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Abstract

Preferential Attachment graphs are scale-free growing networks used to model numerous

real-world networks. In this thesis, we study degree distributions of directed Preferential

Attachment trees with additive fitness. Three regimes of the fitness function are analysed,

namely sublinear, linear and superlinear regimes. Further, we obtain analytical expressions

for the size of subtree and the height of a vertex in the subtree for a special case of Prefer-

ential Attachment with fitness, and use these results to compute expected PageRank for this

model. Finally, we study the problem of binary opinion dynamics of a growing population,

wherein we obtain the method to determine an optimal influencing strategy to influence the

population.
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Introduction

Scale free networks are an important class of networks that are used for modelling real

world problems. One of the most famous model is the Preferential Attachment Graph,

introduced by Barabási and Albert in 1999 and formalized by Bollobás et.al. in 2001.

Preferential Attachment graphs exhibit small world property and a power law 1, which

make it useful to model real world networks. An important example is citation networks,

where each paper can be thought of as a vertex or a node, the outdegree as the number of

references, and indegree as the number of citations. Price in 1965 showed that the citation

network has a heavy-tailed distribution and follows a power law. In 1976, he proposed a

mechanism to explain such an occurrence, which he termed “cumulative advantage”, which

is now more commonly known as “preferential attachment”.

We briefly introduce a model for a Preferential Attachment graph with fitness for three types

of fitness 2. Namely, we study constant fitness, deterministic fitness and random fitness.

We focus on directed Preferential Attachment trees with additive fitness, that is, the law of

attachment contains an additional fitness parameter apart from the degree of the vertex. The

motivation behind this is to incorporate the identity of the vertex into the attachment law.

Standard Preferential Attachment laws usually consider the probability of attachment of a

newly added vertex to be proportional to the degree of the vertex (such as in [AL06]), or

a function of the degree (such as in [DM08], [KRL00], [KR01] and [TGP20]). The paper

[AL06] by Avrachenkov and Lebedev provides an analytical expression for the expected

PageRank where the law of attachment is proportional to degree. Dereich and Morters

in [DM08] explore a model where a new vertex attaches to a random number of nodes with

1A network is said to follow a power law when its degree distribution exhibits a power law, that is, the

fraction of vertices P(k) of degree k is of the form P(k)∼ k−γ

2Fitness here means a function of the vertex label. This could be deterministic or random.
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a sublinear attachment function. They provide an expression for the asymptotic degree

distribution for such a model, and a moderate and large deviation principle for temporal

evolution of degrees. Krapivsky et.al. in [KRL00] study nonlinear preferential attachment

where the function of the degree is of some exponent γ < 1, and predict the degree sequence

to have a power law. In [KR01], Krapivsky and Redner consider γ > 1 and predict the

existence of a single vertex connected to everything else. A similar result was also studied in

[OS05] by Oliveira and Spencer, where it was shown that a single dominant vertex emerges

and attracts all future edges.

Preferential attachment with fitness preserves the identity of the vertex itself, since the de-

gree of a vertex may not be unique. Fitness is usually classified into two broad categories:

additive fitness 3 and multiplicative fitness 4. Such a model is briefly mentioned in chapter

8, section 8.9 of [vdH14]. The work [GvdHW17] by Garavaglia, Hofstad and Woeginger

consider fitness along with aging. By using the theory of aging birth processes, they ar-

rive at an expression for the limiting degree distribution, very similar to that in [DM08].

The work [Ath07] by Athreya considers weighted degrees, which is analogous to multi-

plicative fitness. He considers a superlinear and sublinear regime for the weight function

and considers an embedding in a continuous time pure birth Markov chain to analyse de-

gree sequences. Ergun and Rogers in [ER02] consider a random additive fitness, whereas

Bianconi and Barabási consider random multiplicative fitness in [BB01]. Borgs, Chayes,

Daskalakis and Roch explore multiplicative fitness further in [BCDR07] and study three

phases, namely “first-mover-advantage”, “fit-get-richer” and “innovation-pays-off”, which

helps in determining the “quality” of the vertices for ranking algorithms.

We now give a brief overview of the chapters of this thesis. Chapter 1 gives a brief about

Preferential Attachment graphs and gives a power law heuristic for the infamous Barabási-

Albert model. We move on to discussing a few extensions of this model and define the

model for Preferential attachment with fitness. We then analyse degree distributions for

three regimes of the fitness function, namely the sublinear, linear and superlinear regimes.

The main tools for this analysis are standard concentration inequalities and concentration

3briefly speaking, a function of the vertex is added to a function of the degree
4a function of the vertex is multiplied to the function of the degree
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of degree sequences.

In chapter 2, we explore the links between urn processes and Preferential Attachment

graphs, and illustrate the urns associated with three different types of additive fitness, which

are constant fitness, vertex dependent deterministic fitness, and random fitness. We use the

theory of Pólya urns to study the size of a subtree rooted at a given vertex for the first case.

We then move on to deriving the expression for the probability generating function of the

height of a given vertex in a subtree for this case.

In chapter 3, we study an important centrality measure known as PageRank. The motiva-

tion behind studying PageRank is the power law hypothesis 5. We define a Markov chain

formulation of PageRank and give necessary conditions that must be fulfilled by a Preferen-

tial Attachment law such that the parameter m, which is the number of edges an incoming

vertex attaches to the existing graph, does not affect expected PageRank. Using results

from chapter 2, we derive an expression for the expected PageRank for the constant fitness

model. We also briefly explore another centrality measure known as Closeness Centrality.

In chapter 4, we study influencing strategies for a growing population. We use the stochastic

approximation scheme defined by Borkar(2008) to obtain an ODE for our model, and prove

a martingale concentration result for the solution for this ODE and a recurrence relation

obtained for the model. We then use the ODE solution to determine optimal strategies under

certain conditions. Moreover, using simulations, we make certain observations regarding

optimality.

The appendix lists out some important results that we have used in the thesis.

Throughout this thesis, we stick to the following notation.

• O( f (t)) denotes the big-O notation, where if g(t) =O( f (t)), then ∃ a real M > 0 and

t0 ∈ R such that

|g(t)| ≤Mg(t),∀t > t0
5The power law hypothesis states that in a directed network whose in-degree distribution follows a power

law, the PageRank scores will also follow a power law with the same exponent.
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• Gt denotes a graph realization at time t

• {Ft}t≥0 denotes a filtration

• w.p. is an abbreviation for “with probability”

• Poi(.) denotes the Poisson random variable and Uni f (.) denotes the uniform random

variable

• 1 denotes a unit vector of ones

• xT denotes the transpose of a vector x

• R∗+ denotes the set of all positive, finite reals
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Chapter 1

Preferential Attachment Graphs

1.1 Introduction

1.1.1 Preferential Attachment models

The study of Random Graphs is a mathematically rich area of probability theory, and has

numerous applications to other fields. Analysing complex networks is a major motivation

behind studying random graphs.

Example 1.1.1 (Erdős-Rényi Random Graph). For a fixed vertex set V , for any u,v ∈ V ,

an edge euv exists with probability puv. If puv = p ∀u,v, then we obtain a homogeneous

Erdős-Rényi (ER) Random Graph. ER Random Graphs cannot be used to model real world

networks due to their fixed vertex set.

Most real world networks are characterized by two properties, namely the small world

property and the scale free property. Intuitively, small world property states that distances

between vertices is small and thus the graph or network is well connected, and the scale free

property states that although the number of vertices with a small degree are common, the

number of vertices with a large degree are not too uncommon, that is, the decay for number

of vertices of degree at least k is slow for large k. This makes ER random graphs unsuitable

to model real world networks, which brings us to another example of random graphs.

Example 1.1.2 (Preferential Attachment Graphs). Gt = (Vt ,Et) is a growing random graph

where Vt is a growing vertex set. At each time step, one (or more) vertices are added to

the graph, and they attach edges to other vertices with probability as a function of their

degrees.
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Preferential Attachment Graphs are dynamic in nature and are useful in modelling real

world networks. They were shown to have a power law by Yule (1925), and Price (1976)

illustrated their scale-free nature.

Definition 1.1.3 (Scale free graphs). A graph sequence {Gn}n is said to be sparse if its

empirical degree distribution Pk(n) converges to some deterministic limiting probability

distribution, that is,

lim
n→∞

Pk(n) = lim
n→∞

1
n

n

∑
i=1

1{dn(i)=k} = pk

where dn(i) is the degree of vertex i at time n. {Gn}n is said to be scale-free with exponent

τ if it is sparse and

lim
k→∞

log pk

log(1/k)
= τ

Barabási and Albert introduced the infamous Barabási-Albert Preferential Attachment

model in 1999, which was more rigorously defined and formalized by Bollobás et.al. in

2001, which has been a major model of study in modern research.

Model 1.1.4 (Barabási-Albert Model (Bollobás and Riordan, 2004)). Conditioned on the

graph realization PA(1,δ )
t , the law of attachment for an incoming vertex vt+1 is given by

P(v(1)t+1→ v(1)i |PA(1,δ )
t ) =


1+δ

t(2+δ )+1+δ
, if i = t +1

dt(i)+δ

t(2+δ )+1+δ
, if i ∈ [t]

The sum of degrees of an undirected graph with t vertices where every attaches m edges

at every time step is 2mt. For m = 1 as above we get 2t.

A generalized version of 1.1.4 for m edges can be constructed by identifying vertices

v(1)
( j−1)m, ...,v

(1)
jm in PA(1,δ/m)

mt and collapsing them into v(m)
j in PA(m,δ )

t . The case where δ = 0

is the standard Barabási-Albert Model. We now illustrate a heuristic for the power law for

this model. For simplicity, assume an incoming vertex will not form self loops. Then, we

have

P(vt+1 7→ vi) =
dt(i)
2mt

By assuming the preferential attachment process in continuous time and taking derivative,

we obtain
d
dt

dt(i) = mpi = mcdt(i) =
dt(i)

2t

2



since the rate of change of degree is precisely the expected number of edges added at each

time step. Solving the above ODE yields

log
(

dt(i)
dt(i)

)
=

1
2

log
(t

i

)
Since di(i) = m, and we choose i∼Uni f (0, t), we see that

P(dt(i)≥ k) = P
(

i≤
(m

k

)2
t
)
=

m2

k2

1.1.2 Extensions

We now explore some examples of preferential attachment graphs.

The Barabási-Albert model is an undirected Preferential attachment graph. One can simi-

larly have a directed preferential attachment law given by the following.

Model 1.1.5. Given the graph realization Gt , the probability that an incoming vertex will

attach its kth directed edge (where 1≤ k ≤ m) to an existing vertex is given by

P(vt+1→ vi|Gt) =
din

t (i)+dout
t (i)

2mt

In the above model, the probability of attaching the kth edge does not depend on attach-

ing the previous edge. We can also have a conditional dependency 1 on the attachment of

the previous edge.

Consider 1.1.5 as given where m edges are attached independently of one another. The

focus of this thesis will be on the model given below.

Model 1.1.6 (Main model of interest). At t = 0, we have the root vertex ‘0’.

Given the graph realization Gt , the probability that an incoming vertex will attach its kth

directed edge (where 1≤ k ≤ m) to an existing vertex is given by

P((t +1)→ v|Gt) =
f (dt(v))+gt(v)

t
∑

u=0
( f (dt(u))+gt(u))

where dt(v) is the indegree of v at time t.

1By this, we mean that the probability of attaching the (k+ 1)th edge is conditionally dependent on how

the kth edge attached to the graph

3



We will strictly focus on m = 1 for our analysis.

The case when gt(u) ≡ 0 and f (k) = k+m has been explored by numerous papers. The

paper [AL06] gives an analytical expression for the PageRank of this model and shows that

it follows a power law.

For gt(v) ≡ 0, we have three regimes for f , namely sublinear, linear and superlinear f

regimes. The sublinear and superlinear cases are referred to as nonlinear preferential at-

tachment. This has been explored in the paper [KRL00] and [KR01]. The superlinear case

was also explored in [OS05], and the sublinear case was studied by [DM08].

A power law is observed in the sublinear as well as linear regimes.

A similar model to 1.1.6 is also explored in [TGP20] where degree distributions for various

choices of f are obtained.

Another interesting model is the fitness model. One can have deterministic or random

fitness, and multiplicative or additive fitness. Random additive fitness has been explored

by [ER02], whereas random multiplicative fitness has been explored by [BB01].

We analyse a few fitness models, which are special cases of 1.1.6. The models are as

follows.

Model 1.1.7 (Constant Fitness). At t = 0, we have the root vertex ‘0’.

Given the graph realization Gt , the probability that an incoming vertex will attach its kth

edge (where 1≤ k ≤ m) to an existing vertex is given by

P((t +1)→ v|Gt) =
adt(v))+bm

amt +bm(t +1)

Model 1.1.8 (Deterministic additive fitness). At t = 0, we have the root vertex ‘0’.

Given the graph realization Gt , the probability that an incoming vertex will attach its kth

edge (where 1≤ k ≤ m) to an existing vertex is given by

P((t +1)→ v|Gt) =
adt(v)+mgt(v)

amt +bm
t
∑

u=0
gt(v)

Model 1.1.9 (Random additive fitness). At t = 0, we have the root vertex ‘0’.

Given the graph realization Gt , the probability that an incoming vertex will attach its kth

4



edge (where 1≤ k ≤ m) to an existing vertex is given by

P((t +1)→ v|Gt) =
adt(v)+mξv

amt +bm
t
∑

u=0
ξu

where {ξi}i are i.i.d. random variables.

1.2 Degree Distributions

In this section, we derive a relation between the choice of f (.) and the asymptotic degree

distribution P(.). We begin with a few concentration results and a claim for the definition

of P(.), using which we arrive at a relation between f (.) and P(.) for different regimes of

fitness. Finally, we prove our claim for the concentration of P(.).

1.2.1 Concentration Results

The focus will be on model 1.1.6 with m = 1. Thus, our law of attachment is given as

follows.

Model. At t = 0, the graph G0 consists of a single vertex labelled ‘0’.

At time t +1, conditioned on Gt , an incoming vertex attaches a directed edge to one of the

existing vertices with the following probability

P((t +1)→ v|Gt) =
f (dt(v))+gt(v)

t
∑

u=0
( f (dt(u))+gt(u))

(1.1)

Existing literature focuses on the case when gt(u)≡ 0 and arrive at a relation between f

and P, where P is the limiting indegree distribution of the graph. Explicitly, P(k) is the prob-

ability that a uniformly chosen vertex will asymptotically have an indegree k. In [TGP20],

various choices of f are obtained by choosing a particular P. In [DM08], the inverse rela-

tion is derived, where P is obtained for a given f . The motivation behind introducing the

function g is to see the effect of the “identity” of the vertex itself and not just its indegree.

This is particularly useful to study preferential attachment with fitness.

We denote by Nk(t) the number of vertices of indegree k at time t. Our first result will prove

a concentration for E[Nk(t)].
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Lemma 1.2.1. Let Zt :=
t
∑

u=0
f (dt(u)). Then, if ∃ K < ∞ such that ∀i≥ 0,

| f (i+1)− f (i)| ≤ K

then,

P
(
|Zt−EZt | ≥

√
32K2t ln(t)

)
= O

(
1
t4

)
Proof. We know Zt =

t
∑

u=0
f (dt(u)). We can split this summation as Zt = ∑ j f ( j)N j(t),

where N j(t) is the number of vertices of indegree j at time t.

Define Xk := Zk−Zk−1. Then, for i 6= j, Xi and X j are independent random variables, and
t
∑

k=0
Xk = Zt . Now,

Xk = Zk−Zk−1 =
k

∑
u=0

f (dk(u))−
k−1

∑
u=0

f (dk−1(u))

=
k−1

∑
u=0

f (dk(u))− f (dk−1(u))+ f (0) (since dk(k) = 0)

= f (dk−1(l)+1)− f (dk−1(l))+ f (0), for some l

(since only a single vertex, say l, will have their indegree increased by 1)

Since | f (i+1)− f (i)| ≤ K, we have

−2K ≤ Xk ≤ 2K

Taking ak =−2K, bk = 2K, and by applying the Hoeffding’s inequality (see 5.3.1), we have

P(|Zt−EZt | ≥ δ )≤ 2exp
{
− 2δ 2

t(4K)2

}
Let δ =

√
32K2t ln(t). Then,

P
(
|Zt−EZt | ≥

√
32K2t ln(t)

)
≤ 2exp

{
−64K2t ln(t)

16K2t

}
= 2exp{−4ln(t)}= O

(
1
t4

)

While the above result gives a concentration for Nk(t) where for large t we can approximate

Nk(t) ≈ ENk(t), one can prove a concentration result using Azuma-Hoeffding inequality

as well (see 5.3.4). This involves a Doob Martingale argument, where we define Mn =

E[Nk(t)|Gn]. One can see that M0 = ENk(t) and Mt = Nk(t). The result comes from the text

[vdH14] by Hofstad, where it is shown that Mn is a martingale with bounded differences,

and thus by Azuma-Hoeffding inequality, one can arrive at a bound for |Mt−M0|.
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We now require an expression for the asymptotic degree distribution of the preferential

attachment graph. Essentially, we want a concentration for the empirical degree distribution

defined as follows.

Given Nk(t) as the number of vertices with indegree k, we define the empirical degree

distribution Pk(t) as

Pk(t) =
Nk(t)
t +1

where N0(0) = 1. We aim to arrive at a concentration for P(k), which is the probability that

a chosen vertex will asymptotically have indegree k. Thus, we wish to see

lim
t→∞

Pk(t) = P(k)

We begin by writing a recursion for E[Nk(t)]. For k = 0, given the past Gt , we have

N0(t +1) =


N0(t)+1, w.p. 1−

t
∑

u=0
( f (0)+g(u))1{dt (u)=0}

t
∑

u′=0
f (dt(u′))+g(u′)

N0(t), w.p

t
∑

u=0
( f (0)+g(u))1{dt (u)=0}

t
∑

u′=0
f (dt(u′))+g(u′)

(1.2)

and for k > 0 we have

Nk(t +1) =



Nk(t)+1, w.p.

t
∑

u=0
( f (k−1)+g(u))1{dt (u)=k−1}

t
∑

u′=0
f (dt(u′))+g(u′)

Nk(t)−1, w.p

t
∑

u=0
( f (k)+g(u))1{dt (u)=k}

t
∑

u′=0
f (dt(u′))+g(u′)

Nk(t), w.p 1−
t
∑

u=0
( f (k−1)+g(u))1{dt (u)=k−1}

t
∑

u′=0
f (dt(u′))+g(u′)

−
t
∑

u=0
( f (k)+g(u))1{dt (u)=k}

t
∑

u′=0
f (dt(u′))+g(u′)

(1.3)

Note that the sum
t
∑

u=0
f (dt(u)) can be rewritten as ∑ j f ( j)N j(t). Using lemma 1.2.1, we can

replace ∑ j f ( j)N j(t) by ∑ j f ( j)EN j(t)+O
(√

t ln(t)
)

for large t. For now, we consider

the following claim to be true.

Claim 1.2.2. Consider P(k) as defined above. Then,

P(k) = lim
t→∞

ENk(t)
t

7



We will prove this claim after the main results. We now move on to our final concen-

tration result for
t
∑

u=0
g(u) where g(u) := Xu are random variables.

We use Chernoff bound (see 5.3.2) to obtain concentration bounds.

Lemma 1.2.3 (Bounded random variables). Let {Xi}ti=1 be random variables such that

P(Xi ∈ [a,b]) = 1 ∀i. Let X =
t
∑

i=1
Xi and µ = E[X ]. Then, ∀δ > 0,

P(|X−µ| ≥ δ µ)≤ exp
{
− δ 2µ2

t(b−a)2

}
Remark 1.2.4. By choice of δ = (b−a)

µ

√
t ln t, we get

P
(
|X−µ| ≥ (b−a)

√
t ln t

)
≤ exp{− ln t}= O

(
1
t

)
So, for large t and for g(u) := Xu, where {Xi}i are as in the lemma, we have

t

∑
u=0

g(u) = µ +O
(√

t ln t
)
=

t

∑
u=0

µu +O
(√

t ln t
)

where µi = EXi.

Lemma 1.2.5 (Poisson random variables). Let Xi ∼ Poi(λ ) ∀i. Then, for δ ∈ (0,λ ], we

have

P(|Xi−λ | ≥ δ )≤ 2exp
{
−cδ 2

λ

}
where c > 0 is an absolute constant.

Remark 1.2.6. Since sum of Poisson random variables is also a Poisson random variable,

we have X =
t
∑

i=1
Xi ∼ Poi(

t
∑

i=1
λi). Thus, our inequality becomes

P

(∣∣∣∣∣X− t

∑
i=0

λi

∣∣∣∣∣≥ δ

)
≤ 2exp

−
cδ 2

t
∑

i=1
λi


Let Λ = supi λi. Then,

t

∑
i=1

λi ≤ tΛ

=⇒ − 1
t
∑

i=1
λi

≤− 1
tΛ

8



By taking δ =
√

Λ

c t ln t, we get

P

(∣∣∣∣∣X− t

∑
i=1

λi

∣∣∣∣∣≥
√

Λ

c
t ln t

)
≤ 2exp

−
c
(√

Λ

c t ln t
)2

tΛ

= O

(
1
t

)

and thus we can write
t
∑

u=0
Xu =

t
∑

u=0
λu +O

(√
t ln t

)
Lemmas 1.2.3 and 1.2.5 are exercises from [Ver].

1.2.2 Main Results

We aim to arrive at a relation between P(.) and the choice of f and the limit of the sum

s(t) :=
t
∑

u=0
g(u). We consider three regimes for s(t) as follows.

1. Sub-linear: lim
t→∞

s(t)/t = 0.

2. Linear: lim
t→∞

s(t)/t = c, for some constant c.

3. Super-linear: lim
t→∞

s(t)/t = ∞ and for some n ≥ 2, lim
t→∞

s(t)/tn = c for some constant

c.

Using the concentration result for Nk(t) and taking conditional expectation of the recur-

rences in 1.2 and 1.3, we obtain

E[N0(t +1)−N0(t)|Gt ] = 1−

t
∑

u=0
( f (0)+g(u))1{dt(u)=0}

t
∑

u′=0
f (dt(u′))+g(u′)

= 1−
f (0)N0(t)+

t
∑

u=0
(g(u))1{dt(u)=0}

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
) ;

E[Nk(t +1)−Nk(t)|Gt ] =

t
∑

u=0
( f (k−1)+g(u))1{dt(u)=k−1}

t
∑

u′=0
f (dt(u′))+g(u′)

−

t
∑

u=0
( f (k)+g(u))1{dt(u)=k}

t
∑

u′=0
f (dt(u′))+g(u′)

=

t
∑

u=0
g(u)(1{dt(u)=k−1}−1{dt(u)=k})

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

+
f (k−1)Nk−1(t)− f (k)Nk(t)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

9



Taking expectation, we obtain the following recurrence relation.

E[N0(t +1)] = E[N0(t)]

1− f (0)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)


+1−

t
∑

u=0
g(u)P(dt(u) = 0)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

E[Nk(t +1)] = E[Nk(t)]

1− f (k)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)


+

f (k−1)E[Nk−1(t)]+
t
∑

u=0
g(u)(P(dt(u) = k−1)−P(dt(u) = k))

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

(1.4)

We now state and prove our main results for the degree distribution for various regimes of

fitness.

Sublinear regime

Theorem 1.2.7. For the preferential attachment law in 1.1.6 and for P(.) defined in 1.2.2,

with the following conditions

1. ∃ K ≥ 0 such that ∀i, | f (i+1)− f (i)|< K

2. ∑ j f ( j)P( j) = µ , where µ ∈ R∗+

3. s(t)
t → 0 as t→ ∞

we have the following relations between f and P.

f (k) =
µ

P(k) ∑
i>k

P(i)

or equivalently,

P(k) =
µ

µ + f (k)

k−1

∏
i=0

f (i)
µ + f (i)

Proof. Consider the recursion 1.4. We consider the case k = 0. By taking at = EN0(t), and

bt =
t f (0)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

10



and

ct = 1−

t
∑

u=0
g(u)P(dt(u) = 0)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

we get a recurrence of the form

at+1 = at

(
1− bt

t

)
+ ct

Thus, we can apply lemma 5.3.5 to obtain limt→∞
EN0(t)

t = limt→∞
ct

1+bt
. By our claim, this

is precisely P(0). Now,

lim
t→∞

bt =
f (0)

∑ j f ( j)P( j)

and

lim
t→∞

ct = 1

since
t
∑

u=0
g(u)P(dt(u) = 0)≤ s(t).

Define h(k) = f (k)
∑ j f ( j)P( j) . Thus,

P(0) =
1

1+h(0)

Similarly, for k > 0, take at = ENk(t),

bt =
t f (k)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

and

ct =

f (k−1)E[Nk−1(t)]+
t
∑

u=0
g(u)(P(dt(u) = k−1)−P(dt(u) = k))

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

So,

lim
t→∞

bt = h(k)

and

lim
t→∞

ct = h(k−1)P(k−1)

By the same technique, we obtain

P(k) =
h(k−1)P(k−1)

1+h(k)
= P(0)

k

∏
i=1

h(i−1)
1+h(i)

=
1

1+h(k)

k−1

∏
i=0

h(i)
1+h(i)

11



On the other hand, we can rewrite our last expression as

P(k)+h(k)P(k) = h(k−1)P(k−1)

=⇒ h(k)P(k) = h(k−1)P(k−1)−P(k)

= h(0)P(0)−
k

∑
i=1

P(i)

= 1−
k

∑
i=0

P(i)

Lastly, we see that by definition of h(k), we have h(k) = f (k)
µ

. Using this in the expressions

above yields the desired result.

This result is similar to the ones obtained in [DM08] and [TGP20].

In the following figure, we take a log− log plot of degree distribution P(k) and (k+1)2 for

the sublinear case where g(u)≡ 0, that is, the constant fitness case as in 1.1.7. We observe

that our analytical expression matches closely to the simulated plot. An error at the tail end

is natural due to low sampling at low probability ends and finite size effects 3.

Figure 1.1: A comparison of simulated degree distribution (averaged) and analytical degree

distribution for 500 vertices with f (k) = ak+b and g(u) = 0

2Note that we take log(k+1) instead of log(k), since we will have vertices of degree k = 0.
3This is a common effect in real world systems, due to which the tail ends tend to fall exponentially rather

than in a power-law fashion.
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Example 1.2.8. A few examples of the sublinear cases are as follows.

1. g(u)≡ 0

2. g(u) := gt(u) = exp(u− t)

3. g(u) = 1
u

Example 1.2.9. Take f (dt(u)) = adt(u)+b and g(u)≡ 0. This is the case when m = 1 for

1.1.7. We know that µ = ∑ j f ( j)P( j). Then,

µ = ∑
j

f ( j)P( j)

= lim
t→∞

1
t ∑

j
f ( j)EN j(t) (by definition)

= lim
t→∞

1
t ∑

j
f ( j)N j(t) (using lemma 1.2.1)

= lim
t→∞

1
t

t

∑
u=0

f (dt(u))

= lim
t→∞

1
t

t

∑
u=0

(adt(u)+b)

= lim
t→∞

at +b(t +1)
t

= a+b

Take a′ = a/(a+b) and b′ = b/(a+b). Taking F(k) = f (k)
µ

, we get

P(k) =
1

1+F(k)

k−1

∏
i=0

F(i)
1+F(i)

=
∏

k−1
i=0 (a

′i+b′)

∏
k
i=0(1+a′i+b′)

=
1
a′

∏
k−1
i=0 i+b′/a′

∏
k
i=0 i+(b′+1)/a′

=
1
a′

Γ(k+ b′
a′ )Γ(

1+b′
a′ )

Γ(k+ 1+b′+a′
a′ )Γ(b′

a′ )

k→∞−−−−−−−−−−−−−−−−−−→
(using Stirling’s Approximation)

1
a′

Γ(1+b′
a′ )

Γ(b′
a′ )

k−(1+ 1
a′ ) =

1
γ

Γ

(
1+β

γ

)
Γ

(
β

γ

) k−
(

1+ 1
γ

)

where β ,γ ∈ (0,1]. This is in line with example 1 from [DM08]. One can see that for γ = 1,

we obtain the power law exponent ‘-2’.

Example 1.2.10. Consider the case when g(u) ≡ C for some constant C. Although this

might not seem like a sublinear case, one can absorb the constant C into the function f and

obtain g(u)≡ 0, which is a sublinear case.
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Linear Regime

Theorem 1.2.11. For the preferential attachment law in 1.1.6 and for P(.) defined in 1.2.2,

with the following conditions

1. ∃ K ≥ 0 such that ∀i, | f (i+1)− f (i)|< K

2. ∑ j f ( j)P( j) = µ , where µ ∈ R∗+

3. s(t)
t → 0 as t→ ∞

we have the following relations between f and P.

f (k) =
µ +G
P(k) ∑

i>k
P(i)−G

or equivalently,

P(k) =
µ +G

µ +2G+ f (k)

k−1

∏
i=0

f (i)+G
f (i)+µ +2G

Proof. The proof is similar to that of Theorem 1.2.7. For k = 0, take at = EN0(t),

bt =
t f (0)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

and

ct = 1−

t
∑

u=0
g(u)P(dt(u) = 0)

∑ j f ( j)EN j(t)+ s(t)+O
(√

t ln t
)

Define h(k) = f (k)
∑ j f ( j)P( j)+G and Gk = limt→∞

1
t

t
∑

u=0
g(u)P(dt(u) = k). We see that

lim
t→∞

bt = h(0)

and

lim
t→∞

ct = 1− G0

µ +G

Thus, P(0) = 1−(G0/(µ+G))
1+h(0) .
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For k > 0, using a similar technique, we obtain

P(k) =
h(k−1)P(k−1)+ Gk−1−Gk

µ+G

1+h(k)

=⇒ h(k)P(k) = h(k−1)P(k−1)−P(k)+
Gk−1−Gk

µ +G

= h(0)P(0)−
k

∑
i=1

P(i)+
G0−Gk

µ +G
K

= ∑
i>k

P(i)− Gk

µ +G

Now, ∑k h(k)P(k)+ G
µ+G = ∑k f (k)P(k)+G

∑ j f ( j)P( j)+G = 1. Thus,

h(k) =
h(k)

∑ j h( j)P( j)+G/(µ +G)
=

(µ +G)h(k)
∑ j(µ +G)h( j)P( j)+G

Recall that h(k) = f (k)
∑ j f ( j)P( j)+G , and we have f = (µ +G)h. Thus,

f (k) = (µ +G)
1

P(k) ∑
i>k

P(i)− Gk

P(k)

Finally, we simplify Gk.

We know that Gk = limt→∞
1
t

t
∑

u=0
g(u)P(dt(u) = k). Recall that Pk(t) is the probability that

a chosen vertex at time t has indegree k, and is precisely Nk(t)
t . By lemma 1.2.1 and claim

1.2.2, for large t, Pk(t) is close to P(k). In fact, Pk(t) = P(k)+O

(
1
t +
√

ln t
t

)
(which we

will see in lemma 1.2.17 in the next section). Then,

Gk = lim
t→∞

1
t

t

∑
u=0

g(u)P(dt(u) = k)

= lim
t→∞

1
t

t

∑
u=0

g(u)Pk(t)

= lim
t→∞

1
t

t

∑
u=0

g(u)(P(k)+ εt)

= P(k) lim
t→∞

t
∑

u=0
g(u)

t
= GP(k)

where εt is the error term going to 0. Thus, we get our desired expression for f (k). For the
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equivalent expression, we have

P(k) =
h(k−1)P(k−1)+ G

µ+g(P(k−1)−P(k))

1+h(k)

=
f (k−1)P(k−1)+G(P(k−1)−P(k))

µ +G+ f (k)

=⇒ P(k) =
f (k−1)+G

f (k)+µ +2G
P(k−1)

=
µ +G

f (k)+µ +2G

k−1

∏
i=0

f (i)+G
f (i)+µ +2G

Similarly,

f (k) = (µ +G)
1

P(k) ∑
i>k

P(i)− Gk

P(k)
=

µ +G
P(k) ∑

i>k
P(i)−G

Remark 1.2.12. One can see that for G = 0, this reduces to the sublinear case.

Example 1.2.13. Consider g(u) = α + 1
u . Then, since

t
∑

u=0

1
u ≈ log(t), we obtain G = α .

Example 1.2.14 (i.i.d. Poisson random variables). Let g(u) := Xu ∼ Poi(λ ) ∀u and f (k) =

ak+b. From lemma 1.2.5, we get G = λ , and we know from example 1.2.9 that µ = a+b.

The plot below shows the comparison between analytical and simulated degree distribution.

In the following figure, we take a log− log plot of degree distribution P(k) and (k+1) for

the linear case where g(u) := Xu ∼ Poi(λ ), that is, example 1.2.14. We observe that our

analytical expression matches closely to the simulated plot.
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Figure 1.2: A comparison of simulated degree distribution (averaged) and analytical degree

distribution for 500 vertices with f (k) = ak+b and g(u) = Poi(λ ) i.i.d

Superlinear regime

Theorem 1.2.15. For the preferential attachment law in 1.1.6 and for P(.) defined in 1.2.2,

with the following conditions

1. ∃ K ≥ 0 such that ∀i, | f (i+1)− f (i)|< K

2. ∑ j f ( j)P( j) = µ , where µ ∈ R∗+

3.

t
∑

u=0
g(u)

t
t→∞−−−→ ∞ and

t
∑

u=0
g(u)

tn
t→∞−−−→ G 6= 0 for some n≥ 2.

Then,

P(k) =
1

2k+1

Proof. For k = 0, the previous proofs give us

bt =
t f (0)

∑ j f ( j)EN j(t)+
t
∑

u=0
g(u)

=⇒ lim
t→∞

bt = 0

and

ct = 1−

t
∑

u′=0
g(u′)P(dt(u′) = 0)

∑ j f ( j)EN j(t)+
t
∑

u=0
g(u)

=⇒ lim
t→∞

ct = 1− G0

G

17



Thus,

P(0) = 1− G0

G
= 1−P(0) =⇒ P(0) = 1/2

For k > 0, we have from the recursion

bt =
t f (k)

∑ j f ( j)EN j(t)+
t
∑

u=0
g(u)

and

ct =
f (k−1)ENk−1(t)

∑ j f ( j)EN j(t)
t
∑

u=0
g(u)

+

t
∑

u′=0
g(u′)(P(dt(u′) = k−1)−P(dt(u′) = k))

∑ j f ( j)EN j(t)+
t
∑

u=0
g(u)

So, b = 0 and c = Gk−1−Gk
G . By simplifying Gk as before, we get

P(k) =
Gk−1−Gk

G
= P(k−1)−P(k) =⇒ P(k) = P(k−1)/2

In the following figure, we take a log− log plot of degree distribution P(k) and (k + 1)

for the superlinear case where g(u) is a polynomial. We observe that the degree of the

polynomial does not seem to affect the degree distribution.

Figure 1.3: A comparison of simulated degree distribution (averaged) and analytical degree

distribution for 500 vertices with f (k) = ak+b and g(u) = u3 and g(u) = u10
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1.2.3 Concentration of degree sequence

We now prove the claim 1.2.2.

From lemma 1.2.1, we already know that Nk(t)≈ ENk(t) for large t.

Our proof will be along similar lines as that in [vdH14].

Denote by N̄k(t) = ENk(t).

Proposition 1.2.16. ∃ a constant C such that ∀t ≥ 0, and all k ∈ N∪{0},

|N̄k(t)− (t +1)P(k)| ≤C

Proof. We can write the expressions in 1.4 as

N̄k(t +1) = N̄k(t)+1{k=0}

+

f (k−1)N̄k−1(t)− f (k)N̄k(t)+
t
∑

u=0
g(u)(P(dt(u) = k−1)−P(dt(u) = k))

∑ j f ( j)N̄ j(t)+ s(t)+O
(√

t ln t
)

(1.5)

with the convention that f (−1) = 0.

If N̄k(t)≈ (t+1)P(k) for large t, then we have N̄k(t+1)− N̄k(t)≈ P(k), and thus the above

expression will become

P(k) = 1{k=0}+
f (k−1)P(k−1)− f (k)P(k)+Bk−1−Bk

∑ j f ( j)N̄ j(t)+ s(t)+O
(√

t ln t
) t

where Bi =

t
∑

u=0
g(u)P(dt(u)=i)

t .

Thus,

(t +2)P(k) = (t +1)P(k)+P(k)

= (t +1)P(k)+1{k=0}+
f (k−1)P(k−1)− f (k)P(k)+Bk−1−Bk

∑ j f ( j)N̄ j(t)+ s(t)+O
(√

t ln t
) t

= (t +1)P(k)+1{k=0}+
f (k−1)P(k−1)− f (k)P(k)

∑ j f ( j)N̄ j(t)+ s(t)+O
(√

t ln t
)t

+

t
∑

u=0
g(u)(P(dt(u) = k−1)−P(dt(u) = k))

∑ j f ( j)N̄ j(t)+ s(t)+O
(√

t ln t
)

(1.6)
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Define εk(t) = N̄k(t)− (t+1)P(k) and S = ∑ j f ( j)N̄ j(t)+ s(t)+O
(√

t ln t
)

. Then, using

1.5 and 1.6, we have

εk(t +1) = N̄k(t +1)− (t +2)P(k)

= εk(t)+
f (k−1)

S
(εk(t−1))− f (k)

S
(εk(t))

= εk(t)
(

1− f (k)
S

)
+

f (k−1)
S

(εk(t−1))

We assume that S < ∞. For k = 0, we have

|ε0(t +1)|= |ε0(t)|
(

1− f (0)
S

)
<C

since f are bounded for lemma 1.2.1 to hold. Similarly, for k > 0, we have

|εk(t +1)| ≤ |εk(t)|
(

1− f (k)
S

)
+ |εk(t−1)| f (k−1)

S
<C

We now use lemma 1.2.1 and proposition 1.2.16 as key ingredients in our next lemma.

Lemma 1.2.17. P
(
|Pk(t)−P(k)| ≥ C

t

(
1+
√

t ln t
))

= O
(

1
t4

)
Proof. From the previous proposition, we have

|N̄k(t)− (t +1)P(k)| ≤C

Thus, using this in lemma 1.2.1, we get

P
(
|Nk(t)− (t +1)P(k)| ≥C

(
1+
√

t ln t
))

= O

(
1
t4

)
Since Nk(t) = (t +1)Pk(t), we are done.
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Chapter 2

Subtrees in PA graphs

A directed preferential attachment graph for m = 1 is a directed tree. Thus, at each vertex v

of the graph, a tree structure can be observed. Two useful quantities can be studied in these

tree structures, which are as follows.

• Size of the subtree (denote by Yv(t)), which is the number of vertices in the tree

structure excluding the root vertex v.

• Height of a vertex in the tree Tv(t) of the vertex v, which we denote by X(v,s), where

s is the local time of the vertex in the tree.

Note that while the subtree size is a global phenomenon, the height of a given vertex in a

subtree is a local phenomenon. Both of these quantities will prove to be essential ingre-

dients in studying a centrality measure known as PageRank for a preferential attachment

graph. The second quantity will additionally be essential to study another centrality mea-

sure known as Closeness Centrality. Both of these will be covered in the next chapter.

2.1 Urn Models

Urn Processes are a useful class of random processes. Typically, one studies one or more

urns filled with balls of different colours. The classical problem is where one urn is con-

sidered with balls of black and white (or any two) colours, reinforced at every time step.

One aims to answer questions such as “What is the fraction of balls of a particular colour

after a large period of time?” or “How many times does one pick a particular colour over
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n draws?”, and so on. An urn process is usually represented by a reinforcement matrix.

For the classical problem described above, we have a 2×2 matrix given as follows.

R =

a11 a12

a21 a22


where

• a11 = number of black balls added if a black ball is picked

• a12 = number of black balls added if a white ball is picked

• a21 = number of white balls added if a black ball is picked

• a11 = number of white balls added if a white ball is picked

We say an urn is balanced if a11 + a12 = a21 + a22. The study of urn processes dates

back to the post-Renaissance era. Although mentioned in the works of Markov (1905-07)

and Ehrenfest and Tatyana (1907), the idea was popularized by Eggenberger and Pólya in

1923. The Pólya-Eggenberger urn model is one of the most widely studied urn process,

represented by the following schema.

R =

s 0

0 s


where s> 0. Thus, much like the process of preferential attachment, the Pólya-Eggenberger

urn follows the property “rich get richer”.

The standard Pólya urn has a constant reinforcement matrix. Variations of this include

time dependent or random reinforcements, both of which we will see for our preferential

attachment models. For the standard case, the random variable that counts the number of

times a ball of a particular colour is drawn converges to a beta distribution (see Theorem

5.1.1).

We restrict ourselves to the case where f in 1.1.6 is linear and m = 1. In particular, we are

interested in models 1.1.7, 1.1.8 and 1.1.9.
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2.2 Size of a Subtrees and asymptotic fraction of one colour

2.2.1 Preferential Attachment trees and their corresponding urns

Constant Fitness Model

Recall from 1.1.7, the probability of attachment (for m = 1) is given by

P((t +1)→ v|Gt) =
adt(v)+b

at +b(t +1)

Consider an urn with initial number of black balls b0 = v and initial number of white balls

w0 = (a+b)v, with the reinforcement given by

R =

a+b 0

0 a+b


Note that the urn starts at global time t = v. Pictorially, we can visualize the urn and the

graph as follows (with v = 3)

0

1 2

3

(a) Tree

3(a+b) b

(b) Urn

Figure 2.1: v = 3, t = 3

One can see that the probability of attaching to ‘3’ is the same as the probability of

picking a black ball, and the probability of attaching to anything but ‘3’ is the same as

picking a white ball. Now, assume the incoming vertex “4” attaches to “3”,
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0

1 2

34

(a) Tree

3(a+b) a+2b

(b) Urn

Figure 2.2: v = 3, t = 4

and “5” attaches to “2”.

0

1 2

34 5

(a) Tree

4(a+b) 2a+3b

(b) Urn

Figure 2.3: v = 3, t = 4

One can verify that the probability of attaching to the tree structure of “3” (that is either

to “3” or “4”) is the same as the probability of picking a black ball. Thus, the random

variable Yv(t), which is the number of vertices in the tree structure of v (or the size of Tv(t))

is the same as the number of times a black ball is drawn.

Time dependent fitness model

Recall from 1.1.8, the probability of attachment (for m = 1) is given by

P((t +1)→ v|Gt) =
adt(v)+g(v)

at +
t
∑

u=0
g(u)

Note that we have not taken any time dependency for g.

Consider an urn with initial number of black balls b0 = g(v) and initial number of white

balls w0 = av+ ∑
i/∈Tv(t)

g(i), with the reinforcement given by

Rt =

a+g(t) 0

0 a+g(t)


Considering the same graph evolution as in the previous case, for v = 3 we have
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0

1 2

3

(a) Tree

3a+∑i=0,1,2 g(i) g(3)

(b) Urn

0

1 2

34

(c) Tree

3a+∑i=0,1,2 g(i) a+g(3)+g(4)

(d) Urn

0

1 2

34 5

(e) Tree

4a+∑i=0,1,2,5 g(i) 2a+∑i=3,4 g(i)

(f) Urn

Figure 2.4: v = 3 for t = 3,4 and 5

Thus, we once again see that the random variable Yv(t) is the same as the number of

times a black ball is chosen.

Random Fitness

Recall from 1.1.9, the probability of attachment (for m = 1) is given by

P((t +1)→ v|Gt) =
adt(v)+ξv

at +
t
∑

u=0
ξu

25



The relation here is similar as the above case, where we replace g(u) with the random

variable ξu. Thus, our reinforcement is given by

Rt =

a+ξt 0

0 a+ξt


2.2.2 Main Results

We can now use results for Pólya urns to determine the size of subtree of a preferential

attachment graph.

Lemma 2.2.1 (Subtree in a constant fitness model). For a preferential attachment graph

whose law is given by 1.1.7 with m = 1, the size of subtree Yv(t) rooted at v at time time t is

given by

P(Yv(t) = k) =
Γ(t− v+1)Γ

( b
a+b + k

)
Γ(t− k)Γ

( b
a+b + v

)
Γ(t− v− k+1)Γ(k+1)Γ(v)Γ

( b
a+b

)
Γ
( b

a+b + t
)

Proof. Using the construction in the previous subsection, we can study a Pólya urn process

with a reinforcement s = a+b and w0 = (a+b)v and b0 = b. Note that the urn evolves for

t− v time steps. Then, using theorem 5.1.1

P(Yv(t) = k) =
(

t− v
k

)
b(a+2b)...(b+(k−1)(a+b))

(b+(a+b)v)(b+(a+b)(v+1))...(b+(t−1)(a+b))

× ((a+b)v)((a+b)(v+1))...((t− k−1)(a+b))

=

(
t− v

k

)〈 b
a+b

〉
k

〈
(a+b)v

a+b

〉
t−v−k〈

b+(a+b)v
a+b

〉
t−v

(where < .. >k indicates a prodcut of k terms)

(multiplying and dividing by the appropriate products and using Γ(x) = (x−1)!, we get)

=

(
t− v

k

)
Γ
( b

a+b + k
)
Γ

(
(a+b)v

a+b + t− v− k
)

Γ

(
b+(a+b)v

a+b

)
Γ

(
(a+b)v

a+b

)
Γ
( b

a+b

)
Γ

(
b+(a+b)v

a+b + t− v
)

=
Γ(t− v+1)Γ

( b
a+b + k

)
Γ(t− k)Γ

( b
a+b + v

)
Γ(t− v− k+1)Γ(k+1)Γ(v)Γ

( b
a+b

)
Γ
( b

a+b + t
)

For a = b = 1, the above result coincides with Lemma 5.1 from [AL06].

While for the constant fitness model one can derive an expression for Yv(t), for the other

two cases we get an expression for Bv(t), that is, the number of black balls present in the

urn at time t.
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Lemma 2.2.2 (Time Dependent fitness). For a preferential attachment graph whose law is

given by 1.1.8 with m = 1, with s(t) = a+ f (t) where s(t) is a positive integer sequence,

then, bn
τn

converges almost surely to a limit L ∈ [0,1] where EL = b0
τ0

, b0 is number of black

balls and τ0 is total number of balls.

This result comes from theorem 5.1 from [FM] by Feng and Mahmoud.

Lemma 2.2.3 (Random Fitness). For a preferential attachment graph whose law is given

by 1.1.9 with m = 1 and X := Xt = a+ξt and µ = E[X ], bn converges almost surely to the

following

µ
B

W +B
t +o(t)

where W and B can be characterized as follows:

Let fX(s) = sE(sX) be the probability generating function for X + 1 and φB(u) = E[e−uB]

and φW (u) = E[e−uW ], then

φ
−1
B (v) = (1− v)exp

(∫ v

1

[
µ

fX(s)− s
− 1

s−1

]
s.

)
= φ

−1
W (v)

This result comes from theorem 4 and its subsequent remarks from [Agu09] by Rafik.

2.3 Height of vertex in a subtree

We now find the probability generating function for the height of a vertex in the tree struc-

ture of another vertex. We restrict ourselves to the model 1.1.7.

Proposition 2.3.1. Let Xs := X(v,s) be the height of the sth vertex in the subtree Tv(n) of v.

Then,

P(Xs = k |Fs,Yv(t)≥ s) =
b

s−1
∑

i=0
1{Xi=k−1}+a

s−1
∑

i=0
1{Xi=k}

(a+b)s−a

where Fs is generated by X0,X1, ...Xs−1.

Proof. When studying the random variable Xs, we look at the tree structure of v which

contains s vertices, labelled v0,v1, ..,vs−1, where v0 = v. It is trivial to see that X0 = 0 and

X1 = 1. One can also see that Xi = k can occur only if i≥ k, i.e., one cannot have the event

{Xs = k} for k > s.
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For the sth vertex to be a part of the tree structure, its height must lie between 1 and s, that

is, it must connect one of the v′is for i ∈ [0,s−1]. Thus, it has s choices to connect to. The

sum of indegrees of these s vertices is a(s− 1), and the sum of the “+ b′′ terms from the

preferential attachment rule is just bs.

For a fixed k, for Xs to be k, vs must attach to a vertex of height k− 1. If there are al-

ready vertices of height k, they contribute to the indegree of the vertices of height k− 1.

Thus, for the total number of choices of height k−1, given by
s−1
∑

i=0
1{Xi=k−1}, the sum of in-

degrees of these choices (which contribute to the preferential attachment law) will be given

by
s−1
∑

i=0
1{Xi=k}. Thus, if K is the scaling factor at +b(t +1) for global time t, we get

P(Xs = k |Fs,Yv(t)≥ s) = P(vs 7→ vi | vi = k−1, i ∈ [0,s−1])

=
∑vi:vi=k−1,i∈[0,s−1](adt(vi)+b)/K

((a+b)s−a)/K

=

b
s−1
∑

i=0
1{Xi=k−1}+a

s−1
∑

i=0
1{Xi=k}

(a+b)s−a

Lemma 2.3.2 (Height of a vertex). For Xs defined as above,

E[cXs | Yv(t)≥ s] =
Γ
(
s+ bc

a+b

)
Γ
( b

a+b

)
Γ
(
s+ b

a+b

)
Γ
( bc

a+b

)
Proof.

E[cXs |Fs,Yv(t)] =

s
∑

k=0
ck
[

b
s−1
∑

i=0
1{Xi=k−1}+a

s−1
∑

i=0
1{Xi=k}

]
(a+b)s−a

(using the proposition)

=

a
s
∑

k=0
ck
1{Xs−1=k}+b

s
∑

k=1
ck
1{Xs−1=k−1}

(a+b)s−a

+
((a+b)(s−1)−a)

(a+b)s−a

s
∑

k=0
ck
[

b
s−2
∑

i=0
1{Xi=k−1}+a

s−2
∑

i=0
1{Xi=k}

]
(a+b)(s−1)−a

=

a
s
∑

k=0
ck
1{Xs−1=k}+bc

s−1
∑

k=0
ck
1{Xs−1=k−1}

(a+b)s−a
(change of indices)

+
((a+b)(s−1)−a)

(a+b)s−a
E[cXs−1 |Fs−1,Yv(t)≥ s]
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Taking double expectation over E[. | Yv(t)≥ s], we get

E[cXs | Yv(t)≥ s] =
E[cXs−1 | Yv(t)]
(a+b)s−a

(a+bc+(a+b)(s−1)−a)

(since 1{Xs−1=s} = 0, so
s−1

∑
k=0

ck
1{Xs−1=k−1} =

s

∑
k=0

ck
1{Xs−1=k−1})

By properties of conditional expectation and using E1{A} = P(A), we get

E[cXs | Yv(t)≥ s] =
bc+((a+b)s−a)−b

(a+b)s−a
E[cXs−1 | Yv(t)]

=

(
1− b(1− c)

(a+b)s−a

)
E[cXs−1 | Yv(t)]

(by using the recursion and X0 = 0, we get)

=
s

∏
k=1

(
1− b(1− c)

(a+b)k−a

)
=

s

∏
k=1

(
(a+b)k− (a+b)+bc

(a+b)k−a

)
=

s

∏
k=1

(
k+ bc

a+b −1

k+ b
a+b −1

)

=
Γ
(
s+ bc

a+b

)
Γ
( b

a+b

)
Γ
(
s+ b

a+b

)
Γ
( bc

a+b

)

For a = b = 1, this result coincides with Lemma 6.2 of [AL06].
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Chapter 3

Centrality measures for PA graphs

While degree distributions give a reasonable idea of how a graph looks like, they are a very

simplistic form of centrality measures used to study graphs. A degree distribution usually

only tells us frequencies of degrees in the graph, which can be a helpful indication to point

out hubs or existence of concentration of edges onto a certain vertex or vertices. There are

other forms of centrality as well, which take into account weights, direction of the edges,

number of neighbours and next nearest neighbours and so on. We focus on two popular

centrality measures, namely PageRank and Closeness Centrality.

3.1 PageRank

3.1.1 Introduction

Introduced in 1996 by Larry Page and Sergey Brin, PageRank was introduced as an al-

gorithm for site scoring and page ranking. Motivated by the search engine “RankDex”,

PageRank laid the foundation for what is now the modern Google search engine. PageRank

was influenced by citation networks and Hyper Search, and is a variant of another cen-

trality measure known as EigenCentrality. Like EigenCentrality, PageRank assigns a score

based on a node’s (or vertex) connections and the connections’ connections. Additionally,

PageRank also accounts for direction and weights.

The paper [Ye] introduces a Markov chain formulation of PageRank, which is also the

definition used in [AL06]. Proofs of results in this section borrow ideas from the latter
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paper.

Before formally defining PageRank, we give some preliminaries.

Definition 3.1.1 (Markov Chain). A (time homogeneous) Markov chain MC(P) is a discrete

stochastic process such that

P(Xn+1 = x|Xn = xn, ...,X1 = x1) = P(Xn+1 = x|Xn = xn)

The transition probabilities pi j of the Markov chain are defined as

pi j = P(Xn = j|Xn−1 = i)

and is independent of time n. The matrix P of entries pi j is called the transition matrix, and

the set of all values that the Markov chain can attain is called the state space S .

Definition 3.1.2. For a Markov chain MC(P), the stationary distribution π is a (row) vector

such that

πP = π;

π1T = 1

where 1 is a row vector of ones.

3.1.2 Markov Chain formulation

Definition 3.1.3. Let P be a transition matrix for n vertices with entries {pi j}i, j∈S (where

S is the state space) where if i has m outgoing links, then pi j =
k
m if k links connect i to j.

Define P̃ = cP+ 1−c
n E where E is an n×n matrix with entries 1. Then, the Pagerank of the

network is defined as the stationary distribution π of P̃.

c is often referred to as the damping factor and is a value in (0,1). Google’s algorithm

chooses c = 0.85.

One can see that P̃ is stochastic (since sum of row entries is 1), aperiodic (since due to

the matrix E, every state is reachable from another in 1 step), and irreducible (since there

always exists a path from one state to another). Thus, there exists a unique vector π that is

the stationary distribution of P̃.
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Lemma 3.1.4. The Pagerank of a vertex v > 0 at time n is given by

πv(n) =
1− c
n+1

(
1+ ∑

l∈Lv(n)

( c
m

)|l|)
(3.1)

where Lv(n) is the set of all paths that lead to v at time n from vertices v+1,v+2, ...n. For

the root vertex v = 0, we have

π0(n) =
1

n+1

(
1+ ∑

l∈L0(n)

( c
m

)|l|)
(3.2)

Proof. Since the vertex labels start from ‘0’, at time n, the graph consists of n+1 vertices.

We know that P̃ = cP+
( 1+c

1+n

)
E where E = [1T 1T ...1T ] is a matrix with all entries equal

to 1, P is the preferential attachment matrix and I is the identity matrix.

Then,

πP̃ = πcP+π

(
1− c
1+n

)
[1T ...1T ] = π

So,

π(I− cP) =
(

1− c
1+n

)
1 =⇒ π =

(
1− c
1+n

)
1[I− cP]−1

=

(
1− c
1+n

)
(I +1 ∑

k≥1
(cP)k)

For some vertex v at time n,

πv(n) =
(

1− c
1+n

)(
1+

(
1 ∑

k≥1
(cP)k

)
v

)

where (..)v denotes the vth entry of the vector.

So, we need to show (1 ∑
k≥1

(cP)k)v = ∑
l∈Lv(n)

( c
m

)|l|
Consider a Markov chain MC(P). Then, for a fixed k, Pk is the kth step transition matrix. A

pre-multiplication by ck ensures that a transition of states occurs due to P and not uniformly

due to 1
n+1E. So,

1(cP)k
v = ck

∑
i∈S

pk
iv

We know that piv =
r
m = r

( 1
m

)
if r edges connect i to v. Thus, if there are ri paths of length

k connecting i to v, pk
i j = ri

( 1
m

)k
. Thus,

∑
i∈S

pk
iv = ∑

i∈S
ri

(
1
m

)k

= ∑
l∈Lv(n)

(
1
m

)|l|
1{|l|=k}
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Therefore,

πv(n) =
(

1− c
1+n

)(
1+ ∑

k≥1
∑

i∈S
ck pk

iv

)

=

(
1− c
1+n

)(
1+ ∑

k≥1
∑

l∈Lv(n)

( c
m

)|l|
1{|l|=k}

)

=
1− c
1+n

(
1+ ∑

l∈Lv(n)

( c
m

)|l|)

For v = 0, π0(n) = 1
1+n

(
1+ ∑

l∈L0(n)

( c
m

)|l|), since due to self-loops at 0, every term is

multiplied by the series (1+c+c2+ ...) = 1
1−c , which cancels out the (1−c) in the numer-

ator.

Corollary 3.1.4.1. For m= 1, let Tv(n) = {w |w 7→ v} be the tree rooted at v. For w∈ Tv(n),

define Xn(v,w) as the height of w in Tv(n), i.e., the length of the path from w to v.

Let Yv(n) =| Tv(n) | −1.

Consider elements of Tv(n) labeled in their local time form, with v := “0” in the local time

of Tv(n). Then

πv(n) =
(

1− c
1+n

)(
1+

Yv(n)

∑
s=1

cX(v,s)

)
(3.3)

For the root vertex, we have

π0(n) =
(

1
1+n

)(
1+

n

∑
s=1

cX(v,s)

)
(3.4)

We now have a neat expression for PageRank for the case m = 1. Our interest is now

in models for which a general m case can be reduced to m = 1. This brings us to our main

results.

3.1.3 Main Results

Theorem 3.1.5. Consider a growing preferential attachment graph {Gt}t with the proba-

bility of attachment Pu
t := P((t +1) 7→ u | Gt) such that

1. Pv
v = P((v+1) 7→ v | Gv) is independent of m

2. EGt P
u
t is independent of m, ∀u at time t

Then, Eπm
v (n) = Eπv(n), that is, m does not affect expected PageRank.
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Proof. Let v be a vertex of the growing network. We shall prove this by induction.

At time t = v+1, let the incoming vertex v+1 attach k≤m edges to v, and the rest to other

vertices. Recall that

πv(n) =
1− c
1+n

(
1+ ∑

l∈Lv(n)

( c
m

)|l|)
So, taking n = v+1 and taking expectation, for m edges, we get

Eπv(v+1) = E

[
1− c

1+ v+1

(
1+ ∑

l∈Lv(v+1)

( c
m

)|l|)]

=
1− c
v+2

+
1− c
v+2

E

[
∑

l∈Lv(v+1)

( c
m

)]
(since | l | =1)

=
1− c
v+2

+
c(1− c)
m(v+2)

m

∑
k=1

kP({ v+1 attaches k edges to v} )

since the expectation term is computing the expected number of paths (of length 1) that go

from v+1 to v, which is precisely the summation in the next step. Since the probability of

attaching k edges from v+ 1 to v is distributed binomially as Bin(m,Pv
v ) the summation

term is exactly mPv
v , and thus

Eπv(v+1) =
1− c
v+2

+
c(1− c)
m(v+2)

mPv
v

=
1− c
v+2

+
c(1− c)
(v+2)

Pv
v

(3.5)

which is independent of m. At time t = v+ n, consider the same vertex v. We will now

assume that ∀ k such that v < k ≤ v+n, Eπk(v+n) is independent of m.

For a given graph realization G at time v+n−1, one can write the pagerank as

π
G
v (v+n) =

1− c
v+n+1

(
1+ ∑

l∈Lv(v+n)

( c
m

)|l|)
=

1− c
v+n+1

(
1+

c
m ∑

l∈Lv(v+n)

( c
m

)|l|−1
)

=
1− c

v+n+1

(
1+

v+n

∑
k=v+1

c
m ∑

l′∈Lk(v+n)

( c
m

)|l′|
| ek→v |

)

where | ek→v | are the number of edges from k to v. Given to us the graph G of time v+n−1,

we know exactly the values of | ek→v |. Consider some vertex k between v+ 1 and v+ n,

since other vertices will not connect to v. The inner summation computers the paths that

reach k, whereas multiplication of this by | ek→v | gives us all paths to v. Note that the length

of the path till k will be |l|−1 = |l′|, where l ∈ Lv(v+n) and l′ ∈ Lk(v+n). This is taken

care of by the c
m term outside the inner summation.
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By opening the brackets and taking the 1−c
v+n+1 term into the summation, we get

π
G
v (v+n) =

1− c
v+n+1

+
v+n

∑
k=v+1

c
m

π
G
k (v+n) | ek→v |

πG
k (v+n) depends on vertices after k, whereas | ek→v | depends on a vertex before k. Given

information of k, and since this growing network is Markovian, the past and future are

independent. Thus, by taking expectation over all graph realizations G , for t = v+ n, we

obtain

Eπv =
1− c

v+n+1
+

c
m

v+n

∑
k=v+1

EπkE[| ek→v |]

=
1− c

v+n+1
+

c
m

v+n

∑
k=v+1

Eπk(mP(Bk))

Since | ek→v | is distributed binomially. Here, P(Bk) = P({one edge from k to v}). Let

A = 1−c
v+n+1 , then

Eπv = A+
c
m

v+n−1

∑
k=v+1

Eπk(mP(Bk))+
c
m
(mP(Bv+n)πv+n)

= A+ c
v+n−1

∑
k=v+1

EπkP(Bk)+AcP(Bv+n) (since πv+n(v+n) = A)

Now, we need to show P(Bk) is independent of m for all k, since πk is independent of m by

the induction hypothesis. We have

P(Bk) = P(k 7→ v) = ∑
G

P(k 7→ v | Gk−1 = G )P(Gk−1 = G )

= E[P(k 7→ v | Gk−1)] = EGk−1P
v
k

(3.6)

Thus,

Eπv = A+ c
v+n−1

∑
k=v+1

EπkP(Bk)+AcP(Bv+n)

is independent of m. This completes the proof.

Example 3.1.6. Let us consider the model defined by the law in 1.1.7.

1. Pv
v = b

at+b(t+1) (since dv(v) = 0) is independent of m

2. For some u and t,

E[dt+1(u) | dt(u)] = dt(u)+E[dt+1(u)−dt(u) | dt(u)]

= dt(u)+EX t
e (where X t

e ∼ Bin(m,Pu
t ) is the no. of edges attaching to u)

= dt(u)+mPu
t
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By properties of conditional expectation, we have

E[adt+1(u)+bm] = E[adt(u)+bm]+
m

m(at +bt +b)
E[adt(u)+bm]

Since the above yields a telescopic sum, and E[adu(u)+bm] = bm, we see that

E[adt+1(u)+ km] = mζ
u
t+1

Thus,

EGt P
u
t =

E[adt(u)+bm]

m(at +bt +b)
=

ζ u
t

at +bt +b

which is independent of m.

So, for our model, the expected PageRank is independent of m.

We now give the expression for the expected PageRank of the model defined in 1.1.7.

Theorem 3.1.7 (Expected PageRank). For the Preferential Attachment graph with law of

attachment as in 1.1.7, the expected PageRank is given by

Eπv(n) =

1− c
1+n

(
1+

n−v

∑
i=1

Γ(n− v+1)Γ( b
a+b + i)Γ(n− i)Γ( b

a+b + v)

Γ(n− v− i+1)Γ(i+1)Γ(v)Γ( b
a+b +n)

i

∑
s=1

(
Γ
(
s+ bc

a+b

)
Γ
(
s+ b

a+b

)
Γ
( bc

a+b

)))
(3.7)

Proof. The case m > 1 can be reduced to m = 1 for the preferential attachment model as

seen in example 3.1.6. For m = 1 by 3.1.4.1, we have

Eπv(n) =
1− c
1+n

(
1+E

Yv(n)

∑
s=1

cXs

)

=
1− c
1+n

(
1+E

n−v

∑
s=1

cXs1{Yv(n)≥s}

)
(since the tree Tv(n) would have evolved for n− v time steps)

=
1− c
1+n

(
1+

n−v

∑
s=1

E[cXs1{Yv(n)≥s}]

)

=
1− c
1+n

(
1+

n−v

∑
s=1

E[cXs,1{Yv(n)≥s} = 1]

)

=
1− c
1+n

(
1+

n−v

∑
s=1

∑
k

kP(cXs = k,1{Yv(n)≥s} = 1)

)
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By properties of conditional probability, we get

Eπv(n) =
1− c
1+n

(
1+

n−v

∑
s=1

∑
k

kP(cXs = k | 1{Yv(n)≥s} = 1)P(1{Yv(n)≥s} = 1)

)

=
1− c
1+n

(
1+

n−v

∑
s=1

E[cXs | Yv(n)≥ s]P[Yv(n)≥ s]

)

=
1− c
1+n

(
1+

n−v

∑
s=1

E[cXs | Yv(n)≥ s]
n−v

∑
i=s

P[Yv(n) = i]

)

=
1− c
1+n

(
1+

n−v

∑
s=1

E[cXs | Yv(n)≥ s]
n−v

∑
i=s

P[Yv(n) = i]

)

=
1− c
1+n

(
1+

n−v

∑
i=1

P[Yv(n) = i]
i

∑
s=1

E[cXs | Yv(n)≥ s]

)

By substituting expressions for P(Yv(n) = i) and E[cXs | Yv(n)≥ s] from Lemmas 2.2.1 and

2.3.2 respectively from the previous chapter, we obtain

Eπv(n)

=
1− c
1+n

(
1+

n−v

∑
i=1

Γ(n− v+1)Γ( b
a+b + i)Γ(n− i)Γ( b

a+b + v)

Γ(n− v− i+1)Γ(i+1)Γ(v)Γ( b
a+b)Γ(

b
a+b +n)

i

∑
s=1

(
Γ
(
s+ bc

a+b

)
Γ
( b

a+b

)
Γ
(
s+ b

a+b

)
Γ
( bc

a+b

)))

=
1− c
1+n

(
1+

n−v

∑
i=1

Γ(n− v+1)Γ( b
a+b + i)Γ(n− i)Γ( b

a+b + v)

Γ(n− v− i+1)Γ(i+1)Γ(v)Γ( b
a+b +n)

i

∑
s=1

(
Γ
(
s+ bc

a+b

)
Γ
(
s+ b

a+b

)
Γ
( bc

a+b

)))

The work of Konstantin Avrachenkov and Dmitri Lebedev in [AL06] goes further to

simplify the above expression for a = b = 1 using EKHAD package for Maple. This further

yields an expression for the asymptotic distribution of πv using mean-field approximations.

In the following figure, we compare our analytical expression for expected PageRank to a

simulated PageRank averaged over multiple iterations.
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Figure 3.1: A comparison of simulated and analytical expressions for expected PageRank

for 90 vertices for the attachment function ‘ f (k) = 2k+3’. Since the analytical expression

involves gamma functions, more computational power and memory is required to simulate

for a larger number of vertices.

3.2 Closeness Centrality

Another centrality measure is the closeness centrality, which is the reciprocal of “farness”.

Introduced by Bavelas in 1950, the centrality measure was defined as

C(x) =
1

∑y d(y,x)

where d(y,x) is the distance from vertex y to x. For a graph with multiple components, the

convention 1/∞ = 0 is used and the centrality measure is defined as

C(x) = ∑
y6=x

1
d(y,x)

Unlike PageRank, closeness centrality focuses on shortest paths reaching a vertex and as-

signs a score based on these paths.

Recall from chapter 2 that we have an expression for P(X(v,s) = k|Fs,Yv(t)). Let χ(v, t)

be the height of the t th global vertex in the tree of v. Then, the event

{χ(v, t) = k|t ∈ Yv(t), t = s locally}
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is the same as

{X(v,s) = k}

Thus,

P(χ(v, t) = k, t = s, t ∈ Tv(t)|Fs,Yv(t)) = P(χ(v, t) = k|t = s, t ∈ Tv(t),Fs,Yv(t))P(t ∈ Tv(t))

= P(χ(v, t) = k|t ∈ Tv(t),Fs,Yv(t))

×P({a black ball is picked from the urn corresponding to Yv(t)})

=

a
s−1
∑

i=0
1{Xi=k}+b

s−1
∑

i=0
1{Xi=k−1}

(a+b)s−a

((a+b)Yv(t)+b
(a+b)t +b

)

since the number of black balls is is (a+b)Yv(t)+b and total number of balls is (a+b)t+b.

Taking expectation over Fs we get

P(χ(v, t) = k, t ∈ Tv(t)|Yv(t)) =


s−1
∑

i=0
(aP(Xi = k)+bP(Xi = k−1))

(a+b)s−a

((a+b)Yv(t)+b
(a+b)t +b

)
(3.8)

So,

Ct(v) = ∑
u

1
χ(v,u)

=⇒ ECt(v) = ∑
u
E
[

1
χ(v,u)

]
Therefore,

ECt(v) =
t

∑
u=v+1

∑
k≥1

1
k
P(χ(v,u) = k,u ∈ Tv(t))

=
t

∑
u=v+1

∑
k≥1

∑
l≥1

1
k
P(χ(v,u) = k,u ∈ Tv(t)|Yv(u) = l)P(Yv(u) = l)

Equation 3.8 and lemma 2.2.1 can be used to substitute the two probabilities in the above

summation.
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Chapter 4

Influencing Opinion Dynamics of

growing populations

4.1 Background

Opinion dynamics is an area of study in mathematics, physics and sociology. A commonly

studied model is the voter model, which is a binary opinion dynamics model. The model

can be thought of as a graph with vertices as voters, labelled “0” or “1”. At random times,

a given vertex flips its opinion or label with a locally defined probability.

The model was introduced by Richard A. Holley and Thomas M. Liggett in 1975. Further

work was done by Kempe et.al. (2003) and Grtner and Zehmakan (2017). Kumar et.al. in

2018 studied the conformist and strong-willed variations of this model.

The aim is to influence an evolving population to skew their opinion in your favour. Existing

literature focuses on where to influence. A novel approach is when to influence, with certain

constraints. [SKG+20] studies dynamics of a fixed size population of mixed individuals and

aims to find the optimal influencing strategy under a time budget. [GMS20] introduces a

graph structure to this problem.

Our aim is to find the optimal strategy for a growing population.

We study a model of binary opinion evolution in a growing population that captures the

following behaviour:

1. Strong-willed individuals (Type S)- Type S: these individuals are not influenced by
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peers and change their opinions independent of anyone else in the population.

2. Conformist (Type C)- these individuals change their opinion based on the majority

(local or global) opinion at that given time and tend to adopt the “popular” opinion at

that time.

4.2 Preliminaries

We start with a finite population of M0 number of people at time t = 0, such that each

individual has a binary opinion (“Yes” or “No”) about a certain (fixed) topic of interest.

The evolution of opinions happens in discrete time. At each time step, opinion of the

system evolves in two steps:

1. A fixed number of individuals, denoted by Nc(t), are chosen uniformly at random and

they change their opinion behaving in one of three ways described above.

2. A fixed number of individuals, denoted by Na(t) and having opinion 1 with probabil-

ity αt and 0 with probability 1−αt are added to the population.

In this work, we assume Nc(t) = Nc,Na(t) = Na and αt = α for all t ≥ 0. At each time

t, depending on the absence or presence of the peer-influences, the individuals chosen for

opinion evolution update their opinions organically (S-type behaviour) or get influenced

(positively or negatively, i.e., C- or R-type behaviour) by the rest of the population. As

in [SKG+20], these models are called Hybrid S/C-type and Hybrid S/R-type. The presence

or the absence of peer influence at a given time-step is determined by a parameter λ ∈ [0,1].

That is, at any given time, the chosen Nc individuals behave strong-willed with probability

of updating her opinion organically λ and are influenced by their peers with probability

1−λ .

Define random variables {It(i)}1≤i≤Mt ,t≥0 taking values in {0,1}, where Ii(t) denotes the

opinion of the ith individual at time t. Thus,

Ii(t) =

1 if the opinion of ith individual at time t is Yes

0 if the opinion of ith individual at time t is No

41



Note that Mt+1 = Mt +Na. Thus, Mt increases linearly and deterministically. Define ran-

dom variables: Yt =
Mt
∑

i=1
It(i) and Nt = Mt−Yt as total number of people with opinion “Yes”

and the total number of people with opinion “No” at time t respectively.

As in the earlier models, an influencing agency can manipulate the transition probabili-

ties between the two opinions of any given individual in any given time-slot. However, the

influencing agency is assumed to have a time-budget constraint. That is, the agency can only

influence a fraction bT is the total time slots T , where b is fixed throughout. Thus, at each

time-slot a uniformly selected collection of Nc individual change their opinion from “Yes”

to “No” or vice-versa depending on their currently held opinion, the presence/absence of

the peer influence and the presence/absence of external influence. The aim of the influenc-

ing agency is to target the ‘]lq correct” time-slots so to ensure that the expected number

of people holding opinion “Yes” at time T is maximized. We aim to determine the best

strategies for this. In other words, we want to determine which slots should be influenced

maximize E[YT ]. An influencing strategy S consists of the time-slots (ti1, . . . , tibT ) that

should be influenced. If strategy S1 is better than strategy S2, it is denoted by S1�S2.

Definition 4.2.1 (Optimal Strategy). We call a strategy optimal if the influence according

to that strategy results in a larger expected number of “Yes” at the end of time T than the

expected number of “Yes” at the end of time T using any other influence strategy.

Thus, an optimal strategy S ∗ is such that S ∗�S , where S is any other collection

of bT time-slots to be influenced. As we shall see, due to monotonicity, in most cases

influencing the first or the last bT slots is optimal. We denote these strategies by SF and

SL respectively.

4.2.1 Model Dynamics

We begin by writing the evolution of Xt = Yt/Mt , that is, the fraction of individuals of

opinion 1 at time t. We divide the discussion into two cases: (i) Nc = k for a fixed k in [1,

M0], and (ii) Nc = Mt for all t.

We will write a general recursion for Xt+1.

Xt+1 = Yt+1
Mt+1

= Yt+It+1
Mt+1

= Mt
Mt+1

Xt +
It+1

Mt+1
(4.1)
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where It+1 is the change in the number of people of opinion 1 from tine t to t +1.

• Nc = k, where 1≤ k ≤M0 is a constant (M0 is the initial size of the population)

The realizations of the random variable It+1 depend on the two independent pro-

cesses described in the preliminary section, that is, due to change in opinion of the

population followed by addition of new individuals. Thus, we can write It+1 as

It+1 = ONc
t+1 +ONa

t+1, where ONc
t+1 is the change due to opinion evolution and ONa

t+1

is the change due to newly added individuals.

Thus,

E[It+1|Ft ] = E[ONc
t+1 +ONa

t+1|Ft ]

= E[ONc
t+1|Ft ]+αNa

Now,

E[ONc
t+1|Ft ] = E[

Mt

∑
i=1

Oi(t +1)|Ft ]

=
Mt

∑
i=1

E[Oi(t +1)|Ft ]

where Oi(t +1) is the opinion change of the ith individual at time t +1.

We see that

E[Oi(t +1)|Ft ] = ((1−Xt)qt−Xt pt)P(i ∈Ck)

where Ck is the set of k chosen individuals whose opinion changes, and so E[Oi(t +

1)|Ft ] = ((1−Xt)qt−Xt pt)
k

Mt
. Thus, E[It+1|Ft ] = k((1−Xt)qt−Xt pt)+αNa.

• Nc = Mt

The major difference for this case is that all individuals of the population change

their opinion. Thus, one does not have to uniformly pick individuals, due to which

E[Oi(t +1)|Ft ] is just ((1−Xt)qt−Xt pt).

By a similar procedure as in the above case, we obtain the following recursion.

E[It+1|Ft ] = Mt((1−Xt)qt−Xt pt)+αNa (4.2)

We will see in the next section why this case needs to be handled differently.
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4.2.2 Stochastic Approximation for our model

The classical stochastic approximation scheme is given by the following iteration for x∈Rd

x(n+1) = x(n)+a(n) [h(x(n))+M (n+1)] , n≥ 0, (4.3)

such that:

1. {a(n)} is a positive step-size sequence satisfying

∑
n

a(n) = ∞, ∑
n

a(n)2 < ∞.

2. h : Rd → Rd is Lipschitz.

3. {Mn}n≥0 is a square-integrable Martingale difference sequence with respect to a

suitable filtration.

4. supn ‖x(n)‖< ∞.

Then, from the stochastic approximation theory (see 5.2), we know that the iterates of (4.3)

converge almost surely to the stable equilibria of the solutions of the O.D.E. asymptotically

with probability one.

ẋ(t) = h(x(t)), t ≥ 0. (4.4)

We now write a stochastic approximation scheme for our model. By adding and subtracting

E[It+1|Ft ] in , we get

Xt+1 =
Mt+1−Na

Mt+1
Xt +

E[It+1|Ft ]

Mt+1
+

It+1−E[It+1|Ft ]

Mt+1

= Xt +
1

Mt+1
[E[It+1|Ft ]−NaXt ]+

µt

Mt+1

where µt = It+1−E[It+1|Ft ], and E[µt |Ft ] = 0 = E[µt ].

• Nc = k for a fixed k

In this case, we get:

Xt+1 = Xt +
1

Mt+1
[αNa + kqt− (kqt + kpt +Na)Xt ]+

µt

Mt+1
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Substituting pt = λ p+(1−λ )p(1−Xt) and qt = λq+(1−λ )qXt , we get

Xt+1 =Xt +
1

Mt+1
[k(λ−1)(q− p)X2

t −(kp+(2λ−1)kq+Na)Xt +λkq+αNa]+
µt

Mt+1
(4.5)

Note that conditions 4.2.2 are satisfied. In particular,

(i) Mt+1 = Mt +Na = M0+(t+1)Na. This is a linear step size, and thus ∑t Mt = ∞

and ∑t M2
t < ∞.

(ii) Here, h(x) = k(λ −1)(q− p)x2− (kp+(2λ −1)kq+Na)x+λkq+αNa, which

is a quadratic function in x. For λ = 1 or p = q, the function is linear and thus

Lipschitz. For other cases, |h(x2)− h(x1)| ≤ |(x2− x1)||k(λ − 1)(q− p)(x2 +

x1)−(kp+(2λ−1)kq+Na)|=K|x2−x1|, where 0 <K <∞ since x≤ 1. Thus,

the function is Lipschitz.

(iii) {µt}t is a Martingale difference sequence

(iv) Since Xt is the fraction of individuals with opinion 1, supt ||xt ||< ∞.

Now, D(x) := ∂h
∂x = 2k(λ −1)(q− p)x− (kp+(2λ −1)kq+Na).

For λ = 1 or q = p, D(x)< 0 for all x.

For other cases, consider the quadratic equation. Let its roots be A1 and A2 with

A1 > A2. Note that A1A2 =
λkq+αNa

k(λ−1)(q−p) and A1 +A2 =
(kp+(2λ−1)kq+Na)

k(λ−1)(q−p) . We need to

check the stability of the partial derivative at these roots, i.e., we need to see the sign

of D(x) = k(λ −1)(q− p)[2x− (A1 +A2)] at x = A1,A2.

For the case q > p for a general λ , the product of roots of the quadratic equation is

negative, which means A1 > 0 and A2 < 0. We can see that D(A2) > 0, which is

unstable, and D(A1)< 0, which is stable.

For the case q < p for a general λ , the product of roots is positive, which means

both roots are positive, since the fraction cannot be negative. Then, since A1 > A2,

D(A1)> 0 and D(A2)< 0, thus A2 is a stable solution.
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Thus, the iterates of the recursion (4.5) converge to the stable solutions of the ODE:

dxt

dt
=

1
M0 +(t +1)Na

(αNa + kqt− (kqt + kpt +Na)xt) (4.6)

That is, Xt
a.s.−−→ αNa

kq+kp+Na
, for qt = q, pt = p ∀t ≥ 0. Note that when Na = k the limit

only depends on p,q and α .

Substituting pt = λ p+(1−λ )p(1−Xt) and qt = λq+(1−λ )qXt in (4.6), we get

dxt

dt
=

k(λ −1)(q− p)x2
t − (kp+(2λ −1)kq+Na)xt +λkq+αNa

M0 +(t +1)Na
(4.7)

1. λ = 1

We focus on the ODE

dxt

dt
=
−(kq+ kp+Na)xt + kq+αNa

M0 +(t +1)Na

the solution to which is given by

xt =
kq+αNa

kp+ kq+Na
+

(
x0−

kq+αNa

kp+ kq+Na

)(
t +1+M0/Na

1+M0/Na

)−( kp+kq
Na +1

)
(4.8)

2. p = q = ρ

dxt

dt
=
−(2ρλk+Na)xt +λkρ +αNa

M0 +(t +1)Na

with the solution

xt =
λkρ +αNa

2λkρ +Na
+

(
x0−

λkρ +αNa

2λkρ +Na

)(
t +1+M0/Na

1+M0/Na

)−( 2λkρ

Na +1
)

(4.9)

3. General Case

The solution in this case is quite complicated, and is given by the following

expression

xt−A1

xt−A2
=

(
x0−A1

x0−A2

)(
t +1+M0/Na

1+M0/Na

)− k(1−λ )(q−p)(A1−A2)
Na

where A1 > A2 are the real distinct roots of the quadratic

P(xt) = k(λ −1)(q− p)x2
t − (kp+(2λ −1)kq+Na)xt +λkq+αNa

• Nc = Mt

The differential equation cannot be solved using the variable separable method, since

the function h := h(xt , t) has a time t parameter.
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4.3 Main results

4.3.1 Martingale Concentration

Note that while the stochastic approximation theory tells us that the recursion will converge

almost surely to the stable fixed point of the corresponding ODE, for large t, the trajectories

of the recursion and the solution fo the ODE are “close”. We now give a rigorous error

bound on the solution of the recursion and the approximate solution of the ODE for the

cases: λ = 1 and p = q.

Proposition 4.3.1. For the recursion (4.5), with λ = 1, pt = p,qt = q (or with qt = pt = ρ),

for sufficiently large T , given ε > 0,

P(|XT − x∗T |> ε)< µ,

where x∗T is the solution of the ODE given by (4.8) (or (4.9) respectively), and where µ is

given by

µ = 2exp

 −ε2

2
T
∑

i=1
c2

i


where

ct = Xt

(
t−1

∏
i=0

1− kp+ kq+Na

Mi+1

)−1

−Xt−1

(
t−2

∏
i=0

1− kp+ kq+Na

Mi+1

)−1

− kq+αNa

Mt

(
t−1

∏
j=0

1− kp+ kq+Na

M j+1

)−1

We prove the above for λ = 1, since the idea for the p = q is the same.

Proof. For λ = 1, our recurrence is given by

Xt+1 = Xt +
1

Mt+1
[αNa + kqt− (kqt + kpt +Na)Xt ]+

µt

Mt+1

=⇒ E[Xt+1|Ft ] = Xt

(
1− kp+ kq+Na

Mt+1

)
+

αNa + kq
Mt+1

Thus,

ZT = XT

(
T−1

∏
i=0

1− kp+ kq+Na

Mi+1

)−1

−
T−1

∑
i=0

kq+αNa

Mi+1

(
i

∏
j=0

1− kp+ kq+Na

M j+1

)−1

is an {Ft}t-martingale.
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One can see that |Zt+1−Zt | ≤ (3k+1+Na)∏
t
i=1

Mi
Mi−k(p+q) .

By the Azuma Hoeffding inequality (see 5.3.4), given ε > 0,

P(|ZT −Z0|> ε)< µ

where

µ = 2exp

 −ε2

2
T
∑

i=1
c2

i


and

ct = |Zt−Zt−1|

= Xt

(
t−1

∏
i=0

1− kp+ kq+Na

Mi+1

)−1

−Xt−1

(
t−2

∏
i=0

1− kp+ kq+Na

Mi+1

)−1

− kq+αNa

Mt

(
t−1

∏
j=0

1− kp+ kq+Na

M j+1

)−1

For ease of notation, we write

ZT
ε≈ Z0 with probability µ

Thus, with probability µ , we have

XT
ε≈ X0

T−1

∏
i=0

(
1− kp+ kq+Na

Mi+1

)
+

T−1

∑
i=0

kq+αNa

Mi+1

T−1

∏
j=i+1

(
1− kp+ kq+Na

M j+1

)

For large T , we have

T−1

∏
i=0

(
1− kp+ kq+Na

Mi+1

)
= exp

(
T−1

∑
i=0

log(1− kp+ kq+Na

Mi+1
)

)

≈ exp

(
−

T−1

∑
i=0

kp+ kq+Na

Mi+1

)
≈ exp

(
−
∫ T−1

0

(kp+ kq+Na)di
M0 +(i+1)Na

)

=

(
T +1+M0/Na

1+M0/Na

)−( kp+kq
Na +1

)

By a similar method, we also get
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T−1

∑
i=0

1
Mi+1

T−1

∏
j=i+1

(
1− kp+ kq+Na

Mi+1

)
≈
∫ T−1

0
(T +1+M0/Na)

−
(

kp+kq
Na +1

)
d j

( j+2+M0/Na)
−
(

kp+kq
Na +1

)
(M0 +( j+1)Na)

≈ (T +1+M0/Na)
−
(

kp+kq
Na +1

)
Na

∫ T−1

0

d j

( j+1+M0/Na)
−
(

kp+kq
Na

)

=
(T +1+M0/Na)

−
(

kp+kq
Na +1

)
kp+ kq+Na

((T +M0/Na)
kp+kq

Na +1− (1+M0/Na)
kp+kq

Na +1)

Using these two approximations, we obtain

XT
ε≈ X0

(
T +1+M0/Na

1+M0/Na

)−( kp+kq
Na +1

)

+

(
kq+αNa

kp+ kq+Na

)1−
(

T +1+M0/Na

1+M0/Na

)−( kp+kq
Na +1

)
with probability µ , where

µ = 2exp

 −ε2

2
T
∑

i=1
c2

i


where

ct = |Zt+1−Zt | ≤ (3k+1+Na)
T

∏
i=1

Mi

Mi− k(p+q)

4.3.2 Optimal Strategies

In this section we compare the two extreme influencing strategies SF and SL. For SF , we

influence the first bT slots (where b ∈ [0,1]) with probabilities pt = p̃ and qt = q̃. Since the

solution of the recursion tracks the solution of the ODE, we solve the ODE and compare

the final fraction of people with opinion “Yes” by integrating the appropriate ODEs for

the given slots of time. We assume throughout that the influencing agency is rational and

therefore q̃ > p̃.

Let XL
T and XF

T be the ODE solutions for last and first bT respectively. Define the following:
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• x = k((p̃+ q̃)− (p+q))

• A(x) = kq̃+αNa
k(p̃+q̃)+Na

− kq+αNa
kp+kq+Na

• χ = T
1+M0/Na

Let D(x) = XL
T −XF

T . Then,

D(x) = XL
T −XF

T

= A

1−
(

χ +1
(1−b)χ +1

)−( x+kp+kq
Na +1

)
−
(

χ +1
bχ +1

)−( kp+kq
Na +1

)
+

(
x0−

kq+αNa

kp+ kq+Na

)
((1−b)χ +1)x/Na(χ +1)−

(
x+kp+kq

Na +1
)

−
(

x0−
kq̃+αNa

kp̃+ kq̃+Na
(bχ +1)−x/Na(χ +1)−

(
kp+kq

Na +1
))

Theorem 4.3.2. Given x = 0 and q̃ > q, p̃ < p, for α = 1/2, we have SL >> SF .

Proof. Using stochastic approximation, we can analyse D(0). One can see that

D(0) = A

1−
(

χ +1
(1−b)χ +1

)−( kp+kq
Na +1

)
−
(

χ +1
bχ +1

)−( kp+kq
Na +1

)
+(χ +1)−

(
kp+kq

Na +1
)

= A×Fb(χ)

where Fb(χ) attains a minima at b = 0 or b = 1. In particular, F0(χ) = F1(χ) = 0.

To analyse the optimality in general, we have the following cases:

(a) For M0 << T or M0 >> T and M0 << Na or M0 ≈Na then χ ≈ γT for some constant γ

(for example γ = 1/2 for M0 ≈ Na). γ is very small for large T and we can take χ ≈ T .

(b) For M0/Na >> T , χ ≈ ε for ε very small.

(c) For M0 ≈ T >> Na, χ ≈ 1.

Theorem 4.3.3. For k = 1 and for χ very large, i.e., for T >> 1+M0/Na, both strategies

are optimal at A(x) = 0 (denote as xA). For x ∈ [−2,xA), SL >> SF and for x ∈ (xA,2],

SL << SF .
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(sketch). Take χ = L where L is very large, such that L+ 1 ≈ L and cL+ 1 ≈ cL for any

real c. Then,

D(x)≈ A

1−
(

1
1−b

)−( x+kp+kq
Na +1

)
−
(

1
b

)−( kp+kq
Na +1

)
Given that x must lie within [−2,2] for k = 1, one can see that D(x) = 0 when A(x) = 0,

and that D(x) is decreasing with an increasing x.

Theorem 4.3.4. For χ very small, i.e., for T << 1+M0/Na, both strategies are optimal.

Proof. Take χ = ε , where ε is very small. Then, 1+ ε ≈ 1, and bε ≈ ε . Then,

D(x)≈−A+A = 0

4.4 Simulations

For all simulations, we fix the following.

• T = 10,000

• p̃ = 0.1 and q̃ = 0.9

• α = 0.5

• b = 0.4

Through simulations, we study the effect of the parameters Na and Nc, as well as observe

how close the simulated opinion evolution is to the ODE solution obtained by stochastic

approximation. We then make some observations and conjectures, and compare them to

the main result of [SKG+20].
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4.4.1 Effect of Na

(a) p < q, M = 100 (b) p < q, M = 10000

(c) p > q, M = 100 (d) p > q, M = 10000

(e) p = q, M = 100 (f) p = q, M = 10000

Figure 4.1: Studying the effect of Na on influencing strategies across varying λ
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4.4.2 Effect of Nc

(a) p < q, M = 10000, last bT (b) p < q, M = 10000, first bT

(c) p < q, M = 10k (d) p > q,M = 10k

Figure 4.2: Studying the effect of Nc on influencing strategies across varying λ

4.4.3 Stochastic Approximation and ODE

(a) p < q, M = 100 (b) p < q, M = 10000
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(c) p > q, M = 100 (d) p > q, M = 10000

(e) p = q, M = 100 (f) p = q, M = 10000

Figure 4.3: A comparison of the solution of the ODE and the simulated population

4.4.4 Inferences

We analyse the simulated plots and compare our conjectures to Theorem 1 of [SKG+20].

p, q M

value

Results for fixed population

from Theorem 1 of [SKG+20]

Observations for growing popu-

lation with Na = Nc = 1

0.4, 0.8 100 Both optimal for λ = 0, SF for

λ > 0

∀ λ , SL is optimal

0.4, 0.8 10,000 ∃ λ ∗ s.t. SF optimal for λ < λ ∗,

SL for λ > λ ∗, both at λ ∗

similar result with λ ∗ ≈ 0.1

0.5, 0.5 100 SL optimal for λ > 0, both for

λ = 0

SL is optimal

0.5, 0.5 10,000 SL optimal for λ > 0, both for

λ = 0

SL is optimal, very close to SF

at λ = 0

0.8, 0.4 100 SL is optimal SL is optimal

0.8, 0.4 10,000 SL is optimal SL is optimal
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We additionally make the following conjectures

• As Na increases, the difference between the two strategies (SF and SL) starts reduc-

ing. This holds true for all values of p,q and M, with Nc = 1. Moreover, Na does not

change optimality.

Reasoning: Since Na individuals are added with opinion “1” or “0” with probability

α and 1−α resp., their effect on fraction of individuals of a given opinion drastically

overpowers the effect of changing the opinion of one individual as Na increases. Thus,

for Na sufficiently larger than Nc, the fraction of “1” would converge closer to α .

• The smaller the initial size M of the population, the larger is the difference between

SF and SL.

Reasoning: A smaller initial population is likely to converge faster than a larger

initial population, since the effect of adding an individual and changing an opinion

is more significant on a smaller M.

4.5 Future Scope

Existing literature studies Opinion Dynamics of a fixed size population with an underlying

graph structure. For a growing population, to introduce an underlying graph, the graph itself

must be dynamic, which is a property of the Preferential attachment graph. The opinion of

every individual can be thought of as their fitness.

In our work, at every step an individual is chosen uniformly at random. There have been

studies on models where the individual (who changes their opinion at time n) is chosen

according to an underlying Markov chain on the graph. The asymptotics of the opinion

evolution then depend on the stationary distribution of the underlying Markov chain, or the

Pagerank of that chain.
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Chapter 5

Appendix

5.1 Pólya Urn Process

A Pólya-Eggenberger urn, or simply the Pólya urn model, is an urn process consisting of

an urn with balls of two colours. At every time step, a ball from the urn is picked uniformly

at random, and put back into the urn along with a reinforcement of the same colour. Thus,

the process appropriately gets the property “rich get richer”. A key result in the theory of

Pólya urns is the distribution of number of successes, that is, the number of times a ball of

a particular colour is picked in n draws. The following theorem comes from Theorem 3.1,

chapter 3, of the text [Mah].

Theorem 5.1.1 (Distribution of number of successes). For a Pólya urn process with rein-

forcement matrix given by

R =

s 0

0 s


with an initial number of b0 black balls and w0 white balls, the probability Pw0,b0,s(n,k) of

drawing k black balls in n time steps is given by

Pw0,b0,s(n,k) =
(

n
k

)
b0(b0 + s)...(b0 +(k−1)s)w0(w0 + s)...(w0 +(n− k−1)s)

(b0 +w0)(b0 +w0 + s)...(b0 +w0 +(n−1)s)

Theorem 3.2 of the same text shows that the fraction of successes converges in distribu-

tion to the beta distribution.
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5.2 Stochastic Approximation

Theorem 5.2.1. Consider the following recurrence relation

x(n+1) = x(n)+a(n) [h(x(n))+M(n+1)] , n≥ 0

such that

1. {a(n)} is a positive step-size sequence satisfying

∑
n

a(n) = ∞, ∑
n

a(n)2 < ∞.

2. h : Rd → Rd is Lipschitz.

3. {Mn}n≥0 is a square-integrable Martingale difference sequence with respect to a

suitable filtration.

4. supn ‖x(n)‖< ∞.

Consider the ODE

ẋ = h(x(t))

Then, asymptotically with probability 1, the iterates 5.2.1 converge almost surely to the

stable equilibria of the solutions of the above ODE.

The result comes from Borkar (2008).

5.3 Concentration Inequalities

Theorem 5.3.1 (Hoeffding Inequality). Let {Xi}ti=1 be independent random variables such

that P(Xk ∈ [ak,bk]) = 1 for some finite real ak and bk. Let X =
t
∑

i=1
Xi. Then,

P(|X−EX | ≥ δ )≤ 2exp

−
2δ 2

t
∑

k=1
(ak−bk)2


Theorem 5.3.2 (Chernoff Bound). Let {Xi}n

i=1 be random variables and X =
n
∑

i=1
Xi. Then,

for all t > 0, we have

P(X ≥ a)≤ e−taE

[
∏

i
etXi

]
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For Xi independent, we get

P(X ≥ a)≤min
t>0

e−ta
∏

i
E[etXi]

P(X ≤ a)≤min
t>0

eta
∏

i
E[e−tXi]

The above bound is obtained by applying the Markov inequality to etX .

Definition 5.3.3. Let X = {Xt}t∈I be a real-valued and {Ft}t≥0-adapted stochastic pro-

cess with E[|Xt |] < ∞ for all t ∈ I, where {Ft}t≥0 is a filtration. Then, X is said to be a

martingale with respect to {Ft}t≥0 if

E[Xt |Fs] = Xs

for all t > s.

Theorem 5.3.4 (Azuma-Hoeffding inequality). Suppose {Xk}k≥0 is a martingale such that

almost surely

|Xk−Xk−1| ≤ ck

Then, for all N ∈ N and ε > 0, we have

P(|XN−X0| ≥ ε)≤ 2exp

− ε2

2
N
∑

k=1
c2

k


Lemma 5.3.5. Let {at}t≥0,{bt}t≥0 and {ct}t≥0 be three real sequences such that

at+1 = at

(
1− bt

t

)
+ ct

with limt→∞ bt = b≥ 0 and limt→∞ ct = c. Then,

lim
t→∞

at

t
=

c
1+b

Proof.

at+1

t +1
− c

1+b
=

(1−bt/t)at + ct

1+ t
− c

1+b

=

(
at

t
− c

1+b

)(
1− 1+bt

1+ t

)
+

(1+b)ct− (1+bt)c
(1+b)(t +1)

Take st =
∣∣at

t −
c

1+b

∣∣. Then,

st+1 ≤ st

∣∣∣∣1− 1+bt

1+ t

∣∣∣∣+ ∣∣∣∣(1+b)ct− (1+bt)c
(1+b)(t +1)

∣∣∣∣
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Since limt→∞ bt = b and limt→∞ ct = c, we can say that ∀ε > 0, ∃ t0 such that ∀t > t0,

|(1+b)ct− (1+bt)c|< ε . We also have that bt > b/2 ∀t > T for some T , and thus,

st+1 ≤ st

∣∣∣∣1− 1+bt

1+ t

∣∣∣∣+ ∣∣∣∣(1+b)ct− (1+bt)c
(1+b)(t +1)

∣∣∣∣
=⇒ st+1 < st

(
1− 1+b/2

1+ t

)
+

ε

(1+b)(t +1)

=⇒ st+1− ε < st

(
1− 1+b/2

1+ t

)
− ε

(
1− 1+b/2

(1+b)(1+b/2)(t +1)

)
< st

(
1− 1+b/2

1+ t

)
− ε

(
1− 1+b/2

t +1

)
< (st− ε)

(
1− 1+b/2

t +1

)
< (s1− ε)

t

∏
i=1

(
1− 1+b/2

i+1

)
For b > 0, the product goes to 0 as t→ ∞. For b = 0, we have

t

∏
i=1

(
1− 1

i+1

)
=

t

∏
i=1

(
i

i+1

)
=

1
t!

t→∞−−−→ 0

The above result and proof are from Chapter 3.3 of . We have a minor tweak of b ≥ 0

instead of b > 0 in this result.
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