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Extreme events in coupled Lotka Volterra systems

by Abhijeet SINGH

We review the most important parts of a recent paper on the occurrence of
extreme events in a generalized Lotka Volterra system, and reproduce the key
results of the paper. We then extend the results to the occurrence of extreme
events in a simple Lotka Volterra system. We study the characteristics of
dynamics in the system that gives rise to extreme events in the simple Lotka
Volterra system. We study the spatio-temporal occurrence of the extreme
events. We also quantify the strength of the events as a function of coupling
in the system. Further, we investigate the occurrence of extinction in the
system for some special values of the coupling.
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Chapter 1

Advent of extreme events in Lotka

Volterra systems

1.1 Introduction

Extreme events have generated quite a lot of interest, due to their very broad
spectrum of relevance [A]JKO06]. They are prevalent in power grids, economic
shocks, weather catastrophes etc. An extreme event is said to have occurred
if a dynamical variable changing as a function of time suddenly takes a value
which is several standard deviations away from its time-average. It should
be noted that for extreme events to occur, the dynamical variable should not
only suddenly shoot up or dip down, but should also return to the “usual’
values immediately. For if it does not return and stays at those high or low
values for considerable time, the time-average of the system is also pushed
up or down. Thereby, the event may not be said to be ‘extreme’. Hence, sud-
den instabilities in system, which lead to a sudden explosion or decimation
in the values of a dynamical variable are not typically instances of extreme

events.

Generic mechanisms of occurrence of extreme events in deterministic sys-
tems are not well-understood. Most of the models which are known to gen-
erate extreme events have an element of stochasticity, intrinsic randomness

in their nature.
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1.2 Emergence of extreme events in an ecological

model

In this section, we describe a mechanism to generate extreme events in a
deterministic system, unearthed by Chaurasia et al. [CVS20] that forms the

basis of the work that forms this thesis.

Consider a system of three species of organisms coupled through Lotka Volterra
type of interactions. Let u(t), v(t) and w(t) be the variables representing the
population of some vegetation, prey and predator respectively. Let the dy-
namics of these variables be governed according to the following equations.

1 =au— a1 f1(u,0)
0= —bv+ayf1(u,v) —arfr(v, w) (1.1)

W= —c(w—w")+ayfr(v,w)

We need to know the explicit functional forms of f; and f,. The functional

uv
1+ku

as f2(v, w) = vw, and is thus, the usual Lotka-Volterra term between the prey

form of f1(u,v) is given by f1(u,v) = . The function f,(v, w) is defined

v and the predator w.

This system, with the choice of parameters a = 1.0, b = 1.0, c = 10.0, w* =
0.006, a1 = 0.5, ap = 1.0, k = 0.05 explains the population-dynamics of the
snowshoe hare and the Canadian lynx [BHS99].

Now consider a larger system of these three species. Let there be several (of
the order of 100) patches in this system, each of which consists of the system
of three species as described above. Let these patches be arranged on a ring,
such that each of the patches is coupled only to the two nearest neighbors,
one on either side (see Figure 1.1). The coupling is such that the predator of
each patch can predate on the prey of the two coupled patches.

More specifically, if u;, v; and w; refer to the populations of vegetation, prey
and predator respectively on the i patch, the dynamical equations govern-
ing these variables are given by

U = au; — a1 f1(u;, v;)
. C
Ui = —bvi+ a1 fi (i, vi) — azfo(0i, wi) =S {0wi1 + Vi1 } (1.2)

. C
W = —c(w; — W) + a2 fo(0;, i)+ 5 {Wiv 1+ WV}
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Equations 1.2 are different from equations 1.1 only in the presence of the
terms shown in red. The constant C defines the strength with which the
neighboring patches are coupled.

FIGURE 1.1: Schematic of the ring of coupled patches. Image
taken from Chaurasia et al. [CVS20]

We integrate the system 1.1 with initial u, v and w to be of the order of 0.1.
The results are shown in Figure 1.2.

It is evident that after an initial transience, the system exhibits periodic dy-
namics. It should be noted that the abrupt high spurts in these time-series’
are not extreme events, as these are periodic, whereas consecutive extreme
events, by definition, should be uncorrelated in time. This observation is in
agreement with the results of Charuasia et al. [CVS20].

If this same system is evolved with initial conditions such that the initial
value of w is of the order of 100, the system is no more periodic, but is un-
stable. Thus, there are limits to the robustness of this model system (Figure
1.3).

How do the dynamics look for the system when it is coupled as described by
equations 1.2? The time-series for a representative patch in a ring of 100 such
patches is shown in the Figure 1.4. The value of the coupling constant C in
our computations was C = 1.

It turns out that in predator populations, there are sudden spurts of growth,
that are at least ten standard deviations away from the mean. These events
occur irregularly in time. They are also uncorrelated in space and time. These
are extreme events.
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FIGURE 1.2: Variation of u, v and w in a single patch without
coupling. The dotted black line represents the mean value of
the variable in each case. The solid black line represents, in
each case, the value of the variable which is ten times the
standard deviation away from the mean.
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FIGURE 1.3: Instability in an uncoupled patch with very high
value of w in initial conditions. The dotted and the solid black
lines have the same meaning as in Figure 1.2.

This observation is also in agreement with the results of Chaurasia et al.
[CVS20]. Chaurasia et al. do not note the existence of the instability of the
system as described in Figure 1.3. All other observations described above are
in agreement with their results, and have been reproduced and verified in-
dependently by the author for several different iterations, and with varying
values of the relevant parameters. It has also been independently confirmed

that these events are uncorrelated in space and time, as noted by them.

It must also be noted that the kind of instability seen in Figure 1.3 is also
obtained even when the initial values for all the u'’s, v;’s and the w;’s are
chosen to be small, but the coupling constant C in the equations 1.2 above is
made large- of the order of 100.

It must also be noted that on the long time-scale, the time-series of u, v and
w in Figure 1.2 is not as simple as it appears to be. If the time series is plot-
ted for a longer time scale, one can see that there is more to it. The height
of the periodic maximas does not remain constant, and it varies with time
exhibiting interesting patterns. The time series over a longer scale is shown

in Figure 1.5.



Chapter 1. Advent of extreme events in Lotka Volterra systems

-N-R--N-

) 50 100 150 200

&

!
o 50 100 1%40 200

o 50 140 150 200
t

FIGURE 1.4: Variation of u, v and w in a representative patch
with coupling according to equations 1.2, with C = 1. The
dotted black line represents the mean value of each variable.
The solid black line represents the value which is ten times the
standard deviation away from the mean.
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For the coupled system (1.2), it was also found that the system is not always
stable. Even when the initial conditions are taken to be small (smaller than
1.0 for all the three variables), the system can encounter a blow-up, which

means that one of the variables increases without bounds.

It should be borne in mind that the initial values of u;, v; and w; should be
chosen randomly independently for different patches. In my observation, it
does not matter what underlying probability distribution is used to generate
the initial values of these dynamical variables. Extreme events do occur as

long as the values of initial conditions are uncorrelated, and are not too large.

It is worth emphasizing that the occurrence of extreme events in this system
is without any external introduction of noise or stochasticity. It is just the
different unsynchronized values of the populations of vegetation, prey and
predator that give rise to them.

Chaurasia et al. [CVS20] also show how the global maximum of the vegeta-
tion population 1.y, the prey population v, and the predator population
Wmay for N = 100 in a ring change as the coupling constant C is increased
from 0 to 1. They find that each of these three quantities increase monotoni-
cally as a function of C, at least in the range of C from 0 to 1. The dependence
of wyax on C changes dramatically at around C ~ 0.25. This figure from their
paper is is reproduced as Figure 1.6.

We tried to reproduce the Figure 1.6 in our work. We integrated the system
for 200 time units for a given value of C, and looked for the global maximum
among all the local maxima on all the patches. We repeat this procedure sev-
eral times for the same value of C, each time choosing a randomly chosen set
of initial conditions and noting the global maximum in the end. We finally
take the average of all the global maxima we collected. Then we increased the
C a little, and again found the average global maximum with integration for
200 time units each time. Note that this is a computationally expensive pro-
cedure. It becomes more and more computationally expensive as the sample
size for random initial conditions over which the global maximum is found
for a fixed value of C is increased. The expensiveness is compounded by the
fact that in rare cases, one of the variables might just blow up. As the sam-
pling over initial conditions is increased, the system probability of blow-ups
increases. (We also noted that the probability of blow-up also increased with
increasing C.) It should also be noted that in the ring of 100 patches, even if
one of the patches blows up, the whole integration has to be done again with
a different set of initial conditions.
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FIGURE 1.5: Variation of u, v and w in a representative patch
without coupling according to equations 1.1 for a much longer
time scale than Figure 1.2 The dotted black line represents the
mean value of each variable. The solid black line represents
the value which is ten times the standard deviation away from
the mean.
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FIGURE 1.6: Variation of #x, Umax and Wy, the global
maximum of the vegetation population, prey population and
the predator population respectively in a patch with N = 100
on an interval of time T = 50 with increasing coupling
constant C. The values plotted here are scaled by dividing the
corresponding values at C = 0.0. Image taken from [CVS20]

We found that if we calculate the global maximum for a given value of C for
small sample sizes of initial conditions (~ 10), our figures did not resemble
the trends in Figure 1.6. But we did find that as the sample of initial condi-
tions over which the values are averaged over is made larger, the figures start

to resemble Figure 1.6 more and more.

We show the figure that we got by averaging over 50 initial conditions- Fig-
ure 1.7. Note that the blue curve is slightly separated from the red and the
green curves, which plot the corresponding quantity for the prey and vege-
tation. We found that the blue curve separates more and more as the number
of initial conditions is increased. This can be explained by observing that
very strong extreme events are rare in occurrence. If we sample for more and
more time, the probability of occurrence of those rare strong extreme events
becomes more and more substantial. But since we consider only the single
global maximum in the whole ring, these rare but significantly strong events
have a significant effect on the curve. We expect that as we average for really
long times, we shall reproduce Figure 1.6 exactly. This feature of the aver-
aged global maximum depending upon the size of sampling of events will

re-surface again in Chapter 3.
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FIGURE 1.7: Variation of sy, Umax and W,y the global
maxima of the vegetation population, prey population and the
predator population respectively in a patch with N = 100 with
increasing coupling constant C, averaged over 50 initial
conditions. The values plotted here are scaled by dividing the
corresponding values at C = 0.0.
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Chapter 2

Extreme events in the generic Lotka

Volterra system

In light of the emergence of extreme events in the system described above
without any noise or stochasticity, several questions arise. One of the funda-
mental questions is whether the emergence of extreme events in this system
is something special, in the sense of this being specific to this very system, or
is it a more generic feature of such systems? Also, why do the extreme events
occur only in the predator populations? Is there a deeper way to see this?

To shed some light on the answers to these questions, we look at a model
that the author studied using numerical computations. Consider the Lotka
Volterra system between two species (unlike three- which was the case in
Chapter 1), described by the following dynamical equations.

0 = av — Bfow
(2.1)
W= —yw + dvw

where «, B, v and ¢ are all positive constants.

These equations describe a prey and predator interacting through the Lotka
Volterra interactions. The variable v represents the prey and w represents the
predator. The reader should distinguish between the use of a here and &4

and a; in equations 1.1 and 1.2 respectively.
We choose to work witha = 0.1, 8 = 0.5,y = 0.3 and § = 0.4.

Let us put to rest a very important question before proceeding further. Do
the values of a, B, ¥ and ¢ specified above have anything special in them.
The answer appears to be yes, but not a very resounding one. The conclu-

sions that we draw with these values (to be described in detail later) are NOT
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FIGURE 2.1: Phase space trajectories of 5 different iterations of
the two-level Lotka Volterra system described by equations 2.1.

extendable to all two-level simple Lotka Volterra systems. In fact, we could
not get the kinds of interesting effects we get with these values in any other
system. However, some other systems behave somewhat similarly. More-
over, we are going to see later that the relevant behaviour of the system is
very very heavily dependent upon the strength of a coupling we are going to
introduce below. It is very similar to the coupling used in Chapter 1. There
could be some special values of the strengths of coupling that could lead to
the same effects in some other Lotka Volterra systems. The question is an
open one, but is not trivial. The reader should keep this in mind. Now let us

return to studying our system.

To understand this system better, we can plot the phase space trajectories of
the system. I randomly generated initial conditions between 0 and 1 for both
v and w, and generated the resulting phase space. I repeated this procedure
a total of five times, and plotted the thus generated 5 phase space trajectories

simultaneously. The plot is shown in Figure 2.1.
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FIGURE 2.2: v and w as a function of time for the system
defined by equations 2.1

The time-series for v and w are shown in Figure 2.2.

As can be seen from both Figure 2.1 and Figure 2.2, the system is periodic in
both the dynamical variables.

Now consider patches of such prey-predator systems arranged in a ring, and
we couple the patches in the same way as we did for the three species system
in Chapter 1, that is, the predators of each patch are made to predate on the
prey of neighboring two patches. The dynamical equations would then take
the form:

. C

U; = av; — ﬁviwﬁz{viwiq + viw; 41}
- (2.2)

W= —yw-+ (5UZU+§{wﬂ7i—1 + W01}

As before, the terms in red arise due to coupling of the neighbouring patches,
and C refers to the strength of coupling.

The time-series for a representative patch in a ring of 100 such patches, for
C = 3.0 is shown for both the variables in Figure 2.3.

In Figure 2.3, the black dotted lines represent the mean value of the two dy-
namical variables, while the black solid lines represent the value of the vari-
ables ten standard deviations away from the mean, as in Figures 1.2, 1.3 and
1.4. Tt is evident that both v and w at times, suddenly attain values which are
more than ten standard deviations away from the mean. Hence, it appears
that these are extreme events. If these are extreme events indeed, we have
a system that has extreme events in both the prey and the predator popula-
tions, unlike the system studied before. Before concluding that these sudden

spurts are actually extreme events, one should confirm that these occur in an

000
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FIGURE 2.3: v and w as a function of time for the system
defined by equations 2.2 for one representative patch.

uncorrelated fashion in both space and time. We shall address this question
later, and we will find that these are actually extreme events. But perhaps it
is important to pause and ponder over this result. It appears that the emer-
gence of extreme events in the system described by Chaurasia et al. [CVS20]
is not a special case, but it is a general feature of such coupled Lotka Volterra
systems. Moreover, in that study, the extreme events were prevalent only in
the predator populations, whereas in this system, they are prevalent in both
the prey and predator populations. It appears that something in that system
was ‘suppressing’ them in the prey populations. It could be the functional
forms of the differential equations, or it could be the presence of the addi-

tional trophic level of vegetation.

It is instructive to look at the phase space of one v and one w-both taken
from the same patch, and see how both these variables change. We show
this in the Figure 2.4. The figure shows v and w from one patch described
by the equations 2.2 with C = 3.0, after removing some initial transience.
The phase space excursion shows that it never happens that both v and w
increase together. If this were happening, the part of the phase space in the
top-right would also have been visited by the trajectory. However, we see
that it is either the v that takes values much larger than the usual values, or
w that does so, but never both. This conclusion has been verified by plotting

the phase space multiple times.

Figure 2.5 shows the spatiotempral variation of the variable v representing
the prey population as function of time on all the 100 different patches.

7000

8000
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Phase space of the variables representing prey and predator populations on one patch with extreme events
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FIGURE 2.4: Phase space for one patch when extreme events
occur in the two-level system.



16 Chapter 2. Extreme events in the generic Lotka Volterra system

Spatiotemporal variation of prey

8000
1000 450
6000 375
2000 3.00

il

E 4000 e
3000
2000 0
1000 0.75

0 0.00

20 40 a0 g0 1040
site (i)

FIGURE 2.5: Population levels of prey v a function of both time
and space for the system defined by equations 2.2, for a system
of 100 patches, and C = 1. Most of the plot is black or blue,
which means the population remains low at most patches for
most times. However, there are sparsely scattered
reddish-yellow spots, representing extreme events. These
spots are really thin, as the high levels of population are
sustained only momentarily. These are not scattered according
to any pattern. The extreme events appear to be less frequent
than those in predator populations. See Figure 2.6.
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Similarly, Figure 2.6 shows the spatiotemporal variation of the variable w rep-

resenting the predator-population as a function of time on different patches.

Figures 2.5 and 2.6 show the populations of the prey and predator respec-
tively, simultaneously in space and time. High population events are repre-
sented on these plots by reddish or yellow fine spots. It can be inferred from
these that these high population events are uncorrelated in both space and

time, and hence can be classified as being extreme events.

From these (Figures 2.5 and 2.6) plots, it seems that the frequency of extreme
events in the case of predators is higher than that of prey. Moreover, the
occurrence of extreme events has gone from being non-existent at C = 0
to being fairly common at C = 3.0. How does the frequency of extreme
events increase as C is varied, for both prey and predator? To answer these
questions, a good amount of statistics need to be collected. To do so, same
system of 100 patches in a ring was integrated with some chosen value of C
for 2000 units of time, and the number of extreme events occurring in each
patch in prey as well as predator populations were counted. In this counting,
without loss of any generality, just for the sake of ease of collecting statistics,
any event that was 5 standard deviations away from the mean was called
an extreme event. We do not expect the properties of these events to change
just with our changing definition. An event 5 standard deviations way if also
fairly away from the mean and can be called ‘extreme’. This whole procedure
was repeated 5 times, each time initializing the system with randomly chosen
initial values of v; and w; for all i running from 1 to 100, and the extreme
events in all the patches for both the variables were counted as before. This
whole procedure was repeated for the values of C ranging from 0 to 3.5 in
steps of 0.1. Finally, the number of extreme events counted were divided
by 5 x 2000 = 10,000 to calculate the frequency of extreme events, for each
value of C. (5 because the process was repeated for five times for each value
of C and 2000 because this was the time for which the system was integrated

in each iteration.) Figures 2.7, 2.8 and 2.9 summarize the results.

The first plot (Figure 2.7) shows the variation of the frequency of extreme
events in the prey population as a function of C, the second plot (Figure 2.8)
shows the same in the predator population, while the third plot shows the
variation of the ratio of the frequencies of extreme events in prey to those in
predator. It can be seen that the frequency of extreme events increases both in
prey and predator as the coupling between the patches increases. However,

it is clear that the number of extreme events saturates as C increases, and
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FIGURE 2.6: Population levels of predator w a function of both
time and space for the system defined by equations 2.2, for a
system of 100 patches, and C = 1. Most of the plot is black or
blue, which means the population remains low at most
patches for most times. However, there are sparsely scattered
reddish-yellow spots, representing extreme events. These
spots are really thin, as the high levels of population are
sustained only momentarily. These are not scattered according
to any pattern. The extreme events appear to be more frequent
than those in prey populations. See Figure 2.5.
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FIGURE 2.7: Frequency of extreme events in prey as function
of C.

it saturates rather more rapidly in case of predators. The third plot clearly
shows that the frequency of extreme events is less in prey than predator, as
the ratio of the former to the latter remains below 1. However, this ratio

increases as a function of C, showing that the gap decreases as C is increased.

We can also see in another way that these events are uncorrelated. Let’s look
at the distribution of the time interval between two successive extreme events
on all the patches. Events that occur in time in an uncorrelated fashion, but
have a constant average rate of occurrence are expected to follow a Poisson
distribution. The time-difference between two successive such events is ex-
pected to follow an exponential probability distribution (also known as the
‘waiting time distribution’). In Figure 2.10 we plot the time difference be-
tween two successive extreme events in the prey populations from a large
data set. We integrate the whole system for 8000 time units a total of 25
times, and make a list of the time differences between two successive extreme
events. We plot a histogram of the data, and also show the best-fit exponen-
tial distribution. It is evident that the data indeed follows an exponential
distribution. Figure 2.11 shows the corresponding plot for the predator dis-

tribution, which is also seen to follow an exponential distribution.
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Frequency of extreme events in predator as a function of coupling
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FIGURE 2.8: Frequency of extreme event in predator as
function of C.
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FIGURE 2.9: Ratio of frequency of extreme events in prey to
that in predator as a function of C.
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Frequency distribution of time-difference between successive extreme events - Prey
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FIGURE 2.10: Probability distribution of the time intervals

between two successive extreme events in the prey population-
histogram from the raw data and the exponential best fit.



22

Chapter 2. Extreme events in the generic Lotka Volterra system

0.0014 4

0.0012 1

—
=]
[=]
—_
(=]

Probability density

0.0004 1

0.0002

0.0000

0.0008 1

0.0006 1

Frequency distribution of time-difference between successive extreme events - Predator

0 1000 2000 000 2000 5000 §000 7000
Difference between successive extreme events

FIGURE 2.11: Probability distribution of the time intervals
between two successive extreme events in the predator
population- histogram from the raw data and the exponential
best fit.
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Chapter 3

How extreme are the extreme

events?

We have seen the occurrence of extreme events in a ring of coupled systems,
each of which on its own exhibits only simple Lotka Volterra dynamics of the
generic type. We have seen that in such a ring of coupled systems, each of
the individual patches exhibits the occurrence of extreme events in both prey
and predator populations, given that we define an event to be ‘extreme’ if the
value of the dynamical variable becomes larger than the value ten standard
deviations more than the mean value of the dynamical variable. But how
extreme are these events? How large does the value of the dynamical variable
become when an extreme event happens? Sure, it is more than ten standard
deviations away from the mean value (by definition), but how large are these

events?

In this chapter we seek answer to such questions. We investigate the actual
value of the relevant dynamical variables during the extreme events, and the

dependence of the values on various factors.

3.1 A measure for the extremeness of events

We wish to quantify the strength of extreme events in general, given a cou-
pling constant C. There are several ways to do this. We do it in the following
way. In our system, there are a total of 100 patches arranged on a ring. As
the system evolves in time, the prey and predator populations on each patch
evolve. Extreme events do occur on each patch as time goes on (for any small
generic values of initial conditions). We let the system evolve in time for a
tixed pre-detrmined duration. After removing the initial transience, we look
at the collection of all the local maxima in the time-series that occurred on
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all the patches, both in the prey and the predator populations. From the list
of all the local maxima in the time series of prey population, we determine
the global maximum. We do the same for the predator extreme events. Then
we initialize the whole system again with a different randomly chosen set
of initial conditions, evolve it again, and again note the globally occurred
highest maximum in the whole system for both the prey and the predator.
We do this a number of times, save the magnitudes of the global maximum
each time. Finally, we compute the arithmetic means of both the lists. (Read-
ers who have read 1 should find this procedure familiar.) Call this mean for
the extreme events in prey < vy, > and the corresponding quantity for the
predator < wy,.x >. We use these two quantities as measures for the strength
of extreme events. Note that the averaging is done over different initial con-
ditions, and not over the different patches. We can study the dependence of

these quantities on the coupling constant C.

There is one more thing that has to be discussed regarding the evaluation of
< Umax > and < wWpey >. When the system is being integrated in time, it
might happen that there is a blow-up of one of the variables. We noted that
in our system, there are blow-ups in both the prey and predator populations.
Note that since there are 100 patches in the ring, even with probabilities as
small as ~ 1/1000 for a patch to blow up within the time-duration we inte-
grate our system for, the probability that one of the patches will blow up is
~ 1/10. But even if one of the 100 patches blows up, it means that the itera-
tion in which this happens is not of any use in the computation of < vy >
and < Wpux >. It should also be noted that the probability of blow-ups
increases with the increasing values of the coupling constant C. We have
not quantified this, but this was fairly evident when we ran our simulations.
Hence, we simply ignored those iterations where any one of the 200 dynam-
ical variables blew up, and started all over again with a different randomly
chosen set of initial conditions. This also means that the simulation becomes

more and more computationally expensive with increasing values of C.

3.2 Results of simulation

We find the dependence of < v5x > and < Wy > on C by performing the
integration for different values of C from 0 to 3. The results for < v,y > and

< Wpay > are shown in Figure 3.1 and Figure 3.2 respectively.
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FIGURE 3.1: The dependence of < v,,,> on the coupling
constant C for discrete values between 0 and 3, separated by
0.2. The points have been joined. The solid line joins the points
obtained when the averaging was performed over 50 initial
conditions, and hence is the most reliable. The dashed line
joins points that were obtained upon averaging over 20 initial
conditions, and the dotted line joins the points that were
obtained over 5 initial conditions.

As expected, the pattern becomes more and more smooth with increasing
number of iterations of initial conditions over which the averaging is per-
formed. We expect more smoothening can be obtained by increasing the
number of initial conditions, obviously it becomes computationally more ex-
pensive, and we do not do it any further than averaging over 50 iterations.
However, there is another curious trend that is noticeable- the values of ei-
ther of < vy > and < wpuy > in general are smaller if the averaging is
over more number of initial conditions. This could be an accident, but seems
unlikely. More likely this stems from some underlying reason, something to
do with the temporal distribution of maxima, that we don’t see yet. Such a
feature was also observed in the context of the three-level system we earlier
considered. See Chapter 1.

The other general inferences are that for both the predator and the prey, the
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w_max as a function of coupling avgd. over 50 iterations
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FIGURE 3.2: The dependence of < vy,> on the coupling
constant C for discrete values between 0 and 3, separated by
0.2. The points have been joined. The solid line joins the points
obtained when the averaging was performed over 50 initial
conditions, and hence is the most reliable. The dashed line
joins points that were obtained upon averaging over 20 initial
conditions, and the dotted line joins the points that were

obtained over 5 initial conditions.
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strength of extreme events suddenly rises when C is increased from 0 to
around 0.5. Then it suddenly experiences a decrease in strength of C slightly
greater than 0.5. Thereafter, the strength of these event decreases steadily
for the prey population and remains more or less constant for the predator

population, till C = 3.

3.3 What is happening for small values of C?

It can be seen in the Figure 3.1 and Figure 3.2 that the average strength of ex-
treme events is very sensitive to the values of C that are between 0 and 1. For
C = 0, of course, there are no extreme events. And suddenly for C ~ 0.5, the
strength of extreme events is very high, while the strength of extreme events
again decreases with a slight increase in the value of C from 0.5. However,
much cannot be inferred about what is going on in this region when the value
of Cis between 0 and 1 from Figure 3.1 and Figure 3.2, because our resolution
is not that good- there are only 5 values of C between 0 and 1 (both values

inclusive) that we have calculated < v,y > and < Wyuy > for.

To see more clearly what is happening for these values of C, we scan this
region more closely, with a greater resolution. We calculate < v,4x > and <
Wmax > for C between 0 and 1 with a resolution of 0.04. That is, we calculate
< Upax > and < Wy > for C =0, C = 0.04, C = 0.08, all the way upto C =
1. Moreover, we enhance the number of iterations over initial conditions.
Figure 3.1 and Figure 3.2 were made with averaging over a maximum of 50
initial conditions. For this plot, we average over 100 initial conditions. This
would also confirm our assumption that there is no underlying randomness
in what < vy > and < wy,qx > are for given values of C, and the values

can be made more precise by collecting more statistics.

Figure 3.3 and Figure 3.4 show the results of this simulation for the prey
and predator populations respectively. First, as expected, the plot is much
smoother, owing to greater resolution of sampling, and increasing the num-
ber of initial conditions. However, there is a much more striking feature. The
curves of < Uy > and < Wy, > look remarkably similar. There is a very
sharp dip in the values of < vy > and < vy >, and this dip occurs for
the exactly same value of C for both of them- around C ~ 0.44.

We believe this shows that something interesting is going on at C ~ 0.44. We
investigate the dynamics at this value of C further in the next chapter.
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v_max as a function of coupling avgd. over 100 iterations
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FIGURE 3.3: The dependence of < vy,> on the coupling
constant C for discrete values between 0 and 1, separated by
0.04, averaged over 100 randomized initial conditions. The
points have been joined by a line.
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FIGURE 3.4: The dependence of < wj;;,> on the coupling
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0.04, averaged over 100 randomized initial conditions. The
points have been joined by a line.

10






31

Chapter 4
Window of quenched activity

In the previous chapter, we addressed the issue of the strength of extreme
events in the system we have been considering. The system consists of ~
100 coupled islands on a ring, each one exhibiting simple two-level Lotka
Volterra dynamics. We defined a measure that quantified for us the strength
of extreme events for a given value of C, the coupling constant. We looked
at the variation in the strength of extreme events as C as varied, and high-
lighted some interesting phenomena. One very interesting phenomenon that
we noticed was that at C ~ 0.44, the strength of extreme events was very low.
In fact, the maxima at this value of C could not be called extreme in general.
However, there do exist extreme events with a reasonably high frequency for
the values of C higher as well as lower than this critical value.

In this chapter, we we seek to dig deeper into this phenomenon. We try to
characterise this lull in extreme events at C ~ 0.44, and look more closely
what is happening to the dynamics of the system at the level of each patch,
that leads to this extinguishing.

4.1 Bifurcation diagrams

Bifurcation diagrams are used ubiquitously to study the dynamics of dynam-
ical systems that exhibit dynamics in discrete time. A bifurcation diagram
[Str18] is a plot that shows the values of a dynamical variable assumed or
approached asymptotically, as a function of a paramater of the system. The
most popular bifurcation diagram by any account is the one for the popular
logistic map [May04]. The map is given by the recursion relation

Xpi1 = X (1 — xp) (4.1)
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There is only one dynamical variable x, which evolves in discrete time steps.
The value of the dynamical variable at any step is determined by the value
at the preceding step in accordance with the equation 4.1. For sufficiently
low values of r, the system invariably reaches a stage, where the variable
assumes only a small number of values forever again and again. Note that
this happens no matter what value of x the system began with. But we can
tune r. For different values of r, the system asymptotes to different values of
the variable. Hence, we can plot a set of points, with different values of r on
the horizontal axis, and the values x will take after some initial transience on
the vertical axis. This plot is shown in Figure 4.1.
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FIGURE 4.1: Bifurcation diagram for the logistic map.

Figure 4.1 is so popular that it has come to be known as the single most image
popular image associated to nonlinear dynamics and chaos. It gives a good
idea of the dynamics going on for each value of r in the system. This is a
general lesson: for a system that has a tunable parameter, the bifurcation
diagram gives a general idea of the dynamics happening at each value of the
parameter. We have lost the information regarding the temporal changes:
there is no time anywehre in the bifurcation diagram, but that is not always
required anyway.

Let us now turn back to our system. We intend to study the system for differ-
ent values of C, and wish to see what is happening at some special value of
it, that is, at C = 0.44. It should be evident that a bifurcation diagram is the
tool that should come handy. However, there is an issue lurking here. The

bifurcation diagram, as described above, plotted a finite number of points
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for each value of r. A finite number of points are possible for a discrete sys-
tem. But how do we get a meaningful bifurcation diagram for a system that
is evolving continuously in time, like ours? For each value of C, our system’s
variables are evolving in continuous time. In the next section, we describe
how we modify the traditional definition of a bifurcation diagram to suit our
problem.

4.2 Bifurcation diagrams for our system

Consider our system defined by equations (2.2). Remember, we are inter-
ested in the nature of extreme events in our system, which are very large
maximas. Moreover, the feature that we are trying to explain was seen in
Figure 3.3 and Figure 3.4. These two figures were made by plotting the local
maximas the variables assumed. Hence, it is sensible to focus on maximas
only while trying to understand the dynamics of the system- we are princi-
pally after the information on the maximas. Hence, we plot an analogue of
the bifurcation diagram for our system, that plots the values of the maximas
that the dynamical variables the system takes at each value of C. Note that
since there are 200 dynamical variables for our system, we can come up with
200 bifurcation diagrams! We can show what values all the v;’s and the w;’s
take when each of them assume maximas for each value of C. However, it
can be expected that only two diagrams corresponding to the two variables
on a single patch should give a picture of the dynamics. (We realize later that

this expectation is only partly true!)

It should also be borne in mind that we have no a priori reason to expect that
the values of maxima for our variables asymptote to any magnitude for any
value of C. In fact, we have seen that we usually see a variety of maximas.
Hence we do not expect to see any simple features in the diagram for any
values of C (except C = 0), like Figure 4.1 has for small values of r.

With all this in mind, we set out to get the relevant bifurcation diagrams for
our system. We integrate our system, with the values C = 0 to C = 3 with
intervals of 0.02. That is, we integrated the system for C = 0, and then for
C = 0.02, and then for C = 0.04, and so on all the way upto C = 3.0. We
integrate the whole system for 8500 time units for each of these values of
C. During each integration, we note down all the maximas that occurred for
each of the 200 dynamical variables. (Actually, we picked up the maximas

above a very small threshold- 10~2%). In the end, we have 200 lists, consisting



34 Chapter 4. Window of quenched activity

of the values of all those maximas that occurred. Finally, to get a meaningful
diagram that reflects the general features of dynamics independent of our
specific choice of initial conditions, we pick up only the later 15000 maxi-
mas (total number of maximas was of the order of 20000) in each of the lists,

leaving out the rest as transience.

We finally have the data points, ready to be plotted and turned into a bifur-
cation diagram. Let’s see what those plots look like.

Figure 4.2 shows the bifurcation diagram for a representative patch’s prey

and Figure 4.3 shows the bifurcation diagram for that same patch’s predator.
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FIGURE 4.2: Bifurcation diagram comprising of all the local
maximas as coupling is varied, for prey.

We notice that there is a window of inactivity at around C ~ 0.44 in Figure
4.2. This is according to our expectations. But it is surprising that there is no
such corresponding window of activity at this value of C in Figure 4.3, the
bifurcation diagram for the predator on the same patch. We saw, however, in
the previous chapter, that the decrease in the strength of extreme events for
this value of C happened for both the prey and the predator.

It should also be noted that there is another window of activity at around

C ~ 0.9, again only in the bifurcation diagram of prey.

To see why the window of activity appears only for the prey and not for
the predator, it is perhaps instructive to do make the same diagrams again,
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Bifurcation diagram-predator
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FIGURE 4.3: Bifurcation diagram comprising of all the local
maximas as coupling is varied, for predator.

with a different set of random initial conditions. We follow the exact same
procedure as was followed in making Figures 4.2 and (4.3), and get two more

bifurcation diagrams.
Figures 4.4 and 4.5 show the bifurcation diagrams made such.

In the bifurcation diagram for the predator (Figure 4.5), one sees that one can
see the window of inactivity at C ~ 0.44. But there seems to be no window
of inactivity in the bifurcation diagram of prey (Figure 4.4)! Also, just like in
Figure 4.2, there is also a window of inactivity at C ~ 0.9 in addition to the

expected inactivity at C ~ 0.44.

A few more times trying to get the window of inactivity in the both diagrams-
the one for prey and the one for predator by us goes in vain.

4.3 Mass-extinctions brought about by coupling

To actually see what is happening that we either see a window of activity in
the bifurcation diagram of prey only or that of predator only, but the dip in
extreme events is so similar in both the cases if we set C ~ 0.44, we plot the
time-series of both the prey and predator for two representative patches at
C ~ 0.44.
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Bifurcation diagram-prey (without transience)
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FIGURE 4.4: Bifurcation diagram comprising of all the local
maximas as coupling is varied, for prey.

Note that in the two cases we have shown, either the prey goes extinct on a
patch or the predator. Repeated trials show that this is a very general trend at
C ~ 0.44. It happens extremely often that on a patch one of the two species
goes extinct. That is why the bifurcation diagrams above showed the win-
dow of inactivity only in either the prey or the predator. The window of in-
activity appeared in the bifurcation diagram of whichever species happened
to go extinct on that particular patch, while the other species did not go ex-
tinct, and its population exhibited a behaviour as shown in the above figures,
and hence no window of activity was seen in its bifurcation diagram. How-
ever, the Figures 3.3 and 3.4 were made after taking average over many many
patches over many iterations. Hence, both of them show a remarkably simi-

lar decrease in the strength of extreme events.

Note that there is a general lesson we have to take here- that just the right
amount of coupling in Lotka Volterra systems can induce mass-extinctions.
The general explanation of why there be no widespread extinctions for C less
than 0.44 and also for C greater than 0.44, while being present for C = 0.4 is
at the moment unknown to the authors.

The spatial distribution of these extinctions in the ring of 100 patches de-

serves some discussion. It is generally seen that extinctions tend to happen
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FIGURE 4.5: Bifurcation diagram comprising of all the local
maximas as coupling is varied, for predator.

alternately- the patches were the prey and the predator alternate tend to al-
ternate in the ring. Also, there are some patches where none of the prey or
the predator go extinct. Such patches tend to exist in clusters in the ring.

We show in Figure 4.8 a schematic of the ring of 100 patches that are inte-
grated for 8000 time units, with a C = 0.44. The patches have been colour

coded according to their status of extinction at that instant.

We also mention in passing something about the window of inactivity that
is seen in Figures 4.2 and 4.5 at C ~ 0.9. Upon looking at the time series
of various patches when the system is integrated at this value of C, it turns
out that the underlying cause for the suppression of extreme events in this
window is also mass extinctions of both the species. This dynamics in this
window is quite similar to the one at C ~ 0.44.
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FIGURE 4.6: Time-series for a representative patch at C ~ 0.44.
Note that the prey gets extinct fairly quickly and the predator
population sees a continuous series of spurts. However, these
spurts are relatively smaller and none of these are extreme
events according to our definition.
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FIGURE 4.7: Time-series for a representative patch at C ~ 0.44.
Note that the predator gets extinct fairly quickly and the prey
population sees a continuous series of spurts. However, these
spurts are relatively smaller and none of these are extreme

events according to our definition.
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FIGURE 4.8: The extinction of either of the species on the 100
patches- at a representative instant of time after transience.
Blue patches represent patches which have only the predator
present, which means, the prey has gone extinct. Green
patches represent those where only the prey survives, and
hence the predator has gone extinct. Aqua circles represent the
patches on which neither has gone extinct.
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