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Abstract

Siegert pseudostates(SPS) are defined as the solutions of Schrödinger equation for
cutoff potentials satisfying outgoing boundary condition. The problem of solving
boundary value problem is then reduced to standard eigenvalue problem which
can be easily solved on computers. For sufficiently large number of basis functions
and cutoff radius the SPSs include bound states, antibound states, resonant states
and continuum. From a radial problem, the SPS formulation is extended to a full
one-dimensional axis problem. The computational efficiency of this method is then
illustrated by a number of model problems. To explain the quantum mechanical
tunneling of resonance states, calculated by SPS method, phase space quasiproba-
bility distribution functions : Wigner distribution and the Husimi distribution are
calculated. The negative regions appeared in the Wigner distribution represent the
interference pattern and tunneling involved in the resonance and anti-resoanance
states. From these distributions the grwoing and decaying nature of resonance and
anti-resonance states can be explained.
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Introduction 1
„You cannot do better design with a computer, but

you can speed up your work enormously.

— Wim Crouwel
(Graphic designer and typographer)

Resonance phenomena are very important and have been studied extensively for a
long time. Many texts introduce resonant states as poles of the scattering matrix.
Despite their long history, resonance phenomena have recently become increasingly
important, especially in the quantum mechanics of mesoscopic devices. Such devices
can be open quantum systems and the dynamics here proceeds through resonant
states. Such resonant conduction of mesoscopic systems has been extensively studied
experimentally Reference[1].

Resonances can be viewed as temporarily localized wave packets. These resonances
correspond to pre-dissociating, metastable states characterized by an energy Er and
a width Γr. The width is related to the lifetime τ by the energy-time uncertainty
τ = h̄/Γ. In a time-dependent picture, resonances can be viewed as localized wave
packets made by superposition of the continuum states, where τ = h̄/Γ qualitatively
resembles quasi bound states. In this chapter, we will introduce shape-type and
Feshbach-type resonances.

1.1 Shape-type resonances

These type of resonances are associated with the shape of the potential in which the
particle has to tunnel through a barrier[2]. In this type of resonance the shape of the
potential heavily affects the rate of decay of a resonance state. A simple example of
this is the potential barrier induced by a diatomic molecule’s rotation motion about
its center of mass. The potential energy curve of H2 molecule within the framework
of the Born-Oppenheimer approximation is given by:

VJ(r) = D(1− exp(−α(r − r0)))2 + J(J + 1)
µr2 (1.1)
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Fig. 1.1.: Ground state electronic energy of He2, as a function of internuclear distance r
and for different values of angular momentum

The form of potential is Morse type potential with an extra term representing
centrifugal potential. Here r is internuclear distance, D = 0.225, α = 1.174, r0 =
1.40 and reduced mass µ = 918.735. All quantities are given in atomic units. The
rotational quantum number J has values J = 0, 1, 2, · · · . The Morsh potential part
represents the diatomic molecule’s electronic energy in its ground state as a function
of internuclear distance r.

With an increase in the rotational quantum number, a potential rotational barrier
emerges. In Fig. 1.1 the point A in the potential energy curve is the local minimum,
and point B is the local maximum for rotationally excited state. The classical
dissociation energy is the difference between two extremum points. Rotationally
excited vibrational states which are located above the threshold can tunnel through
the potential barrier and dissociate. This dissociation of a molecule with lesser
energy than the classical dissociation is called pre-dissociation.

1.2 Feshbach resonances

Feshbach resonances are obtained for many-particle or a single particle in an
n−dimensional potential where n > 1. The Feshbach resonance states can be
described as a bound states which are coupled to the continuum. This bound state
then becomes metastable or quasistationary due to the coupling with the continuum.
This state has a finite lifetime and, as time passes, decays to the reaction products.

To understand the physics of Feshbach resonance, we use alkali metal atoms to
illustrate the main ideas. The ground state electronic structure of alkali metal atoms

2 Chapter 1 Introduction



Fig. 1.2.: Illustration of the Feshbach resonance

is such that all electronic shells are filled, and there is only a single valence electron
in the highest occupied shell. Alkali atoms have a nuclear spin I that couples to the
electronic spin by hyperfine interactions. For the alkali atoms, electrons have zero
orbital angular momentum, and the coupling arises only because of the electronic
spin S. So the value of total spin is F = I + S. With an applied magnetic field, the
levels are split because of the hyperfine interactions. With an external magnetic field
applied, the energy levels are further split because of the interactions of electron’s
magnetic moments and the nucleus with a magnetic field.

In Fig.1.2 there are two types of interaction potential named as "open channel" and
"closed channel". When atoms are far apart, and their spin configuration is such
that they see the interaction potential of the open channel. Due to the exchange
coupling, the spin of one of the colliding atoms gets flipped, so in this different
spin arrangement, atoms see a different interaction potential named as a closed
channel. Generally, the closed channel potential has bound states and let’s assume
that there is one bound state with energy Em which is close to the open channel
continuum. When a magnetic field is applied at a certain value of the magnetic
field, the coupling of this bound state of the closed channel continuum of the open
channel is maximum. The applied magnetic field at resonance defines the resonance
position.

1.2 Feshbach resonances 3



By this Feshbach resonance mechanism, the atom-atom interactions can be made
attractive or repulsive, very large or very small, thus modifying the properties of the
gas.

1.3 Siegert states

While deriving the Breit Wigner formula for nuclear reactions, Siegert explained
some singularity conditions in the scattering cross-section[3]. Those singularities
which lie near enough to the real axis cause a sharp resonance maximum in the
cross-section. Since singularity in scattering cross-section also implies a singularity
in the scattering matrix and a sharp peak appears at the resonance position. Siegert
states satisfy outgoing boundary conditions for the s-wave scattering problem.

Consider Schrödinger equation given by

(Ĥ − E)φ(r) = 0, Ĥ = −1
2
d2

dr2 + V̂ (r) (1.2)

Here potential is short ranged which vanishes as r →∞. Siegert states are defined
as the solutions to Eq. (1.2) which satisfy the boundary conditions given by

φ(0) = 0 at r = 0 (1.3)

and the outgoing boundary condition at r →∞,(
d

dr
− ik

)
φ(r)

∣∣∣∣
r→∞

= 0 (1.4)

Here momentum, k, and energy are related by

E = 1
2k

2 (1.5)

In Schrödinger equation, Eq. (1.2), momentum appears quadratically, and in the
boundary condition, Eq. (1.4), it appears linearly, so these equations can be solved
only iteratively with some initial guess. By the iterative process, only one state can
be solved at a time.
Here are some properties associated with momentum values calculated from Siegert
states.

• Siegert states can be satisfied simultaneously only for a discrete set of generally
complex mementum kn.
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• The values kn coincide with the poles of the scattering matrix in the complex
k plane.

• The values of kn for which Re(kn)=0 correspond to bound and antibound
states.

• Momentum with Re(kn) 6= 0 can only appear in the lower half of the complex
k plane.

The solution of Siegert states can be evaluated by considering the problem as a
differential equation and solving it iteratively for each state. In order to achieve the
completeness required for representing the continuum, one has to generate not just
one or a few but many solutions of Siegert states. This causes an essential practical
difficulty in handling the Siegert states.
The Siegert pseudostate formulation proposed by Tolstikhin, Ortrovsky and Naka-
mura [4,5] eliminates the problem of evaluation of Siegert states by the modified
boundary conditions. In this method, the boundary condition is applied at a finite
distance that makes the application of finite basis feasible. Utilizing finite basis
expansion, the problem is reduced to an eigenvalue problem. In this method, com-
putational labor is reduced essentially to that of a single matrix diagonalization.

1.3 Siegert states 5
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Siegert Pseudostate
Formulation

2

„A picture is worth a thousand words. An
interface is worth a thousand pictures.

— Ben Shneiderman
(Professor for Computer Science)

The inefficiency of computation of Siegert states[1] provides a great scope to work
with the new mathematical idea of Tolstikhin et al.[2][3] In the Siegert pseudostate
method the outgoing boundary condition is applied only to a finite point(

d

dr
− ik

)
φ(r)

∣∣∣∣
r→a

= 0 (2.1)

with some simplifications used to convert the Schrödinger equation to an eigenvalue
problem. In this case the potential V (r) is taken for a finite value r = a and for
r > a it is assumed to be zero. The solutions to these equations are termed Siegert
pseudostates(SPS)[2]. This cutting off the potential can lead to two possibilities -

First, if the potential V (r) vanishes for a finite value of r, then SPS coincides with
Siegert states for a sufficiently large a. Second, if the value of potential V (r) does
not vanish for large r, then SPS also depends upon the cutoff radius, and these are
quite different from the exact Siegert states.

In this chapter we discuss the mathematical aspects of Siegert pseudostate method
and learn how this method is computation friendly.

2.1 Boundary value problem in algebraic form

Reduction of cutoff boundary is very important to implement the method practically.
We expand the solutions of the SSCPs in terms of some square-integrable basis,

9



which reduces the differential equation to an algebraic form. For this a finite basis
employed is given by:

πi(r), i = 1, 2, 3, · · · , N (2.2)

which is assumed to be orthonormal on the interval [0, a],∫ a

0
πi(r)πj(r)dr = 0, (2.3)

and becomes complete when N →∞

N∑
i=0

πi(r)πi(r′) = I (2.4)

It is assumed that πi(0) = 0 , but no restriction is imposed near r = a. From the Eq.
(1.2), (1.3), and (1.5) (

−1
2
d2

dr2 + V̂ (r)− E
)
φ(r) = 0 (2.5)

Premultiplying this equation by πi(r) and integrating over r ∈ [0, a]

− 1
2

∫ a

0
πi(r)

d2φ(r)
dr2 dr +

∫ a

0
πi(r)V̂ (r)φ(r)dr − E

∫ a

0
πi(r)φ(r)dr = 0 (2.6)

Solving first term by part and applying boundary conditions given by Eq.(2.1)[
−1

2πi(r)
dφ(r)
dr

]a
0

+ 1
2

∫ a

0

dπi(r)
dr

dφ(r)
dr

dr+
∫ a

0
πi(r)V̂ (r)φ(r)dr

− E
∫ a

0
πi(r)φ(r)dr = 0

(2.7)

⇒ 1
2

∫ a

0

dπi(r)
dr

dφ(r)
dr

dr − ik

2 πi(r)φ(r) +
∫ a

0
πi(r)(V̂ (r)− E)φ(r)dr = 0 (2.8)

Only the values of φ(r) for r within the interval [0, a] appear in this equation. Hence
we can expand φ(r) in Eq.(2.8) in terms of the basis

φ(r) =
N∑
j=0

cjπj(r), 0 ≤ r ≤ a. (2.9)

Substituting this expansion in Eq.(2.8) we arrive at the algebraic equation(
H̃− ik

2 L− k2

2 I

)
c = 0 (2.10)

10 Chapter 2 Siegert Pseudostate Formulation



Here uppercase boldface characters represent matrices. c is matrix formed from
coefficient vectors in Eq. (2.9). I is identity matrix and elements of H̃ and L are
given by

H̃i,j = 1
2

∫ a

0

dπi(r)
dr

dφ(r)
dr

dr +
∫ a

0
πi(r)V̂ (r)φ(r)dr (2.11)

and
Lij = πi(a)πj(a) (2.12)

Now we introduce Bloch operator given by

L̂ = 1
2δ(r − a) d

dr
(2.13)

The Bloch-operator is derived by expanding the wave functions and their derivatives
in terms of a complete set of orthonormal continuous functions and their derivatives
defined within an internal region. Then we can write the Hermitized Hamiltonian

H̃ = −1
2
d2

dr2 + V̂ (r) + L̂ (2.14)

From this equation we can say that H̃ is a matrix representation of Ĥ within the
basis. The action of L on SPS is defined by∫ a

0
πi(r)L̂φ(r)dr = ik

2 πi(a)φ(a) (2.15)

By the construction itself we can see that the matrices H̃ and L are real and symmet-
ric.

2.2 Linearization of algebraic equation

Eq. (2.10) is a nonlinear eigenvalue problem. This equation can have non trivial
solutions only for a discrete set of k = kn; thus this can be taken as an eigenvalue
problem defining kn and corresponding eigenvectors ~cn. This unconventional eigen-
value problem cannot be solved by standard methods of linear algebra. To solve
such type of equations we consider a quadratic eigenvalue problem(

A + λB + λ2I
)

c = 0 (2.16)

2.2 Linearization of algebraic equation 11



where I is an identity matrix and A and B are some square matrices of dimension
N ×N , solution of the eigenvalue problem gives eigenvalues λ, and eigenvectors c.
This equation is related to Eq. (2.10) by the equations

A = 2H̃, B = −L, λ = ik (2.17)

Consider a matrix polynomial of the form

M(λ) = A + λB + λ2I (2.18)

From conventional methods of solving eigenvalue problem det[M(λ)]= 0, is the
solution of all eigenvalues. We observe that quadratic matrix polynomial has exactly
2N eigenvalues. Thus, for a given N there are 2N Siegert pseudostates. Considering
a new equation which is always true

0c + Ic̃ = λIc (2.19)

and are write Eq.(2.18) in a different form

− Ac− Bc̃ = λIc̃ (2.20)

Here c̃ = λc. Then Eq. (2.19) and Eq. (2.20) form a system of equations which are
a discrete analog of reducing a second order differential equation to a set of first
order equations. Hence can be written in the form of a matrix(

0 I
−A −B

)(
c
c̃

)
= λ

(
c
c̃

)
(2.21)

This is also an eigenvalue problem, but in comparison to Eq. (2.16), this is a linear
problem and can be dealt easily. The size of matrix in Eq. (2.21) is 2N × 2N
hence given 2N eigenvalues λn, which conside with 2N eigenvectors. Despite being
linear eigenvalue problem, matrix form in Eq.(2.21) is not symmetric and can be
symmetrized by pre-multiplying with the matrix(

B I
I 0

)
(2.22)

The resultant equation is(
−A 0
0 I

)(
c
c̃

)
= λ

(
B I
I 0

)(
c
c̃

)
(2.23)
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If matrices A and B are symmetric, this is a generalized symmetric algebraic eigen-
value problem, and can be solved numerically.

2.3 General Properties of Eigenvalues

Since matrix A and B are real and symmetrix, we can deduce some properties of the
eigenvalues kn from matrix algebra knowledge.

• Since the nature of eigenvalue problem is quadratic its eigenvlaues λn can be
real and complex.

• Multiplying
(
A + λB + λ2I

)
c = 0, by c† and taking the imaginary part of the

result we get
Im(λ)

[
2Re(λ)c†c + c†Bc

]
= 0 (2.24)

Eq. (2.24) is true for all solutions of the eigenvalue problem. From this
equation, we can consider two types of solutions-

• First, Im(λ) = 0 which means that real part of k is zero. So the values of k can
be purely imaginary.

• Second, the real part of λ should be positive or the imaginary part of k
should be only a negative value. This observation leads to the conclusion that
eigenvalues with nonzero real part of k can only occur in the lower half of the
complex k plane.

These properties coincide with the well-known properties of Siegert eigenvalues.

2.3 General Properties of Eigenvalues 13
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Numerical Implementation of
Siegert Pseudostates

3

„Innovation distinguishes between a leader and a
follower.

— Steve Jobs
(CEO Apple Inc.)

In this chapter we describe the numerical procedure used for calculating Siegert
pseudostates to treat radial type of potential as well as the potentials which span
full one dimensional axis. To numerically solve the problem, we need to calculate
matrix elements in Eq. (2.11) and (2.12) numerically. To calculate these matrix
elements and integrals we are going to utilize the finite basis representation and
discrete variable representation[1] methods.

3.1 Finite Basis Representation(FBR)

In FBR method a set of basis functions which is analytically known is considered

{ϕ(x)}nj=1 (3.1)

which is orthonormal 〈ϕj |ϕk〉 = δij , and becomes complete for n→∞

∞∑
j=1
|ϕj 〉〈ϕk| = 1 (3.2)

In this method matrix elements of desired operator are calculated analytically for a
finite number of basis functions. We then approximate the wavefunction as

ψ(x) =
n∑
j=1

ajϕj(x), aj = 〈ϕj |ψ〉 (3.3)

17



In the FBR method, the computation of the matrix elements of the potential

Vij = 〈ϕj |V |ϕk〉 =
∫
ϕ∗j (x)V (x)ϕk(x)dx (3.4)

requires N(N + 1)/2 integral evaluation which is very difficult and time consuming
for large basis and to do calculations for different potential we need to these integral
calculations again. The discrete variable representation (DVR)[1] offers a solution
to the integral problem.

3.2 Discrete Variable Representation(DVR)

DVR method makes use of both, a global basis set

{ϕ(x)}nj=1 (3.5)

and a set of grid points
{xα}nα=1 (3.6)

For the current problem we employ the set of functions in L2[−1, 1]

ϕn(x) = 1√
hn−1

Pn−1(x), n = 1, 2, · · · , N (3.7)

Where Pn(x) are the Legendre polynomials orthogonal on the interval x ∈ [−1, 1]
and hn are corresponding normalization constants given by[2]

hn = 2
2n+ 1 (3.8)

Then the basis ϕ(x) is orthonormal and becomes complete in L2[−1, 1] whenN →∞.
However, in practical calculations, one can deal with only a finite number N of
the basis functions. Such truncation of the basis is known as FBR, as previously
discussed.

To evaluate integral of potential it is convenient to switch from the FBR to DVR
method. This integral problem brings us to Gaussian Quadrature. General quadra-
ture rule is formulated as ∫

ω(x)f(x)dx =
n∑
i=1

wif(xi) (3.9)
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where ω(x) is weight function and f(x) is an arbitary function such that the integral
on the left-hand side of Eq. (3.9) exists and xi and ωi are quadrature abscissas and
weights, respectively. The formula(3.9) gives exact result for f(x), a polynomial of
degree less than 2N .

In our calculation some integral are exactly solvable and FBR matrix can be con-
structed and for some integral DVR is convenient. The quadrature and Christoffel-
Darboux[3] identity provides a foundatin for the FBR-DVR transformation.

πi(x) =
N∑
i=1

Tniϕn(x) (3.10)

where

Tni = κiϕnxi, κi =
√

ωi
w(xi)

(3.11)

and
TTT = I (3.12)

then we can write

ϕn(x) =
N∑
i=1

Tniπi(x) (3.13)

The DVR basis functions

πi(x), n = 1, 2, · · · , N (3.14)

also form and orthonormal set on the interval [-1,1]

3.3 Potential of Radial Type

To solve potential of radial type it is more convenient to consider somewhat modified
form of Eqs.(1.2), (1.3), (1.5) and (1.6). In this modified form wavefunction is
considered to be multiplied with r, which automatically satisfies Eq.(1.3). Then
modified Schrödinger equation is given by[

Ĥ − 1
2k

2r2
]
ϕ(r) = 0 (3.15)

Here Hamiltonian H is defined by

Ĥ = K̂ + Û(r) (3.16)
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K̂ = −1
2
d

dr
r2 d

dr
, Û(r) = 1

2 l(l + 1) + r2V̂ (r) (3.17)

Here l is the angular momentum. The advantage of this type of equations is that the
boundary condition at r = 0, which is, φ(0) = 0 is already satisfied. Then the final
set of equations, along with boundary conditions, is[

Ĥ − 1
2k

2r2
]
φ(r) = 0 (3.18)

(1
r

d

dr
− ik

)
φ(r)

∣∣∣∣
r=a

= 0 (3.19)

These equations must be solved numerically after expanding the Siegert pseudostates
in appropriate orthonormal basis.

3.4 Basis expansion in DVR and Matrix elements
evaluation

Since the interval of our interest is [0,a], for the numerical treatment, instead of r
we introduce a new variable x,

r = a

2(1 + x) (3.20)

Then the interval r ∈ [0, a] maps onto x ∈ [−1, 1], and the basis defined by Legendre
polynomial can be utilized. We can expand the solutions of Eq.(3.18), (3.19) and
(3.20) in terms of the DVR basis

φ(x) =
N∑
j=1

cjπj(x), −1 ≤ x ≤ 1 (3.21)

Substituting this into Eq.(3.18), pre-multiplying by πi(x) and integrating over x ∈
[−1, 1], and using the boundary condition, Eq.(3.20), we arrive at the algebraic
eigenvalue problem [

H̃− (ika− 1)L− 1
2k

2ρ

]
c = 0 (3.22)

where c is the vector of coefficients and the boldface characters denote matrices
defined with respect to the DVR basis:

H̃ij = K̃ij + U(ri)δij (3.23)

20 Chapter 3 Numerical Implementation of Siegert Pseudostates



K̃ij = 1
2

∫ 1

−1

dπi(x)
dx

(1 + x2)dπj(x)
dx

dx (3.24)

Lij = πi(1)πj(1), (3.25)

ρij = a2

2

∫ 1

−1
πi(x)(1 + x2)πj(x)dx (3.26)

All these matrices are real and symmetric.The tilde over H̃ and K̃ indicates that
they represent Hermitized version of the operators H and K, respectively. Matrix
elements of U(r), in Eq.(3.17), are calculated using quadrature. Matrix elements
of K̃ were calculated exactly in FBR basis and then transformed to DVR basis. FBR
integral process is given in Appendix (A.1), here we directly give formulas. For K̃ we
have

K̃ = TT K̃FBRT (3.27)

where

K̃FBR
nm = ϕn(1)ϕm(1)

[
2
n−1∑
k=1

ϕ2
k(1) + ϕ2

n(1)− 1
2

]
(3.28)

for n < m, and

K̃FBR
nn = 2ϕ2

n(1)
n−1∑
k=1

ϕ2
k(1) + 1

2

(
ϕ2
n(1)− 1

2

)
(3.29)

and K̃FBR
mn = K̃FBR

nm .

The matrix ρ is given by

ρij = a2

2
[
(1 + xi)2δij + ∆(N)TNiTNj

]
(3.30)

where

∆(N) = N2

4N2 − 1 (3.31)

Now we have our differential equations in algebraic form(3.23). To transform
Eq.(3.23) in similar form of Eq.(2.16) we multiply Eq.(3.26) from left by ρ−1/2, we
get [

ρ−1/2H̃− (ika− 1)ρ−1/2L− 1
2k

2ρ1/2
]

c = 0 (3.32)

Now we introduce a new vector of coefficients of

s = ρ1/2c (3.33)
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then
c = ρ−1/2s (3.34)

from Eq.(3.33) and (3.35) we write[
ρ−1/2(H̃ + L)ρ−1/2 − ikaρ−1/2Lρ−1/2 − 1

2k
2
]

s = 0 (3.35)

and
A = 2ρ−1/2(H̃ + L)ρ−1/2 (3.36)

B = −2aρ−1/2Lρ−1/2 (3.37)

Here A and B are symmetric matrices. After evaluating these matrices, generalized
eigenvalue can be solved for kn and c.
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3.5 Some model potentials

For a given potential V (r) and the cutoff radius a, each SPS eigenvalue kn converges
when N grows and the lower kn converge faster. Those kn that are not affected
by a further increment in N within a specified accuracy are basis-independent or
N -converged eigenvalues, all other depend upon basis.

3.5.1 Square well potential

V (r) =

V0, r ≤ a

0, r > a,
(3.38)

Here the values of parameters used are a = 1 and V0 = −112.5, same as used in [4].
Figure 3.1(a) and 3.1(b) present the distribution of some low lying SPS eigenvalues.

Fig. 3.1.: SPS eigenvalues and wavefunction plots for potential(3.42) with parameters
V0 = −112.5 and a = 1 calculated using N = 200 basis functions. (a) Complex
k−plane. (b) Complex energy plane. (c)Potential with wavefuctions of antibound
states. (d) Potential wiht wavefunctions of bound states
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in complex k and E plane respectively. Figure 3.1(c) and 3.1(d) show the potential
function together with wavefunctions at the energy positions for antibound and
bound states, respectively. For this potential, we have tabulated 5 bound, 4 antibound
states. Our calculations reproduce value with six-digit accuracy with the values
listed in [4].

Tab. 3.1.: Siegert pseudostate eigenvalues for potential (3.39)

SPS Method Reference[4]

14.708250193081 14.7082
13.799326980103 13.7993

Bound states 12.148872299511 12.1489
9.418482113583 9.41848
4.141591892980 4.14159

-14.616982093458 -14.6170
Antibound -13.395455200471 -13.3955
states -11.026114858494 -11.0261

-6.060279871637 -6.06028

Fig. 3.2(a) shows a larger portion of the SPS eigenvalues in the k plane, and Fig.
3.2(b) depicts the complete set. As can be seen, low-lying eigenvalues approach
asymptotic results; however, after a maximum number, the dependent SPSs start
diverging, forming a quite different pattern.

Fig. 3.2.: SPS eigenvalues for potential(3.42) with parameters V0 = −112.5 and a = 1
calculated using N = 200 basis functions. (a) Larger scale (b) All eigenval
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3.5.2 Smooth barrier with exponential decay

Rectangular potential calculations considered in the previous case showed high
accuracy with the data given in the literature. Since the realistic potentials of
interest in the collision theory usually have infinite range. In this case, we discuss
a potential that has exponential decay with respect to inter-nuclear distance. We
consider the potential

V (r) = 7.5r2e−r, 0 ≤ r ≤ ∞ (3.39)

which has a barrier with maximum height of ≈ 4.06 at r = 2. This potential
produces a resonance at ≈ 3.42. Fig. 3.3(a) and 3.3(b) show distributions of some

Fig. 3.3.: SPS eigenvalues and wavefunction plots for potential(3.42) with parameters
V0 = −112.5 and a = 1 calculated using N = 200 basis functions. (a) Complex
k plane (b)Complex energy plane (c)Potential with wavefuctions of resonance
states

low lying Siegert pseudostates calculated for cutoff radius a = 35 using N = 200
basis functions. Fig. 3.3(c) shows the potential function together with one resonant
state wavefunction. For infinite range potentials, some of the SPS converge within
specific accuracy with an increment of basis size N and cutoff radius a, and some
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SPS never converge. The converging SPS corresponds to bound states, antibound
states, and resonances lying close to Re(k) axis.

Resonance energy and corresponding momentum values calculated from the SPS
method are listed in Tab.(3.2), along with the values calculated from the complex
scaling method[6]. Eigenvalues from the SPS method are comparable with value
form complex scaling.

Tab. 3.2.: Siegert pseudostate eigenvalues for potential (3.40)

SPS Method Complex scaling[5]

k 2.617786170321-0.004879879318i -
Eres 3.426390310151-0.012774480593i 3.4262- 0.0125i

For decay type potential SPSs are more accurate for large cutoff radius. Fig. 3.4(a)
depicts complex k eigenvalues for different cutoff radius showed in different colors.
With the increment of cutoff radius resonant states and some low lying eigenvalues
converge up to certain accuracy, and the continuum states, before divergence, start
coming closer. The behavior of eigenvalue after divergence is not clear for now.

Fig. 3.4.: Complex eigenvalues for potential (3.40) for different cutoff radius a. (a) Complex
k values. (b) Complex energy values.
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3.5.3 Smooth barrier with Gaussian decay

In this model problem we discuss a potential which is Gaussian decay type. We
consider the potential

V (r) = (0.5r2 − 0.8)e−0.1r, 0 ≤ r ≤ ∞ (3.40)

which has a barrier with maximum height at r ≈ 3.40. This potential produces
mainly three resonance states in which the state lying close to Re(k) axis converges
very fast then the others with increment of basis size N and cutoff radius a. Figure

Fig. 3.5.: SPS eigenvalues and wavefunction plots for potential(3.41) with cutoff radius a =
25 calculated using N = 200 basis functions. (a) Complex-k plane. (b) Complex
energy plane. (c)Potential with wavefuctions of resonance states.

3.5(a) and 3.5(b) present the distribution of some low-lying SPS eigenvalues in
complex k and E plane, respectively. From these distribution, resonant states can be
easily differentiated as the magnitude of their complex part is less than continuum ,
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and in energy distribution Fig 3.5(b), they are positioned between decaying(fourth
quadrant) and growing(first quadrant) branch of the continuum. Figure 3.1(c) show
the potential function together with wavefunctions of resonant states.

For potential(3.41) we have tabulated the resonance states from SPS method and
the energies given in Ref[5]. We have seen the behavior of eigenvalues for different

Tab. 3.3.: Siegert pseudostate eigenvalues for potential (3.41)

SPS Method Ref[6]

0.620970939655 - 0.000058266636i -
Eres 1.784582848890 - 0.173750719112i 1.784582 - 0.173750i

2.451641547601 - 1.102731605100i 2.455696 - 1.111399i

cutoff radius a; now, we explore the effect of basis size on eigenvalue distribution.
Fig. 3.6(a) depicts complex k eigenvalues for a different number of basis functions.
For large and large basis , resonant states get converged up to certain accuracy,
but continuum also converges. In the energy plot, Fig. 3.6(b), we can see that
with an increment of basis, the converging branch of continuum starts extending in
real energy axis which means more and more eigenvalues, which are supposed to
converge for very large basis size, are being added to SPSs.

Fig. 3.6.: Complex eigenvalues plane for different values of basis functions N . (a)Complex
k plane. (b) Complex energy plane
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3.6 Full axis type potentials

In the radial problem considered previously, the spatial variable is restricted to a
half of the axis, with the zero boundary condition at the origin. In this section, the
formulation will be extended to the whole axis problem. Although the extension is
almost straightforward, the formulations are not identical. Here the possibility for
the waves to be ejected in two different directions in one axis is considered. The
whole axis problem enriches the possible physical applications.

We consider a particle moving in a one-dimensional potential. Then the Siegert
pseudostates are defined by:

(
Ĥ − E

)
φ(x) = 0, Ĥ = −1

2
d2

dx2 + V̂ (x), E = 1
2k

2 (3.41)

with boundary conditions (
d

dx
+ ik

)
φ(x)

∣∣∣∣
x=−a

= 0 (3.42)

(
d

dx
− ik

)
φ(x)

∣∣∣∣
x=a

= 0 (3.43)

Since the interval of our interest is [−a, a], for the numerical treatment, instead of r
we introduce a new variable x, such that

r = ax (3.44)

Then the interval r ∈ [−a, a] maps onto x ∈ [−1, 1], and the basis defined by
Legendre polynomial can be utilized. We expand the solutions of Eq.(3.45) in terms
of the DVR basis

φ(x) =
N∑
j=1

cjπj(x) − 1 ≤ x ≤ 1 (3.45)

Substituting this into Eq.(3.45), premultiplying by πi(x) and integrating over x ∈
[−1, 1], and using the boundary conditions, Eq.(3.46) and Eq.(3.47), we arrive at
the algebric eigenvalue problem(

H̃− ik

2 L− k2

2 I
)

c = 0 (3.46)
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here c denotes vector of coefficients matrix and boldface characters represent matrix
representation in DVR basis. I is identity matrix of size N ×N . Here the matrix
elements are given by

H̃ij = 2
a
K̃ij + a

2V (xi)δij (3.47)

K̃ij = 1
2

∫ 1

−1

dπi(r)
dr

dπj(r)
dr

dr (3.48)

Lij = πi(a)πj(a) + πi(−a)πj(−a) (3.49)

Poltential matrix is diagonal in DVR basis and xi are quadrature abscissas of Legnedre
polynomials. Calculation of matrix elements K̃ij and Lij are calculated in Legendre
FBR basis and then transformed by transformation matrix T. For K̃ we have

K̃ = TT K̃FBRT (3.50)

where

K̃nm = Kϕ
nm = 1

2ϕn(1)ϕm(1)
(⌊m− 2

2
⌋

+ 1
)(

2m− 2
⌊m− 2

2
⌋
− 1

)
(3.51)

for n ≥ m and n,m = 1, 2, 3, ... and Kϕ
mn = Kϕ

nm

And the matrix elements of L
L = TTLFBRT (3.52)

where
LFBRij = ϕn(1)ϕn(1) + ϕn(−1)ϕn(−1) (3.53)

Now we have differential equation in algebraic form and we can easily compare this
with general quadratic equation(

A + λB + λ2I
)

c = 0 (3.54)

A = 2H̃, B = −L, λ = ik (3.55)

Again the matrix A and B are real and symmetric.
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3.7 Model problems

3.7.1 Smooth barrier potential

Here we consider the potential

V (x) = (0.5x2 − 0.8)e−0.1x, −∞ ≤ x ≤ ∞ (3.56)

which is full axis version of potential(3.41). In this potential there one bound state
five resonant states in which three are highly converged.

Analysis of results from this potential is similar to the previous ones as Fig.3.7(a)
and 3.7(b) depict eigenvalues in complex k and energy plane respectively, and in
3.7(c) potential(3.57) with resonance state wavefunctions are plotted.

Fig. 3.7.: SPS eigenvalues and wavefunction plots for potential(3.57) with cutoff length
a = 25, calculated using N = 400 basis functions. (a) Complex−k distribution.
(b) Complex energy distribution. (c)Potential with wavefuctions of resonance
states.
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3.7.2 Rectangular double barrier

The model considered previously has smooth barrier with decaying nature. Here we
discuss a potential which is a rectangular double barrier given by

V (x) =


V0, for − 1.5 ≤ n ≤ −0.5

V0, for 0.5 ≤ n ≤ 1.5

0, for otherwise

(3.57)

Here the maximum height of barrier V0 is 10. This potential has many resonance
states but only two of them are converged upto two digit accuracy. Slow convergence
of the eigenvalues in this potential can be understood by derivative discontinuity of
this potential.

Fig. 3.8.: SPS eigenvalues and wavefunction plots for potential(3.58) with cutoff length
a = 10, calculated using N = 400 basis functions. (a) Complex-k distribution. (b)
Complex energy distribution. (c)Potential with wavefuctions of resonance states.

In Fig. 3.8(a) and 3.8(b), eigenvalues of SPS are plotted in complex k plane and
energy plane, respectively. Potential with wavefunctions for three resonant states
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are plotted in Fig. 3.8(c).

Despite of slow convergence of SPSs compared to smooth potentials the eigen-
values start converging with increment of basis size N . In Fig. 3.9 complex k
eigenvalues are depicted for different basis size. As can be seen for small basis size
N = 100 lower eigenvalues are chaotic but when basis size reaches 600 they arrange
in nice shape and start converging, though convergence in not very fast

Fig. 3.9.: Complex k eigenvalues for rectangular double barrier (3.58) for different basis
size N

3.8 Conclusion

Siegert pseudostates method provides a numerical tool to implement the power of
Siegert states as a universal tool that is capable of treating the whole spectrum of
collision phenomena. The numerical efficiency of the method is demonstrated by a
number of model problems.
The universality of the SPS method can be viewed from the perspective that it
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treats bound states, antibound states, resonance states, and continuum in a single
calculation. In comparison to the complex scaling method, it does not require an
analytical continuation of potential energy in the complex r plane. In contrast to
the stabilization method, it yields resonance position and width directly without any
fitting procedure.
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Wigner and Husimi
distributions for Siegert
pseudostates

4

„Innovation distinguishes between a leader and a
follower.

— Steve Jobs
(CEO Apple Inc.)

Classical mechanics gives very good description of nature. In this mechanical
system is described by a Hamiltonian function H(x, p, t). In classical case the state
of a system which has n−degree of freedom can be described by a point in 2n
dimensional phase space (x1, x2, x3...xN ; p1, p2, p3...pN ). If we measure a system at
a certain point of time we can find it at position (x(t), p(t)) in phase space with unit
probability.

In quantum mechanics, such measurements cannot be done to describe the classical
trajectory of the system. This limitation arises due to the Heisenberg uncertainty
principle[1], which states that it is impossible to ascertain the system’s position in
phase space. Instead, we say that for a system with n degree of freedom, the system
is in a volume of order hn. Here h is plank’s constant. Phase space formulation of
quantum mechanics started with the contribution of Wigner[2], and many others.
Similar to the Hamiltonian mechanics, in phase space, position and momentum
are treated equally. Phase space description allows us to understand the quantum
system’s knowledge by comparing it with classical systems.

In this chapter, we focus on Wigner and Husimi[3] distributions. In phase space
context, the Wigner distribution function, introduced by Eugene Wigner in 1932,
acquires paramount significance. This function has been used in many areas of
science such as quantum chemistry, statistical mechanics, quantum optics, and many
other engineering fields. Every quantum state can be represented in terms of the
Wigner function. This function can have negative value regions, which makes its
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probabilistic description questionable. The problem of negativity can be overcome
by Husimi or Q-distribution, introduced by Husimi, which is another useful tool.

4.0.1 Winger and Husimi functions:

In 1932 Wigner proposed a distribution, known as Wigner quasiprobability dis-
tribution, to link wavefunction in position space to a probability distribution in
momentum-position phase space. The formula for Wigner function of a one dimen-
sional wavepacket |ψ〉 is given by[6]

Wf (x, p) = 1
2πh̄

∫ ∞
−∞

ψ∗
(
x+ s

2

)
ψ

(
x+ s

2

)
e

i
h̄
psds (4.1)

This formula can be understood as a Fourier transform of convolution of the
wavepacket. Wigner function can take negative values, so it cannot be interpreted
as a simultaneous probability distribution, and quasiprobability is a better term
for this. For a normalized wavepacket |ψ〉Wigher function satisfies normalization
condition. ∫ ∞

−∞

∫ ∞
−∞

Wf (x, p)dxdp = 1 (4.2)

Wigher function is a real function. It can be understood from Eq.(4.1), that complex
conjugate of Wigner function is same function.

Wf (x, p) = (Wf (x, p))∗ (4.3)

If wigner function Wf (x, p) is integrated over momentum p then it gives probability
in position space x.

|ψ(x)|2 =
∫ ∞
−∞

Wf (x, p)dp (4.4)

Similarly, if Wf (x, p) is integrated over position it gives probability in momentum
space. ∣∣∣ψ̃(p)

∣∣∣2 =
∫ ∞
−∞

Wf (x, p)dx (4.5)

Where ψ̃ is wavefunction in momentum space derived from ψ(x) by fourier trans-
form

ψ̃(p) = 1√
π

∫ ∞
−∞

e−ipxψ(x)dx (4.6)

Eq.(4.4) and Eq. (4.5) show that the Wigner function has some desirable analytical
properties. For its projection in both position and momentum space gives the correct
quantum and position distribution.
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Despite being a very useful function, the Wigner function exhibits oscillations that
often go into ranges of negative values. This behavior of the Wigner function is
not acceptable for a probability distribution function. Another distribution function
proposed by Husimi in 1940, called Husimi distribution, is a smooth version of the
Wigner function. Husimi function is obtained by smoothing negative regions of
Wigner function by averaging over a coarse-graining Gaussian function[7]

Hf (x, p) =
∫ ∞
−∞

∫ ∞
−∞

Wf (x′, p′)f(x, p;x′, p′)dx′dp′ (4.7)

The Gaussian function, f(x, p;x′, p′), is given by,

f(x, p;x′, p′) = 1√
πh̄

exp

− (x−x′)2

σ2
q

+ σ2
q (p− p′)2

h̄

 (4.8)

Here σq is a parameter for the width of Gaussian. This parameter determines relative
resolution in position and momentum space and can be chosen freely. Husimi
function is non-negative everywhere and properly normalized.∫ ∞

−∞

∫ ∞
−∞

Hf (x, p)dxdp = 1 (4.9)

therefore, it can be interpreted as a genuine distribution of probability. In comparison
with the Wigner function, Husimi function does not recover observabales, which are
obtained for Wigner case as defined in Eq. (4.4), (4.5). for Wigner function.

4.1 Numerical Implementation

For an analytical and localized wavepacket, Wigner and Husimi distribution functions
can be calculated using the formula Eq.(4.1) and Eq.(4.47). The integration can
be calculated by analytical or any numerical method such as Gaussian quadrature
method. To calculate these functions for a discrete and diverging wavepacket, some
special numerical techniques are used.

Siegert pseudostates calculation for potential, Eq. (3.57), was calculated by the
numerical procedure given in Chapter 3. Since the eigenvectors obtained from SPS
calculations are discrete points, we utilized interpolation method to calculate the
wavefunction at any point in the interval [−a, a]. General wavefunction can be
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calculated by SPS eigenvectors in the region [−a, a] and by boundary conditions, Eq.
(3.42), (3.43) in the outside region.

ψ(x) =


= Aeikx if x < −a

= ψSPS(x) if − a ≥ x ≤ a

= Beikx if x > a

(4.10)

Here A and B are some complex constants. These constants can be calculated
by the fact that wavefunction is continuous. ψSPS(x) is wavepacket obtained by
interpolation of eigenvectors.

ψSPS(−a) = Ae−ika and ψSPS(a) = Aeika (4.11)

Now we have a general formula, Eq. (4.9), for SPS eigenvectors in (−∞,∞) interval.
We can calculate the Wigner and Husimi distribution using the formula in Eq.(4.1)
and Eq. (4.47), but the interval of integration has to be chosen a finite range.

Wf (x, p) =
∫ S

−S
ψ∗
(
x+ s

2

)
ψ

(
x+ s

2

)
e

i
h̄
psds (4.12)

The normalization constant NRES was calculated by considering some predecided
value of integral limits in position

N2
RES

∫ a

−a
|ψ(q)|2 dq = 1 (4.13)

4.2 Results and discussion

4.2.1 Interference in wavepacket constructed from a superposition
of two Gaussian functions

Before going into resonance states of the SPS method, we introduce a model ex-
ample of a wavefunction with probability density at two different centers. This
wavefunction is constructed by taking two Gaussian functions at two difference
centers, shown in Fig. (4.1). Momentum space wavefunction ˜ψ(p) is also calculated
by Eq. (4.6). When the wavefunction is a Gaussian the momentum wavefunction is
also Gaussian. However, for the wavefunctions with probability density separated
the momentum wavefunction gets negative and positive values. The importance of

40 Chapter 4 Wigner and Husimi distributions for Siegert pseudostates



Wigner function is that we can visualize both position x and momentum p proba-
bilities in single distribution. In Figure (4.2) the Wigner distribution and Husimi

Fig. 4.1.: Wavefunction constructed by combination of two Gaussians in position space(first
row) and in momentum space(second row)

Fig. 4.2.: Wigner distribution(first row) and Husimi distribution (second row) for wave-
functions in Fig. (4.1)

distributions are depicted. For the case of single Gaussian wavefunction the Wigner
distribution is also a Gaussian in two dimension. However, when the centers of two
Gaussian separate we start getting some regions with negative probability. When
the Gaussians are completely separated from each other some fringe like structure
appear in the middle of two centers. These fringes appear due to the interference
of the two Gaussians. It can be seen that the fringes of an interference pattern
remain aligned with the straight line joining the two centers. An increase/decrease
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in the distance between two Gaussian centers leads to the decrease/increase in
the transverse spacing of the fringes. The negative regions of Wigner distribution
indicate a quantum mechanical phenomenon.

The negative regions of Wigner can be removed by "coarse graining", and we get
the Husimi distribution which is positive everywhere. The smoothing of Wigner
distribution results in the spread of probability and hence the Husimi distribution
does not provide correct probabilities.

4.2.2 Tunneling of resonances states of a smooth double barrier
potential

By choosing a basis size of N = 300 and cutoff length of a = 15 we get 2N = 600
eigenvalues and corresponding eigenvectors. Values of momentum and and energy
are calculated using relations λ = ik and E = 1

2k
2. All energy eigenvalue except

bound and antibound states are complex, and those values which lie very close to
the real energy axis correspond to resonance states. The resonance eigenvalues and
eigenvectors are depicted in Figure. (4.1). There are two resonance states which lie
above the threshold level and below the maximum of the barrier.

From the position of complex k values in the k−plane and Eq.(4.9), we can under-
stand that for large value of x wavefunction decays exponentially. However, for
antibound(virtual) states, wavefunction grows exponentially, and these wavefunc-
tions do not have oscillatory behavior. The wavefunction of a resonance state always
grows exponentially with x. Growing and decaying resonance wavefunction have
the same shape but have oscillatory behavior in the non-interaction region with
only difference in phase of oscillations. Resonance states lying below the maximum
height of the barrier are quasistationary. In these states, particles can escape into the
outer region by tunneling, which is an entirely quantum mechanical phenomenon.

From now on, we will call resonance of lower energy, ERES = 0.620, as first
resonance and resonance with higher energy, ERES = 1.327, as second resonance.

Figure. (4.4) shows the Wigner distribution for bound and antibound states. Bound
state Wigner distribution is Gaussian shaped but for the antibound state it is Gaussian
shaped. The reason behind it is that in interaction region bound and antibound
states are almost same with only a difference in phase.

Figure. (4.4) shows the Wigner distribution functions for first and second resonance.
Due to lower energy, resonance tunneling in the first resonance is very weak. This
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Fig. 4.3.: Siegert pseudostates wavefunctions for bound, antibound, resonance and antires-
onance states of potential (3.57)

Fig. 4.4.: Wigner distribution for bound and antibound states in Figure. (4.3)

can be understood from the Wigner distribution as interference patterns are faded
in the outer region, and most of the population lies in the interaction region.
However, due to higher energy, tunneling through the barrier is very profound in
second resonance. Wigner distribution for second resonance shows a highly intense
interference pattern.

For the large positive value of x, the Wigner function tends towards positive momen-
tum, and for a large negative value of x, it goes towards negative momentum value.
This behavior shows that resonance decaying from the interaction region and going
towards a potential free region. For antiresonance states, this tendency is quite the
opposite which shows their growing nature, Figure. (4.5). The Wigner function in
the interaction region always remains the same as the normalization is a constant
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Fig. 4.5.: Wigner distribution for first and second resonance states in Figure. (4.3)

Fig. 4.6.: Wigner distribution for first and second anti-resonance states in Figure.(4.1)

value. Diverging nature of the wavepacket does not affect the Wigher function close
to the interaction region.

Tab. 4.1.: Normalization value of First and Second resonance wigner distribution for differ-
ent range of integration in Eq.(4.1)

S First resonance Second resonance

40 1.000478 0.999926
50 1.000505 1.000294
60 1.000505 1.000409
70 1.000505 1.000606
80 1.000505 0.999555

Negative regions that appeared in the Wigner distribution make it less relevant to
consider as a probability density. However, Husimi distribution, which is mathemati-
cally described in previous sections, is smoothed version of the Wigner function. As
depicted in Figure. (4.5), Husimi distribution is a positive distribution that is more
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Fig. 4.7.: Husimi distribution for the Siegert pseudostates in Figure.(4.3) calculated with
σq = 1

relevant to classical distribution. Despite the non-negativity of Husimi distribution,
it does not follow relations like Eq.(4.4) and Eq.(4.5).

4.3 Conclusion

Phase space representation for classical system describes all possible states of the
system. However, due to the uncertainty principle, quantum systems are described by
probability density. The Wigner distribution approach provides a good description of
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the system as a quasi probability. The negative regions of Wigner functions are due to
the quantum mechanical phenomenon and fade away after smoothing the function
with a Gaussian function. Resonance tunneling of the resonance Siegert pseudostates
is described very well with the Wigner distribution by depicting interference patterns.
One of the important use of these phase space representations is that these Wigner
and Husimi distributions can distinguish between resonance and anti-resonance
states.
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Appendix A

A.1 Evaluation of K̃FBR

The matrix elements of K̃FBR are representation in finite normalized basis which is
constructed from Legendre polynomials

K̃FBR
nm = 1

2

∫ 1

−1

dϕn(x)
dx

dϕm(x)
dx

dx

= 1
2

1√
hn−1hm−1

∫ 1

−1

dPn−1(x)
dx

dPm−1(x)
dx

dx

= 1
2

1√
hn−1hm−1

∫ 1

−1

dPn−1(x)
dx

dPm−1(x)
dx

dx

(A.1)

Here hn is given by

hn = 2
2n+ 1

Derivative of Legendre polynomial can be expanded in terms of Legendre polynomi-
als

d

dx
Pn+1(x) = (2n+ 1)Pn(x) +

(
2(n− 2) + 1

)
Pn−2(x) +

(
2(n− 4) + 1

)
Pn−4(x) + · · ·

d

dx
Pn+1(x) =

n∑
k=0

k=even

[2(n− k) + 1]Pn−k(x), (A.2)

then

∫ 1

−1

dPn+1(x)
dx

dPm+1(x)
dx

dx = =
k=n,l=m∑
l,k=0

l,k=even

[
[2(n− k) + 1] [2(m− l) + 1]

∫ 1

−1
Pn−k(x)Pm−l(x)dx

]

=
k=n,l=m∑
k,l=0

k,l=even

[
[2(n− k) + 1] [2(m− l) + 1] 2δn−k,m−l

[2(n− k) + 1]

]
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In above summation the therms with n − k = m − l will survive and we arrive at
condition∫ 1

−1

dPn+1(x)
dx

dPm+1(x)
dx

dx =
m∑
l=0

l=even

2 [2(m− l) + 1] , for n ≥ m and n,m = 0, 1, 2, · · ·

=
([
m

2

]
+ 1

)(
2m− 2

[
m

2

]
+ 1

)
where [.] denotes greatest integer function

then

KFBR
nm = 1

2
1√

hn−1hm−1

([
m− 2

2

]
+ 1

)(
2m− 2

[
m− 2

2

]
− 1

)
(A.3)

for n ≥ m and n,m = 1, 2, 3, · · · and K(ϕ)
mn = K

(ϕ)
nm

A.2 Matrix elements for full axis problems

Here we elaborate the algebra used to calculate matrix elements for generalized
eigenvalue problem. To achieve Eq.(3.48),(3.49),(3.50) we consider the one dimen-
sional schrödinger equation(

−1
2
d2

dr2 + V (r)− E
)
φ(r) = 0 (A.4)

pre multiplication with πi(r) and integrate[
−1

2

∫ a

−a
πi(r)

d

dr

(
dφ(r)
dr

dr

)
+
∫ a

−a
πi(r)V (r)φ(r)dr

− E
∫ a

−a
πi(r)φ(r)dr

]
= 0

integrating first term by parts[(
−1

2πi(r)
dφ(r)
dr

)a
−a

+ 1
2

∫ a

−a

dπi(r)
dr

dφ(r)
dr

dr +
∫ a

−a
πi(r)V (r)φ(r)dr

− E
∫ a

−a
πi(r)φ(r)dr

]
= 0
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Applying boundary conditions in first term[
− ik2 πi(a)φ(a) − ik

2 πi(−a)φ(−a) + 1
2

∫ a

−a

dπi(r)
dr

dφ(r)
dr

dr

+
∫ a

−a
πi(r)V (r)φ(r)dr − k2

2

∫ a

−a
πi(r)φ(r)dr

]
= 0

then by expanding φ(r) in terms of basis functions

φ(r) =
N∑
j=1

~cjπj(r) (A.5)

∑[
− ik2 πi(a)πj(a) − ik2 πi(−a)πj(−a) + 1

2

∫ a

−a

dπi(r)
dr

dπj(r)
dr

dr

+
∫ a

−a
πi(r)V (r)πj(r)dr −

k2

2

∫ a

−a
πi(r)πj(r)dr

]
~cj = 0

Hij = 1
2

∫ a

−a

dπi(r)
dr

dπj(r)
dr

dr +
∫ a

−a
πi(r)V (r)πj(r)dr = 0

Lij = πi(a)πj(a) + πi(−a)πj(−a)
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Appendix B
B.1 Codes

All the codes related to this work are written in Fortran90 programming language.

B.2 Compiler and Packages Used

gfortran (GNU Fortran Version-9.3.0)
Copyright (C) 2019 Free Software Foundation, Inc.

B.3 Packages Used

LAPACK(Linear Algegra PACKage) to call subroutine "dsyev" and "zgeev".

B.4 Compilation of code

Bash command to compile the code

1 $ gfortran siegert_code .f90 siegert_subroutine .f90
2 -llapack -lblas -o output .exe

Listing B.1: Compiling fortran code in Bash terminal
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B.5 Codes and Subroutines

1 ! siegert_code .f90
2 ! Module named param used to store parameters
3 module param
4 implicit none
5 real *8, parameter :: zero = 0.00000 d+00
6 real *8, parameter :: half = 0.500000 d+00
7 real *8, parameter :: one = 1.00000 d+00
8 real *8, parameter :: two = 2.0000000 d+00
9 real *8, parameter :: pi = 3.1415926535

10 complex *16, parameter :: cone = (one , zero)
11 complex *16, parameter :: zi = (zero , one)
12 complex *16, parameter :: czero =(zero ,zero)
13 end
14 ! Main program starts Here
15 program outgoingdvr
16 use param
17 implicit none
18 real *8, allocatable :: absi (:), wt (:)
19 real *8, allocatable :: poly (:,:), phi (:,:), norm (:)
20 real *8, allocatable :: t(: ,:)
21 real *8, allocatable :: kphi (:,:), kmat (: ,:)
22 real *8, allocatable :: rho (:,:), umat (:,:), matl (: ,:)
23 real *8, allocatable :: a(:,:), b(:,:), hmat (:,:), identity (: ,:)
24 real *8, allocatable :: rhohalf (:,:), rhovec (:,:), rhoeval (:)
25 real *8, allocatable :: rhodiag (: ,:)
26 real *8, allocatable :: amatrix (:,:), bmatrix (: ,:)
27 real *8, allocatable :: bevec (:,:), ddiag (:)
28 complex *16, allocatable :: utilde (:,:), utilded (: ,:)
29 complex *16, allocatable :: atilde (: ,:)
30 complex *16, allocatable :: camat (: ,:)
31 complex *16, allocatable :: eigval (:)
32 complex *16, allocatable :: eigvals (:), vecr (:,:), vecl (: ,:)
33 complex *16, allocatable :: eigvecs (: ,:)
34 real *8 :: aval , alpha , beta , potential , rval
35 integer :: i, j, k, l, ndim , ntdim , n
36 ! Input values
37 aval = one ! maximum value of r
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38 ndim = 300 ! number of basis used
39 ! ----------------------------------------------------------
40 ntdim = 2 * ndim
41 alpha = zero ! parameter for jacobi polynomial (=0)
42 beta = zero ! parameter for jacobi polynimial (=0)
43 ! reading absisas and weight
44 ! note : absisa and weight are calculated using
45 ! fortran code seperately
46 allocate (absi(ndim), wt(ndim ))
47 open (12, file=’absisa3 .txt ’)
48 open (13, file = ’weight3 .txt ’)
49 read (12 ,*) absi
50 read (13 ,*) wt
51 close (12)
52 close (13)
53 ! generating polynomial at absisa
54 allocate (poly(ndim ,ndim ))
55 call eval_jacobipoly (poly , absi , ndim , alpha , beta)
56 ! norm factor evaluation
57 allocate ( norm(ndim ))
58 do i = 1, ndim
59 n = i-1
60 norm(i) = two /( two*n+one)
61 enddo
62 ! calcualtion of phi
63 allocate (phi(ndim ,ndim ))
64 call eval_phi (phi , poly ,norm ,absi ,ndim , alpha , beta)
65 ! calculation of T matrix (FBR -DVR transformation )
66 allocate (t(ndim ,ndim ))
67 call eval_t (t,phi ,absi ,wt ,ndim ,beta)
68 ! evaluation of Kphi(K- matrix in FBR)
69 allocate (kphi(ndim ,ndim ))
70 call eval_kphi ( kphi , norm , ndim , beta)
71

72 ! evaluation of kmat(K- matrix in DVR)
73 allocate ( kmat(ndim ,ndim ))
74 call dgemm (’t’, ’n’, ndim , ndim , ndim , one , t, &
75 ndim , kphi , ndim , zero , kmat , ndim )
76 call dgemm (’n’, ’n’, ndim , ndim , ndim , one , kmat ,&
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77 ndim , t, ndim , zero , kmat , ndim )
78 deallocate ( kphi)
79 ! evaluation of rho matrix (DVR -Basis)
80 allocate (rho(ndim ,ndim ))
81 call eval_rho (rho , t, absi , aval , ndim , beta)
82 ! evaluation of potential matrix (DVR -Basis)
83 allocate ( umat(ndim ,ndim ))
84 umat = zero
85 do i = 1, ndim
86 rval = aval*half * ( one + absi(i))
87 potential = -112.5 ! Specify Potential Here
88 umat(i,i) = potential * (rval ** two)
89 enddo
90 ! evaluation of L- matrix (in DVR basis)
91 allocate (matl(ndim ,ndim ))
92 call eval_matl (matl , t, norm , beta , ndim)
93 ! evaluation of hmat
94 allocate (hmat(ndim ,ndim ))
95 hmat = ( kmat + umat + matl )
96 ! evaluation of rhohalf matrix
97 allocate ( rhohalf (ndim ,ndim), &
98 rhovec (ndim , ndim), rhoeval (ndim ))
99 rhovec = rho

100 call call_dsyev_wt_eigvecs (rhovec , ndim , rhoeval )
101 allocate ( rhodiag (ndim ,ndim ))
102 rhodiag = zero
103 do i = 1, ndim
104 rhodiag (i,i) = one/zsqrt(cone * rhoeval (i))
105 enddo
106 call dgemm (’n’,’n’,ndim ,ndim ,ndim ,one ,rhovec , ndim ,&
107 rhodiag , ndim , zero , rhohalf , ndim )
108

109 call dgemm (’n’,’t’,ndim ,ndim ,ndim ,one ,rhohalf ,ndim ,&
110 rhovec , ndim , zero , rhohalf , ndim )
111 allocate (a(ndim ,ndim),b(ndim ,ndim ))
112 call dgemm (’n’,’n’,ndim ,ndim ,ndim ,two ,rhohalf ,ndim , &
113 hmat , ndim , zero , a, ndim )
114 call dgemm (’n’,’n’,ndim ,ndim ,ndim ,one ,a,ndim ,&
115 rhohalf , ndim , zero , a, ndim)
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116 call dgemm (’n’, ’n’, ndim ,ndim ,ndim ,-two*aval ,rhohalf ,&
117 ndim ,matl ,ndim ,zero ,b,ndim)
118 call dgemm(’n’,’n’,ndim , ndim ,ndim ,one ,b,ndim ,&
119 rhohalf , ndim , zero , b, ndim)
120 deallocate (hmat , umat , matl , rhovec , rhodiag )
121 ! evaluation of identity matrix
122 allocate ( identity (ndim ,ndim ))
123 identity = zero
124 do i = 1, ndim
125 identity (i,i) = one
126 enddo
127 ! evaluation of 2n x 2n matrices
128 allocate ( amatrix ( ndim *2, ndim *2 ))
129 allocate ( bmatrix ( ndim *2, ndim *2 ))
130 do i = 1, ndim
131 do j = 1, ndim
132 amatrix (i,j) = -a(i,j)
133 bmatrix (i,j) = b(i,j)
134 enddo
135 enddo
136 do i = 1, ndim
137 do j = ndim + 1, 2* ndim
138 k = j - ndim
139 amatrix (i,j) = zero
140 bmatrix (i,j) = identity (i,k)
141 enddo
142 enddo
143 do i = ndim + 1, 2* ndim
144 do j = 1, ndim
145 k = i - ndim
146 amatrix (i,j) = zero
147 bmatrix (i,j) = identity (k,j)
148 enddo
149 enddo
150 do i = ndim + 1, 2* ndim
151 do j = ndim + 1, 2* ndim
152 k = i - ndim
153 l = j - ndim
154 amatrix (i,j) = identity (k,l)
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155 bmatrix (i,j) = zero
156 enddo
157 enddo
158 deallocate ( a, b, identity )
159 ! solving generalized eigenvalue problem
160 allocate (bevec(ntdim ,ntdim), ddiag(ntdim ))
161 bevec = bmatrix
162 call call_dsyev_wt_eigvecs (bevec , ntdim , ddiag)
163 allocate ( utilde (ntdim , ntdim), utilded (ntdim , ntdim ))
164 do i = 1, ntdim
165 do j = 1, ntdim
166 utilde (i,j) = (bevec(i,j))/( zsqrt(cone*ddiag(j)))
167 utilded (i,j) = (bevec(j,i))/( zsqrt(cone*ddiag(i)))
168 enddo
169 enddo
170 allocate ( camat(ntdim , ntdim), atilde (ntdim , ntdim ))
171 camat = amatrix
172 call zgemm(’n’, ’n’, ntdim , ntdim , ntdim , cone , utilded ,&
173 ntdim ,camat , ntdim , czero , atilde , ntdim)
174 call zgemm(’n’, ’n’, ntdim , ntdim , ntdim , cone , atilde , &
175 ntdim , utilde , ntdim , czero , atilde , ntdim)
176 deallocate (camat)
177 allocate ( eigvals (ntdim),vecl(ntdim ,ntdim),vecr(ntdim ,ntdim ))
178

179 ! eigenvalue solving
180 call call_zgeev_wt_eigvecs (atilde ,ntdim ,eigvals ,vecl ,vecr)
181

182 ! back transformation of eigenvectors
183 allocate ( eigvecs (ntdim ,ntdim ))
184 call zgemm(’n’,’n’,ntdim ,ntdim ,ntdim ,cone ,utilde ,ntdim , &
185 vecl , ntdim , czero , vecr , ntdim)
186 eigvecs = matmul ( rhohalf , vecr (1: ndim ,:))
187 open (57, file = ’eigval .txt ’)
188 do i = 1, ntdim
189 write (57,’(*( f30 .12)) ’) -zi* eigvals (i), &
190 half *(-zi* eigvals (i))** two
191 enddo
192 close (57)
193 open (61, file = ’eigvecs .txt ’)
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194 do i = 1, ndim
195 write (61,’(*( f22 .12)) ’)( aval/two )*( absi(i)+ one), eigvecs (i ,:)
196 enddo
197 close (61)
198 deallocate (amatrix , bmatrix , utilde )
199 deallocate (utilded , bevec , ddiag , atilde )
200 deallocate (eigvals , vecl)
201 end program

Listing B.2: Main program to evaluate Siegert pseudostates

1 ! siegert_subroutine .f90
2 ! polynomial evaluation
3 subroutine eval_jacobipoly (poly , absi , ndim , alpha , beta)
4 use param
5 implicit none
6 real (8), intent (out) :: poly(ndim ,ndim)
7 real(kind =8) :: eal (8), intent (in ) :: absi(ndim)
8 real (8) :: alpha , beta , c1 , c2 , c3
9 integer :: ndim , i, n

10 poly (1 ,:) = one
11 poly (2 ,:) = (alpha+one )+( alpha+beta+two )*( absi -one )/ two
12 do i=1,ndim -2
13 n = i + 1
14 c1 = (two*n + alpha + beta - one) * (two*n + alpha + beta )/&
15 (two*n * (n + alpha + beta ))
16 c2 = (two*n + alpha + beta - one) * (alpha ** two - beta ** two )/ &
17 (two*n*(n + alpha + beta) * (two*n + alpha + beta - two ))
18 c3 = (n + alpha - one) * (n + beta - one) * (two*n + alpha + beta )/&
19 (n*(n + alpha + beta) * (two*n + alpha + beta - two ))
20 poly(i+2 ,:) = (c1*absi + c2)* poly(i+1 ,:) - c3 * poly(i ,:)
21 enddo
22 end subroutine
23 ! orthogonal phi function at absisa
24 subroutine eval_phi ( phi , poly , norm , absis , ndim , alpha , beta)
25 use param
26 implicit none
27 real (8) , intent (in) :: poly(ndim ,ndim),absis(ndim), norm(ndim)
28 real (8) , intent (out) :: phi(ndim ,ndim)
29 real (8) , allocatable :: wx (:)
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30 integer :: ndim , n, i
31 real (8) :: alpha , beta
32 allocate (wx(ndim ))
33 wx = (( one - absis )** alpha) * (( one + absis )** beta)
34 do i=1, ndim
35 n=i-1
36 phi(i ,:) = dsqrt(wx / norm(i)) * poly(i ,:)
37 enddo
38 deallocate (wx)
39 end subroutine
40 ! t- matrix evaluation
41 subroutine eval_t (t,phi ,absis ,wt ,ndim ,beta)
42 use param
43 implicit none
44 real (8), intent (in) :: wt(ndim),absis(ndim),phi(ndim ,ndim)
45 real (8), intent (out ):: t(ndim ,ndim)
46 integer :: ndim ,i
47 real *8 :: beta , wx
48 real (8) , allocatable :: factor (:)
49 allocate ( factor (ndim ))
50 do i = 1, ndim
51 wx = (one + absis(i))** beta
52 factor (i) = dsqrt( wt(i)/wx)
53 enddo
54 do i=1, ndim
55 t(i ,:) = factor *phi(i ,:)
56 enddo
57 deallocate ( factor )
58 end subroutine
59 ! evaluation of kpi matrix
60 subroutine eval_kphi (kphi , norm , ndim , beta)
61 use param
62 implicit none
63 real (8), intent (out) :: kphi(ndim ,ndim)
64 real (8), intent (in) :: norm(ndim)
65 real (8) , allocatable :: phi1 (:)
66 integer :: ndim , m, n, k
67 real (8) :: beta , sum1 , sum2
68 allocate ( phi1(ndim ))
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69 do n = 1, ndim
70 phi1(n) = two **( beta/two) / dsqrt(norm(n))
71 enddo
72 ! for diagonal terms
73 sum1 = zero
74 do n = 1 , ndim
75 do k = 1, n -1
76 sum1 = sum1 + (( phi1(k))** two)
77 enddo
78 kphi(n,n) = ( two * (phi1(n)** two) * sum1) + &
79 half * ((( phi1(n)** two) - half )** two)
80 sum1 = zero
81 enddo
82 ! for off diagonal terms
83 sum2 = zero
84 do n = 1, ndim
85 do m = n + 1, ndim
86 do k = 1, n-1
87 sum2 = sum2 + (phi1(k))** two
88 enddo
89 kphi(n,m) = phi1(n) * phi1(m) * (two * sum2 + &
90 (phi1(n)** two) - half)
91 kphi(m,n) = kphi(n,m)
92 sum2 = zero
93 enddo
94 enddo
95 deallocate (phi1)
96 end subroutine
97

98 ! evaluation of rho matrix
99

100 subroutine eval_rho (rho ,t,absi ,aval ,ndim ,beta)
101 use param
102 implicit none
103 real (8), intent (in) :: t(ndim ,ndim), absi(ndim)
104 real (8), intent (out) :: rho(ndim ,ndim)
105 real (8), allocatable :: delta (: ,:)
106 real (8) :: aval ,beta ,dn
107 integer :: ndim ,i,j
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108 dn =(4.0* ndim ** two * (ndim + beta )** two )/ &
109 (( two*ndim + beta )** two * (( two*ndim+beta )** two -one ))
110 allocate (delta(ndim ,ndim ))
111 delta=zero
112 do i=1, ndim
113 delta(i,i) = one
114 enddo
115 do i = 1,ndim
116 do j = i ,ndim
117 rho(i,j) = (( aval*half )** two) * ((( one+absi(i))** two) &
118 * delta(i,j) + dn * t(ndim ,i)*t(ndim ,j))
119 rho(j,i) = rho(i,j)
120 enddo
121 enddo
122 deallocate ( delta)
123 end subroutine
124 ! lmatrix evaluation
125 subroutine eval_matl (matl , t, norm , beta ,ndim)
126 use param
127 implicit none
128 real (8), intent (out) :: matl(ndim ,ndim)
129 real (8), intent (in) :: t(ndim ,ndim),norm(ndim)
130 real (8), allocatable :: pivec (:)
131 real *8 :: beta , sumval
132 integer :: ndim , i, j, n
133 allocate (pivec(ndim ))
134 sumval = zero
135 do i=1, ndim
136 do n = 1, ndim
137 sumval = sumval + t(n,i)/ dsqrt(norm(n))
138 enddo
139 pivec(i) = (two **( beta/two )) * sumval
140 sumval = zero
141 enddo
142 do i=1, ndim
143 do j=i,ndim
144 matl(i,j) = pivec(i)* pivec(j)
145 matl(j,i) = pivec(j)* pivec(i)
146 enddo

68 Appendix B Appendix



147 enddo
148 deallocate (pivec)
149 end subroutine
150

151 ! diagonalization of complex symmetric matrix
152 subroutine call_zgeev_wt_eigvecs (h,ndim ,eigvals ,vecsl ,vecsr)
153 implicit none
154 integer (kind = 4) :: ndim
155 complex (kind = 8) :: h(ndim ,ndim)
156 complex (kind = 8) :: eigvals (ndim)
157 complex (kind = 8) :: vecsl(ndim ,ndim)
158 complex (kind = 8) :: vecsr(ndim ,ndim)
159 integer (kind = 4) :: lda ,ldvl ,ldvr , ldwork
160 integer (kind = 4) :: info
161 complex (kind = 8), allocatable :: work (:), work2 (:)
162 character (len = 1), parameter :: jobvl="v"
163 character (len = 1), parameter :: jobvr="v"
164 lda = ndim
165 ldvl= ndim
166 ldvr= ndim
167 ldwork =2* ndim
168 allocate (work( ldwork ),work2( ldwork ))
169 call zgeev(jobvl ,jobvr ,ndim ,h,lda ,eigvals ,vecsl ,ldvl ,&
170 vecsr ,ldvr ,work , ldwork , work2 , info)
171 deallocate (work ,work2)
172 end
173

174 ! diagonalization of real symmetric matrix
175 subroutine call_dsyev_wt_eigvecs (h,ndim , eigvals )
176 implicit none
177 integer (kind = 4) :: ndim
178 real (kind = 8) :: h(ndim ,ndim)
179 real (kind = 8) :: eigvals (ndim)
180 integer (kind = 4) :: lda
181 integer (kind = 4) :: ldwork
182 integer (kind = 4) :: info
183 real (kind = 8), allocatable :: work (:)
184 character (len = 1), parameter :: jobz="v"
185 character (len = 1), parameter :: uplo="l"
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186 lda = ndim
187 ldwork =3* ndim -1
188 allocate (work( ldwork ))
189 call dsyev(jobz ,uplo ,ndim ,h,lda ,eigvals ,work ,ldwork ,info)
190 deallocate (work)
191 end

Listing B.3: Subroutines to evaluate Siegert pseudostates
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