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Abstract

The present thesis work is motivated by

the detection of MCVs in 2018.

Radiation detected from them was

circularly polarized, had narrow

bandwidth, had very high brightness

temperature. Such radiation profile can

be explained using the model of cyclotron

maser instability. Present thesis work is

an attempt to understand cyclotron

maser in the context of MCVs. A novel

Approach to obtain angular and spectral

profile of the radiation from an

accelerated particle using Maxwell’s

equations on curved space time is

discussed. Vlasov equation and a variant

of H theorem for collisionless plasma are

independently derived.
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1 Introduction

The Magnetic Cataclysmic Variables (MCVs) are binary star systems which contain a white dwarf

with magnetic field strong enough to control the accretion flow from a late type secondary which is

called the donor star. An accretion disk is formed (see Figure 1) as matter is flowing towards the

white dwarf. Magnetohydrodynamic equations govern the physics of plasma found in the accretion

disk. The Plasma found here is dense and collisional. Plasma in the corona near the pole of the

donor star is dilute as it has been shown in [11]. The plasma that predominantly emits in the

optical, ultraviolet and X-ray emission can also emit radio emission through various processes.

Most of them are relativistic processes. Antenna mechanisms, reactive instabilities and maser

instabilities drive plasma emission processes ([13] , [14] ). Observations of radio emission from 33

MCVs carried out with the Karl G. Jansky Very Large Array (VLA) at (C-, X-, and K-bands; 4–6,

8–10, and 20–22 GHz, respectively) at full polarization have recently been reported by Barrett et

al.(see [1]), They reported that 24 of these MCVs with radio fluxes in the range of 6-8031Jy showed

highly circularly polarized emission.

Figure 1: Schematic diagram of an MCV by Philip D. Hall

Using various arguments, cyclotron maser emission was found to be a suitable candidate which is

supposed to be the cause of this radiation as emission was of short duration, had narrow band,

had extremely high degree of circular polarization. The authors proposed Loss Cone mechanism

but in the thesis work, it was subsequently found that loss cone mechanism may not be a suitable

candidate as it is possible that coronal currents are sustained through potential difference along

field lines. It was pointed out in [17]. The authors of [1] proposed that the lower corona of the star

was the region from where the radiation was coming. The thesis work is an attempt to understand

cyclotron maser emission process and relevant Physics behind this phenomenon.

Work on cyclotron Maser instability has its origin in the remarkable paper published by Twiss

in 1958 (see [8]). Cyclotron Maser instability mechanism had been very successful in explain-

ing decametric radiation from jovian moons. My attempt to explain radiation from MCVs is by

constructing an analogy to this situation and using it as a leading line of attack to predict char-

acteristics of radio emission from magnetic cataclysmic variables. The relevant background is like

this. Requirements for electron-cyclotron masers are (i) a population inversion in the electron

distribution and (ii) a magnetized plasma in which the electron-cyclotron frequency exceeds the

plasma frequency (e.g. [4]). The first condition can be achieved when the magnetic field geometry

in the source region allows the development of anisotropy in the electron distribution. Loss cone

distribution (e.g. [19]), where electron pitch-angle(pitch angle is angle between electron velocity

and magnetic field) anisotropy develops within a magnetic flux tube with converging field lines
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at each foot print is very popular. Large-pitch-angle electrons are magnetically reflected, This

happens because there are adiabatic constants and magnetic moment of an electron generated

through its gyrating motion is an adiabatic constant. At the footprint, Small-pitch-angle electrons

are lost from the bottle and merge with high-density plasma at the foot of the flux tube. The

second condition is satisfied in magnetized plasmas with a relatively low electron density and/or

high magnetic field strength.

Loss cone anisotropy drives the emission from IO-Jupiter system(e.g.[6]). The Auroral Kilometric

radiation from Earth’s atmosphere is produced via cyclotron maser instability but it is not driven

by loss cone anisotropy. Anisotorpic shell distributions generated through precipitation of electrons

are the one triggering cyclotron maser instability. NASA satellites have successfully measured shell

distribution function of electrons in the radiation belt. Wu and Lee tried to model AKR emission

through loss cone distribution in 1979 (see [19]).

Cyclotron Maser is a misleading name. It does not have anything to do with energy levels and any

quantum effect. Melrose and Dulk (1982) have formulated the theory in terms of the absorption

coefficient and the resultant conclusions predict spectral similarity with quantum Masers. So, the

name maser is retained.

Melrose narrates, ”the theory of cyclotron instabilities in plasmas due to anisotropic velocity-space

distribution was initiated in the early 1960’s (e.g. Harris 1959, 1961, Sagdeev Shafranov 1961);

it was discussed in some detail in Stix’ book (Stix 1962). The main emphasis in this context has

been the growth of waves with refractive index > 1 due to a temperature anisotropy or to a loss-

cone anisotropy. The non relativistic approximation is made, specifically the Doppler condition is

approximated as ω − sΩe − k‖v‖ = 0 with Ωe = qB
m . ”. [12]

Twiss(1958) used the above relation and found very low growth of cyclotron maser for physically

plausible distributions. In the last section of the thesis, relativistic corrections made to this reson-

ance condition are discussed as they are extremely necessary to obtain a good value of the growth

rate.

Major blow to cyclotron maser theory came, when in the early 1980s, it was found that the loss-

cone maser theory that was advocated by Wu and Lee in 1978 was not supported by observation of

the AKR. Also as Treumann mentioned, two-dimensional particle simulations based on measured

electron loss-cone distributions (Pritchett 1984a,b; Pritchett and Strangeway 1985) had failed as

well([17]). Though later researchers like Dulk adopted shell distributions and in situ measurements

taken by Swedish viking satellite and other satellites confirmed the anisotropic conditions. This

was a mini renaissance in the field of cyclotron maser emission and by early 2000, researchers

again carefully started studying cyclotron maser emission. In situ measurements in the radiation

belt of Earth and in the region near Jupiter in late 20th and 21st century have confirmed that

cyclotron maser instability is driving the coherent radiation process. The emission mechanism for

the extremely bright pulsar radio emission is not known, but given the history and prospects of

cyclotron maser emission, it is a strong candidate to explain radiation from pulsars.

This thesis work explains physics behind cyclotron maser instability and discusses potential ap-

plications of concepts of plasma physics in the context of magnetic cataclysmic variables. The new

proofs of a modified Boltzmann H theorem for plasma, Vlasov equation and novel approaches to

obtain Electromagnetic fields of a radiating particle are discussed.
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2 Classical Radiation

2.1 Balance sheet of a periodically radiating classical system

In Classical theory of radiation, which we will adopt to explain cyclotron Maser instability, radiation

is a direct consequence of Maxwell’s equations and relaxation comes due to Lorentz Force law. In

fact, radiation should be understood as a transfer of material energy and material momentum into

field energy and field momentum and, subsequent escape. Without some external back up, the

process cannot go on for eternity. It has been understood that just like particles, electromagnetic

fields carry momentum and energy. The conservation laws for momentum and energy take field

momentum and energy into account. It can be shown that for a finite volume, total energy in

that volume can never be conserved if charged particles are in motion and the system is not in

equilibrium.

∫
V

J.EdV +

∫
V

(E.
∂D

∂t
+ B.

∂H

∂t
)dV = −

∫
S

(E×H).nda

Here, the first term is interpreted as the rate of change of kinetic energy as it can be directly shown

from Lorentz force law. The second is field energy in the given volume. The right hand side term

is known as Poynting vector which denotes energy flux out of the volume surface. This is the term

that tells us about radiation outflow from any system confined in a finite volume.

Now, I am making an important remark regarding Poynting theorem that it doesn’t actually

portray the whole picture and it has limited applicability. It can be effectively used to analyse

a plasma system if the effects of thermal velocities cancel each other and hence only the bulk

motion has any significance. Nevertheless, it gives us a rough idea as to how a classically radiating

system behaves. Astronomical signals that we receive on the Earth show very consistent periodic

profile. An isolated radiating system without any external backup must never be able to show

consistent radiation profile as motion of radiating particles will experience damping. That leads

us to the conclusion that classically radiating astrophysical system is powered by power sources

which are not electromagnetic in nature. Thermonuclear fusion processes which happen inside the

star produce enormous amount of energy which lead to uneven heating of the star and that gives

birth to convective currents.

If we integrate both sides of Poynting’s Equation and also introduce non electromagnetic work

done on the system, Energy transactions for a classically radiating system powered by a thermal

battery will be,

Wnonelectromagnetic −∆Eradiation = ∆K.E + ∆F.E

For a complete cycle, change in kinetic energy and field energy is zero.So, all energy that has

escaped through radiation comes from non electromagnetic sources.

Wnonelectromagnetic = Eradiation

The right hand side has its origin in thermonuclear processes. So, the main conclusion is that a
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radiating plasma system is just a conduit. All the various ways in which Plasma can radiate are

working as just intermediaries.

Now, the assumption of periodic condition is not a completely valid one. Even for a magnetic

cataclysmic variable, we see that there is steady transfer of material. For polar stars, this transfer

is magnetically channelized. But even when scale of non periodicity is taken into account, the

fluctuations arising from non periodicity won’t be able to explain the enormous amount of radiation

that has escaped. The reservoir of energy has to be at the core of star which is continuously

providing the energy.

The steady value of magnetic field that will be assumed throughout the thesis is very difficult to

maintain. The famous Dynamo problem is not in the scope of this thesis.

2.2 Radiation and Classical Inverse Square Law

Plasma is a collection of roughly free charged particles and it is not always possible to assume

linear continuum. Radiation emitted from each electron needs to be understood. The formal way

to approach this is through Maxwell’s equations.

∇.E =
ρ

ε0

∇×E = −∂B
∂t

∇.B = 0

∇×B = µ0J +
1

c2
∂E

∂t

It is difficult not to overemphasize the importance of these equations. Fields produced by a single

charged particle can be thought of as something similar to Green’s function but not the Green’s

function itself. Green’s function for Maxwell’s equations when they are decoupled, physically

corresponds to a situation where the charge momentarily came into existence and then vanished

again. The standard procedure to approach Maxwell’s equation is to introduce vector and scalar

potentials. The wave equation is obtained by introducing Lorentz guage.

B = ∇×A

E = −∇V − ∂A

∂t

It is well known that these scalar and vector potentials aren’t unique, different potentials can

correspond to the same physical situation and they are related by guage transformations. In

Coloumb guage, which is more appropriate for electrostatics and also in magnetohydrodynamics,

we set ∇.A = 0 and in Lorentz guage,

∇.A =
−1

c2
∂V

∂t

There is a short proof that can show that we can actually set divergence of vector potential to
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these terms. When we put expressions of electric and magnetic fields into the Maxwell’s equations,

we get,

∇2V − ∂2V

∂t2
= − ρ

ε0

∇2A− ∂2A

∂t2
= −µ0J

These are 4 scalar wave equations. Green’s function for it is known. Its form has been deduced

by several authors(e.g [9]). Both advanced and retarded Green’s functions are valid solutions but

we will choose the retarded one to save causality. It is to be mentioned that Maxwell’s equations

don’t imply causality. In the systems with dispersion(Which plasma is) Causality has to be saved

using additional assumptions. Kramer Kronig relations put severe restrictions on permittivity that

a dispersive medium can have.

G(+−)(r, r
′
, t, t

′
) =

δ(t
′ − [t+− |r−r

′
|

c ]

|r− r′ |

4πε0V (r, t) =

∫ ∫
G(+−)(r, r

′
, t, t

′
)ρ(r

′
, t

′
)d3x

′
dt

′

Here, few very crucial and interesting physical conditions have to be specified if we want to obtain

physically plausible potentials from Green’s function. First of all, we are selecting retarded Green’s

function, then we need to assume that the source is localized in time and space. Only then we can

deduce the form of potential. This means that source is in existence only for a finite amount of

time - No matter how long but finite. This assumption is valid in astrophysics too if we think of

stars as systems which exist for a finite amount of time. It may look like that we need to know

about charge and current distributions that will be formed in the future to evaluate the present

value of potentials but the form of argument under dirac delta prevents that.

The retarded potentials and fields can be obtained by carefully taking curl and gradient of retarded

potentials.

V (r, t) =

∫
ρ(r

′
, τ)

|r− r′ |
d3r

′

A(r, t) =

∫
J(r

′
, τ)

|r− r′ |
d3r

′

Where, τ = t− |r−r
′
|

c . The straightforward interpretation is that reaction of the fields to changes

in the source is not instantaneous and there is a lag. Information travels at the speed of light.

When we are receiving radiation from the objects which are light years away, not all terms have

significance. Only those terms in electric and magnetic field which are falling by 1/r will matter.

Rest of the terms have insignificant contribution to the intensity observed at large distances from

the source. Careful algebra is needed to obtain electric and magnetic fields. Jefimenko obtained

the expressions for fields. They are,
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E =
1

4πε

∫
[
r− r

′

|r− r′ |3
ρ(r

′
, τ) +

r− r
′

|r− r′ |2
∂ρ(r

′
, τ)

∂t
− 1

|r− r′ |c2
J(r

′
, τ)

∂t
]d3r′

B =
1

4πε

∫
[
r− r

′

|r− r′ |3
× J(r

′
, τ)− r− r

′

|r− r′ |2c
× J(r

′
, τ)

∂t
]d3r′

When we are talking about the radiation that we are receiving on the Earth, we can safely ignore

terms which are falling faster than the growth of the area of the sphere. If we look at the terms

which are falling by 1/r we can easily see that in radiation zone, Electric and magnetic fields are

always perpendicular. Poynting vector (E×H) which denotes energy flux falls by inverse square of

the radius. Polarization of the radiation can be deduced too. If charge density varies harmonically

with a certain frequency, we will receive radiation of that frequency. The claim that frequency is

always source dependent stands vindicated. Angular characteristics of radiation can be obtained

by looking at the surfaces of constant flux.

Another point that I will make is that the charge and current distributions are localized in the

space. So, multipole expansions are often very useful if we want to get some idea about the

radiation profile.

If we somehow estimate the current in coronal loops and its time dependent growth and fall,

obtaining the radiation profile should not be difficult if the above approach worked without any

modification but the fact is that above approach is valid if individual character of particles is lost

and only the bulk motion is significant. In the next section, it will be discussed in more detail.

2.3 Limitations and Scope of Macroscopic approach and Origin of Cyclo-

tron Maser Instability

The world is made of discrete particles which are in motion. Classical macroscopic electrodynamics

is applicable on continuous media. It is not always the case that averaged over charge density and

current at a point are sufficient representatives of the source condition. Especially when the

source particles are facing back reaction. When particles are evolving under the electromagnetic

field that the whole configuration itself is producing, the current density at t2 may not be directly

obtained from the current density at t1. Something more than just averaged over picture is needed.

Actually the burden of justification lies on the shoulders of the claim that averaged over behaviour

is sufficient to explain the radiative processes.

When there is isotropy in the velocity distribution around mean velocity, we can use local average

velocity as the representative velocity. When full local equilibrium is there, distribution is Max-

wellian. This can be proven. When there is local equilibrium in Plasma we can ignore individual

character of the particles. At sufficiently high temperatures, a dense plasma cannot be considered

collisionless. There is a deeper claim that suggests that sufficient amount of collisions is extremely

necessary if local equilibrium is to be achieved. Analysis of radiation profile directly from Maxwell

equations as described in the previous section is sufficient for such dense radiating Plasma. Plasma

near the accretion disk in an MCV is of this nature.

The Magnetized Plasma systems which are dilute enough show the kind of behavior where con-

tinuum mechanics fails. Geometry of Magnetic field crucially affects how particles move. Exotic
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magnetic field geometries cause many anisotropies in velocity distribution functions. Very infre-

quent collisions in a collisionless plasma prevent the plasma to go into local equilibrium. It is to

be stressed that Simple macroscopic radiation is generally not powerful enough to generate sharp

radio bursts. We are receiving radio bursts of short duration from MCVs. In magnetized plasma,

charged particles gyrate around magnetic field lines and gyration frequency is qB
m . The gyrating

charged particles emit radiation and they also experience electromagnetic force from the EM waves

generated by other particles. The frequency of EM force experienced by charged particles matches

with the cyclotron frequency. This reinforces the cyclotron motion of charged particles. This is

called resonance. Doppler shift in the EM wave experienced by each particle plays very crucial

role in the spectral spread of cyclotron emission. This will be discussed in detail in later sections.

This is purely a microscopic phenomenon so radiation emitted by a single particle needs a close

inspection as each gyrating electron is radiating. Feynmann, Heaviside and Liénard–Wiechert

obtained formulas for the fields produced by a single particle. There are subtle differences in the

formulae. I will discuss some issues with them and then I will suggest a novel way to obtain EM

fields produced by an accelerated charged particle. It is claimed by several authors that expressions

obtained by Jefimenko and Feynmann are equivalent but they not.

2.4 Radiation from an Accelerated Particle and Issues with Jefimenko

Equations

In the previous section, we obtained Jefimenko equations. An error in Jefimenko’s derivation was

pointed out(see [5] ). J.H Field wrote, the fields of an accelerated charge given by the Feynman

are the same as those derived from the Lienard-Wiechert potentials but not those given by the Je-

fimenko formulae. The author comprehensively analyses calculation done by Heavisde, Feynmann

and Jefimenko. In Jefimenko equations, When we put charge density as dirac delta with particle’s

trajectory embedded in the argument of it, we can directly get EM fields produced by a charged

particle executing an arbitrary motion. J.H argued that the equivalence between Jefimenko’s

formulae and Heaviside-Feynmann is erroneously claimed by several authors.

The main problem that authors spot in Jefimenko’s derivation has to do with subtle definitions

of partial derivatives which are very delicate to deal with when we are introducing retarded time

which depe nds on position too. Jefimenko uses this relation.

∇[ρ] =
−1

c

∂[ρ]

∂t
r̂′

Here, quantities under square brackets mean that they have retarded time as their time argument.

This relation is spurious and the author shows how in the paper [5]. xq is the qth coordinate of

particle position which are function of time.

(
∂τ

∂xq
)t =

−1

c
(
∂r

′

∂xq
)t

(
∂r

′

∂xq
)t =

xq − xQ(τ)

r′(1− r̂′ .v)
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Here, v is velocity scaled by the speed of light, We will call this term K. If we combine these two

equations we get,

(
∂τ

∂xq
)t =

−1

c

xq − xQ(τ)

r′K

Thus,

∇[ρ] =
î

c

xq − xQ(τ)

r′K

d[ρ]

dτ
+ .....

Here, it looks tempting to substitute 1
K

d
dτ −→

∂
∂t and we get the expression for divergence of ρ that

was used by Jefimenko (e.g.[10]). But when we evaluate electric and magnetic fields from taking

spatial derivatives of potentials, we are evaluating them at constant t while the above operator

relation is valid at constant xq. The faulty relation was used by Jefimenko in his original derivation

and also by several other authors. Feynmann’s approach was the correct one. In the next section,

a new approach will be proposed that is theoretically sound but may produce other difficulties

while approaching a class of problems.

2.5 A Novel Approach for Obtaining Radiating Fields Produced by an

Accelerated Charged Particle

I am proposing that in the rest frame of the particle, the situation is electrostatic and one can

obtain EM fields in the rest frame, and use generalized Lorentz transformation to get fields in the

original inertial frame. This approach is not as straightforward as it is when we evaluate fields

produced by a charged particle moving with a constant velocity. Maxwell’s equations are Lorentz

invariant and coordinates in the rest frame of a particle moving with constant velocity are directly

related to those in lab frame via simple and linear Lorentz transformation. Maxwell’s equations

have the same form in both frames. But that won’t hold true for an accelerated particle because

in flat space-time, frame of an accelerated particle is not inertial. Corollary of this observation is

that forms of Maxwell’s equations will change.

Accelerated frames in flat space time can be dealt by using Fermi Walker Transport and generalized

Lorentz transformation. It is to be mentioned that constancy of 4-acceleration does not imply

constancy of 3-acceleration. This happens because 4-acceleration is obtained by differentiating

4-momentum by proper time and 4-momentum itself is obtained by differentiating 4-position in

space-time. Constant 4-acceleration condition is satisfied by a class of motions. Uniform circular

motion has constant 4-acceleration. So, an electron gyrating around a magnetic field is said to be

executing a motion with uniform acceleration. Born coordinates are used for Langevin observers. A

gyrating electron can be considered as a Langevin observer and We can write Maxwell’s equations

in that frame.

Electric and magnetic fields don’t transform separately.The transformations are best described by

the transformation of an anti symmetric tensor quantity Fµν . If A is transformation matrix, Fµν

transforms as Flp = Aµl A
ν
pFµν . For a given accelerated motion, A will be a particular type of

generalized Lorentz transformation. Fields in rest frame and accelerated frames will be related in

this way. Several authors have found the form of A for various types of accelerated frames.
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Transformation of Maxwell’s equations in accelerated frames is trickier part. Elaborate processes

have been described by physicists. Here, dwelling into each case falls out of scope of the thesis.

Though the case with Rindler coordinates will be described. Maxwell equations in Rindler co-

ordinates where a particle is in constant acceleration in x direction will be,

∇.( E√
h

) =
ρ

ε0

∇×E = − ∂

∂t
(
B√
h

)

∇.( B√
h

) = 0

∇×B = ε0µ0
∂

∂t
(
E√
h

) + µ0J

Here, h = g00, where g00 is the first coordinate of Rindler metric which is (1 + ax
c2 ). Here, current

J will be zero and charge density ρ is just dirac delta centered at origin. Clearly, ∂ρ
∂t = 0. This

is what makes the problem electrostatic but E and B may have time dependence if h has time

dependence but that is not the case. So, all time derivatives of electric and magnetic fields are

zero. So, the equations become,

∇.( E√
h

) =
qδ(0)

ε0

∇×E = 0

∇.( B√
h

) = 0

∇×B = 0

Here, if we put the boundary condition that fields are zero at infinity, we can directly obtain B

which will be 0. Now, we can say that, E = ∇V as curl of electric field is 0. Once we put this

substitution, we will get an elliptic differential equation. Which will be,

∇2V − a

2c2
∂V

∂x
= −ρ

√
h

ε0

Potential is just a Green’s function of this elliptic equation. Once, field is obtained from potential,

we can obtain electric and magnetic field in the rest frame, hence, we obtain field produced by an

accelerated particle. Case by case analysis of each case will be discussed by me in future work.

I will say that I am not providing a general expression but I am providing a general procedure
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to obtain EM fields which may become more handy in certain cases. Above example was for a

particle moving with constant acceleration in x direction. For a particle executing circular motion,

cylindrical coordinate system will be more natural. In more general way, we can write Maxwell’s

equations in curved space time as,

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν

Dαβ =
1

µ0
gαµFµνg

νβ

√
−g
c

Jα =
∂

∂xβ
Dαβ

metric g will be Minkowsky metric expressed in suitable coordinates appropriate for given arbitrary

motion. Jα will have dirac delta as its zeroth component and rest of the components will be zero.

Aµ can be obtained as a solution of a differential equation and fields in lab frame produced by a

charge executing arbitrary motion will be obtained by transforming Fµν .
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3 Basic Approaches Towards Plasma

Systematic study of Plasma began with Langmuir’s groundbreaking papers in 1920s. Plasma was

identified with high degree of ionization in gas. The most basic line of attack is to ignore all

collective properties of charged particles. What do I mean by this is that charged particles are

not creating fields that significantly affect motion of other particles. All of them are moving as

independent particles which are subjected to external fields. Obviously, this is not true but this

approach still works in few conditions and it gives us some rough idea about the behavior of Plasma.

The conclusions that we get by adopting this approach are relevant under following conditions,

• Plasma is very dilute.

• The dominant field in the plasma is produced by external source.

• The trajectories of particles don’t converge.

Above assumptions hold true up-to some degree on the outskirts of the lower corona of the donor

star, dilute plasma is needed for cyclotron Maser instability as waves with < ωplasma become

evanescent in plasma. So, cyclotron frequency should be greater than plasma frequency which

depends on the density of plasma if radiation from cyclotron maser instability is escaping the

plasma. For radio bursts governed by cyclotron maser instability, magnetic field is not too strong.

If the above condition for the propagation of EM waves holds, plasma must be dilute.

In [1], strong argument was made that proposed that relevant magnetic field in the lower corona

of the donor star is produced by the inner core of the donor star. The centrifugal forces produced

by intense rotations of donor star conjugated with forces produced by dipolar magnetic produced

by the inner core don’t let the trajectories of charged particles converge. That is why intuitions

gained by adopting above approach are valuable to rule out many physical conditions. In fact, pre

instability conditions can be very close to ideal conditions but small fluctuations don’t damp out

and instability is generated. The crucial task is to obtain an estimate of pre instability number

density, magnetic field etc. IO-Jupiter circuit is one such model to obtain reliable estimates of

these quantities. Even in IO-Jupiter circuit model, many conclusions from basic approach hold

true(see [6]).

Even if we adopt basic model where we ignore all collective properties, obtaining trajectories of

particles under magnetic and electric fields is not easy. We do have to make suitable assumptions.

The main assumption is that of weak gradient assumption and it is reported in [3] that plasmas

cannot sustain parallel electric and magnetic fields for a long time. So, we can always assume that

electric and magnetic fields are perpendicular in very dilute plasmas but in AKR model, electric

fields parallel to the magnetic field lines play a crucial role in the elimination of loss cone anisotropy

scenario as reported in [17].

3.1 Guiding Centre Theory

When a very dilute plasma is subjected to magnetic field, the force experienced by each particle

is,

F = qV×B
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By taking dot product with magnetic field and velocity on both sides, we immediately see that

acceleration is always perpendicular to magnetic field and velocity both. The resultant motion is

always helical. Velocity component which is parallel to velocity remains unaffected and magnetic

field lines work as axes of helices, Very dilute solar winds under the influence of interstellar magnetic

field lines travel in this way. Here, guiding center is at field lines and it is travelling in the straight

line. Now, z axis is along magnetic field line,

v̇z = 0

v̇x = Ωvy

v̇y = −Ωvx

Ω = qB
m is signed cyclotron frequency of gyration frequency of a charged particle. We can decouple

the equations and we get 2 simple harmonic oscillators. But above equations must hold so they

must differ by a phase of π2 . So, the resultant motion is circular in xy plane if we ignore z component

of velocity,

x− x0 = R sin Ωt

y − y0 = R cos Ωt

R =
v⊥
|Ω|

R is called gyro radius. Throughout the thesis we will assume that gyro radius is very small.

If magnetic field is having gradient, we will assume that magnetic field remains fairly constant

over the distances of order of gyro radius. (x0, y0) is travelling guiding centre. The signed nature

of cyclotron frequency implies clockwise and anti clockwise gyration of particles having opposite

signs.

Cyclotron maser emission has peak at cyclotron frequency. AKR(Auroral Kilometric radiation)

radiation is a type of cyclotron emission. Decametric Jovian emission is also cyclotron maser

emission. If a site is proven to be emitting cyclotron radiation we can directly estimate the value

of magnetic field at that site. We now know a lot about Jovian magnetic field than we did before.

Guiding center approach is useful when fields slowly change in space and time. Suppose, constant

electric field is applied to a very dilute plasma which is perpendicular to magnetic field then,

v̇z = 0

v̇x = Ωvy +
q

m
Ex

v̇y = −Ωvx

F = q(E + V×B)

Without any loss of generality, We can assume that electric field is in x direction. Equation of

motion will be,
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v̇z = 0

v̇x = Ωvy +
q

m
Ex

v̇y = −Ωvx

If, we replace vy by vy + E
B , we get the same equation as we got before when only magnetic field

was applied. This means that particle is still executing gyration around magnetic field but it’s

guiding centre is also moving in y direction with constant speed.EB is guiding centre drift. There

is simple relativistic explanation of this phenomenon. If we look at the situation in a frame where

electric field vanishes we should see only helical motion in that frame. Field transformation when

we go into a frame moving with v velocity is,

E′ = E + v×B

If we put E′ = 0 we get the the drift of E
B . In general form, drift of guiding centre can be written

as,

vd =
E×B

B2

This will also fail in fast moving plasma. Proper relativistic approach is needed in fast moving

plasma. Guiding centre often loses its meaning in fast moving plasma. The most striking result

here is that positive and negative charges experience same drift in same direction. This happens

because they have opposite sense of gyration. Plasma when it is subjected to electric field won’t

show any drift in the direction of electric field. Several authors(e.g [2]) have obtained expressions

for various other types of drift. All such drifts can be super imposed. The general form of the drift

when force F is applied is,

vF =
1

Ω
(
F

m
× B

B
)

When electric field slowly varies in space and time, the charged particles with opposite signs react

differently. This leads to current. Such drift is called polarization drift. When straight magnetic

field lines show change in value we also see drift. When there is curvature in magnetic field lines,

we also see drift. All such drifts have their effective s. They are as follows,

•
F∇ = −µ∇B

•
FP = −mdE

dt

•
FG = −mg

Here, µ =
mv2⊥
2B and d

dt is convective derivative which is ∂
∂t + v.∇. All of these drifts give birth to

currents drift speeds will be in opposite direction for opposite charges.
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drift of the guiding centre is inversely proportional to cyclotron frequency. Out of MCVs which

were detected, some of them are strong candidates for Polar stars. They have very strong magnetic

fields and hence very high cyclotron frequency. The drift from gravity and other effects are very

low. So, the guiding centre always follows magnetic field lines. This is a rough argument that

predicts that material transfer in a polar MCV is magnetically channelized at least in the region

where plasma is very dilute. It is known that polar stars emit near infrared cyclotron radiation.

IO driven jovian cyclotron emission can be described using unipolar inductor model. A circuit is

formed and magnetic field lines work as wires that guide electrons. The plasma in the interstellar

place between the Jupiter and IO is dilute enough and magnetic field is strong enough. That is why

guiding centre theory works well to predict that particles will be following magnetic field lines with

nominal drift. But magnetic field lines start converging near auroral footprints. When magnetic

field lines start converging particle trajectories will also start converging and basic approach fails

in that region.Cyclotron Maser emission comes from the site where magnetic field lines rapidly

converge. Ring current in radiation belt can be satisfactorily studied using guiding centre theory.

Another important concept which is of relevance when cyclotron maser instability is operating is

adiabatic invariants.

3.2 Relevant Adiabatic Invariants

Constants of motion do not change at all in time. Energy of charged particles when they are only

under the influence of magnetic field is a constant of motion. Adiabatic invariants are not absolute

constants but they remain approximately constant. Plasma has few such important adiabatic

invariants. µ = W⊥
B is an adiabatic invariant. W is kinetic energy. For a purely magnetic plasma,

total kinetic energy W is an absolute constant.

W = W‖ +W⊥

dW

dt
=
dW‖

dt
+
dW⊥
dt

= 0

dW⊥
dt

= µ
dB

dt
+B

dµ

dt

Now, More significant motion is happening along magnetic field lines. Curvature of magnetic field

lines is negligible. d
dt =

v‖
ds where s denotes distance travelled along field lines. Effective force

provided by magnetic field gradient is −µ∇B.So, rate of change of parallel velocity can be found.

m
v‖

dt
= −µ∇‖B = −µdB

dt

we can multiply both sides by v‖, left hand side is derivative of parallel kinetic energy.

−dW⊥
dt

=
dW‖

dt
= −µdB

dt

This implies that µ remains constant.

The above derivation adopted from [2] does not seem to say anything about the approximately
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constant nature of µ. But when we brought the concept of effective force from magnetic field

gradient, the assumption of negligible cyclotron radius and coarse graining up-to time scales much

larger than 1
Ω was implicit. This makes µ approximately constant.

Magnetic mirror is formed due to approximately adiabatic invariance of magnetic moment of

gyrating electrons. If α is the angle between velocity and magnetic field which is called pitch.Then

µ = mv2 sin2 α
2B .If we know the pitch at one location we can calculate pitch at other location as total

kinetic energy is conserved.

sin2 α2

sin2 α1

=
B1

B2

For converging magnetic field geometry, for every particle we can find B0 where pitch angle becomes

900. Here, parallel component of velocity vanishes. The particle is reflected from that point.

Particles can oscillate back and forth. We can also define l as length of magnetic field line between

2 mirror points. If magnetic field attains maximum at some point, particles with B0 > Bmax will

not get reflected.They will be lost. Particles with the pitch under a cone will be lost. This is loss

cone. This is a severe form of anisotropy in pitch distribution. This creates a ripe condition for

cyclotron maser instability.

Loss cone anisotropy that drives jovian emission has its origin in approximately constant nature

of µ. Other adiabatic invariant called longitudinal invariant plays a crucial role in generation of

Kinetic energy anisotropy. For approximately periodic motion,

Ji =
∮
pidqi

remains approximately constant. It is an action variable. If a particle is experiencing drift due

to gradient in magnetic field, this Ji will remain constant for each magnetic field line if that line

contains mirror points for the particle as the state of motion will remain same if the particle returns

to the given magnetic line after wandering around. This happens because total kinetic energy is

constant and magnetic moment is an adiabatic invariant.

Using Hamilton Jacobi theory, we can show why Ji will be constant. Various proofs are avail-

able(e.g. [7]). We can show how energy anisotropy can be generated when particle is experiencing

drift and is changing magnetic field lines. For each line,

J =

∮
mv‖ds = 2mlv‖

Where bar over velocity denotes average and l denotes length of the magnetic field line between 2

mirror points. We can obtain relation between average parallel kinetic energy of 2 lines.

W1‖

W2‖
=
l21
l22

The bounce path decreases and average parallel speed increases. For each line, magnetic moment

is also conserved. We can define degree of anisotropy for a line. That is,
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AW =
W‖

W⊥

We can combine both adiabatic invariance and get a relation for degree of anisotropy.

A1W

A2W
=
B2

B1

l22
l21

This relation gives us the idea as to how anisotropy gets created due to drift currents. Auroral

Kilometric Radiation that we get from polar region is due to cyclotron maser instability. Drift

induced anisotropy plays a major role in producing highly anisotropic cell distributions.

.
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4 Kinetic Plasma Theory

The most sophisticated approach to study plasma is by using kinetic theory. In hamiltonian

dynamics, evolution of a point in 6N dimensional phase space is studied. In kinetic theory, we look

at the evolution of probability density in the phase space. Boltzmann adopted this approach and

derived his famous Boltzmann transport equation.

It must be stressed that plasma is generally composed of 2 entities and it exists in quasi neutral

state. The results will be proved for a system composed of one entity and they will be carried

forward with few modifications when we will discuss why we don’t need complete 2-fluid model

to explain cyclotron maser Instability. However, for electron driven cyclotron maser instability,

calculations obtained by ignoring protons altogether yield accurate results. This happens due to

low mobility of protons. Cyclotron maser instability works on much Smaller time scales. For those

time scales, protons can be considered as particles at rest. What makes plasmas very different

from gases is that long range forces dominate in plasma. Collisions don’t play that big of a

role. Particles in Neutral gases behave as free particles within their mean free paths and keep

experiencing collisions which suddenly change their velocities. In later sections, it will be shown

that local equilibrium that gives meaning to temperature is very difficult to achieve in plasma.

Equations which govern the evolution of phase space density of plasma can be obtained from

celebrated Liouville theorem.

4.1 A Fresh Derivation of Vlasov Equation

Liouville theorem describes evolution of full phase space density. It contains much more information

than it is necessary. ρ(pi,qi, t) represents the probability that the system is in a state in which

particles have qi positions and pi momenta. H is total hamiltonian of the system. Liouville

theorem asserts that phase space density behaves like an incompressible fluid under hamiltonian

flows in the phase space. That means dρ
dt = 0.

dρ

dt
=
∂ρ

∂t
+

i=3N∑
i=1

(
ρ

∂pi

dpi
dt

+ (
∂ρ

∂qi

dqi
dt

) = 0

From, Hamilton’s equations,

dqi
dt

=
∂H

∂pi

dpi
dt

= −∂H
∂qi

. We can combine the above equations and we will get,

∂ρ

∂t
+

i=3N∑
i=1

−(
∂ρ

∂pi

∂H

∂qi
) + (

∂ρ

∂qi

∂H

∂pi
) = 0

Poisson bracket can be recognized.
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∂ρ

∂t
= −{ρ,H}

This is the standard form of Liouville theorem for the full phase space density. We are more inter-

ested in the standard unconditional probability distribution for n particles. It describes probability

of finding n particles in particular places having particular velocities.

ρs(pi,qi, t) =

∫ j=N∏
j=s+1

d3pid
3qiρ(pi,qi, t)

We want to normalize the distribution in such a way that integrating over whole phase space yields

total number of particles. So we have to introduce a normalization constant.

fn =
N !

(N − n)!
ρs

fn is called n particle phase space density. It is enough to know 1- particle phase space density to

compute local number density and all other important quantities. All particles are identical and

we don’t need to keep track of all particles. We need to study the effect produced by a particle

at given position having given velocity. It doesn’t matter which one is there. In order to find

evolution of n particle density we need to do grouping of hamiltonian.

H((pi,qi, t)) =

N∑
i=1

[
p2
i

2m
+ U(qi,pi)]

Here, we have not included 1-1 particle interaction. We are assuming that coulombic field produced

by 1 particle gets shielded by other particles of opposite charges which are momentarily passing by.

This is called Debye shielding.λD < L should hold if plasma is to be maintained in quasi neutral

state. L is the physical dimension of the system. U(qi,pi) is generalized velocity dependent

macroscopic potential. It can be written in more neat form as,

H =

N∑
i=1

[
(p− qA)2

2m
+ qU(qi)]

Where, particles are experiencing only macroscopic electromagnetic forces which are governed by

Maxwell’s equations. And entries in Maxwell’s equations will be determined via moments of phase

space density. We can plug this hamiltonian into Liouville theorem and we will integrate over all

coordinates except for one particle.

∂ρ

∂t
= −{ρ,H}

∫
∂ρ

∂t

N∏
i=2

d3qid
3pi = −

∫
{ρ,H}

N∏
i=2

d3qid
3pi

We can see that hamiltonian can be neatly separated into separate components which depend on
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only 1 particle’s variables.

∂f

∂t
= N

i=N∑
i=1

j=3∑
j=1

(
∂ρ

∂qij

∂H

∂pij
)− (

∂H

∂qij

∂ρ

∂pij
)

N∏
i=2

d3qid
3pi

We know that ρ falls rapidly as it goes to infinity in both position and momentum coordinates.

We can perform integration by parts.

∂H

∂pij
=
pij − eAj(qj , t))

m

∂H

∂qij
=

l=3∑
l=1

(
pil − eAl(qi, t)

m
)
∂eAl
∂qij

+ e
∂V

∂qij

We can see that if ψ is some function then

∫
ψ
∂ρ

∂x
= −

∫
∂ψ

∂x
ρ

This is true if phase space density is falling sufficiently rapidly in x coordinate. We can apply this

to the equation obtained above and we will get,

∂f

∂t
= −N

i=N∑
i=1

j=3∑
j=1

(ρ
∂H

∂pij∂qij
)− (

∂H

∂qijpij
) ρ

N∏
i=2

d3qid
3pi

Due to symmetry of 2nd derivatives, all will be cut and only the terms with derivatives with respect

to the coordinates of the first particle will survive.

∂f

∂t
= −N

∫ j=3∑
j=1

(
∂ρ

∂qj

∂H

∂pj
)− (

∂H

∂qj

∂ρ

∂pj
)

N∏
i=2

d3qid
3pi

∂f

∂t
= −N

∫ j=3∑
j=1

(
∂ρ

∂qj
[
pi − eAi(q, t)

m
]− [

l=3∑
l=1

(pj − eAj(q, t))
m

∂Aj
∂qi

]
∂ρ

∂pj
)

N∏
i=2

d3qid
3pi

We identify vi = pi−eAi(q,t)
m where v stands for velocity. Also,

∂ρ

∂pi
=

1

m

∂ρ

∂vi

We also identify fields from the potentials. By using those we can write,

∂f

∂t
+
∑
i

∂f

∂qi
vi +

∑
i

e

m
[
∑
j

vj
∂Aj
∂qi

+ Ei +
∂Ai
∂t

∂f

∂vi
]

In index free form we can finally write,
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∂f

∂t
+∇f.v +

e

m
(E + v×B)∇v.f = 0

This is Vlasov equation. Here, I must stress that I have pre assumed that the particles are not

coming too close to each other and thus intra particle interactions are not there. All particles

are moving under the influence of macroscopic electromagnetic field which may be produced by

the collective effect of the particles. This is why we could decompose hamiltonian into terms

involving coordinates of only one particle. Vlasov equation here is linear in nature if we assume

that electric and magnetic fields are external. The particles are moving in such a way that they are

not producing the fields of their own. This happens if no effective currents are there due to parallel

motion of particles with opposite charge. When the motion of charged particle is significantly

altering the fields then we cannot solve Vlasov equation in isolation. We have to combine it with

Maxwell’s equations. The resultant system is a non linear system. In the next section, I will

describe how we can use linear Vlasov equation to model Magnetic Cataclysmic Variables.

4.2 Magnetic Cataclysmic Variables and Jeans’ theorem

Most of stable astronomical systems are able to sustain stable magnetic fields. White dwarves

are sources of great magnetic field. Plasma in corona of the donor star is dilute enough to be

considered collisionless. The dominant magnetic field is provided by the violent white dwarf or

by inner dynamo of the donar star. Later assumption should hold true if the radiation falls in

radio range. This becomes more and more true if the separation between the donor and white

dwarf increases. It is very reasonable to assume that magnetic field in the lower corona of the

donor star is external in nature. So, phase space density in the corona is a solution of linear

Vlasov equation. A natural question arises, how is cyclotron maser instability possible if the fields

produced by the gyrating particles are ignored ? It is because the phase space density obtained

as a solution to linear Vlasov equation is background phase space density. Small electromagnetic

perturbations in the region where suitable anisotropy conditions are met will grow. The growth

cannot go for eternity.The timescales for which the growth happens are small. Once radiation

escapes, relaxation comes. Now, Phase space density after relaxation is again a solution of linear

Vlasov equation where magnetic field provided by the inner dynamo of the donor star. We can

obtain a large variety of solutions of Vlasov equation by using Jeans’ theorem. We can construct

various types of anisotropic phase space densities which are solutions of linear Vlasov equation and

are physically plausible.

Jeans’ theorem states that if phase space density is purely a function of ’constants of motion’ of a

particle put under same electromagnetic field then it is solution of Vlasov equation.

The trajectory of particle experiencing Lorentz force has 5 independent constants of motion. A

more general claim is that a classical system having n degrees of freedom has 2n-1 independent

constants of motion. Let ci be constants of motion. dci
dt for a trajectory where, dxi

dt = vi and
dvi
dt = e

m ((v×B)i+Ei). Let phase space density be a function of ci which are functions of velocity

and position.

f = g((ci(v,x))
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If a f satisfies Vlasov equation then the following equations should hold.

df

dt
= 0 =

∂f

∂t
+∇f.v +

e

m
(E + v×B)∇v.f = 0

Here, df
dt is convective derivative.

ci will satisfy,

dci
dt

=
∂ci
∂t

+∇ci.v +
e

m
(E + v×B)∇v.f = 0

df

dt
=

∑
i

∂g

∂ci

dci
dt

Now, as dci
dt = 0 f will satisfy Vlasov equation. The most basic example of a distribution function

which is a function of constant of motion is Maxwellian distribution. It is solely a function of energy.

It won’t satisfy Vlasov equation if plasma is electrified. Though if we replace 1
2mv

2 with 1
2mv

2+eV

in the argument of Maxwellian then the resultant distribution will satisfy Vlasov equation. In fact,

we can deduce Debye length parameter of plasma if introduce one extra electron in Plasma and

use this modified Maxwellian. V will be deduced to be a potential that falls exponentially after

Debye length.

Pure Maxwellian also satisfies Vlasov equation for a magnetized plasma as kinetic energy is a

constant of motion but it is very uncommon. Maxwellian is very common for unmagnetized

plasmas. Landau Damping of electrostatic wave in unmagnetized plasma is driven by Maxwellian

distributions. (discussed in detail in [16]). The most basic loss cone distribution is just Maxwellian

with a removed cone in the velocity space where the probability of finding a particle is zero. It

must be noted that spatial variation of distribution function is often negligible in the regions where

field lines don’t have wild geometries. But at the auroral footprints from where cyclotron maser

emission is generated, it is not the case that distribution function has no spatial variation. But we

only know how to obtain growth of cyclotron maser instability for a region where magnetic field

is constant and distribution function has no spatial variation. But we also know that cyclotron

maser instability does not grow forever. We will define Rcyclo to be trapping radius. It shows how

much of a region is covered under the growth of instability. Now, we if the spatial distribution

function f(r) does not vary significantly in this scale then the calculation is justified. The same

will be the case with lower corona of the donor star in a magnetic cataclysmic variable. Magnetic

field is constant for a region where cyclotron maser instability grows but on large scale there is

variation in magnetic field geometry and in spatial distribution function of electrons.

When |Rcyclo∇B| << 1 we can calculate all extensive quantities of radiation for a local region and

then integrate it over the whole region to obtain total radiation profile. Form of spatial distribution

can be estimated by adopting proper model. For IO driven Jovian emissions where IO-Jupiter EMF

circuit is established, it falls by R−3 where R is the distance from the footprint.

Operation of cyclotron maser is possible if there is a source of free energy. It is a process in which

thermal energy is being transformed into usable radiation energy. That free energy is reflected in

anisotropic distribution. Entropy of the system is defined using distribution function. Collisionless

nature of plasma has unique consequences. In the next section, how entropy evolves in collisionless
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plasma and balance sheet of information during cyclotron maser instability are discussed. Up-to

now, fields were completely external. A radiating plasma is a non linear system. We can linearize

the system by using perturbation theory. This perturbative approach remains valid for a small

time scale.

4.3 A Variant of Boltzmann H theorem for Collisionless Plasma

Hamiltonian equations of motion are time reversible but most of the statistical systems show

irreversibility. Clearly, some additional assumption is working in background. Ludwig Boltzmann

constructed a collision model in which BBGKY hierarchy was terminated after 2 equations. That

means only 2 particles interact at a time. simultaneous interaction between 3 particles are very

less probable. Before collision, particles have independent probability distributions but after the

collision takes place, their distribution functions become correlated and these collisions are frequent.

This is the assumption of molecular chaos and this assumption is time irreverssible in nature. For

all the systems for which assumption of molecular chaos holds, irreverisible evolution is observed.

This is manifested in Boltzmann H theorem.

H =

∫
f(p,q, t) log(f(p,q, t))d3pid

3qi

Boltzmann showed that for Boltzmann equation, dH
dt < 0 holds until the equilibrium is reached.

This is the justification of the second law of thermodynamics. Entropy is defined as −kbH. Entropy

will always increase. At equilibrium, distribution remains steady with time. If we put f(p,q, t) =

δ(H(p,q)−E) we recover the classic formula S = KB log Ω. Ω is number of microstates or scaled

area of the phase space surface for which the energy and volume are fixed. The origin of irreversibiliy

lies in the adoption of collision model. For collisionless plasma, we are ignoring collisions altogether

so we should not expect these to hold for collisionless plasma whose distribution follows Vlasov

equation.

H =

∫
f(p,q, t) log(f(p,q, t))d3pid

3qi

dH

dt
=
d
∫
f(p,q, t) log(f(p,q, t))d3pid

3qi
dt

dH

dt
=

∫
∂[f(p,q, t) log(f(p,q, t))]

∂t
d3pid

3qi

dH

dt
=

∫
∂f

∂t
+ log f

∂f

∂t
d3pid

3qi

dH

dt
=

∫
∂f

∂t
(log f + 1)d3pid

3qi

We can now put expression for partial time derivative of f from Vlasov equation. It must be noted

that we don’t need it to be linear. Electric and magnetic field may depend on the integrals of p and
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q. The subsequent proof is perfectly valid for a plasma experiencing cyclotron maser instability.

dH

dt
= −

∫
(∇f.v +

e

m
(E + v×B).∇vf)(1 + log f)d3pid

3qi

dH

dt
= −

∫
∇f.v +

e

m
(E + v×B).∇vf + log f(∇f.v +

e

m
(E + v×B).∇vf)d3pid

3qi

Now, for both velocity and position space, we can use vector identities. By using Fubini’s theorem,

we can interchange the order of integrals and treat the other variable as constant. We will separate

all these terms and use Gauss’s theorem for each term. We can exploit the fact that f −→ 0

when velocity or position approaches infinity. Electric and magnetic fields are solely in function of

position.

∫
∇f.vd3q =

∫
∇.(fv)d3q

=

∫
S

fv.nda = 0

For this to hold, f should fall faster than 1
r2 .

∫
∇vf.Ed

3v =

∫
∇v.(fv)d3v

=

∫
S

fE.nda = 0

In both of these equations S is the surface at infinity in position and velocity space respectively.

For radiating plasma electric field falls by 1
r and so does magnetic field.

∫
(v×B).∇vfd

3v

= −
∫

B.(v×∇vf)d3v

= −B
∫
.(v×∇vf)d3v

= −B.
∫

(∇v × (vf))d3v

= B.

∫
S

(vf)× nda = 0

Now, we can use all of these results and can put them in the expression for dH
dt and we can see the

terms which don’t contain log f will be all zero. Thus,
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dH

dt
=

∫
log f(∇f.v +

e

m
(E + v×B).∇vf)d3pid

3qi

We can see that for both velocity and position gradient,

log f∇f = −∇f +∇(f log f)

Same relation will hold for velocity gradient and the expression will become,

dH

dt
=

∫
(∇(f log f).v+

e

m
(E+v×B).∇v(f log f))d3pid

3qi−
∫
∇f.v+

e

m
(E+v×B).∇vfd

3pid
3qi

The streaming terms are zero as described in the previous steps so,

dH

dt
=

∫
(∇(f log f).v +

e

m
(E + v×B).∇v(f log f))d3pid

3qi

Now, just like in previous steps, we can put each term to zero if f log f falls faster than 1
r2 which

is true for localized plasmas. If this holds then all of the terms will drop to zero as we can convert

them into surface integrals of functions which fall faster than 1
r2 so,

dH

dt
= 0

This result holds for collision plasma which is experiencing cyclotron maser instability and then

experiencing subsequent relaxation. The conversion of thermal energy into radiation energy should

decrease entropy but that is not happening. Entropy remains constant in the whole process while

total energy in a finite ball containing plasma is decreasing. This shows that temperature loses all

its meaning when cyclotron maser instability is under operation. In fact, for loss cone distribution

we can define parallel and perpendicular temperature which has little to do with conventional

notion of temperature.

The total energy of plasma when relaxation comes is lower but the information is not lost. Informa-

tion is conserved and that is why plasma gets prepared again for the next round of emission. Similar

process could not have taken place in collisional plasma where entropy would keep on increasing. It

is very difficult for necessary Gibb’s free energy to mount up without any external coherent support.
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5 Perturbation and Cyclotron Maser in Collisionless Plas-

mas

5.1 Vlasov Maxwell System

We have seen that in collision less Plasma, particles move under the influence of macroscopic fields

produced by the plasma particles themselves and external sources. fs is distribution of sth entity.

For simplicity, we will assume that only protons and electrons are there in Plasma. Macroscopic

charge density and current density will be,

ρ = e

∫
fp(v,x, t)d

3v − e
∫
fe(v,x, t)d

3v

J = e

∫
vpfp(v,x, t)d

3v − e
∫

vefe(v,x, t)d
3v

So, complete equation for Plasma will become,

∇.E =
ρext
ε0

+
e
∫
fp(v,x, t)d

3v − e
∫
fp(v,x, t)d

3v

ε0

∇×E = −∂B
∂t

∇.B = 0

∇×B = µ0Jext + e

∫
vpfp(v,x, t)d

3v − e
∫

vefe(v,x, t)d
3v +

1

c2
∂E

∂t

∂fe
∂t

+∇fe.v +
e

m
(E + v×B)∇v.f = 0

All of these equations are coupled. Derivatives of fields depend on the integrals of distribution and

derivatives of distribution depend on the fields. The resultant system is non linear. We cannot

solve it. What we can is that we can study the growth of perturbations made to the steady solution.

This is how we can linearlize the system.

In a Magnetic Cataclysmic Variable, steady solution can be obtained if we put E = 0 and we

can assume B to be constant in the the polar region of the donor star as it is supposed to be

produced by the inner dynamo. We haven’t included Vlasov equation for protons. It is assumed

that in the time scales in which electron cyclotron maser operates, protons can be considered

immovable. So, we have not adopted 2 fluid model here. Only constant magnetic field existed

before EM perturbations grew. Perturbation in Electromagnetic field will perturb distribution

function too and vice versa. If we replace all X by X0 + δX where X0 is known quantity which is

perturbed.Vlasov equation will then become,

(
∂

∂t
+ v.∇+

e

m
v×B0.

∂

∂v
)δf(v,x, t) = − e

m
(δE + v× δB).

∂f0

∂v
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perturbed currents and perturbed charged density will be,

δJ =
∑
s

es

∫
d3vvδfs

δρ =
∑
s

∫
d3vδfs

In the perturbed Vlasov equation, left hand side is a total time derivative and the right hand side

describes change in it as a particle moves in phase space.So, formally the solution for δf will be,

δf(v(t),x(t), t) = − e

m

∫ t

−∞
dt′{δE[x(t′), t′] + v(t′)× δB[x(t′), t′]}.∂0[v(t′)]

∂v(t′)

Methods to obtain δf are developed by Melrose and Treumman which can be found in [12] and

in [18]. Both assume that particle will be gyrating around the axis of B0 and for a short time we

can make an assumption that the motion of electron is still cyclotron motion. We are interested

in harmonic solutions so harmonic time dependence of field is assumed. Treumann shows that,

δf(v) = −eδE(k, ω)

mω
.

∫ ∞
0

dτe−φ(τ){kv(τ) + I[ω − kv(τ)].
f0[∂v(τ)]

∂v(τ)

Where, τ = t′ − t, φ(τ) = ωτ + k.[x − x(τ)] and kv denotes tensor with kivj as its components.

ω is fourier counterpart of time. k is fourier counterpart of position. We can now use the above

expression to compute δj. Perturbed Maxwell’s equations are linear. We can eliminate magnetic

field and obtain a linear relation between δj and δE. Dielectric tensor for plasma is defined as a

tensor which relates these two quantities.

δj(ω,k) = −iωε0[A(ω,k)− I]δE(ω,k)

For a wave, k denotes the direction in which the wave travels. We are interested in only those waves

which travel parallel to the magnetic field and those which travel perpendicular to the magnetic

field.

δj(ω,k) = −sums

ε0ω
2
ps

n0ω

∫ ∞
0

∫ ∞
−∞

∫ 2π

0

v⊥dv⊥dv‖dψ×E(ω,k)

∫ ∞
0

dτe−φ(τ){kv(τ)+I[ω−kv(τ)].
f0[∂v(τ)]

∂v(τ)

ωps is plasma frequency of sth entity. We have defined dielectric tensor. By comparing the terms,

Treumann computed the form of dielectric tensor.

• We need to perform integrations over velocity space. Integrals under analysis have singular

points.

• Sls =


l2Ω2

gs

k2⊥
J2
l

ilv⊥Ωgs

k⊥
JlJ

′

l
lv‖Ωgs

k⊥
J2
l

− ilv⊥Ωgs

k⊥
JlJ

′

l v2
⊥J

′2
l −iv‖v⊥JlJ

′

l
lv‖Ωgs

k⊥
J2
l iv‖v⊥JlJ

′

l v2
‖J

2
l

Jl and J
′

l are respectively lth Bessel func-
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tion and its derivative.

•• The argument under bessel functions is k⊥
Ωgs

A(ω,k) = (1−
∑
s

ω2
ps

ω
)I−

∑
s

l=∞∑
l=−∞

2πω2
ps

n0sω2

∫ ∞
0

∫ ∞
−∞

v⊥dv⊥dv‖(k‖
∂f0s

∂v‖
+
lωgs
v⊥

∂f0s

∂v⊥

Sls(v‖, v⊥)

(k‖v‖ − lΩgs − ω)

This is macroscopic dielectric tensor. Now, we can consider plasma as a continuous media and

apply Maxwell’s equations in a continuous media where permittivity is replaced by this dielectric

tensor. For an anisotropic dispersive media, Dispersion equation of a wave is,

Det[
k2c2

ω2
(
kk

k2
−A(ω,k)] = 0

This relation is obtained by recoginizing δD(ω,K) = A(ω,K).δE(ω,K) and by writing Maxwell’s

equations in fourier space.

All roots of this equations represent different waves. Plasma can sustain lots of types of waves.

Cyclotron Maser Instability is a condition where few wave modes with frequency near cyclotron

frequency exponential kind grow exponentially. This is not possible for every kind of background

distribution. For Maxwellian background distribution, all waves experience damping. As discussed

before, background distribution can be guessed by using Jeans’ theorem. The integral when we

compute dielectric tensor involves periodic singular points for each ω. This is the origin of cyclotron

maser instability which will be discussed in the next section.

5.2 Growth of Cyclotron Maser Instability

When A(ω,K) has particular form, The EM fluctuation may grow exponentially. This happens

when absorption coefficient turns out to be negative. DB Melrose in [12], derived the formula for

the absorption coefficient. We will focus only on perpendicular driven maser. It is also known

that only -o and -x modes can escape plasma and both have circular polarization(see [4]). -o is

left circularly polarized and -x is right circularly polarized. Out of 24 MCVs, some were emitting

right circularly polarized radiation and some were emitting left circularly polarized radiation. We

can use instability for -x mode and -o mode respectively. Dielecric tensor becomes scalar once we

specify the mode. We will denote it by εs,σ.

Resonance condition from the formula for the dielectric tensor is,

ω − sΩ− k‖v‖ = 0

B(k) =

∫
d3pεs,σδ(ω −

s

1
Ωe − k‖v‖)(

sΩe∂

v⊥∂p⊥
+ k‖

∂

∂p‖
)f(p)

Where B(k) is the absorption coefficient for the wave travelling in k direction. Distribution

function is always positive. The value of B cannot have a great negative value under this condition

27



especially for inverted-V distribution found in AKR zone. Cyclotron Maser instability becomes a

failed model to explain any coherent radiation coming from a distant astrophysical object. This

was noted by Twiss in 1958. The solution is the realization that cyclotron maser instability is

intrinsically a relativistic phenomenon even though particles are not moving at relativistic speeds.

The collective resonance effect is such that even very small relativistic correction to each electron

matters and we have to make relativistic corrections. The relativistic resonance condition will be,

ω − s

γ
Ωe − k‖v‖ = 0

This is an ellipse in velocity space and absorption coefficient will involve an integration around it.

B(k) =

∫
d3pεs,σδ(ω −

s

γ
Ωe − k‖v‖)(

sΩe∂

γv⊥∂p⊥
+ k‖

∂

∂p‖
)f(p)

(
sΩe∂

γv⊥∂p⊥
+ k‖

∂

∂p‖
)f(p) > 0

This should hold for points on the boundary of the resonance ellipse if we want growth of the

wave. Melrose notes,”The relativistic effect cannot be ignored when the radius of the resonance

circle is comparable with the speed of the electrons that drive the maser. The paradox that

one must include the relativistic correction to treat perpendicular driven maser emission even for

non relativistic electrons, is resolved by noting that the non relativistic approximation is formally

c −→ ∞, whereas c is necessarily finite when we are treating electromagnetic radiation.”(see [15]).

This comment of Melrose is important even for fundamental physics. Cyclotron Maser instability

is an example of a physical process where Newtonian picture fails even for slow moving particles.

Radiation itself is a relativistic phenomenon. Maxwell’s equations are consistent with relativity

and they are independent from Newtonian dynamics. Only interaction between fields and particle

is through Lorentz force which is interpreted a bit differently in relativistic picture. It can be easily

checked that loss Cone and inverted -V distributions satisfy this condition.

For a given distribution and given background magnetic field, we can directly infer the shape

of the spectral profile. To obtain angular profile and absolute values of intensities at particular

frequencies, further calculations have to be performed. They are excluded from this thesis.

The independent work done up-to now and the conclusions drawn from it are essential to model

an MCV emitting cyclotron maser emission. I hope that the thesis will work as a stepping stone

towards solving a much larger and specific problem.
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