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Abstract

Scalar fields are useful for gaining knowledge of the features of any chemical system.
Electron momentum density (EMD) is a scalar field, which brings out chemical
concepts from the momentum-space point of view. The topography of EMD has been
extensively studied and analyzed. One important characteristic of the molecular
EMDs is the bond-directionality principle, which states that the maximal nature
of the EMD is perpendicular to the position space bonding directions. This allows
us to relate, interpret and understand phenomena such as bonding and ionization
via molecular properties in the momentum space. This may bear applications for,
and better understanding of laser-induced bond-forming and bond-breaking in
molecules.
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Introduction 1
Quantum chemistry is a branch of theoretical chemistry that uses physical and
mathematical methods to understand the electronic structure of any molecule. Any
molecule is made up of positively charged nuclei and negatively charged electrons.
Different combinations and arrangements of nuclei and number of electrons in space
form different molecules.

To solve a quantum chemical problem, one needs to solve the eigen-value problem.

Ĥψ(r) = Eψ(r) (1.1)

Where Ĥ is Hamiltonian operator for a system of nuclei and electrons and is inde-
pendent of time, ψ is the wave function and E is the total energy.

1.1 Time-Independent Schrodinger Equation

For an unperturbed (field-free) system, we use the Time-Independent Schrödinger
equation to arrive at the wave function and energies for the electrons and nuclei
of that system. For every time-independent Hamiltonian operator, Ĥ, there exists
a set of quantum states, ψn, known as energy eigenstates, and corresponding real
number En satisfying the eigenvalue equation:

[−h̄
2

2m ∇
2 + V (r)]Ψ(r) = EΨ(r) (1.2)

The only systems that could be calculated exactly by using analytical techniques
are those with one electron, such as H-atom, H2

+, et. Therefore, different approxi-
mations are used to find solutions for a quantum many-body system (e.g. ab-initio
methods). One such approximation is the Hartree-Fock approximation [1], which is
the most widely used ab-initio calculation. The general Hartree–Fock (HF) method is
a quantum mechanical method for electronic structure calculations that uses a single
determinantal wave function with no restrictions on the one electron orbitals other
than orthonormality and the use of a specific basis set [3]. Since the HF method
yields a zeroth order approximation to the exact wavefunction and allows enormous
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conceptual simplification due to independent particle interpretation [4], it is one of
the most widely used computational method.

1.2 Light matter interaction

Light-Matter interactions result due to interaction between an oscillating electro-
magnetic (EM) field with a charged entity. Light fields act upon a system to couple
their energy states [2],[5]. There are three different approaches to explain the
phenomena arising due to light-matter interaction:

1. Classical Approach: In this approach, both, matter and light are treated
classically, which means that light is treated as an electromagnetic wave [5]
and therefore, follows the Maxwell’s equation:

∂

∂t
H(~r, t) = − 1

µ0
∇× E(~r, t) (1.3)

Where, H = B
µ0

, B is the magnetic field and E is the electric field. In this
approach, only Maxwell’s equation are used (no use of Schrödinger equation)
in the time domain. By treating the matter and field classically, one fails to
capture any quantum features of the light–matter interactions.

2. Semi-classical Approach: In the semi-classical theory, light is treated as an
electromagnetic wave and the matter are quantum mechanical objects. These
methods are widely used to understand absorption and scattering. Semi-
classical approaches can preserve more of the quantum nature of light–matter
interactions as compared to the classical approach.

3. Quantum-mechanical Approach: In the quantum mechanical approach, light
is described in terms of photons for different modes of electromagnetic radia-
tion [5]. Both light and atoms are quantized using field theory. The quantum
methods have been developed to understand processes such as spontaneous
emission.

In this thesis, a semi-classical approach is followed which is sufficient to understand
the behavior of atoms and molecules in the presence of time varying strong fields.

The interaction of an atom with a high-intensity laser field yields a semi-classical
model. The electromagnetic field consists of an electric field, ~ε(~r, t) and a magnetic

2



field, ~B(~r, t), which can be described from classical scalar and vector potentials,
given by Maxwell’s equations as follows:

~ε(~r, t) = −∇φ(~r, t)− ∂

∂t
~A(~r, t) ~B(~r, t) = ∇× ~A(~r, t) (1.4)

Here ~A(~r, t) and φ(~r, t) are the vector and scalar potentials, respectively. The dynam-
ics of a system subjected to an external field is described by the Time-Dependent
Schrödinger equation (TDSE):

ih̄
∂Ψ
∂t

= ĤΨ (1.5)

The Hamiltonian consists of two parts, the unperturbed Hamiltonian Ho which
consists of the kinetic and potential energy of the system and the time-dependent
Hamiltonian H’(~r, t) of the form ε(~r, t), where ε is the electric field component of
the electromagnetic field [6][7]. Thus the Hamiltonian can be written as:

Ĥ = 1
2me

[~p− e

c
~A(~r, t)]2 + eφ+ V (~r) (1.6)

1.2.1 Dipole Approximation

The wavelength, λ, of an electromagnetic radiation (∼100nm) is generally larger
than the size of an atom (0.1 - 0.5 nm). The spatial dependence of the field can,
therefore, be ignored [8]. Hence, the expansion of the electric field as Taylor series
can be truncated by ignoring the position dependent terms.

~A(~r, t) = f(t)(cos(~k.~r − ωt+ δ)]

∼=
f(t)

2 [ei(~k.~r−ωt+δ + e−i(
~k.~r−ωt+δ]

∼=
f(t)

2 [ei(~k.~r)e(−ωt+δ) + e−i(
~k.~r)e−i(−ωt+δ)]

(1.7)

On expanding ei~k.~r

ei
~k.~r = 1 + (i~k.~r) + 1

2(i~k.~r)2 + ..... (1.8)

With only the first two terms, the vector potential modifies as

~A(~r, t) −→ 1
2f(t)

[
(1 + i~k.~r)ei(ωt−δ) + (1− i~k.~r)e−i(ωt−δ)

]
ε̂z

∼= f(t)[cos(ωt− δ) + ~k.~r]
∼= ~A0(t) + ~A1(r, t)

(1.9)
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Here, ~A0(t) is the vector potential within dipole approximation. The ~k.~r term van-
ishes and ~A1(r, t) is only a correction term. Since the vector potential is independent
of ~r with implications of spatial homogeneity, the magnetic field, ~B = 0. The time
dependent vector potential term thus finally assumes the form

~A0(t) = f(t).cos(ωt+ φ)εz ẑ (1.10)

This spatially independent but time dependent potential adds up to the overall
Hamiltonian in addition to the innate free field Hamiltonian. For a CW laser,
f(t) = 1 and thus the TDSE for the system can be finally written as:

ih̄
∂ψ(~r, t)
∂t

= [− h̄2

2me

~∇2 + εz.~rcos(ωt) + V (~r)ψ(~r, t)] (1.11)

1.3 Electric Fields

1.3.1 Linear Homogeneous Electric Field

In a linear homogeneous electric field atoms are in constant, background electric
fields. These fields break various symmetries of the problem, we expect to see a
splitting in the degeneracies of states. If we take an electric field in the z-direction
(E=Eoẑ), the Hamiltonian for an H2 molecule then becomes:

Ĥ = − h̄2

2m∇
2 − e2

4πεor
+ eEoẑ (1.12)

The potential energy, V(ẑ) = eEoẑ - e2

4πεor , is plotted w.r.t. the z-axis: The potential

Fig. 1.1: Potential energy curve for a system that is being subjected to a static electric field
in Z-direction
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is unbounded below as z → ∞. This means that all electron bound states, with
wavefunctions localised near the origin, are now unstable. Any electron can tunnel
through the barrier to the left, and then be accelerated by the electric field to z
→∞.

1.3.2 Polarized Laser Pulse

Polarization is the process of restricting the direction of the oscillations of light using
a polarizer. An unpolarized electric field oscillates randomly in all directions. A
linearly polarized field along the x-direction will be of the form:

~ε = f(t)Eocos(ωt)x̂ (1.13)

where, f(t) is an envelope provide over the pulse. Fig.(1.2) shows how a linearly
polarized field in the presence of a sine squared envelope looks like.

Fig. 1.2: Linearly polarised electric field with a sine squared envelope over it

Having laid the background for Quantum mechanics and Light matter interaction,
we shall now move to Molecular electron momentum densities, which is an
important tool of chemistry. Like electron density, the momentum density is also a
Scalar field.

1.4 Scalar Fields

A scalar field is a function that gives us a single value of some variable for every
point in space. The scalar may either be a (dimensionless) mathematical number
or a physical quantity. The interpretative strength of scalar fields is very useful for
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studies in interpretative chemistry.
Scalar fields such as molecular electron density (MED), molecular electrostatic
potential (MESP), molecular electron momentum density (EMD) etc. are more
closer to the heart of experimental science and they have a direct connection with
scattering experiments in general. In this thesis we will primarily focus on electron
momentum densities (EMDs). Before getting to EMDs in detail, we will have to first
look at electron density (ED) and understand how are EMD and ED related.

1.4.1 Electron density

Electron density is the measure of the probability of finding an electron at an
infinitesimal element of space surrounding any given point.
For an N-electron M-atom molecule within Born-Oppenheimer approximation, the
Hamiltonian operator, Ĥ (in a.u.), is given by the equation:

Ĥ = −
N∑
i=1

1
2∇

2
i −

N∑
i=1

M∑
A=1

ZA

|~ri − ~RA|
+

N∑
i=1

N∑
j>1

1
|~ri − ~rj |

+
M∑
A=1

M∑
B>1

ZAZB

|~RA − ~RB|
(1.14)

The nuclei with charges ZA are at position vectors RA and the electrons at position
vectors ~ri . The electronic charge density is derived from an N-electron wavefunction
ψ via:

ρ(~r) = N

∫
ψ∗(~r, ~r2, ....., ~rN)ψ(~r, ~r2...., ~rN) d~r2.... d~rN (1.15)

The electron density ρ(~r) is the fundamental property that characterises the ground
state of the system. The energy of a system can be uniquely defined, once ρ(~r) is
known, and from there a diverse range of molecular properties can be deduced.
The electron density has an experimental realization in coherent X-ray scattering
experiments.

However, the molecular properties deduced from ρ(~r) are only limited to the position
space. Since, molecules posses kinetic energy, further information about the the
nature of the electrons and the properties of their distribution could be provided by
a function which is a measure of the number of electrons moving in an infinitesimal
velocity range. For that we will have to look into the momentum space.
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1.4.2 Relationship between the position space and momentum
space

To understand the relationship between the position and momentum. we look at a
simple pendulum.

Fig. 1.3: Motion of a pendulum

In Fig.(1.3), we see that at C, when displacement is zero, velocity is maximum,
which implies maximum momentum at C. At E, when displacement is maximum,
velocity is zero, which implies zero momenta. Hence, position and momentum are
complimentary quantities and therefore, if a function is given in position space,
f(~r), then its Fourier transform obtains the function in momentum space, f(~p). The
momentum space wavefunction can therefore, be obtained via a 3N-dimensional
Fourier transformation of the corresponding position space wavefunction[9].

Φ(~p) = (2π)−
3N
2

∫
Ψ(~r1, ~r2...., ~rN)e−i

∑
i
~pi.~ri d~r1d~r2.... d~rN (1.16)

This transformation preserves directions, thus it is still correct in momentum space
to talk about directions perpendicular to the plane of a planar molecule as well as
reflection in a symmetry plane or rotation about a symmetry axis of a molecule
and of directions parallel to certain bonds [10]. However, in the momentum space
information about the origin is lost.

1.4.3 Electron Momentum Density

The electron momentum density is a measure of the number of electrons moving
with a given velocity in a given volume defined in the momentum space. It can be
extracted from the momentum space wave function as follows [10]
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γ(~p) = N
∑
spins

∫
φ∗(~p, ~p2, ....., ~pN)φ(~p, ~p2...., ~pN) d~p2.... d~pN (1.17)

According to the inverse weighting of the Fourier transform relation, the electron
momentum distributions turns out to be more informative in the low momentum
(large r) region [11]. Thus, its more favourable to use EMDs for studying the valence
electron behaviour. Electron momentum densities are experimentally accessible via
techniques such as Compton scattering, positron annihilation followed by angular
correlation etc.

For a better understanding of molecular structures, topographies of the ground-state
EMDs are studied and analyzed for critical points (CPs), especially, the ones at |~p| =
0. Initially, topographical studies of atomic and molecular scalar fields concentrated
on securing a systematic understanding of the nature of the function and to use that
knowledge for an interpretative purpose.

1.5 Experimental measures of EMD

1.5.1 Compton Scattering

Compton scattering is an inelastic scattering that probes momentum distributions
of electrons in condensed matter. It occurs due to interaction of a photon with
the free electrons of a system. EMDs are closely related to intensities obtained
from Compton scattering experiments. When monochromatic photons are Compton
scattered (inelastically scattered) in a fixed direction, the observed energy spectrum
of the scattered photons is Doppler-broadened due to the motion of the target
electrons.

The shift in the wavelength of the photon after being scattered is given by:

λ′ − λ = h

mec
(1− cosθ) (1.18)

The Compton profile is related to the spherically averaged electron momentum
density [12] [13], γ(~p) via the relation:

J(pz) = 2π
∫ ∞
|pz |

γ(p)p dp (1.19)
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Fig. 1.4: A schematic diagram of Compton scattering. An incident photon of wavelength λ
collides with an electron at rest. A new scattered photon of wavelength λ′ emerges at an

angle Φ and the electron recoils by an angle θ

Reciprocally,

γ(p) = −1
2π p

−1dJ(pz)
dpz

(1.20)

The study and measurements of Compton profiles have received a good deal of
attention in the past decade. The reason for such an interest is that with the advent
of intense γ-ray and synchrotron radiation sources very accurate determination of
the momentum space properties of electrons in the sample has become possible.

1.5.2 Positron Annihilation Experiment

Positrons are anti-particle counterpart of electrons, created by beta decay or pair
production. Positrons and electrons are complementary states of matter, and upon
interaction a positron can easily annihilate an electron, and their kinetic and rest
mass energies are dissipated as the energy of two gamma-rays, in exactly opposite
directions. Information about the behaviour of electrons, that are annihilated
by positrons, is then obtained by measuring various properties of the subsequent
annihilation quanta [14][15].
There are different categories of annihilation experiments to obtain information
about electrons. To access the electron momentum densities via positron annihilation,
two-photon angular correlation experiments are used [15]. The two-photon angular
correlation depends on the momentum of the positron-electron pair.
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Fig. 1.5: Schematic for positron annihilation of an electron.

1.6 Bond-directionality Principle

An important characteristic of the molecular EMDs is the bond-directionality prin-
ciple, which states that the maximal nature of the EMD is perpendicular to the
position space bonding directions. Being connected by an FT, the wavefunctions
in position and momentum spaces bear a reciprocal relation to each other, hence a
narrow wave function in position space leads to a broad one in momentum space
and vice versa [16].

The Molecular orbital wavefunction of H2 in position space, can be written as:

ΨMO(~r1) = 1√
2(1 + S2)

[ψA(~r1) + ψB(~r1)] (1.21)

Where, ψA(~r1) and ψB(~r1) is the 1s atomic Slater function with the atoms being
centred at position vectors ~RA and ~RB respectively. The overlap between these func-
tions is given by S. Fourier transforming eqn.(1.21) and integrating over momentum
coordinates of one particle, we get the EMD distribution of H2 molecule, which is as
follows:

γ(~p) = 1 + cos[~p.(~RA − ~RB)]
1 + S2 |A(~p)|2 (1.22)

Here (~RA − ~RB) denotes the bonding vector and A(~p) is the Fourier transform of
the 1s atomic slater function. The cos term, diffraction factor, in eqn.(1.22) induces
maximality in a momentum direction perpendicular to bonding direction, known
as Coulson’s bond directionality principle and also induces oscillations which is
termed as the bond oscillation principle. This interpretation allows us to relate and
effect chemical phenomena like bonding and ionization in the momentum space.
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1.7 Thesis Outline

The idea of this thesis is to look at the bond directionality and bond oscillation
principles in the above discussed molecular systems in the absence of field and later
observe the changes in the same in presence of an external oscillating electric field.
The 2nd chapter discusses the tools of topography and the important characteristics
of EMD like the bond-directionality principle, important for our study, in more
detail.The 3rd and 4th chapter includes the study of bond-directionality principle in
different molecular systems in great detail and their EMDs in absence and presence
of an external oscillating electric field and the results and interpretations that we
could arrive at from our study.
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Bond directionality in Electron
Momentum Densities of
Field-free Molecules

2

The following chapter discusses, the bond-directionality principle in different chemi-
cal systems, such as the Dihydrogen molecule (H2), Trihydrogen cation (H3

+), water
(H2O) and ethylene (C2H4) in the absence of an electric field. We have tried to look
at the variation in EMD with changing bond length for H2 and H3

+, to look at the
oscillations that set in with increasing bond length. The last section of this chapter
discusses pair-wise electron momentum densities and how they are important for
polyatomic systems.

2.1 Dihydrogen (H2)

We try to arrive at an expression for the bond-directionality principle using the MO
and Valence bond approximation.

2.1.1 Bond Directionality Principle : MO and VBT approximation

• MO approximation:
For H2, consider the molecular orbital for an electron forming part of a bond
between nuclei HA and HB:

ΨMO(~r) = 1√
2(1 + S2)

[ψA(~r) + ψB(~r)] (2.1)

Where, ψA(~r) and ψB(~r) is the 1s atomic Slater function with the atoms being
centred at position vectors ~RA and ~RB respectively, given as:

ψA(~r) =
(
α3

π

) 1
2

e−α|~r−
~RA| (2.2)
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and, S in the overlap between two slater functions. The Fourier transformation
of eqn (2.20) will give us the wavefunction in momentum space.

φA(~p) =
(2α
π

)1/2 8πα5/2

(α2 + p2)2 e
−i~p. ~RA (2.3)

Φ(~p) = 1√
2(1 + S2)

[e−i~p. ~RA + e−i~p.
~RB ]A(~p) (2.4)

Momentum density can be given as:

γ(~p) = |Φ(~p)|2 = Φ(~p)Φ∗(~p)

= 1
2(1 + S2) [e−i~p. ~RA + e−i~p.

~RB ][ei~p. ~RA + ei~p.
~RB ]A(~p)A∗(~p)

= 1
2(1 + S2) [2 + e−i~p.

~RAe−i~p.
~RB + e−i~p.

~RAe−i~p.
~RB ]|A(~p)|2

= 1
2(1 + S2) [2 + e−i~p.(

~RA−~RB) + ei~p.(
~RA−~RB)]|A(~p)|2

= 1
1 + S2 [1 + e−i~p.(

~RA−~RB) + ei~p.(
~RA−~RB)

2 ]|A(~p)|2

= 1 + cos ~p.(~RA − ~RB)
1 + S2 |A(~p)|2 (2.5)

Here (~RA − ~RB) denotes the bonding vector and A(~p) is the Fourier transform
of the 1s atomic slater function.

• VBT approximation:
The Valence bond orbital wavefunction for H2:

ΨV B(~r1, ~r2) = 1√
2(1 + S)

[ψA(~r1)ψB(~r2) + ψA(~r2)ψB(~r1)] (2.6)

Then wavefunction in momentum space can be given as:

φ(~p1, ~p2) = 1√
2(1 + S)

[e−i(~p1. ~RA+~p2. ~RB) + e−i(~p2. ~RA+~p1. ~RB)]A(~p1)A(~p2) (2.7)

Momentum density will then be:

γ(~p) = |Φ(~p1, ~p2)|2 = Φ(~p)Φ∗(~p)

= 1
2(1 + S) [e−i(~p1. ~RA+~p2. ~RB) + e−i(~p2. ~RA+~p1. ~RB)]

[ei(~p1. ~RA+~p2. ~RB) + ei(~p2. ~RA+~p1. ~RB)]|A(~p1)|2|A(~p2)|2
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γ(~p) = 1
2(1 + S) [2 + e−i(~p1−~p2).(~RA−~RB) + ei(~p1−~p2).(~RA−~RB)]|A(~p1)|2|A(~p2)|2

= 1
2(1 + S) [2 + 2 cos(~p1 − ~p2).(~RA − ~RB)]|A(~p1)|2|A(~p2)|2

= 1 + cos(~p1 − ~p2).(~RA − ~RB)
1 + S

|A(~p1)|2|A(~p2)|2

The momentum density corresponding to electron 1 can then be obtained by
integrating the above equation over ~p2 as follows:

|Φ(~p1)|2 = 1 + cos ~p1.(~RA − ~RB)
1 + S

|A(~p1)|2 (2.8)

For the momentum density to be maximum, the diffraction term, i.e. the cos term in
eqn.(2.5) and eqn.(2.8), should be equal to 1. So,

cos ~p.(~RA − ~RB) = 1

=⇒ ~p.(~RA − ~RB) = 0

=⇒ |~p||(~RA − ~RB)| cos θ = 0

=⇒ θ = 90°

Thus the EMD is maximal in a direction perpendicular to the position space bonding
direction (~RA − ~RB).

We would also like to look at the consequences of increasing the bond length, i.e.
increassing |~RA − ~RB|. Looking at eqn.(2.5), it can be said that upon increasing the
bond-length, we could see greater oscillations because each atom would have its
own sepaarate oscillations, which would increase as the separation between two
atoms increase.

2.1.2 Variation of EMD with increasing bond length

We varied the H-H bond length from 0.05 a.u. to 25 a.u. and calculated the EMDs
at each bond length using the restricted Hartree-Fock (RHF) and full configuration
interaction (CI) method methods. In the RHF method H2 dissociates as H+ and H-,
while in the CI method it dissociates as 2 H atoms, which is what we want. Hence
we’ve used both RHF and full CI method for comparision. The coemd-ref basis set for
the S, P and D shells with their numbers modified by an even-tempered extrapolation
of the basis has been used in the following calculations.
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Fig.(2.1) shows the potential energy curve for the ground state of the H2 molecule
calculate using the full CI method at each H-H bond length. The EMD and Laplacian
at each of the shown bond length was calculated. Fig.2.2(a) shows the variation of

Fig. 2.1: Ground state potential energy curve for H2, calculated using the full CI method
with extended coemd-ref basis set.

EMD at |~p| = 0 with increasing bond length. We can see from the curve for EMD that
the value of γ(~0) increases with increasing bond-length in case of the RHF method
except around r = 11 a.u.. We have already seen that the valence character of any
system is observed at |~p| = 0. When r = 0, the two H atoms are strongly bonded
and therefore have a very weak valence character, so the γ(~0) value is low at low
r. As r increases, the separation of the H atoms lead to an increase in the valence
character, thereby increasing γ(~0). However, for the full CI method, we see that the
EMD first increases, then decreases a little and remains the same thereafter, this
may be due to the fact that H2 dissociates as 2 H atoms. The data from the full-CI
method is more believable because of its channel of dissociation.

Fig.2.2(b) shows the variation of the Laplacian of the EMD at |~p| = 0 with increasing
bond length. The Laplacian of a function f(x) at xo measures how much f(xo)
deviates from average values of f on either side of it. If, at a given point x 0 , the
function is the same as the average over surrounding points, then the Laplacian
vanishes. On the other hand, if the function is far from that average then the
Laplacian is far from zero. From the blue curve (full-CI) of the Laplacian we can
see that when the values of (0) are increasing, the laplacian is far from zero. This is
because the deviation at each point from the average values around that point is
high. However, when the (0) values start converging, the laplacian gets closer to
zero because the devation is now almost negligible.
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Also, the dip in the EMD-red curve around 11 a.u. Laplacian-red curve becoming less
negative around the same bond length is indicative of a loss in maximal character at
|~p| = 0.

Fig. 2.2: A plot of (a) EMD and (b) Laplacian of EMD for H2 at |~p| = 0 as a function of the
bond length. The values of both EMD and Laplacian at |~p| = 0 was calculated using an

in-house code for momentum space properties.

We’ve also tried plotting the isosurfaces for EMDs at varying bond lengths of 0.05 a.u.
to 7 a.u., using both RHF and full CI method and tried comparing the isosurfaces
from the two methods.
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Fig. 2.3: Isosurfaces of EMDs for H2 for varying H-H bond length using the extended
coemd-ref basis set, visualized using VMD at an isovalue of 0.05

From fig.(2.3), we can see that when the separation between the two H atoms
is small, there are no oscillations and the isosurface also looks equivalent on all
axes. As we move closer to the equilibrium bond length (∼1.4 a.u.), we see that the
maximal nature of the EMD is perpendicular to the position space bonding directions.
Upon further increase in the H-H bond length we can see that the oscillations start
to set in, and the number of oscillations increase upon increase in bond length. This
may be because at higher bond lengths, the atoms no longer remain bonded and
have individual oscillations, and the number of these oscillations increase as the
separation between the two H atoms.
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2.2 Trihydrogen cation (H3
+)

We have chosen Trihydrogen cation (H3
+) for its geometry, which maybe interesting

to analyze in terms of EMDs.It has a D3h symmetry. We have tried to come at an
analytical expression for bond-directionality principle for this as well.

2.2.1 Bond Directionality Principle : MO and VBT approximation

• MO approximation :
For H3

+, we again consider molecular orbital for an electron forming part of a
bond between nuclei HA, HB and HC:

ΨMO(~r) = 1√
2(1 + S2)

[ψA(~r) + ψB(~r) + ψC(~r)] (2.9)

The Fourier transformation of eqn (2.9) will give us the wavefunction in
momentum space.

Φ(~p) = 1√
2(1 + S2)

[e−i~p. ~RA + e−i~p.
~RB + e−i~p.

~RC ]A(~p) (2.10)

Momentum density, can then be given as:

|Φ(~p)|2 = Φ(~p)Φ∗(~p)

= 1
2(1 + S2) [e−i~p. ~RA + e−i~p.

~RB + e−i~p.
~RC ][ei~p. ~RA + ei~p.

~RB + ei~p.
~RC ]A(~p)A∗(~p)

= 1
2(1 + S2) [3 + e−i~p.(

~RA−~RB) + ei~p.(
~RA−~RB) + e−i~p.(

~RA−~RC) + ei~p.(
~RA−~RC)

+ e−i~p.(
~RB−~RC) + ei~p.(

~RB−~RC)]|A(~p)|2

= 1
2(1 + S2) [3 + 2 cos ~p.(~RA − ~RB) + 2 cos ~p.(~RA − ~RC)+

2 cos ~p.(~RB − ~RC)]|A(~p)|2 (2.11)

• VBT approximation :
The Valence bond orbital wavefunction for H2:

ΨV B(~r1, ~r2) = 1√
6(1 + S)

[ψA(~r1)ψB(~r2) + ψA(~r1)ψC(~r2) + ψB(~r1)ψC(~r2)

+ ψA(~r2)ψB(~r1) + ψA(~r2)ψC(~r1) + ψB(~r2)ψC(~r1)]
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Then wavefunction in momentum space can be given as:

φ(~p1, ~p2) = 1√
6(1 + S)

[e−i(~p1. ~RA+~p2. ~RB) + e−i(~p1. ~RA+~p2. ~RC)+

e−i(~p1. ~RB+~p2. ~RC) + e−i(~p1. ~RB+~p2. ~RA)

+ e−i(~p1. ~RC+~p2. ~RA) + e−i(~p1. ~RC+~p2. ~RB)]A(~p1)A(~p2)

Momentum density will then be:

|Φ(~p1, ~p2)|2 = Φ(~p)Φ∗(~p)

= 1
6(1 + S) [6 + 2 cos ~p2.(~RB − ~RC) + 2 cos[~p1.(~RA − ~RB) + ~p2.(~RB − ~RC)]

+ 2 cos(~p1 − ~p2)(~RA − ~RB) + 2 cos[~p1.(~RA − ~RC) + ~p2.(~RB − ~RA)]

+ 2 cos ~p1.(~RA − ~RC) + 2 cos ~p1.(~RA − ~RB)

+ 2 cos[~p1.(~RA − ~RB) + ~p2.(~RC − ~RA)]

+ 2 cos(~p1 − ~p2)(~RA − ~RC) + 2 cos[~p1.(~RA − ~RC) + ~p2.(~RC − ~RB)]

+ 2 cos ~p2.(~RC − ~RA) + 2 cos[~p1.(~RB − ~RC) + ~p2.(~RC − ~RA)]

+ 2 cos(~p1 − ~p2)(~RB − ~RC)

+ 2 cos ~p1.(~RB − ~RC) + 2 cos[~p1.(~RB − ~RC) + ~p2.(~RA − ~RB)]

+ 2 cos ~p2.(~RA − ~RB)]|A(~p1)|2|A(~p2)|2

The momentum density corresponding to electron 1 can then be obtained by
integrating the above equation over ~p2.

|Φ(~p1)|2 = 1
6(1 + S) [6 + 8 cos ~p1.(~RA − ~RB) + 8 cos ~p1.(~RA − ~RC)+

8 cos ~p1.(~RB − ~RC)]|A(~p1)|2 (2.12)

Looking at equations (2.11) and (2.12), we can say that for a polyatomic systems
like H3

+, the bond directionality principle holds true for each of the bonds. EMD
exhibits a maximal nature perpendicular to each of the bonding direction. Thus we
try to look at the pair-wise momentum densities for the polyatomic systems.

2.2.2 Variation of EMD with increasing bond length

Like H2, we tried plotting γ(~0) and Laplacian for H2
+ at varying H-H bond length.

The three H-H bonds were varied equally. Here also both RHF and full CI method
was used along with an even-tempered extended coemd-ref basis set.
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Fig. 2.4: Ground state potential energy curve for H3
+, calculated using full CI method with

the extended coemd-ref basis set and RHF level of theory at each H-H bond length.

Fig.(2.4) shows the potential energy curve for the ground state of the H3
+ molecule

calculate using the full CI method at varying bond length. The EMD and laplacian
at |~p| = 0 for each of these bond length was calculated using an in-house code for
momentum space properties.

Fig. 2.5: A plot of (a) EMD and (b) Laplacian of EMD for H3
+ at |~p| = 0 as a function of the

bond length. The values of both EMD and Laplacian at |~p = 0| was calculated using an
in-house code for momentum space properties.

Fig.2.5(a) shows the variation of EMD at |~p| = 0 with increasing bond length. We
can see from the curve for EMD that the value of γ(~0) increases with increasing
bond-length in case of the RHF method. As we know, that the valence character
of any system is observed at |~p| = 0. When r = 0, the two H atoms are strongly
bonded and therefore have a very weak valence character, so the γ(~0) value is low

23



at low r. As r increases, the separation of the H atoms lead to an increase in the
valence character, thereby increasing γ(~0). However, for the full CI method, we see
that there’s a sharp increase in the value of EMD initially but, gradually the value
become constant with little to no change.

Fig.2.5(b) shows the variation of the Laplacian of the EMD at |~p| = 0 with increasing
bond length. From the blue curve (full-CI) of the Laplacian we can see that when
the values of (0) are increasing, the laplacian is far from zero. This is because the
deviation at each point from the average values around that point is high. However,
when the (0) values start converging, the laplacian gets closer to zero because the
devation is now almost negligible.
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Fig. 2.6: Isosurfaces of EMDs for H3
+ at varying H-H bond length using the coemd-ref basis

set along the restricted Hartree-Fock level of theory, visualized using VMD. The isovalues
given in the figure are in a.u.

We’ve also tried plotting the isosurfaces for EMDs at varying bond lengths of 0.05 a.u.
to 16 a.u., using both RHF and full CI method and tried comparing the isosurfaces
from the two methods. From Fig.(2.6), we can see that when the separation between
the atoms is small (0.05 - 1 a.u.), there are no oscillations and the isosurface also
looks equivalent on all axes. As we move closer to the equilibrium bond length
(∼1.77 a.u.), we see that the maximal nature of the EMD is perpendicular to the
position space bonding directions and the oscillations also start to set in. Upon
an increase in the bond length, the number of oscillations also increases. This
may be because at higher bond lengths, the atoms no longer remain bonded and
have individual oscillations, and the number of these oscillations increase as the
separation between the two H atoms. When the isosurfaces from the two methods
are compared, we notice that in case of the full CI method, the oscillations start to
set in much later than that of the RHF method.
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2.3 Ethylene Molecule

In ethylene molecule, one of the three hybridised sp2 orbital on each of the C atom
overlaps to form the σ-bond and the pz orbitals on each of the C atom overlap to
form a π-bond. Both, σ and π bond in the system are on the same axis (bonding
axis). We’ll look at the contributions of these two bonds to the bond directionality in
momentum space.

To look at the pi contribution, we can only look at the orbitals contributing to the
pi-bond, i.e. 2pz orbital. The molecular orbital for an electron forming part of the π
bond between CA and CB can be written as:

Ψ(~r) = 1√
2(1 + S2)

[ψA2pz(~r) + ψB2pz(~r)] (2.13)

If ψ2pz(~r) is a Gaussian type orbital, then its Fourier transform gives the wavefunction
in momentum space.

φpz(~p) = (−i)(2πα)−
3
4 ( pz
α

1
2

) exp{−i~p. ~A} exp{−p
2

4α } (2.14)

Φ(~p) = 1√
2(1 + S2)

[(−ipz)e−i~p.
~RA + (−ipz)e−i~p.

~RB ]A(~p) (2.15)

Momentum density can be given as:

|Φπ(~p)|2 = Φ(~p)Φ∗(~p)

= 1 + cos ~p.(~RA − ~RB)
1 + S2 p2

z|A(~p)|2 (2.16)

Now to look at the σ contribution, we look at sp2 orbitals.The molecular orbital for
an electron forming part of the σ bond between CA and CB can be written as:

Ψ(~r) = 1√
2(1 + S2)

[ψAsp2(~r) + ψBsp2(~r)] (2.17)

ψsp2 = c1ψ2s + c2ψ2px + c3ψ2py (2.18)

φs(~p) = (2πα)−
3
4 exp{−i~p. ~A} exp{−p

2

4α }

φpx(~p) = (−i)(2πα)−
3
4 ( px
α

1
2

) exp{−i~p. ~A} exp{−p
2

4α }
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Therefore,

Φσ(~p) = 1√
2(1 + S2)

[{e−i~p. ~RA + (−ipx)e−i~p. ~RA + (−ipy)e−i~p.
~RA}

+ {e−i~p. ~RB + (−ipx)e−i~p. ~RB + (−ipy)e−i~p.
~RB}]A(~p) (2.19)

Momentum density can then be calculated as:

|Φσ(~p)|2 = Φ(~p)Φ∗(~p) (2.20)

On substituting Φσ(~p) from eqn.(2.19) and its conjugate, in eqn(2.20) we get the
following:

|Φσ(~p)|2 = 1 + cos ~p.(~RA − ~RB)
1 + S2 {1 + p2

x + p2
y + 2pxpy}|A(~p)|2

Hence the total contribution from both, σ and π bonds, is given as:

γ(~p) = |Φσ(~p)|2 + |Φπ(~p)|2

= 1 + cos ~p.(~RA − ~RB)
1 + S2 {1 + p2

x + p2
y + p2

z + 2pxpy}|A(~p)|2 (2.21)

2.4 Bond-Oscillation Principle

From the equation:

γ(~p) = 1 + cos ~p.(~RA − ~RB)
1 + S

|A(~p)|2 (2.22)

we can see that the geometry information about the equilibrium nuclear positions
(~RA, ~RB , etc.) is included only in the diffraction factor, i.e., the cos term, introduced
by Fourier transformation of the position space wavefunction to the momentum
space wave function. Thus the electron momentum distribution is modulated by
a cosine function with a periodicity of 2π

|~RA−~RB |
. This oscillation induced by the

diffraction term is referred to as the bond-oscillation principle.

2.5 Pair-wise momentum densities

From the analytical expression of γ(~p) for H3
+ (eqn. 2.12), we concluded that to

understand the bond-directionality principle in polyatomic system we need to look
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at pair-wise momentum densities.

Φa(~p) =
k∑

µ=1
cµaϕµ(~p) (2.23)

ϕµ(~p) =
∑

ciφiµ(~p) (2.24)

φiµ(~p) = niA.χiAµ(~p) (2.25)

χiAµ(~p) =
[l/2]∑
k1=0

(−1)k1(px/
√
α)l−2k1

k1!(l − 2k1)!

[m/2]∑
k2=0

(−1)k2(py/
√
α)m−2k2

k2!(m− 2k2)!
[n/2]∑
k3=0

(−1)k3(pz/
√
α)n−2k3

k3!(n− 2k3)! exp−( p
2

4α + i~p. ~A) (2.26)

γ(~p) = Φ∗i (~p)Φi(~p) =
∑
µ

c∗µaϕ
∗
µ(~p)

∑
ν

cνaϕν(~p)

=
∑
µ,ν

(2
∑
a

c∗µacνa)ϕ∗µ(~p)ϕν(~p)

=
∑
µ,ν

Pµν(
∑

ciφiµ(~p))∗(
∑

cjφjν(~p))

=
∑
µ,ν

Pµν
∑
i

∑
j

c∗i cjn
∗
iAnjAχ

∗
iAµχiAν

γ(~p) =
∑
µ,ν

Pµν
∑
i

∑
j

c∗i cjn
∗
iAnjA{

[lµ/2]∑
k1=0

(−1)k1(px/
√
α)lµ−2k1

k1!(lµ − 2k1)!
[mµ/2]∑
k2=0

(−1)k2(py/
√
α)mµ−2k2

k2!(mµ − 2k2)!

[nµ/2]∑
k3=0

(−1)k3(pz/
√
α)nµ−2k3

k3!(nµ − 2k3)! }

{
[lν/2]∑
k1=0

(−1)k1(px/
√
α)lν−2k1

k1!(lν − 2k1)!

[mν/2]∑
k2=0

(−1)k2(py/
√
α)mν−2k2

k2!(mν − 2k2)!
[nν/2]∑
k3=0

(−1)k3(pz/
√
α)nν−2k3

k3!(nν − 2k3)! }e(− p
2
4 ( 1

αµ
− 1
αν

))
e(i~p.( ~Aµ− ~Aν) dotted(2.27)

If µ ∈ atom centre A and ν ∈ atom centre B then we can have the pair wise
momentum densities.
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2.5.1 Pair-wise momentum densities for H3
+

From Fig. 2.7(a), we can see that the total electron momentum density of the system
is maximal in the direction perpendicular to the molecular system, which is in
accordance with the bond-directionality principle. The pair-wise momentum densities
of the H-H bonds are shown in Fig. 2.7(c), which shows that the pairwise densities
are maximum in a direction along each of these bonds. However, they stretch along a
direction perpendicular to the bond, i.e., they are wider in a direction perpendicular
to the bond. This is in accordance with the bond-directionality principle.The values
of these pair-wise densities range from -ve to +ve through zero and these oscillations
are parallel the bonding direction. This is in accordance with the bond-oscillation
principle.

Fig. 2.7: (a) Isosurface for the total momentum density, (b) Isosurface of the Laplacian of
the EMD and (c) Isosurfaces for the pairwise momentum densities of different pairs of H3

+.
All the given isovalues are in a.u.

2.5.2 Pair-wise momentum densities for Water

From fig. 2.8(a), we can see that the total electron momentum density of the system
is maximal in the direction perpendicular to the molecular system, which is in
accordance with the bond-directionality principle. The pair-wise momentum densities
of different pairs are shown in fig. 2.8(c), which shows that the pairwise densities
are maximum in a direction along each of these bonds. However, they stretch along a
direction perpendicular to the bond, i.e., they are wider in a direction perpendicular
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to the bond. This is in accordance with the bond-directionality principle.The values
of these pair-wise densities range from -ve to +ve through zero and these oscillations
are parallel the bonding direction. This is in accordance with the bond-oscillation
principle.

Fig. 2.8: (a) Isosurface for the total momentum density, (b) Isosurface of the Laplacian of
the EMD, (c) Isosurfaces for the pairwise momentum densities of different pairs and (d)

Isosurface of the bare-nuclear potential of H2O. All the given isovalues are in a.u.

2.5.3 Pair-wise densities for Ethylene

From fig. 2.9(a), we can see that the total electron momentum density of the system
is maximal in the direction perpendicular to the molecular system, which is in
accordance with the bond-directionality principle. The pair-wise momentum densities
of different pairs are shown in fig. 2.9(c), which shows that the pairwise densities
are maximum in a direction along each of these bonds. However, they stretch along a
direction perpendicular to the bond, i.e., they are wider in a direction perpendicular
to the bond. This is in accordance with the bond-directionality principle.The values
of these pair-wise densities range from -ve to +ve through zero and these oscillations
are parallel the bonding direction. This is in accordance with the bond-oscillation
principle.
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Fig. 2.9: (a) Isosurface for the total momentum density, (b) Isosurface of the Laplacian of
the EMD, (c) Isosurfaces for the pairwise momentum densities of different pairs and (d)

Isosurface of the bare-nuclear potential of C2H4. All the given isovalues are in a.u.
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Molecular Electron
Momentum Densities of
Field-dressed Systems

3

This chapter discusses bond-directionality of the above-studied systems in presence
of an external oscillating electric field. The influence of an external field on various
chemical processes have been studied in the past [1][2]. Recently M. Paul et. al.[3]
studied the rotatory response of EMDs in presence of a linear, homogenous, weak
electric field.

The advancement in laser technology has made possible, the study of the interac-
tion of atoms and molecules with fields of intensities of the order of 1014 W/cm2

- 1015 W/cm2 . Some of the interesting phenomena observed under such high in-
tensities include multi-photon ionization, tunnel ionization and barrier suppression
ionization.

In this thesis we have approximated a cosine function as the intense laser that
perturbs our system. Since the laser is a periodic perturbation, there exist a method to
solve periodic hamiltonians. Floquet method, introduced by Shirley [4], enables us to
represent the time-dependent Hamiltonian to be represented as a time-independent
infinite matrix. A unitary transformation provides us with some solutions and
describes the evolution in time for any general wavefunction.

ψn(~r, t) = e
−iEnt
h̄ φn(~r, t) (3.1)

Plugging in the unitary transformed wavefunction to the time dependent Schrödinger
equation we obtain a new Hamiltonian of the form HF (r, t) = −ih̄ ∂

∂t + Ĥ(r, t) and
the TDSE now looks like

ĤF (~r, t)φn(~r, t) = Enφn(~r, t) (3.2)

The general solution to the above equation can be written as

ψ(~r, t) =
∞∑

n=−∞
ane

−iEnt
h̄ φn(~r, t) (3.3)
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To solve for the wavefunction we use (t,t’) method deviced and developed by Peskin
and Moiseyev. The (t,t’) method brings in a new dimension t’ to the wavefunction in
an extended Hilbert space as suggested by Sambe and Howland, such that the TDSE
becomes:

ih̄

[
∂

∂t
+ ∂

∂t′

]
Ψ̃(~r, t, t′) = ĤF (~r, t′)Ψ̃(~r, t, t′) (3.4)

An in-house code for the (t,t’) method has been used for looking at the time-
dependent momentum densities of different systems.

3.1 Complex Absorbing Potential (CAP)

The evolution of wave packets is usually carried out using discrete representation
of the Hamiltonian and the wave function in a finite grid. However, in scattering
processes the wave moves towards some outgoing asymptotic state where the effect
of the interaction or parts of it vanish because one or more coordinates tend to
infinity. The spatially finite grid box cannot represent this process indefinitely
because the leading part of the wave will eventually arrive at the box edge and
be reflected. The reflected parts of the wave may spoil the physical validity of
the calculation due to the interference with the part of the wave remaining in the
box. Enlarging the box size delays the interferences, so that the desired quantities
(transition probabilities, life times) may be obtained, at the price of a considerable
increase of computing time. Another effective way is the addition of a Complex
Absorbing Potential (CAP) [5] at the boxedge. The grid should be large enough to
span the range of coordinates over which the potential is important. The complex
potential should absorb the wave completely in a small length without modifying
the physical wave function in the inner part of the grid, and be numerically robust
with respect to discretization.

3.2 Results and Discussion

A molecular system in presence of an intense electric field, usually, undergoes
ionisation, which means that a valence electron escapes the system and goes to an
infinite distance. We’ll, therefore, be looking at the variation in EMD values at ~p = 0
with varying elecric field.

In field free systems, we have seen that γ(~0) can be maximum (in case of H2), as well
as minimum (in case of H3

+). So, if a molecule undergoes ionisation in presence of
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a laser, how can we account for it using the γ(~0). We’ll try to see if the ionisation
can be accounted by γ(~0) = 0.

3.2.1 H2

For H2, we used the coemd-ref basis set. Laser was polarized in Z-direction, i.e.
the bonding direction, with intensity, ε = 0.25 a.u. = 0.219 × 1016 W/cm2 and
frequency, ω = 0.21 a.u = 5.714 eV, for 12 optical cycles, out of which the number
of optical cycles for rising pulse, CW region pulse and descending pulse is 2 each.
And, the CAP box size is set to 20,26,26. From fig.(3.1) we can see that the norm
decreases and then conveges, which means that ionisation of the valence electron of
H2 takes place. Also, The γ(~0) values go to zero. A possible reason for this may be
that due to ionization, the valence electron goes to infinity and thus γ(~0) goes to 0.

Fig. 3.1: (a) Geometry of H2 molecule. The black arrow denotes the direction in which the
laser is induced. (b) Variation of γ(~0) with optical cycle in the presence of a linearly

polarized Laser, along Z-direction. The x-axis represents the no. of optical cycles and the y1-
and y2- axis represent EMD, γ(~0) (in red) and the energy of the pulse (in purple) in a.u.,

respectively. The electric field runs for 12 optical cycles and the pulse is ended after the 6th

optical cycle, with intensity, ε = 0.25 a.u., ω = 0.21 a.u., quiver distance, αo = 5.668934
a.u., with the CAP box size set to 20,26,26

Fig.(3.2) shows the variation of the laplacian, ∇2γ(~0), of EMD with optical cycle in
the presence of a linearly polarized Laser, along Z-direction. The Laplacian, here,
seems to show a trend. It dips to most negaive at peak field strengths and most
positive when the pulse is zero. The positive Laplacian sustains when the pulse is
switched off.
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Fig. 3.2: Variation of the laplacian, ∇2γ(~0), of EMD for H2, with optical cycle in the
presence of a linearly polarized Laser, along Z-direction. The x-axis represents the no. of

optical cycles and the y1- and y2- axis represent ∇2γ(~0) (in red) and the energy of the pulse
(in purple) in a.u., respectively and intensity, ε = 0.25a.u.

3.2.2 H3
+

For H3
+, we have tried to look at the behaviour of γ(~0) in presence of linearly-

polarized lasers, along all three directions, X, Y and Z, and with different intensities
(0.25, 0.75). We also calculated the transition dipole moments for H3

+ in all three
directions. A transition from orbital 1 (HOMO) to orbital 3 was observed for Z
polarization. Higher orbital transitions were not so significant in case of X and Y
polarization.

For the first set of calculations, we used un-ccemd-ref basis set to carry out the time
propagation calculation and the laser was set along the X-direction (perpendicular
to the molecular plane) with intensity, ε = 0.25 a.u. = 0.219 × 1016 W/cm2 and ε
= 0.75 a.u. = 1.974 × 1016 W/cm2, and frequency, ω = 0.21 a.u = 5.714 eV, for 12
optical cycles, out of which the number of optical cycles for rising pulse, CW region
pulse and descending pulse is 2 each.
From Fig.(3.3), we observe that the norm is conserved throughout when the laser
polarisation is along the X axis, even at higher intensity of the field which indicates
that there’s no ionisation taking place. Also, the γ(~0) values do not go to zero at
any point in time. However, in presence of a strong field, the variation in values
of γ(~0) is very high compared to what was observed in the case of field with lower
intensity.
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Fig. 3.3: (a) Geometry of H3
+ molecule. The black arrow denotes the direction in which

the laser is induced. (b) Variation of γ(~0) with optical cycle in the presence of a linearly
polarized Laser, along X-direction. The x-axis represents the no. of optical cycles and the y1-
and y2- axis represent EMD, γ(~0) (in red) and the energy of the pulse (in purple) in a.u.,

respectively. The electric field runs for 12 optical cycles and the pulse is ended after the 6th

optical cycle, with intensity, ε = 0.25 a.u., ω = 0.21 a.u., quiver distance, αo = 5.668934
a.u., and (c) with intensity, ε = 0.75 a.u., ω = 0.21 a.u., quiver distance, αo = 17.007 a.u.,

with the CAP box size set to 10,15,15.

Fig.3.4(a) and (b) shows the variation of the laplacian, ∇2γ(~0), of EMD with optical
cycle in the presence of a linearly polarized Laser, along X-direction at intensities
with intensities 0.25 and 0.75, respectively.

Fig. 3.4: Variation of the laplacian, ∇2γ(~0), of EMD for H3
+, with optical cycle in the

presence of a linearly polarized Laser, along X-direction. The x-axis represents the no. of
optical cycles and the y1- and y2- axis represent ∇2γ(~0) (in red) and the energy of the pulse
(in purple) in a.u., respectively. (a) Intensity, ε = 0.25 a.u. and (b) Intensity, ε = 0.75 a.u.

Next, we tried putting the laser along Y- and Z-direction (parallel to the molecular
plane). Fig.(3.5), shows the variation of γ(~0) with optical cycles. The norm remains
unchanged even in this case and γ(~0) does not become zero.
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Fig. 3.5: (a),(b) Geometry of H3
+ molecule. The black arrows denotes the direction in

which the laser is induced. (c) Variation of γ(~0) with optical cycle. The x-axis represents the
no. of optical cycles and the y1- and y2- axis represent EMD, γ(~0) (in red) and the energy of
the pulse (in purple) in a.u., respectively. The electric field runs for 12 optical cycles and the
pulse is ended after the 6th optical cycle with polarization along Y-direction with intensity, ε
= 0.25 a.u., ω = 0.21 a.u., quiver distance, αo = 5.668934 a.u. and the CAP box size is set
to 20,26,26 and (d) with polarization along Z-direction with intensity, ε = 0.75 a.u., ω =

0.21 a.u., quiver distance, αo = 17.007 a.u. and the CAP box size is set to 20,26,26.

Fig.3.6 (a) and (b) shows the variation of the laplacian, ∇2γ(~0), of EMD with optical
cycle in the presence of a linearly polarized Laser, along Y-direction with ε = 0.25
and along Z-direction with ε = 0.75, respectively.

Fig. 3.6: Variation of the laplacian, ∇2γ(~0), of EMD for H3
+, with optical cycle in the

presence of a linearly polarized Laser, along (a) Y-direction with ε = 0.25 a.u. and (b) along
Z-direction with ε = 0.75 a.u. The x-axis represents the no. of optical cycles and the y1- and

y2- axis represent ∇2γ(~0) (in red) and the energy of the pulse (in purple) in a.u.,
respectively.
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3.2.3 Water (H2O)

For water, we used the aug-cc-pVDZ basis set with extra s- functions on oxygen. Here,
a transition from orbital 5 (HOMO) to a higher orbital, orbital 12 was observed for
Z polarization. However for X and Y polarization, no significant transitions were
observed.

The laser was polarized in Z-direction, i.e., parallel to the molecular plane with
intensity, ε = 0.25 a.u. = 0.219 × 1016 W/cm2 and frequency, ω = 0.21 a.u = 5.714
eV, for 12 optical cycles, out of which the number of optical cycles for starting pulse,
CW region pulse and end pulse is 2 each. And, the CAP box size is set to 10,20,20.
From fig.(3.7) we can see that the norm is decreasing and converging, implying
ionisation. But, the γ(~0) values does not go to zero, even though there’s ionisation.
{Interpretation not very clear, has to be written}

Fig. 3.7: (a) Geometry of H2O molecule. The black arrow denotes the direction in which
the laser is induced. (b) Variation of γ(~0) with optical cycle in the presence of a linearly

polarized Laser, along Z-direction. The x-axis represents the no. of optical cycles and the y1-
and y2- axis represent EMD, γ(~0) (in red) and the energy of the pulse (in purple) in a.u.,

respectively. The electric field runs for 12 optical cycles and the pulse is ended after the 6th

optical cycle, with intensity, ε = 0.25 a.u., ω = 0.21 a.u., quiver distance, αo = 5.668934
a.u., with the CAP box size set to 10,20,20.

Fig.(3.8) shows the variation of the laplacian, ∇2γ(~0), of EMD with optical cycle in
the presence of a linearly polarized Laser, along Z-direction for water. The Laplacian,
here, seems to show a trend. It dips to most negaive and most positive at peak field
strengths and the positive Laplacian sustains when the pulse is switched off.
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Fig. 3.8: Variation of the laplacian, ∇2γ(~0), of EMD for H2O, with optical cycle in the
presence of a linearly polarized Laser, along Z-direction. The x-axis represents the no. of

optical cycles and the y1- and y2- axis represent ∇2γ(~0) (in red) and the energy of the pulse
(in purple) in a.u., respectively and intensity, ε = 0.25a.u.

3.2.4 Ethylene (C2H4)

For Ethylene, we used the aug-cc-pVDZ basis set. Upon calculating the transition
dipole moments for ethylene, we see that there’s a transition from HOMO (orbital 8)
to higher orbitals (14, 25, etc.) for Y and Z polarisation, with transitions being more
significant for Z as compared to that of Y.

Laser was first polarized in Z-direction, i.e., parallel to the molecular plane with
intensity, ε = 0.25 a.u. = 0.219 × 1016 W/cm2 and frequency, ω = 0.21 a.u = 5.714
eV, for 12 optical cycles, out of which the number of optical cycles for starting pulse,
CW region pulse and end pulse is 2 each. And, the CAP box size is set to 10,20,20.
The norm doesn’t decrease significantly. However, when the Laser with intensity
0.75 a.u. is used the norm decreases significantly but does not converge after 12
cycles (Fig.3.9).

Fig.3.10 (a) and (b) shows the variation of the laplacian, ∇2γ(~0), of EMD with
optical cycle in the presence of a linearly polarized Laser, along Z-direction with
intensities 0.25 and 0.75, respectively.
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Fig. 3.9: (a) Geometry of C2H4 molecule. The black arrow denotes the direction in which
the laser is induced. (b) Variation of γ(~0) with optical cycle in the presence of a linearly

polarized Laser, along Z-direction. The x-axis represents the no. of optical cycles and the y1-
and y2- axis represent EMD, γ(~0) (in red) and the energy of the pulse (in purple) in a.u.,

respectively. The electric field runs for 12 optical cycles and the pulse is ended after the 6th

optical cycle, with intensity, ε = 0.25 a.u., ω = 0.21 a.u., quiver distance, αo = 5.668934
a.u. and (d) with intensity, ε = 0.75 a.u., ω = 0.21 a.u., quiver distance, αo = 17.007 a.u.,
with the CAP box size set to 10,15,20. And, (c) and (e) shows the norms for (b) and (d)

respectively.

Fig. 3.10: Variation of the laplacian, ∇2γ(~0), of EMD for C2H4, with optical cycle in the
presence of a linearly polarized Laser, along Z-direction with intensities (a) 0.25 a.u. and

(b) 0.75 a.u. The x-axis represents the no. of optical cycles and the y1- and y2- axis
represent ∇2γ(~0) (in red) and the energy of the pulse (in purple) in a.u., respectively.
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Next we applied the electric field along the Y-direction (perpendicular to C=C,
Fig.3.11). We can see that the norm decreases significantly but does not converge
after 12 cycles. And, the γ(~0) does not go to zero.

Fig. 3.11: (a) Geometry of C2H4 molecule. The black arrow denotes the direction in which
the laser is induced. (b) Variation of γ(~0) with optical cycle in the presence of a linearly

polarized Laser, along Z-direction. The x-axis represents the no. of optical cycles and the y1-
and y2- axis represent EMD, γ(~0) (in red) and the energy of the pulse (in purple) in a.u.,

respectively. The electric field runs for 12 optical cycles and the pulse is ended after the 6th

optical cycle, with intensity, ε = 0.25 a.u., ω = 0.21 a.u., quiver distance, αo = 5.668934
a.u. with the CAP box size set to 10,15,20. (c) Norm versus optical cycle.

Fig.3.12 shows the variation of the laplacian, ∇2γ(~0), of EMD with optical cycle in
the presence of a linearly polarized Laser, along Y-direction with intensity 0.75.

Fig. 3.12: Variation of the laplacian, ∇2γ(~0), of EMD for C2H4, with optical cycle in the
presence of a linearly polarized Laser, along Y-direction with intensity 0.75 a.u. The x-axis
represents the no. of optical cycles and the y1- and y2- axis represent ∇2γ(~0) (in red) and

the energy of the pulse (in purple) in a.u., respectively.
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3.3 Conclusion and Future Prospects

In chapter 3, We see a very clean relationship between change in the bond length in
r-space and the change in number of oscillations in the EMD in p-space. Also, it is
seen that for polyatomic systems, apart from the total EMD, the pairwise momen-
tum densities should also be taken into account to explain the bond-directionality
principle.

In this chapter, we see that in presence of an oscillating electric field, we see that
the values for γ(~0) peaks at peak field field strength and oscillates between a fixed
value even when the pulse is turned off.

We can look at the first and second moments of the EMD, which are experimentally
measurable. They’ll tell us about the electronic phenomenon like ionisation.
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