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Abstract

One of the foremost challenges in modern astrophysics and cosmology is to get obser-

vational constraints on theories of galaxy formation and evolution in a wide redshift

range, ranging from the dark ages to the present epoch. Observing the redshifted

21 cm signal of neutral hydrogen (HI) allows us to probe the large scale structure in

these epochs using radio telescopes. In the post reionization era, the HI is expected

to be confined in the dense interiors of galaxies and hence, the spatial distribution of

HI should trace the galaxy distribution and, in turn, the dark matter distribution. HI

Intensity Mapping is a novel technique which uses low angular resolution observations

using radio interferometers to measure the 3 dimensional distribution of integrated

HI emission from a large number of galaxies. This allows us to build up the signal to

noise by averaging the signal in large comoving volumes and get a statistical estimate

of the large scale structure distribution.

In this project, we perform HI intensity mapping with the upgraded Giant Me-

trewave Radio Telescope. For this purpose, we use the Tapered Gridded Estimator

[Choudhuri 14] which is a visibility based estimator for the HI power spectrum. In

the first part of the project, we use simulations of GMRT observations to implement

the estimator and then test its performance in different situations. We see that the

estimator is able to recover the input power spectrum from the simulated data at all

but the very large scales, possibly because of the lack of very small baselines in the

GMRT antenna distribution. Next, the estimator is applied to actual observations of

the Extended Groth Strip made using the GMRT at a redshift of 0.028. All point

sources above a threshold of 7σ are modelled and subtracted. The Multifrequency

Angular Power Spectrum (C`(∆ν)), the cylindrical power spectrum P (k⊥, k‖) and

the spherical power spectrum (P (k)) are measured using the TGE and the effect of

point source subtraction and tapering on these quantities is studied. Both tapering

and point source subtraction are seen to have a significant effect in the suppression

of foregrounds. We employ a foreground avoidance technique to average the power

values in a region outside the foreground wedge in spherical k shells to estimate the

spherical power spectrum, which is then used to set the upper limits on the dimen-

sionless HI power spectrum (∆2(k)) at z = 0.028 and in the relevant wave modes.

The dark matter power spectrum at z = 0.028 is calculated and used to get upper

limits on the quantity ΩHI × bHI . We obtain the tightest constraints at k = 20.73

Mpc−1 and the estimated 2σ upper limits at this mode are ∆2(k) = (17.14)2mK2

and ΩHIbHI = 0.0179. A similar analysis is then done on EGS observations with

the GMRT at z=0.34 and z=0.38. The tightest constraints from this analysis are:

∆2
U(k) = (54.28)2mK2 and ΩHIbHI = 6.02× 10−2 at k=5.56Mpc−1 (for z=0.34) and

∆2
U(k) = (71.32)2mK2 and ΩHIbHI = 8.61× 10−2 at k=3.60Mpc−1 (for z=0.38).
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Chapter 1

Introduction

Over the last few centuries, we have made tremendous progress in answering some of

the fundamental questions related to the evolution of the universe and the structures

within it. It was not until the 20th century, however, that scientists started to create

quantitative models of the evolution of the universe, when Einstein proposed his

General Theory of Relativity. The Big Bang Model of the universe was born and soon

we had a relatively well established theoretical picture of the evolution of the universe

and the celestial bodies within it. But it was very difficult to test these theories

through observations, particularly since we were confined primarily to the visible

wavelengths of light. Throughout the last century, the advancement in technology

has allowed us to expand our window to a much wider part of the electromagnetic

spectrum and we have utilized this to probe the various mysteries of the universe.

Radio astronomy was born in the 1930s, when Karl Jansky pointed his rotating an-

tenna towards the night sky and detected static emission at 20 MHz that repeated

every sidereal day [Jansky 33]. The technology of radar received a huge boost during

the operations of the Second World War and since then, scientists have been building

bigger and more sensitive telescopes to observe the sky in radio wavelengths. The

main advantage of observing in radio frequencies is that radio waves are practically

unaffected by the atmosphere in a wide frequency range. This permits us to construct

telescopes on the ground without worrying about losing out on information due to

scattering in the Earth’s atmosphere. The major drawback of radio astronomy, how-

ever, is that the diffraction limit of a telescope (θ ≈ λ/d where λ is the wavelength

and d is the diameter of aperture) at radio wavelengths is very large. This prevents

us from achieving reasonably good angular resolution without building telescopes of

humongous sizes. This issue was circumvented in the 1940s with the emergence of ra-
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1.1. PHYSICS OF THE 21 CM SIGNAL

dio interferometry, a technique which combines signals from separate antennas placed

at large distances to mimic a telescope of huge diameter. A brief description of the

method of radio interferometry has been presented in 2.1.

Ever since its advent, radio astronomy has been used to study the universe and has

resulted in some of the most important discoveries in astrophysics and cosmology. In

1951, Ewen and Purcell detected a spectral line emission from the Milky Way at a

wavelength of 21 cm [Ewen 51]. The discovery of the Cosmic Microwave Background

Radiation (CMBR), a relic signal from the infancy of the universe, was made by

Penzias and Wilson in 1964 using their 6m horn antenna [Penzias 65]. The study

of the CMBR has revolutionized our understanding of cosmology and is the most

important observational evidence of the validity of the Big Bang Theory. Galaxy

surveys in the optical have given us a huge wealth of information till the time when

the universe was about a billion years old. However, in spite of these efforts, a large

part of the history of the universe is unexplored. This is precisely where 21 cm

cosmology comes in. It gives us the opportunity to probe very large volumes of the

universe by mapping the redshifted 21 cm signal. The remainder of this chapter gives

an introduction to the field of 21 cm cosmology. Many of the concepts presented here

are described in much more detail in the review by Liu and Shaw [Liu 20] and the

interested reader is suggested to consult the same.

1.1 Physics of the 21 cm Signal

The 21 cm signal arises from the hyperfine transition of neutral hydrogen (HI). The

interaction of the electron and the nuclear magnetic dipole moments splits the ground

state of HI into two hyperfine split states with F=1 and F=0, depending on the rel-

ative alignment of the nuclear and electron spins. Here F = S+I = total angular

momentum, S = electron spin angular momentum, I = nuclear spin angular mo-

mentum. The upper F=1 state is three fold degenerate and is called the triplet state

while the lower F=0 state is called the singlet state. The energy difference between

the triplet and the singlet states corresponds to a frequency of 1420.4 MHz or a wave-

length of 21 cm. Figure 1.1 shows the energy level diagram for the ground state of

HI.

2



1.1. PHYSICS OF THE 21 CM SIGNAL

Figure 1.1: Energy level diagram showing the hyperfine splitting of the ground state
(n=1) of neutral hydrogen.

1.1.1 Spin Temperature

In order to quantify the ratio of the population of HI in the two hyperfine split states,

a quantity called the spin temperature (TS) is used. The spin temperature is defined

as:
n1

n0

= 3× e−T∗/TS (1.1)

where n1 and n0 are the population of HI atoms in the higher and lower hyperfine

states respectively, T∗ equals hν∗
kB

(ν∗ = 1420.4 MHz) and the factor of 3 accounts for

the three fold degeneracy of the triplet state.

There are three processes which are primarily responsible for deciding the ratio of the

population of HI in the upper and lower hyperfine states:

Radiative Transition: External radiation (CMBR) can cause excitation or de-

excitation through stimulated emission or absorption. If the gas is in equilibrium with

this radiation, the spin temperature approaches the temperature of the radiation field

(Tγ).

Collisional Transition: Collisions between HI atoms or between HI atoms and

electrons can lead to a spin flip. If the transition comes to equilibrium with the

collisions, then this drives the TS towards the kinetic temperature (TK).

3



1.1. PHYSICS OF THE 21 CM SIGNAL

Wouthuysen Field Effect: Absorption of a Lyman alpha photon from UV radia-

tion can lead to a transition from the n=1 to the n=2 state. When the atom comes

back to the ground state, if it returns to a different hyperfine state than before, a spin

flip has occurred. This is called the Wouthuysen Field Effect. In equilibrium, this

effect tries to bring the spin temperature towards the color temperature (TC) which

describes the slope of the radiation field around the Lyman alpha line.

1.1.2 Brightness Temperature Fluctuations

Observationally, the quantity of interest for us is the contrast between Tγ and TS

and this decides whether the signal is seen in absorption or emission. The brightness

temperature of the 21 cm line is given by:

δTb(n̂, ν) =
TS − Tγ

1 + z

(
1− e−τ(n̂,ν)

)
(1.2)

Here z is the redshift and τ(n̂, ν) is the optical depth along the line of sight direction

n̂ at an observation frequency of ν (= ν∗
1+z

). It can be shown that τ(n̂, ν) is given by

(Appendix of [Bharadwaj 05]):

τ(n̂, ν) =
3c2A10nHIT∗
32πν3

∗H(a)TS

(
1− 1

aH(a)

∂v

∂r

)
(1.3)

where A10 is the spontaneous emission coefficient of the 21 cm line, nHI is the number

density of HI atoms, a= 1
1+z

is the scale factor, H(a) is the Hubble parameter and ∂v
∂r

is

the line of sight derivative of the radial component of the peculiar velocity. Since the

HI 21 cm line is typically optically thin in galaxies, we can make the approximation

τ(n̂, z) � 1 and Taylor expand equation 1.2. Then putting in the expression of

τ(n̂, z) and simplifying, we get [Bharadwaj 05]:

δTb(n̂, ν) =

(
1− Tγ

TS

)
T̄ (z)

ρHI
ρ̄H

(
1− 1 + z

H(z)
× ∂v

∂r

)
(1.4)

where T̄ (z) ≈ (4.0 mK)×(1+z)2
(

Ωbh
2

0.02

) (
0.7
h

) (
H0

Hz

)
depends only on the cosmological

parameters and ρHI
ρ̄H

is the ratio of neutral hydrogen density to the mean hydrogen

density. If we neglect peculiar velocities, this reduces to:

δTb(n̂, ν) =

(
1− Tγ

TS

)
T̄ (z)x̄HI (1.5)

4



1.1. PHYSICS OF THE 21 CM SIGNAL

where x̄HI = ρHI
ρ̄H

is the mean neutral hydrogen fraction. So the neutral fraction and

the difference between the spin temperature and CMBR temperature are the two key

parameters which guide the observed brightness temperature fluctuations.

1.1.3 Power Spectrum

If we want to gain a theoretical understanding of the brightness temperature fluc-

tuations of the 21 cm radiation, the quantities we define should correspond to the

statistical process guiding the fluctuations and not the realization of that process,

i.e., the fluctuations themselves. The quantity which is commonly used to do this is

the power spectrum. The power spectrum is defined as the scale dependent variance

of the brightness temperature fluctuations in the spatial frequency space. Assuming

that the fluctuations follow a Gaussian distribution, the power spectrum completely

specifies the statistics of the underlying process generating the fluctuations. The HI

power spectrum PHI(k) is defined as:〈
∆Tb(k)∆T ∗b (k′)

〉
= (2π)3δ3(k − k′)PHI(k) (1.6)

where 〈· · · 〉 denotes an ensemble average over multiple realizations of the Gaussian

random field and ∆Tb(k) is the Fourier transform of δTb(r) and is given by:

δTb(r) =

∫
d3k

(2π)3
eik·r∆Tb(k) (1.7)

Combining equations 1.4, 1.6 and 1.7, we arrive at the following expression relating

the 21 cm power spectrum with the matter power spectrum [Bharadwaj 05]

PHI(k) = (T̄ x̄HIbHI)
2(1 + βµ2)2P (k) (1.8)

where β ≈ Ω0.6
m

bHI
with Ωm being the mass density of non relativistic matter as a fraction

of the critical mass density and µ = k̂ · n̂. In obtaining this equation, it has been

assumed that the HI clouds are biased with respect to the dark matter distribution

by a linear bias (bias factor: bHI), TS � Tγ in the post reionization universe and that

the distribution of matter in the scales of interest is isotropic.

Another way to describe the second order statistics of the brightness temperature

fluctuations, which can be more convenient for radio interferometric observations, is

5



1.2. EVOLUTION OF THE GLOBAL SIGNAL

the Multi-frequency Angular Power Spectrum or MAPS [Datta 07]. In order to define

it, the brightness temperature fluctuations are decomposed in the basis of spherical

harmonics Y m
` (n̂) as:

δTb(n̂, ν) =
∑
`,m

a`m(ν)Y m
` (n̂) (1.9)

The MAPS is then defined as:〈
∆Tb(k⊥, νa)∆T

∗
b (k′

⊥, νb)
〉

= Ck⊥(νa, νb)δ
2(k⊥ − k′

⊥) (1.10)

Here k has been replaced by (k⊥, ν) as the projection of the wave vector in the plane of

the sky, as a function of frequency. From Equations 1.9 and 1.10, and using k⊥ = `/r

(where r is the comoving distance at the central observing frequency νc), we finally

obtain:

C`(νa, νb) =
1

2`+ 1

∑̀
m=−`

a`m(νa)a
∗
`m(νb) (1.11)

Under the assumption that the redshifted 21 cm signal is statistically homogeneous

along the frequency axis, C`(νa, νb) = C`(∆ν) with ∆ν = |νa − νb|. In the flat

sky approximation, the cylindrical power spectrum is related to the C`(∆ν) via the

following expression [Datta 07]:

P (k⊥, k‖) = r2r′
∫ ∞
−∞

d(∆ν)e−ik‖r
′∆νC`(∆ν) (1.12)

where r′ = dr
dν

∣∣∣
ν=νc

is the rate of change of r with frequency, evaluated at νc and k‖ is

the projections of k along the line of sight.

1.2 Evolution of the Global Signal

In Equation 1.5, we see that the brightness temperature of HI is linked to the neutral

hydrogen fraction and the contrast between the spin temperature and the tempera-

ture of the background radiation (which is assumed to be the CMBR). Our present

understanding of the evolution of the universe results in predictions about the magni-

tude of the global 21 cm signal at different redshifts. Following is a brief summary of

the different epochs and how the global signal is expected to behave in each of these

redshift ranges.

6



1.2. EVOLUTION OF THE GLOBAL SIGNAL

Figure 1.2: Top: 2d slice of the 21 cm brightness temperature distribution. Bottom:
The global 21 cm signal. Source: [Pritchard 12].

The Dark Ages (25 < z < 1100): Around z = 1100, the universe undergoes

recombination, when it has cooled sufficiently to allow the recombination of protons

and electrons to form neutral hydrogen. The photons, which till then had a very

small mean free path due to the large Thompson scattering cross section of electrons,

are now free to move across the universe and these photons form the CMBR. After

recombination, the CMBR photons undergo inverse Compton scattering with the

residual electrons and this couples the gas temperature TK to the CMBR temperature

Tγ. The TS is in turn coupled to TK and hence there is no signal till z = 200 when

the scatterings become rare. Now TK falls as 1
(1+z)2

while Tγ falls as 1
1+z

. Since TS is

coupled to TK , δTb falls and the 21 cm signal is seen in absorption against the CMBR.

Around z = 50, the gas has cooled to an extent that collisional coupling is no longer

effective. The TS is then driven towards the Tγ and δTb starts rising. Around z = 30,

TS ≈ Tγ and δTb becomes 0. This period (25 < z < 1100) is referred to as the Dark

Ages since there is no source of radiation other than the CMB and the fluctuations

in the δTb(n̂) are sourced by the density fluctuations.

Cosmic Dawn and Epoch of Reionization (6 < z < 25) The first luminous

objects are formed around z = 25 and these sources produce an abundance of Lyman

α photons. These photons are in equilibrium with the gas (TC ≈ TK) and through

the Wouthuysen Field Effect, TS is driven towards TK . Since TK < Tγ, δTb < 0 and

the signal is again seen in absorption. Once the heating due to X-ray photons emitted

7
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by the luminous sources becomes significant, TK increases. TS which is coupled to

TK follows it so that at some point, TS = TK = Tγ and δTb = 0. After this, the

heating continues and TS = TK > Tγ meaning that the signal is now seen in emission.

Throughout this epoch, the radiation from the sources ionizes the HI around the

sources, resulting in bubbles around the sources containing ionized Hydrogen (HII)

which give no 21 cm signal. These bubbles grow in size, eventually merging with

each other and the universe becomes completely ionized. This completes the epoch of

reionization, a period of extremely rich astrophysics and one of the most important

periods in the expansion history of the universe.

Post Reionization (z < 6) After reionization is complete, the HI is confined to

dense pockets in the interiors of galaxies where they can be effectively shielded from

the ionizing radiation. Any remaining 21 cm signal arises primarily from these galax-

ies. Observations in this redshift range are an excellent probe of cosmology, since the

HI distribution directly traces the matter distribution. In addition to galaxy redshift

surveys and measurements of Damped Lyman Alpha systems, a novel technique called

Intensity Mapping offers a unique method to survey very large comoving volumes and

estimate the Large Scale Structure distribution. One of the first targets of Intensity

Mapping is to detect the Baryon Acoustic Oscillations, which are the remnants of

primodial sound waves that are expected to leave an imprint of the matter power

spectrum.

1.3 Foregrounds

The discussion in the previous sections has assumed that the intensity in the sky

comes solely from the 21 cm signal. In practice however this is not true. In fact the

sky at radio frequencies is dominated by radiation from other sources and these are

referred to as foregrounds. The foregrounds can be upto 5 orders of magnitude higher

than the actual 21 cm signal, which appears as a faint diffuse background. This poses

serious challenges in the detection of the signal and has led to the emergence of a large

number of techniques which attempt to isolate the signal from the bright foregrounds.

According to their origin, foregrounds are classified into two main categories:

8



1.3. FOREGROUNDS

Galactic: The Galactic foregrounds consist primarily of the Diffuse Galactic Syn-

chrotron Emission (DGSE). The synchrotron spectrum has a power law frequency

dependence and the intensity becomes lower as we move to higher frequencies. There

is a distinct spatial variation in the intensity of the DGSE and more emission is seen

near the Galactic plane. The DGSE is partially linearly polarized. This polarized

intensity is not necessarily a smooth function of frequency since differential Faraday

Rotation in the interstellar medium can introduce complex frequency dependence.

This can lead to complications in the mitigation of foregrounds, if the polarized in-

tensity leaks into the total intensity due to inadequate calibration of the polarized

response of the instrument. Apart from the DGSE, the free free emission from diffuse

ionized gas and thermal dust also contributes to the Galactic foregrounds, but they

become significant only at higher frequencies.

Extragalactic: The extragalactic foregrounds are mainly due to Active Galactic

Nuclei (AGN) and Star Forming Galaxies (SFGs). The mechanism of emission in

radio frequencies for both AGN and SFGs is primarily through synchrotron radiation.

These sources appear as point sources in radio maps and need to be subtracted early

in the data processing pipeline. However, faint point sources cannot be removed and

the confusion caused by background fluctuations due to unresolved point sources can

also contribute to foregrounds.

9



Chapter 2

HI Intensity Mapping

HI Intensity mapping, as the name suggests, is a technique by which the specific

intensity of HI in the sky is mapped. If the 21 cm signal is the sole signal in the

sky, then we can utilize the frequency bandwidth of the radio telescope to observe

the signal at different redshifts by changing the observing frequency. Since different

redshifts correspond to different radial distances in the sky, this allows us to build a

3d distribution of the HI Intensity in the sky. In the post reionization universe, which

is the epoch are interested in, the HI is expected to be confined in the dense interiors

of galaxies. Hence, mapping the HI distribution gives us an idea of the clustering

of galaxies and in turn, the distribution of the underlying dark matter. In order to

carry out HI intensity mapping to detect the redshifted 21 cm signal, we need to look

at the sky in the radio wavelengths. But a single dish radio telescope suffers from

the drawback that the angular resolution achievable by a telescope of diameter d is

given by λ/d where λ is the observing wavelength. Hence achieving very good angular

resolution requires the construction of telescopes of gigantic sizes. But as we increase

the dish aperture, at some point, mechanical constraints come into play and it is not

possible to construct steerable radio dishes with diameters beyond a certain limit. To

get around this problem, astronomers use the technique of radio interferometry.

2.1 Radio Interferometry

In radio interferometry, the idea is to use a large number of receiving antennas at

large distances from each other to mimic a radio telescope of huge diameter. Both the

10
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amplitude and phase of the incoming electromagnetic wave are recorded by the anten-

nas and the signals can later be added up in software. This is a cost effective method

of reaching very high resolution using a set of smaller antennas. But the method

demands high computational power and very precise calibration of the instrument in

order to derive meaningful results.

2.1.1 Synthesis Imaging

Synthesis imaging is the method by which an array of radio antennas is used to produce

an image of the sky. The simplest radio interferometer consists of two antennas

separated by a distance. The vector connecting the two antennas of this two element

interferometer is called the baseline vector. The signals received by the two antennas

are time averaged and cross correlated in a correlator. The output of the correlator

is called a “visibility”. It can be shown that the visibility is one Fourier Component

of the Intensity Distribution of the sky under the assumption that the sky signal

is spatially incoherent and that the patch of the observed sky is small enough to

be approximated as a 2d plane. The spatial frequency that the visibility samples

is given by the projection of the baseline vector on the plane perpendicular to the

source vector. The combination of a large number of antennas gives a large number

of baseline vectors, and combined with the rotation of the earth, allows an effective

sampling of the spatial frequency space. The components of the projected baseline

vector, in the units of wavelength, are labelled by the letters u and v and hence

the spatial frequency space is also called the uv space. The sky intensity distribution

(Iν(l,m)) is a function of the direction cosines l and m, and is related to the visibilities

(V(u,v)) through the Van Cittert-Zernike theorem:

V (u, v) =

∫ ∫
Iν(l,m)e−2πi(ul+vm)dldm (2.1)

This equation can potentially be inverted to obtain the sky intensity distribution. But

the interferometer only has a finite set of baselines and a finite number of integrations

during an observation. This results in an incomplete sampling of the spatial frequency

space and this is quantified by the uv sampling function S(u,v). So the Fourier inverse

of equation 2.1 yields the dirty image, not the true image. The dirty image (IDν (l,m))

11
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is given by:

IDν (l,m) =

∫ ∫
V (u, v)e2πi(ul+vm)dudv (2.2)

The dirty and true images are linked by a convolution:

IDν (l,m) = Iν(l,m) ~ P (l,m) (2.3)

Here P(l,m) is the Point Spread Function (PSF) and is the Fourier Transform of the

uv sampling function S(u,v). Since we know the antenna distribution of an array and

the observation parameters, we know S(u,v) and hence, P(l,m). IDν (l,m) is obtained

by Fourier transforming V(u,v). So, the problem essentially boils down to inverting

equation 2.3 to obtain the true image Iν(l,m). But this is a non trivial task and

we need to make certain assumptions about the sky intensity distribution in order

to get an estimate of the true image. The most common approach is to assume that

the sky is made up of point sources and the algorithms which are used to iteratively

deconvolve the true image from the dirty image are called the CLEAN algorithms.

2.1.2 Calibration

However, before the image is constructed from the visibilities, we need to make sure

that the observed visibilities reflect the true visibilities and are not affected by the

instrumental systematics. This crucial intermediate step is called calibration. Let

V obs
ij and Vij be the observed and the ideal visibilities respectively, corresponding to

the ith and jth antennas. Then the relation between them can be modelled as:

V obs
ij = gig

∗
jVij + nij (2.4)

where gi and gj are complex gain factors and nij is the noise on the baseline. If the

array has N number of antennas, then there are N(N-1)/2 ideal visibilities, N(N-1)/2

observed visibilities and N gain factors. So this is an underdetermined problem. But

if we observe a field with a strong unresolved source, then we can make assumptions

about the sky intensity distribution. This reduces the number of ideal visibilities to

a small number, and we can simultaneously solve for them along with the N gain

parameters using the N(N-1)/2 observed visibilities. Usually, this is done iteratively,

and the calculated gain parameters can be then used to obtain the ideal visibilities
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for the target field. Over the years, a set of reasonably well distributed, very bright

radio sources have been identified as calibrators, and these are used for the purpose

of calibration.

2.2 Visibility Correlations

Throughout 2.1, we had assumed that the antennas have a uniform response to dif-

ferent directions in the sky. This is not true in practice, and the antenna response is

described by the primary beam A(θ). Hence the equation 2.1 gets modified to:

V (U , ν) =

∫
d2θe−2πiU ·θA(θ)δIν(θ) (2.5)

Here, θ is a vector in the plane of the sky with its origin at the phase centre of the

observed field and U is the projected baseline vector in units of wavelength. The spe-

cific intensity from the redshifted HI emission has been decomposed into an isotropic

component Īν and a fluctuating component δIν(θ). The isotropic component is linked

to the T̄ (z) and only the fluctuating component contributes to the visibility. The

intensity distribution in the sky is related to the brightness temperature fluctuations

through the Rayleigh Jeans formula, which is a good approximation to Planck’s law

in radio frequencies:

δIν(θ) =
2kB
λ2

δTb(θ, ν) (2.6)

The power spectrum is defined using equation 1.6, using cross correlations of bright-

ness temperature fluctuations in the k space. The brightness temperature fluctuations

are in turn linked to the visibilities using equation 2.5. Hence it is evident that, to

obtain the power spectrum, we need to compute the cross correlations between visi-

bilities. Combining equations 1.6, 1.7 and 2.5, we can obtain [Bharadwaj 05]:

〈
V (U , ν)V ∗(U ′, ν + ∆ν)

〉
= Ī2

ν

∫
d3k

(2π)3
a(U − rν

2π
k⊥)a∗(U ′ − rν

2π
k⊥)PHI(k)eik‖r

′
ν∆ν

(2.7)

where a(U) is the aperture power pattern and is the Fourier Transform of the primary

beam A(θ).
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2.3 The Tapered Gridded Estimator (TGE)

We saw in 2.2 that the visibility correlations can directly yield the power spectrum.

Our choice of estimator for this project is the Tapered Gridded Estimator (TGE)

[Choudhuri 14] [Choudhuri 16] [Bharadwaj 19] which is a visibility based estimator

of the HI power spectrum.

2.3.1 Properties of the TGE

The TGE has the following main features:

Tapering The TGE tapers the sky response by convolving the visibilities with a

window function. This is useful since the telescope primary beam is a complicated

function of frequency, especially near the nulls and sidelobes. Hence, a point source

lying in these regions can come in and out of the nulls and give rise to ripples in

the power spectrum. These can be very difficult to model and hence this approach

attempts to suppress the response of the telescope beyond a fraction of the distance

to the first null of the primary beam.

Gridding The TGE evaluates the visibilities on a grid in the uv space and then

works with them. This greatly reduces the computation time since there is no longer

a need to cross correlate a large number of pairs of visibilities.

Subtraction of Noise Bias A very important issue in visibility correlations is that

the correlation of a visibility with itself introduces a noise bias since this noise does

not have a zero mean. The TGE internally models the noise bias and subtracts it to

give an unbiased estimator of the MAPS (introduced in 1.1.3).

2.3.2 Constructing the TGE

To construct the TGE, the first step is to select a window function (W (θ)) having a

width equal to a fraction f (f < 1 for effective tapering) of the distance to the first null

of the telescope primary beam. The window function is then Fourier transformed to
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give ω̃(U) = F [W(θ)]. Next, a grid in uv space is decided and the gridded convolved

visibilities are evaluated as:

Vcg =
∑
i

ω̃(Ug −Ui)Vi (2.8)

where the index i runs over the visibility values and g runs over the different grid

points.

The 2d TGE is used for observations at a single frequency channel and it is an unbiased

estimator of the angular power spectrum (C(`)). It can be constructed from the

gridded convolved visibilities using the following expression:

Êg = M−1
g

(
|Vcg|2 −

∑
i

|ω̃(Ug −Ui)|2|Vi|2
)

(2.9)

Here the first term in the brackets is the visibility correlation while the second term

is responsible for the subtraction of the noise bias. Mg is a normalization constant

and is given by:

Mg =

〈(
|Vcg|2 −

∑
i

|ω̃(Ug −Ui)|2|Vi|2
)〉

UAPS

(2.10)

where 〈· · · 〉 denotes an ensemble average over multiple realizations of the sky corre-

sponding to a Unit Angular Power Spectrum (C(`) = 1). To calculate Mg, a sky image

corresponding to a Unit Angular Power Spectrum is obtained. Then the visibilities

for that sky are simulated, with the same observation parameters as the actual obser-

vation. After that, the above expression within the angular brackets is evaluated and

an ensemble average is taken after repeating these steps for multiple sky realizations.

For observations with multiple frequency channels, it is necessary to consider the fact

that in an actual observation, many channels will typically be flagged due to a variety

of reasons. The TGE takes this into account by means of a flagging variable Fi(ν)

which is 0 when the visibility is to be rejected and 1 otherwise. The gridded convolved

visibilities for the 3d TGE are given by:

Vcg(νa) =
∑
i

ω̃(Ug −Ui)Vi(νa)Fi(νa) (2.11)
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The expressions for the 3d TGE and the normalization grid Mg are then given as:

Êg(νa, νb) = M−1
g (νa, νb)×Re

(
Vcg(νa)V

∗
cg(νb)− δa,b

∑
i

Fi(νa)|ω̃(Ug −Ui)|2|Vi(νa)|2
)

(2.12)

Mg(νa, νb) =

〈
Re

(
Vcg(νa)V

∗
cg(νb)− δa,b

∑
i

Fi(νa)|ω̃(Ug −Ui)|2|Vi(νa)|2
)〉

UMAPS

(2.13)

Here Mg is evaluated in a similar manner as described for the 2d estimator, except

that the sky realizations should correspond to a Unit Multifrequency Angular Power

Spectrum (C`(∆ν) = 1).

2.3.3 Obtaining the Power Spectrum

The Tapered Gridded Estimator is an unbiased estimator of the MAPS, as described

by equation 1.11.

〈Êg(νa, νb)〉 = C`g(νa, νb) (2.14)

where lg = 2πUg is the angular multipole at the gth grid point. The estimator values

are further binned in annular bins in the uv space in order to increase the Signal to

Noise Ratio (SNR). The Binned 3d Tapered Gridded Estimator is given by:

Êg[a](νa, νb) =

∑
g wgEg(νa, νb)∑

g wg
(2.15)

Here wg is the weight assigned to the gth grid point. Two approaches for choosing these

weights are natural weighting (wg = Mg) and uniform weighting (wg = 1). Natural

weighting optimizes with respect to the noise while uniform weighting optimizes with

respect to the cosmic variance. The binned 3d TGE is an unbiased estimator of the

bin averaged MAPS:

C`a(νa, νb) =

∑
g wgC`g(νa, νb)∑

g wg
(2.16)

where `a =
∑
g wg`g∑
g wg

is the effective angular multipole in the ath annulus. Under the

assumption that the signal is statistically homogeneous along the frequency axis, the

values corresponding to the same frequency separation can be averaged and we then
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go from C`a(νa, νb) to C`a(∆ν) where ∆ν = |νa− νb|. The cylindrical power spectrum

can then be evaluated using the discretized version of equation 1.12:

P̄k⊥,k‖m = r2r′∆νc

Nc−1∑
n=−Nc+2

exp(−k‖mr′n∆νc)C`(n∆νc) (2.17)

where k‖m = mπ
r′c∆νc(Nc−1)

, k⊥ = `
r
, Nc is the number of channels and ∆νc is the channel

width.

2.4 Foreground Mitigation

The first step in foreground mitigation pipelines is the subtraction of point sources.

This should ideally be done during the calibration of the visibilities, but may also

be done after obtaining an image. The MWA Real Time System [Mitchell 08] is one

such pipeline which uses a method called bright source peeling during calibration.

Detailed catalogues of radio sources in the field of view of the observation are often

used to model and subtract the sources from the visibilities or the image. The MWA

Fast Holographic Deconvolution pipeline [Sullivan 12] uses such a map to model and

subtract sources. There are two common approaches used in the mitigation of the

residual foregrounds: subtraction and avoidance.

Subtraction: This approach tries to model the foregrounds precisely and subtract

them from the data. The early attempts at foreground subtraction used polynomial

fitting to model and subtract the foregrounds. This method utilizes the fact that the

foregrounds are expected to be spectrally smooth while the 21 cm signal is not. As

a result, low order polynomials, fitted either to the visibilities or the image pixels,

should fit only the foregrounds and leave the signal in the residuals. However, there

are some serious drawbacks to this approach, the most important of them being the

fact that calibration errors and polarization leakage can result in non-smooth spectra

of the observed foregrounds. The methods which are used nowadays in foreground

subtraction use non parametric fitting, which utilize less constrained models. The

method of Gaussian Process Regression [Mertens 18] models the signal, foregrounds

and noise as Gaussian processes whose covariance priors can be specified to allow

some degree of control, without being too strict. Another commonly used method

of non parametric foreground subtraction is Blind Source Separation. This method
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models the observed signal X as X[m]=A[m,n]S[n]+N[m] where m is the number of

frequency channels, S[n] are n foreground components, N is the signal with noise while

the matrix A mixes the foreground components. The target is to estimate AS. Fast In-

dependent Component Analysis (FastICA [Chapman 12]), Generalized Morphological

Component Analysis (GMCA [Bobin 16]) and Correlated Component Analysis (CCA

[Bonaldi 15]) are some pipelines which employ the blind source separation method for

foreground subtraction. The main drawback of foreground subtraction techniques is

that any error in modelling will further contaminate the data at all scales.

Foreground Avoidance: Foreground avoidance approaches attempt to avoid the

region of the parameter space which have very high foregrounds. Since we expect

foregrounds to be spectrally smooth, they should ideally be confined to low k‖ modes.

But the chromaticity of the interferometer means that a given baseline (b) probes

finer spatial scales (higher k⊥) at higher frequencies (k⊥ ∝ b/λ). Longer baselines

are more chromatic, and this effect is more pronounced at higher k⊥. This creates a

wedge like structure in the k⊥, k‖ space within which we would expect the foregrounds

to be confined. Hence the remaining region in the k space, commonly called the EoR

Window, can be used as a region relatively unaffected by foregrounds (Figure 2.1).

Another approach which employs the philosophy of foreground avoidance is Delay

Space Filtering [Parsons 09]. We know that the chromaticity of interferometers causes

mode mixing where the spatial and spectral modes are mixed. This can be avoided if

we take Fourier Transforms of the individual visibilities and work with the visibilities

in the delay space. Doing this is equivalent to taking the Fourier Transform along the

slanted lines instead of the vertical axis in Figure 2.1. Now, if the foregrounds are

spectrally smooth, the visibilities in delay space should be close to a delta function

at the position of the geometric delay between the antennas of the baseline. The

geometric delay has a maximum value given by the geometric delay when the source

is at the horizon and hence the foregrounds would be confined within these horizon

limits. For the spectrally unsmooth 21 cm signal, however, the delta function in delay

space would be convolved with a wide kernel. Hence the signal would leak out of the

horizon limits and the part of the data beyond the horizon limits should be relatively

less contaminated with foregrounds. Though foreground avoidance techniques do not

introduce modelling errors, in avoiding the foregrounds they reject a large portion of

the signal as well. This approach also prevents us from gaining access to a range of

spatial frequencies which can be accessed by using foreground subtraction techniques.
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Figure 2.1: Left: The EoR window and foreground wedge in k space. (Source: Dillon
et al. Overcoming real-world obstacles in 21 cm power spectrum estimation: A method
demonstration and results from early Murchison Widefield Array data). Top Right:
The variation of projected baseline vectors (and hence k⊥) with frequency. Bottom
Right: The foregrounds (sinusoidal curves) and the signal (diffuse emission) in the
delay space. (Source: Parsons et al. A per-baseline, delay-spectrum technique for
accessing the 21 cm cosmic reionization signature).
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Chapter 3

Simulations

The aim of the first part of the project was to implement the TGE on simulated

GMRT data and test its performance for different input parameters. This exercise

consists of first making an image corresponding to an input power spectrum, simulat-

ing visibilities corresponding to that image for some observation parameters, followed

by the implementation of the estimator and comparison of the input and recovered

power spectra. This was repeated for both 2d and 3d estimators. This entire analysis

was done in python 2.7 and CASA (Common Astronomy Software Applications).

3.1 Simulating Observations

The input angular power spectrum for the 2d simulations was assumed to be C(`) =

513 mK2× (1000
`

)2.34. This corresponds to the DGSE at 150 MHz measured using the

GMRT [Ghosh 12]. For the 3d simulations, we assumed an input spherical power spec-

trum given by: P (k) = (k/k0)−2mK2Mpc3 where k0 = (1.1)−1/2Mpc−1 which is the

same power spectrum assumed in the simulations which were used to validate the 3d

TGE [Bharadwaj 19]. In order to estimate the sky image corresponding to the input

power spectrum, first a grid is decided in the spatial frequency space corresponding to

the desired observation parameters. The observation parameters used for the simula-

tions are summarized in Table 3.1. The grid size was chosen to have N=65 cells along

each axis. For the 2d grid in ` space, the maximum ` is given simply by 2π × uvmax.

For the 3d grid, we have kmax⊥ = 2π×uvmax/rνc and kmax‖ = Nπ/(rνmax− rνmin
) where

rν is the comoving distance at ν. Once the grid is decided, each grid cell is assigned
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the value g(k).

g(k) = (ak + ibk)×
√
P (k)N3

2L3
(3.1)

Here ak and bk are random numbers drawn from a Gaussian distribution with mean =

0 and standard deviation = 1. The factor of N3/2L3 (L = distance corresponding to

a grid cell in image domain) is necessary to correct the normalization in the discrete

Fourier Transform routine used to create the images [Bagla 97]. For the 2d grid,

Equation 3.1 is replaced by:

g(`) = (a` + ib`)×
√
C(`)N2

2L2
(3.2)

In practice, only half of the cells are filled with these values and the other half are

decided by the Hermitian symmetry of the Fourier Transform of the image since the

image pixel values must be real valued. Then the Inverse Fourier Transform of the

grid is computed using a Fast Fourier Transform algorithm to yield the sky image.

This whole procedure is repeated for the unit APS (C(`) = 1) for the 2d estimator

and the unit MAPS (C`(∆ν) = 1) for the 3d estimator. C`(∆ν) = 1 implies that

the P (k) = r2ν∆rν
∆k‖

δ(k‖) and hence the k‖ = 0 plane in the k grid is assigned this

constant value for P(k) while the other cell values are 0. In this manner, the sky and

normalization images corresponding to the input power spectra are obtained. Figure

3.1 shows examples of the sky and normalization images for the 2d simulations. For

the 3d simulations, the sky image plane for each frequency channel is different while

the normalization image plane for each channel has the same noise distribution. These

images, along with the observation parameters and the GMRT antenna distribution

stored in a configuration file are then given as input to the CASA simulator tool which

returns the simulated visibilities in the form of a Measurement Set (MS). The UV

coverage of the 2d simulations is shown in Figure 3.1.

Parameter Value

RA 10h46m00s
Dec 59d00m59s
νc 150 MHz

Bandwidth 16 MHz
UV range 10 to 1000

Observation Period -4 hr to +4 hr
Integration Time 10 min

Table 3.1: Observation Parameters used for the simulations.
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Figure 3.1: UV coverage and example images for the 2d simulations. Top: UV
coverage. Bottom Left: Sky image. Bottom Right: Normalization Image.
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3.2 Applying the Estimator

As discussed in 2.3.2, the first step is to choose a window function which will be used

to taper the sky response. For this analysis, a Gaussian window function was chosen,

with a Full Width at Half Maximum (FWHM) of 57 arcmin which is about one third

of the GMRT primary beam FWHM at 150 MHz (FWHM ≈ 1.03λ
D
≈ 157 arcmin).

This is Fourier Transformed analytically to get the tapering window in uv space.

Then a uniform grid in the uv space is chosen between uvmin and uvmax. The gridded

convolved visibilities are then calculated using Equation 2.8 (for 2d) and Equation

2.11 (for 3d).

The above steps are repeated for the visibilities simulated using the normalization

image and the simulations are themselves repeated for multiple normalization im-

ages. Then the normalization matrix is constructed using Equation 2.10 (for 2d) and

Equation 2.13 (for 3d), by taking an ensemble average of the grid values across 10

different realizations of the normalization image. This part of the code, where multi-

ple normalization images are used to simulate and construct multiple normalization

grids, is parallelized to reduce the computation time.

These gridded convolved visibilities and the Mg are then used to construct the Êg

matrix using Equation 2.9 (for 2d) and Equation 2.12 (for 3d). In this way, the

normalized estimator grid is constructed. Figures 3.2 and 3.3 illustrate the grids for

the 2d simulations.

Figure 3.2: Grids for 2d simulations. Left: Êg ×Mg, Right: Mg.

23



3.2. APPLYING THE ESTIMATOR

Figure 3.3: Normalized estimator grids for 2d simulations. Left: Êg for natural

weighting. Right: Êg for uniform weighting.

The next step involves specifying annuli within which we want to average the estimator

values (Equation 2.15). For this analysis, 9 equally spaced annuli were used, between

uv=100 and uv=1000. Since some grid points will not be sampled by the GMRT

baseline distribution, while uniformly weighting the estimator values, only those grids

which have a value of Mg > 105 were used. For natural weighting, the grid cells which

are not sampled are automatically given small weights and this step is not necessary.

The averaged estimator values directly yield the C(`) (for 2d) and C`(νa, νb) (for 3d).

For the 3d estimator, the different estimator planes with the same ∆ν are averaged to

give C`(∆ν). Figures 3.4 and 3.5 show the obtained APS and MAPS respectively. The

input C`(∆ν) for the 3d simulations has been calculated by taking an inverse Fourier

Transform of the input P(k). We see that there seems to be an underestimation of the

recovered APS at low ` values. The plots for the MAPS also show underestimation

and dips in the residuals for the lower ` values as seen in Figure 3.5. This can be

expected since these lower ` values will be affected more by sample variance. All the

plots that will be shown from this point onwards are for natural weighting. Uniform

weighting gives very similar plots.
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Figure 3.4: The recovered and input APS.

Figure 3.5: Left: The MAPS as a function of both `eff and ∆ν. Top right: MAPS
averaged across ` values plotted against ∆ν. Bottom right: The MAPS for a few
specific ` values plotted against ∆ν. The shaded regions indicate the 1σ deviations.

For the 3d simulations, there is one more step of obtaining the cylindrical and spherical

power spectra. The cylindrical power spectrum is obtained using Equation 2.17 on the
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estimated MAPS. The corresponding plots are shown in Figure 3.6. The cylindrical

power spectra are further averaged in spherical shells in k space of constant width,

to obtain the spherical power spectrum. We see that at low k values there is a

significant underestimation of the power spectrum, while for the majority of the k

range, the power spectrum is overestimated.

Figure 3.6: Left: The cylindrical power spectra as a function of both k⊥ and k‖. Top
right: The 1d profile with the power for k⊥ values averaged. Bottom right: The input
and recovered spherical Power Spectra.

3.3 Testing the Estimator’s Performance

The results described in 3.2 correspond to a single realization of the sky and we do not

have error bars on the measurements which tell us how the power spectrum estimation

might change for a different sky realization corresponding to the same input power

spectrum. In order to test the performance of the estimator for different situations,

these error bars are necessary. To get an estimate of the error bars, the entire analysis

in 3.2 was repeated for an ensemble of sky realizations. This part of the code, where

the estimators for different sky realizations are computed, was again parallelized to

reduce the computation time. The results for the 2d and 3d estimators are presented
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3.3. TESTING THE ESTIMATOR’S PERFORMANCE

in Figure 3.7. In these plots 〈· · · 〉 denotes an ensemble average and the error bars

correspond to the maximum and minimum values obtained across the different sky

realizations.
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Figure 3.7: Left: The mean APS. Right: The mean spherical PS.

To test the effect of noise on the performance of the estimator, after constructing the

sky image, Gaussian noise was added to the visibilities. Then the above analysis was

repeated for multiple sky realizations and the plots with error bars were obtained.

This was then repeated for different input values of noise. Now the mean of the

deviations of 〈C(`)〉, 〈C`(∆ν)〉 and 〈P (k)〉 from their input values gives us an estimate

of the accuracy of the estimator. The mean value of the error bar lengths gives us

an estimate of the effect of sample variance on the performance of the estimator.

So these two quantities are plotted against the input noise in Figure 3.8. From the

plots, it seems that uniform weighting results in more overestimation than natural

weighting, for both 2d and 3d simulations. The cause for this overestimation for

uniform weighting could be the fact that we need to select a threshold Mg value while

binning the estimator values in annuli. Also, the effect of sample variance becomes

more severe as the input noise is increased. Figure 3.9 shows an example of how

adding noise affects the C`(∆ν) and P (k⊥, k‖).
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3.3. TESTING THE ESTIMATOR’S PERFORMANCE

Figure 3.8: Plots showing accuracy of the estimator (left) and effect of sample variance
on the estimator (right) as a function of input noise. The top row is for the 2d
estimator and the bottom row for the 3d estimator.

Figure 3.9: Top: The recovered MAPS when noise is added to visibilities. Bottom:
The corresponding cylindrical PS.

To test the effect of sparsity of the antenna distribution on the performance of the

estimator, a similar analysis was done. The simulations for multiple sky realizations

were repeated for different number of antennas used and the set of antennas to be used

in each case was chosen at random. Finally, plots similar to Figure 3.8 for accuracy

and effect of sample variance were obtained, but as a function of number of antennas.

These plots are shown in Figure 3.10. For the 2d estimator, the deviation becomes
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3.4. SUMMARY

more positive as the antenna distribution becomes sparse. For 3d estimator, we see a

trend of increased effect of sample variance for more sparse configurations. The other

two plots, range of offsets for 2d estimator and mean of offsets for 3d estimator, do

not show any specific trend and have not been shown here.

Figure 3.10: Plots showing accuracy of the 2d estimator (left) and effect of sample
variance on the 3d estimator (right) against the number of antennas.

3.4 Summary

Following is a brief summary of the analysis described in this chapter:

• The 2d and 3d TGE are applied to simulated GMRT observations and they

recover the input power spectra reasonably well. Both the 2d and 3d estimator

show an underestimation of the recovered power spectra at low ` and k. This

is possibly due to the absence of very small baselines in the GMRT antenna

distribution. At high k, for the 3d estimator, there is an overestimation and

this decreases as k increases.

• Uniform weighting results in higher values of the estimated power spectra than

natural weighting. Adding noise to the visibilities increases the effect of sample

variance on the performance of the estimator.
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Chapter 4

GMRT Observations

The Giant Metrewave Radio Telescope (GMRT) is a radio interferometric array lo-

cated near Pune, India [Swarup 91]. It is one of the largest radio arrays in the world

and consists of 30 dish antennas, each having a diameter of 45m. The array of

antennas is in a “Y” configuration, consisting of a central compact square and three

extended arms. The compact square contains 14 antennas distributed randomly, while

the remaining antennas form the arms of the Y shape. The antennas in the central

square are the ones most important for intensity mapping, since the smaller baselines

of upto 1 Km will be particularly sensitive to extended structures in the sky. The

GMRT can observe in a frequency range from 50 MHz to 1500 MHz with a maximum

instantaneous bandwidth of 400 MHz.

4.1 EGS Data

The Extended Groth Strip (EGS) is a small patch of the sky between the constellations

of Ursa Major and Boötes and is one of the darkest and most dust free regions of the

sky. The central region of the field was observed using the GMRT and reduced

with both the GMRT Software Backend (GSB) and the GMRT Wideband Backend

(GWB). For the GSB data, phase, flux and bandpass calibration and flagging of

Radio Frequency Interference (RFI) affected data was done by Pranav Kukreti for

his Master’s thesis where he used radio stacking analysis to study the star formation

rate (SFR) of typical star forming galaxies at z=0.028. The GWB data was reduced

by Apurba Bera [Bera 19] to study SFR at intermediate redshifts (0.2 < z < 0.4). In
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4.2. ANALYSIS - GSB DATA

this analysis, we have used these calibrated visibilities for HI intensity mapping.

Since the python codes used for the simulations in the previous chapter are computa-

tionally slow, the codes developed by the IIT Kharagpur team were used for obtaining

the MAPS and Power Spectra of the large volume of EGS data. These codes have

a few changes to what was described in section 2.3. The first of these changes is

that in Equation 2.12, the Kronecker delta is no longer present. This is equivalent

to lifting the assumption that the noise in different frequency channels will not be

correlated. It is seen that this becomes necessary in actual data, in the presence of

foregrounds since this assumption results in a dip in the recovered MAPS at ∆ν = 0

[Pal 21]. Another change is introduced in the step where the estimated C`(∆ν) is

Fourier Transformed to obtain the cylindrical power spectrum. Instead of an FFT

algorithm to compute the Fourier Transform, a Maximum Likelihood Estimator has

been used for the purpose [Pal 21]. This is useful since the C`(∆ν) values are better

estimated for lower values of ∆ν. The inverse of Equation 2.17 is written in matrix

notation as:

C`(n∆νc) =
∑
m

AnmP̄ (k⊥, k‖m) + [Noise]n (4.1)

where A is the Hermitian matrix containing the Fourier Transform coefficients and

n,m go from 0 to Nc − 1. The maximum likelihood estimate of the power spectrum

is:

P̄ (k⊥, k‖m) =
∑
n

[(A†N−1A)−1A†N−1]mnC`(n∆νc) (4.2)

where N is the noise covariance matrix. This approach gives the necessary weight to

∆ν values which have lower associated noise and hence is a better alternative to the

standard FFT method.

4.2 Analysis - GSB Data

The GSB dataset has observations of the EGS on 12 nights, totalling 57 on-source

hours. The observations are centred at an observation frequency of 1381.2 MHz and

the visibilities have 510 frequency channels, with a bandwidth of 33.33 MHz.
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4.2.1 Results - Individual Nights

The initial analysis consisted of applying the TGE to individual nights separately

and obtaining the MAPS and Power Spectra for the same. This was done with the

objective of testing the quality of the data on each night and checking the consistency

and errors of the obtained power spectra across nights. The analysis was repeated

for two tapering windows, with f=0.8 and f=3 to study the effect of tapering. Here

f is the fraction by which the tapering window FWHM is smaller than the FWHM

of the GMRT primary beam. Figure 4.2 shows the plots of C`(∆ν) against ∆ν for

the individual observation nights. We see oscillations whose frequency increases as

we increase the ` value. For large ` values, slower oscillations also begin to be seen.

These are expected to come from point sources near the first null of the primary beam.

The sharp dips at large ∆ν are effects of systematics at the edge channels. Figure 4.3

shows the spherical power spectra for the different nights. While making this plot, the

values of the power spectrum in the range k⊥ > 15 have been averaged in spherical

k shells with logarithmic binning. The limit in k⊥ is chosen since the convolution is

expected to dominate at large angular scales. This results in a minimum value of `

given by `min = 1823.72 ×
√

1+f2.5

f1.25
[Choudhuri 14] which equals ` = 3022 for f=0.8

and ` = 1881 for f=3. This corresponds to roughly the six smallest ` and hence k⊥

bins. The results seem to be fairly consistent and all the nights have been used for the

subsequent analysis. The 4 shorter observations have not been plotted because they

deviate substantially from the mean. This is likely since the uv coverage for these 4

observations is very patchy. The comparison between the uv coverage for the longest

observation night and that for the entire observation has been shown in Figure 4.1.

This reveals that using the full observation will give us access to more k modes.

Figure 4.1: UV Coverage (single channel) for the longest individual observation night
(left) and that for the full observation (right). Only values less than 5000 have been
shown in both plots.
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Figure 4.2: C`(∆ν) against ∆ν for 4 different ` values, for the 8 longest observation
nights for f=0.8 (left) and f=3 (right). The dates in the legend go from the longest
to shortest observation as we go from top to bottom.
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Figure 4.3: Left: Spherical power spectra for the 8 longest observation nights. The
dashed lines are for f=3 and the solid lines are for f=0.8. Right: Spherical power
spectra for the entire observation (dashed lines) over-plotted with the ensemble aver-
age of power spectra over the 8 individual nights. The error bars correspond to the
maximum and minimum power values across the 8 nights.
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4.2.2 Results - Full Observation

The visibilities for the 12 nights of observation were concatenated and the edge chan-

nels were removed from the data to avoid systematics. The final visibility dataset

contains 461 channels and the percentage of flagged data is about 9%. The MAPS

and Power spectra for this entire observation was obtained for f=0.8 and f=3. A

visual inspection of the dirty image for the observation reveals the field to be domi-

nated by 7 bright point sources. The positions of these sources match with those of

the 7 brightest sources in the AEGIS20 catalogue that fall in this field. Table 4.1 lists

the position and integrated flux values for these sources in the AEGIS20 catalog and

for this observation. To model the point sources, the tclean task in CASA was used.

A deep continuum image was made using Briggs weighting and robust=-0.5. The

point source model produced after cleaning was Fourier Transformed into the visibil-

ity plane and subtracted from the calibrated visibilities. The subtracted visibilities

were checked for artefacts due to cleaning and the clean parameters were modified

with the aim of minimizing the cleaning artefacts near the brightest source, where

they are expected to be the most prominent. In total, 39 sources were subtracted so

that there are no sources in the residual data with a peak flux density of above 120

µJy. The noise in the image is σ = 17 µJy and hence all sources above 7σ have been

modelled and subtracted. Each source was cleaned to a depth of 1.5σ while making

the model. Figure 4.4 shows the cleaned image with point sources and the dirty image

after point source subtraction.

Observation Catalogue
RA Dec Flux RA Dec Flux

14:20:33.8 53:00:04 53.31 14:20:33.3 53:00:04 58.55
14:19:46.0 52:46:47 8.53 14:19:45.5 52:46:48 10.59
14:21:04.0 52:56:51 5.06 14:21:03.6 52:56:51 7.98
14:19:11.0 52:48:30 4.19 14:19:10.4 52:48:31 6.07
14:19:46.6 52:56:48 2.12 14:19:46.1 52:56:47 3.12
14:21:01.2 52:54:25 1.79 14:21:00.8 52:54:25 2.22
14:18:44.6 52:57:37 0.69 14:18:44.2 52:57:36 1.73

Table 4.1: RA, Dec and Integrated flux values (in mJy) for the seven brightest sources
in the image and the sources in the AEGIS20 catalogue that fall in this field.
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Figure 4.4: Top: Cleaned image (high resolution) for full observation. The 39 sources
that were subtracted are marked in circles. Bottom: Dirty image (low resolution)
after point source subtraction.

In order to understand the effect of point source subtraction on the resulting power

spectra, the TGE was applied to the visibilities both before and after point source

subtraction with two different tapering fractions of f=0.8 and f=3. The 2d TGE was
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applied to the dataset averaged across the frequency channels to estimate the angular

power spectrum. For this purpose, a uv range of 400 to 50,000 was chosen with 50

logarithmic bins. The results are shown in 4.5. The effect of point source subtraction

is evident, and it results in decrease in power. The DGSE, which is expected to

dominate the foreground contribution after point source subtraction, has a T ∝ ν−2.8

dependence on frequency [Platania 03]. In previous studies, the C(`) has been found

to have values ≈ 104mK2 at ` ≈ 104 and at 150 MHz[Ghosh 12]. This would imply

a value of ≈ 10−2mK2 at our observation frequency and hence, the magnitude of the

APS seems to be roughly consistent with these predictions.

Figure 4.5: The Angular Power Spectra before and after point source subtraction,
with f=0.8. The shaded regions correspond to 100σ errors due to system noise.

For the 3d TGE, the baselines in the range 100 ≤ uv ≤ 5000 were used, which cor-

responds to maximum baseline length of ≈ 1.1 Km. This would include only the

central square of antennas of the GMRT in the analysis and these set of short base-

lines would sample the shortest k⊥ modes, and hence are most sensitive to large scale

structures. 16 realizations of Mg(νa, νb) were used to compute the ensemble averaged

normalization matrix. While obtaining the binned C`(∆ν), P (k⊥, k‖) and P(k), loga-

rithmic binning has been used in the uv and k space. To get an estimate of the error

bars on the measurements due to the system noise, the following approach was used.

The standard deviation of the visibilities (σN) is calculated. The values obtained for

σN are 399.2 mJy and 397.9 mJy before and after source subtraction respectively.
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Then visibilities are simulated corresponding to the observation parameters, but with

mean=0 and standard deviation=σN . This is repeated 16 times to get 16 such sim-

ulated noise datasets. The simulated datasets are used to obtain the MAPS and PS

in the same manner as the original observation and the standard deviation across the

16 realizations is used as an estimate of the error in the measured values arising due

to system noise.

Figure 4.6: MAPS for 4 different ` values before and after source subtraction, for f=3
and f=0.8. The right panel illustrates the frequency oscillations expected due to point
sources located at the null and the horizon. The shaded regions in yellow indicate the
50σ errors due to noise.

Figure 4.6 illustrates the effect of point source subtraction and tapering on C`(∆ν).

In the lowest ` plot, strong oscillations are seen and the frequency of these oscillations

increase with `. The dips in C`(∆ν) at large ∆ν are no longer present and they must

have been an effect of systematics in the edge channels. At higher ` values, a slower

oscillation sets in which could be the effect of sources near the null. Point source

subtraction has negligible effect on the lower ` values, but significantly decreases the

amplitude of C`(∆ν) at higher `.
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Figure 4.7: The absolute value of the cylindrical PS before and after source subtrac-
tion, for f=3 and f=0.8. The 3rd panel from top is the plot of the ratio of the PS
before and after point source subtraction. The bottom panel shows the “Ratio” plot
when only 7 brightest sources were subtracted. The solid line and dashed black lines
are the horizon and first null limits respectively.
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Figure 4.8: The absolute value of P (k⊥, k‖), plotted against k‖ at 4 different k⊥ values.
The negative values are indicated with “+” symbols. The grey dashed and solid lines
are the first null and horizon limits respectively. The yellow shaded regions are the
1σ errors due to noise, after point source subtraction.

Figure 4.7 is a plot of the absolute value of the cylindrical power spectrum. We see that

for k⊥ < 10, tapering is effective in suppressing the foregrounds, while point source

subtraction does not have too much of an effect. The large k⊥ and k‖ modes are the

ones less affected by foregrounds and these regions have been used for obtaining the

spherical power spectra. The large number of values > 1 in the “Ratio” plot indicates

that point source subtraction removes power on an average, and seems to have a

stronger effect on the lowest k‖ modes. If instead of 39 sources, only the 7 brightest

sources are subtracted, we see an effective subtraction only within the horizon limits.

This could be because the stronger sources have a smoother spectrum and hence do
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not leak beyond the wedge. The region enclosed by the green lines in the 2nd row

right column in Figure 4.7 is now used as a region relatively clean of foregrounds.

To observe how the power varies with source subtraction and tapering as we increase

k‖, P (k⊥, k‖) is plotted against k‖ for a few k⊥ values in Figure 4.8. We see that

the power drops off by several orders of magnitude as we go from the smallest to the

largest k‖ bin. But we do not see any such trend along k⊥. Point source subtraction

decreases the power and the effect is more pronounced at small k‖. At the smallest

few k⊥ values, the effect of point source subtraction is very less. Tapering the sky

response reduces the powers in most of the k⊥ values, but the effect does not seem to

be very pronounced.

Figure 4.9: The histogram of the function X =
P (k⊥,k‖)

δPN (k⊥,k‖)
for f=0.8 in the window

indicated in the 2nd row right column in Figure 4.7.

Next, the quantity X =
P (k⊥,k‖)

δPN (k⊥,k‖)
is computed in the selected region. In the absence of

foregrounds or the signal, X should follow a Gaussian distribution with mean (µ(X))

= 0 and standard deviation (σ(X)) = 1. A deviation of µ(X) from 0 indicates the

presence of residual foregrounds while a deviation of σ(X) from 1 indicates that the

distribution of the errors in measured power values differs from that expected due
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to the system noise alone. The values of µ(X) and σ(X) are estimated by fitting

a Gaussian to a histogram of X values. Before point source subtraction, we get

µ(X) = 0.03, σ(X) = 2.7 and after point source subtraction we get µ(X) = 0.01,

σ(X) = 1.68. µ(X) > 0 indicates that residual foregrounds are present in the region,

but they are reduced after point source subtraction. σ(X) > 1 indicates that the

δPN(k⊥, k‖) underestimate the actual statistical fluctuations in P (k⊥, k‖) by a factor of

σ(X). Figure 4.9 shows the histograms of X before and after point source subtraction

for f=0.8.
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Figure 4.10: Spherical PS before and after point source subtraction, for f=0.8. The
top panel is when the values in the entire k range are used to compute the spherical
PS. The bottom panel shows the results when only a region in the EoR window as
indicated in the 2nd row right column in Figure 4.7. Plots of ∆2(k) against k are
shown as insets in the corresponding panels.

The region indicated in Figure 4.7 was used to bin the power values in spherical

shells in k space with logarithmic binning. The results for f=0.8 are shown in Figure

4.10. The error bars correspond to 2× σ(X)× δPN where δPN is the error expected
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due to system noise and σ(X) is the factor by which this estimate underestimates

the standard deviation of the actual distribution of errors. We see that the power

decreases when we subtract point sources and this decrease in more pronounced when

the binning is done in the full k range relative to when it is done in the window.

After point source subtraction, at high k, the values fluctuate around zero and in

this region, the noise seems to dominate the foregrounds. The dimensionless power

spectrum is defined as ∆2(k) = k3P (k)/2π2 and the plots of ∆2(k) against k are also

shown in Figure 4.10.

4.2.3 Contraints on ∆2(k) and ΩHIbHI

The values obtained for ∆2(k) for f=0.8, after point source subtraction and in the

region in k space relatively free of foregrounds can now be used to set upper limits on

the magnitude of the dimensionless power spectrum at these scales and at a redshift of

0.028. Defining the 2σ upper limit for the dimensionless power spectrum as ∆2
U(k) =

∆2(k)+2σ [Mertens 20], these limits are computed and the results are summarized in

4.2. In the table, only the k values below 50Mpc−1 have been listed since we appear

to reach the noise limit after that and get both positive and negative values of ∆2(k).

The 21 cm power spectrum is linked to the dark matter power spectrum through Equa-

tion 1.8. Converting the power spectra to dimensionless power spectra, we rewrite

Equation 1.8 as:

∆2
HI(k, z) = T̄ (z)2 × b2

HI ×∆2
DM(k, z) (4.3)

where ∆2
DM(k, z) = k3PDM (k,z)

2π2 and T̄ (z) is given by [Anderson 18]:

T̄ (z) = 0.39
ΩHI

10−3

[
Ωm + ΩΛ(1 + z)−3

0.29

]−1/2 [
1 + z

2.5

]1/2

mK (4.4)

k [Mpc−1] ∆2(k) [mK2] σ [mK2] ∆2
U(k) [mK2]

20.73 (15.13)2 (5.69)2 (17.14)2

24.52 (16.93)2 (5.65)2 (18.71)2

29.16 (26.26)2 (10.06)2 (29.87)2

34.94 (31.68)2 (12.09)2 (36.01)2

42.09 (35.34)2 (14.24)2 (40.67)2

Table 4.2: Upper limits on the dimensionless power spectrum at z = 0.028.

The python Large Scale Structure toolkit (nbodykit [Hand 18]) was used to simulate
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the linear dark matter power spectrum in the observed redshift and k bins using

a linear model. Equation 4.3 is then used to obtain upper limits to the quantity

ΩHI × bHI . Table 4.3 lists the calculated limits on ΩHIbHI .

k [Mpc−1] 20.73 24.52 29.16 34.94 42.09
ΩHI × bHI [10−2] 1.79 1.90 2.96 3.47 3.81

Table 4.3: Upper limits on the the quantity ΩHI × bHI at z = 0.028.

Previous measurements suggest that ΩHI ≈ 3.9 × 10−4h−1
70 [Jones 18]. The value of

the linear bias bHI is taken to be 1. Using these values and Equations 4.3 and 4.4, we

can construct the predicted HI dimensionless power spectrum. The plots of ∆2
U(k)

and ∆2
HI(k) are shown in Figure 4.11. The estimated upper limits are seen to be at

least 3 orders of magnitude more than the predicted power spectrum.
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Figure 4.11: The estimated ∆2
U(k) and predicted ∆2

HI(k).
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4.3 Analysis - GWB Data

We have used a small section of the GWB data for the analysis. This dataset was

recorded during March-April 2017 in the uGMRT observation cycle 31 and covers a

frequency range of 1001 to 1084 MHz. The data is divided into two subsets: 1001-

1048 MHz and 1036-1084 MHz with a frequency resolution of 97.6 kHZ. The two

datasets were calibrated together and the central square baselines were not used during

the calibration. The UV data is continuum subtracted, down to ≈ 30µJy. The

data reduction was done by Apurba Bera for his work on start formation rate at

intermediate redshifts [Bera 19]. In our analysis, we apply the TGE separately to the

two sets of calibrated visibilities, after rejecting the edge channels.

4.3.1 Results

Since tapering the sky response was seen to be effective in suppressing foregrounds

in case of the GSB data, a tapering parameter of f=0.8 is used in this analysis. For

the z=0.34 data (corresponding to a central frequency of 1060 MHz), a uv range of

100 to 18000 has been used while for the z=0.38 data (corresponding to a central

frequency of 1025 MHz), the uv range has been chosen to be 100 to 17000. These

ranges correspond roughly to a maximum baseline length of 5 Km. The MAPS,

Cylindrical PS and the Spherical PS are evaluated and noise simulations are used to

get error bars on the measurements, in the same manner as described in the previous

section for the GSB data analysis.

Figure 4.12 is a plot showing the uv coverage in the uv range used for the analysis

of the z=0.34 and z=0.38 datasets. The dense uv coverage due to the central square

antennas can be identified in the plots.

Figure 4.12: UV Coverage (single channel) for the z=0.34 and z=0.38 datasets.

44



4.3. ANALYSIS - GWB DATA

Figure 4.13: C`(∆ν) for z=0.34 and z=0.38 plotted against ∆ν at 4 different ` values.
The yellow shaded regions correspond to the 50σ errors due to system noise.

Figure 4.13 is a plot of the MAPS at 4 different ` values. The oscillations in the

MAPS increase in frequency with increasing ` and at large `, a slower oscillation from

sources near the null sets in. These observed features seem to be fairly consistent with

the frequency of oscillations expected from sources near the first null and horizon.

Figure 4.14: Absolute value of the cylindrical PS at z=0.34 and z=0.38.
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Figure 4.14 shows the cylindrical power spectra and for both z=0.34 and z=0.38, we

see a clear foreground wedge. The region marked within green lines are considered

as regions relatively less contaminated by foregrounds. The power values in these

regions are used to construct the spherical power spectrum and histogram of X.

Figure 4.15: The absolute value of P (k⊥, k‖) plotted against k‖ at z=0.34 and z=0.38
for 4 k⊥ values. The yellow shaded regions correspond to the 1σ errors due to system
noise.

Figure 4.15 is a 1d profile showing P (k⊥, k‖) against k‖ at 4 different k⊥ values. We see

that the power decreases by several orders of magnitude from the smallest to largest

k‖ bin. Also, it appears that the noise limit is reached at high k‖ values.
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Figure 4.16: Histogram of X in the region away from foregrounds at z=0.34 and
z=0.38.

Figure 4.16 is a plot of the histogram of variable X in the regions enclosed by the

green lines in Figure 4.14. The best fit Gaussian gives µ(X) > 0 and σ(X) > 1 for

both z=0.34 and z=0.38. This indicates the presence of residual foregrounds in the

region in k space that is used for obtaining the spherical power spectrum.

The spherical power spectrum P(k) in the whole k range and the window are plotted in

Figure 4.17, with the dimensionless power spectra as insets. The error bars correspond

to 2×σ(X)× δPN(k). We see a large decrease in the power values, by about 3 orders

of magnitude, as we go to the region in k space relatively free of foregrounds.
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Figure 4.17: Spherical PS at z=0.34 and z=0.38. The top panel is when the values in
the entire k range are used to compute the spherical PS. The bottom panel shows the
results when only a region in the EoR window is used to bin the power values. Plots
of ∆2(k) against k are shown as insets in the corresponding panels.

4.3.2 Constraints on ∆2(k) and ΩHIbHI

The dimensionless power spectrum and the error bars are used to set the 2σ upper

limits on ∆2(k) at z=0.34 and z=0.38. The results are summarized in Table 4.4.

A comparison with the linear dark matter power spectrum yields upper limits on ΩHI×
bHI in a manner similar to what is described in 4.2.3. The results are summarized in

Table 4.5.

Figure 4.18 shows the comparison of the 2σ upper limits at z=0.34 and z=0.38 with

the predicted ∆2
HI(k). We see that the estimated limits are more that 3 orders of

magnitude higher than the predicted values.
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k [Mpc−1] ∆2(k) [mK2] σ [mK2] ∆2
U(k) [mK2]

5.56 (17.63)2 (36.30)2 (54.28)2

9.76 (64.22)2 (14.24)2 (67.30)2

20.88 (171.05)2 (59.52)2 (190.64)2

43.64 (532.39)2 (185.56)2 (593.55)2

72.50 (1567.65)2 (656.52)2 (1821.97)2

k [Mpc−1] ∆2(k) [mK2] σ [mK2] ∆2
U(k) [mK2]

3.60 (57.21)2 (30.11)2 (71.32)2

6.78 (86.03)2 (50.84)2 (112.12)2

16.92 (184.79)2 (79.47)2 (216.28)2

36.92 (663.58)2 (269.00)2 (764.89)2

60.07 (1723.73)2 (986.43)2 (2217.51)2

Table 4.4: Upper limits on the dimensionless power spectrum at z = 0.34 (top) and
z=0.38 (bottom).

k [Mpc−1] 5.56 9.76 20.88 43.64 72.5
ΩHI × bHI [10−2] 6.02 6.64 16.39 45.45 129.95

k [Mpc−1] 3.60 6.78 16.92 36.92 60.07
ΩHI × bHI [10−2] 8.61 11.72 18.97 59.08 159.65

Table 4.5: Upper limits on the the quantity ΩHI × bHI at z = 0.34 (top) and z=0.38
(bottom).
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Figure 4.18: The estimated ∆2
U(k) and predicted ∆2

HI(k) at z=0.34 and z=0.38.
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4.4 Summary

We have used the Tapered Gridded Estimator to estimate the power spectrum of

brightness temperature fluctuations using observations of EGS made using the GMRT.

The GSB data is at a redshift of 0.028 while the GWB datasets are at redshifts of

0.34 and 0.38. Following is a brief summary of the analysis of the GSB data.

• The TGE is applied to individual night observations separately. The estimated

MAPS and PS across the different nights are fairly consistent and show the

expected behaviour with tapering.

• All point sources above a flux threshold of 7σ are modelled and subtracted from

the visibilities. The TGE is applied to the entire observation data before and

after point source subtraction, with tapering fractions of f=3 and f=0.8. The

effect of tapering and point source subtraction on the estimated MAPS and PS

is studied.

• The oscillations seen in the plots of C`(∆ν) against ∆ν at large ` are attributed

to residual point sources between the horizon and the null. Point source sub-

traction decreases the magnitude of the estimated MAPS only at large `.

• The cylindrical power spectrum is seen to have values differing by 7 orders of

magnitude from the smallest to the larges k‖ bins. The high values at low k‖

is due to foregrounds. Both tapering and point source subtraction suppress

the effect of these foregrounds. To avoid the foregrounds and the effect of

convolution, a region in the k space is chosen for obtaining the spherical power

spectrum and the distribution of the quantity X =
P (k⊥,k‖)

δPN (k⊥,k‖)
.

• The histogram of the quantity X is used to compare the observed distribution

of errors with the distribution of errors expected due to system noise. µ(X) > 0

and σ(X) > 1 indicates the presence of residual foregrounds which decrease

after point source subtraction.

• The Spherical power spectrum and the dimensionless power spectrum are ob-

tained. The power spectrum for f=0.8, after point source subtraction and in

the region free of foregrounds, is used to set the upper limits for ∆2(k) at

the five smallest k bins. The simulated dark matter power spectrum at this
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redshift is then used to estimate upper limits on ΩHIbHI . The tightest con-

straints are obtained at k = 20.73 Mpc−1 and the estimated 2σ upper limits

are: ∆2(k) = (17.14)2mK2 and ΩHIbHI = 0.0179.

• However, these limits are not of much physical interest since the scales probed

are very small and the total comoving volume probed is also not representative.

This suggests the need to repeat the analysis at higher redshift (to probe larger

volumes) and with a larger bandwidth (to gain access to smaller k‖ modes).

Therefore, we have repeated this analysis on two small sections of the GWB

data at z=0.34 and z=0.38.

Following is a brief summary of the GWB data analysis and results obtained:

• The MAPS exhibit oscillations which can be attributed to sources of foreground

located between the first null and horizon.

• The Cylindrical PS shows a clear foreground wedge at high k⊥ at both z=0.34

and z=0.38. Regions in k space outside the foreground wedge are used to obtain

the binned spherical power spectrum.

• The variable X exhibits µ(X) > 0 and σ(X) > 1 at both z=0.34 and z=0.38.

• The tightest constraints are obtained at k=5.56Mpc−1 for z=0.34. The 2σ upper

limits are ∆2
U(k) = (54.28)2mK2 and ΩHIbHI = 6.02 × 10−2. For z=0.38, the

tightest constraints are at k=3.60Mpc−1. The 2σ upper limits are ∆2
U(k) =

(71.32)2mK2 and ΩHIbHI = 8.61× 10−2.
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