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Abstract

Coherent states are constructed for supersymmetric partner Hamiltonian, start-

ing from an initial Hamiltonian. For this purpose one crucial insight is to analyse

the algebra of the supersymmetric partner Hamiltonians. these algebras are not

exactly the same as that of the initial Hamiltonian. However, characteristic features

of the initial algebra seem to inherit to the algebra associated with the SUSY part-

ner Hamiltonians. Then coherent states are formed from the definition of being the

eigenstates of the annihilation operators. Then the initial Hamiltonian is perturbed

and it is checked how this perturbation gets inherited by its supersymmetric part-

ners. Finally, the coherent states are constructed for the perturbed SUSY partner

Hamiltonians.
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Chapter 1

Introduction

One of the pillars of modern physics, namely quantum mechanics, was invented dur-

ing the first few decades of twentieth century. Almost immediately after its advent

as a fundamental theory of nature its applications in explaining the results of differ-

ent small scale experiments started to be explored. For this purpose physicists tried

to solve the Schrodinger equation, which was published in the year 1926, for differ-

ent simple potentials. Among these the quantum harmonic oscillator is a significant

one. People that time tried to solve it analytically and became successful in the

endeavour. It is an exactly solvable potential and we get a solution for it involving

Hermite polynomial. Later Paul Dirac (as mentioned in many sources) developed

the ladder operator method for solving the same. In this method we typically use two

operators called raising or lowering operators or creation and annihilation operators

respectively. These operators increase or decrease the quantum number describing

a state of a system. Eventually we saw that it is way simpler to solve the harmonic

oscillator problem with the ladder operator method. This method since then has

been extensively used to solve Schrodinger equation for harmonic oscillator poten-

tial. What today we known as coherent states are the eigenstates of the annihilation

operator. The term coherent state was coined by Roy Jay Glauber. These states

are also called Glauber states.

Apart from their algebraic definition of being the eigenstates of annihilation

operators coherent states have different defining features too. For example they are

the ’most classical’ quantum states. It is said so because of the followoing reasons.

The fluctuations in the fractional uncertainty for the photon number decrease with

increasing in average photon number and if the average photon number increases the

state gets localized in phase. The coherent states are moreover not squeezed states.

This implies that the family of coherent states distribute the operator uncertainties

symmetrically between two non-commuting observables. In quadrature phase space

coherent states form a circle which is not squeezed to ellipse. The uncertainties

between two quadrature operators are equally distributed.
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One limitation of our understanding of coherent states and its application since

quite recent days was that it we knew it only in the context of linear systems like

quantum harmonic oscillators. For this systems has eqully spaced energy levels

and the expression of energy is linearly proportional to the photon number. These

systems obey Heisenberg-Weyl algebra which is characterized by the usual commu-

tation relations of the annihilation and creator operators and the Hamiltonian, we

see in harmonic oscillator problem. However, it is a pretty recent development that

coherent states are far more general than we used to think of it. Coherent states

can be constructed for any system, be it linear or non-linear. If we study the way

of construction of coherent states for a system closely, we see that it depends on the

commutation relations of the system or in general on the algebra ruling the system.

This is due to the fact that coherent states are eigenstates of the annihilation op-

erators and annihilation operators are part of this algebra. For harmonic oscillator

this algebra is of course the Heisenberg-Weyl algebra. This observation leads to the

idea that even when we try to construct coherent state for a non-linear system it

must depend on the algebra governing the same. Thus we need to first analyse the

non-linear algebra of the system before constructing the coherent states. Once we

do so we observe that non-linear algebras can be further classified in intrinsic and

natural algebra and the annihilation operator is basically an algebraic deformation

to the linear Heisenberg-Weyl annihilation operator. This results in the altered form

of its eigenstate or in other words the coherent states.

On the other hand Supersymmetric quantum mechanics (SUSYQM) has proven

itself to be very successful in reformulating the framework of standard quantum

mechanics and describing it in terms of symmetric bosonic and fermionic parts. This

theory makes life a lot simpler. We can find solution to hydrogen atom like problem

without explicitly solving a differential equation with power series. Moreover we can

find a list of exactly solvable potentials provided we know only one such potential.

If the partner potentials satisfy a particular condition called shape invariance, we

need not know the energy spectrum of one potential to know that of the other.

Once we have these two apparently disconnected concepts of SUSYQM and co-

herent states, it is natural to try to combine these in a logical fashion. In this report

we bring our attention to this and try to construct coherent states for the nonlinear

supersymmetric partner Hamiltonians, given an initian one. Once we are given with

an initial Hamiltonian, we can construct its coherent states. Further we can form the

entire series of its partner potentials. The natural question here is how the coherent

states for the partner potentials can be formed once we are provided with the initial

Hamiltonian and its coherent states. For this we must look into the algebra of the

system of partner Hamiltonians and find out to what extent the algebra governing

the initial Hamiltonian is inherited to that of its successive Supersymmetric partner

2



Hamiltonians.

We further extend our search to the systems that are not exactly solvable. For

most of practical life problems including Hydrogen atom like problems we often

require to solve systems which are not exactly solvable. For these we use various

approximation techniques. Perturbation theory is one of them. We have tried to

show the following things here. Firstly, How a perturbed initial Hamiltonian gives

rise to a series of perturbed SUSY partners Hamiltonians. We have used first order

perturbation theory for this purpose. Secondly, How coherent states of a perturbed

system can be constructed and it is then extended to forming coherent states for

Supersymmetric partner Hamiltonians of the given initial one.
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Chapter 2

Coherent Sates

2.1 Introduction:

In physics, the correspondence principle states that the behavior of a system de-

scribed by quantum mechanics, reproduces classical physics in the limit of large

quantum numbers. This motivated physicists to conceive of a way by which they

could express the behaviour of quantum fields in a comprehensive and classical man-

ner. According to the correspondence principle the most straightforward approach

would be to take the limit of extremely large number of photons. The underlying

target would be to make the number operator a continuous variable. However this

approach leads to a pitfall. The mean field 〈n|Êx|n〉 = 0, no matter how large we

take the photon numbers. For the field to be classical it must behave sinusoidally

at a fixed point in space. Clearly it is not the case with the mean value of the

field operator. This indicates we need something else other than just the number

states. These new states are called the coherent states which gives rise to classical

field in proper limits. Coherent states are thus called the ’most classical’ states.

This means their dynamics is the closest resemblance of that of a classical harmonic

oscillator[Gerry 04]. In this chapter we will explore how these states are constructed,

how they behave and what their properties are.

2.2 Construction of coherent states:

Coherent states can be defined in several ways. For our purpose the most suitable

one is these are the eigenstates of the annihilation operator. As we just knew that

the expectation value of the field operator will be identically zero irrespective of

what the number states are, it is most logical to try to construct a state which will

be a combination of the number states. The reason behind it is the mean value of
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say, annihilation operator â does not vanish. This implies the expectation of field

operator will also not vanish identically. Therefore we are expected to be safe to

think of the coherent state as the superposition of number states. These states are

denoted as |α〉. By definition

â |α〉 = α |α〉 (2.1)

where α is a complex number, otherwise arbitrary.

Since the number states form a complete set, we can express the state |α〉 as the

following,

|α〉 =
∞∑
n=0

Cn|n〉 (2.2)

Operating this expression with â we see,

â|α〉 =
∞∑
n=1

Cn
√
n|n− 1〉 = α

∞∑
n=0

Cn|n〉 (2.3)

equating coefficients of |n〉 we finally arrive at the recursion relation,

Cn =
2√
n
Cn−1 =

α2√
n(n− 1)

Cn−2 = . . .

=
αn√
n!
C0

(2.4)

This implies,

|α〉 = C0

∞∑
n=0

αn√
n!
|n〉 (2.5)

Now we are only left with one unknown term C0. This we derive from the normal-

ization condition as follows,

〈α | α〉 = 1 = |C0|2
∑
n

∑
n′

α∗
n
αn
′

√
n!n′!

〈n | n′〉

= |C0|2
∞∑
n=0

|α|2n

n!
= |C0|2 e|α|

2

(2.6)

or,

C0 = exp

(
−1

2
|α|2
)

(2.7)

Hence we have our final expression of the normalised coherent state,

|α〉 = exp

(
−1

2
|α|2
) ∞∑

n=0

αn√
n!
|n〉 (2.8)
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2.3 Expectation value of the field operator and

uncertainty:

We now calculate the mean value of the field operator. Considering the number

states it was identically zero previously. Now let us see how the expectation behaves.

Let us define the field operator as,

Êx(r, t) = i

(
~ω

2ε0V

) 1
2 [
âei(k·r−ωt) − â†e−i(k·r−ωt)

]
(2.9)

Taking the expectation we arrive at,

〈
α
∣∣∣Êx(r, t)∣∣∣α〉 = i

(
~ω

2ε0V

) 1
2 [
αei(k·r−ωt) − α∗e−i(k·r−ωt)

]
(2.10)

In polar coordinates the mean of the square of the field operator becomes ,〈
α
∣∣∣Ê2

x(r, t)
∣∣∣α〉 =

~ω
2ε0V

[
1 + 4|α|2 sin2(ωt− k · r− θ)

]
. (2.11)

Where,

α = |α|eiθ

These relations tell that coherent states produces the correct form of the sinusoidal

field as the expectation value, which is expected from a field also. Another thing is

that if we calculate the uncertainty in the field operator the fluctuation turns out

to be,

∆Ex ≡
〈(

∆Êx

)2〉 1
2

=

(
~ω

2ε0V

) 1
2

(2.12)

Which is exactly equal to the noise of a vacuum state[Dwyer 14]. Thus coherent

states minimizes the uncertainty. In other words they are the states of minimum

uncertainty which is equal to the vacuum fluctuation. In this sense also this is the

closest we can reach to a classical system which is deterministic in nature with no

uncertainty.

2.4 Coherent states as displaced vacuum states:

We have seen that coherent state can be defined as the eigenstate of the annihilation

operator. Moreover it can be described in another way. It is the state which mini-

mizes the uncertainty. Apart from these two description coherent state has a third
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one as well. This third approach is the displacement of the vacuum state. This can

be shown in the following way. The displacement operator is given as:

D̂(α) = exp
(
αâ† − α∗â

)
(2.13)

Now let us state the operator identity’

eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂]

= eB̂eÂe
1
2
[Â,B̂]

(2.14)

Comparing it with the expression of D̂(α) we see that,

D̂(α) = eαâ
†−α∗â = e−

1
2
|α|21eαâ

†
e−α

∗â (2.15)

Where

Â = αâ†

and

B̂ = −α∗â

[Â, B̂] = |α|21

Expanding e−α
∗â and operating it on the vacuum state we see that

e−α
∗â|0〉 =

∞∑
l=0

(−α∗â)l

l!
|0〉 = |0〉 (2.16)

Now evaluating eαâ|0〉 we get,

eαâ
†|0〉 =

∞∑
n=0

αn

n!

(
â†
)n |0〉

=
∞∑
n=0

αn√
n!
|n〉

(2.17)

We finally have,

|α〉 = D̂(α)|0〉

= e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉

(2.18)

Which is exactly the previous form. Hence we see here that the coherent states

can be alternatively be defined as the displacement of the vacuum state. Now as

we have already seen the definition of coherent states and how these definitions can
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be used in their construction we now move to explore some important properties of

these states.

2.5 Properties of coherent states:

Coherent states have some extremely interesting properties. In this section we will

discuss some of them.

2.5.1 Time evolution

We now see how coherent state for a single mode free field evolve in time under

the influence of a time evolution operator. The time evolution operator is given by,

exp
(
−iĤt
~

)
. Where the Hamiltonian is given by

Ĥ = ~ω
(
â†â+

1

2

)
(2.19)

Now operating the coherent state with this time evolution operator we get the

following,

|α, t〉 ≡ exp
(
−iĤt/~

)
|α〉 = e−iωt/2e−iωtn̂|α〉

= e−iωt/2
∣∣αe−iωt〉 (2.20)

We see here that a coherent state retains its existance as a coherent state under free

field evolution. The only change that occurs under time evolution is in the phase of

the state.

2.5.2 Orthonormality

Coherent states themselves are not orthonormal. However the number states are

orthonormal. We can check this non-orthonormal behaviour of the coherent states
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in the following way,

〈β | α〉 =e−
1
2
|α|2− 1

2
|β|2

×
∞∑
n=0

∞∑
m=0

β∗
n
αm√

n!m!
〈n | m〉

=e−
1
2
|α|2− 1

2
|β|2

∞∑
n=0

(β∗α)n

n!

=e−
1
2
|α|2− 1

2
|β|2+β∗α

= exp

[
1

2
(β∗α− βα∗)

]
exp

[
−1

2
|β − α|2

]
(2.21)

which is clearly nonzero in general.

Hence the coherent states are not orthonormal themselves. However if |β−α| is
large enough, coherent states are approximately orthonormal.

2.5.3 Completeness

The completeness relation of the coherent state is given as the complex integral,∫
|α〉〈α|d

2α

π
= 1 (2.22)

This relation can be proved in a straightforward manner. We just need to express

α and d2α in the polar coordinate. This will give us,∫
|α〉〈α|d2α =

∑
n

∑
m

|n〉〈m|√
n!m!

∫ ∞
0

dre−r
2

rn+m+1

∫ 2π

0

dθei(n−m)θ (2.23)

Here we use the relation, ∫ 2π

0

dθei(n−m)θ = 2πδnm (2.24)

We again change the variable r2 = y , hence 2rdr = dy, and this gives us,∫
|α〉〈α|d2α = π

∞∑
n=0

|n〉〈n|
n!

∫ ∞
0

dye−yyn (2.25)

and since, ∫ ∞
0

dye−yyn = n! (2.26)

9



we finally arrive at, ∫
|α〉 〈α| d2α = π

∞∑
n=0

|n〉 〈n| = π (2.27)

Any state vector in a Hilbert space can be expressed in terms of the coherent states.

There are in fact more than enough number of such states which can be used to

express any state vector in that Hilbert space. This is why coherent states are called

to be ’overcomplete’. Coherent states are not linearly independent. This directly

follows from the fact that they are ’overcomplete’. We always find more number of

coherent states than we need to express any state in terms of coherent states.

2.6 Conclusion:

In this chapter we saw what coherent states are. They are extremely important

in the field of quantum optics. Although here coherent states are discussed in the

context of quantum harmonic oscillator where the energy levels are integer spaced,

the idea can be generalized to other quantum systems which are not essentially

linear. The construction of such coherent states are nontrivial. These aspect will be

explored in the later chapters. We have behold some of the interesting properties of

these states. These preliminary concepts will eventually enable us to appreciate the

following sections.
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Chapter 3

Basics of SUSYQM

3.1 Introduction:

Supersymmetric quantum mechanics is a comparatively newer branch in theoretical

physics. Concepts of Supersymmetry was historically first applied to quantum field

theory. Thus it was chiefly a field theoretic approach to understand the behaviour of

matter and force at a more fundamental level. However this method turned out not

to be so evidently acceptable because we could never detect any partner particle of

the same mass as proposed in the theory. This lead physicists to apply the format

of SUSY in a simpler setting than quantum field theory. They applied the concepts

to our good old quantum mechanics, rather than field theory. The idea was to

introduce the SUSY tehniques to the language (quantum mechanics) first and then

to any theory written within the framework of quantum mechanics. This is how we

got Supersymmetric quantum mechanics or SUSY-QM. In this chapter we will see

how the principles of susy makes life simpler in handling the typical mathematically

rigorous problems of standard quantum mechanics. We will then explore how we

can know about other exactly solvable potentials once we are provided with one

solvable potential [Andrianov 93; Sato 02; Andrianov 03; Leiva 03] We will later see

how we can form Superpartner Hamiltonian of an initial Hamiltonian.

3.2 Basic principles of supersymmetric quantum

mechanics:

Supersymmetry gives an elegant and alternative description of the mathematical

foundation of quantum mechanics. In this section we will see how it can be an

extremely useful tool for us to deal with quantum systems with enormous ease
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unlike the conventional ways of tackling such problems. Here we will start with

the quantum harmonic oscillator which is exactly solvable. Same techniques can be

applied for other potentials also. For example for ’particle in box’ problem. Let us

delve into the problem of quantum harmonic oscillator now. The Hamiltonian of

a quantum harmonic oscillator which is a bosonic oscillator can be written as the

following:

HB = − ~2

2m

d2

dx2
+

1

2
mω2

Bx
2 (3.1)

Where ωB is the natural frequency of the oscillator and we adopt such unit for

convenience where ~ = m = 1. Here we can define a pair of creation and annihilation

operators corresponding to the hamiltonian given. We name them say, b+ and b

respectively.

These are given as,

b =
i√
2ωB

(p− iωBx)

b+ = − i√
2ωB

(p+ iωBx)
(3.2)

Where p = −i d
dx

. Now the Hamiltonian can be expressed in terms of the creation

and annihilation operators as

HB =
1

2
ωB
{
b+, b

}
(3.3)

Where {b+, b} is the anticommutator of b+ and b. The standard action of these

operators on the number states are given as follows,

b | n > =
√
n |n− 1〉

b+ | n > =
√
n+ 1 |n+ 1〉

(3.4)

Here [b, b+] = I and

[b, b] = 0[
b+, b+

]
= 0

[b,HB] = ωBb,[
b+, HB

]
= −ωBb+

(3.5)

Now we can express HB as,

HB = ωB

(
b+b+

1

2

)
= ωB

(
NB +

1

2

)
(3.6)

With the energy spectrum,

EB = ωB(nB +
1

2
) (3.7)
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Up to this it was standard undergrad quantum mechanics. Here we introduce a

comparatively new thing. We replace the bosonic operators b and b+ by its cor-

responding fermionic operatros which are annihilation and creation operators of a

fermionic quantum harmonic oscillator. Here we introduce two such operators a

and a+. Following the same treatment just done we can write down a fermionic

Hamiltonian with the help of these operators as we just did in case of the bosonic

one. we thus have,

HF =
1

2
ωF [a+, a]

(3.8)

These operators satisfy the relations,{
a, a+

}
= I

{a, a} = 0,
{
a+, a+

}
= 0

(3.9)

We may also define the fermionic number operators analogous to the bosonic one as

NF . Here

NF = a+a (3.10)

Now we can express HF as

HF = ωF (NF −
1

2
) (3.11)

with the spectrum

EF = ωF (nF −
1

2
) (3.12)

Now if we look at the complete system which is essentially a superposition of bosonic

and fermionic systems we get,

E = ωB(nB +
1

2
) + ωF (nF −

1

2
) (3.13)

At this point we need to stop by a little. This last equation deserves our attention.

This equation is simply the spectrum of the entire system which arise from the su-

perposition of the bosonic and fermionic systems. The speciality of this equation

lies with the fact that it remains unchanged if one boson gets annihilated and one

fermion gets created or if one fermion is annihilated and one boson is created pro-

vided the natural frequencies of the bosonic part of the system and the fermionic

part of the system are set equal. This symmetry is what we call ’supersymmetry’.

The equation (3.13) can be rewritten as

13



E = ω(nB + nF ) (3.14)

So we see that the symmetry comes from a simultaneous destruction of one boson

and creation of one fermion or vice versa. This implies one crucial thing. The

generators of such symmetry will be like ba+ or ab+ because these operators when

act upon the number state can do the simultaneous creation and annihilation of

these particles. This motivates to define quantities like

Q =
√
ωb⊗ a+

Q+ =
√
ωb+ ⊗ a

(3.15)

The supersymmetric Hamiltonian can be defined as

Hs = ω
(
b+b+ a+a

)
=
{
Q,Q+

} (3.16)

The commutation relations are the following,

[Q,Hs] = 0

[Q+, Hs] = 0

{Q,Q} = 0

{Q+, Q+} = 0

(3.17)

The entire Hamiltonian can be written using the Pauli spin matrix as

Hs =
1

2

(
p2 + ω2x2

)
I +

1

2
ωσ3 (3.18)

Where I is a 2× 2 identity matrix

The entire Hamiltonian can then be split into its two components as,

H+ = −1
2
d2

dx2
+ 1

2
(ω2x2 − ω) ≡ ωb+b

H− = −1
2
d2

dx2
+ 1

2
(ω2x2 + ω) ≡ ωbb+

(3.19)

These two Hamiltonians describe the same harmonic oscillator and are different from

each other only by a constant shift in the spectrum. These are called supersymmetric

partner Hamiltonians to each other. One is bosonic part and the other is fermionic

one. This idea can be generalized further to construct a series of such partner

Hamiltonians, which we will see soon.
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3.3 Superpotential:

In this section we will discuss about superpotentials. The kinetic part of the partner

Hamiltonians are obviously the same. The only difference they have in the potential

part. Hence it is justified to call them as partner potentials as they are the ones to

give rise to the partner Hamiltonians. We call these partner potentials as V+ and

V−. These can be expressed as,

V±(x) =
1

2

[
W 2(x)∓W ′(x)

]
(3.20)

Where

W (x) = ωx

for harmonic oscillator.

This function W (x) is what we call superpotential.

Hs =
1

2

(
p2 +W 2

)
I +

1

2
σ3W

′ (3.21)

Accordingly the corresponding supercharges Q and Q+ can be expressed as,

Q =
1√
2

(
0 W + ip

0 0

)

Q+ =
1√
2

(
0 0

W − ip 0

) (3.22)

and

Hs = {Q,Q+} (3.23)

The commutation relations of these supercharges with the supersymmetric Hamil-

tonian are given by,

[Q,Hs] = 0 (3.24)

[Q+, Hs] = 0 (3.25)

The bosonic operators b and b+ reveals themselves in more general form.

√
2ωb→ A = W (x) +

d

dx
(3.26)

√
2ωb+ → A+ = W (x)− d

dx
(3.27)
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We can express the Hamiltonian Hs in terms of A and A+ as,

Hs ≡ diag (H−, H+)

=
1

2
diag

(
AA+, A+A

) (3.28)

3.4 Properties of the partner Hamiltonian:

Here we discuss some of the properties of the supersymmetric partner Hamiltonians.

The first interesting property is that the partner potentials are nearly isospectral.

If we consider,

H+ψ
+
n = E+

n ψ
+
n (3.29)

we can show that,

H−
(
Aψ+

n

)
=

1

2
AA+

(
Aψ+

n

)
= A

(
1

2
A+Aψ+

n

)
= E+

n

(
Aψ+

n

) (3.30)

which proves that E+
n is the energy spectrum of H− as well. We see that the

energy spectrum of H− and H+ are almost identical except for the ground state.

The ground state is nondegenerate.

Apart from that we see the standard eigenvalue relations,

H+ψ
(+)
n+1 = E

(+)
n+1ψ

(+)
n+1 (3.31)

H−ψ
(−)
n = E(−)

n ψ(−)
n (3.32)

We now turn toward how the spectrum and wave functions of H− and H+. For this

purpose we perform the following steps,

H+

(
A+ψ−n

)
=

1

2
A+A

(
A+ψ−n

)
= A+H−ψ

−
n = E−n

(
A+ψ−n

)
H−
(
Aψ+

n

)
=

1

2
AA+

(
Aψ+

n

)
= AH+ψ

+
n = E+

n

(
Aψ+

n

) (3.33)

Hence we can conclude that the spectra and wave functions of H− and H+ are

related by,

E−n = E+
n+1, n = 0, 1, 2, . . . ;E+

0 = 0 (3.34)
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ψ−n =
(
2E+

n+1

)− 1
2 Aψ+

n+1 (3.35)

ψ+
n+1 =

(
2E−n

)− 1
2 A+ψ−n (3.36)

3.5 Shape invariance and its application:

Let us discuss about shape invariance properties of the potentials. Shape invariance

of partner potentials is a crucial idea which says if partner potentials have shape

invariance we need not know the energy spectrum of one potential to know that of

the other[Bagchi 01].

3.5.1 Condition of shape invariance

The condition for the bosonic and the fermionic potential to be shape invariant is

the following:

V (2) (x, a1) = V (1) (x, a2) +R (a1) (3.37)

Here the partner potentials have been denoted by V (1) and V (2).

If the superpotential falls in this class of shape invariant potentials we can construct

the entire series of the Hamiltonians using the property as follows:

H(1) =
−~2

2m

d2

dx2
+ V (1) (x, a1) (3.38)

H(2) =
−~2

2m

d2

dx2
+ V (1) (x, a2) +R (a1) (3.39)

H(3) =
−~2

2m

d2

dx2
+ V (1) (x, a3) +R (a2) +R (a1) (3.40)

Using the kth Hamiltonian of the ground state eigenfunction we get the ground state

energy of the kth partner potential as,

E
(k)
0 =

k−1∑
i=1

R (ai) (3.41)
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Since the ground state energy of the kth Hamiltonian corresponds to the k-1 energy

level for the first Hamiltonian, it is possible to express the entire spectrum for the

first Hamiltonian by

E
(1)
n (a1) =

∑n
i=1R (ai)

E
(1)
0 = 0

(3.42)

If the initial problem does not have E1
0 the spectrum needs to be shifted back to the

initial problem after using the SIP method in order to obtain the real spectrum.

3.6 Conclusion:

In this chapter we saw a completely different approach in formulating standard

quantum mechanics. Supersymmetry splits the Hamiltonian into its bosonic and

fermionic parts. These makes things enormously easy to handle. Apart from this

the concept of shape invariance is also extremely useful. Once we find the potential

to have this specific property of shape invariance we can instantly have the entire

series of superpartners of the initial Hamiltonian.
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Chapter 4

Coherent states of Nonlinear

Supersymmetric Partner

Hamiltonians

Here we are equipped with sufficient background knowledge to proceed deeper. In

this section we will see how these ideas can be of our use in building coherent states of

nonlinear systems. Coherent states are beautiful in the underlying physical concept.

This beautiful idea however was restricted to harmonic oscillator which is governed

by the well-known Heisenberg-Weyl algebra. Now while we try to construct the

coherent state of any system, we primarily use its definitions and properties in doing

so[Ghosh 12]. For example coherent states are the eigenstates of the annihilation

operator. This definition is extensively used to form coherent state algebraically.

Therefore it is of immense importance in order to construct coherent state of any

other quantum system other than the Harmonic oscillator to properly identify the

the algebra that governs the system. We can use various definitions or properties

of coherent states for this purpose [Glauber 06; Klauder 85; Perelomov 86] . The

underlying algebraic structures associated with nonlinear systems are surprisingly

a very recent development. This development in turn immediately leads to the

question of how the coherent states of these systems should look like.

On the other hand supersymmetric quantum mechanics has proven itself ex-

tremely useful in finding exactly solvable potentials once we are provided with an

initial one. Now as we know the algebraic structure of different systems and are ca-

pable of forming coherent states for them as well, it is very natural to ask how much

of this governing algebra of the system is inherited by its Supersymmetric partner

Hamiltonians and how the corresponding coherent states will be like[Fernández 07].

In this chapter we mainly focus our attention in finding the answers to these ques-

tions.
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4.1 Algebraic structure of H0 :

The standard initial Schrodinger Hamiltonian is,

H0 = −1

2

d2

dx2
+ V0(x) (4.1)

Its eigenstates and eigenvalues are related by,

H0 |ψn〉 = En |ψn〉 , E0 < E1 < E2 < . . . (4.2)

We know that the number operator N0 of the system will give us,

N0 |ψn〉 = n |ψn〉 (4.3)

We now turn to explore the intrinsic algebra associated with the system. This is

described by the following expressions:

a−0 |ψn〉 = rI(n) |ψn−1〉 , a+0 |ψn〉 = r̄I(n+ 1) |ψn+1〉 , (4.4)

rI(n) = eiα(En−En−1)
√
En − E0, α ∈ R (4.5)

In terms of the operators,

a+0 a
−
0 = E (N0)− E0, a−0 a

+
0 = E (N0 + 1)− E0 (4.6)

Therefore we arrive at the following commutation relations that characterizes the

algebra,

[
N0, a

±
0

]
= ±a±0 ,

[
a−0 , a

+
0

]
= E (N0 + 1)− E (N0) ≡ f (N0) , (4.7)

[
H0, a

±
0

]
= ±a±0 f

(
N0 −

1

2
± 1

2

)
= ±f

(
N0 −

1

2
∓ 1

2

)
a±0 (4.8)

Here we see that the algebra is not linear. However the intrinsic nonlinear algebra

admits a linearization procedure. This is as follows,

a−0L = b (N0) a
−
0 , a+0L = a+0 b (N0) (4.9)

with

b(n) =
rL(n+ 1)

rI(n+ 1)
=

√
n+ 1

E(n+ 1)− E0

, rL(n) = eiαf(n−1)
√
n (4.10)
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The action of the linearized annihilation and creation operators on the state |ψn〉 is,

a−0L |ψn〉 = rL(n) |ψn−1〉 , a+0L |ψn〉 = r̄L(n+ 1) |ψn+1〉 (4.11)

These linear annihilation and creation operators which are derived as a deformation

of the intrinsic ones satisfy the standard Heisenberg-Weyl algebra.

4.2 Coherent states of the initial Hamiltonian H0 :

Here we try to construct the coherent state of H0. The definition of coherent state

used here is given mathematically,

a−0 |z, α〉0 = z|z, α〉0, z ∈ C (4.12)

The formal procedure that is discussed in the earlier chapter on coherent states leads

to the coherent states as,

|z, α〉0 =
(∑∞

m=0
|z|2m
ρm

)− 1
2 ∑∞

m=0 e
−iα(Em−E0)

zm√
ρm
|ψm〉,

ρm =

{
1 if m = 0

(Em − E0) . . . (E1 − E0) if m > 0

(4.13)

If we consider the coherent states of H0 associated with the linear algebra of H0

as the eigenstates of the linear annihilation operator, Following the same standard

procedure it comes out to be,

|z, α〉0L = e−
|z|2
2

∞∑
m=0

e−iα(Em−E0)
zm√
m!
|ψm〉 (4.14)

These cohrent states formed from different algebras of the initial Hamiltonian have

all the characteristic feature of a coherent state. They evolve in time and remain a

coherent state. Their completeness relation still holds. Their interpretation as the

displacement of the vacuum state holds for coherent states in particular.

4.3 Supersymmetric partner Hamiltonians of H0 :

Here we introduce two intertwining operators. These are the operators which con-

nect the SUSY partner Hamiltonians to each other. We name these as Bk and
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B+
k

HkB
+
k = B+

k H0, H0Bk = BkHk (4.15)

Where Hk is

Hk = −1

2

d2

dx2
+ Vk(x) (4.16)

The SUSY partner potential is related to the initial one by,

Vk(x) = V0(x)−
k∑
i=1

α′i (x, εi) (4.17)

Where, α′i (x, εi) satisfy the Riccati equation

α′1 (x, εi) + α2
1 (x, εi) = 2 [V0 (x)− εi] , i = 1, . . . , k (4.18)

This is equivalent to the stationary Schrodinger equation for the factorization ener-

gies εi ,if we make the substitution

α1 (x, εi) = u′i(x)/ui(x)

With this the equation (4.18) turns out to be

−1

2
u′′i + V0(x)ui = εiui

This is a Schrodinger equation in one dimension.

Let us now suppose that, as a result of the kth order intertwining technique, the

states annihilated by Bk are as well physical eigenstates of Hk associated with the

eigenvalues εi.

By convenience, they will be specially denoted by |θεi〉

Bk |θεi〉 = 0, Hk |θεi〉 = εi |θεi〉 i = 1, ..., k (4.19)

However, we assume that the procedure creates just additional levels with respect

to Sp(H0). but without deleting any of the original levels of H0, i.e.,

Sp (Hk) = {ε1, . . . , εq, E0, E1, . . .} , (4.20)

Here the levels {E0, E1, E2, ...} come from the eigenstate θn of Hk. Summarizing all
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information we see that the eigenstates obey,

Hk |θn〉 = En |θn〉 , Hk |θεi〉 = εi |θεi〉
〈θεi | θn〉 = 0, 〈θm | θn〉 = δmn,

〈
θεi | θεj

〉
= δij

(4.21)

Here n varies from 0 to mp

This means that p = s − q factorization energies εq+j coincide with p energy levels

Emj of H0 ,i.e. εq+j = Emj , j = 1, ..., p, mj <mj+1 and thus B+
k

∣∣ψmj〉 = 0

4.4 Algebraic construction of Hk :

Here we see the similar algebraic construction of Hk as we saw of H0 . Starting

from the intrinsic operators of the initial Hamiltonian and using the intertwining

operator we arrive at a different algebra for the SUSY partner Hamiltonian, namely

the natural algebra.

4.4.1 Natural algebra of Hk

The natural annihilation and creation operators are given by

a±kN = B+
k a
±
0 Bk (4.22)

The action of the natural creation and annihilation operators on the eigen states

of Hk are as follows:

akN |θn〉 = 0 i = 1, ..., q (4.23)

The action of natural annihilation and creation operators on the eigenstates of Hk

is given as following:

a±kN |θεi〉 = 0, i = 1, . . . , q (4.24)

a−kN |θn〉 = rN (n) |θn−1〉 , a+kN |θn〉 = r̄N (n+ 1) |θn+1〉 (4.25)

Where,

rN (n) =

{
k∏
i=1

[E(n)− εi] [E(n− 1)− εi]

} 1
2

rI(n) (4.26)

As we saw in the previous section that the intrinsic and linear algebra are related,

likewise natural algebra and intrinsic algebra of a system are also related to each

other. They are so by the following equations. Basically they can be viewed as
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deformities[Román-Ancheyta 15].

a−kN =
rN (Nk + 1)

rI (Nk + 1)
a−k , a+kN =

rN (Nk)

rI (Nk)
a+k , a+kN a

−
kN

= [E (Nk)− E0]

[
rN (Nk)

rI (Nk)

]2
(4.27)

4.4.2 Intrinsic algebra of Hk

Let us now analyse the intrinsic algebra of Hk. This is generated by the below

mentioned annihilation and creation operators.

a−k = rI (Nk + 1)
∞∑
m=0

|θm〉 〈θm+1| a+k = r̄I (Nk)
∞∑
m=0

|θm+1〉 〈θm| (4.28)

The action of these operators on the eigenstates of Hk are the following,

a±k |θεi〉 = 0 i = 1, ..., q (4.29)

a−k |θn〉 = rI(n) |θn−1〉 a+k |θn〉 = r̄I(n+ 1) |θn+1〉 (4.30)

4.4.3 Linear algebra of Hk

Finally, we analyse the linear algebra of Hk The linear annihilation and creation

operators are given by

a−kL = rL (Nk + 1)
∞∑
m=0

|θm〉 〈θm+1| a+kL = r̄L (Nk)
∞∑
m=0

|θm+1〉 〈θm| (4.31)

Again, the action of these operators on the eigenstates of Hk is given by

a±kL |θεi〉 = 0, i = 1, . . . , q (4.32)

a−kL |θn〉 = rL(n) |θn−1〉 a+kL |θn〉 = r̄L(n+ 1) |θn+1〉 (4.33)

The relation between the intrinsic algebra and the linear algebra of Hk is given

by,

a−kL =
rL (Nk + 1)

rI (Nk + 1)
a−k , a+kL =

rL (Nk)

rI (Nk)
a+k , a+kLa

−
kL

= Nk (4.34)
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4.5 Construction of coherent states of HK :

In this section we will see how the coherent states of these chain of partner Hamil-

tonians look like. Once we know the algebra governing the system and how the

annihilation and creation operators behave we can perform our good old straight

forward calculation for coherent states as the eigenstates of the annihilation opera-

tor.

4.5.1 Natural coherent state of Hk

By performing that standard procedure we derive the expression for coherent state

as,

|z, α〉kN =

[
∞∑
m=0

|z|2m

ρ̃m

]− 1
2 ∞∑
m=0

e−iα(Em+mp+1−Emp+1) zm√
ρ̃m

∣∣θm+mp+1

〉
(4.35)

Where, ρ̃0 = 1

and, for m > 0

ρ̃m =
ρm+mp+1

ρmp+1

k∏
i=1

(
Em+mp+1 − εi

) (
Em+mp − εi

)2
. . .
(
Emp+2 − εi

)2 (
Emp+1 − εi

)
(4.36)

The intrinsic and linear coherent states which are the eigenstates of the a−k and

a−kL respectively, are the same as that of the initial Hamiltonian. This is due to the

fact that the linear and intrinsic algebras of H0 characterize as well the Hk on the

subspace associated to the initial levels.

Here the completeness relation is given as,

q∑
i=1

|θεi〉 〈θεi |+
mp∑
m=0

|θm〉 〈θm|+
∫
|z, α〉kN kN 〈z, α| dµ̃(z) = 1

where the measure reads:

dµ̃(z) =
1

π

(
∞∑
m=0

|z|2m

ρ̃m

)
ρ̃
(
|z|2
)
d2z.
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4.5.2 Intrinsic coherent state of Hk

The intrinsic nonlinear coherent state follows from the intrinsic algebra of Hk. We

again follow the standard procedure to calculate cohrent state as the eigenstate of

the intrinsic annihilation operator. We finally arrive at the expression,

|z, α〉k =

(
∞∑
m=0

|z|2m

ρm

)− 1
2 ∞∑
m=0

e−iα(Em−E0)
zm
√
ρm
|θm〉 (4.37)

The completeness relation is given by,

q∑
i=1

|θεi〉 〈θεi |+
∫
|z, α〉kk 〈z, α|dµ(z) = 1

4.5.3 Linear coherent state of Hk

In a similar way we can construct the linear coherent state of Hk from the linear

annihilation operator. This is given by,

|z, α〉kL = e−
|z|2
2

∞∑
m=0

e−iα(Em−E0)
zm√
m!
|θm〉 (4.38)

The completeness relation in this case is given by,

q∑
i=1

|θεi〉 〈θεi |+
1

π

∫
|z, α〉kLkL 〈z, α|d

2(z) = 1

4.6 Conclusion:

In this chapter we have seen how the algebra of the initial Hamiltonian is inherited by

its supersymmetric partner Hamiltonians. We have also seen how coherent states can

be formed once we know the complete description of the algebra ruling the system.

Nonlinear systems admit a specific linearization scheme and can be exploited to

construct the coherent states. In this way the idea of coherent states as well as

annihilation and creation operators are further generalized out of the well known

harmonic oscillator problem.
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Chapter 5

Consequences of perturbation in

construction of coherent states

We have so far seen how coherent states can be formed from the initial given Hamil-

tonian of a linear system like harmonic oscillator. Then we saw how this idea of

coherent states can be generalized to nonlinear systems as well. We discussed how

an initial Hamiltonian gives rise to an infinite series of its supersymmetric partner

Hamiltonians and how they are interconnected. We again tried to elaborate the way

an underlying algebra governing a system is transferred or inherited to the SUSY

partner Hamiltonians of the same and how the coherent states of SUSY partners

are.

However, everything that we discussed so far is about exactly solvable systems.

We have taken initially harmonic oscillator which is one of that kind. Later we

delved into SUSYQM, whose one of the most important purposes is to find more

exactly solvable potentials given an initial exactly solvable one. But what if the

system is not exactly solvable and there is a slight perturbation which is deflecting

the system from being an exact one. In a recent work, without any consideration

of SUSY this question is addressed in a simpler setting of a perturbative harmonic

oscillator[Naila 15]. We have not discussed anything about such scenarios so far.

Here in this chapter we try to present a comprehensible view of the problem to 1st

order approximation.

5.1 Introducing the perturbation:

Let us perturb the initial Hamiltonian H0 and it becomes Now we perturb the initial

Hamiltonian H0and it becomes H0 + λH1
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It can be shown that this perturbation in the initial Hamiltonian inherits to

the SUSY partner Hamiltonians.However, the form of the perturbation does not in

general remain the same. By which it is meant that if the initial Hamiltonian is

perturbed by an amount it is certain that the Partner Hamiltonians will also be

affected by the perturbation but not by the same amount as it was for the initial

one. We recall that,

−1

2
u′′i + V0(x)ui = εiui

Which is the Schrodinger equation for εi eigenvalues and ui eigenfunctions.

Now with the perturbation the ui up to the first order approximation becomes

|ũi〉 = |ui〉+
∑
i 6=k

〈uk|λH1|ui〉
εi − εk

|uk〉

Therefore α1 (x, εi) becomes

˜α1 (x, εi) =
ũi
ũi

′
(5.1)

Here this equation tells us how the factor α1 changes under the influence of the

perturbation. This implies that Hk will also be altered since Hk depends on α1. We

therefore look into how Hk changes. Hence Hk becomes

H̃k = H0 + λH1 −
k∑
i=1

˜α1
′ (x, εi)

Where,

˜α1 (x, εi) =
ũi
ũi

′
(5.3)

This equation is important. It tells us the way a perturbation of any general form

to the initial Hamiltonian is inherited to its SUSY partner Hamiltonians. From this

we can see that the form of the perturbation changes in general. Once we get this

result the rest of the task is straight forward. We need to do 1st order perturbation

theory for the partner Hamiltonians and need to find how the eigenvalues changes.

Finally we need the spectrum in order to calculate for the coherent states.

The perturbation to Hk is

λHk1 = λH1 + λ[
1

λ
(
k∑
i=1

α′1 (x, εi)−
k∑
i=1

˜α1
′ (x, εi)]
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Therefore, the eigenvalues of Hk will be shifted up to first order correction to

εi → εi + 〈θεi |λHk1|θεi〉 = ε̃i

Here we see that although previously H0 and Hk had same spectrum except

for the extra eigen values added in the spectrum of Hk, it is no longer isospectral.

Previously we saw that,

εq+j = Emj (5.5)

But now

ε̃q+j 6= Ẽmj

The eigen energies of initial Hamiltonian becomes,

En → En + 〈ψ0|λH1|ψ0〉 = Ẽn

Now if we look for how the eigenstate of the perturbed Hamiltonians changes because

of the perturbation, we see using the standard technique,∣∣∣θ̃n1〉 =
∑
l 6=n

〈θ0n |λHk1| θ0l 〉
(E0

n − E0
l )

∣∣θ0n〉 (5.7)

Here we have all the tools needed for constructing the coherent state of the

perturbed system. We need basically the eigenvalues and the eigenstate of the

perturbed Hamiltonians.

5.2 Natural coherent state of the SUSY partner

Hamiltonians of the initial perturbed Hamil-

tonian:

In this part we try to see how the coherent state of a nonlinear system which is

governed by its natural algebra gets affected by the initial perturbation. This is

true in general for the intrinsic and the linear algebra also. However, those are

calculable in pretty similar way as we do here with the natural one.
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We recall,

|z, α〉kN =

[
∞∑
m=0

|z|2m

ρ̃m

]− 1
2 ∞∑
m=0

e−iα(Em+mp+1−Emp+1) zm√
ρ̃m

∣∣θm+mp+1

〉
(5.8)

Where,

ρ̃0 = 1 (5.9)

and, for m>0

ρ̃m =
ρm+mp+1

ρmp+1

k∏
i=1

(
Em+mp+1 − εi

) (
Em+mp − εi

)2
. . .
(
Emp+2 − εi

)2 (
Emp+1 − εi

)
(5.10)

Here ρ̃m becomes, to first order approximation,

ρ̂ =
ρ̂m+mp+1

ρ̂mp+1

k∏
i=1

(
Ẽm+mp+1 − ε̃i

)(
Ẽm+mp − ε̃i

)2
. . .
(
Ẽmp+2 − ε̃i

)2 (
Ẽmp+1 − ε̃i

)

Hence the natural coherent state changes to,

˜|z, α〉kN =

[
∞∑
m=0

|z|2m

ρ̂m

]− 1
2 ∞∑
m=0

e−iα(Ẽm+mp+1−Ẽmp+1) zm√
ρ̂m

∣∣∣θ̃m+mp+1

〉

Here
∣∣∣θ̃m〉 is the eigenstate of the perturbed SUSY partner potential. However,∣∣∣θ̃m+mp+1

〉
is not the eigenstate of the Hk, neither is Ẽm+mp+1 or Ẽmp+1 the eigen

energies of the same.

5.3 Intrinsic coherent state of the SUSY partner

Hamiltonians of the initial perturbed Hamil-

tonian:

The intrinsci coherent state is given by,

|z, α〉k =

(
∞∑
m=0

|z|2m

ρm

)− 1
2 ∞∑
m=0

e−iα(Em−E0)
zm
√
ρm
|θm〉 (5.12)
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Where,

ρm =

{
1 if m = 0

(Em − E0) . . . (E1 − E0) if m > 0
(5.13)

We have seen that The eigen energies of initial Hamiltonian becomes,

En → En + 〈ψ0|λH1|ψ0〉 = Ẽn

Therefore we can simply substitute the Ems by Ẽms.

Hence ρm becomes

ρ̂m =

{
1 if m = 0(
Ẽm − Ẽ0

)
. . .
(
Ẽ1 − Ẽ0

)
if m > 0

(5.14)

Now if we replace ρm by ρ̂m this gives,

|z, α〉k =

(
∞∑
m=0

|z|2m

ρ̂m

)− 1
2 ∞∑
m=0

e−iα(Em−E0)
zm
√
ρm

∣∣∣θ̃m〉 (5.15)

Where
∣∣∣θ̃m〉 is the eigenstate of the perturbed Hamiltonian.

5.4 Conclusion:

In this section we saw that a little perturbation to the initial Hamiltonian is propa-

gated along the series of the Partner Hamiltonians. The perturbations to the partner

Hamiltonians are however not quantitatively equal in general. These propagation

of perturbation eventually results in the shift in the spectrum of Hk. and in the

eigenstates as well. The fact that the coherent states constructed out from differ-

ent algebras depend on the spectrum and eigenstates leads to the modification in

the coherent states too. We have, at a very naive level, checked with the help of

generic forms of expressions how these modification in different coherent states can

be obtained.
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Chapter 6

Conclusion and Future Prospects

In this work we have seen that the the idea of coherent states is far more general

than it was previously conceived. We can construct coherent states for nonlinear

systems just like we had done it for linear quantum system like quantum Harmonic

oscillator. This generalization is comparatively a recent development and needs fur-

ther investigation. Moreover, we have argued that the supersymmetric quantum

mechanics which is an excellent tool for studying different quantum systems with

unparalleled ease and it can be used to find exactly solvable potentials once we are

provided with one of them. The emergence and role of partner Hamiltonians of an

initial one is discussed. Construction of coherent states from its definition as the

eigenstate of the annihilation operator is an algebraic process.For long Annihilation

and creation operators were known to be relevant only to the context of Heisenberg-

Weyl algebra. But the systems which do not obey that can also have annihilation

and creation operators corresponding their underlying algebraic structure. There-

fore it is of enormous importance to study the algebra of a sytem which do not fit in

Heisenberg-Weyl algebra or for that matter a non-linear system. Once we explore

their algebra we can immediatey identify that the annihilation and creation oper-

ators associated with those are merely a distortion of the ones associated with the

Heisenberg-Weyl algebra.

Once we recognize the different algebras of a nonlinear systems, one natural

question raises. How much of these algebraic features of a system are inherited to

its SUSY partner Hamiltonians. We try to find the answer to this and see that

it is indeed inherited along the series of the partner Hamiltonians.Further, as we

know that the construction of coherent states depend on the underlying algebra

it is evident that the cohrenet states of the SUSY partners of Hamiltonian of the

nonlinear system will also be modified. In this work we present a comprehensible

study on the same.

Another aspect of the work is to study the affect of perturbation to the coherent

states. In practical world most of the systems are not exactly solvable and we
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must take help of approximation methods. Here we have discussed if the initial

Hamiltonians is perturbed slightly how this perturbation is propagated along the

chain of partner Hamiltonians. After that we tried to construct the coherent states

for those perturbed systems.

This project leaves many areas for future investigation. We have seen only an

algebraic construction of coherent states. It may be looked for in future how the

process of linearization of the nonlinear algebras can influence at a differential level.

In the part of perturbation the basic idea and calculations could be refined further

and the generic description could be applied to a real problem. Coherent states are

extremely important in the filed of quantum optics. This study can, with required

alterations, be implemented in studying quantum optical phenomena.
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