 1)

mT cosh (y − yf )
T

]− q
q−1

(5.10)

where y is the rapidity which is given as,

y =
1

2
ln


√
p2
T cosh2 η +m2

0 + pT sinh η√
p2
T cosh2 η +m2

0 − pT sinh η

 (5.11)

A complete discussion is presented in reference [Gupta 21]

5.2 Optimizing bin-width

Again we use the data generated using the UrQMD KASCADE event simulator to simulate

event by event Pb-Pb collisions at
√
sNN = 2.76 TeV. The data used here is for π+ particles

which are abundantly produced in collision events, with a pT cut from 0.0 to 3.0 GeV/c.

The pseudorapidity bin-width is optimized for the range of -6.0 to 6.0, with optimal fixed

bin-width of 0.8 resulting in 15 bins. The figure 5.1 shows the variation of cost with respect

to bin-width, and it goes to a minimum value around 0.8 bin-width.
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Figure 5.1: Cost v/s bin-width distribution for pseudorapidity(η) observable.
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The pseudorapidity (η) distribution, for fixed optimal bin-width of 0.8, with changing the

number of events is shown in the figure 5.2. Here again, changing the number of events

doesn’t change the optimal value for bin-width for the distribution and the also the shape

of the distribution is maintained. For variable binning, it is found that the minimum cost

Figure 5.2: η distribution for π+ particles in range |η| < 6.0 for N (= 50K, 250K, 500K,

1M) events with pT cut from 0-3 GeV with the 0.8 optimal fixed bin-width.

value occurs at three bins which cannot be used to do any meaningful analysis. A possible

explanation for this can be stated as the symmetric double-Gaussian nature of the pseudo-

rapidity distribution. Also, not much variation is seen in y-values for the η distribution in

range -6.0 to 6.0 as compared to y-values for pT distribution for 0-3 GeV/c range.
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Chapter 6

Conclusion

This thesis work has looked at bin width optimization for data analysis for heavy-ion colli-

sion events. We began by talking about the QGP and the heavy-ion collision before moving

on to collecting data from experimental setups and analysing it. The bin optimization ap-

proach for fixed and variable bin width histograms is then discussed. We begin by analysing

the data using this technique for transverse momentum (pT ) distributions and then moved

on to pseudorapidity (η) distributions.

For pT distributions, a fixed bin width of 0.111 GeV/c was observed which produced better

fit results as compared to the bin-width already being used. When using a variable bin-

width optimization we see a 6.67 bin-percentile using our optimization method. The results

were comparable though with lesser accuracy than both the fixed and the in-use bin-width

distribution. However, variable binning gives an advantage of lesser memory resource be-

ing used. The time taken while fitting the results increases due to less number of points

being used for fitting.

For η distributions, a fixed bin-width of 0.8 was obtained through the optimization method

discussed in this work. We got only three bins for variable bin-width histogram, which can-

not be used here for calculations and inference purposes. The reason for this could be the

symmetric nature of the distribution or the less variation in the y-axis values for the x-axis

range. However, a more concrete reason could only be stated after further analysis which

is beyond the scope of this work.
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Appendix A

Python code for bin-width optimization

A.1 Finding optimal fixed bin width:

1 from f u t u r e i m p o r t d i v i s i o n

2 i m p o r t numpy as np

3 from ROOT i m p o r t TH1F

4

5 d e f o p t i m i z e r o o t ( da t a , e v e n t s ) :

6 mxp=3.0 # minimum of p t d a t a

7 mnp=0.0 # maximum of p t d a t a

8 N=np . a r r a y ( r a n g e ( 2 , 1 0 0 ) )

9 D e l t a = ( mxp−mnp ) /N # c a l c u l a t i n g b i n w i d t h s f o r d i f f e r e n t b ins , N

10

11 # I n i t i a l i z e c o s t a r r a y

12 Cost = np . z e r o s ( shape =np . s i z e ( D e l t a ) )

13 f o r i i n r a n g e ( 0 , np . s i z e (N) ) :

14 h=TH1F ( ” h ” , ” ” ,N[ i ] , mnp , mxp )

15 f o r j j i n d a t a :

16 h . F i l l ( j j )

17 k i =np . z e r o s ( shape =N[ i ] )

18 f o r j i n r a n g e (N[ i ] ) :

19 k i [ j ]= h . Ge tB inCon ten t ( j +1)

20 k i = k i / ( e v e n t s )

21

22 k=sum ( k i ) /N[ i ]

23

24 v=sum ( ( ki −k ) **2) /N[ i ]
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25 # C a l c u l a t e Cos t f o r D e l t a [ i ] wid th

26 C[ i ] = ( 2 * k−v ) / ( D e l t a [ i ] * * 2 )

27 h=None

28

29 # f i n d i n g minimum c o s t p o i n t

30 cmin=min (C)

31 i d x =np . where (C==cmin )

32 i d x = i n t ( i d x [ 0 ] )

33 OD= D e l t a [ i d x ]

34

35 r e t u r n cmin ,OD,N[ i d x ] , Cost , D e l t a

A.2 Finding optimal variable binwidth

1 from f u t u r e i m p o r t d i v i s i o n

2 from ROOT i m p o r t *

3

4 # d e f i n i n g c o s t f u n c t i o n f o r v a r i a b l e b i n wid th

5 d e f c o s t ( b ins , b inedges , k , c =0) :

6 f o r i i n r a n g e ( b i n s ) :

7 c = c +(2* k [ i ] −( k [ i ] −( b i n e d g e s [ i +1] − b i n e d g e s [ i ] ) *np . mean ( k ) ) **2)

/ ( b i n e d g e s [ i +1] − b i n e d g e s [ i ] )

8 r e t u r n c

9

10 # d e f i n i n g f u n c t i o n t o f i n d v a r i a l e o p t i m a l b i n n i n g

11 d e f v a r b i n o p t ( da t a , e v e n t s ) :

12

13 # i n i t i a l i z i n g b i n edges

14 b i n e d g e s = [ ]

15 f o r n i n r a n g e ( 2 , 1 0 0 ) :

16 p = 100 / n

17 l = [ ] ; s =0

18

19 w h i l e s <100:

20 s=s+p

21 s= round ( s , 4 )

22 i f s>100 or 99<s <100:

23 s =100
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24 l . append ( s )

25 # c a l c u l a t i n g b i n edges based on t h e p e r c e n t i l e

26 edges = l i s t ( np . p e r c e n t i l e ( da t a , l , a x i s =None ) )

27

28 # i n s e r t i n g t h e s t a r t and end p o i n t s o f p t d a t a

29 edges . i n s e r t ( 0 , 0 . 0 )

30 edges . pop ( )

31 edges . i n s e r t ( l e n ( edges ) , 3 . 0 )

32 b i n e d g e s . append ( np . a s a r r a y ( edges ) )

33

34 b i n e d g e s =np . a s a r r a y ( b i n e d g e s )

35 p r i n t b i n e d g e s

36

37 # i n i t i a l i z i n g t h e c o s t a r r a y

38 cs = [ ]

39 f o r b i n e d g e i n b i n e d g e s :

40 b i n s = b i n e d g e . s i z e −1

41 h = TH1D( ” h ” , ” ” , b in s , b i n e d g e )

42 f o r v a l i n d a t a :

43 h . F i l l ( v a l )

44 h . S c a l e ( 1 / e v e n t s )

45 x = [ ] ; y = [ ] ;w= [ ]

46 f o r k i n r a n g e ( b i n s ) :

47 y . append ( h . Ge tB inCon ten t ( k +1) )

48 x . append ( h . G e t B i n C e n t e r ( k +1) )

49

50 # f i n d i n g c o s t u s i n g c o s t f u n c t i o n

51 cs . append ( c o s t ( b ins , b inedge , y ) )

52

53 h=None

54 # f i n d i n g minimum c o s t

55 i n d = cs . i n d e x ( min ( c s ) )

56 r e t u r n ind , c s [ i n d ] , b i n e d g e s [ i n d ] , b i n e d g e s [ i n d ] . s i z e −1 , c s
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Appendix B

PyROOT code for reading data and

making histograms

B.1 Code for pT data:

1 from f u t u r e i m p o r t d i v i s i o n

2 from o p t i m i z a t i o n i m p o r t o p t i m i z e r o o t

3 i m p o r t g lob

4 i m p o r t s y s

5 i m p o r t numpy as np

6 from ROOT i m p o r t *

7

8 i f l e n ( s y s . a rgv ) ! = 2 :

9 p r i n t ” Use p a t h ”

10 p a t h = s y s . a rgv [ 1 ] # r e a d i n g r o o t f i l e s p a t h from t e r m i n a l

11

12 # r e a d i n g f i l e s d a t a

13 s t a r t t i m e = t ime . t ime ( )

14

15 # g e t t i n g a l i s t o f a l l t h e r o o t f i l e s

16 f i l e s = g lob . g lob ( p a t h + ’ / * / * . r o o t ’ )

17 p t = [ ]

18 e v e n t s =0

19 f o r f i n f i l e s :

20

21 i f e v e n t s >=1000000:
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22 b r e a k

23 i f e v e n t s %250000==0 and e v e n t s >1:

24 p r i n t ( ” done r e a d i n g ” , e v e n t s )

25

26 # r e a d i n g t h e r o o t f i l e

27 i n F i l e = T F i l e . Open ( f , ”READ” )

28 t r e e = i n F i l e . Get ( ” t r e e ” )

29 f o r e n t r y i n r a n g e ( 0 , t r e e . G e t E n t r i e s ( ) ) :

30 i f e v e n t s >=1000000:

31 b r e a k

32 t r e e . G e t E n t r y ( e n t r y )

33 Imp= g e t a t t r ( t r e e , ” fImp ” )

34

35 # c h e c k i n g f o r c e n t r a l i t y

36 i f Imp [ 0 ] <3 . 5 0 :

37 fpx =np . a s a r r a y ( t r e e . fPx )

38 fpy =np . a s a r r a y ( t r e e . fPy )

39 f p z =np . a s a r r a y ( t r e e . fPz )

40 p i d =np . a s a r r a y ( t r e e . f P i d )

41 chg=np . a s a r r a y ( t r e e . fChg )

42 # p r i n t fpx . s i z e

43 f o r j i n r a n g e ( 0 , fpx . s i z e ) :

44

45 # c h e k i n g f o r p a r t i c l e i d and c h a r g e

46 i f p i d [ j ]==101 and chg [ j ] = = 1 :

47

48 # c a l c u l a t i n g $p T$ and s t o r i n g i n a l i s t

49 p t v =np . s q r t ( fpx [ j ]**2+ fpy [ j ] * * 2 )

50 t h e t a =TMath . ATan2 ( ptv , f p z [ j ] )

51 e t a =−TMath . Log ( TMath . Tan ( 0 . 5 * t h e t a ) )

52 i f ( p tv <=3.0) . a l l ( ) and abs ( e t a ) <0.5:

53 p t . append ( p t v )

54 e v e n t s +=1

55 p r i n t e v e n t s

56

57 # c o n v e r t i n g l i s t t o a 1D a r r a y .

58 d a t a p t =np . s q u e e z e ( p t )

59

60 # f i n d o p t b i n wid th u s i n g o p t i m i z e f u n c t i o n
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61 p t cmin , o p t p t w i d , o p t p t b i n , C ,D= o p t i m i z e r o o t ( d a t a p t , e v e n t s )

62 p r i n t p t cmin , o p t p t w i d , o p t p t b i n

63

64 # Root h i s t o g r a m p l o t

65 s f = ( 1 / e v e n t s )

66

67 # i n i t i a l i z i n g t h e h i s t o g r a m u s i n g TH1D f u n c t i o n

68 h2=TH1D( ” h2 ” , ” f i t ” , o p t p t b i n , 0 . 0 , 3 . 0 )

69 f o r j j i n r a n g e ( 0 , l e n ( d a t a p t ) ) :

70 h2 . F i l l ( d a t a p t [ j j ] )

71

72 f o r i i n r a n g e ( 0 , o p t p t b i n ) :

73 fq =h2 . Ge tB inCon ten t ( i +1)

74 w=h2 . GetBinWidth ( i +1)

75 x=h2 . G e t B i n C e n t e r ( i +1)

76 newf= fq / ( 2 * np . p i *x*w)

77 h2 . S e t B i n C o n t e n t ( i +1 , newf )

78

79 # e v e n t n o r m a l i z i n g

80 h2 . S c a l e ( s f )

81

82 x=np . a s a r r a y ( [ h2 . G e t B i n C e n t e r ( i +1) f o r i i n r a n g e ( 0 , o p t p t b i n ) ] )

83 y=np . a s a r r a y ( [ h2 . Ge tB inCon ten t ( i +1) f o r i i n r a n g e ( 0 , o p t p t b i n ) ] )

84

85 f = T F i l e . Open ( ” F i l ename . r o o t ” , ” r e c r e a t e ” )

86 can=TCanvas ( ” c2 ” )

87 can . cd ( )

88

89 # making t h e d i s t r i b u t i o n graph

90 g=TGraph ( x . s i z e , x . a s t y p e ( np . do ub l e ) , y . a s t y p e ( np . do ub l e ) )

91 g . S e t L i n e C o l o r ( kRed )

92 g . Se tL ineWid th ( 2 )

93 g . S e t M a r k e r C o l o r ( kBlue )

94 g . S e t M a r k e r S t y l e ( 20 )

95 g . S e t T i t l e ( ’ pT d i s t r i b u t i o n ’ )

96 g . GetXaxis ( ) . S e t T i t l e ( r ’ pT ’ )

97 g . GetYaxis ( ) . S e t T i t l e ( r ’ ( 1 / Nevent ) * (dN / dpT ) * ( 1 / 2 * p i *pT ) ’ )

98 can . S e t G r i d ( )

99

47



100 # drawing t h e d i s t r i b u t i o n

101 can . Draw ( )

102 g . Draw ( )

103

104 # w r i t i n g t o t h e r o o t f i l e

105 g . Wr i t e ( )

106 f . C lose ( )

B.2 Code for η distribution:

1 from f u t u r e i m p o r t d i v i s i o n

2 i m p o r t g lob

3 i m p o r t s y s

4 i m p o r t numpy as np

5 from ROOT i m p o r t *

6

7 i f l e n ( s y s . a rgv ) ! = 2 :

8 p r i n t ( ” Use p a t h ” )

9 p a t h = s y s . a rgv [ 1 ]

10

11 # r e a d i n g f i l e s l i s t

12 f i l e s = g lob . g lob ( p a t h + ’ / * / * . r o o t ’ )

13

14 c e n t = [ 0 . 0 , 3 . 5 0 , 4 . 9 4 , 6 . 9 8 , 8 . 5 5 , 9 . 8 8 , 1 1 . 0 4 ]

15 e t a s = [ ]

16 e v e n t s =0

17

18 f o r f i n f i l e s :

19 i f e v e n t s >=1000000:

20 b r e a k

21 # r e a d i n g d a t a from f i l e

22 i n F i l e = T F i l e . Open ( f , ”READ” )

23 t r e e = i n F i l e . Get ( ” t r e e ” )

24 f o r e n t r y i n r a n g e ( 0 , t r e e . G e t E n t r i e s ( ) ) :

25

26 t r e e . G e t E n t r y ( e n t r y )

27 Imp= g e t a t t r ( t r e e , ” fImp ” )

28 fpx =np . a s a r r a y ( t r e e . fPx )
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29 fpy =np . a s a r r a y ( t r e e . fPy )

30 f p z =np . a s a r r a y ( t r e e . fPz )

31 p i d =np . a s a r r a y ( t r e e . f P i d )

32 chg=np . a s a r r a y ( t r e e . fChg )

33

34 # c h e c k i n g c e n t r a l i t y

35 i f c e n t [0]<=Imp[0]< c e n t [ 1 ] :

36

37 # c h e c k i n g e v e n t c o u n t

38 i f e v e n t s >=1000000:

39 c o n t i n u e

40

41 e l s e :

42 f o r j i n r a n g e ( 0 , fpx . s i z e ) :

43 i f p i d [ j ]==101 and chg [ j ] = = 1 :

44 p t v =np . s q r t ( fpx [ j ]**2+ fpy [ j ] * * 2 )

45 t h e t a =TMath . ATan2 ( ptv , f p z [ j ] )

46

47 # c a l c u l a t e e t a and append t o t h e l i s t

48 e t a =−TMath . Log ( TMath . Tan ( 0 . 5 * t h e t a ) )

49 i f ( p tv <=3.0) . a l l ( ) :

50 i f e t a >−6.0 and e t a <6.0:

51 e t a s . append ( e t a )

52 e v e n t s +=1

53

54 # c o n v e r t i n g l i s t t o 1D a r r a y

55 d e t a s =np . s q u e e z e ( e t a s )

56

57 # f i n d o p t b i n wid th u s i n g o p t i m i z e f u n c t i o n

58 cmin , op t wid , o p t b i n , C ,D= o p t i m i z e r o o t ( d e t a s , e v e n t s )

59 p r i n t cmin , op t wid , o p t b i n

60

61 # Root h i s t o g r a m p l o t

62 s f = ( 1 / e v e n t s )

63

64 h i s t = TH1D( ” h1 ” , ” ” , o p t b i n , − 6 . 0 , 6 . 0 )

65 f o r j j i n r a n g e ( 0 , l e n ( d e t a s ) ) :

66 h i s t . F i l l ( d e t a s [ j j ] )

67 h i s t . S c a l e ( s f )
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68

69 x=np . a s a r r a y ( [ h i s t . G e t B i n C e n t e r ( i +1) f o r i i n r a n g e ( 0 , o p t p t b i n ) ] )

70 y=np . a s a r r a y ( [ h . Ge tB inCon ten t ( i +1) f o r i i n r a n g e ( 0 , o p t p t b i n ) ] )

71

72 f = T F i l e . Open ( ” F i l ename . r o o t ” , ” r e c r e a t e ” )

73 can=TCanvas ( ” c2 ” )

74 can . cd ( )

75

76 # making t h e d i s t r i b u t i o n graph

77 g=TGraph ( x . s i z e , x . a s t y p e ( np . do ub l e ) , y . a s t y p e ( np . do ub l e ) )

78 g . S e t L i n e C o l o r ( kRed )

79 g . Se tL ineWid th ( 2 )

80 g . S e t M a r k e r C o l o r ( kBlue )

81 g . S e t M a r k e r S t y l e ( 20 )

82 g . S e t T i t l e ( ’ pT d i s t r i b u t i o n ’ )

83 g . GetXaxis ( ) . S e t T i t l e ( r ’\ e t a ’ )

84 g . GetYaxis ( ) . S e t T i t l e ( r ’ ( 1 / Nevent ) * (dN / d \ e t a ) ’ )

85 can . S e t G r i d ( )

86

87 # drawing t h e d i s t r i b u t i o n

88 can . Draw ( )

89 g . Draw ( )

90

91 # w r i t i n g t o t h e r o o t f i l e

92 g . Wr i t e ( )

93 f . C lose ( )
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