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Abstract 

GWAS (Genome Wide Association Studies) have been crucial to identifying genetic loci 

associated with diseased phenotype. The hypothesis-free nature of GWAS studies have been a 

success at predicting specific cancer markers. However, this hypothesis-free nature has also led to 

one of its main issues, i.e., the large number of distant SNPs discovered with no biological link to 

the known genetic pathways of the diseased phenotype. Recent advancements in chromatin 

interaction mapping techniques have identified long-ranged promoter-promoter interactions that 

regulate gene expression pathways in eukaryotes. The presence of regulatory enhancer-like 

activity in some promoters and differences in the epigenetic features associated with the 

promoters and enhancer-like promoters (ELPs) have also been described. It led us to hypothesize 

that studying such long-range promoter-promoter contacts using ELPs may provide insights into 

biological links between distant SNPs and genetic pathways of disease in a population. 

Here we explore possible histone markers and transcription factor bindings (epigenetic factors) 

that can distinguish between promoters and ELPs. We also build machine learning models that 

can predict the magnitude of enhancer-like activity (enhancer potential) of a promoter given its 

epigenetic factors. Regression models to predict the enhancer potential values were made, but the 

models’ accuracy was not up to the mark. Improvements have been suggested for the models, 

including better feature extraction methods using machine learning classifiers. In the case of 

HeLa cancer cells, biologically significant epigenetic factors are identified via the classifiers that 

distinguish between promoters and ELPs. However, the models did not exhibit sufficient 

accuracy to get relevant features in K562 cancer cells.  

In the later part of the thesis, spatial interactions between distant promoters have been 

characterised using Hi-C data. A mathematical framework incorporating the enhancer potentials 

and spatial interactions between promoters has been proposed to study the propagation of gene 

regulation in promoter-promoter networks. Initial results from the framework indicate that it can 

be used to identify distant upstream interacting promoters of a given promoter of interest and 

model time-course gene expression data to identify novel pathways of gene regulation. 

 

Keywords – GWAS, Hi-C, enhancer-like promoters (ELPs), gene regulation, machine learning 
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Chapter 1 

1 Introduction 

Phenotypic variation in individuals is underlaid by genetic variation. Some of these 

genetic variations are associated with diseased traits in human populations and are termed 

causal variants (Bush & Moore, 2012). Studies linking causal variants and diseases pave 

the path for an era of personalized medicine, where all individual variations in the genetic 

code of an individual are used to guide clinical practice (Schierding, Cutfield, & 

O’Sullivan, 2014). Cataloguing of common genetic variants that are associated with 

complex traits and diseases has been made possible in recent years due to developments 

in high throughput genome sequencing and Genome Wide Association Studies (GWAS), 

among other advances (Haines et al., 2005; Reuter, Spacek, & Snyder, 2015).  

In the late 1990s, the primary method of genetic investigation for diseased phenotypes 

was through pedigree analysis and inheritance studies of genetic linkage in families. 

Linkage disequilibrium (LD) has been defined as the “non-random association between 

alleles at different loci” (Visscher, Brown, McCarthy, & Yang, 2012). Physically 

proximal loci exhibit stronger LD than loci that are farther apart on the chromosome. 

Genetic linkage studies exploit the large LD within pedigrees to identify the chromosomal 

location of a single disease-causing allele (Pulst, 1999). Thus, single-gene disorders were 

often easily investigated using a pedigree analysis approach (Altmüller, Palmer, Fischer, 

Scherb, & Wjst, 2001). However, most common diseases have complex genetic and 

epigenetic mechanisms at work. Familial genetic linkage studies do not seem to be 

successful at studying such diseases. (Altmüller et al., 2001). 

A higher (effective) population size leads to weaker LD for a given distance (Hill & 

Robertson, 1968). The genomic distance at which LD decays determines the number of 

genetic markers needed to “tag” a genomic haplotype (Visscher et al., 2012). Common 
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SNPs (Single Nucleotide Polymorphisms) are used as genetic markers to tag genomic 

regions exhibiting variation. It is estimated that a selection of approximately 500,000 

common SNPs would be sufficient to tag variation in non-African human populations, 

even though the total number of common SNPs exceeds 10 million (Belmont et al., 2005; 

Visscher et al., 2012). In a landmark paper, Risch and Merikangas (Risch & Merikangas, 

1996) showed that the statistical power of an association study consisting of 1 million 

variants in the genome and a sample of unrelated individuals would be higher when 

compared to linkage analysis using a few hundred markers (Visscher et al., 2012). Along 

with the theoretical foundations laid down by Risch and Merikangas (Risch & 

Merikangas, 1996), the international HapMap project (Belmont et al., 2003) provided 

experimental foundations for carrying out GWAS by identifying a list of SNP tags that 

captured most of the genomic variation in different human populations.  

 

Figure 1: GWAS to identify genetic associations by comparing SNPs across the human genome. 

Adapted from (Schierding et al., 2014) 

GWAS provides a biologically unbiased, hypothesis-free method to detect associations 

between genetic loci and phenotypic traits. GWA studies are primarily conducted to 
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identify various SNPs related to phenotypic traits that are involved in a given disease 

(Schierding et al., 2014). A GWA study's typical approach is the case-control setup, 

where a comparison between a control group (healthy population) and a case group 

(diseased population) is carried out. Individuals in both groups are genotyped for 

common, known SNPs (typically a million or more SNPs per study). For each SNP, the 

allele frequency is investigated. Differences in the allele frequencies between the case and 

control group are reported as an odds ratio. In the context of GWA studies, the odds ratio 

is defined as “the ratio of the odds of the case for individuals having a specific allele and 

the odds of the case for individuals who do not have the same allele” (“Genome-wide 

association study - Wikipedia,” n.d.). If an observed odds ratio is relatively high or quite 

low, a p-value for the significance is calculated using a chi-squared test. An odds ratio 

significantly higher than one indicates that the given SNP is associated with the disease 

case. 

In the case of cancer genomics, GWAS has played a significant role in detecting SNPs 

that have further led to clinically relevant predictions (Jostins & Barrett, 2011; Klein, Xu, 

Mukherjee, Willis, & Hayes, 2010). However, several researchers have pointed out that 

nearly half of the disease-associated SNPs from GWA studies are not located in or near 

recognized disease-causing genes (McClellan & King, 2010; Visel, Rubin, & Pennacchio, 

2009). In the words of McClellan and King (McClellan & King, 2010), 

“To date, genome-wide association studies (GWAS) have published hundreds of common 

variants whose allele frequencies are statistically correlated with various illnesses and 

traits. However, the vast majority of such variants have no established biological 

relevance to disease or clinical utility for prognosis or treatment.” 

Most of the SNPs lie in gene deserts, i.e., genomic regions larger than 500kb that lack 

identified genes or annotated protein-coding sequences (Craig Venter et al., 2001; 

Libioulle et al., 2007). Such SNPs’ location in gene deserts means either the biological 

pathway of action of such regions is unknown or it is a false positive with no biological 

relevance. There have been numerous debates on the implications of SNPs’ occurrence in 

the gene deserts with no unanimous decision from the community (Klein et al., 2010; 

McClellan & King, 2010). However, recent studies on genome architecture have revealed 

the presence of long-range interacting gene regions that may be the key to determining 

the role such gene deserts play in gene regulation (Liu et al., 2020; Ritchie & Van Steen, 

2018; Singh Sandhu et al., 2012).  
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Traditionally, gene regulation was viewed as involving single-gene interactions, i.e., an 

enhancer activating a single promoter that leads to the production of a specific protein. 

Recently the traditional view has been supplemented with a multi-gene interaction model 

for eukaryotic genomes (Wei, Nicolis, Zhu, & Pagin, 2019; Yang, Lin, Wu, Chuang, & 

Chang, 2015). The multi-gene interaction model proposes a multivalent spatial interaction 

model, i.e., where more than two promoters and enhancers aggregate to regulate gene 

expression. Functional understanding of higher-order (multivalent) chromosomal 

interactions and organization of the eukaryotic genome is minimal. However, 

comparative analyses of different cell lines show that cell-specific chromatin interactions 

provide structural frameworks to study gene regulation and suggest significant 

enrichment of enhancer-promoter interactions for cell-specific functions (Li et al., 2012).  

Promoters with enhancer-like regulatory activity have been described recently by multiple 

studies (Dao & Spicuglia, 2018; Nguyen et al., 2016). Promoters frequently form long-

range contacts with other promoters, and some promoter elements are shown to function 

as enhancers in enhancer reporter assays (Andersson, 2015; Dao & Spicuglia, 2018; Li et 

al., 2012; Schaffner, 2015). This points to the existence of promoter-promoter networks 

that may regulate gene expression in eukaryotes. The study of gene regulation via such 

long-range promoter-promoter networks may provide insights into the interaction 

pathways between diseased gene-associated regions and regions marked by the distant 

SNPs.  

This thesis has characterized differences between regular promoters and enhancer-like 

promoters and used the differences to build machine learning models that can predict the 

enhancer-like activity for a promoter given its histone markers and transcription factor 

bindings. A mathematical framework to study the propagation of gene regulation by 

building a promoter-promoter network is also established that can be used to model 

interactions and explain the unexplained association of distant promoter (SNPs) with a 

given downstream gene. 
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Chapter 2 

2 Predicting Enhancer-like activity in 

promoters using epigenetic data 

Epigenetic markers are widely used to differentiate between gene regions containing 

typical promoters, enhancers, and super-enhancers (Creyghton et al., 2010; Heintzman & 

Ren, 2009; Hnisz et al., 2013). Typical enhancers and promoters have characteristic 

histone markers and transcription factor pairings. Regression analysis was carried out 

using epigenetic datasets to find differences between the histone markers and 

transcriptional factor bindings in promoter-like promoters (typical non-regulatory 

promoters) and enhancer-like promoters (regulatory promoters). The analysis aims to 

build models to predict different promoters’ capacities to regulate gene expression 

(termed enhancer potential). 

2.1 Materials and Methods 

2.1.1 Data Collection and Clean-Up 

Enhancer potential data for the different promoters were collected from the CapStarr-seq 

experimental data (Dao et al., 2017)  for HeLa S3 cells. The data consisted of genomic 

locations of promoters and their associated enhancer activity values determined 

experimentally. Genomic locations of the promoters were extracted from the matrix. The 

genomic location data was used to collect histone modification and transcription factor 

enrichment values for the relevant genomic regions from ChIP-seq experimental data at 

ENCODE. 
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Three types of matrices for each cell line were created using the above data: 

• Matrix of Histone modifications (Histone data): The matrix had histone 

modifications as columns and the promoter locations as rows. 

• Matrix of Transcription Factors (TF data): The matrix had transcription factors as 

columns and promoter locations as rows. 

• Enhancer Potential matrix: The matrix has a single column (enhancer potential 

values) and the promoter locations as rows. 

After collecting and organizing the data into the above matrices, rows (promoters) with at 

least one NaN value were removed from the dataset. The final dataset consisted of 20719 

promoters. 

2.1.2 Regression Analysis 

Regression analysis was carried out using the sci-kit learn library on the HeLa Histone 

dataset to determine the relationship between a promoter’s epigenetic factors and 

enhancer potential. The histone matrix was used as the X matrix, and the enhancer 

potential matrix was used as the Y matrix. 

One-third of the dataset (6837 promoters) was used as the validation dataset, and two-

thirds (13881 promoters) were used for training. The data was scaled using the standard 

scaler class in the sci-kit learn library. 

Regression analysis was carried out using MLP (Multi-Layer Perceptron) Regressor, SVR 

(Support Vector Regressor), and Decision Tree Regressor models.  

2.1.2.1 Multi-Layer Perceptron Regressor 

An artificial neuron is modelled as a perceptron. The perceptron takes in a few inputs and 

produces an output based on weighted linear combination of all the inputs and a bias 

variable. 

 

Figure 2: Perceptron model (Minsky & Papert, 2019) 
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In the case of a multi-layer perceptron model, several perceptrons are connected in a 

structure, as shown in Figure 3. Each vertical stack of perceptrons is called a layer. 

 

Figure 3: Structure of a Multi-layer perceptron model 

The first layer (that takes in input) is called the input layer, followed by hidden layers that 

finally lead to the output layer. Output from a layer is processed using an activation 

function such as relu or sigmoid activation before passing on to the next layer. The 

weights and biases of individual perceptrons are the tuneable parameters in the model. 

The model is trained using backpropagation via stochastic gradient descent (Amari, 

1993).  

2.1.2.2 SVR (Support Vector Regressor) 

Support Vector Regressor (SVR) constructs a hyperplane in a high-dimensional space 

containing the data points. An ε-insensitive region is introduced around the hyperplane 

called the ε-tube. The model then optimizes the location of the ε-tube (and also the 

hyperplane) such that most of the training data points fall inside the ε-tube.  
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Figure 4: Working of Support Vector Regressor. Adapted from (Chanklan, Kaoungku, Suksut, 

Kerdprasop, & Kerdprasop, 2018) 

The hyperplane is represented in terms of support vectors, which are training samples that 

lie outside the boundary of the tube. The support vectors are the most influential instances 

that affect the shape of the tube and the training and test data are assumed to be drawn 

independently from the same fixed but unknown probability distribution function (Awad, 

Khanna, Awad, & Khanna, 2015). 

2.1.2.3 Decision Tree Regressor 

A decision tree regressor arrives at an estimate for a given set of input variables, by 

asking a series of true-false questions and using if-else conditioned responses to narrow 

the possible values till the model is confident enough to make a single prediction.  

 

Figure 5: Example working of a decision tree regressor. Adapted from (Drakos, 2019) 
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In the diagram above, there are two features 𝑥1 and 𝑥2. At each branch, the model asks 

and answers a true-false question. Each branch leads to another branch till we reach a leaf 

node (end node). The leaf node represents the predicted 𝑦 value for a given set of 𝑥1 and 

𝑥2 values. Given training data, the model determines the best questions as well as the 

order in which to ask the questions to make the most accurate estimate of the underlying 

data distribution (Drakos, 2019). 

2.2 Results 

2.2.1 Model Evaluation 

The regression models were evaluated using the RMSE (Root Mean Squared Error), MSE 

(Mean Squared Error), MAE (Mean Absolute Error) rates, and Overall Score.  

The MAE represents the difference between the true and predicted values extracted by 

averaging the absolute difference in the predicted and actual values. The MSE represents 

the difference between the true and predicted values extracted by squared average 

difference over the dataset. RMSE is the square root of the MSE (DTN, 2019). The 

overall score metric represents the coefficient, R2 and is defined as (1 – u/v), where u is the 

residual sum of squares and v is the total sum of squares. The best possible score is 1.0, 

and it can be negative (because the model can be arbitrarily worse). A constant model that 

always predicts the expected value of y, disregarding the input features, would get a score 

of 0.0 (“sklearn.neural_network.MLPRegressor — scikit-learn 0.24.1 documentation,” 

n.d.). 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − �̂�

𝑁

𝑖=1

| 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 −  �̂�)2

𝑁

𝑖=1

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

𝑅2 = 1 −
𝑢

𝑣
 =  1 −

∑(𝑦𝑖 −  �̂�)2

∑(𝑦𝑖 −  �̅�)2
 

Where,  

𝑦𝑖 = true y values 

�̂� = predicted y values 

�̅� = mean y value 
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Table 1: Regression model error rates for HeLa Histone data 

Model Overall 

Score 

Training statistics Testing statistics 

RMSE MSE MAE RMSE MSE MAE 

MLP Regressor 0.12 0.39 0.15 0.27 0.43 0.18 0.29 

SVR 0.13 0.39 0.15 0.26 0.43 0.18 0.28 

Decision Tree 

Regressor 

0.12 0.40 0.16 0.28 0.43 0.18 0.29 

 

All the models performed similarly on the dataset. The coefficient of R2 for the models 

was closer to 0.0 rather than 1.0. This, combined with the high and consistent error 

values, indicates that the models were not working with sufficient accuracy.  

2.2.2 Diagnosing the regression models 

To understand the regression algorithms’ inner workings and decision processes, we 

looked at the decision tree and MLP models’ feature importance.  

  

(a) MLP Regressor (b) Decision Tree regressor 

Figure 6: Feature importance of the regression models 

For both the Decision Tree regressor and MLP model, almost all values were highly 

influenced by just a single histone modification (H3K27ac). It can point to a skewed 

feature dependence leading to erroneous predicted values. The single feature dependence 

may result from poorly chosen feature columns that interfere with other features or a very 

high dependence of enhancer potential values on the H3K27ac histone modification. The 

H3K27ac column was removed from the dataset, and the models were trained to test for 

the same. The results of the run are shown below. 
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Table 2: Regression Model error rates after removing H3K27ac 

Model Overall 

Score 

Training statistics Testing statistics 

RMSE MSE MAE RMSE MSE MAE 

MLP Regressor 0.12 0.39 0.15 0.27 4.57 20.86 4.48 

SVR 0.12 0.39 0.16 0.26 0.43 0.19 0.28 

Decision Tree 

Regressor 

0.11 0.41 0.17 0.28 0.43 0.19 0.29 

 

The model performance slightly deteriorated after the removal of the H3K27ac column. 

The model fits well on the training dataset, but it cannot generalize the learning and, thus, 

not predict values well for the testing dataset. It indicates that the H3K27ac data was 

necessary for the generalization of the model learning. The models’ feature importance 

after removing the H3K27ac column was expected to remain the same if there were no 

interactions between the columns. The model importance values were plotted to check if 

the model importance pattern changed. 

  

(a) MLP Regressor (b) Decision Tree regressor 

Figure 7: Feature importance of regression models after removal of H3K27ac data 

It can be seen that the pattern of the importance of columns has changed after the removal 

of H3K27ac data. This can be attributed to eliminating interference between H3K27ac 

and other features. Thus, the removal of H3K27ac data is not the only factor leading to 

the models’ deterioration.  
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2.3 Conclusion 

Diagnosing the models by plotting their feature coefficients led to the realization that 

most of the predictions were based on only one feature (H3K27ac). The removal of the 

H3K27ac data led to the deterioration of the model performance. However, the removal 

of H3K27ac also led to drastic changes in the feature importance plots. The changes can 

be attributed to removing interference between the columns and removing a significant 

feature. Thus, better feature extraction methods need to be developed to improve the 

performance of the regression models. 
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Chapter 3 

3 Extracting relevant features from the 

epigenetic datasets 

Classification models are generally run to help in predicting the class types in categorical 

classification tasks. However, we can look into the feature coefficients of successful 

classification models and determine which features are essential to determine differences 

between the promoters and epromoters. This, in turn, can help us extract features that 

might perform better with regression models. 

Data from the Histone, TF, and Enhancer Potential matrices were used to train 

classification models that can then be utilized as feature extraction pipelines to deduce 

essential features that may help build highly accurate regression models.  

3.1 Materials and Methods 

3.1.1 Dichotomizing the Enhancer Potential matrix 

The histone modification, transcription factor, and enhancer potential data collected were 

used to train classification models and extract essential features from such models. 

Classification requires data to be in the form of discrete categorical classes. Thus, the 

enhancer potential values were used to divide promoters into two classes – promoters 

(promoter-like promoters) and epromoters (enhancer-like-promoters).  

A threshold to differentiate between the two classes was determined to be 2.152 as 

follows (Vanhille et al., 2015): 

• The enhancer potential data was first arranged in ascending order and plotted.  

• The line formed by connecting the greatest and the smallest value in the curve was 

then slid across the curve till it formed a tangent to the curve.  



 

14 

 

• The data point where the line formed a tangent was then taken as the threshold 

value for distinguishing promoters from epromoters. 

An R script was used to calculate the threshold for the datasets using only the enhancer 

potential matrix. 

 

Figure 8: Enhancer potential thresholds for HeLa cells 

3.1.2 Sampling to balance the dataset 

The above dichotomizing the enhancer potential values created a high imbalance in the 

dataset (promoters ~ 96% & epromoters ~ 4%). SMOTE (Synthetic Minority 

Oversampling Technique) algorithm (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) was 

chosen as the best method to oversample datapoints and balance the training dataset (see 

Appendix B). 

3.1.2.1 SMOTE 

SMOTE is perhaps the most widely used approach to balance datasets using 

oversampling of the minority class samples. First n-nearest neighbours of the minority 

class are calculated for all elements of the minority class. Lines are drawn, joining the n-

nearest samples to the focal sample. Random points on the lines are taken as samples for 

the minority class. The figure below depicts the generation of synthetic minority samples 

using SMOTE. 
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Figure 9: Graphical representation of SMOTE algorithm. Adapted from (Lopez, 2021) 

3.1.3 Classification Models 

Four classifiers were chosen for the task - Logistic Regression, Decision Tree Classifier, 

Support Vector Machine (SVM), and Multi-Layered Perceptron (MLP).  

3.1.3.1 Logistic Regression 

The logistic regression model is widely preferred among researchers because of its 

simplicity. The model is given by, 

𝑝(𝑌𝑖|𝑋𝑖, … , 𝑋𝑝) =
𝑒𝛽0+ 𝛽1𝑋1+⋯+ 𝛽𝑝𝑋𝑝

1 +  𝑒𝛽0+ 𝛽1𝑋1+⋯+ 𝛽𝑝𝑋𝑝
 

Where, 𝑋 = (𝑋1, … , 𝑋𝑝) are the known variables used to predict the response variable 𝑌. 

An observation with variables 𝑥1, … 𝑥𝑝 should be assigned to the class 𝑗 for which 𝑝(𝑌 =

𝑗|𝑋1 = 𝑥1, … 𝑥𝑝) is largest. In binary classification, this corresponds to assigning an 

observation to class 1 if  

𝑝(𝑌 = 1|𝑋1 = 𝑥1, … , 𝑋𝑝 = 𝑥𝑝) > 0.5 

and to class -1 otherwise. 

Training data is used to determine the coefficients 𝛽0, … , 𝛽𝑝 of the model by minimizing 

the error rate by assigning each observation to its most likely class, conditioned on the 

variables’ values (Brandt & Lanzén, 2021). 

3.1.3.2 Decision Tree Classifier 

Similar to a decision tree regressor (section 2.1.2.3), a decision tree classifier also builds a 

model that asks true-false questions and depending on the output narrows down a given 

data point to get its class. The model building and training is similar to that of a decision 

tree regressor, however, the leaf nodes in the case of a decision tree classifier represent 

the available class variables (𝑦 values). 
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Figure 10: Example working of a decision tree classifier. Adapted from (Berry, Browne, & 

Omitaomu, 2006) 

Based on the values of different input variables, 𝑥1 and 𝑥2 , and a trained decision tree, 

the model can arrive at a node and assign a certain class to a data point. 

3.1.3.3 Multi-Layered Perceptron 

A multi-layer perceptron classifier works very similarly to a multi-layer perceptron 

regressor. The only point of difference is the application of a final softmax activation 

layer that converts the numerical outputs of different nodes to probability values for a 

given class. The function is given by, 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
exi

∑ exj
𝑗

 

As softmax converts a given output vector into a probabilistic representation, the sum of 

the softmax outputs for a given vector equal 1. In the context of a multi-layer perceptron 

classifier, suppose the two output nodes (in Figure 3) have values 2 and -3 for classes 

‘promoter’ and ‘epromoter’. Passing the values though a softmax activation function 

would provide values 0.993 and 0.007 for the respective classes, indicating that the 

chance that the data point is a promoter is 99.3%.  

3.1.3.4 Support Vector Machine 

A Support Vector Machine (SVM) constructs a hyperplane or a set of hyperplanes in a 

high-dimensional data space that can differentiate between observations of different class. 

A SVM classifier consists of a hyperplane and a functional margin instead of a ε-tube 

(SVR, Figure 4). The functional margin represents the largest distance from the training 

data points in any class on either side of the hyperplane. The data points lying on the 

functional margin are called the support vectors and the task of classification is posed as 

an optimization problem.  
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Figure 11: Graphical representation of SVM hyperplane. Adapted from (Javatpoint, 2018) 

The aim of the optimization is to maximize the distance between the hyperplane and 

either of the functional margins. To make the optimization computationally efficient, 

kernels are used that can map data points to higher dimensional spaces where discovering 

a hyperplane is computationally easier. 

3.1.3.5 Training the classification models 

Models were built for each of the datasets (Histone and TF) for HeLa cells. Similar to the 

regression models, the data was first scaled using the standard scaler in the sci-kit learn 

library. The classification models were trained on two-thirds of the data, and one-third 

was used for validation. After splitting the dataset into testing and training datasets, the 

training dataset was oversampled using the SMOTE algorithm. The total number of 

samples in the testing and validation datasets for both cell lines and kinds of epigenetic 

factors are outlined in Table 3. 

Table 3: Number of samples in cleaned HeLa datasets 

Cell 

Line 

Dataset No. of Training Samples No. of Validation 

Samples 

No. of 

Features 

No. of 

promoters 

No. of 

epromoters 

No. of 

promoters 

No. of 

epromoters 

HeLa 

S3 

Histone 14419 14419 6181 35 11 

TF 14416 14416 6182 33 17 

 

After optimizing the different models’ performance, the coefficients for feature 

importance were extracted from the models. 
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3.2 Results 

3.2.1 Model Evaluation 

Various metrics were used for the evaluation of the different classification models. These 

include confusion matrices, precision, recall values, and ROC-AUC curves.  

3.2.1.1 Confusion Matrices 

Confusion matrices are tables used to describe a classification model’s performance on a 

set of data for which the actual values are known. The basic structure of a confusion 

matrix is shown below. 

 

Figure 12: Structure of a confusion matrix 

A binary confusion matrix has four classes (quadrants). A true label represents the known 

class of a data point, whereas a predicted label represents the class the model predicts the 

data point. In our binary classification problem, the epromoter (ELP) class is a positive 

class, and the promoter class is negative. The upper left quadrant in Figure 12 represents 

the number of real promoters predicted as promoters (True Negatives or TN). The lower 

right quadrant represents the number of real epromoters classified as epromoters (True 

Positives or TN). The upper right quadrant represents the number of real promoters 

misclassified as epromoters (False Positives or FP). The lower left quadrant represents the 

number of real epromoters misclassified as promoters (False Negatives or FN). 

As the validation datasets were imbalanced, normalized confusion matrices were 

calculated and plotted. The “normalized” term means that each of the true labels is 

represented as having 1.00 samples. Thus, the sum of each row in a normalized confusion 
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matrix is 1.00 as each row represents the total number of elements in a particular class 

(Simske, 2019). 

  

(a) Logistic Regression (b) Decision Tree Classifier 

  

(c) MLP classifier (d) SVM classifier 

Figure 13: Confusion matrices for HeLa S3 histone dataset 
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(a) Logistic Regression (b) Decision Tree Classifier 

  

(c) MLP classifier (d) SVM classifier 

Figure 14: Confusion matrices for HeLa S3 TF dataset 

The confusion matrices indicate that the MLP classifier obtained the highest predictive 

accuracy for the epromoter class in both the histone modification and the transcription 

factor datasets. The logistic regression and decision tree classifier models performed 

similarly (~ 60 - 70% class prediction), whereas the SVM classifier failed to classify 

epromoter samples correctly. The best model trained was the MLP classifier for the TF 

dataset.  

3.2.1.2 Precision-Recall values 

Precision values represent the proportion of positive identifications of a positive class. 

Recall is a measure of the number of actual positives that were identified correctly 

(Google Developers, 2020).  

Precision and recall values for a given class are calculated as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

 

A precision value of 0.5 indicates that if a model labels a specific datapoint as positive, 

there is a 50% chance that it is positive. A precision value of 1.0 indicates that any point 

classified by the model as positive is a positive data point. Conversely, a precision value 
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of 0.0 indicates that any point classified by the model as positive is not positive. A higher 

precision value for a class indicates that the model does not mislabel other non-class 

datapoints as datapoints of the given class. 

Recall = no. of correctly labelled class items/ (no. of correctly labelled class items + no. 

of incorrectly labelled class items) = TP / (TP + FN) 

A recall value of 0.5 indicates that the model correctly classifies 50% of all class data 

points. A recall value of 1.0 indicates that the model has identified all the points 

belonging to the given class. Conversely, a recall value of 0.0 indicates that the model did 

not identify even a single data point belonging to the class. A higher recall value of a 

class in a model indicates that a model can find most of the data points belonging to the 

class. 

Table 4: Precision-recall values for the classification models and HeLa datasets 

Dataset Model Precision Recall 

Promoter 

class 

Epromoter 

class 

Promoter 

class 

Epromoter 

class 

HeLa 

Histone 

Logistic Regression 0.99 0.06 0.62 0.80 

Decision Tree 

Classifier 

0.99 0.06 0.6 0.78 

MLP 0.99 0.06 0.61 0.85 

SVM 0.98 0.06 0.74 0.57 

HeLa 

TF 

Logistic Regression 0.99 0.07 0.68 0.73 

Decision Tree 

Classifier 

0.99 0.06 0.65 0.73 

MLP 0.99 0.07 0.65 0.80 

SVM 0.98 0.08 0.80 0.52 

 

The highly skewed values for precision for the promoter and epromoter classes are 

expected as the testing dataset is highly imbalanced. The class imbalance means that the 

number of epromoters is too less compared to the number of promoters; thus, there are 

not many epromoters that can be mislabelled as promoters (skewing the promoter 

precision value towards 1.0), and there is an overwhelming number of promoters that can 

be misclassified as epromoters (skewing the epromoter precision value towards 0.0).  
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The promoter class’s recall values are almost similar and constant for the MLP, Decision 

Tree, and Logistic Regression models. In contrast, the recall values in the SVM classifier 

case are higher compared to the other models. The recall values for the epromoter class 

are lower in SVM compared to the other models. This is indicative of the poor 

performance of the SVM classifier. The SVM classifier tends to classify most points as 

promoters, and due to the class imbalance in the test dataset, it gives rise to higher recall 

values for the promoter class and lower recall values for the epromoter class. The MLP 

model has the highest recall values for the epromoter class, proving that the MLP model 

is the best classifier to identify epromoter data points in a given dataset of promoters and 

epromoters. 

3.2.1.3 ROC-AUC curves 

A ROC curve is a graphical plot used to show the predictive ability of binary classifiers. 

It is constructed by plotting the true positive rate (TPR) against the given models’ false 

positive rate (FPR). The true positive rate is calculated as the proportion of correctly 

predicted observations to be positive (number of correctly predicted epromoters) out of all 

the positive observations (total number correct predictions). Similarly, the false positive 

rate is the proportion of incorrectly predicted observations to be positive (number of 

promoters wrongly predicted to be epromoters) out of all negative observations (total 

number of incorrect predictions). The ROC curve can then be reduced to a single metric 

called the area under the curve (AUC). The greater the area under the curve of a given 

model, the better is the model. A perfect predictive model should have a curve closer to 

the upper left corner of the plot. In contrast, a random model with no capacity to 

distinguish between positive and negative classes has an AUC value of 0.5 and a curve 

represented by the diagonal dotted line(Sarang, 2018). 

ROC plots for all the models and a given dataset were plotted (the bracket values indicate 

the AUC values). The plots for the different datasets are given below. 
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(a) HeLa Histone dataset (b) Decision Tree regressor 

Figure 15: ROC-AUC plots for comparison of classification models 

The plots for HeLa S3 (both histone and TF datasets) support the results from the 

confusion matrices and the precision-recall values. The plots indicate that the MLP is the 

best classifier, followed by the Logistic Regression and Decision Tree classifiers. The 

SVM is the least preferred classifier in both datasets due to its low AUC value.  

3.2.2 Extracting Feature Importance from the Classification models 

The aim of using classification models was to improve the regression models by 

extracting essential features. Using methods provided in the sci-kit learn library, the 

coefficients of different features were extracted from the Decision Tree, MLP, and 

Logistic Regression models. Features from the HeLa Histone ratio (Appendix C) dataset 

were not extracted due to the model’s lower accuracy.  

  

(a) Logistic Regression coefficients (b) Decision Tree Classifier coefficients 
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(c) MLP classifier coefficients 

Figure 16: Feature importance values for the HeLa S3 histone dataset 

Essential features in the Logistic Regression classifier were H3K27ac and H3K27me3. In 

the decision tree classifier, the only most important feature is H3K27ac which is in 

accordance with the features from the Logistic Regression. The MLP classifier, however, 

has H3K9ac, H2AFZ, and H3K27ac as essential features. 

  

(a) Logistic Regression coefficients (b) Decision Tree Classifier coefficients 

 

(c) MLP classifier coefficients 

Figure 17: Feature importance values for the HeLa S3 TF dataset 
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The Logistic Regression model indicates that EP300 and ZHX1 are essential transcription 

factors needed to differentiate epromoters from promoters in the TF dataset. The Decision 

Tree classifier has one crucial feature (EP300) in accordance with the Logistic Regression 

model. The MLP classifier shows that EP300, NFE2L2, and ZHX1 are essential features 

for the differentiation of epromoters from promoters. 

3.3 Conclusion 

Of the four classification methods utilized, the MLP classifier and the Logistic 

Regression classifier performed the best in almost all the datasets. The SVM classifier 

was unable to classify epromoters in most of the datasets. Thus, features were only 

extracted from the MLP, Logistic Regression, and Decision Tree models. A literature 

survey revealed that the histone markers deemed essential from the models (H3K27ac, 

H3K27me3, and H3K9ac) served as important biological markers for distinguishing 

active enhancers from poised enhancers and typical promoters (Cai et al., 2021; 

Creyghton et al., 2010). Similarly, for the TF dataset, the most critical features (EP300, 

NFE2L2, and ZHX1) play an active part in gene regulatory mechanisms (Eckner et al., 

1994a; Pajares et al., 2016; Yamada, Printz, Osawa, & Granner, 1999).  

The extracted features have some biological relevance in distinguishing promoters and 

epromoters. Thus, the features extracted from the classification models can help in 

building more accurate regression models. 
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Chapter 4 

4 Extending Analysis to K562 cell line 

Building a generalized framework that can apply to different cell lines, including non-

cancer mammalian cells, has been one of the thesis’s main aims. Extending the analysis to 

a second cancer cell line is one step towards the generalized model. The methodology 

discussed in the previous sections has been applied to create models for enhancer 

potential data of the K562 cell line.  

4.1 Materials and methods 

4.1.1 Data Collection 

Enhancer potential data for K562 cells were collected from CapStarr-seq experiments 

(Dao et al., 2017). Data for histone modifications and transcription factor bindings were 

downloaded from ENCODE. The data collected was organized as matrices as mentioned 

in section 2.1.1 

4.1.2 Dichotomizing enhancer potential matrix 

A threshold was determined for the K562 enhancer potential dataset using the algorithm 

given in 3.1.1. The threshold was determined to be 1.764. Any promoter having an 

enhancer potential greater than 1.764 was classified as an enhancer-like promoter 

(epromoter), and promoters with a lower value were classified as a promoter-like 

promoter (promoter). 
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Figure 18: Enhancer potential threshold for K562 cells 

4.1.3 Classification Models 

The data (histone and TF matrices) was then scaled using the standard scaler (sci-kit 

learn) and split into training and validation datasets in the ratio 1:2. The training data was 

oversampled using SMOTE algorithm to balance the number of promoters and 

epromoters, and the same four classification models (detailed in 3.1.3) were trained on the 

data. The final number of training samples in the cleaned and balanced dataset are 

outlined in Table 5. 

Table 5: Number of samples in cleaned K562 datasets 

Cell 

Line 

Dataset No. of Training Samples No. of Validation 

Samples 

No. of 

Features 

No. of 

promoters 

No. of 

epromoters 

No. of 

promoters 

No. of 

epromoters 

K562 Histone 13969 13969 5995 221 12 

TF 13969 13969 5995 221 14 
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4.2 Results 

4.2.1 Model Evaluation 

4.2.1.1 Confusion Matrices 

  

(a) Logistic Regression (b) Decision Tree Classifier 

  

(c) MLP classifier (d) SVM classifier 

Figure 19: Confusion matrices for K562 Histone dataset 
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(a) Logistic Regression (b) Decision Tree Classifier 

  

(c) MLP classifier (d) SVM classifier 

Figure 20: Confusion matrices for K562 TF dataset 

The confusion matrices show that the classifiers for the K562 dataset are not high-

performing. The best models are marginally better than a random classifier (a model that 

randomly spits out class labels given the datapoint). The SVM and MLP models for the 

histone dataset predict most of the values as promoters and thus, end up predicting 

epromoters as promoters. In the TF dataset, all the models perform slightly better than the 

K562 histone dataset models. 
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4.2.1.2 Precision-Recall values 

Table 6: Precision-recall values for the classification models and K562 datasets 

Dataset Model Precision Recall 

Promoter 

class 

Epromoter 

class 

Promoter 

class 

Epromoter 

class 

K562 

Histone 

Logistic Regression 0.97 0.05 0.59 0.56 

Decision Tree 

Classifier 

0.98 0.05 0.53 0.65 

MLP 0.97 0.05 0.67 0.43 

SVM 0.97 0.05 0.69 0.43 

K562 

TF 

Logistic Regression 0.98 0.07 0.74 0.53 

Decision Tree 

Classifier 

0.97 0.06 0.75 0.48 

MLP 0.98 0.07 0.79 0.46 

SVM 0.98 0.08 0.79 0.47 

 

In the K562 datasets, the recall values indicate that the best performing model is the 

Decision Tree model for the histone dataset. Although the model has a higher recall value 

than the other K562 models, the value is not high enough to accurately predict all 

epromoters in a given dataset. The rest of the models perform poorly compared to the 

Decision Tree model and the HeLa dataset models. 

4.2.1.3 ROC-AUC curves 

  

(a) Histone dataset (b) TF dataset 

Figure 21: ROC-AUC curves for the K562 classification models 
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The plots for the K562 dataset support the notion that the models are not entirely 

accurate. The models (particularly the histone dataset models) are pretty close to the 

dotted line. The dotted line represents a model that has no discriminatory power between 

both classes. Thus, the ROC curve and the AUC values are indicative of the poor 

performance of the models. 

4.3 Conclusion 

The classification models performed poorly on the K562 dataset. The highest accuracy 

obtained was around 64% (Logistic Regression model on TF data), but this model also 

had a recall value of around 0.5 for the epromoter class. Indicating that it missed almost 

half of the epromoters from the dataset. As the different models and training methods 

were tested for the HeLa cell data and performed well, the low model accuracy in K562 

cells can be attributed to either the dataset or the cell line. Further analysis (feature 

extraction) was not carried out using the models. 
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Chapter 5 

5 Mathematical Modelling of promoter-

promoter interactions 

A mathematical framework for promoter-promoter interactions has been laid out in this 

chapter. The framework models interactions between spatially interacting promoters and 

uses the enhancer potential value for different promoters to quantify changes in different 

interacting promoters’ activation states.  

5.1 Materials and Methods 

5.1.1 Data Collection 

Raw fastq files containing Hi-C sequence reads of HeLa cells were downloaded from 

ENA (European Nucleotide Archive). The entire reference genome for hg19 was 

downloaded from the Genome Research Consortium using the UCSC Genome Browser. 

5.1.2 Hi-C Pre-processing 

Hind III was identified as the restriction enzyme used for digestion from the Hi-C data 

experimental paper (Lieberman-Aiden et al., 2009; Naumova et al., 2013). HindIII cuts a 

given DNA sequence at A^AGCTT palindromic sites producing sticky ends. A restriction 

digestion map of the whole hg19 genome (Chr 1-22, Chr X, Chr Y, and Chr M) was 

prepared using the hicup_digester script. The digested genome file contains all fragments 

of the genome’s total digestion by Hind III restriction digestion. Bowtie2 was used to 

create index files for the hg19 genome. A bowtie index file is an aligned representation of 

the raw genome sequences. It helps reduce the whole genome’s memory footprint and 

provides a compatible format that various tools can use for alignment and processing. 

SolexaQA determined the format of the fastq sequence files to be “Sanger” format. 
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The index files, digested genome segments, and Sanger fastq files were processed using 

the HiCUP (Hi-C User Pipeline) pipeline. HiCUP pipeline consists of six Perl scripts for 

processing Hi-C sequence data. The hicup_truncater cut the fastq reads at putative Hi-C 

ligation junctions. The hicup_mapper takes in output from the hicup_truncater and 

bowtie index files to align the sequences to the reference genome. The reference genome 

is digested using the hicup_digester. The hicup_filter script takes the digested genome 

(hicup_digester) and mapped sequences (hicup_mapper) and removes commonly 

encountered Hi-C artefacts. Finally, the hicup_deduplicator removes (retaining one 

copy) putative PCR duplicates. The sixth Perl script, titled “hicup,” executes all the other 

scripts sequentially to automatically produce BAM files from raw fastq reads (S. Wingett 

et al., 2015).  

 

Figure 22: Pre-processing of Hi-C data using the HiCUP pipeline. Adapted from (S. W. Wingett 

et al., 2015) 
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The pipeline produces paired-read BAM files representing the filtered di-tags (“HiCUP 

Overview — HiCUP 0.8 documentation,” n.d.). Each read pair in the BAM file 

corresponds to a putative Hi-C di-tag.  

5.1.3 Building Interaction Matrix 

HiCUP provides additional tools to convert the final processed Hi-C BAM file to 

different formats compatible with a wide range of post-processing tools. The 

hicup2gothic script (from HiCUP tools) was used to convert the BAM file into a format 

compatible with the GOTHiC tool. GOTHiC is a tool to extract significant interactions 

from the aligned pair read files using a simple binomial probabilistic model that resolves 

complex biases and distinguishes between true and false interactions. The tool returns a 

lognormal probability of the observed number of interactions vs. the expected number of 

interactions between two given regions at a given resolution (Mifsud et al., 2017). The 

final converted BAM output and the restriction digestion file were then put through the 

gothic pipeline. All cis-trans interactions at a resolution of 10kb were identified. GOTHiC 

uses a probabilistic model to identify significant interactions in the processed Hi-C data.  

A custom python script was written to filter all the promoters from the above interaction 

matrix and prepare a final interaction matrix containing only those genomic locations as 

rows and columns, which appeared in the range of promoter locations for the respective 

epigenomic dataset.  

5.1.4 The Mathematical Model 

The following equation was used to model the interactions of the promoters: 

𝑑𝑥𝑖

𝑑𝑡
= 𝑓(𝑥𝑖) + ∑ 𝑊𝑖𝑗𝑔(𝑥𝑗)

𝑖

 

𝑔(𝑥𝑗) =  
𝑥𝑗𝑒𝑗

1 + 𝑥𝑗 . 𝑒𝑗
 

Where, 

 𝑥𝑖 = activation state of promoter i 

 𝑥𝑗 = activation state of promoter j 

 𝑊𝑖𝑗 = spatial interaction between promoter i and j 

 𝑓(𝑥𝑖) = function marking the internal dynamics of promoter i 

 𝑒𝑗 = enhancer potential of promoter j 
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The function g(x) that marks the external interactions between different promoters is 

modelled as a hill function equation (Santillán, 2008). Thus, the expected curve when 

using only the external interactions is a sigmoid. 

5.1.5 Simulating Promoter-Promoter interactions 

The equation was implemented in Python 3.8. The enhancer potential values for HeLa 

cells were plugged in from the CapStarr-seq data. The data from the prepared interaction 

matrix was used to calculate the effect of promoters on other given promoters. The 

function representing the internal dynamics of the promoters was ignored. The initial 

activation states were set to 0.1 (to replicate baseline activity). Finally, time course plots 

of the change in activation states were plotted for the interactions for ten iterations 

(timesteps). 

5.2 Results 

5.2.1 Promoter Interaction Map 

 

Figure 23: Promoter interaction map for the first 100 interacting promoters 

The promoter interaction map is sparse and resembles a Hi-C contact matrix indicating 

that a given promoter only interacts with a few more promoters. There may not be very 

dense connections in the promoter-promoter network. 
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5.2.2 Characteristics of the promoter-promoter interaction graph 

 

Figure 24: Enlarged view of the promoter-promoter interaction graph 

The various characteristics of the promoter-promoter network are detailed in Table 7. 

Table 7: Characteristics of the promoter-promoter network 

Characteristic Value 

Nodes 970 

Edges 1668 

Graph Density 0.0017 

Global clustering coefficient 0.018 

Assortativity Coefficient -0.073 

 

The graph density is high if there are a more significant number of edges between the 

different nodes. A value of 0.0017 is relatively low, indicating the sparseness of the 

network. The assortativity coefficient represents the kind of interactions that the nodes 

undertake. A higher positive value means similar nodes (nodes with comparable degrees) 

tend to be more connected than dissimilar nodes, while a negative value indicates 

dissimilar nodes form connections. The assortativity coefficient’s slight negative value 

indicates dissimilar nodes (nodes with a high difference in their degrees) tend to form 

more contact. However, the extent of this interaction is weak. 
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5.2.3 Modelling of promoter-promoter interactions 

 

Figure 25: Change in the activation state of promoters (basal induction = 0.1) 

Promoters with at least one interacting partner (a part of the promoter-promoter network) 

were induced to some higher value than the basal induction. As the internal dynamics 

term was ignored, the basal induction rate was not sustained in promoters that were not 

induced by other promoters. This gives us a clue that the internal dynamics equation 

should sustain a given basal rate of induction. The induced genes quickly rose to an 

activation state of 1.0 and were constant at that value. This can be attributed to the lack of 

deregulation (negative interactions) in the external interaction equation. As expected, the 

interactions produce a sigmoid curve in the induced promoters.  
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6 Discussion 

Some attempts at characterising the promoters were fruitful while some were not. The 

error rates of the initial regression models were high, and the R2 coefficient was relatively 

low. This indicates that the models did not satisfactorily predict the enhancer potential 

values given the data. Various treatments were used to improve the performance of the 

regression models (Appendix A) and it was noted that removing outlier enhancer 

potentials and min-max scaling of the histone matrix led to a slight improvement in the 

predictions. However, the improvements were not significant enough to build an accurate 

model. Scaling of the enhancer potential values resulted in deteriorated models indicating 

that it is not an appropriate approach to increasing the models’ efficiency. The steep 

decline in the accuracy after scaling the enhancer potential values may be due to the 

diminishing difference between the data points resulting from the scaling. 

To build better regression models, classification models were used as pipelines to extract 

relevant features from the datasets. The classification models determined that essential 

features needed to differentiate epromoter from promoters for the histone dataset were 

H3K27ac, H3K27me3, H3K9ac, and H2AFZ. It has been shown in the literature that the 

H3K27ac in a combination of H3K4me1 are histone markers used to differentiate active 

from inactive enhancers (Creyghton et al., 2010; Dao & Spicuglia, 2018). H3K27me3 is 

known to function as a silencer to repress gene expression (Cai et al., 2021) and has been 

known to associate with super-enhancers (Hnisz et al., 2013). It has also been 

acknowledged that such gene silencing regions may transform into active enhancers 

depending on cell line and cell developmental stage (Ngan et al., 2020). The H3K9ac 

histone marker has been associated with putative enhancer regions (Ernst et al., 2011). No 

significant difference between H2AFZ is promoters and enhancers has been described.  

In the TF dataset, the most important features were determined to be EP300, NFE2L2, 

and ZHX1. The EP300 gene encodes for a histone acetyltransferase protein (p300) which 

plays an active hand in chromatin remodelling (Eckner et al., 1994b). Transcription factor 

NFE2L2 acts as a regulator of macroautophagy genes in mouse cells (Pajares et al., 

2016). The ZHX1 transcription factor interacts with the Nf-Y complex and acts as a TSS 

selection mechanism in animal cells, and regulates the transcription initiation (Oldfield et 

al., 2019). Thus, all the transcription factors identified as essential features serve 
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regulatory functions and are more likely to be biologically associated with enhancer-like 

promoters regulating other promoters’ expression. 

It is evident from the literature that the features deemed necessary in the classification 

models have some biological relevance in distinguishing promoters and epromoters. 

Thus, the classifiers built can effectively extract relevant features that can then help in 

predicting the enhancer potential of promoters given their histone modifications and 

transcription factor bindings. One of the future directions of the project would be to build 

regression models using these extracted features and check whether the model can make 

accurate predictions. 

The classification models performed poorly for the K562 datasets. As the models 

performed relatively well for similar data on HeLa cells, it is assumed that the issue lies 

with the K562 dataset or the cell line. Underlying causes such as poor experimental data 

may lead to the model’s poor performance. It may also be the case that the nature of K562 

cells caused the poor performance of classification models. This can be biologically 

rationalized if there is are pathways other than histone modifications and transcription 

factor bindings that can lead to enhancer-like activity in promoters. 

Finally, the framework developed to study promoter-promoter interactions was 

successfully used to generate interaction and activation plots in a given cell type. Various 

improvements can be made to the model to add features such as negative regulation and 

sustenance of basal induction rate in non-interacting promoters. The mathematical 

framework allows us to infer what promoters will activate other promoters. This inference 

is significant in interpreting the long-range indirect genotype-phenotype association in the 

genome often seen in GWAS SNPs (Schierding et al., 2014). The time-course gene 

expression data generated from the model can be tested using observed time-course gene 

activation data to infer novel routes through which regulatory circuits may function.  
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Appendix A 

Attempts at improving the performance of regression 

Apart from feature extraction using classification, various other methods to improve the 

regression model’s performance were tested. Some of the approaches implemented to 

improve the regression models’ performance included removing outliers from the 

Enhancer Potential data, utilizing different scaling algorithms, and scaling the Enhancer 

Potential data. The results from all such approaches are outlined in the following table. 

 

Table 8: Comparison of different methods to improve the performance of the Regression models 

Model Treatment Overall 

Score 

Training statistics Testing statistics 

RMSE MSE MAE RMSE MSE MAE 

MLP 

Regressor 

Removing 

outliers 

0.13 0.38 0.14 0.27 0.39 0.15 0.28 

Using 

Min-Max 

scaling 

0.15 0.39 0.15 0.28 0.39 0.15 0.28 

Scaling the 

Y matrix 

-4.77 0.08 0.006 0.06 0.4 0.16 0.29 

SVR 

 

Removing 

outliers 

0.15 0.37 0.14 0.26 0.39 0.15 0.27 

Using 

Min-Max 

scaling 

0.15 0.38 0.14 0.27 0.39 0.15 0.27 

Scaling the 

Y matrix 

-4.19 0.1 0.01 0.09 0.96 0.91 0.86 
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Decision 

Tree 

Regressor 

Removing 

outliers 

0.14 0.39 0.15 0.28 0.39 0.15 0.28 

Using 

Min-Max 

scaling 

0.14 0.39 0.15 0.28 0.39 0.15 0.28 

Scaling the 

Y matrix 

-4.80 0.08 0.007 0.06 1.0 1.01 0.92 

 

In Table 8, removing outliers refers to removing enhancer potential values significantly 

larger (>5). The min-max scaling was done on the X matrix (histone modifications), 

while in the final treatment (Scaling the Y matrix), the enhancer potential values were 

scaled using a min-max scaler. 

A slight increase in performance is seen for the first two treatments (removing outliers 

and scaling with a min-max scaler); however, the performance severely deteriorates when 

the enhancer potential values are scaled using a min-max scaler. 
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Appendix B 

Choosing a sampling method to balance the dataset 

The method of dichotomizing the enhancer potential values created a high imbalance in 

the dataset (promoters ~ 96% & epromoters ~ 4%). Many sampling methods were 

considered to balance the dataset: 

• Random undersampling 

• Near miss undersampling 

• Edited nearest neighbours undersampling 

• Random oversampling 

• SMOTE 

• ADASYN 

Classification analysis was carried out using a logistic regression model on the HeLa 

histone data in conjunction with all the mentioned sampling methods to test out which 

method is the best. A control case was also maintained without any over/under-sampling.  

The ROC (Receiver Operator Characteristic) curves for the different models are presented 

below.  
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(a) Undersampling methods (b) Oversampling methods 

Figure 26: ROC-AUC Plots of the different sampling methods 

The ROC-AUC values tell us that all the methods except the Edited Nearest Neighbour 

sampling perform better than the control (no over/under sampling). The best performing 

model followed the Near Miss undersampling method followed by the SMOTE and 

ADASYN over samplers. Although the Near Miss method produced a significantly higher 

prediction rate, it does so by dropping almost 90% of the data points. As the logistic 

regression model is one of the simpler models (it has a smaller number of adjustable 

parameters), the scarcity of data points does not affect the results significantly. However, 

while training more complex models, the lesser number of data points starts affecting the 

performance. Thus, I decided not to use such an extreme undersampling method.  

Of the above oversampling methods, SMOTE and ADASYN algorithms performed 

relatively better than the random oversampler and the control. Recent literature has shown 

that in the case of highly imbalanced datasets, SMOTE performs slightly better than 

ADASYN (Brandt & Lanzén, 2021). Thus, SMOTE was used as an oversampling method 

to balance the datasets.  
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Appendix C 

Using H3K4me1/H3K4me3 ratio to improve classification 

Broadly, a high ratio of H3K4me1 to H3K4me3 is used to distinguish enhancers from 

promoters(Calo & Wysocka, 2013). Thus, it was suspected that the ratio of H3K4me1 to 

H3K4me3 might also be an essential feature to help determine whether a promoter acts as 

an epromoter. The HeLa histone dataset columns were modified to create a column 

containing the ratio of H3K4me1 to H3K4me3, and the individual columns for H3K4me1 

and H3K4me3 were removed from the dataset. Taking ratio produced some NaN values 

in the dataset due to division by 0. Removing the NaN values, the dataset contained 

20336 valid samples (promoters and epromoters). 

The dataset was again processed by scaling the data, splitting it into training and 

validation datasets, and oversampling using the SMOTE algorithm. The following results 

were obtained after training the models on the different classification models. 

  

(a) Logistic Regression (b) Decision Tree Classifier 
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(c) MLP classifier (d) SVM classifier 

Figure 27: Confusion matrix for the H3K4me1/H3K4me3 ratio dataset 

When compared to the original HeLa histone dataset confusion matrices, the confusion 

matrices indicate a general deterioration in the performance in three out of four models. 

The SVM classifier is the only model where the detection values of epromoters slightly 

increase. 

Table 9: Precision and Recall values for the Histone ratio dataset 

Dataset Model Precision Recall 

Promoter 

class 

Epromoter 

class 

Promoter 

class 

Epromoter 

class 

HeLa 

Histone 

Ratio 

Logistic Regression 0.99 0.06 0.62 0.75 

Decision Tree 

Classifier 

0.99 0.06 0.6 0.75 

MLP 0.99 0.06 0.6 0.74 

SVM 0.98 0.06 0.69 0.59 

 

The precision-recall values also show a general deterioration of model performance. The 

precision values are almost similar to the original unmodified dataset, while changes are 

only prominent in the recall values. 
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Figure 28: ROC-AUC plot for the HeLa Histone ratio dataset 

The ROC plot indicates that the models perform similarly to each other, with AUC values 

ranging within a range of 0.05. Comparing to the ROC plot in Figure 9, the AUC values 

and ROC curves indicate a slight deterioration in model performance.  

The deteriorating model performance is contrary to the initial idea that the ratio of 

H3K4me1 to H3K4me3 should increase the models' prediction accuracy. This may be 

attributed to differences between the supposed characteristics of enhancers and enhancer-

like promoters (epromoters). It is speculated that the high ratio of H3K4me1:me3 is the 

result of a more significant amount of H3K4me3 present in the promoter regions. 

H3K4me3 is associated with the presence of initiating form of Pol II. As promoters are 

transcribed while enhancers are not, enhancer-like promoters may have slightly higher 

H3K4me3 values, which lower the H3K4me1:me3 ratio and differentiate them from 

enhancers (Calo & Wysocka, 2013).  

 


