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Notation

The signature of the metric used in this paper is (+,�,�,�). We will also set the quanti-
ties c (Speed of Light), h̄ (Planck’s Constant), and 8pG (Re-scaled Newton’s Gravitational
Constant) to be equal to 1. We will use the variable "t" for cosmic time and the variable h
for conformal time.

Dots over variables refers to their cosmic time derivative, i.e., ẋ = dx

dt
, and primes over vari-

ables refer to their conformal time derivative, i.e., x
0 = dx

dh .

The Ricci Tensor that we will use is

Rµn = ∂nGl
µl �∂l Gl

µn +Gl
s µGs

ln �Gl
µnGs

sl
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Abstract

In this thesis we discuss about the problems with the hot big bang model of cosmology and
models that attempt to solve them. We will then discuss the idea of inflation – an era of
exponential expansion of the universe, and why our universe required an epoch of acceler-
ated expansion. After discussing about the matter fields which could have driven inflation
in the beginning of the radiation dominated epoch, we establish the conditions under which
inflation can occur. Apart from this, theory of inflation naturally provides a theoretical basis
to the inhomogeneities observed in the Cosmic Microwave Background (CMB) radiation
that we observe today. After discussing the theory of cosmological perturbations in detail,
we show the methods to calculate the power spectrum corresponding to the comoving cur-
vature. Finally, we will discuss about regularized big bang models and why these models
come into picture. Afterwards we will discuss about two such models and check whether
they solve the problem of singularity in the case of a closed universe.
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Chapter 1

Introduction

In this thesis we discuss about some of the problems with the hot big bang model of cos-
mology, namely the problem of initial conditions and the problem of singularity and discuss
some of the models that were proposed as a solution to these problems. A model that was
proposed and will be discussed in this thesis as a solution to the problem of initial condi-
tions is called inflation and the model that could offer a solution the problem of singularity
is obtained though the introduction of a topological defect.

After a brief introduction to the standard hot big-bang cosmology, we discuss about prob-
lems associated with the standard hot big-bang model. Among many problems with the
big-bang model, we discuss only the crucial ones: horizon problem and flatness problem.
Then we show how the idea of inflation, an epoch of accelerated expansion of the universe,
can solve these problems.

Since the cosmological inflationary theory provides a theoretical basis to the origin of inho-
mogeneities in the CMB, we discuss cosmological perturbation theory in great detail. We
further discuss the construction of gauge invariant variables corresponding to the metric
perturbations, and derive the necessary dynamical equations that will help us in calcula-
tions in the subsequent chapters.

Making use of the gauge invariant variable corresponding to the metric perturbations, we
show the methods to calculate the power spectrum corresponding to the comoving curva-
ture.

Finally, we will look at the problem of singularity and compare two proposed models to
solve this problem. Since both these models were proposed to solve the problem of singu-
larity in the case of a universe without spatial curvature, they might not work in the case of

1



a closed universe and result in a singularity during the "big crunch". We will then discuss
a procedure that will help us to derive such models with a topological defect that solve the
problem of singularity for all values of spatial curvature.
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Chapter 2

Hot big bang model of Cosmology

Our universe is homogeneous and isotropic at very large scales (scales much larger than
the size of a galaxy), which means at a given time the universe appears the same from any
given point and direction of observation. The spacetime metric which respects this can be
written as (without loss of any generality)

ds
2 = dt

2 �S
2(t)hi jdx

i
dx

j. (2.1)

Here, hi j are functions of the spatial coordinates (x1,x2,x3). We should also note that ho-
mogeneity and isotropy implies that the line element hi jdx

i
dx

j must correspond to a maxi-
mally symmetric 3-space. We can also see this by noticing that homogeneity corresponds
to 3 killing vectors and isotropy corresponds to 3 more killing vectors and a maximally
symmetric 3-space admits 6 killing vectors. This gives rise to the following line element:

ds
2 = dt

2 �S
2(t)


dr̄

2

1�K r̄2 + r̄
2(dq 2 + sin

2qdf 2)

�
, (2.2)

where K is the spatial curvature. To remove the arbitrariness of K , one can re-scale the
radial coordinate as r =

p
K r̄, define S(t) =

p
K a(t), and K = K

|K | . This gives rise to the
FLRW line element

ds
2 = dt

2 �a
2(t)


dr

2

1�Kr2 + r
2(dq 2 + sin

2qdf 2)

�
. (2.3)

Parameter K can only take values 0 and ±1. Specifically, K is taken to be +1 (-1) if the spa-
tial curvature is positive (negative), and 0 if the spatial part of the metric is flat. Note that the
scale factor a(t) describes the relative size of the space-like hypersurfaces at different times.

For the sake of convenience one can rewrite the metric using conformal time, i.e., dh =

3



dt/a(t) as

ds
2 = a

2(h)


dh2 � dr

2

1�Kr2 + r
2(dq 2 + sin

2qdf 2)

�
. (2.4)

Making use of this metric in the Einstein equation, and assuming the energy content of
the universe allows us to understand the dynamics of the universe under different circum-
stances.

2.1 Einstein Equations

The Einstein field equations is given by

Rµn +
1
2

Rgµn =�Tµn , (2.5)

where Rµn is the Ricci tensor and R = g
µn

Rµn is called the Ricci scalar. These two quanti-
ties are calculated using the metric and they are purely geometric in nature. Feeding in the
Energy-Momentum tensor Tµn in the Einstein equation, one arrives at the form of the scale
factor a(t).

2.1.1 Components of Ricci tensor

To compute the Ricci tensor we must first compute the components of the Christoffel sym-
bols, defined as

Ga
µn = g

al �∂µgln +∂ngl µ �∂l gµn
�
. (2.6)

The components of the Christoffel symbols corresponding to the FLRW metric in Eq.(2.3)
are:

G0
11 =

ȧa

1�Kr2 , G0
22 = ȧar

2, G0
33 = ȧar

2sin2(q) (2.7)

G1
01 =

ȧ

a
, G1

11 =
Kr

1�Kr2 , G1
33 =�r(1�Kr

2)sin2(q), (2.8)

G2
02 =

ȧ

a
, G2

12 =
1
r
, G2

33 = sin(q)cos(q), (2.9)

G3
03 =

ȧ

a
, G3

13 =
1
r
, G3

23 = cot(q). (2.10)

Making use of the components of Christoffel symbol in the expression for Ricci tensor,
which is

Rµn = ∂nGl
µl �∂l Gl

µn +Gl
s µGs

ln �Gl
µnGs

sl , (2.11)
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one can arrive at
R00 = 3

ä

a
, R11 =� äa+2ȧ

2 +2K

1�Kr2 , (2.12)

R22 = (äa+2ȧ
2 +2K)r2, R33 = (äa+2ȧ

2 +2K)r2sin2(q). (2.13)

Employing the components of Ricci tensor, one can calculate Ricci scalar as shown below

R = 6
✓

ä

a
+

ȧ
2

a2 +
k

a2

◆
. (2.14)

2.1.2 Energy-Momentum Tensor

Having discussed the geometric part of the Einstein equation, let us discuss the energy/matter
part of the same in this sub-section. In the forthcoming sections we consider the universe
to be dominated by an ideal fluid given by the following energy-momentum Tensor:

T
µ

n = (r + p)uµ
un � pd µ

n , (2.15)

where u
µ is the velocity vector of the ideal fluid, and we chose to work in a coordinate

system where u
µ = (1,0,0,0).

2.2 Friedmann Equations

Employing the expression for Ricci scalar and the components of Ricci tensor in Einstein
equation Eq. (2.5), and assuming the universe to be dominated by an ideal fluid we arrive
at the following equations, usually called Friedmann equations,

H
2 =

✓
ȧ

a

◆2
=

1
3

r � K

a2 (2.16)

Ḣ +H
2 =

ä

a
=�1

6
(r +3p), (2.17)

where H , called the Hubble parameter, defined as H = ȧ/a, and the over-dot denotes
differentiation with respect to cosmic time t. The Hubble parameter H denotes the char-
acteristic scale of the universe. Note that Eq. (2.16) and (2.17) correspond to the time-time
and space-space component of the Einstein equation respectively.

We also have the following property of the Energy-Momentum Tensor:

∂µT
µn = 0 (2.18)
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This equation gives rise to a relation relating the pressure (p) and the energy density (r),
and it is given by

dr
dt

+3H (r + p) = 0. (2.19)

The solution of this equation is
r = r0a

�3(1+w), (2.20)

where, w = p

r is called the equation of state parameter and is taken to be a constant.

Substituting Eq. (2.20) in (2.16), we get

✓
ȧ

a

◆2
+

K

a2 =
1
3

r0a
�3(1+w). (2.21)

The solution corresponding to Eq. (2.21) for K = 0 is given by

a(t) = a0t

2
3(1+w) , where w 6=�1, (2.22)

a(t) = a0e
H t , where w =�1. (2.23)

For the case of matter dominated universe, w = 0, and in the case of radiation dominated
universe, w = 1

3 . In both these cases the second time derivative of the scale factor is nega-
tive, i.e., ä< 0. This is pivotal to the problem of initial conditions that necessitates inflation.
We will explore this in detail in the section on Cosmological Inflation.
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Chapter 3

Cosmological Inflation

3.1 Problem of Initial Conditions

The Hot Big-Bang model is one of the most successful models that describe the evolution of
the universe. It is successful in explaining the abundance of the lighter elements, like H and
He. However, there are several problems associated with the hot big bang model. Some of
them are the problems of initial condition (horizon problem and flatness problem), problem
of singularity, etc. The problems that we will be discussing in this chapter is the problems of
initial conditions. We will discuss the problem of singularity in chapter 6. The problem of
initial condition arises because the CMB photons arriving from even diametrically opposite
regions have nearly the same temperature (approximately 3K), even though the region from
which the CMB photons are arriving us have never been in causal contact before the time of
decoupling (according to the hot big bang model). In this chapter we discuss how inflation
solves the problems of initial condition, and give a natural basis for the origin of primordial
inhomogeneities.

3.1.1 The Horizon Problem

For the purpose of motivating the horizon problem, it is convenient to work with the con-
formal time coordinate h , and the FLRW line-element is given by

ds
2 = a

2(h)(dh2 �d~r2). (3.1)

Since the line element ds
2 is vanishing for null geodesics, the physical size r of the event

horizon can be found from the differential equation

dr

dh
=±1, (3.2)
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solving which leads to
r =±h + constant. (3.3)

Therefore, the horizon size at any instant t is given by

r = a(t)
Z

t

t1

dt̃

a(t̃)
= . (3.4)

The equation (3.4) can be rewritten in the following form:

r = a(t)
Z

a

0
dln(ã)

1
ãH̃

(3.5)

This form is quite useful while studying inflation.

Since the universe was dominated by radiation from the big-bang (t = 0) to the time of
decoupling (t = tdec), and was dominated by non-relativistic matter after the time of de-
coupling. The physical size of the universe of the surface of last scattering from which we
receive cosmic microwave background (CMB) radiation is

lB(t0, tdec) = adec

Z
t0

tdec

dt̃

a(t̃)
= 3(t2

dect0)
1
3 �3tdec ⇡ 3(t2

dect0)
1
3 , (3.6)

where, t0 is the cosmic time today. The approximation above is the result of the fact that
t0 � tdec.

Now, the size of the horizon at the time of decoupling is

lF(t0, tdec) = adec

Z
tdec

0

dt̃

a(t̃)
= 2tdec. (3.7)

Thus the ratio (Q) of the backward and forward light cones is

Q =
lB

lF

=
3
2

✓
t0

tdec

◆ 1
3
⇡ 70, (3.8)

where we have made use of an observational fact that tdec ⇡ 105years and t0 ⇡ 1010years
[Bassett 06]. This shows that the backward light cone is approximately 70 times larger
than the forward light cone. This means that the regions in space that have come into
causal contact now will never have been in causal contact before decoupling. However, the
universe is isotropic and homogeneous at present.
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3.1.2 Flatness Problem

Let us take a look at the following Friedmann equation:

H
2 =

1
3

r(a)� k

a2 , (3.9)

where k is the scalar curvature of the spatial part of the metric. This can be rewritten as

1�W(a) =� k

(aH )2 , (3.10)

where W(a) = r(a)
rcrit(a)

, and rcrit = 3H
2.

Since a(t)= t

2
3(1+w) (w 6=�1), (aH )�1 increases with time for both the radiation and matter

dominated cases, and thus the value W = 1 is an unstable fixed point. Given the observation
on the spatial curvature of the universe, the initial conditions must be very fine-tuned (at
the Planck scale the deviation of W�1 from 0 must be less than 10�61 units)[Baumann 09].

This problem indicates issue with the predictive power of the model. A theory that would be
much more preferable would be the one where these conditions are arrived at dynamically,
rather than as an assumption. Inflation turned out to be such a theory. Inflation[Guth 81].

3.2 Theory of Inflation

The most important thing that needs to be understood is that if 2 particles are separated
by a distance greater than (aH )�1, then they will not be able to communicate with each
other now, but, if they would have never been in causal contact only if the particle horizon
is greater than their separation. Thus, the value of the particle Horizon can be much greater
than (aH )�1.

From equation (3.5), we can see that the above condition can be realised if, for a certain
period the following condition is met:

d

dt
(aH )�1 < 0 (3.11)

This solves the horizon problem if this condition lasts long enough. This also solves the
flatness problem, because, in a non-flat universe the solution W = 1 is an attractor solution.
Thus, inflation drives the universe to flatness, and if inflation lasts long enough, it matches
with the results of observation. This scenario where d(aH )�1

dt
< 0 is known as inflation.
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Equation (3.11) can be cast in different ways as

d
2
a

dt2 > 0 and r +3P < 0. (3.12)

The second equality comes from the Friedmann equations. Thus, Inflation can be viewed
in 3 equivalent ways.

1. The condition (3.11) is equivalent to saying that the Hubble radius (aH)�1 must
decrease with time for inflation to occur.

2. The first inequality in equation (3.15) implies accelerated expansion. This is the
reason why inflation is known as the period of accelerated expansion. We can also
write this condition in another form, which will be useful in the next part. Let us
define a new quantity e

H
(which is called the slow-roll parameter) as:

e
H
=� Ḣ

H 2 (3.13)

From the second Friedmann equation, namely,

ä = H
2 +Ḣ . (3.14)

This gives the condition in terms of the parameter e
H

, i.e..,

e
H
=� Ḣ

H 2 =�dln(H )

dN
< 1, (3.15)

where N = Hdt gives the condition as the number of e-folds “N" of expansion. Thus,
equation (3.15) says that the fractional change in the Hubble parameter per e-fold is
small.

3. The second inequality in equation (3.12) says that r < �3P, and since the energy-
density is always positive, the pressure must be negative! This does not happen in
normal hydrodynamic matter, but it is possible in the case of scalar fields, which is
exactly what one considers while studying Inflation.

3.2.1 Duration of Inflation

Let us assume for the sake of simplicity that the expansion that occurs during inflation is
purely exponential (e

H
= 0). To quantitatively describe the amount of inflation that has

occurred, we can find the number of e-folds by which the scale factor has expanded before
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inflation ends. The size of the backward light-cone is given by

lB = adec

Z
tdec

0

dt̃

a(t̃)
. (3.16)

Since the expansion of the scale factor is exponential in this case, we can neglect the effect
of radiation dominated universe while calculating the forward light cone. Also, since the
scale factor increases exponentially, H must be a constant, i.e., a(t) µ e

H t . Therefore, the
size of the backward light-cone can be found to be

lB ⇡ adec

Z
t f

ti

dt̃

a(ti)eH (t̃�ti)
, (3.17)

where ti is the time when inflation starts and t f is the time when inflation ends. Evaluat-
ing the integral, and ignoring the term with scale factor evaluated at the beginning of the
inflation we get

lB ⇡ adec
adec

H
A, (3.18)

where A ⌘ a(t f )
a(ti)

. This gives rise to the ratio Q of the forward and backward light cones as

Q =
lB

lF

=
A

1026 , (3.19)

where we have taken H to be 1013GeV[Liddle 03] [Dodelson 03], and the size of the
forward light cone lF is taken from Eq.(3.7). To solve the problem of initial conditions, we
require that the ratio Q must be of the order of 1. This implies that A must be at least 1026

or e
60. Therefore, one can conclude that the minimum number of e-folds that is required to

overcome the horizon problem is roughly 60.

3.2.2 Inflation driven by Scalar-fields

Since the radiation (w = 1
3) or non-relativistic matter(w = 0) cannot give rise to the negative

pressure condition, one needs to find matter fields that can give rise to negative pressure. It
can be shown that scalar fields can be a good candidate.
The action corresponding to the scalar field can be written as

S =
Z

d
4
x
p
�g[

1
2

R+
1
2

g
µn∂µf∂nf �V (f)], (3.20)

where V (f) is the potential of the scalar field. Since the background must be homogeneous
and isotropic, we require the scalar field to depend only on time, and not on the spatial
coordinates. The non-zero components of the energy-momentum tensor can be computed

11



from the action as

T
0

0 = r =
ḟ 2

2
+V (f), T

i

j
=�pd i

j
=�

✓
ḟ 2

2
�V (f)

◆
d i

j
. (3.21)

Therefore, the equation of state parameter w can be written as

wf =
ḟ 2/2�V (f)
ḟ 2/2+V (f)

. (3.22)

Varying the scalar field action in Eq. (3.20) with respect to f , we obtain the equation of
motion corresponding to the scalar as

f̈ +3H ḟ +V,f = 0. (3.23)

From Eq.(3.21) and the second inequality in Eq. (3.12), one can obtain the condition for
inflation to take place

ḟ 2 <V (f), (3.24)

i.e., the potential term must dominate the kinetic term of the scalar field f . Using the
expressions for pressure and energy density that we obtained in Eq. (3.21), one gets the
following Friedmann equations:

H
2 =

1
3

✓
ḟ 2

2
+V (f)

◆
(3.25)

Ḣ =� ḟ 2

2
(3.26)

From these Friedmann equations we can write the potential V and field variable f in terms
of the Hubble parameter H as

f(t) =
p

2
Z p

Ḣ dt, V (t) = 3H
2 +Ḣ . (3.27)

Thus, given the scale factor, we can derive the form of potential and the field f (However,
to arrive at the field f , we require a boundary condition). The reverse, i.e., arriving at
the scale factor given a potential is also possible, provided we are given the appropriate
boundary conditions (since the above equations are given in terms of the time derivative of
the scale factor).
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3.2.3 Slow-Roll Conditions

The slow-roll conditions determine the occurrence of inflation (first slow-roll condition),
and denote whether inflation lasts for a sufficiently long period of time (the second slow-roll
condition). The first slow-roll parameter e

H
is what we defined previously in Eq. (3.15).

For inflation to occur, we require this parameter to be less than 1. In the first slow-roll
approximation we take the parameter to be approximately 0. In this limit, the scale factor
evolves exponentially with time. Using the Friedmann equation we can write e

H
as,

e
H
=

3
2
(1+wf ) =

1
2

ḟ 2

H2 (3.28)

Comparing equations (3.25) and (3.28) we have

ḟ 2 ⌧V (f). (3.29)

We also want inflation to last in the exponential phase for a long period of time to get rid
of the problems of initial condition. This means that we want wf to be equal to -1 for a
sufficiently long period of time, which implies the rate of change of ḟ needs to be "small".
This can be achieved by increasing the magnitude of the dissipative term, i.e., 3H ḟ , in
Eq.(3.23). This gives rise to the following condition that

f̈ ⌧ 3H ḟ . (3.30)

This implies the quantity, called the second slow-roll parameter (d
H

), has the following
constraint:

d
H
=� f̈

H ḟ
⇡ 0 (3.31)

In the slow roll regime, the following conditions hold true:

e
H
⇡ d

H
⇡ 0, (3.32)

and the Friedmann equations reduce to the following:

3H
2 ⇡V (f), 3ḟ ⇡V,f (3.33)

These slow-roll conditions may also be expressed as the conditions on the shape of
the inflationary potential. These parameters, called the potential slow roll parameters,
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determine the shape of the potential, and are

ev =
1
2

✓
V,f
V

◆2
, (3.34)

dv =
V,ff

V
. (3.35)

In the slow-roll regime, these parameters obey

ev ⇡ dv ⇡ 0 (3.36)

Note that the smallness of the Hubble slow-roll parameters does imply the smallness of
the potential slow-roll parameters, but the converse is not true (because for example ḟ can
be as large as we want, even when the potential slow-roll conditions are satisfied as these
conditions in no way affect how the kinetic term). Therefore, the smallness of the potential
slow-roll parameters is a necessary, but not sufficient condition for inflation.

In the slow-roll regime, these parameters are related to the slow-roll parameters as,

e
H
⇡ ev (3.37)

d
H
⇡ hv � ev (3.38)

Inflation ends when the first slow roll parameter equals 1 (by definition). Quantitatively to
figure out by how much the scale factor expands during inflation, we can find the number
of e-folds before inflation ends. This is given by:

N(f) = ln

⇣
aend

a

⌘
=
Z

tend

t

H dt =
Z fend

f

H

ḟ
df ⇡

Z f

fend

V

Vf
df (3.39)

The final equality is obtained from the slow-roll condition. This can also be written in terms
of the first slow-roll parameter as:

Z f

fend

df
pe

H

⇡
Z f

fend

dfpev

(3.40)

As we have discussed before, the minimum number of e-folds necessary is roughly 60.
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Chapter 4

Theory of Cosmological Perturbations

Though the idea of inflation was proposed to solve the problems associated with the hot
big-bang model, it offers a mechanism on the generation of primordial perturbations. We
know from CMB observation that the anisotropy in the CMB is small, i.e., one part in 105,
which implies that the magnitude of deviation from homogeneity would have been much
smaller in the earlier epochs of the universe. This provides us the hint that the generation
and evolution of primordial perturbations can be studied using linear perturbation theory.

4.1 The Perturbed Metric

Let us first start with the FLRW metric,whose corresponding line element is given by

ds
2 =(0)

gµndx
µ

dx
n = dt

2 �a
2(t)gi jdx

i
dx

j = a
2(h)(dh2 � gi jdx

i
dx

j), (4.1)

where, h is the conformal time, and gi j is the spatial part of the metric.
Any general form of perturbation in the FLRW line element can be written as (in the

conformal time)

dds
2 = a

2(h)[2fdh2 �bidhdx
i �bidx

i
dh � (�2ygi j +2ei j)dx

i
dx

j]. (4.2)

Here, we have made use of the fact that the metric is symmetric. The quantity bi is a
vector field, and the quantity ei j is a tensor field. Without proof, we will use the following
mathematical theorems[Stewart 90][Bardeen 80] on the decomposition of vector and tensor
fields:

• Any vector field (bi) can be decomposed into a scalar field (B) and a divergence-free
vector field (Si) as

bi = —iB+Si. (4.3)
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• Any Tensor field (ei j) can be decomposed into a scalar field (E), a divergence-free
vector field (Fi), and a divergence-free and trace-free tensor field (hi j) as

ei j = —i— jE +—iFj +— jFi +hi j. (4.4)

Substituting equations (4.3) and (4.4) into (4.2), and separating into scalar, divergence-free
vector, and divergence-free and trace-free tensor parts, we get the following equations:

dg
(scalar) = a

2(h)

 
2f �—iB

�—iB 2(ygi j �—i— jE)

!
(4.5)

dg
vector = a

2(h)

 
0 �Si

�Si —iFj +— jFi)

!
(4.6)

dg
tensor = a

2(h)

 
0 0
0 hi j

!
(4.7)

Throughout this article, we will only work with scalar perturbations.

4.2 Gauge-Invariant Perturbation Variables

If we take one coordinate chart and move to another coordinate chart, the form of the per-
turbed metric will change and thus change the values of the perturbation variables. For
example, the form of the metric (perturbed) will be different in Cartesian and spherical
polar coordinates, and thus the values of the perturbation variables will be very different.
To get around this problem of non-covariance, one needs to introduce gauge invariant vari-
ables. This can be achieved by first considering only smooth chart transformations which
relates coordinate systems that are infinitesimally close to each other. More formally, such
a transformation is given by the Lie derivative of the metric along the vector field. Mathe-
matically, this can be written as

dg
x
ab = Lx gab , (4.8)

where, the left hand side is the change in the metric effected by the vector field (infinites-
imal coordinate transformation) x = (x 0,x |i) (the fact that this is the generator of scalar
transformations is a mathematical theorem and the proof of which is beyond the scope of
this thesis), and Lx is the lie derivative along the vector field x . We want to see how the
perturbation variables change due to such a coordinate transformation. The right-hand-side
of (4.8) is given by

Lx gab = x g
gab ,g +x g

,aggb +x g
,b gga . (4.9)
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) Lx gab = x 0
gab ,0 +x |i

gab ,|i +x 0
,ag0b +x |i

,agib +x 0
,b g0a +x |i

,b gia . (4.10)

We shall now derive how each of component of the metric tensor transforms under such
a transformation, and then construct variables, with the help of these transformation laws,
that are invariant under such transformations. Here, we shall use "overdots" for "physical
time" derivatives and "primes" for "conformal time" derivatives. We will also use "[.];" for
covariant derivatives and "[.]," for partial derivatives.

Lx g00 = 2a
0
ax 0 +0+x 00

a
2 +x |i0⇥0+x 00

a
2 +x |i

,b ⇥0 (4.11)

=) Lx g00 = 2a
0
ax 0 +2a

2x 00 (4.12)

Similarly,
Lx g0 j =�a

2x 0
| j +a

2x 0
| j (4.13)

For the spatial part, the calculation is slightly more tedious, and only the important steps in
its derivation will be shown below.

Lx g jk = x 0(a2g jk)
0 �x |i(a2g jk)|i +0�x |i

, j(a
2gik)+0�x |i

,k(gi ja
2) (4.14)

) Lx g jk = 2aa
0x 0g jk �2a

2[x(,i,k)�
1
2

x |i[gik, j + gi j,k � g jk,i]] (4.15)

Here, the circular bracket in the subscript denotes symmetrization. The term inside the
square brackets in the RHS of the above equation is none other than the covariant derivative
(symmetrized covariant derivative). Thus, we get:

Lx g jk = 2aa
0x 0g jk �2a

2x(| j|k) (4.16)

Now, we can see how each of the perturbation variables change with such a coordinate
transformation.

Lx g00 = 2a
2Dx f (4.17)

Lx g0 j =�2a
2Dx B j (4.18)

Lx g jk = 2a
2Dx (yg jk �— j—kE) (4.19)

Thus, equating the above equations (4.12 with 4.17, etc..), we get the following results for
the change in the perturbation variables (for the space-space part, use the fact that the tensor
— j—kE is trace-free):

Dx f =
a
0

a
x 0 +x 00, Dx B = x 0 �x 0, (4.20)
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Dx y =�x 0 a
0

a
, Dx E = x . (4.21)

It can now easily be shown that the following combinations of the perturbation variables
are Gauge invariant:

F = f +
1
a
[(B�E

0)a]0, Y = y � a
0

a
(B�E

0) (4.22)

We can now move on to Gauge fixing, where we use a certain Gauge (this is like working
in a particular coordinate system, like the Cartesian coordinates for example) to simplify
our calculations.

We should also note that from the Eq.(4.20) and Eq.(4.21), the variables in the transformed
Gauges is given by the following:

f̃ = f � a
0

a
x 0 �x 00, (4.23)

ỹ = y +
a
0

a
x 0, (4.24)

B̃ = B+x 0 �x 0, (4.25)

Ẽ = E �x . (4.26)

4.2.1 Synchronous Gauge

In this gauge, the following perturbation variables take the following values:

f̃ = 0, B̃ = 0 (4.27)

Here, the variables with a tilde, refer to the variables in the synchronous Gauge. To go to
this gauge from any general Gauge, we use the following transformation relation:

h ! ˜h = h +x 0(h ,x), x
i ! x̃i = x

i + g i jx| j(h ,x) (4.28)

Substituting (4.27) in (4.23) and using product rule we have,

af = (ax 0)0 (4.29)

) x 0 = a
�1
Z

afdh (4.30)
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Using (4.30) and (4.25), we have,
B = x 0 �x 0 (4.31)

) x =
Z

Bdh +
Z

a
�1

dh
Z

afdh (4.32)

Thus, the synchronous time and space components of vector field is given by:

h ! hs = h +a
�1
Z

afdh (4.33)

x
i ! x

i

s
= x

i + g i j

Z
Bdh +

Z
a
�1

dh
Z

afdh
�

| j
(4.34)

There is a problem though. Since all of the transformations in the Synchronous Gauge are
defined with integrals, there is a lot of Gauge freedom left in this Gauge and therefore, this
transformation is not unique.

4.2.2 Longitudinal / Newtonian Gauge

In this Gauge, the following perturbation variables take the following values:

B̃ = Ẽ = 0 (4.35)

) x = E (4.36)

Here, tilde refers to the variables in the Synchronous Gauge. Also,

x 0 = E
0 �B (4.37)

The transformation vector field is therefore given by:

h ! hL = h � (B�E
0), x

i ! x
i

L
= x

i + g i j
E| j (4.38)

From these equations, we can see that this transformation is unique and thus this is the
preferred gauge to work with. Moreover, the Gauge invariant variables in this Gauge are
given as:

F = f , Y = y (4.39)

4.3 Perturbation Equations

Let us first rewrite the metric along with the perturbation.

ds
2 = a

2(h)[(1+2f)dh2 �2B|idx
i
dh � [(1�2y)gi j +2E|i| j]dx

i
dx

j] (4.40)
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Upto first order, the Perturbed Einstein Tensor (the total Einstein tensor � the Einstein
tensor for the unperturbed case) can be computed to be[Mukhanov 92]:

dG
0
0 = 2a

�2[�3H(Hf +y 0)+—2[y �H(B�E
0)]+3K hy] = 8pGdT

0
0 (4.41)

dG
0
i
= 2a

�2[Hf +y 0 �K (B�E
0)]|i = 8pGdT

0
i

(4.42)

dG
i

j
=�2a

�2[[2H
0+H

2]f +Hf 0+y 00+2Hy 0 �K y +
1
2

—2
D]d i

j
+2a

�2
D|i| j = 8pGdT

i

j

(4.43)
Here,

D = (f �y)+2H(B�E
0)+(B�E

0)0 (4.44)

We have defined this new quantity D for a reason that will be shown later in this article.

These equations are not invariant under the particular class of Gauge transformation that
we are interested in. To find the invariant equations, we shall first find out how this tensor
transforms under the transformation effected by the vector field x µ . Here we will use the
notation that any tensor M

a
b consists of the background part as well as the perturbed part of

that tensor and (0)
M

a
b refers to the background part.

Dx G
µ
n = Lx G

µ
n = x a∂aG

µ
n �G

a
n ∂ax µ +G

µ
a∂nx a (4.45)

The components of this can be simplified to:

Dx G
0
0 = x 0((0)G0

0)
0 (4.46)

For the time-space component, we will make use of the fact that the space-space part of the
Einstein Tensor is diagonal. Therefore, G

j

i
= 1

3G
k

k
d j

i
. Using this, we get,

Dx G
0
i
= ((0)G0

0 �
1
3
(0)

G
k

k
)x 0

|i (4.47)

Again, making use of the fact that we used to derive (3.3.8), we will get G
k

j
∂kx |i = G

i

k
∂ jx |k.

Therefore,
Dx G

0
0 = 2a

�2 = x 0((0)Gi

j
)0 (4.48)

The RHS of these equations only contain the background part of the Einstein tensor because
we are only interested up to the first order in perturbations. Before writing the perturbed
Einstein Tensor in its Gauge invariant form, we will first convert the perturbation variables
f and y to their Gauge invariant counterparts F and Y. To do so, we can make use of the
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equations (??) and (4.22). After doing so, we get,

Dx G
0
0 = 2a

�2[�3H(HF+Y0)+—2Y+3K Y+3H(H2 �H
0+K )(B�E

0)] (4.49)

Dx G
0
i
= 2a

�2[HF+Y0 � (H2 �H
0+K )(B�E

0)]|i (4.50)

Dx G
i

j
= �2a

�2[(2H
0+H

2)F+HF0+Y00 �K Y

+
1
2

—2
D+(H 00 �HH

0 �H
3 �HK )(B�E

0)]d i

j
+2a

�2g ik
D|k| j (4.51)

Here,
D = F�Y (4.52)

The equations (4.46)-(4.48) are also valid for the Energy-Momentum Tensor. From there,
the perturbed, and Gauge invariant Einstein and Energy-Momentum Tensors respectively
are given by,

d (0)
G

0(gi)
0 = dG

0
0 +((0)G0

0)
0(B�E

0) (4.53)

d (0)
G

0(gi)
i

= dG
0
i
+(

1
3
(0)

G
k

k
)(B�E

0)|i (4.54)

d (0)
G

i(gi)
j

= dG
i

j
+((0)Gi

j
)0(B�E

0) (4.55)

d (0)
T

0(gi)
0 = dT

0
0 +((0)T 0

0 )
0(B�E

0) (4.56)

d (0)
T

0(gi)
i

= dT
0

i
+(

1
3
(0)

T
k

k
)(B�E

0)|i (4.57)

d (0)
T

i(gi)
j

= dT
i

j
+((0)T i

j
)0(B�E

0) (4.58)

From these equations, we get the resulting Einstein’s equations as:

dG
µ(gi)
n = 8pGdT

µ(gi)
n (4.59)

Thus, the Gauge-invariant perturbed Einstein tensor (component wise) is:

dG
0(gi)
0 = 2a

�2[�3H(HF+Y0)+—2Y+3K Y] (4.60)

dG
0(gi)
i

= 2a
�2[HF+Y0]|i (4.61)
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dG
0(gi)
i

=�2a
�2[[(2H

0+H
2)F+HF0+Y00+2HY0 �K Y+

1
2

—2
D]d i

j
� 1

2
g ik

D|k| j]

(4.62)
Thus the Gauge-invariant Einstein’s equations for perturbation are:

�3H(HF+Y0)+—2Y+3K Y = 4pGa
2dT

0(gi)
0 (4.63)

[HF+Y0]|i = 4pGa
2dT

0(gi)
i

(4.64)

[(2H
0+H

2)F+HF0+Y00+2HY0 �K Y+
1
2

—2
D]d i

j
� 1

2
g ik

D|k| j =�4pGa
2dT

i(gi)
j

(4.65)
Now, let us analyse equation (4.65) for the case where the perturbed Energy-Momentum
tensor has no non-diagonal elements. In that case, when i 6= j, we get that the mixed spatial
derivatives of F�Y is 0. If we now consider D(x1,x2,x3), we have that D|i is only a
function of xi. Therefore, we get,

D(x1,x2,x3) = D1(x1)+D2(x2)+D3(x3) =
3

Â
1

Di(xi) (4.66)

Now, let us perform the following coordinate transformation:

x1 ! x1 +ax2 (4.67)

Here, a is a very small number. Therefore, we have,

D(x1 +ax2,x2,x3) = D(x1,x2,x3)+ax2
∂D

∂x1
= D1(x1)+D2(x2)+D3(x3)+ax2

∂D

∂x1
(4.68)

We can notice that the last term in the above equation has mixed terms containing x1 (be-
cause Dx1 is only a function of x1) and x2, and thus, there isn’t any way of writing this in
the form of equation (4.66). This means that ∂ f

∂xi

is a constant number, and therefore, fi(xi)

is a linear in xi, i.e..,
fi(xi) = aixi +bi (4.69)

In the cases that we are interested in (Scalar Field Perturbations and Hydrodynamic Pertur-
bations), the spatial average of the perturbations must vanish. Without loss of generality we
can work with only one of the functions (say D1).

) lim
a!+•

1
2a

Z a

�a
D1(x1)dx1 = 0 (4.70)

=) lim
a!+•

1
2a

Z a

�a
(a1x1 + xb1)dx1 = 0 (4.71)
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=) 1
2a

2
¯
1a = 0 (4.72)

=) b1 = 0 (4.73)

This is true for all bi.
) bi = 08i 2 (1,2,3) (4.74)

) Di(xi) = aixi (4.75)

) D =
3

Â
i=1

aixi (4.76)

If we make another coordinate transformation, namely, x1 ! x1+k, where k is a very small
parameter, we get,

D ! D1 +D2 +D3 + ka1 (4.77)

This is clearly not of the form (4.76), unless kai = 0, 8i 2 (1,2,3). Since k 6= 0, we have
ai = 0, 8i 2 (1,2,3).

) Di = 0 =) D = 0 (4.78)

) F = Y (4.79)

This result will be very useful in simplifying a lot of calculations.
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Chapter 5

Calculation of the Power Spectrum

An important statistical measure of scalar fluctuations is the power spectrum corresponding
to the comoving curvature perturbation (R). We will discuss about the comoving curva-
ture perturbation in great detail in the forthcoming sections. The power spectrum PR(k) is
defined using an ensemble average as

hR(k)R(k0) = (2p)3d (k+ k
0)PR(k). (5.1)

One can also construct a dimensionless quantity from the power spectrum as

D2
R
=

k
3

2p2 PR(k). (5.2)

In this chapter we discuss about the methods to calculate the power spectrum corresponding
to the comoving curvature perturbation.

5.1 Comoving Curvature Perturbation

The comoving curvature perturbation (R) is defined as, as[Mukhanov 92][Durrer 08]:

R = F+

✓
2r
3H

◆✓
F0+HF

r + p

◆
(5.3)

Let us rewrite this in terms of the equation of state parameter (w = p

r ). We get:

R = F+

✓
2r

3(1+w)

◆�
H

�1F0+F
�

(5.4)
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Differentiating this and rearranging terms we have,

R
0 =

2H
�1

3(1+w)
F00 �

✓
2w 0

H
�1

3(1+w)2 +
2H

0

3(1+w)H2 �
2

3(1+w)

◆
F0 � 2w 0

3(1+w)2 (5.5)

Now,
r 0 =�3H(r + p) (5.6)

The above is the continuity equation (2.19). Thus,

w 0 =
p
0

r
� p

r2 r 0 (5.7)

Substituting (5.6) in (5.7) and simplifying we have,

w 0

1+w
= 3H(w � c

2
s
) (5.8)

Here, c
2
s
= p

0

r 0 . This quantity (cs) is the speed of sound in the medium of interest. Substitut-
ing (5.8) in (5.5), we have,

3
2
(1+w)R0

H = F00+3(1+ c
2
s
)HF0+3H

2(c2
s
�w)F (5.9)

The perturbed part of the Einstein’s equations (using the fact that F = Y and that the space
is flat) are:

—2F�3HF0 �3H
2F =

a
2

2
dr (5.10)

F00+3HF0+(2H
0+H

2)F =
a

2

2
d p (5.11)

We can also split the perturbation in pressure into an adiabatic part and a non-adiabatic
part[Sriramkumar 09].

d p =
∂ p

∂r
dr +d p

NA = c
2
s
dr +d p

NA (5.12)

Using (5.12) in (5.10) and (5.11), we get:

F00+3H(1+ c
2
s
)F0 � c

2
s
—2F+[2H

0+(1+3c
2
s
)H2]F =

a
2

2
d p

NA (5.13)

Now, combining equations (5.13) and (5.9) and using the Friedmann equations and writing
in the Fourier space, we have,

R
0
k
=

✓
H

H2 �H 0

◆
[
a

2

2
d p

NA � k
2
c

2
s
F] (5.14)
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From the above equation we can see that for the case of adiabatic perturbations (d p
NA = 0)

and in the super-horizon scales (|k|⌧ H), the right hand side of (5.14) vanishes. Thus, the
comoving curvature perturbation remains constant for adiabatic perturbations in the super-
horizon scales.

Let us now take a look at the components of the perturbed part of the Energy-Momentum
Tensor for a scalar field.

dT
0

0 = a
�2[�f 02F+f 0df +Vf a

2df ] = dr (5.15)

dT
0

i
= a

�2(f 0df),i = (ds),i (5.16)

dT
i

j
=�a

�2[�f 02F+f 0df �Vf a
2df ]d i

j
=�d p (5.17)

Using the above 3 equations, it can be shown that the non-adiabatic pressure perturbation
(d p

NA) for the case of a scalar field is given by:

d p
NA = 2

✓
1� c

2
s

a2

◆
—2F (5.18)

Substituting (5.18) in (5.14) we have,

R
0
k
=�

✓
H

H2 �H 0

◆
(k2Fk) (5.19)

Differentiating the above and using the equation (5.13) and (5.18) we get the following
important equation [Durrer 08] [Bassett 06]:

R
00
k
+2
✓

z
0

z

◆
R
0
k
+ k

2
Rk = 0 (5.20)

Here,

z =
af 0

H
(5.21)

Now, let us make a change of variables as follows:

vk = Rkz (5.22)

Here, vk is called the Mukhanov variable[Mukhanov 87][Sasaki 86]. Therefore,

R
0
k
=

v
0

z
� vz

0

z2 (5.23)
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R
00
k
=

v
00

z
�2

v
0
z
0

z2 +2
vz

02

z3 � vz
00

z2 (5.24)

Substituting (5.22), (5.23) and (5.24) in (5.20) we get,

v
00
k
+


k

2 �
✓

z
00

z

◆�
vk = 0 (5.25)

The above equation is known as the Mukhanov-Sasaki equation. It governs the evolution
of the field variable vk.

5.2 Quantization

Now, we would like to quantize the field variable vk, i.e., we want to write the opera-
tor as linear combinations of a creation and annihilation operators. We can write that as
follows[Baumann 09]:

v ! v̂ =
Z

d
3~k

(2p)3 [v~kâ~ke
i~k.~x + v

⇤
~k

â
†
~k

e
�i~k.~x] (5.26)

Let us also note that the equation (5.25) comes from the following action[Baumann 09]:

S =
1
2

Z
dhd

3
x


(v0)2 +(∂iv)

2 +
z
00

z
v

2
�

(5.27)

The momentum conjugate to the variable v is given by:

pv =
∂L

∂v0
= v

0 (5.28)

We impose the following canonical commutation relation:

v, pv] = [v,c0] = i (5.29)

Substituting (5.26) in (5.29) we get the following commutation relation between the cre-
ation and annihilation operators:

hv,vi[â, â†] = 1 (5.30)

Here,
hv,wi= i(v⇤(∂tw)� (∂tv

⇤)w) (5.31)

We will now impose the following condition:

hv,vi= 1 (5.32)
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This gives,
[â, â†] = 1 (5.33)

Equation (5.32) is one of the boundary conditions that will be used to solve equation (5.25).
The other boundary condition comes from the choice of vacuum that we discuss below.

5.3 Choice of Vacuum

The choice of vacuum [Liddle 00] also corresponds to choosing the second boundary condi-
tion for solving (5.25). The choice that we will use in this article is the Minkowski vacuum
of a comoving observer in the far past (when all the comoving scales were within the Hub-
ble radius) , i.e., h ! �• or |kh | � 1 or k � aH. In the limit equation (5.25) reduces
to:

v
00
k
+ k

2
vk = 0 (5.34)

The solution to the equation is:

lim
h!�•

vk =
e
�ikh
p

2k
(5.35)

5.4 Solving the Mukhanov-Sasaki Equation

First let us derive an expression for z
00

z
in terms of the quantities e

H
and d

H
. We have,

z =
p

2a
pe

H
(5.36)

e
H
= 1� H

0

H2 =) H
0 = (1� e

H
)H2 (5.37)

d
H
= e

H
�
✓ e 0

H

2He
H

◆
=) e 0

H
= (e

H
�d

H
)2He

H
(5.38)

Differentiating equation (5.36), we have,

z
0 =

p
2a

pe
H

H +
1p
2

a
pe

H

e 0
H

(5.39)

Substituting equation (5.38) in (5.39) we have,

z
0 = zH(1+ e

H
�d

H
) (5.40)

Differentiating equation (5.40) and simplifying we get,

z
00 = zH

2


2�d
H
+(e

H
�d

H
)(2�d

H
)+

e 0
H
�d 0

H

H

�
(5.41)
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Therefore,
z
00

z
= H

2


2�d
H
+(e

H
�d

H
)(2�d

H
)+

e 0
H
�d 0

H

H

�
(5.42)

Upto leading order (i.e., e2
H
= d 2

H
= e

H
d

H
= e 0

H
= d 0

H
= 0) the equation (5.42) simplifies to,

z
00

z
= H

2(2+2e
H
�3d

H
) (5.43)

We now want to express H upto first order in h . To do so, let us start with equation (5.37).

dH

dh
= (1� e

H
)H2 (5.44)

Therefore,
dh =

dH

H2(1� e
H
)

(5.45)

Integrating the above equation we get,

h =
Z

dH

H2(1� e
H
)
=�

Z 1
1� e

H

d

✓
1
H

◆
(5.46)

Using integration by parts we obtain,

h =�


1
H(1� e

H
)

�
+
Z 1

H

e 0
H

(1� e
H
)2 dh (5.47)

Substituting equations (5.45) and (5.38) in (5.47) we obtain,

h =�


1
H(1� e

H
)

�
+
Z 2e

H
(e

H
�d

H
)

(1� e
H
)3

�
d

✓
1
H

◆
(5.48)

The integrand is of the order of e
H

d
H

and therefore the integral can be ignored. Therefore
we get,

H ⇡� 1
h(1� e

H
)

(5.49)

Substituting equation (5.49) in (5.43) we have,

z
00

z
⇡ 1

(1� e
H
)2h2 [2+2e

H
�3d

H
] (5.50)

Now, using the first order approximation we get,

z
00

z
⇡ 1

(1�2e
H
)h2 [2+2e

H
�3d

H
] (5.51)
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We can now get rid of the denominator using the geometric progression approximation
(Â•

n=1 ar
n = a

1�r
, where r < 1) and then using the first order approximation we get,

z
00

z
⇡ 2+6e

H
�3d

H

h2 (5.52)

In the leading order, we have,
z
00

z
=

2
h2 (5.53)

In this limit, the Mukhanov-Sasaki equation reduces to,

v
00
~K
+

✓
k

2 � 2
h2

◆
(5.54)

To solve the above differential equation let us use the following ansatz:

vk =
e
±ikh
p

2k
(5.55)

The above ansatz is motivated by the two boundary conditions. Upon doing this substitution
we get the following differential equation in f :

f
00±2ik f

� 2
h2 f = 0 (5.56)

We shall solve the differential equation for the negative case using the ansatz:

f =
c

h
+d (5.57)

Upon doing this substitution into the differential equation and using the first boundary con-
dition the solution we get for the negative case is:

f = 1+
1

ikh
(5.58)

Similarly the other solution that we obtain is:

f = 1� 1
ikh

(5.59)

Thus the solution of the differential equation must be a linear combination of the two solu-
tions.

v~k = a e
�ikh
p

2k

✓
1� 1

ikh

◆
+b e

ikh
p

2k

✓
1+

1
ikh

◆
(5.60)
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Upon using the boundary condition (5.35) we get,

v~k =
e
�ikh
p

2k

✓
1� 1

ikh

◆
(5.61)

5.5 Power Spectrum

One of the quantities that can be observed is the power spectrum. Let us rewrite its defini-
tion here

hRkRk0 i= (2p)3d (k+ k
0)PR(k) (5.62)

D2
R
=

k
3

2p2 PR(k) (5.63)

Here, ¶2
R

is the power spectrum, h..i is the Ensemble average of fluctuations, and D2
R

is
a dimensionless quantity that is constructed using the power spectrum. Rewriting this in
terms of the variable v~k we have,

hRkRk0 i=
1
z2 hvkvk0 i (5.64)

Substituting (5.61) in equation (5.64) we get,

hRkRk0 i=
H

2

a2f 02 (2p)3d (k+ k
0)

1
2k

✓
1+

1
k2h2

◆
(5.65)

Note that the delta function arises as a result of integration (
R

e
i(k+k

0)x
dx = (2p)3d (k+k

0)).
Now, using equation (5.49) at leading order (e

H
⇡ 0) in equation (5.65) we get,

hRkRk0 i= (2p)3d (k+ k
0)

H
2

2k3
H

2

a2f 02 (1+ k
2h2) (5.66)

On super-horizon scales, i.e., when |kh |⌧ 1 we get,

hRkRk0 i= (2p)3d (k+ k
0)

H
2

2k3
H

2

a2f 02 (5.67)

We can evaluate this quantity at horizon crossing (k = a⇤H⇤) since R stays constant in super-
horizon scales. Thus evaluating (5.67) at horizon crossing, the power spectrum we obtain
is (using equations (5.62) and (5.63))

D2
R
(k) =

H
2
⇤

(2p)2
H

2
⇤

a2f 02
⇤
. (5.68)
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Here ⇤ in the subscript denotes the quantity being evaluated at horizon crossing. We can
also write the power spectrum in terms of the potential as opposed to the field f itself
[Bassett 06]. This is done by taking the leading order limit of the scalar field Friedmann
equations. They are:

H
2 ⇡ a

2V

3
(5.69)

3Hf 0 ⇡ �a
2
V,f (5.70)

f 02 =
a

2
V

2
,f

3V
(5.71)

Thus, we get,

D2
R
(k) =

1
12p2

 
V

3

V
2
,f

!

k=aH

(5.72)

As an example, for the case of 1
2m

2f 2 potential, we have,

D2
R
(k) =

1
96p2

�
m

2f 4
⇤
�

(5.73)
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Chapter 6

Regularized big bang models of

Cosmology

6.1 Another Problem With the Hot Big Bang Model

Another problem (aside from the problem of initial conditions) that the hot big bang model
faces is the problem of singularity. This problem arises as a result of the divergences en-
countered by some quantities like the energy density, temperature, etc. Such a divergence
is undesirable. In this chapter we propose two models that attempt to solve the problem of
singularity. We shall compare these models and see whether both of them completely solve
the problem of singularity. We will then give a prescription that will enable us to construct
such models.

6.1.1 Problem of Singularity

To explain the problem of singularity, let us consider the case where the universe is flat (K =
0), and is radiation dominated. The time dependence of the scale factor is therefore (2.22),

a(t) =

r
t

t0
. (6.1)

From the equations (6.1) and (2.20), we get the following dependence of the energy density
on time:

r(t) µ 1
a4(t)

µ 1
t2 . (6.2)

Finally, using Stefan Boltzmann law we have,

T (t) µ
✓

1
a4(t)

◆ 1
4

µ 1p
t

(6.3)
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From the above expressions for time dependence of temperature (6.3) and energy density
(6.2) we can see that both these quantities diverge during the big bang (according to the hot
big bang model).

To cure this problem, we propose two models where we modify the metric by introducing
a topological defect.

6.2 Regularized Big-Bang model - First Ansatz

In this section, we consider the following line element [Klinkhamer 19]:

ds
2 =

t
2

b2 + t2 dt
2 �a

2(t)d~r2 (6.4)

d~r2 =
dr

2

1� kr2 +dW2 (6.5)

The modified Friedmann equations will now be derived, and then the derived equation will
be thoroughly analyzed to check for further singularities.

Before stating the modified Friedmann equations for this metric we shall consider a more
general metric and derive the Friedmann equations for that metric, so that we can use that
result for analysis for other metrics. The general metric is as follows:

ds
2 = f (t)dt

2 �a
2(t)d~r2 (6.6)

The Friedmann equations that follow this metric are:

ȧ
2

a2 f
+

k

a2 =
8pG

3
r (6.7)

2ä

a f
� ȧ

a

ḟ

f 2 +
ȧ

2

a2 f
+

k

a2 =�8pGr (6.8)

The continuity equation is identical to that of FLRW universe (we have assumed the case
of Hydrodynamic matter, and therefore, the Energy-Momentum Tensor is the same).

d

da
[a3r(a)]+3a

2
P(a) = 0 (6.9)

wM =
P

r
(6.10)
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Substituting t
2

b2+t2 in place of f in equation (6.7) and using (6.9) and (6.10) we have,

✓
1+

b
2

t2

◆✓
ȧ

a

◆2
+

k

a2 =
1
3

r0a
�3(1+wM) (6.11)

6.2.1 Analytic results

This problem can be mathematically analyzed by finding the points of extremum in the time
evolution of the scale factor a. So, the values of a for which ȧ = 0 must be found. First,
take the case where the equation of state parameter wM = 0. Thus, the RHS of the equation
(6.11) is reduced to 1

3
r0
a3 . When ȧ (and a 6= 0) is 0, we get the following result:

a =
r0

3k
(6.12)

This is just the maximum that is observed in any closed universe model. Now, the important
part here is to look for other "bounces", because that is exactly what this article is concerned
with.

The focus will only be on cases where a > 0, because a < 0 is absurd and a = 0 is exactly
what needs to be avoided. Note that at t = 0 the value of ȧ is zero, because that is the initial
condition. Moreover, since the equations are symmetric about t = 0, the focus will be nar-
rowed down to values for which t > 0. Since r0 and k are constants, if ȧ = 0 is substituted,
the only value of a for which this is true, is the maxima that had already been derived in
this subsection. This implies that there is no other bounce except for the one at t = 0.

One more interesting result that can be inferred from this is that, since the big-bang is the
time when the scale factor a has its minimum value, it is also necessary that the maximum
value of a (equation (6.12)) should to be greater than a at the big-bang (let us call this aB).
Therefore,

r0

3k
> aB (6.13)

This implies that,
k <

r0

3aB

(6.14)

This is a constraint on the maximum value that the spatial curvature can take.

6.2.2 Numerical Results

For this computation, the constant parameters must have some already chosen value, and
for this article, they are r0 = 9, and b = 1. The matter will also be taken to be dust-like (i.e.
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wM = 0). Thus, the equation (6.11) reduces to,

✓
1+

1
t2

◆✓
ȧ

a

◆2
+

k

a2 =
1
a3 (6.15)

After simplification, the following result is arrived at:

ȧ =±

s✓
3� ka

a

◆✓
t2

1+ t2

◆

To graphically visualize the time-evolution of a, Euler’s method will be used. The iterative
result is:

ai+1 = ai ±Dt

s✓
3� kai

ai

◆✓
t
2
i

1+ t
2
i

◆

The positive root (root with the positive sign in place of ±) will be used up to the maxima,
after which the negative root (root with the negative sign in place of ±) will be used. The
resulting plot is:

Figure 6.1: Scale Factor evolution for the First Regularized Big-Bang model with k=1, and
b=1

Thus in this section, we have shown that this ansatz does not solve the problem of Singu-
larity completely.
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6.3 Regularized Big-Bang model - Second Ansatz

In this section, we will introduce a metric ansatz where f depends on time implicitly
through the scale factor. It is given by [Klinkhamer 20]:

ds
2 =

[a(t)�aB]2

[a(t)�aB]2 +b2[a0(t)
2 ]2

dt
2 �a

2(t)d~r2 (6.16)

where, (b2,aB)> 0,a(t) 2 R, t 2 (�•,•),xk 2 (�•,•).

Using equation (6.7), (6.9), (6.10), we get,

(
ȧ

a
)2 +

1
4

a
2

(a�1)2 (
ȧ

a
)4 +

k

a2 =
1
3

r0a
�3(1+wM) (6.17)

This is the equation that we will analyze now.

6.3.1 Analytic Results

Again, the equation of state parameter wM will be taken to be 0. Thus, the equation be-
comes,

(
ȧ

a
)2 +

1
4

a
2

(a�1)2 (
ȧ

a
)4 +

k

a2 =
1
3

r0

a3 (6.18)

The biggest difference between equations (6.18) and (6.11) is that there is no explicit time
dependence anywhere in this equation. From the initial condition (ȧ = 0 when a = aB =

1),it is clear that whenever a = 1, ȧ = 0 (Otherwise there will be a divergent term in this
equation). Since the interest is on values for which a > 0 and a 6= 1, the calculation can be
performed by substituting ȧ = 0 in equation (6.18). In this case, there is only one value of
a for which this is true; namely,

a =
r0

3k
(6.19)

Since this point has to be the maximum, and a = aB = 1 the minimum (because that is
the value the scale factor takes at the big-bang), and also since these are the only 2 points
of extremum, it is clear see that a cannot go below aB. Also, there is no explicit time
dependence in this equation. Therefore, the above equations must be invariant under time
translations of the period of the age of the universe (time at big-crunch - time at big-bang)
(A more thorough argument can be made using the second modified Friedmann equation).
Thus, this bounce behaviour will be observed again and again for this model. Numerical
methods will now be used to determine some quantities like the age of the universe.
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6.3.2 Numerical Results

Here, the parameter r0 will be taken to be equal to 9. Thus equation (6.18) is thus reduced
to:

(
ȧ

a
)2 +

1
4

a
2

(a�1)2 (
ȧ

a
)4 +

k

a2 =
1
a3 (6.20)

This equation will now be analysed numerically so that it can be visualized graphically.
Euler’s method will be the technique to do so.

As can be seen, the equation (6.20) is a quadratic equation in ȧ

a
. Using the quadratic for-

mula, the following result is obtained:

ȧ
2 =�2(a�1)2 ±2(a�1)2

s

1+b2 3� ka

a(a�1)2 (6.21)

The negative root can be rejected because ȧ has to be real. Therefore,

ȧ
2 =�2(a�1)2 +2(a�1)2

s

1+b2 3� ka

a(a�1)2 (6.22)

Now, 2 roots for ȧ will be obtained. To figure out which root must be used and when, note
that the sign of the roots should be changed when an extremum is reached (because of the
argument made in the previous section that the bounce is periodic and because ä is non-
zero at these extremum points). Therefore, the positive root will be taken in the right of the
bounce up to the point at which ȧ becomes 0. Then, the negative root will be used until the
"big-crunch".

The two roots are,

ȧ =±
p

2(a�1)

vuut
s

1+b2 3� ka

a(a�1)2 �1 (6.23)

The initial condition is a = 1 at t = 0, and then, iteratively time-evolve “a" using equation
(6.23).

If ai is the value of “a" at time t, then ai+1 is the value of “a” at time t +Dt. After simplifi-
cation, equation (6.23) becomes:

ai+1 = ai ±Dt

0

B@
p

2(ai �1)

vuut
s

1+b2 3� kai

ai(ai �1)2 �1

1

CA (6.24)
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The positive root will be used up to the point at which kai = 1, for some i, and then the
negative root will be used. The age of the universe computed (using the parameters that
have been taken in this article) numerically is about 9.1 units. We will take b = 1 for the
following plot.

Figure 6.2: Evolution of Scale factor for the second metric ansatz

We will now compare the scale factor corresponding to this regularized big-bang metric
ansatz with the scale factor corresponding to the FLRW metric.

Figure 6.3 shows the plots of the scale factors corresponding to both the FLRW model and
the second ansatz of the Regularized Big-Bang models for b=1, and Figure 6.4 shows the
same, but for b = 1

2

Figure 6.3: Comparison of the scale factor between the FLRW model (red) and the second
Regularised Big-Bang model (bluw) when b=1
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Figure 6.4: Comparison of the scale factor between the FLRW model (red) and the second
Regularised Big-Bang model (bluw) when b = 1

2

6.4 A general metric with the “bounce” behaviour

In this section, we shall work with the following line element:

ds
2 = f (t)dt

2 �a
2(t)d~r2;~r2 =

1
1� kr2 dr

2 + r
2
dW2 (6.25)

Here, k is the scalar curvature of the spatial part of the metric. The function f is a function
of time, be it explicit or implicit. The Einstein’s equations that arise from this metric are
the following:

ȧ
2

a2 f
+

k

a2 =
8pG

3
r (6.26)

2ä

a f
� ȧ

a

ḟ

f 2 +
ȧ

2

a2 f
+

k

a2 =�8pGr (6.27)

Here, r is the Energy density of matter and P is the pressure. Instead of using equation
(6.27), we can couple equation (6.26) with the continuity equation, given by the following:

d

da
[a3r(a)]+3a

2
P(a) = 0 (6.28)

We shall also assume a constant equation of state parameter (wM):

P

r
= wM (6.29)
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We want this scale factor to experience a “bounce” behaviour at t = 0, and in the case of
a positively curved space, also experience this “bounce” behaviour periodically. The final
equation is:

ȧ
2

a2 f
+

k

a2 =
8pG

3
r0a

�3(1+wM) (6.30)

Let us consider the case of dust like matter where wM = 0, and that the curvature of the
universe is positive. In this case, the evolution equation reduces to the following:

ȧ
2

a2 f
+

k

a2 =
8pG

3
r0a

�3 (6.31)

First let us find the condition for the appearance of a “bounce”. In this case, we have, ȧ = 0.
There are two possibilities:

ka =
8pG

3
r0 (6.32)

f = 0 (6.33)

The first possibility (6.32) is the condition for the maxima (in the case of a positively curved
universe) which we had seen in the previous section. The second possibility is the only way
the “bounce” could appear. Thus the metric has to be degenerate for a bounce behaviour
to occur. Therefore, if the bounce must occur periodically with a period “T” (let’s say),
then the function “ f ” must be periodic with the same period “T”. Thus, we can expand the
functions “a” and “f” as [Berg 88]:

a(t) = a0 +
•

Â
n=1

ancos

✓
2npt

T

◆
+

•

Â
n=1

bnsin

✓
2npt

T

◆
(6.34)

f (t) = c0 +
•

Â
n=1

cncos

✓
2npt

T

◆
+

•

Â
n=1

dnsin

✓
2npt

T

◆
(6.35)

Now, it will be useful to analyse ȧ (its behaviour is well known). From (6.34) we have,

ȧ =�
•

Â
n=1

2np
T

ansin

✓
2npt

T

◆
+

•

Â
n=1

2np
T

bncos

✓
2npt

T

◆
(6.36)

Now, “a” attains a minima a t = 0 and we will take it to be symmetric about t = 0 (because
this is what we want) and thus is an even function about that point. Thus, bn = 0 8n. Also,
the function “f” must always be greater than or equal to 0 (otherwise, the signature of the
metric will change and will thus lead to absurd results), and thus we can use the same
argument that we used for “a” and thus, dn = 0. Thus the form of the equations reduce to:

a(t) = a0 +
•

Â
n=1

ancos

✓
2npt

T

◆
(6.37)
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f (t) = c0 +
•

Â
n=1

cncos

✓
2npt

T

◆
(6.38)

ȧ =�
•

Â
n=1

2np
T

ansin

✓
2npt

T

◆
(6.39)

Now, we shall look at the result of the initial conditions, a(0) = aB (this condition is auto-
matically satisfied), ȧ(0) = 0, f (0) = 0. We therefore get:

•

Â
n=0

an = 0 (6.40)

•

Â
n=0

cn = 0 (6.41)

Now two possibilities arise:

1. f(t) is an explicit function of time and its time dependence is given.

2. f(t) is an implicit function of time through a variable that is purely time dependent.

In the first case, the only set of variables are the coefficients of the cosines and the constant
term in “a”, i.e., “an”. We can substitute these in equation (6.31) and find these coefficients
“an”. We must terminate the sequence somewhere to be able to get results. Let us consider
a simple example,

a(t) = aB �a1 +a1cos

✓
2pt

T

◆
(6.42)

f (t) =�c1 + c1cos

✓
2pt

T

◆
(6.43)

Substituting these in equation (6.31) we have,

ȧ
2
a =

2p2

T 2 a
2
1(aB �a1)

p2

T 2 a
3
1cos

✓
2pt

T

◆
� 2p2

T 2 cos

✓
4pt

T

◆
� p2

T 2 a
3
1cos

✓
6pt

T

◆

ka f =�kc1(aB �
1
2

a1)+ kc1(aB �2a1)cos

✓
2pt

T

◆
+ kc1a1cos

✓
4pt

T

◆

8pGr0 f =�8pGr0c1 +8pGr0c1cos

✓
2pt

T

◆

We have only 1 variable in this equation, namely a1, and thus we shall compare the constant
terms, and we get,

�2p2

T 2 a
3
1 +

2p2

T 2 a
2
1aB �

1
2

kc1a1 + kc1aB +8pGr0c1 = 0

This is a cubic equation in “a1” and can be solved using the cubic formula. We should
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choose the solution for which a1 is greater than aB (otherwise, we will get an “a” that is
lesser than aB).

Note: By analytic continuation, for the case of negative spatial curvature, we can replace all
the trigonometric functions with their hyperbolic counterparts (for example replace sin(x)

with sinh(x)).

The problem however with this possibility is that the time-period of “a” is independent of
the curvature of space (because “ f ” is an explicit function of “t” and its form is given), and
the equation of state parameter wM (because the time-period is not a variable of equation
(6.31)). This is absurd. Thus, we can reject the first possibility.

The second possibility leaves the function undetermined because the function “f” itself de-
pends on another time-dependent function. Since the only other function involved is the
scale factor itself, we shall say that the function that “ f ” depends upon is the scale factor
“a”. Therefore, in this case, the time-period can be arrived at from equation (6.31), and
thus it depends on the curvature “k”. It also changes when the equation of state parameter
changes because the form of the equation itself depends on the equation of state parameter.
The function “ f ” must go to 0 whenever a = aB.

Now, to be able to arrive at the functional dependence of f on a, we shall consider a universe
which is spatially flat. In the limit when a= aB, f becomes 0. In the large time limit (also the
large “a” limit because the space is flat), this metric should become the same as the FLRW
metric, i.e., f = 1 in that limit. We shall take the function to be increasing monotonically
as a case study. Thus we can write f as:

f =
g(a)

h(a)
(6.44)

Here, the two functions have the following properties:

1. Both g(a) and h(a) must always be non-negative, with g(a) being strictly positive (the
signature of the metric must not change).

2. g(a) must be 0 when a = aB

3. h(a) must always be greater than g(a) because f(a) starts at 0 and approaches 1 asymp-
totically.

Regardless of the value of “a”, “ f ” must always be non-negative (because the signature of
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the metric must not change). In the simplest case, we shall take the following to be g(a):

g(a) = (a�aB)
2 (6.45)

Since h(a) must be positive and also approach g(a) in the large “a” limit, we shall have,

h(a) = (a�aB)
2 +

1
2

b
2
ȧ

2 (6.46)

The value “b” is what gives rise to the f = 0 limit when a = aB. The factor 1
2 is by conven-

tion (because in the small time limit where we can take “a” to be equal to “aB + c1t
2”, this

function “ f ” boils down to that taken in the first metric ansatz), and we take “ȧ(t)” because
it grows slower than “a(t)” in the large “a” (or large time limit for flat space) limit (FLRW
limit). This is also valid due to dimensional reasons (“b” has the dimensions of time) and
also due to that fact the “ f ” is an even function. Thus the final form of “ f ” is,

f =
(a�aB)2

(a�aB)2 + 1
2b2ȧ2

(6.47)

This is the value of the function “ f ” that is considered in [Klinkhamer 20].

Thus, using this approach we can arrive at other metric ansatz (with different function forms
for both g(a) and h(a)) that solve the problem of singularity for all values of spatial curva-
ture. We should just keep in mind the FLRW limit and the large time (or large “a” limit for
non-positive spatial curvature) limit.

From this section, we can see that the only case where the problem of singularity is solved
indefinitely is when “ f ” is an implicit function of “t” through “a(t)”.
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Chapter 7

Conclusion

In this thesis we first looked at the hot big-bang model in detail. Using the FLRW metric,
we arrived at the Einstein equations, assuming that the universe is dominated by an ideal
fluid. The Friedmann equations, derived from Einstein equation, determine the evolution
of the universe at large scales.

After demonstrating some of the demerits of the hot big-bang model, especially the prob-
lems of initial conditions (horizon problem and flatness problem), we showed how the idea
of inflation can solve these issues. We also discussed that the conventional matter/fields,
say, an ideal fluid, cannot drive inflation, since inflation requires the matter field to possess
negative pressure. We also showed that during inflation the scale factor undergoes exponen-
tial expansion. Such an exponential expansion can prevail for a sufficiently longer duration
of time when the slow-roll conditions are satisfied, and we studied about these slow-roll
conditions in detail.

Though the idea of inflation was proposed to solve the puzzles due to hot big-bang model, it
was realized later that inflation naturally provides a theoretical base to the occurrence of in-
homogeneities in CMB. Therefore, we discussed the theory of cosmological perturbations,
where we introduced perturbations in the metric. We also assumed these perturbations to be
small. One of the problems that we encounter when we perturb the metric is the problem of
non-covariance. One can fix this problem by introducing gauge invariant variables. Then,
using the Einstein equations we studied the evolution of these perturbations.

Finally, we dealt with an important statistical quantity called the power spectrum of co-
moving curvature perturbations. We discussed the prescription to compute the dimension-
less power spectrum for the case of slow-roll inflation. The expressions corresponding the
power spectrum in Eq. (5.68) and (5.72) enable us to compute the same, given the Hubble
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slow-roll parameter and the potential slow-roll parameter respectively. This means that we
can compute the power spectrum if we are either given the inflationary potential (V,V,f ) or
how the inflationary field itself changes (ḟ ).

We then demonstrated yet another problem with the hot big bang model, the problem of
singularity. To solve this problem we modified the metric in such a way that it is no longer
degenerate. This modification led to a "bounce" behaviour, wherein the scale factor exhib-
ited a positive minimum. This also allows us to extrapolate to a pre big bang phase. We
dealt with two such models and in the first model, we showed that it does not solve the
problem of singularity in the case where the spatial curvature of the universe is positive.
However, we showed that the second model doesn’t exhibit such problems. Finally, we
attempted to find a general class of such models that exhibit such a "bounce" behaviour.
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