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Chapter 1

Introduction

Dualities have had a long-standing role in collectively improving our understanding
of physical systems. Only one duality, however, has come far enough to revolu-
tionise our understanding of quantum gravity, and high energy physics in general.
The AdS/CFT correspondence [Mal98, Wit98] posits that a quantum gravitational
system living on an AdS background can be completely represented in terms of a
conformal field theory living on the boundary of the AdS spacetime. To be more
explicit, the correlators on the two sides should match identically.

This identification is what is called as a strong-weak duality. When one considers
a weakly coupled CFT , the dual AdS bulk lives in a highly curved background while
when one considers a strongly coupled CFT , the dual AdS bulk lives in a weakly
curved, “supergravity” background.

In this thesis we consider a specific problem that lets us probe the inner workings
of this correspondence. Before we begin, we set the stage up for the motivation
behind considering the question.

1.1 Setup and Motivation

Imagine a bunch of strings scattering off in flat space. To simplify the problem, we
specifically consider four strings. What are the geometric properties of the world-
sheet hence formed? Gross and Mende [GM87] showed that for strings moving on
a flat spacetime at high energies and fixed scattering angle, the momentum space
expression for the amplitude localises to a saddle point and the resulting expression
has an interpretation of the worldsheet localising to a minimal area surface.

The analogous scenario in the AdS/CFT case, specifically for AdS5/CFT4, is as
follows. Consider four closed strings shooting off the AdS boundary into the bulk.
This, through the gauge-gravity duality dictionary, is equivalent to considering the
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2 Introduction

following four-point function of 1
2�BPS operators

hOp1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)i. (1.1.1)

Here, the operator Op(x, y) is defined as

Op(x, y) = yi1 . . . yipTr
�
�i1 . . .�ip

�
, (1.1.2)

with �i being the six bosonic degress of freedom and Tr denoting trace over the
gauge group SU(N) of the boundary N = 4 SYM, and yi being any six-dimensional
vector satisfying yi · yi = 0. In the large coupling limit (defined as taking � =

g
2
SYMN ! 1), the dual string theory lives in the so called supergravity limit [DF02]

where the AdS spacetime only has a small but non-zero curvature. In this limit, the
connected piece of the four-point function can be rewritten in terms of its Mellin
transform1. Having done that using bootstrap/integrability techniques [AV20], one
arrives at similar results as those of flat space scattering.

Having established the progress in considering a Gross-Mende like behaviour in
the supergravity limit, the natural question is to ask if it can be generalised to the
case where we consider the free-field, or the so-called tensionless, limit. Although
the question might seem a little haphazard, there are multiple reasons for why this
limit is interesting to explore.

The first and most important of all, our understanding of the tensionless limit
in AdS5 is grossly limited. Studying this region of the parameter space allows us
to understand the “stronger” version of the correspondence where in contrast with
the widely explored “weakest” form, we maintain the condition on large N while
relaxing the condition on large �. Secondly, recent progress in AdS3/CFT2 [GG18,
EGG19, EGG20] has shown that to arrive at a physicist’s notion of a derivation of
the correspondence, the free-field limit is easier to handle. Finally, it lets us make
headway into the grand dream of realising gauge theory correlators in the large N

limit as closed string amplitudes (sum over Riemann surfaces) [tH74].

1.2 Outline

In chapter 2, we set the stage up for dealing with N = 4 SYM in the limit where
the t’Hooft coupling is taken to zero. The connected tree-level correlator is given in
terms of simple Wick contractions between the operators. Using this technique, we
arrive at the expressions for the position space result of four-point functions.

In chapter 3, we introduce Strebel differentials and argue for their utility in

1The Mellin amplitude is the AdS equivalent of the momentum space for flat space scattering.
See [Pen11, FKP+11] for details.



1.2 Outline 3

understanding the behaviour of the worldsheet in the tensionless limit. Further,
we connect Strebel differentials to recent developments in the AdS3 land vis-a-vis
covering maps.

We argue for the possible generalisation of these techniques in AdS5 using twisto-
rial realisation of free field solutions, inspired by similar results in AdS3, in chapter
4. We conclude with a summary of the progress made and possible future research
in chapter 5.

In the appendices, as a proof of concept, we calculate the four-point function of
twist operators in orbifold CFTs using Strebel differentials and match with existing
results in appendix A. We also provide a small calculation in appendix B that would
further help the reader understand the map from the worldsheet to the boundary.



4 Introduction



Chapter 2

N = 4 SYM in the Weak Coupling
Limit

In this chapter we provide a brief introduction to the field and symmetry contents
of N = 4 super Yang Mills, review the calculation of two and three point functions,
and then generalise it to four-point functions. The discussions in the review closely
follow the set of lectures in [Kom17]. For more general analysis of correlators of
N = 4 super Yang Mills, we refer the reader to [CDHS16, APSS03, DO01, DO02].

2.1 Properties of N = 4 SYM

As the name of the theory suggests, it is a supersymmetric theory with four sets
of supercharges {QA

↵ , Q̄↵̇A, } where ↵ and ↵̇ are spinorial indices taking values from
(1, 2) and the index A runs from 1 to 4. Thus in total, the theory has 16 supercharges.
The theory additionally has a SU(4) ⇠= SO(6) internal symmetry acting on these four
sets of supercharges.

The theory is a conformal field theory, with a SO(4, 2) conformal symmetry. Of
the generators of the conformal symmetry group, the commutator of the gener-
ator for special conformal transformation, Kµ, with the supercharges leads to an
additional set of generators, denoted by S. Together, the whole symmetry algebra
forms the N = 4 superconformal algebra, which is isomorphic to the PSU(2, 2|4)

supergroup.

Since the group is sufficiently large, the fields in the theory can be accomodated
in a single superconformal multiplet. The multiplet consists of six scalars, four Weyl
fermions, and one gauge field. This leads to all the fields falling in the adjoint
representation of SU(Nc). We are primarily concerned with the scalars, denoted
as �i, and operators constructed out of these scalars. In particular, we would be
considering so-called 1

2 -BPS operators constructed out of single trace operators.

5



6 N = 4 SYM in the Weak Coupling Limit

2.2 Half-BPS Operators

The most basic gauge-invariant operator that can be constructed out of the fields
available in the superconformal multiplet are the single trace operators involving
the scalars of the theory,

Tr((y · �)p), (2.2.1)

where y is a six-dimensional vector that mixes the scalars together. From the SO(6)

internal symmetry of the fields, it is evident that the above single trace operator
is SO(6) invariant, where the group acts on the y. The set of these operators that
satisfy y

2 = 0 are annihilated by half of the supercharges Q and hence the name 1
2 -

BPS. The exact set of operators that annihilate the operator depends on the choice
of y. We denote these operators as Op, thus

O
p(x, y) = Tr((y.�(x))p). (2.2.2)

At the tree level, correlation functions involving these scalars are purely given
by Wick contractions. We start with the two-point function of two scalars. In this
case the Wick contraction reads

h�i(x1)�j(x2)i =
�ij

|x1 � x2|
2
. (2.2.3)

Thus upon mixing them up using six-dimensional vectors yi1 and y
j
2, we obtain

h(y1 · �(x1))(y2 · �j(x2)i =
y1 · y2

|x1 � x2|
2
. (2.2.4)

Here we caution the reader that the SU(Nc) indices have been suppressed for
brevity. Including the gauge indices leads to an addiditional �ac�bd piece in Eq.
(2.2.3). Thus, upon exponentiating these operators with an integer p and taking a
trace, we arrive at the two-point function of 1

2 -BPS operators as

hTr((y1 · �(x1))
p)Tr((y2 · �(x2))

p)i = pN
p
c

(y1 · y2)p

|x1 � x2|
2p
. (2.2.5)

The p in the above equation is taken to be identical since these 1
2 -BPS operators are

conformal primaries and two-point functions of primaries are non-zero only when
the operators entering the correlator are of the same conformal dimensions. In order
to make our lives easier, the single trace operators in Eq. (2.2.1) are normalised by
a factor of 1/

p
pN

p
c .

In the double-line notation of t’Hooft, the two-point function can be interpreted
as follows. In a single operator O

p, there are p threads, each having a pair of
gauge indices. In the presence of two of these operators, the �ac�bd piece acts as
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a term that glues the threads of the two operators together. Each thread that was
glued together contributes a factor of 1

|x1�x2|2 , thus giving us the expressions in Eq.
(2.2.5). Developing this pictorial interpretation helps in calculating higher point
functions as follows.

While the next possibility is the three-point function, we jump directly to four-
point functions since the methods are the same. Given a set of four operator
insertions as

G = hOp1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)i, (2.2.6)

we start arriving at the position space expression for this correlator as follows. As
outlined in the previous paragraph, we need to start counting the number of threads
coming out of each operator, and the number of times each of these threads are
glued to each other between a pair of operators. We also obviously need to make
sure that we are dealing with planar diagrams in the large Nc limit, but we arrive at
that at a later stage.

Using the expression for Wick contractions, the four-point function can be writ-
ten as follows. For the operators in Eq. (2.2.6), the number of threads are pi.
Denoting the number of “connections” between two operators as nij, we have

G =
X

nij

Y

1i<j2

Cnij

✓
y
2
ij

x2
ij

◆nij

(2.2.7)

Since the operators only have pi threads, we have the condition

X

j,j 6=i

nij = pj, 8j. (2.2.8)

These conditions leave two independent parameters. We choose them to be n12 and
n14. For simplicity, we additionally take all the pi to be equal. The case of unequal
pi follows the same procedure. Piecing all the information together, we get the
expression for G as

G =
1

N2
c

✓
y
2
13y

2
24

x2
13x

2
24

◆p pX

n12=0

p�n12X

n14=0

Cnij

⇣
�

u

⌘n12
⇣
⌧

v

⌘n14

. (2.2.9)

Here, we have rewritten the propagators in terms of the conformal cross ratios

u =
x
2
12x

2
34

x2
13x

2
24

, v =
x
2
14x

2
23

x2
13x

2
24

(2.2.10)



8 N = 4 SYM in the Weak Coupling Limit

Figure 2.2.1: A schematic depiction of the combinatorial factors appearing in the

correlator. Green regions correspond to C = 2, yellow regions correspond to C = 1,

and red regions correspond to C = 0.

and an equivalent set of “SO(6) cross ratios”

� =
y
2
12y

2
34

y213y
2
24

, ⌧ =
y
2
14y

2
23

y213y
2
24

. (2.2.11)

There is one piece remaining that needs to be determined - the combinatorial
factor Cn12,n14. This is given as

Cn12,n14 =

8
<

:

0 (n12, n14) = (0, 0), (0, p), (p, 0),

1 only one of nij = 0

2 otherwise
(2.2.12)

We refer the reader to [Cor19] for a detailed analysis of the combinatorial factor.
These conditions can be visualised in terms of a triangle depicting n12 and n14 as
demonstrated in Fig. 2.2.1.

Once we have the expression for the four-point function, the question we want
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to address with respect to the problem at hand is can the expression for the four-
point function be arrived at as an integral of an action of a worldsheet that lets
us give an interpretation of a minimal area surface. To arrive at an answer to this
question, we need a machinery to deal with strings in this regime of a highly curved
background. We discuss a suitable way to handle strings on such backgrounds – the
Strebel differential – in the next chapter.
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Chapter 3

A Short Primer on Strebel
Differentials in AdS/CFT

In this chapter we review existing work on a framework that allows us to go from
free field correlators to the so-called Strebel differentials over the moduli space of
Riemann surfaces, and lay the groundwork for calculating free field correlators as
worldsheet correlators.

3.1 Physical Motivation

Imagine there exists some worldsheet that describes a free correlator of a field
theory. What are the properties that are expected to be satisfied?

First, if we are working in the large N expansion of a gauge theory correlator M
as

M =
1X

g=0

fg(�)N
2�2g

, (3.1.1)

where g is the genus of the Riemann surface and � is the t’Hooft coupling � =

g
2
N , we require that we focus specifically on a particular genus to recover the term

fg(�). We denote the space of such Riemann surfaces as Mg – the “moduli” space of
Riemann surfaces with genus g. The Riemann surface is required to have punctures
for the operator insertions. Including this, we have a moduli space that we denote
using Mg,s where s is the number of punctures. Once we fix this, the next step is
to fix the energies of the operators that are inserted on the worldsheet. These are
added in by hand as residues around the marked points, leading to the “decorated
moduli space” of Riemann surfaces, Mg,s ⇥ R+

s . It is expected that every Riemann
surface ⌃g,s in the moduli space contributes to fg(�).

In order to map our correlators to this decorated moduli space, we utilise the
isomorphism [Str84] between metric graphs and a specific kind of differentials

11



12 A Short Primer on Strebel Differentials in AdS/CFT

on Riemann surfaces as follows [Gop04a, Gop04b, Gop05]. For a free theory,
we achieve this by first gluing the homotopically equivalent edges of the Feyn-
man graphs, intuitively leading to what are called as the skeleton graphs. These
skeleton graphs are devoid of information beyond the fact that “two operators have
propagators between them”. The next step is to make a one-to-one association
between these graphs and points in the decorated moduli space of worldsheets.
This performed through the mathematical tool of Strebel differentials.

3.2 Strebel Differentials

A quadratic differential �S(z)dz2 is a differential on a Riemann surface ⌃g,s in the
moduli space Mg,s. These differentials have the property that under a holomorphic
redefinition of the worldsheet coordinate z as z ! z

0(z), they transform as

�S(z)dz
2 = �

0
S(z

0)dz02. (3.2.1)

Using a quadratic differential, one can define a line element on the worldsheet as

dl =
p
�Sdz. (3.2.2)

This line element in general can take complex values. Given a curve �(t) on this
Riemann surface, we can define a horizontal curve as a curve satisfying

�(�)

✓
d�

dt

◆2

> 0. (3.2.3)

These curves can be either closed or open, with the open ends necessarily ending on
either a pole or a zero. When the quadratic differential has only double poles, these
open curves only end on zeros and divide the full worldsheet into ring domains,
with each ring domain consisting at most one double pole. These curves are called
critical curves. Since these open curves bound the double poles, fixing the residues
fixes the length of these bounding horizontal curves.

Thus we have for a specific Riemann surface with s marked points and genus g, a
set of quadratic differentials such that they have (4g+2s�4) zeros with (6g+3s�6)

curves ending on these zeros. Fixing the residue at the double poles leads to
a unique quadratic differential on a specific Riemann surface, called the Strebel
differential. In order to recover the number of Wick contractions between the
operators, we associate the length of every critical curve of the Strebel differential
with the number of Wick contractions of the two operators that lie on the sides of
the critical curve. For more details, see Appendix A.

Once we have this information, how do we go from a sum over Feynman graphs
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to worldsheet correlators? We demonstrate this in the following section using
the recent machinery of covering maps from the worldsheet to the boundary in
AdS3/CFT2 [GGKM20].

3.3 Orbifold Correlators

To understand how Strebel differentials help in going from free correlators to a
worldsheet description, we discuss the case of AdS3/CFT2. This lower dimensional
version of the gauge-gravity duality has recently been explored widely [GGKM20,
EGG19, EGG20, GG18] and gives us a firm ground to try and build our understand-
ing of AdS5.

The exact bulk theory is the AdS3 ⇥ S3
⇥ T4, which is dual to the free symmetric

orbifold CFT SymN(T4) in the large N limit, analogous to the five dimensional
version. There, the following four-point function of the twisted sector correlator
is considered

Gorbifold CFT2 = h�[w1](x1) �[w2](x2) �[w3](x3) �[w4](x4)i. (3.3.1)

These w are similar to the operator energy p in N = 4 SYM. These correlators
are constructed using the Lunin and Mathur prescription where one exploits the
conformal symmetry to lift these correlators via a covering map � : ⌃ ! S2 to
single valued functions on the covering surface ⌃. In general, this covering surface
can have any genus g, but we will choose to focus on the case where g = 0. The
condition that these functions be single-valued translates to the requirement that
near ��1(xi) = zi, one has

�(z) ⇠ xi + a
�
i (z � zi)

wi , z ⇠ zi, 8i. (3.3.2)

Since � are twisted sector ground states, after moving to the covering surface, they
vanish and are invisible to the chiral fields. Therefore, we have translated the
problem of calculating the correlator to the problem of finding the partition function
of the CFT living on the covering surface, which is equal to the (exponential of the)
conformal factor/anomaly associated with the covering map. This is given by the
Liouville action

SL(�) =
c

96⇡

Z
d
2
z
p
�g (gµ⌫@µ�@⌫�+ 2R�) , (3.3.3)

with c being the central charge of the theory on a single T4. Therefore, we have the
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required correlator as

Gorbifold CFT2 =
X

�

W̃� exp[SL(��)] (3.3.4)

with
�� = log @z�(z) + log @z̄�̄(z̄). (3.3.5)

The W� are constants expected to be independent of � [DE20]. The number of
covering maps that satisfy the conditions outlined above (and hence the number of
different configurations of the worldsheet) is in general very large and scales with
w. Thus in the large twist limit, we obtain a very large number of covering maps,
and the sum over all these covering maps become an integral over the moduli space
of the worldsheets. Further, by choosing the worldsheet metric in the Strebel gauge
(see Eq. (3.2.2), one arrives at the conclusion that the integration measure over
the moduli space is the Nambu-Goto action. For more details about the exact logic
through which this correspondence emerges, we refer the reader to [GGKM20].

The key takeaway message of the above discussion that helps in providing the
direction of approach in the case of AdS5 is the following. Modulo the regularisation
of the correlator, the classical Liouville action to leading order under large w limit
becomes

SL[�] =
cK

2

48⇡

Z
d
2
z|�S(z)| (3.3.6)

where �S(z) is the Strebel differential defined in terms of the covering map as

Ki

p
�S(z) = @(log@�(z)). (3.3.7)

K is a parameter defined for genus zero as

K = 1 +
1

2

X

i

(wi � 1). (3.3.8)

This leads to a direct association of the covering map to the Strebel differential. A
continuation of the discussion in this chapter can be found in Appendix A where
we calculate the orbifold correlator as Strebel areas to drive home the usefulness of
Strebel differentials in arriving at a geometric understanding of free correlators.

This approach has all the nice properties (such as the appearance of a Nambu-
Goto action) that one would seek for showing a Gross-Mende like behaviour in the
tensionless limit for AdS5. However, there is one major missing piece -

What does it mean to have a covering map from the worldsheet to the
boundary of AdS5?

From the discussion on Strebel differentials, it is evident that one of the most
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important aspects of the map from the worldsheet to the boundary (or vice versa)
is the existence of the notion of holomorphicity. Unfortunately, the boundary of
AdS5 (i.e. S4) cannot be endowed with a complex structure [NN97]. This prevents
us from discussing the holomorphic nature of the map since the boundary is not a
complex manifold. Therefore, is there no hope in trying to realise a generalisation
of the method to AdS5? The answer is an emphatic no!

While one cannot impose a complex structure on S4, one does have the tool
of twistors which are complex realisations of real manifolds. In the case of AdS3,
the boundary is itself a complex manifold (perhaps the simplest possible complex
manifold), thus making it easier to deal with. But the lesson here is that the more
natural way of approaching AdS/CFT in higher dimensions is perhaps through an
auxiliary space of twistors. Using this, one must be able to arrive at a beautiful
symphony of mathematical structures that allow us to reach the goal of showing a
Gross-Mende like behaviour.

In the following chapter, we develop the mechanism that lets us translate ev-
erything to the language of twistors, frequently drawing inspiration from the three
dimensional case to keep us grounded.
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Chapter 4

Twistors

In the previous chapter, we stressed the importance of Strebel differentials in the
context of the tensionless limit of AdS/CFT and discussed the appearance of twistors
for the correspondence in higher dimensions. In this chapter, we provide a review
of the twistor techniques for general spacetimes following [Ada18], refine it for the
case of AdS [ASW16], and provide a translation of the results in three dimensions
in the language of twistors.

4.1 General Twistor Theory

The primary tool that is used to construct the twistor space of any manifold is
spinors. But before we move to spinors, we start by considering the easiest case
of Minkowski spacetime to help us constructively arrive at spinors.

Minkowski space in Lorentzian signature is given by

ds
2 = ⌘abdx

a
dx

b = (dx0)2 � (dx1)2 � (dx2)2 � (dx3)2. (4.1.1)

We complexify the Minkowski space as MC with the same metric but where the
coordinates are now allowed to take complex values. Here, there is no notion
of a signature since one can take any slice and land at a desired signature. The
convention of the metric here is, as the name suggests, just a convention.

Now, the spin group of this complexified Minkowski space is SO(4,C), which is
locally isomorphic to a double copy of SL(2,C). One can write a vector in MC as a
(12 ,

1
2) representation of SL(2,C)⇥SL(2,C), or a pair of indices denoting a (0, 12) and

(12 ,0) representation respectively. This is the usual representation of the flat space
coordinates in terms of the Pauli matrices

x
↵↵̇ =

�
↵↵̇
a
p
2
x
a (4.1.2)
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The undotted indices live in the (12 ,0) representation and are referred to as the
negative chirality spinor indices. The dotted indices live in the (0, 12) representation
and are referred to as the positive chirality spinor indices.

A nice consequence of writing spinors in this form is that the norm of a vector
can now be written as

⌘abv
a
v
b = 2det(v↵↵̇) (4.1.3)

which means that a vector is null if and only if the rank of the v
↵↵̇ matrix less than

two, leading to
v
↵↵̇
null = a

↵
ã
↵̇ (4.1.4)

for some spinors a and ã. This is perhaps a good time to try to connect with the
twistor space of AdS.

4.2 Twistors for AdS

Now, consider the five-dimensional complex projective space CP5. By a counting of
degrees of freedom, it is easy to convince that this space can be spanned by an four
dimensional antisymmetric matrix X with the requirement that X ⇠ �X. We can
now define a metric on such a space as

ds
2 = �

dX
2

X2
+

✓
X.dX

X2

◆2

(4.2.1)

where the products are defined in terms of a contraction of AB with the totally
antisymmetric tensor ✏ABCD. This metric is not defined globally since on the hyper-
surface X

2 = 0, the metric becomes singular. Thus the metric is defined globally on
CP5

\M where M is defined as

M = {X 2 CP5
|X

2 = 0}. (4.2.2)

It is this CP5
\M that describes AdS5, with the subspace M as its four dimensional

conformal boundary.

It is in fact interesting and convenient to note that this twistor space of AdS5 is
isomorphic to the ambitwistor space of AdS5 defined as

{(ZA
, YA) 2 CP3

⇥ CP3
|Y · Z = 0} (4.2.3)

where Z and Y are homogeneous coordinates of the two copies of CP3 with each
having its own scaling rule. The two spaces are related to each other by the
incidence relation

Z
A = X

AB
YB. (4.2.4)
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This amounts to the translation of the adjoint representation of the AdS fields to a
bifundamental representation.

The relevance of these ambitwistor spaces is as follows. Since the coordinates of
the ambitwistor spaces can be represented as two vectors, we can work with these
coordinates (in the case of CP3) as a pair of Weyl spinors of opposite chirality as

Z
A = (µ↵̇

,�↵), (4.2.5)

and an analogous pair of conjugated spinors for Y . This rewriting helps in quantisa-
tion, since the currents of the theory can now be written as bilinears formed using
these spinors. In the next section, we discuss this process for AdS3, which lets us
relate these ambitwistor variables to the covering map, giving a much need glimpse
into what the AdS5 situation would look like.

4.3 Twistors , Covering Maps

The key to relating the covering map to twistors is as follows. The currents of the
WZW model that describes the AdS3 side of the duality admits a free-field realisa-
tion of the model given by the symplectic bosons ⇠

a
, ⌘

b satisfying the commutation
relation

[⇠a, ⌘b] = ✏
ab (4.3.1)

where a, b 2 �,+. These can be interpreted as the analogues of the ambitwistor
variables for the three dimensional case1. The SL(2,R) currents of this theory
(which forms the bosonic part of the full psu(1, 1|2) algebra) are given as [DGGK21]

J
3 = �⌘

+
⇠
� (4.3.2)

J
± = ⌘

±
⇠
±
, (4.3.3)

with the condition that ⌘+⇠� = ⌘
�
⇠
+. Defining our ambitwistors as

Z
A = (⇠+, ⇠�), YA = (�⌘

�
, ⌘

+), (4.3.4)

we immediately see that the currents can be represented as the bilinears formed
with Z and Y , and the condition that ⌘+⇠� = ⌘

�
⇠
+ is equivalent to a tracelessness

condition on the bilinears as

YAZ
A = �⌘

+
⇠
� + ⌘

�
⇠
+ = 0. (4.3.5)

1The exact set of fields also contains a fermionic part that we choose to ignore since we are
interested in the bosonic sector.
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This gives us a method to represent the currents of the theory in terms of the am-
bitwistor variables. These currents can also be represented in terms of the covering
map, using the Wakimoto representation of the currents as follows [Wak86, EGG20]

J
+ = �, (4.3.6)

J
3 = �@�+ ��, (4.3.7)

J
� = �2@�� + ��� � 3@�, (4.3.8)

where (�(z),�(z), �(z)) are holomorphic functions. In (cite), these functions were
related to the covering map as

�(z) = �(z), @�(z) = �
@
2�(z)

2@�(z)
, (4.3.9)

and the function �(z) is defined as

�(z) = �
(@�(z))2

�(z)
. (4.3.10)

By plugging these expressions into the current and comparing with the current in
terms of the twistor variables, we obtain the conditions that

⌘
+ =

@�� ��

⇠�
, (4.3.11)

⌘
� =

�2�@�+ ��
2
� @�

⇠�
, (4.3.12)

⇠
+ =

�

⌘+
, (4.3.13)

⇠
� =

�

@�� ��
. (4.3.14)

These expressions let us relate the ambitwistor variables to the covering map, up to
a choice in ⇠

�. Interestingly, the Schwarzian of the covering map can be written in
terms of these variables as

Y · @Z, (4.3.15)

which is related directly to the Strebel differential. By choosing the covering map
to be a rational function

�(z) =
P (z)

Q(z)
, (4.3.16)

we make a judicious choice of ⇠� such that we obtain fields of equal weights.
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Performing this, we obtain

⌘
+ = �

1

2W 3/2
(W 0

Q� 2Q0
W ), (4.3.17)

⌘
� =

1

2W 3/2
(W 0

P � 2P 0
W ), (4.3.18)

⇠
+ =

1

2W 3/2
(W 0

Q� 2Q0
W ), (4.3.19)

⇠
� = �

1

2W 3/2
(W 0

P � 2P 0
W ). (4.3.20)

where, W is the Wronskian of the two polynomials

W = P
0
Q�Q

0
P. (4.3.21)

This provides us a complete picture of how the covering map relates to the
ambitwistor variables, and hence the twistor representation of the boundary degrees
of freedom. Emulating this procedure for the five dimensional case would amount
to finding a similar set of symplectic bosons that lead to a representation of the
currents of the theory in terms of the bilinears formed from these bosons. Then
by comparing this current with the current of the theory in terms of the Poincaré
coordinates, we expect the five dimensional analogue of Eq. (4.3.11) to emerge.

As discussed in section 4.2, the ambitwistor variables for the five dimensional
case can be represented using two symplectic bosons - packaged as spinors - as

YI = (µ↵,�↵̇), Z
I = (⇠↵, ⌘↵̇), (4.3.22)

with ↵, ↵̇ 2 {+,�}. The generators of the bosonic part of the psu(2, 2|4) can be
written as bilinears of the form

j
↵̇
↵ =

✓
µ↵⇠

↵
�↵̇⇠

↵

µ↵⌘
↵̇

�↵̇⌘
↵̇

◆
(4.3.23)

or in a slightly more illuminating form [GG21]

L
↵
� = µ�⇠

↵
�

1

2
�
↵
�µ�⇠

�
, (4.3.24)

L̇
↵̇
�̇
= ��̇⌘

↵̇
�

1

2
�
↵̇
�̇
��̇⌘

�̇
, (4.3.25)

P
↵̇
� = ⌘

↵̇
µ�, (4.3.26)

K
↵
�̇
= ⇠

↵
��̇. (4.3.27)

The ambitwistor condition corresponds to setting the overall u(1) generator, 1
2YIZ

I

to zero, which leads to the condition

⇠
�
µ
+ + �

�
⌘
+ = ⇠

+
µ
� + �

+
⌘
�
. (4.3.28)
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These generators, togther with the ambitwistor condition, thus simmer down to
four generators P (equivalent to translations), four generators K (equivalent to
the generators for special conformal transformations), and seven generators L and
L̇, which are linear combinations of the Lorenz generators and the generator for
dilatations. The remaining non-trivial task however, is finding a suitable expression
for currents in terms of the Poincaré coordinates that would allow us to relate these
ambitwistors to a notion of holomorphic maps. We discuss our approach, together
with the aspects that make the task difficult, in chapter 5. In appendix B, we provide
a short back-of-the-envelope calculation that would help in understand this business
in five dimensions using a handmade holomorphic map.



Chapter 5

Conclusion and Future Directions

After a long and mathematically arduous ride, we ground the reader and give a
recap of the goal and where we stand in the process of achieving the goal.

Our primary question is whether a Gross-Mende like behaviour can be observed
in the case of tensionless strings (free field theory). More specifically, can the
worldsheet dual of the four-point function

Op(x, y) = yi1 . . . yipTr
�
�i1 . . .�ip

�
, (5.0.1)

be shown to localise to a minimal area worldsheet?

After providing a brief overview of the expressions for a four-point function of
1
2–BPS operators on the field theory side in position space in Chapter 2, we changed
gears and looked at the usefulness of Strebel differentials in dealing with this par-
ticular region of the parameter space of the gauge-gravity duality in Chapter 3. In
particular, we related the Strebel differential on a worldsheet to the covering map
that takes us from the worldsheet to the boundary, giving a firm physical definition
of the Strebel differential. We further noted that the sum over covering maps
translates to an integral over the moduli space of worldsheets with an integration
measure that looks like the Nambu-Goto action. A short calculation that further
explains this relation between sum over covering maps and integration over the
moduli space is provided in Appendix A.

The key ingredient in the discussion on Strebel differentials in the case of AdS3/CFT2

is the existence of the holomorphic covering map. Since the conformal boundary of
the five-dimensional AdS spacetime cannot be endowed with a complex structure,
we resorted to, and argued for, using twistor space to define holomorphic maps. We
demonstrated the translation of existing results in AdS3/CFT2 in terms of the am-
bitwistor space variables, which provides us a firm ground to base our generalisation
to higher dimensions.

We showed the form of the currents for the higher dimensional case in terms

23
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of the ambitwistor variables. The remaining nontrivial task is to find a suitable
expression for the currents in terms of the Poincaré coordinates. This would allow
us to compare the current in terms of the ambitwistor variables, leading to a better
understanding of what these holomorphic maps look like.

The nontriviality of the task stems from the fact that in the AdS3 case, the bulk is
itself a group manifold, leading to an easy derivation of the currents. AdS5 however,
is not a group manifold but a coset manifold. Thus, the currents depend on the coset
representative, which can be thought of as the multiple possible coordinates on
AdS5. Thus finding the current boils down to finding a suitable coset representative,
which is more of a lucky draw. We still hope however, that such a suitable candidate
can be found by making the process less and less random by exploiting the structure
of the coset itself and comparing with the slices in twistor space.

Looking back, we have made tremendous progress in arriving at a framework
that allows us to answer the main thesis. In the process, we have discovered many
gems that we believe would lead to rapid progress in this yet unexplored region of
the parameter space. We must note that although we have reached closer to the
goal than before, there is a lot of progress yet to be made. This applies to both AdS3

and, obviously, AdS5.
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Appendix A

Orbifold Correlators from Strebel
Area

A.1 Correlators

As discussed in Chapter 3, we are interested in the four-point function of twist fields

Gorbifold CFT2 = h�[w1](x1) �[w2](x2) �[w3](x3) �[w4](x4)i

in the free symmetric product orbifold CFT. The correlator is given by a sum over
contributions from all possible branch covering maps � : CP1[z] ! CP1[x] with the
specified branching behaviour at the positions of the twist fields-

�(z) ⇠ xi + a
�
i (z � zi)

wi z ⇠ zi

as

Gorbifold CFT2 =
X

�

W̃� exp[SL(��)]
4Y

i=1

|a
�
i |

�2�hi , (A.1.1)

where the Lioville action SL(��) is given by

SL(�) =
c

96⇡

Z
d
2
z
p
�g (gµ⌫@µ�@⌫�+ 2R�) , (A.1.2)

with,
�� = log @z�(z) + log @z̄�̄(z̄).

Here, �hi = (hi � h
0
i ) is the the conformal dimension from extra dressings over the

bare twist-field of dimension h
0
i =

c
24(w �

1
w ). For our calculations, we take it to be

zero (that is, the ground state). It has been speculated that W�s are independent
of � [DE20]. In the AdS3/CFT2 set-up [GGKM20], the Strebel differential was
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z1 z2

z3

a1

a2

a3

a4

Figure A.2.1: A depiction of the ring domains and the strip geometries of the worldsheet

identified with the covering map as

@z (log @z�(z)) (= @z��) = K i

p
�S(z) (A.1.3)

where, �(z)dz2 is the Strebel differential on the worldsheet. It was further realised
that � is specified by the A and B-cycle periods lA and lB. Also we note that,
a
�
i = @

wi�(zi). Putting all these together, the correlator becomes,

Gorbifold CFT2 =
X

lA+lB1

W̃� exp

✓
�N

2 c

48⇡
2

Z
d
2
zg

zz̄
q
�(z)�̄(z̄)

+
c

48⇡

Z
d
2
z
p
�gR�� �

4X

i=1

�hi log |@
wi�(zi)|

2

!
. (A.1.4)

A.2 Strebel Area

Area of the quadralateral between the poles z1 and z2,

A12 = A
z1
12 + A

z2
12

=

Z a3

a4

d� ⇢
z1(�)⇧�z1 +

Z a4

a3

d� ⇢
z2(�)⇧�z2 ,

(A.2.1)
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where

⇧�zi =

Z |zi��zi |

|����|

p
�S(z)dz. (A.2.2)

Here � denotes the positions of the poles of the covering map, which form the
branch cuts of

p
�S(z) and zi’s are the insertion points of twist operators, which

are double poles �S(z). ⇢
z1(�) and ⇢

z2(�) denote the density of poles along the cut
a4 � a3 in the two half-strips z1a4a3 and z2a3a4 respectively.

In the large K limit, from the AdS3/CFT2 dictionary (A.1.3),

p
�S(z) = �

i

K
@(log @�(z)).

Using this we get,

⇧zi� = �
i

K
log


@�(|zi � �zi |)

@�(|�� ��|)

�
. (A.2.3)

From the poles of the Strebel differential:

We have cut off discs of same radius ✏ at the insertion points of the twist fields
on the x-sphere. The corresponding discs on the z-sphere will have different radii
�zi at zi. For zi 6= 1, we have

�(|zi � �zi |) ⇠ xi + a
�
i �

wi
zi ) ✏ = a

�
i �

wi
zi .

(A.2.4)

Thus we now have the result,

@�(|zi � �zi |) = wi a
�
i �

wi�1
zi = wi (a

�
i )

1/wi ✏

wi�1
wi . (A.2.5)

This gives (for i 6= 4)

log @�(|zi � �zi |) = log[wi(a
�
i )

1/wi ] + ✏-dependent part. (A.2.6)

Now we consider the case z4 = 1. We have the following branching behaviour,

1

�(z)
�

1

x4
=

1

ea�4

✓
1�

1

x4

◆✓
1

z
� 0

◆w4

z ⇠ 1

) �(z) ⇠ x4 + a
�
4z

�w4 with a
�
4 =

x4(1� x4)

ea�4
.

(A.2.7)

Also note that, for x4 = 1, we get back usual branching rule: �(z) ⇠ ea�4 zw4. Now
on the worldsheet, we have cut off a disc at z = 1 as |z| � 1

�1
. So

✏ = �(z)� x4 = a
�
4

✓
1

z

◆w4

= a
�
4 �

w4
1 , (A.2.8)

and taking derivative with respect to 1/z (which is the local co-ordinate near z4 =
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1),
@1/z�(|1� 1/�1|) = w4a

�
4 �

w4�1
1 = w4 (a

�
4 )

1/w4 ✏

w4�1
w4 . (A.2.9)

This gives,

log @1/z�(|1� 1/�1|) = log[w4 (a
�
4 )

1/w4 ] + ✏-dependent part. (A.2.10)

From the branch cuts of the Strebel differential:

We have cut off the x-plane at a large radius |x| = 1
⌘ and there will be corre-

sponding disc of infinitesimal radius �� at the branch points of
p

�S(z). We also
recall,

�(z) ⇠
Ca

z � �a
z ⇠ �a 8 a = 1, ..., K,

) ⌘ =
1

Ca
�a.

(A.2.11)

Thus,

@�(|�� �a|) = �
Ca

�2a

= �C
�1
a ⌘

�2
. (A.2.12)

Taking logarithm, this gives

log @�(|�� ��|) = � logC� + ⌘ dependent part. (A.2.13)

Net result:

Combining all these, the perpendicular length in (A.2.3) is given by,

⇧�zi = �
i

K

⇥
log[wi(a

�
i )

1/wi ] + logC�

⇤
+ ✏, ⌘ dependent part. (A.2.14)

Hence A12 is gievn by,

A
z1
12 =

Z a3

a4

d� ⇢
z1(�)⇧�z1 = �i

"
l
z1
a4a3 log[w1(a

�
1 )

1/w1 ] +
1

K
log

n12Y

a=1

Ca

#
,

A
z2
12 =

Z a4

a3

d� ⇢
z2(�)⇧�z2 = �i

"
l
z2
a3a4 log[w2(a

�
2 )

1/w2 ] +
1

K
log

n12Y

a=1

Ca

#
,

(A.2.15)

where we have used,

1

N

Z al

ak

d� ⇢
z1,z2(�) = l

z1,z2
akal

and
Z al

ak

d� ⇢
z1,z2(�) logC� = log

nakalY

a=1

Ca. (A.2.16)

The Strebel area which is the sum of areas of the quadrilaterals when they are glued
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together (from the figure),

A = A
z1
12 + A

z2
12 + A

z1
13 + A

z3
13 + A

z1
14 + A

z4
14 + A

z2
23 + A

z3
23 + A

z2
24 + A

z4
24 + A

z3
34 + A

z4
34

= �
i

K
log

"
(a�1 )

(w1�1)/w1(a�2 )
(w2�1)/w2(a�3 )

(w3�1)/w3(a�4 )
(w4�1)/w4

NY

a=1

C
2
a

#
,

(A.2.17)

where we used,

l
z1
a4a3 + l

z1
a3a1 + l

z1
a1a4 =

w1 � 1

K
,

l
z2
a3a4 + l

z2
a4a2 + l

z2
a2a3 =

w2 � 1

K
,

l
z3
a3a2 + l

z3
a2a1 + l

z3
a1a3 =

w3 � 1

K
,

l
z4
a4a1 + l

z4
a1a2 + l

z4
a2a4 =

w4 � 1

K
.

(A.2.18)

Note the last equality, where even though the contour looks clock-wise from the
figure, when viewed from infinity (or the north-pole on the Riemann sphere in the
stereographic projection), it is clock-wise, so the sign on the r.h.s is +ve.

Hence our final correlator of the orbifold CFT has the form,

Gorbifold CFT =
X

�

exp
h
+iN

c

24
Area

i

=
X

�

C⇤ (a
�
1 )

� c(w1�1)
24w1 (a�2 )

� c(w2�1)
24w2 (a�3 )

� c(w3�1)
24w3 (a�4 )

� c(w4�1)
24w4

NY

a=1

C
�c/12
a .

(A.2.19)

This matches precisely with the results found in [LM01, DE20].
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Appendix B

Holomorphic Map Example

B.1 Covering Map Picture

In order to compute the four-point correlation function,

hOp1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)i, (B.1.1)

we propose a covering map from S2
! R4 with the explicit form:

X
i(w) =

x
i
a + x

i
b

2
+

x
i
a � x

i
b

2i
tan(⇡w), w 2 [0, nab], (B.1.2)

where i = 1, · · · , 4. This is a hand constructed covering map based on the expected
properties of the diamond-like strip region formed by the two poles and two zeros.
Denoting

X
i(wa) = exi

a, (B.1.3)

and using the following asymptotic behaviour of tan z

i tan z1 = �1 + 2 e2iz1 z1 ! i1,

i tan z2 = 1� 2 e�2iz2 z2 ! �i1,
(B.1.4)

we get

exi
a � x

i
a ⇠ �(xi

a � x
i
b) exp(2⇡iwa), wa ⇠ i1

exi
b � x

i
b ⇠ (xi

a � x
i
b) exp(�2⇡iwb), wb ⇠ �i1.

(B.1.5)

In the euclidean signature,

4X

i=1

(exi
a � x

i
a)(exi

b � x
i
b) ⇠ �

"
4X

i=1

x
i
abx

i
ab

#
exp[2⇡i(wa � wb)]

) i(wa � wb) = �
1

2⇡
log[x2

ab] + log ✏.

(B.1.6)
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Thus, the Strebel area of the strip between Xa and Xb gives the space-time propa-
gator,

exp[Aab] = exp[2⇡i nab(wa � wb)] =

✓
1

x2
ab

◆nab

. (B.1.7)

As shown above,

X
i(w) ⇠ x

i
a � (xi

a � x
i
b)e

2⇡iw
w ⇠ wa (B.1.8)

Near the pole of the strebel differential at w ⇠ wa, the standard parametrisation is
related with the canonical one as,

z(w) ⇠ Ca exp


2⇡iw

pa

�
w ⇠ wa (B.1.9)

where
Ca = exp


2⇡i

L1 + L2 + · · ·+ Ln�1

pa

�
(B.1.10)

with {Lj}j=1,··· ,n�1 ⌘ {ncd}(c,d) 6=(a,b) the set of wick contractions with Opa(Xa). Note
that z(wa) = 0. Hence we have the following branching behaviour at the operator
insertion at Xa,

X
i(z) ⇠ x

i
a � C

�pa
a x

i
ab z

pa , z ⇠ 0. (B.1.11)

Similarly,
X

i(w) ⇠ x
i
b + (xi

a � x
i
b)e

�2⇡iw
w ⇠ wb (B.1.12)

and z(w) ⇠ Cb exp
h
2⇡iw
pb

i
near w ⇠ wb. Thus,

X
i(z) ⇠ x

i
b + C

pb
b x

i
ab z

�pb , z ⇠ 1. (B.1.13)

B.1.1 Two-Point Function

For two-point functions,
pa = pb(= p)

and the global covering map with two operator insertions at xa = 0 and xb = 1 is

eX i(z) = z
p (B.1.14)

where z = C exp
h
2⇡iw
p

i
. Now we can rewrite our covering map (B.1.2) as,

X
i(w) =

xb e
2⇡iw + x

i
a

e2⇡iw + 1

=
x
i
b z

p + x
i
a c

p

zp + cp

(B.1.15)
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Thus our covering map is the same with the global covering map after the mobius
transformation,

X
i(w) =

x
i
b
eX i(z) + x

i
ac

p

eX i(z) + cp
(B.1.16)

B.2 Twistors

As discussed in Chapter 4, we consider the complex projective space CP5 with
homogeneous co-ordinates X

IJ which is a skew-symmetric 4 ⇥ 4 matrix with the
identification X ⇠ �X with � 2 C⇤. The simplest holomorphic well-defined metric
in CP5 which is invariant under X ! �X

ds
2 = �

dX
2

X2
+

✓
X · dX

X2

◆2

(B.2.1)

where the contraction of indices is performed using ✏IJKL. This metric is not global,
with a singular behaviour on the manifold

M = {X
2 = 0 |X 2 CP5

} (B.2.2)

CP5
\M with the above metric (B.2.1) is equivalent to the complexified AdS5 whereas

the quadric M corresponds to the four-dimensional conformal boundary. We can
write the points in M in the following fashion,

X
IJ =

 
✏↵� �i x

�̇↵

i x
↵̇� x

2
✏
↵̇�

!
(B.2.3)

with

✏↵� = �✏
↵� = ✏↵̇�̇ = �✏

↵̇�̇ =

✓
0 �1

1 0

◆
(B.2.4)

This form ensures X2 = 0 i.e det(X) = 0. Writing explicitly, we have

X
IJ =

0

BBB@

0 �1 �i� iy
�

1 0 �iy
+

i�̄

i� iy
+ 0 x

2

�iy
�

�i�̄ �x
2 0

1

CCCA
, (B.2.5)

where � = x
1 + ix

2, y+ � x
0
� x

3 and y
� = x

0 + x
3.

Our covering map

x
i =

x
i
ac

p + x
i
bz

p

zp + cp
, i = 0, · · · , 3, (B.2.6)
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where
z = c exp


2⇡iw

p

�
, (B.2.7)

and w is the canonical co-ordinate. We list the following immediate outcomes,

� =
�ac

p + �bz
p

zp + cp
,

y
± =

y
±
a c

p + y
±
b z

p

zp + cp
,

x
2 =

x
2
ac

2p + x
2
bz

2p + 2x · yz
p
c
p

zp + cp
.

(B.2.8)

Corresponding to each space-time point, there is a line in twistor space given by the
incidence relation

XIJZ
J = 0. (B.2.9)

That is, the homogeneous co-ordinates of the twistor variable Z
I consitute the

kernel of XIJ . We can explicitly find them from the above expression to be
0

BBB@

i�

iy
+

0

x
2

1

CCCA
,

0

BBB@

iy
�

i�̄

x
2

0

1

CCCA
(B.2.10)

We normalize the twistors in the following manner

Z1 =

0

BBB@

i(�ac
p + �bz

p)(zp + c
p)

i(y+a c
p + y

+
b z

p)(zp + c
p)

0
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2
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2
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2p + 2x · yz
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CCCA
, Z2 =

0

BBB@
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p)
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2
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2
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2p + 2x · yz
p
c
p

0

1

CCCA
. (B.2.11)

Note that the twistor fields are polynomial of z (i.e the ”worldsheet” co-ordinate) in
this normalization. We can reconstruct the original matrix X

IJ from this null space,

X
IJ = �

1

x2(zp + cp)2
(ZI

1Z
J
2 � Z

I
2Z

J
1 ). (B.2.12)

The twistor space is charted by the lines

Z
I = v

1[z]ZI
1 + v

2[z]ZI
2 , (B.2.13)

where v
a = (v1, v2)[z] are the local co-ordinates on the line. These lines define a

surface of complex dimension two in the twistor space with boundaries at z ! 0

and z ! 1 which is the anologue of the covering surface in twistor spcae CP3. The
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twistors corresponding to the points xa and xb are given by,

Z1a = c
2p

0

BBB@
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iy
+
a

0

x
2
a

1

CCCA
, Z2a = c

2p
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BBB@

iy
�
a

i�̄a

x
2
a

0

1
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Z1b = z
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1

CCCA
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x
2
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0

1

CCCA
, z ⇠ 1.

(B.2.14)
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