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Abstract

In this thesis, we study the the discrimination of orthogonal multi-photon entangled
states using linear optical setups. Beginning with the Bell states, we motivate Bell
State Measurements (BSMs) by describing protocols in quantum information theory
where they form an integral step. We then review a no-go theorem regarding the pos-
sibility of complete BSMs using linear optics, and a result placing a bound on the
success probability of discrimination using a restricted linear optical setup containing
no ancillaries. We describe and compare various resources proposed in literature that
can be used to enhance the success probabilities of BSMs (ancillary entanglement, hy-
perentanglement, gaussian squeezing, and non-linear optical elements), and study their
applications to quantum information protocols.

Next, we study distinguishing between two-photon Non-Maximally Entangled (NME)
states and the three-photon GHZ states using ancillary entanglement. For a specific
setup with one ancillary entangled pair, we find that the NME states are harder to dis-
tinguish than the Bell states. Finally, we place upper bounds on the success probability
of GHZ state discrimination using ancillary entanglement as a function of number of
photons used, for polarization preserving setups.
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Chapter 1

Introduction

This thesis is in the broad field of Linear Optical Quantum Computing (LOQC). This is a paradigm of

quantum computing where the information carriers are photons, and quantum gates are implemented

through linear optical devices like beam splitters, mirrors and phase shifters. LOQC is an attractive

candidate for quantum information processing for several reasons. Firstly, photons are fast and ro-

bust carriers of quantum information, and don’t decohere quickly. Moreover, linear operations are

cost-effective, and easier to implement than non-linear operations. However, the restriction on linear

optical gadgets leads to some drawbacks as well. Two-qubit logic gates are harder to implement using

LOQC as photons don’t interact with each other through linear operations. As a result, universal

gates like the CNOT are a challenge to implement. However, in their seminar work in 2001, Knill,

Laflamme and Milburn proved that efficient universal quantum computation is possible using only

linear optical elements [KLM01], single photons, and projective measurements. Their work has come

to be known as the KLM protocol. They showed that a complete set of universal quantum gates

can be implemented through LOQC. An effective interaction between the photons is created by the

projective measurements at the detectors.

In this thesis, we explore a specific problem in this vast field: discrimination of multi-photon polar-

ization entangled states using linear optics. We explore experimental setups that distinguish between

various sets of orthogonal states of photons. The three types of states explored in this thesis are: Bell

states, two-photon Non-Maximally Entangled states, and the three-photon GHZ states.

The Bell states are maximally entangled orthogonal states of two qubits. They form a basis for

the 4-dimensional (2-qubit) Hilbert space. The Bell states in the polarization degree of freedom are

given as

∣∣Ψ+
〉

=
1√
2

[
h†1v
†
2 + v†1h

†
2

]
in
|0〉 ≡ 1√

2
[|HV 〉+ |V H〉]∣∣Ψ−〉 =

1√
2

[
h†1v
†
2 − v†1h

†
2

]
in
|0〉 ≡ 1√

2
[|HV 〉 − |V H〉]∣∣Φ+

〉
=

1√
2

[
h†1h

†
2 + v†1v

†
2

]
in
|0〉 ≡ 1√

2
[|HH〉+ |V V 〉]∣∣Φ−〉 =

1√
2

[
h†1h

†
2 − v†1v

†
2

]
in
|0〉 ≡ 1√

2
[|HH〉 − |V V 〉]

(1.1)

Here, h and v denote polarization, and the subscripts denote the spatial mode.

A Bell state measurement essentially means measuring in the Bell basis, a process that collapses any
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arbitrary state into one of the four Bell states. However, to know which Bell state the collapse has

occurred into, we need to be able to distinguish between the Bell states. That is, an experimental

apparatus must be able to tell with certainty which of the four Bell states was present. So, a Bell

state measurement requires Bell state discrimination.

Discriminating between various orthogonal entangled states using linear optics is the main subject of

this thesis. We will investigate experimental setups that try to distinguish between the Bell states

and other multi-photon entangled states. To motivate this study, I briefly discuss two quantum

information protocols: quantum teleportation and dense coding.

1.1 Teleportation

Quantum teleportation was first proposed by Bennett et al. [BBC+93]. It is a process through which

one party (we call Alice) can teleport the state of her particle (not the particle itself) to another

party (denoted by Bob), without having any prior information about the state to be teleported or

the location of Bob’s lab. A schematic of the protocol is shown in figure 1.1. Consider a photon in

Alice’s lab (called photon 1) with an arbitrary polarization state (the subscript 1 is a label for the

first photon)

|Ψ〉1 = (α |H〉1 + β |V 〉1) (1.2)

where α, β ∈ C and satisfy

|α|2 + |β|2 = 1 (1.3)

This is the state Alice wishes to teleport to Bob. In order to teleport the state of the above photon, we

require a source of maximally entangled states. For photons, the most common method to generate

Bell states is through a non-linear process called Spontaneous Parametric Down Conversion (SPDC),

where one photon of a higher energy is converted to two photons, conserving energy and momentum.

In this process, a beam of UV light is sent through a slab of birefringent crystal (for example, Barium

Borate). Most of the light does not undergo down conversion; the efficiency of the SPDC process is

usually low. However, if the down conversion process takes place, one can obtain the two photons in

an entangled state by selectively placing the detectors. Let us assume that an SPDC source produces

two photons (denoted by photons 2 and 3) of the form (where the subscript again denotes the photon

numbers)

|Ψ〉23 =

(
|H〉2 |V 〉3 − |V 〉2 |H〉3√

2

)
(1.4)

After generating a maximally entangled state, one photon is sent to Alice, and the other is sent to

Bob. So, the combined state of the three photons is

|Ψ〉123 = |Ψ〉1 ⊗ |Ψ〉23

=
1√
2

[α |H〉1 |H〉2 |V 〉3 − α |H〉1 |V 〉2 |H〉3 + β |V 〉1 |H〉2 |V 〉3 − β |V 〉1 |V 〉2 |H〉3]
(1.5)

This three-photon state can be written in a different form, as a combination of the Bell states of the

first two photons:

|Ψ〉123 =
1

2
[
∣∣Ψ+

〉
12

(−α |H〉3 + β |V 〉3)−
∣∣Ψ−〉

12
(α |H〉3 + β |V 〉3)

+
∣∣Φ+

〉
12

(−β |H〉3 + α |V 〉3) +
∣∣Φ−〉

12
(β |H〉3 + α |V 〉3)]

(1.6)
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The protocol proceeds as follows. Alice receives two photons, one who’s state must be teleported, and

Alice

EPR Source

Bob

Initial
 state

entangled
pair

classica
l 

channel
BSM

Unitary

Teleported
state

1
2 3

Figure 1.1: General protocol for teleportation [BPM+97]

another photon (photon 2) which is part of a maximally entangled state |Ψ〉23. Alice now performs

a measurement of her two photons onto the Bell basis. That is, she collapses the first two photons

into one of the four possible Bell states. From (1.6), we can see that there are four possibilities. If

Alice obtains the state |Ψ−〉12, the state of Bob’s photon is (α |H〉3 + β |V 〉3), which is the state that

had to be teleported. However, if Alice obtains any of the other Bell states, Bob must perform an

appropriate unitary transformation on his photon to retrieve the required state (1.2).

If Alice obtains the state |Ψ+〉12, Bob must perform the phase flip operation on his photon. In the

computational basis, with |H〉 =

[
1

0

]
and |V 〉 =

[
0

1

]
the phase flip gate is given by

Z =

[
1 0

0 −1

]
(1.7)

If |Φ−〉12 is detected, Bob must apply the NOT gate, given by

X =

[
0 1

1 0

]
(1.8)

Finally, if |Φ+〉12 is detected, Bob must apply the X and the Z gate together

XZ =

[
0 1

1 0

][
1 0

0 −1

]
=

[
0 −1

1 0

]
(1.9)

Here is where the importance of Bell state measurements comes in. Alice must be able to tell which

Bell state the photons 1 and 2 have collapsed to, and send this information to Bob via a classical

channel (like a phone call, say). After receiving one of four messages (that is, two bits of information),

Bob will then carry out a unitary rotation of his photon to retrieve the required state (1.2).

So, it is clear that Alice needs to have a device that can discriminate between the Bell states. Ideally,

if Alice’s Bell state analyzer gives completely exclusive outcomes for all the four Bell states, then in

principle, Alice can achieve perfect teleportation of her photon, without ever failing. The first few

chapters in this thesis will discuss several Bell state analyzers using linear optical setups.

In the first ever experimental demonstration of teleportation, the device used to distinguish between

the Bell states was not perfect; it only had an success probability of 25%. This device was simply a

50-50 (symmetric) beam splitter. How does a beam splitter distinguish between Bell states? Consider
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1out

2out
1in

2in

Figure 1.2: A symmetric beam splitter

the beam splitter in figure 1.2. The creation operators corresponding to the input modes are (a†1)in

and (a†2)in, and (a†1)out and (a†2)out for the output modes. Here, a† can stand for either h† or v†.

A 50-50 beam splitter is characterized by the operator transformations (both the h and v operators

transform in the same manner)(
a†1
a†2

)
in

→ 1√
2

[
1 i

i 1

](
a†1
a†2

)
out

a ∈ {h, v} (1.10)

If the four Bell states pass through this beam splitter, the final states are given by

∣∣Ψ+
〉
≡

[
h†1v
†
2 + v†1h

†
2

]
in
|0〉

√
2

→
i
[
h†1v
†
1 + h†2v

†
2

]
out
|0〉

√
2

∣∣Ψ−〉 ≡
[
h†1v
†
2 − v

†
1h
†
2

]
in
|0〉

√
2

→

[
h†1v
†
2 − v

†
1h
†
2

]
out
|0〉

√
2

∣∣Φ±〉 ≡
[
h†1h

†
2 ± v

†
1v
†
2

]
in
|0〉

√
2

→
i
[
h†21 + h†22 ± v

†2
1 ± v

†2
2

]
out
|0〉

2
√

2

(1.11)

Can the final states be distinguished from each other? Firstly, note that the outcomes for |Ψ+〉 and

|Ψ−〉 are different from each other, and are distinct from those for |Φ±〉. For |Ψ+〉, both the photons

are detected on the same side of the beam splitter (either 1 or 2). This is true for the |Φ±〉 states

as well, but in that case both photons of the same polarization are detected at the same detector.

Clearly, there is no way to tell |Φ+〉 apart from |Φ−〉 using the outcomes at the detectors. However,

if there is a detection on both sides of the beam splitter, then we can tell for sure that the Bell state

must’ve been |Ψ−〉, as it is the only state containing terms with both subscripts 1 and 2. Therefore, a

symmetric beam splitter can identify two out of the four states, |Ψ+〉 and |Ψ−〉. In the teleportation

experiment, only those cases where a detection on both sides of the beam splitter was seen were

considered to identify the Bell state |Ψ−〉. The probability of Bob retreiving the correct state for his

photon, and achieving accurate teleportation was thus 25%.

1.2 Superdense Coding

Another central application of Bell state analysis is the superdense coding protocol. This is a pro-

cess through which two classical bits of information can be sent from one party to another, using

a single qubit of communication. This process was proposed by Bennett and Wiesner [BW92], and

first experimentally realized by Mattle et al. [MWKZ96]. Consider a pair of photons. The collective

polarization state of this pair lies in a four-dimensional Hilbert space, with one possible basis being:

|HH〉 , |HV 〉 , |V H〉 , and |V V 〉. Since these four states are orthogonal, one can encode each of these
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states to be a distinct message, and thus four messages can be communicated by manipulating both

the photons (i.e., two bits of information).

However, information can be stored in superpositions of states as well. If we instead choose the

four Bell states as our basis: ∣∣Ψ+
〉

=
1√
2

[|HV 〉+ |V H〉]∣∣Ψ−〉 =
1√
2

[|HV 〉 − |V H〉]∣∣Φ+
〉

=
1√
2

[|HH〉+ |V V 〉]∣∣Φ−〉 =
1√
2

[|HH〉 − |V V 〉]

(1.12)

These states too span a four-dimensional space, and can thus encode 2 bits of information. However,

since they are entangled, operations on only one particle can convert any of the above states into any

other. For example, let Alice and Bob share the state |Ψ+〉, Bob has the first photon and Alice has

the second. Bob can perform the following four operations that will convert their state into the four

Bell states.

1. Identity operation:

[
1 0

0 1

]
=⇒ |Ψ+〉 → |Ψ+〉

2. Polarization flip:

[
0 1

1 0

]
=⇒ |Ψ+〉 → |Φ+〉

3. Polarization dependent phase flip:

[
1 0

0 −1

]
=⇒ |Ψ+〉 → |Ψ−〉

4. Performing operations 2 and 3 together

[
0 −1

1 0

]
=⇒ |Ψ+〉 → |Φ−〉

The protocol of dense coding goes as follows. Firstly, Bob and Alice share a Bell pair between

them. Then, Bob performs any of the above four operations on his photon, encoding one of four mes-

sages. Then, he physically transfers his photon to Alice. Now, Alice has two photons at her disposal.

By finding out which Bell state the two photons are in, Alice can retrieve one of four messages. Thus,

Bob has effectively communicated 2 bits of information using operations on only one photon.

In the first experimental demonstration of dense coding [MWKZ96], the Bell state analyzer was

simply a beam splitter, just as in the case of teleportation. As we have seen, the four Bell states inci-

dent on a symmetric beam splitter yield three distinct type of outcomes (for |Ψ+〉, |Ψ−〉, and |Φ±〉).
This means that using linear optics, the best we can do is transmit 3 messages using operations on

one photon. This channel capacity of log2 3 = 1.585 bits per photon is termed dense coding. Later

in this thesis, I will discuss attemps to increase the channel capacity beyond this threshold.

Thus, we have seen that Bell state measurements are a vital part of teleportation and dense coding.

They are also required for many other quantum information tasks, like quantum communication,

cryptography, key distribution and entanglement swapping. Therefore, it is worth exploring various

ways in which BSMs are carried out. Further, distinguishing between the three-photon GHZ states

is also important in the generalization of the above protocols for multipartite systems. Therefore,

studying the discrimination of these multi-photon states could be useful for these protocols. In this
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thesis, we also explore distinguishing between Non-Maximally Entangled (NME) states. This ques-

tion is also worthwhile to study, as these states have also been used for key distribution [XLG01]

and quantum communication [LDL+06]. Moreover, if one is not provided with maximally entangled

states but has a lesser resource, it is worth exploring how useful these states are for various protocols.

The thesis is arranged as follows. Chapter 2 presents some initial work in this area that placed

bounds on the success probability of Bell state measurements for a general class of linear optical se-

tups. In chapter 3, we discuss several methods to surpass the bounds placed by chapter 2 for BSMs.

In chapters 4 and 5, we discuss distinguishing between Non-Maximally Entangled states and the GHZ

states respectively. We mainly explore the resource of ancillary entanglement to distinguish between

the states. Finally, we conclude our results in chapter 6.
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Chapter 2

Bounds on success probability of

BSMs for linear optical setups

Bell state measurements using general linear optical setups were first discussed in the seminal paper

by Lütkenhaus, N., J. Calsamiglia, and K-A. Suominen [LCS99]. The problem they were trying to

address was the following: if we restrict our apparatus to contain only linear elements, can the set

of orthogonal Bell states be completely distinguished? Consequently, can perfect teleporation be

achieved? By linear optical setups, we mean that the set of creation operators of the input modes

must be mapped to the creation operators of the output modes via a unitary matrix. Reck et al.

proposed a method through which any such N × N unitary mapping of the spatial modes can be

realized using only beam splitters and phase shifters, and the total number of gadgets required scales

quadratically with N [RZBB94].

To answer this question, one must study the evolution of the Bell states through the most gen-

eral linear setup. This analysis was done in the paper [LCS99], and is discussed here. In this chapter,

a different notation is used for the Bell states for convenience of calculation. They will be represented

by

∣∣Ψ1
〉

=
1√
2

(
a†1a
†
3 + a†2a

†
4

)
|0〉∣∣Ψ2

〉
=

1√
2

(
a†1a
†
3 − a

†
2a
†
4

)
|0〉∣∣Ψ3

〉
=

1√
2

(
a†1a
†
4 + a†2a

†
3

)
|0〉∣∣Ψ4

〉
=

1√
2

(
a†1a
†
4 − a

†
2a
†
3

)
|0〉

(2.1)

Here, a†1 and a†2 denote creation operators corresponding to two orthogonal polarizations (say H and

V) of the first photon, and a†3, a
†
4 similarily for the second photon. To relate this with our earlier

notation, here
∣∣Ψ1
〉

would correspond to 1√
2
(|HH〉+ |V V 〉).

The authors considered a general setup shown in figure 2.1. The photons in the Bell states are com-

bined (using beam splitters) with some number of additional photons (D− 4), and evolved through a

unitary matrix U1. The auxiliary photons can be in any state with a fixed photon number. After this

evolution, one particular mode k1 is picked and measured (we assume ideal photon number resolving

detectors). Conditional measurements are allowed, meaning that based on the result obtained at k1,
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some number of additional auxiliary photons can be added and the photons can be evolved through

a second unitary U2 (which depends on the outcome at k1). This procedure can be repeated any

number of times, before the photons finally reach ideal detectors. The authors investigated the or-

thogonality of these final states after passing through this setup. Let us begin by studying the first

U1

k1

  a1, a2
  a3, a4
   Bell 
  modes
 

c1, c2, ..., cD-4

Auxiliary 
  modes

U2 (k1)

Auxiliary
 modes

k2
U3 (k2)

Auxiliary
 modes

Figure 2.1: General setup for BSM [LCS99]

step of this setup, pictured in figure 2.3. The Bell states are combined with auxiliary photons and are

evolved through a unitary U. Then, one mode at the output (d) is picked and measured, collapsing

the rest of the modes into one of four possible conditional states, depending on the input Bell state.

It turns out that studying this step alone is sufficient to rule out a perfect Bell state analyzer using

linear elements, as the conditional states can be non-orthogonal.

U

A

B

C

Selected 
mode d

  a1, a2
  a3, a4
   Bell 
  modes
 

c1, c2, ..., cD-4

Auxiliary 
  modes

e1, e2, ..., eD-1

conditional states
  

Figure 2.2: First step of the protocol [LCS99]
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Let the intial state of the system (at A) be

∣∣Ψi,total
〉

= Paux(c†j)PΨi(a†1, a
†
2, a
†
3, a
†
4) |0〉 (2.2)

Here i = 1, 2, 3, 4 represents the four Bell states, and Paux, PΨi are polynomials of the creation

operators for the auxillary modes and the Bell states respectively. Paux is an arbitrary polynomial

with (D − 4) number of modes. The only condition that is assumed on this polynomial is that the

auxillary input state has definite photon number. Now, we already know the polynomials PΨi . From

(2.1), they are given by

PΨ1 =
1√
2

(
a†1a
†
3 + a†2a

†
4

)
PΨ2 =

1√
2

(
a†1a
†
3 − a

†
2a
†
4

)
PΨ3 =

1√
2

(
a†1a
†
4 + a†2a

†
3

)
PΨ4 =

1√
2

(
a†1a
†
4 − a

†
2a
†
3

)
(2.3)

Now, the state (2.2) passes through an arbitrary unitary operation, where the creation operators

of the input state a†1, a
†
2, . . . , c

†
D−4 are mapped to the output operators d†, e†1, . . . , e

†
D−1 through the

matrix U. So, at stage B (before the mode d is measured) the state can be written as a polynomial

of the output operators. These polynomials depend on U, and in general will be different from those

in (2.2). So, they are represented with a tilde.

∣∣Ψi,total
〉

= P̃aux(d†, e†k)P̃Ψi(d†, e†k) |0〉 (2.4)

We now expand the above polynmials as a power series in d†:

P̃aux(d†, e†k) = (d†)NauxQ̃aux(e†k) + ...

P̃Ψi(d†, e†k) = (d†)NBellQ̃Ψi(e†k) + ...
(2.5)

In the above, Naux is order of d† in P̃aux. So, the term written has the highest power of d† in P̃aux,

and all further terms have lesser powers of d†, and are just represented by dots. The notation for

the P̃Ψi equation however, is a little different. NBell is not the order of d† in P̃Ψi . It is rather the

maximum order of d† in all the four polynomials P̃Ψi , i = 1, 2, 3, 4. Note that as a consequence, it is

possible that one of the polynomials Q̃Ψi might be 0. Thus, NBell is independent of i.

So, rewriting equation (2.4), we have

∣∣Ψi,total
〉

=
(

(d†)NauxQ̃aux(e†k) + ...
)(

(d†)NBellQ̃Ψi(e†k) + ...
)
|0〉 (2.6)

Once both terms are multiplied, we will obtain a polynomial of degree Naux + NBell in d. As per

our setup, we now measure the number of photons at the d mode. The number of photons detected

will be in between 0 and Naux + NBell. We would like to analyze the conditional states of the other

photons in the remaining modes once a detection takes place at d.

Let us say that the mode d detects some nd number of photons. Then, the state of the remain-

ing photons can be determined from (2.6), by simply picking those terms which accompany (d†)nd .

We will obtain four such conditional states for the Bell states (i.e, for i = 1, 2, 3, 4). If there is even
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one detection scenario where these conditional states are not orthogonal, this implies that the four

states
∣∣Ψtotal

i

〉
cannot be distinguished from each other with unit probability, and the unitary U fails

as a perfect Bell analyzer.

The main result of the paper was the following: there is always atleast one detection event at d

after which the conditional states of the remaining modes are non-orthogonal, irrespective of the

unitary U used. This means that no matter how the Bell states are evolved through the setup, there

is always a possibility that they can’t be distinguished with certainity. As a consequence, one can

never create a perfect Bell state analyzer using the general scheme in figure 2.1.

We will now prove the above claim. We don’t have to analyze all possible photon number detec-

tions at d as we only require one example where the conditional states are non-orthogonal. Consider

the case where d detects N = Naux +NBell photons. The state of remaining modes is then

∣∣Φi,total
〉

= Q̃aux(e†k)Q̃Ψi(e†k) |0〉 (2.7)

Are these states orthogonal? Taking the inner product of conditional states for two different Bell

state inputs, we have

〈
Φi,total

∣∣Φj,total
〉

= 〈0| Q̃Ψi

†
Q̃aux

†
Q̃auxQ̃Ψj |0〉 (2.8)

= 〈0| Q̃aux

†
Q̃auxQ̃Ψi

†
Q̃Ψj |0〉 (2.9)

=
∑
n̄

〈0| Q̃aux

†
Q̃aux |n̄〉 〈n̄| Q̃Ψi

†
Q̃Ψj |0〉 (2.10)

Pushing the Q̃Ψi

†
across the Q̃aux operators is allowed since creation operators corresponding to

different modes commute. In the final step, we’ve introduced the identity operator of all the modes.

Here n̄ = (n1, n2, . . . , nD) and |n̄〉 signifies a general product state of all the D modes.

1 =

( ∞∑
n=0

|n〉 〈n|

)⊗D
=

∞∑
n̄

|n̄〉 〈n̄| (2.11)

Now, we make some observations. Since PΨi |0〉 is a two photon state, so must be P̃Ψi |0〉. This

implies (from (2.5)) that Q̃Ψj |0〉 must have photon number 2−NBell. Clearly then, the inner product

〈n̄| Q̃Ψi

†
Q̃Ψj |0〉 can only be non-zero if n̄ = 0̄. Therefore, the inner product simplifies to

〈
Φi,total

∣∣Φj,total
〉

= 〈0| Q̃aux

†
Q̃aux |0〉 〈0| Q̃Ψi

†
Q̃Ψj |0〉 (2.12)

Since Q̃auxis not zero, the first term in the above expression is a non-zero quantity. The states∣∣Φi,total
〉

and
∣∣Φj,total

〉
can only be orthogonal if Q̃Ψi |0〉 and Q̃Ψj |0〉 are orthogonal. So, auxiliary

photons’ contribution cannot make nonorthogonal states orthogonal. This leads us to the crucial

conclusion that in the case of d detecting Naux +NBell photons, ancillary photons are of no use at all

for perfect state discrimination. (Note: we are not saying that ancillary photons are not a useful re-

source for state discrimination. In fact, two chapters in this thesis investigate ancillary entanglement

for distinguishing between other kinds of states. What we are saying is that there is always atleast

one scenario when ancillary photons cannot help us achieve a perfect state discrimination.)

Since additional photons are not of any use, we will henceforth assume that the auxiliary modes

10



c1, c2, . . . , cD−4 are in the vacuum state. Let us then specifically study the cases where d detects 1

and 2 photons. Consider an input state which is some linear combination of the four Bell states

|Ψ〉 =
1√
2

[
µ1

(
a†1a
†
3 + a†2a

†
4

)
+ µ2

(
a†1a
†
3 − a

†
2a
†
4

)
+ µ3

(
a†1a
†
4 + a†2a

†
3

)
+ µ4

(
a†1a
†
4 − a

†
2a
†
3

)]
|0〉

(2.13)

To write this state in a compact form, we introduce the following symmetric matrix

M = 2−3/2



0 0 µ1 + µ2 µ3 + µ4 . . . 0

0 0 µ3 − µ4 µ1 − µ2 . . . 0

µ1 + µ2 µ3 − µ4 0 0 . . . 0

µ3 + µ4 µ1 − µ2 0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

... . . .
...


(2.14)

Using this matrix, (2.13) can be written as

|Ψ〉 = (a†1, a
†
2, . . . , c

†
D−4)M(a†1, a

†
2, . . . , c

†
D−4)T |0〉 (2.15)

The state above is transformed by the unitary U (of dimension D × D), which acts on the creation

operators as:

(a†1, a
†
2, . . . , c

†
D−4)T → U(d†, e†1, . . . , e

†
D−1)T (2.16)

So, the final state is

|Ψ〉 = (d†, e†1, . . . , e
†
D−1)UTMU(d†, e†1, . . . , e

†
D−1)T |0〉

≡ (d†, e†1, . . . , e
†
D−1)M̃(d†, e†1, . . . , e

†
D−1)T |0〉

(2.17)

where M̃ = UTMU . Let us now study the possibilty of a two-photon detection at the d mode.

Clearly, the matrix element of M̃ that contributes to this outcome is M̃11, the coefficient of the d†2

term. Taking the first column of U to be (a, b, c, d, . . .)T , this element can be calculated out to be

M̃11 =
1√
2

[µ1 (ac+ bd) + µ2 (ac− bd) + µ3 (ad+ bc) + µ4 (ad− bc)] (2.18)

If the two photon outcome must unambiguously identify one Bell state, then only one Bell state must

contribute to the above expression. That is, three of the four coefficients of µ in the above equation

must be 0. However, it can be seen that if three coefficients are 0 (which implies either a = b = 0, or

c = d = 0), the fourth one is also forced to be 0. So, a perfect Bell state analyzer can never detect

two photons in the d mode. In the following, we will assume the first column of U to be (a, b, 0, . . .)T .

One can also use (0, 0, c, d . . .)T , and it gives the same result.

We are left to analyze the case of single photon detection in detector d. For this calculation, we

represent the matrix U as

U =



a ~aR

b ~bR

0 ~cR

0 ~dR
...

...


(2.19)
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where the vectors ~aR, ~bR, . . . are row vectors of dimension 1× (D−1). After a single photon detection

in mode d, the conditional state of the other photon can be obtained from (2.17). Only the first

row (or column) of M̃ will contribute to the state. Denoting the first row by ~v1, we have for the

(unnormalized) conditional state |Φ〉

|Φ〉 = ~v1(d†, e†1, . . . , e
†
D−1)T |0〉 (2.20)

Now, ~v1 can also be explicitly calculated using M̃ = UTMU . Using the form of U in (2.19) and the

matrix M in (2.14), we get

~v1 =
1

2
√

2

(
0, µ1(a ~cR + b ~dR) + µ2(a ~cR − b ~dR) + µ3(b ~cR + a ~dR)− µ4(b ~cR − a ~dR)

)
(2.21)

In (2.20), we can now directly obtain conditional states for the four Bell states by setting three of the

four µ’s to zero, and the remaining µ to 1. These turn out to be

|Φ1〉 =
(
a ~cR + b ~dR

)(
e†1, e

†
2, . . . , e

†
D−1

)T
|0〉

|Φ2〉 =
(
a ~cR − b ~dR

)(
e†1, e

†
2, . . . , e

†
D−1

)T
|0〉

|Φ3〉 =
(
a ~dR + b ~cR

)(
e†1, e

†
2, . . . , e

†
D−1

)T
|0〉

|Φ4〉 =
(
a ~dR − b ~cR

)(
e†1, e

†
2, . . . , e

†
D−1

)T
|0〉

(2.22)

We finally must check the orthogonalilty of these states. For perfect state discrimination, the states

corresponding to different Bell states must be orthogonal. Let’s check this, by first calculating the

inner product of |Φ1〉 and |Φ2〉. Below, we also define the two vectors ~e† =
(
e†1, e

†
2, . . . , e

†
D−1

)
and

~e = (e1, e2, . . . , eD−1) to express the above conditional states as a dot product of the row vectors of

U and ~e†.

|Φ1〉 =
(
a ~cR + b ~dR

)
· ~e† |0〉

|Φ2〉 =
(
a ~cR − b ~dR

)
· ~e† |0〉

=⇒ 〈Φ1|Φ2〉 = 〈0|
(
a∗ ~cR

∗·~e+ b∗ ~dR
∗
·~e
)(

a ~cR· ~e† − b ~dR· ~e†
)
|0〉

= |a|2| ~cR|2 − |b|2| ~dR|2 − a∗b ~cR∗ · ~dR + ab∗ ~cR · ~dR
∗

(2.23)

Note however that since different rows of U must be orthogonal, we must have ~cR · ~dR
∗

= ~cR
∗ · ~dR = 0.

So, the inner product simplifies to

〈Φ1|Φ2〉 = |a|2| ~cR|2 − |b|2| ~dR|2 (2.24)

Similarily, one can calculate all
(

4
2

)
= 6 possible overlaps between the |Φ〉 states. These are given

below.
〈Φ1|Φ2〉 = |a|2| ~cR|2 − |b|2| ~dR|2

〈Φ3|Φ4〉 = −|b|2| ~cR|2 + |a|2| ~dR|2
(2.25)

〈Φ1|Φ3〉 = a∗b| ~cR|2 + b∗a| ~dR|2

〈Φ1|Φ4〉 = −a∗b| ~cR|2 + b∗a| ~dR|2

〈Φ2|Φ3〉 = a∗b| ~cR|2 − b∗a| ~dR|2

〈Φ2|Φ4〉 = −a∗b| ~cR|2 − b∗a| ~dR|2

(2.26)
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We now set all the above six quantities to zero. From (2.26), we simply get

a∗b|cR|2 = 0

b∗a|dR|2 = 0
(2.27)

Further, adding and subtracting the two equations in (2.25), we get(
|a|2 − |b|2

)(
|cR|2 + |dR|2

)
= 0(

|a|2 + |b|2
)(
|cR|2 − |dR|2

)
= 0

(2.28)

Since |a|2 + |b|2 6= 0, we must have |cR|2 = |dR|2. The above constraints now simplify to

2
(
|a|2 − |b|2

)
|cR|2 = 0

|cR|2 = |dR|2

a∗b|cR|2 = 0

(2.29)

All the above conditions can be satisfied only if the vectors cR and dR are null vectors. This is not

allowed, as it would make U non-unitary (see (2.19), the condition U†U = 1 cannot be satisfied).

We have seen that irrespective of the number of photons detected in d, the conditional states are

not orthogonal and thus cannot be distinguished with certainty. So, we reach the following conclusion:

No experimental setup using only linear elements can implement a perfect Bell state

analyzer

The natural question to ask now is, if a 100% success probability is not possible, what is the highest

success that can be achieved? Using linear optical elements, how many Bell states can be distin-

guished from each other? Calsamiglia and Lütkenhaus carried forward their previous result and

placed a bound on the success probability of BSMs using linear optics [CL01]. Specifically, they

considered a restricted setup, with no ancillary photons and no conditional measurements (see figure

2.3). Their analysis is presented below.

U

  a1, a2
  a3, a4

 

a5, a6, ..., an

 Vacuum Auxillary 
  modes

   Bell 
  modes

c1 c2 cn

Figure 2.3: A restricted setup: no ancillary photons, and no conditional measurements [CL01]

A different notation is used for the ancillary modes in this paper to make the calculations easier,
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as we will see. Recall that the Bell states as before, are given by

∣∣Ψ1
〉

=
1√
2

(
a†1a
†
3 + a†2a

†
4

)
|0〉∣∣Ψ2

〉
=

1√
2

(
a†1a
†
3 − a

†
2a
†
4

)
|0〉∣∣Ψ3

〉
=

1√
2

(
a†1a
†
4 + a†2a

†
3

)
|0〉∣∣Ψ4

〉
=

1√
2

(
a†1a
†
4 − a

†
2a
†
3

)
|0〉

(2.30)

The remaining (n-4) modes in the setup have no photons in them. So, the action of the setup is to

spread out the two photons of the Bell state across n output modes. The setup is characterized by

an arbitrary unitary operation U. The operators c†1, ..., c
†
n are creation operators corresponding to the

n output modes. Lastly, there are photon detectors at every output mode to measure the number of

photons.

Setting aside Bell states for the moment, we begin our analysis with the most general two-photon

input state
∣∣Ψin

〉
, formed as a combination of all possible terms with two creation operators (since

we don’t use any ancillary photons):

∣∣Ψin
〉

=

n∑
i,j=1

Nija
†
ia
†
j |0〉 (2.31)

The coefficients of these terms are represented by Nij , which are arbitrary complex numbers that

satisfy the normalization condition
〈
Ψin

∣∣Ψin
〉

= 1. Now, let us define vector ~a to be

~a =


a†1
a†2
...

a†n

 (2.32)

Using this definition, the equation (2.31) can compactly be written in matrix form as:

∣∣Ψin
〉

=

n∑
i,j=1

Nija
†
ia
†
j |0〉 = ~aT N ~a |0〉 (2.33)

Here, we have defined N to be the n × n matrix with the elements Nij . The input state is entirely

characterized by this matrix N. Now, since the creation operators corresponding to two different

modes commute, we can write

∣∣Ψin
〉

=

n∑
i,j=1

Nija
†
ia
†
j |0〉 =

n∑
i,j=1

Nija
†
ja
†
i |0〉 (2.34)

Since both i and j independently take values from 1 to n, we can interchange indices to obtain

n∑
i,j=1

Nija
†
ia
†
j |0〉 =

n∑
i,j=1

Nija
†
ja
†
i |0〉 =

n∑
i,j=1

Njia
†
ia
†
j |0〉

=⇒ Nij = Nji ∀i, j = 1, ..., n

(2.35)
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Therefore, N must be a symmetric matrix. Now, to write the output state, we require the transfor-

mation of the creation operators through the setup. This is given by

c†i =

n∑
j=1

U†ija
†
j (2.36)

Inverting this equation and writing it in matrix form simply gives

~a = U~c (2.37)

Using this relation, we can out write
∣∣Ψin

〉
terms of the output operators as

∣∣Ψin
〉

= ~aT N ~a |0〉 = ~cT UTNU ~c |0〉 ≡ ~cTM ~c |0〉 (2.38)

where we have defined M = UTNU (a relation we saw in the previous proof as well). We can see that

(2.38) has the same form as (2.33). Here, the matrix M completely characterizes the output state in

terms of the c† operators. By definition, M is also symmetric since

MT =
(
UTNU

)T
= UTNTU = UTNU = M (2.39)

Till this point, our analysis holds for any arbitrary input state. Let us now consider specifically the

Bell states (2.30). Each of these states would have a different N matrix that characterizes it. The

matrix corresponding to the state |Ψµ〉 will be denoted as Nµ, µ = 1, 2, 3, 4. For these states in

particular, the N matrix happens to take a simple form:

Nµ =
1

2
√

2

(
Wµ 04×(n−4)

0(n−4)×4 0(n−4)×(n−4)

)
(2.40)

The matrix is divided into four blocks, three of which are completely filled with zeroes (0a×b represents

a zero matrix of dimension a × b). This is because (2.30) makes use of only the operators a†1, a
†
2, a
†
3

and a†4 and none of the auxiliary modes. To ensure that none of these auxiliary modes are picked up

in the matrix multiplication of (2.33), these three blocks must be 0.

Now, the W matrix in the above is defined as:

Wµ =


0 0 δµ1 + δµ2 δµ3 + δµ4

0 0 δµ3 − δµ4 δµ1 − δµ2

δµ1 + δµ2 δµ3 − δµ4 0 0

δµ3 + δµ4 δµ1 − δµ2 0 0

 (2.41)

Note that Wµ is symmetric, leading to a symmetric Nµ, as demanded by (2.35). Moreover, it is

straightforward to check that all the four Wµ’s are unitary. To justify the equations (2.40) and

(2.41), let us work out an example for one of the Bell states.

Taking µ = 1, we have the W matrix to be

W 1 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 (2.42)
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Now, the state corresponding to this N (from (2.33)) is given by

|Ψ〉 =
(
a†1 a†2 . . . a†n

)
N1


a†1
a†2
...

a†n

 |0〉 (2.43)

Since only the 4× 4 block W contributes to the matrix multiplication, the above equation reduces to

|Ψ〉 =
1

2
√

2

(
a†1 a†2 a†3 a†4

)
W 1


a†1
a†2
a†3
a†4

 |0〉

=
1

2
√

2

(
a†1 a†2 a†3 a†4

)


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



a†1
a†2
a†3
a†4

 |0〉

=
1

2
√

2

(
a†1 a†2 a†3 a†4

)

a†3
a†4
a†1
a†2

 |0〉
=

1√
2

(
a†1a
†
3 + a†2a

†
4

)
|0〉 =

∣∣Ψ1
〉

(2.44)

So, we obtain the state
∣∣Ψ1
〉

as required. The equation (2.41) similarily gives the correct W matrices

corresponding to the states
∣∣Ψ2
〉
,
∣∣Ψ3
〉

and
∣∣Ψ4
〉
.

Moving forward, the output M matrix corresponding to each of the bell states will be called Mµ, and

is given by

Mµ = UTNµU (2.45)

Again, since only the first 4× 4 block is non-zero, the above equation gets simplified. To see how, we

first partition out U in the following manner:

U =

(
U4×4 U4×(n−4)

U(n−4)×4 U(n−4)×(n−4)

)
=

(
U1 U2

U3 U4

)
(2.46)

Note that U1, U2, U3 and U4 have different dimensions. We can expand out the equation (2.45) using
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the above block representation of U,

Mµ =
1

2
√

2
UT

(
Wµ 04×(n−4)

0(n−4)×4 0(n−4)×(n−4)

)
U

=
1

2
√

2

(
U1 U2

U3 U4

)T (
Wµ 04×(n−4)

0(n−4)×4 0(n−4)×(n−4)

)(
U1 U2

U3 U4

)

=
1

2
√

2

(
UT1 UT3

UT2 UT4

)(
Wµ 04×(n−4)

0(n−4)×4 0(n−4)×(n−4)

)(
U1 U2

U3 U4

)

=
1

2
√

2

(
UT1 UT3

UT2 UT4

)(
WµU1 WµU2

0(n−4)×4 0(n−4)×(n−4)

)

=
1

2
√

2

(
UT1 W

µU1 UT1 W
µU2

UT2 W
µU1 UT2 W

µU2

)

(2.47)

So, we can see that U3 and U4 do not contribute to Mµ. Further, the last matrix can be written as

Mµ =
1

2
√

2

(
UT1

UT2

)(
WµU1 WµU2

)
=

1

2
√

2

(
UT1

UT2

)
Wµ

(
U1 U2

)
≡ 1

2
√

2
UTtrW

µUtr

(2.48)

where we define Utr to be the matrix comprising of the first four rows of U

Utr =
(
U1 U2

)
=
(
U4×4 U4×(n−4)

)
(2.49)

Thus, we have shown that only the first four rows of U contribute to the matrix Mµ for the Bell

states. With this result, we are now ready to begin our study of discriminating between the four Bell

states. We proceed along the same lines as the previous paper. We pick one particular output mode,

measure the number of photons and then study the conditional states of the other modes. Our goal

is to search for those detector outcomes which can unambiguously identify a particular Bell state.

Let us begin with a two-photon detection at some mode ci. The question we ask is, can such an

outcome arise due to only one Bell state? The probability of a two photon detection at ci due to the

Bell state |Ψµ〉 is clearly

Pµi [2] = |〈2i|Ψµ〉|2 (2.50)

where the state |2i〉 is given by

|2i〉 =
1√
2
c†2i |0〉 (2.51)

We can write |Ψµ〉 using (2.38), obtaining

〈2i|Ψµ〉 =
1√
2
〈0| c2i ~cTMµ ~c |0〉

=
1√
2

n∑
j,k=1

〈0| c2i M
µ
jkc
†
jc
†
k |0〉

(2.52)
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Clearly, the only non-zero term in the above summation is the one with j = k = i, leading to

〈2i|Ψµ〉 =
1√
2
〈0| c2i M

µ
iic
†2
i |0〉 =

√
2Mµ

ii (2.53)

As expected, it is the diagonal element of M that is responsible for two photons appearing in the

same mode. The probability of a two-photon detection at mode i is then just

Pµi [2] = 2|Mµ
ii|

2 (2.54)

Our next task is to evaluate Mµ
ii, and we do this by expanding (2.48).

(Mµ)ii =
1

2
√

2
(UTtrW

µUtr)ii =
1

2
√

2

4∑
α,β=1

(UTtr)iα(Wµ)αβ(Utr)βi (2.55)

Using the explicit form of Wµ from (2.41), we can expand this matrix product to get

(Mµ)ii =
√

2[δµ,1(U1iU3i + U2iU4i) + δµ,2(U1iU3i − U2iU4i)

+δµ,3(U1iU4i + U2iU3i) + δµ,4(U1iU4i − U2iU3i)]
(2.56)

Now, the two-photon outcome can be unambiguous if and only if a single Bell state contributes to the

above probability. If three of the above four coefficients of the delta functions are 0, then only one

delta term remains, and this situation would imply that the two-photon outcome arises only because

of one Bell state. However, looking at the coefficients in (2.56), it is evident that if three coefficients

are 0, then the fourth coefficient is forced to be 0 as well. For example, if the first three coefficients

are 0,

U1iU3i + U2iU4i = 0

U1iU3i − U2iU4i = 0

U1iU4i + U2iU3i = 0

(2.57)

The first two equations imply that U1iU3i = U2iU4i = 0. Further, the third equation says that

U1iU4i = −U2iU3i. It is easy to see that these three equations put together imply that U1iU4i =

U2iU3i = 0, and thus U1iU4i − U2iU3i = 0. We conclude that a two-photon outcome at any mode

cannot unambiguously identify a Bell state because the probability of this occurrence can never de-

pend only on one Bell state.

So, if we would like unambiguous identification of a Bell state, we must now study the situation

where the two photons are detected at different modes. Let’s say that one photon is detected at

mode i. Then, the conditional state of the other photon is given by (from (2.38), we collect all terms

which contain one c†i )

|Φµi 〉 = 2

n∑
j=1,j 6=i

Mµ
ijc
†
j |0〉 (2.58)

The factor of 2 in the above arises because of the symmetricity of M, Mij = Mji. Note that this

state in general will not be normalized. The norm of the conditional state will give the probability

of obtaining a single photon in mode i. Defining ~mi
µ to be the ith column of Mµ, we can rewrite the

above as

|Φµi 〉 = 2

n∑
j=1,j 6=i

Mµ
ijc
†
j |0〉 = 2

(
( ~mi

µ)T~c−Mµ
iic
†
i

)
|0〉 (2.59)
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Now, from (2.48), we can extract only the ith column of Mµ. Denoting ~αi = (U1i, U2i, U3i, U4i)
T , the

ith column of Utr, we get

Mµ =
1

2
√

2
UTtrW

µUtr

=⇒ ~mi
µ =

1

2
√

2
UTtrW

µ ~αi ≡
1

2
√

2
UTtr~si

µ
(2.60)

where ~si
µ = Wµ ~αi (dim(UTtr) = n× 4, dim(~si

µ) = 4× 1) =⇒ dim( ~mi
µ) = n× 1). Now, for the bell

states, the vectors ~si
1, ..., ~si

4 can be explicitly calculated using (2.41). For simple notation, let

~αi =


a

b

c

d

 (2.61)

Then, the vectors ~si
1, ..., ~si

4 become

~si
1 =


c

d

a

b

 ~si
2 =


c

−d
a

−b



~si
3 =


d

c

b

a

 ~si
4 =


d

−c
−b
a


(2.62)

It turns out that these four vectors are linearly dependent. We can see this by confirming that

the matrix formed by these four vectors has 0 determinant.

det


c c d d

d −d c −c
a a b −b
b −b a a

 = 0 (2.63)

This linear dependence implies that

4∑
µ=1

bµ~si
µ = 0 with at least one bµ 6= 0 (2.64)

However, we also know that none of the vectors are zero (recall that Wµ is unitary):

|~siµ|2 = |Wµ ~αi|2 = ~αi
∗TWµ†Wµ ~αi = | ~αi|2 (2.65)

~αi is a non-zero vector, so it’s magnitude (and therefore ~si
µ’s magnitude) must be non-zero. Thus,

all the ~si
µ’s are non-zero vectors, with the same magnitude. Because of this additional condition, we

must have
4∑

µ=1

bµ~si
µ = 0 with at least two bµ 6= 0 (2.66)

Crucially, because of the linearity of equations (2.59) and (2.60), we can extend this linear dependence
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to the conditional states themselves:

4∑
µ=1

bµ |Φi〉µ = 0 with at least two bµ 6= 0 (2.67)

Thus, we have shown that upon a single-photon detection at mode i, the conditional states of the

other photon corresponding to the four Bell states are linearly dependent, irrespective of the particu-

lar unitary mapping U. It is well known that an orthogonal set of states can be completely identified

via a projection measurement. But if one has to discriminate between non-orthogonal states, this is

not possible with a 100% success probability. We can correctly identify a state in some cases, but

there is always a non-zero probability of getting an ambiguous measurement outcome - one that could

have occurred due to multiple states. Nevertheless, we can discriminate between linearly independent

states probabilistically without any error, i.e., and we’ll never obtain a misleading outcome. How-

ever, discriminating between states from a linearly dependent set is not possible without error, even

probabilistically. No measurement can identify a particular state with certainty.

So, if we are given a set of linearly dependent states like in (2.67), the best we can do is to dis-

tinguish between a subset of states that are linearly independent of the others, with some non-zero

probability. Since the minimum number of vectors from the set [~si
1, ..., ~si

4] that are dependent is also

2, this implies that the maximum number of states which may be unambiguously discriminated from

each other is 2. We proceed now with calculating the maximum probability of this discrimination.

The overlap between two different conditional states is (from (2.59))

〈Φηi |Φ
µ
i 〉 = 4

[
( ~mi

η∗)T ( ~mi
µ)−Mη∗

ii M
µ
ii

]
(2.68)

This inner product can be further simplified using (2.60). Note that

Mµ
ii =

1

2
√

2
(UTtr~si

µ)i =
1

2
√

2

4∑
k=1

(UTtr)ik(~si
µ)k =

1

2
√

2

4∑
k=1

(Utr)ki(~si
µ)k

=
1

2
√

2

4∑
k=1

(αi)k(~si
µ)k =

1

2
√

2
(αi)

T (~si
µ)

(2.69)

Using the same relation to simplify the first expression ( ~mi
η∗)T ( ~mi

µ) as well, we finally get

〈Φηi |Φ
µ
i 〉 =

1

2

[
(~si

η∗)T ~si
µ − (( ~αi)

T ~si
η∗)(( ~αi)

T ~si
µ)
]

(2.70)

Now, the probability of one photon detection at ci can be calculated from the above as the norm of

the conditional state |Φµi 〉 (since ~si
µ = Wµ ~αi)

Pµi [1] = 〈Φµi |Φ
µ
i 〉 =

1

2

(
| ~αi|2 −

∣∣∣ ~αiT ~siµ∣∣∣2) ≤ 1

2
(| ~αi|2) (2.71)

Let us denote these two states that can be unambiguously distinguished with some non-zero prob-

ability by µ = a, b. So, the probability of unambiguous discrimination when mode i is involved

is

psi ≤
1

4

(
P [1]ai + P [1]bi

)
≤ 1

4
| ~αi|2 (2.72)

The 1
4 is present due to our assumption of a priori equiprobable Bell states. To find the total
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probability of unambiguous discrimination, we have to sum over all modes

P s ≤ 1

2

n∑
i=1

psi (2.73)

An additional 1/2 factor has to be introduced as each mode is counted twice in the above calculation

(if one photon is detected in mode i, obviously another photon has to be detected in another mode

j). From (2.72),

P s ≤ 1

8

n∑
i=1

|αi|2 (2.74)

But recall that since U is unitary,

n∑
i=1

|αi|2 =

n∑
i=1

4∑
j=1

|Uji|2 =

4∑
j=1

n∑
i=1

|Uji|2 =

4∑
j=1

(1) = 4 (2.75)

Therefore, we finally obtain

Ps ≤ 1/2 (2.76)

The maximum success probability of unambiguous discrimination between the Bell

states, with no ancillary photons and no conditional measurements is 1/2.

We infer that the maximum number of Bell states that can be unambiguously discriminated from

each other using such linear optical setups is two. In the previous chapter, we already came across a

setup that separates two out of the four Bell states - simply a 50-50 beam splitter. This proof shows

that we cannot unambiguously distinguish between more than two Bell states using these setups. The

question we discuss in the next chapter is the following: Can one go beyond this 50% limit? If so,

how?

21



Chapter 3

Enhancing the success probability

of BSMs beyond 50%

Since Lutkenhaus’s results, there have been several attempts to increase the success rate of BSMs

beyond 50% using various resources. In this chapter, some of these results will be reviewed. The re-

sources discussed are gaussian squeezing, ancillary entanglement, non-linear optics, and entanglement

in multiple degrees of freedom.

3.1 Gaussian Squeezing

The possibility of using squeezing operations to distinguish between the Bell states was proposed in

2013 by Zaidi and Loock [ZvL13]. Before discussing the paper, the concept of squeezing is briefly

introduced.

The single-mode squeezing operator is an unitary operator defined as

Ŝ(ξ) = exp

[
1

2

(
ξ∗â2 − ξâ†2

)]
(3.1)

where ξ = reiθ is an arbitrary complex number. The number r can take any real value, and is known

as the squeeze parameter. This operator can be better understood by studying its action on vaccuum,

which would result in

Ŝ(ξ) |0〉 ≡ |ξ〉 =
1√

cosh r

∞∑
m=0

√
(2m)!

2mm!
eimθ(tanh r)m |2m〉 (3.2)

Squeezing operations can change the number of photons in the state. Therefore, they are active

linear operations, unlike beam splitters which are passive linear devices. Moreover, the summation

only includes the fock states with an even number of photons. Thus, we can conclude (as is clear

from (3.1)) that the squeezing adds photons in pairs.

Recall the dimensionless quadrature operators

X̂1 =
1

2
(â+ â†)

X̂2 =
1

2i
(â− â†)

(3.3)
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They satisfy the uncertainity relation [GKK05]〈
(∆X̂1)2

〉〈
(∆X̂2)2

〉
≥ 1

16
(3.4)

where ∆X̂ = X̂ −
〈
X̂
〉

. It is well known that the vaccum state saturates this bound of 1/16, and

the variances of both the quadratures are equal. That is,〈
(∆X̂1)2

〉
vac

=
〈

(∆X̂2)2
〉
vac

=
1

4
(3.5)

However, for the squeezed vaccum state, the variances in the quadratures are not equal. Using the

Baker-Hausdorf formula, it can be shown that [GKK05]〈
(∆X̂1)2

〉
vac

=
1

4

[
cosh2r + sinh2r − 2 sinhr coshr cos θ

]
〈

(∆X̂2)2
〉
vac

=
1

4

[
cosh2r + sinh2r + 2 sinhr coshr cos θ

] (3.6)

which if θ = 0 become 〈
(∆X̂1)2

〉
vac

=
1

4
[coshr − sinhr]

2
=

1

4
e−2r〈

(∆X̂1)2
〉
vac

=
1

4
[coshr + sinhr]

2
=

1

4
e2r

(3.7)

Therefore, in a squeezed vacuum state, the variance along one quadrature is made larger, and the

other is reduced. This means that we gain more knowledge about one of the quadratures but lose out

on the other. The direction along which this ’squeezing’ takes place is given by θ, and the parameter

r measures the amount of squeezing. (For θ = 0, the squeezing occurs along the X1 quadrature, and

for θ = π it occurs around X2.)

With this background, we now discuss the results of the paper [ZvL13]. The apparatus proposed

is shown in figure 3.1. It comprises of a 50-50 beam splitter B, two polarizing beam splitters P1, P2

(which transmit horizontally polarized and reflect vertically polarized photons), and four single-mode

squeezers, all of which are assumed to have the same squeezing parameter r. After passing through

LEGEND
PBS @ 0°
Single mode squeezer

Detector

50-50 Beam splitter

B

P1

P2

S1

S2

S3

S4

Figure 3.1: BSM apparatus with single-mode squeezers [ZvL13]

the spatial and polarizing beam splitters, the transformation of the Bell states is discussed below (the
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effect of a 50-50 beam splitter on the Bell states was given in (1.11)).

∣∣Ψ+
〉 50-50 BS−−−−−→ i√

2

[
h†1v
†
1 + h†2v

†
2

]
out
|0〉 (3.8)

h†1v
†
1 |0〉 denotes two photons moving upwards after crossing the beam splitter. Now, when they enter

P1, the horizontally polarized photon is transmitted towards S1, and the vertically polarized photon is

reflected towards S2. Since S3 and S4 don’t receive any photons in this case, the resultant state after

passing through the polarizing beam splitter will be denoted by the ket |1100〉, where the numbers in

the ket represent the number of photons passing through each of the 4 modes that contain S1, S2, S3

and S4. Similarily, h†2v
†
2 |0〉 denotes two photons that would pass through P2, and lead to the state

represented as |0011〉. Thus, the evolution of the state |Ψ+〉 until the squeezers is given by:

∣∣Ψ+
〉 50-50 BS−−−−−→ i√

2

[
h†1v
†
1 + h†2v

†
2

]
out
|0〉 PBSs−−−→ i√

2
(|1100〉+ |0011〉) (3.9)

Similarily, the other states evolve as:

∣∣Ψ−〉 50-50 BS−−−−−→ 1√
2

[
h†1v
†
2 − v

†
1h
†
2

]
out
|0〉 PBSs−−−→ 1√

2
(|1010〉+ |0101〉)∣∣Φ±〉 50-50 BS−−−−−→ i

2
√

2

[
h†21 + h†22 ± v

†2
1 ± v

†2
2

]
out
|0〉 PBSs−−−→ i√

2
(|2000〉+ |0002〉 ± |0200〉 ± |0020〉)

(3.10)

If we are equipped with perfect photon number resolving detectors, then at this stage, we can discrim-

inate perfectly between the states |Ψ+〉 and |Ψ−〉, but not within |Φ±〉. So, the success probability

is 50% at this point, as expected.

Crucially, it turns out that the |Ψ±〉 states will remain perfectly distinguishable even after squeez-

ing. The main reason for this is the fact that photons are added in pairs. This implies that, for

example, the state |1010〉 after squeezing will lead to infinitely many terms, all of which must have the

form |odd,even,odd,even〉. This kind of term is unique to |Ψ−〉; it cannot arise due to |Ψ+〉 or |Φ±〉.
Similarly, after the state |Ψ+〉 is squeezed, we will obtain two types of terms: |odd,odd,even,even〉 or

|even,even,odd,edd〉. Both of these types of terms can only be obtained due to |Ψ+〉. For this reason,

we retain the distinguishability of |Ψ+〉 and |Ψ−〉 after squeezing.

Now, we are left to study the distinguishability of |Φ±〉. Before squeezing, both these states gave

degenerate outcomes. Now, note that all the four terms in |Φ±〉 clearly will give rise to only

|even,even,even,even〉 after squeezing. Therefore, there might be some terms present in |Φ+〉 but

not in |Φ−〉 (and vice versa) due to cancellation across the ± sign. This might lead to some unam-

biguous discrimination of these both states. Indeed, this is exactly what happens. To calculate the

final states of |Φ±〉 after applying squeezing operations on all spatial modes (with the same squeezing

parameter ξ = r), we make use the following relations:

Ŝ(r) |0〉 =
√

sechr exp
(
−tanhr a†2/2

)
|0〉

Ŝ(r) |1〉 = (sechr)3/2 exp
(
−tanhr a†2/2

)
|1〉

Ŝ(r) |2〉 =
√

sechr/2 tanhr exp
(
−tanhr a†2/2

)
|0〉+ (sechr)5/2 exp

(
−tanhr a†2/2

)
|2〉

(3.11)

We can now use the above identities in (3.10) to expand the states |Φ±〉. Below, we ignore higher

photon-number terms for the moment and only write the result up to two-photon terms.
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∣∣Φ±〉→ α±√
2
|0000〉−1

2

(
α±tanhr − sech4r

)
(|2000〉+ |0002〉)−1

2

(
α±tanhr ∓ sech4r

)
(|0200〉+ |0020〉)

(3.12)

where α± is defined as

α± = (1± 1) tanh r sech2 r (3.13)

The first thing to note is that the vacuum output |0000〉 is unique to |Φ+〉 (since α− = 0), thus giving

a success probability of greater than 50% for any non-zero value of squeezing. So, squeezing indeed

helps distinguish between the |Φ±〉 states. Further, if r = 0.6585, then α+tanhr − sech4r = 0 and

the two photon terms become completely unambiguous: they vanish for |Φ+〉, but remain for |Φ−〉.
This does not mean that |Φ+〉 → |0000〉, as the above expression does not display higher order terms,

many of which remain even after the above condition is imposed.

Through numerical computations involving higher-order terms, the authors confirmed that r = 0.6585

leads to the best success probability of unambiguous discrimination between |Φ+〉 and |Φ−〉. To find

the success probability, both states are expanded to a particular order, and r = 0.6585 is imposed.

Then, the terms that become unique for |Φ+〉 and |Φ−〉 are collected. The sum of the absolute squared

of the coefficients of all the unique terms for |Φ+〉 gives the probability of identifying the state as

|Φ+〉 and not any other state. This computation was performed for both states, and the sum was

found to be 0.3748 for |Φ+〉 and 0.1975 for |Φ−〉. Thus the total unambiguous success probability

(for initial equiprobable Bell states) becomes

P =
1

4
(1 + 1 + 0.3748 + 0.1975) = 0.643 ≡ 64.3% (3.14)

An arbitrary two-mode squeezing setup can be decomposed into a multiport linear interferometer,

followed by single mode squeezers, and finally another multiport linear interferometer [Bra05]. The

authors investigated such setups with two-mode squeezers as well but found that the success proba-

bility was bounded by 62.5%.

In a recent work, Saikat Guha and Thomas Kilmer showed that the 64.3% success probability is

actually not experimentally attainable [KG19]. It is a point result, for a very specific value of r,

r = 0.6585. The slightest change in r drops the success probability to around 59%. They showed

that a more feasible, experimentally achievable bound is actually around 59.6%.

3.2 Ancillary Entanglement

We now discuss another approach to increase success probability: using additional ancillary entangled

photons. This was proposed by W.P. Grice in 2011 [Gri11]. We’re already aware that a setup

consisting solely of a 50-50 beam splitter yields a success rate of 50%.

∣∣Ψ+
〉
≡

[
h†1v
†
2 + v†1h

†
2

]
in
|0〉

√
2

→

[
h†1v
†
1 + h†2v

†
2

]
out
|0〉

√
2

∣∣Ψ−〉 ≡
[
h†1v
†
2 − v

†
1h
†
2

]
in
|0〉

√
2

→

[
h†1v
†
2 − v

†
1h
†
2

]
out
|0〉

√
2

∣∣Φ±〉 ≡
[
h†1h

†
2 ± v

†
1v
†
2

]
in
|0〉

√
2

→

[
h†21 + h†22 ± v

†2
1 ± v

†2
2

]
out
|0〉

2
√

2

(3.15)
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Let nh and nv denote the number of horizontal and vertically polarized photons in the detectors, and

n[1] the number of photons that reach detector 1. From (3.15), it is clear that nh and nv are odd for

|Ψ±〉 and even for |Φ±〉. Moreover, n[1] is even for |Ψ+〉 but odd for |Ψ−〉.

In order to break the degeneracy between the |Φ±〉 states, Grice uses an ancillary photon pair of

the same form as |Φ+〉, denoted by |γ1〉.

|γ1〉 ≡
1√
2

[
h†3h

†
4 + v†3v

†
4

]
in
|0〉 (3.16)

The setup analysed is given in figure 3.2 The transformation of the creation operators due to this

1in

1out

2out

2in 4in

4out

3out

3in

Figure 3.2: Setup with two ancillary photons (passed through the modes 3 and 4), beam splitters are
50-50

setup is given by 
a†1
a†2
a†3
a†4


in

→ 1

2


1 i i −1

i 1 −1 i

i −1 1 i

−1 i i 1



a†1
a†2
a†3
a†4


out

(a = {h, v}) (3.17)

Our input states are now∣∣Ψ±〉 |γ1〉 ≡
1

2

[(
h†1v
†
2 ± v

†
1h
†
2

)(
h†3h

†
4 + v†3v

†
4

)]
in
|0〉 (3.18)

∣∣Φ±〉 |γ1〉 ≡
1

2

[(
h†1h

†
2 ± v

†
1v
†
2

)(
h†3h

†
4 + v†3v

†
4

)]
in
|0〉 (3.19)

The task at hand is to check if the introduction of an ancillary pair helps us better distinguish

between the above states. To find the final states, we have to write each of the input operators in

(3.18) and (3.19) in terms of the output operators using (3.17).

Note that nh and nv are odd for |Ψ±〉 |γ1〉, and even for |Φ±〉 |γ1〉. Since the setup only mixes

spatial modes and not polarization, the final states written in terms of the output operators also

retain this nature. There will certainly be a large number of terms, but for all of them, nh and nv will

stay odd (for |Ψ±〉 |γ1〉) or even (|Φ±〉 |γ1〉). So, |Ψ±〉 |γ1〉 and |Φ±〉 |γ1〉 can always be distinguished

using the detector outcomes.

Next, we ask if |Ψ+〉 |γ1〉 can be discerned from |Ψ−〉 |γ1〉. A simple but rather tedious calcula-
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tion is involved here, and is discussed below. Beginning with |Ψ+〉 |γ1〉, the term
(
h†1v
†
2 + v†1h

†
2

)
evolves as (from (3.17)):

1

2

[(
h†1v
†
2 + v†1h

†
2

)]
y

1

8

[
(h†1 + ih†2 + ih†3 − h

†
4)(iv†1 + v†2 − v

†
3 + iv†4) + (v†1 + iv†2 + iv†3 − v

†
4)(ih†1 + h†2 − h

†
3 + ih†4)

]
=

1

4

[
ih†1v

†
1 − h

†
1v
†
3 + ih†2v

†
2 − h

†
2v
†
4 − h

†
3v
†
1 − h

†
4v
†
2 − ih

†
3v
†
3 − ih

†
4v
†
4

]
(3.20)

Further, the second term
(
h†3h

†
4 + v†3v

†
4

)
(that represents the ancillary |γ1〉) evolves into

[(
h†3h

†
4 + v†3v

†
4

)]
y

1

4

[
(ih†1 − h

†
2 + h†3 + ih†4)(−h†1 + ih†2 + ih†3 + h†4) + (iv†1 − v

†
2 + v†3 + iv†4)(−v†1 + iv†2 + iv†3 + v†4)

]
=

1

4

[
(−ih†21 − ih

†2
2 + ih†23 + ih†24 − 2h†1h

†
3 − 2h†2h

†
4) + (−iv†21 − iv

†2
2 + iv†23 + iv†24 − 2v†1v

†
3 − 2v†2v

†
4)
]

(3.21)

To obtain the final state, one must multiply the final expressions of both (3.20) and (3.21). Instead

of doing that, we make the following observation. Let us define n[1,3] ≡ n1 + n3. Now, each term in

(3.20) and (3.21) have n[1,3] = 0, 2. So, n[1,3] is even for all terms in (3.20) and (3.21). Thus, when

(3.20) and (3.21) are multiplied, it is clear that for all the resulting terms, n[1,3] will be an even

number.

Now, we consider the state |Ψ−〉 |γ1〉. We have already looked at the terms arising from |γ1〉, let

us expand the term
(
h†1v
†
2 − v

†
1h
†
2

)
.

1

2

[(
h†1v
†
2 − v

†
1h
†
2

)]
y

1

8

[
(h†1 + ih†2 + ih†3 − h

†
4)(iv†1 + v†2 − v

†
3 + iv†4)− (v†1 + iv†2 + iv†3 − v

†
4)(ih†1 + h†2 − h

†
3 + ih†4)

]
=

1

4

[
h†1v
†
2 − h

†
2v
†
1 − ih

†
2v
†
3 − h

†
3v
†
4 + h†4v

†
3 + ih†3v

†
2 − ih

†
4v
†
1 + ih†1v

†
4

]
(3.22)

Notice that here however, for all terms in (3.22), n[1,3] = 1. So, when (3.22) is multiplied with

|γ1〉, all terms that result would have an odd value of n[1,3]. Therefore, by measuring the number

of photons that reach detectors 1 and 3, we can distinguish between the states |Ψ+〉 |γ1〉 and |Ψ−〉 |γ1〉.

The above conclusions imply that ancillary entanglement is not doing any harm, as we are not

losing what we had before: the perfect distinguishability of |Ψ±〉 from |Φ±〉, and |Ψ+〉 from |Ψ−〉.

The power of the ancillary photons becomes evident when we expand the states |Φ±〉 |γ1〉:

∣∣Φ±〉 |γ1〉 ≡
1

2

[(
h†1h

†
2 ± v

†
1v
†
2

)(
h†3h

†
4 + v†3v

†
4

)]
in
|0〉

=
1

2

[(
h†1h

†
2h
†
3h
†
4 ± v

†
1v
†
2v
†
3v
†
4 + h†1h

†
2v
†
3v
†
4 ± v

†
1v
†
2h
†
3h
†
4

)]
in
|0〉

(3.23)

In this case, the output terms can either have an equal number (two) of horizontal and vertically
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polarized photons or all photons with the same polarization. Both these possibilities are equally

likely. When all photons have the same polarization, we cannot tell if the initial state was |Φ+〉 or

|Φ−〉; the terms corresponding to nh = 4, nv = 0 and nh = 0, nv = 4 are all common to both states.

However, we can make a distinction in the other case when nh = nv = 2. Below, only the terms

belonging to |Φ+〉 and |Φ−〉 with nh = nv = 2 are shown.∣∣Φ+
〉
−→ [h†21 v

†2
1 + h†21 v

†2
2 − h

†2
1 v
†2
3 − h

†2
1 v
†2
4 + h†22 v

†2
1 + h†21 v

†2
2 − h

†2
1 v
†2
3 − h

†2
2 v
†2
4 − h

†2
3 v
†2
1 − h

†2
1 v
†2
2 + h†23 v

†2
3

+h†23 v
†2
4 − h

†2
4 v
†2
1 − h

†2
4 v
†2
2 + h†24 v

†2
3 + h†24 v

†2
4 + 2h†1h

†
3v
†
1v
†
3 + 2h†2h

†
4v
†
1v
†
3 + 2h†2h

†
4v
†
2v
†
4 + 2h†1h

†
3v
†
2v
†
4]

(3.24)∣∣Φ−〉 −→ i[−h†21 v
†
1v
†
3 − h

†2
1 v
†
2v
†
4 − h

†2
2 v
†
1v
†
3 − h

†2
2 v
†
2v
†
4 + h†23 v

†
1v
†
3 + h†23 v

†
2v
†
4 + h†24 v

†
1v
†
3 + h†24 v

†
2v
†
4

h†1h
†
3v
†2
1 + h†1h

†
3v
†2
2 − h

†
1h
†
3v
†2
3 − h

†
1h
†
3v
†2
4 + h†2h

†
4v
†2
1 + h†2h

†
4v
†2
2 − h

†
2h
†
4v
†2
3 − h

†
2h
†
4v
†2
4 ]

(3.25)

A close look at equations (3.24) and (3.25) reveals that n[1,2] is even for |φ+〉 |γ1〉 and odd for |φ−〉 |γ1〉.
This means that |φ+〉 and |φ+〉 can indeed be distinguished from each other (50% of the time), a

result that could not be obtained without ancillary photons. Thus, we obtain a success probability of

P =
1

4

(
1 + 1 +

1

2
+

1

2

)
=

3

4
≡ 75% (3.26)

Let us summarize the scheme. We first measure nh or nv. If they are odd, the state belongs to

|Ψ±〉 |γ1〉. In this case, we measure n[1,3]. If it is odd, the state must be |Ψ−〉 |γ1〉, and if it is even,

the state must be |Ψ+〉 |γ1〉.
If nh or nv are even, then the state belongs to |Φ±〉 |γ1〉. We now check if either nv or nh are 0. If

so, we cannot tell if the state was |Φ+〉 |γ1〉 or |Φ−〉 |γ1〉. If on the other hand, nh = nv = 2, then we

measure n[1,2]. If it is even, the state must be |Φ+〉 |γ1〉 and if it is odd, the state is |Φ−〉 |γ1〉.

We have seen that one pair of ancillary photons yields a success probability of 75%. Intuitively

then, we can expect that additional ancillary can be of more help. This is indeed the case. Grice

also generalized the above setup to include n pairs of ancillary photons and found that adding 2N −2

photons yields a success rate of 1− 1/2N . Thus, we can achieve arbitrarily complete Bell state mea-

surements using linear optics by using Grice’s method.

However, an important caveat must be stated here. To go beyond 75% with this setup, we require

4-photon entangled, 8-photon entangled states, and so on.

|γ1〉 =
1√
2

[
h†3h

†
4 + v†3v

†
4

]
in
|0〉

|γ2〉 =
1√
2

[
h†5h

†
6h
†
7h
†
8 + v†5v

†
6v
†
7v
†
8

]
in
|0〉

...

States like |γ2〉 and beyond are challenging to produce in a lab. Therefore, this method might be

impractical from an experimental perspective (to reach probabilities higher than 75%).

3.3 Non-linear Optics

Taking a short digression from linear optics, we discuss an experimental result of Kim, Kulik, and

Shih [KKS01] (2001) where a complete BSM and teleportation was achieved using non-linear optical

elements. A schematic of their apparatus is shown in figure 3.3.
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A non-linear medium is one where the polarization response of the medium does not vary linearly

with the applied electric field. The polarization density P (t) of a dielectric medium in general varies

as
~P (t) = ε0

(
χ(1) ~E(t) + χ(2) ~E2(t) + χ(3) ~E3(t) + . . .

)
(3.27)

In the above, χ(n) is an (n+1)th order tensor. These are known as the susceptibility tensors and are

material dependent. For a linear process, all the tensors χ(n) beyond n = 1 are zero. Some examples

of non-linear processes are SPDC, the Kerr effect, and four-wave mixing. The specific non-linear

process used in this paper is known as Sum Frequency Generation (SFG). This is a second-order

nonlinear phenomena (χ(2) 6= 0), where two photons (of frequencies ω1 and ω2) combine together,

get annihilated and create one photon of higher energy (ω3). This process is parametric, which

means that the state of the medium is unchanged due to the interaction. Therefore, the energy and

momentum of the optical field are conserved. Energy conservation implies:

~ω1 + ~ω2 = ~ω3 (3.28)

Efficient SFG demands that a phase matching condition must also be satisfied (momentum conser-

vation)

~κ1 + ~κ2 ≈ ~κ3 (3.29)

Another property of a second-order non-linear process is that it cannot occur in centrosymmetric me-

dia. The light has to interact with matter that is asymmetric (for instance, on a material’s surface).

For this reason, the SFG process can be used as a spectroscopic tool to study surfaces [VT05].

In a uniaxial crystal (like Barium Borate), all directions except one are equivalent and have the

same refractive index. The unique direction which has a different refractive index is called the optic

axis of the crystal. So, the crystal can be rotated about this axis without changing its optical prop-

erties. The difference between these two refractive indices is called the birefringence of the crystal. A

ray of light that travels along the optic axis and having polarization perpendicular to the optic axis

is called an ordinary ray. This ray would experience the same refractive index due to the material,

irrespective of its polarization.

Consider a ray propagating along a direction different from the optic axis. The polarization of

this ray can be resolved into two components; one which lies in the plane perpendicular to the optic

axis and another perpendicular to this direction. A ray with the former polarization behaves like

an ordinary ray. However, the second ray has a polarization component along the optic axis and

experiences a direction-dependent refractive index. This ray is termed the extraordinary ray. Thus,

in general, a ray of light passing through a birefringent crystal splits up into two rays, an ordinary

ray, and an extraordinary ray. This causes the process of double refraction.

There are different types of SFG depending on the polarizations of the incoming and outgoing photons

and the optic axis of the crystal. Some common types are:

� Type-0 : Two photons with extraordinary polarization w.r.t the crystal are converted to a

photon with extraordinary polarization.

� Type-I : Two photons with ordinary polarization w.r.t the crystal are converted to a photon

with extraordinary polarization.
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� Type-II : Two photons with orthogonal polarization w.r.t the crystal are converted to a photon

with extraordinary polarization.

In this paper, the Type-I and the Type-II SFG are used. The SPDC source creates two photons 2

U

M

Alice (BSM)

Bob

PBS1

PBS2

Input state
     |Ψ>1

SPDC source
     |Ψ>23

1

2

3

type-I
SFG

type-II
SFG

Classical Channel

D4II
D4I

D4IV

D4III

Figure 3.3: Non-linear BSM setup [KKS01]

and 3 in an entangled state (assumed to be |Φ−〉 in this calculation). The photon we wish to teleport

(photon 1) is sent to Alice’s lab along with photon 2. Both the photons pass through two SFG crystals

of each type. The symbols on the SFG devices denote the optic axis of the crystal. The concentric

circles represent a crystal with optic axis along the horizontal, and the arrow represents a crystal

with optic axis vertical. Therefore, as per our discussion above, the action of the four SFG crystals

in the setup, in order, are described by

|V1V2〉 → |H4〉
|H1H2〉 → |V4〉

|H1V2〉 → |H4〉
|V1H2〉 → |V4〉

where the photon created by the SFG process is denoted with the subscript 4. Those photons that

undergo SFG are reflected by a wavelength selective dichroic mirror onto polarizing beam splitters

oriented at 45°, and finally reach the detectors DI
4 , D

II
4 , DIII

4 , DIV
4 .

Let us study the effect of this process on the teleportation protocol. If we’d like to teleport the

state

|Ψ1〉 = α |H1〉+ β |V1〉 (3.30)

using the entangled pair

|Ψ23〉 =
1√
2

(|H2H3〉 − |V2V3〉) (3.31)

The complete state of the three photons prior to measurement is then

|Ψ123〉 =
α√
2

(|H1H2H3〉 − |H1V2V3〉) +
β√
2

(|V1H2H3〉 − |V1V2V3〉) (3.32)
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The Type-I SFG acts on the first and the fourth term in (3.32), and the dichroic mirror reflects the

result towards G1. So, the final state corresponding to these terms is

|Ψ43〉 = α |V4H3〉 − β |H4V3〉

=
1√
2

[|45°4〉 (α |H〉3 − β |V 〉3) + |135°4〉 (α |H〉3 + β |V 〉3)]
(3.33)

where, the states |45°4〉 and |135°4〉 are defined as

|45°4〉 =
1√
2

(− |H4〉+ |V4〉)

|135°4〉 =
1√
2

(|H4〉+ |V4〉)
(3.34)

Similarily, the Type-II SFG acts on the second and third terms, and the resulting photon state at G2

is

|Ψ43〉 =
1√
2

[|45°4〉 (−α |H〉3 + β |V 〉3) + |135°4〉 (−α |H〉3 − β |V 〉3)] (3.35)

Based on which of the four detectors DI
4 , D

II
4 , DIII

4 , DIV
4 clicks, a rotation can be performed on the

3rd photon, and the required state (3.30) can be retrieved. Thus, a complete Bell state measurement

can be performed using this process.

Even though a complete BSM has been achieved, this does not demonstrate perfect teleportation.

This is because non-linear processes are very inefficient (∼ 10−6), and we can never tell if a photon

sent into the setup will actually undergo the SFG process or not. Thus, this protocol will be unreliable

if a single arbitrary state has to be teleported.

3.4 Entanglement in two degrees of freedom

The last resource we will discuss is possibly the most important one in the context of linear optics.

Can we distinguish between the Bell states if they are also entangled in another degree of freedom?

This question was first answered by P. Kwait and Harald Weinfurter in 1998 [KW98]. They showed

that equipped with additional entanglement, perfect discrimination of these states is possible. En-

tanglement in multiple degrees of freedom is often termed ’hyperentanglement’. One of the schemes

in [KW98] is discussed here.

Consider the states below, which are entangled in both polarization and momentum/path degrees of

freedom. ∣∣Ψ±〉 =
1

2

[
(a†Hb

†
V ± a

†
V b
†
H) + (c†Hd

†
V ± c

†
V d
†
H)
]
|0〉∣∣Φ±〉 =

1

2

[
(a†Hb

†
H ± a

†
V b
†
V ) + (c†Hd

†
H ± c

†
V d
†
V )
]
|0〉

(3.36)

The proposed setup to distinguish between these states is shown in figure 3.4. The states in (3.36)

pass through a beam splitter, and then two polarizing beam splitters oriented at 0°, and four po-

larizing beam splitters oriented at 45°, before being detected at photon-number resolving detectors.

The transformations of the creation operators across this setup are given by the following relations.
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Figure 3.4: Bell state analysis using polarization-momentum hyperentanglement [KW98]

Through the 50-50 beam splitter:

a† → 1√
2

(
a† + ib†

)
b† → 1√

2

(
ia† + b†

)
c† → 1√

2

(
c† + id†

)
d† → 1√

2

(
ic† + d†

) (3.37)

Since a beam splitter preserves polarization of photons, the relations above are equally valid for cre-

ation operators corresponding to H and V. Now, the polarizing beam splitter oriented at 0°transmits

horizontally polarized photons, and reflects vertically polarized photons. So its action is given by

a†H → α†H a†V → δ†V

b†H → β†H b†V → γ†V

c†H → γ†H c†V → β†V

d†H → δ†H d†V → α†V

(3.38)

Finally, the action of the polarizing beam splitter oriented at 45°is (X → α, β, γ, δ):

X†H →
1√
2

(
X†45 +X†−45

)
X†V →

1√
2

(
X†45 −X

†
−45

) (3.39)
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Our task now is to use the relations in (3.37), (3.38), and (3.39) to evolve the states (3.36), and

analyse the possible outcomes. The case of |Ψ+〉 is dealt with in detail below.

∣∣Ψ+
〉

=
1

2

[
(a†Hb

†
V + a†V b

†
H) + (c†Hd

†
V + c†V d

†
H)
]
|0〉 50-50 BS−−−−−→

1

4

[
(a†H + ib†H)(ia†V + b†V ) + (a†V + ib†V )(ia†H + b†H) + (c†H + id†H)(ic†V + d†V ) + (c†V + id†V )(ic†H + d†H)

]
=

1

2

[
(ia†Ha

†
V + ib†Hb

†
V ) + (ic†Hc

†
V + id†Hd

†
V )
]
|0〉

PBS @ 0°−−−−−−→ 1

2

[
(iα†Hδ

†
V + iβ†Hγ

†
V ) + (iγ†Hβ

†
V + iδ†Hα

†
V )
]
|0〉

PBS @ 45°−−−−−−−→ i

4
[(α†45 + α†−45)(δ†45 − δ

†
−45) + (β†45 + β†−45)(γ†45 − γ

†
−45)

+(γ†45 + γ†−45)(β†45 − β
†
−45) + (δ†45 + δ†−45)(α†45 − α

†
−45)] |0〉

=
1

2

[
α†45δ

†
45 − α

†
−45δ

†
−45 + β†45γ

†
45 − β

†
−45γ

†
−45

]
|0〉

(3.40)

A similar calculation can be done for the other Bell states as well. The final result for all the states

is shown below.

∣∣Ψ+
〉
→ 1

2

[
α†45δ

†
45 − α

†
−45δ

†
−45 + β†45γ

†
45 − β

†
−45γ

†
−45

]
|0〉∣∣Ψ−〉→ 1

2

[
α†45γ

†
45 − α

†
−45γ

†
−45 − β

†
45δ
†
45 + β†−45δ

†
−45

]
|0〉∣∣Φ+

〉
→ 1

2

[
α†45α

†
45 − α

†
−45α

†
−45 + β†45β

†
45 − β

†
−45β

†
−45+ (3.41)

γ†45γ
†
45 − γ

†
−45γ

†
−45 + δ†45δ

†
45 − δ

†
−45δ

†
−45

]
|0〉∣∣Φ+

〉
→ −i

2

[
α†45α

†
−45 + β†45β

†
−45 + γ†45γ

†
−45 + δ†45δ

†
−45

]
|0〉

A close look at the above equations confirms that every possible outcome above occurs uniquely for

only one state. This means that no matter what outcome appears at the detectors, we can always

trace that outcome uniquely back to one of the four states. Thus, the hyperentangled Bell states can

be perfectly distinguished from each other, and this linear optical setup can perform perfect discrim-

ination of the four states in (3.36). The reason we achieve a 100% success here can be attributed

to an increase in the number of possible outcomes at the detectors. Since the paper of Kwait and

Weinfurter, several other schemes have been proposed and experimentally demonstrated for Bell state

analysis using other degrees of freedom of photons [WPM03] [SHKW06] [BVMDM07]. In particular,

the paper by Walborn et al. [WPM03] improved upon the above setup; their protocol doesn’t require

photon-number resolving detectors and does not even require two-photon interference. The paper

[SHKW06] demonstrated a complete BSM using polarization and time-energy hyperentanglement.

Hyperentangled Bell state analysis has also been demonstrated using the polarization, and Orbital

Angular Momentum (OAM) degrees of freedom [KLL+19] [BWK08]. Aside from an angular momen-

tum possessed due to circular polarization (the spin angular momentum), photon beams can also

possess angular momentum due to the spatial distribution of the electric field of the beam. This is re-

ferred to as the orbital angular momentum. Beams with electric fields of the form ~E(r, φ) = ~E0(r)eimφ

(cylindrical coordinates in the plane perpendicular to the direction of propagation) have a well de-

fined angular momentum, and each photon in this beam has a quantized angular momentum of m~.

The Laguerre-Gaussian modes are cylindrically symmetric solutions of the electric field for the wave

equation in the paraxial approximation. These have the same form as above, but with ~E0(r) being a
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generalized Laguerre polynomial. Any beam of light can be decomposed into the basis of LG modes of

various mode numbers m. The states |±1〉 below denote LG modes which carry angular momentum

of ±~. The OAM Bell states used here are defined as

∣∣Ψ+
〉oam

=
|1〉 |−1〉+ |−1〉 |1〉√

2∣∣Ψ−〉oam =
|1〉 |−1〉 − |−1〉 |1〉√

2∣∣Φ+
〉oam

=
|1〉 |1〉+ |−1〉 |−1〉√

2∣∣Φ−〉oam =
|1〉 |1〉 − |−1〉 |−1〉√

2

(3.42)

The paper [KLL+19] proposed a protocol to completely distinguish between the states (the super-

scripts pol and oam denote Bell states in polarization and orbital angular momentum respectively)

|Θ1〉 =
∣∣Ψ+

〉pol ∣∣Ψ+
〉oam

|Θ2〉 =
∣∣Ψ+

〉pol ∣∣Ψ−〉oam
|Θ3〉 =

∣∣Ψ+
〉pol ∣∣Φ+

〉oam
|Θ4〉 =

∣∣Ψ+
〉pol ∣∣Φ−〉oam

(3.43)

The states in (3.42) can be produced using an SPDC process, and this entanglement in the OAM

degree of freedom was first experimentally demonstrated by Mair et al. in 2001 [MVWZ01]. Just as

how wave-plates are used to change the polarization of light, converting between states of different

OAMs is usually carried out using computer-generated diffraction gratings with fork dislocations.

The paper [BWK08] on the other hand, proposed a setup to distinguish between the states with

fixed OAM and varying polarization: |Ψ±〉pol |Ψ+〉oam and |Φ±〉pol |Ψ+〉oam. The central idea of both

these papers was the same, which is to develop a setup that distinguishes between the single photon

states defined as

|Ψ1〉 =
|−1〉 |H〉+ |1〉 |V 〉√

2

|Ψ2〉 =
|−1〉 |H〉 − |1〉 |V 〉√

2

|Ψ3〉 =
|−1〉 |V 〉+ |1〉 |H〉√

2

|Ψ4〉 =
|−1〉 |V 〉 − |1〉 |H〉√

2

(3.44)

It so happens that the four states |Θi〉 in (3.43) can be written as unique combinations of the |Ψ〉
states above.

|Θ1〉 =
1

2
(|Ψ1〉1 |Ψ1〉2 − |Ψ2〉1 |Ψ2〉2 + |Ψ3〉1 |Ψ3〉2 − |Ψ4〉1 |Ψ4〉2)

|Θ2〉 =
1

2
(|Ψ2〉1 |Ψ1〉2 − |Ψ1〉1 |Ψ2〉2 + |Ψ4〉1 |Ψ3〉2 − |Ψ3〉1 |Ψ4〉2)

|Θ3〉 =
1

2
(|Ψ3〉1 |Ψ1〉2 + |Ψ4〉1 |Ψ2〉2 + |Ψ1〉1 |Ψ3〉2 + |Ψ2〉1 |Ψ4〉2)

|Θ4〉 =
1

2
(|Ψ4〉1 |Ψ1〉2 + |Ψ3〉1 |Ψ2〉2 + |Ψ2〉1 |Ψ3〉2 + |Ψ1〉1 |Ψ4〉2)

(3.45)

34



where the subscripts outside the ket denote the photon number. Clearly, we can see no overlap

between the outcomes of any two |Θ〉 states. Therefore, if a setup can distinguish between the

four states (3.44), then one could use two copies of this setup for both photons, and perform perfect

discrimination of the states (3.45). The setup of paper [BWK08] is described in detail in section 3.4.2.

Now that we have achieved perfect Bell state analysis using only linear optics, it is worth study-

ing the applications of this result. Can this help us in the quantum information protocols discussed

in chapter 1? This question is addressed in the following two sections.

3.4.1 Hyperentanglement for teleportation

Although we can perfectly distinguish between Bell states entangled in two degrees of freedom, this

does not give us the ability to perform deterministic teleportation of an arbitrary state of a photon

using linear optics. Why is this so?

Say we want to teleport the OAM state of the photon

|Ψ〉1 = |H〉1 ⊗ (α |1〉1 + β |−1〉1) (3.46)

We are also equipped with a pair of photons (2 and 3) entangled in the OAM degree of freedom. Let

their state be

|Ψ〉23 = |H〉2 |V 〉3 ⊗
(
|1〉2 |−1〉3 − |−1〉2 |1〉3√

2

)
(3.47)

So, the combined state of the three photons is

|Ψ〉123 = |H〉1 |H〉2 |V 〉3 ⊗
[
(α |1〉1 + β |−1〉1)

(
|1〉2 |−1〉3 − |−1〉2 |1〉3√

2

)]
(3.48)

≡ |H,H, V 〉 ⊗
[
α |1, 1,−1〉 − α |1,−1, 1〉+ β |−1, 1, 1〉 − β |−1,−1, 1〉√

2

]
(3.49)

where, |H,H, V 〉 ≡ |H〉1 |H〉2 |V 〉3 and |1, 1,−1〉 ≡ |1〉1 |1〉2 |−1〉3

The OAM part of the state (3.49) can be rewritten in terms of the OAM bell states of photons

1 and 2, giving

|Ψ〉123 = |H,H, V 〉 ⊗ [
∣∣Ψ+

〉oam
12

(−α |1〉3 + β |−1〉3)−
∣∣Ψ−〉oam

12
(α |1〉3 + β |−1〉3)

+
∣∣Φ+

〉oam
12

(−β |1〉3 + α |−1〉3) +
∣∣Φ−〉oam

12
(β |1〉3 + α |−1〉3)]

(3.50)

where the OAM Bell states are defined as in (3.42). Let us assume that we have a setup that

distinguishes between the states in (3.45). For us to benefit from this setup, we must write the

states of photon 1 and 2 in (3.50) as jointly entangled in both polarization and OAM degrees of

freedom. But clearly, the three photons are a product state in polarization. To convert them into the

required entangled state, we must apply a global unitary on the photons 1 and 2 that performs the

transformation

|H,H〉 → |H,V 〉+ |V,H〉√
2

≡
∣∣Ψ+

〉pol
(3.51)
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Assuming this operation can be performed, the state of the three photons becomes

|Ψ〉123 =
∣∣Ψ+

〉pol
12
|V 〉3 ⊗ [

∣∣Ψ+
〉oam

12
(−α |1〉3 + β |−1〉3)−

∣∣Ψ−〉oam
12

(α |1〉3 + β |−1〉3)

+
∣∣Φ+

〉oam
12

(−β |1〉3 + α |−1〉3) +
∣∣Φ−〉oam

12
(β |1〉3 + α |−1〉3)]

(3.52)

=⇒ |Ψ〉123 =
∣∣Ψ+

〉pol
12

∣∣Ψ+
〉oam

12
⊗ |V 〉3 (−α |1〉3 + β |−1〉3)−

∣∣Ψ+
〉pol

12

∣∣Ψ−〉oam
12
⊗ |V 〉3 (α |1〉3 + β |−1〉3)

+
∣∣Ψ+

〉pol
12

∣∣Φ+
〉oam

12
⊗ |V 〉3 (−β |1〉3 + α |−1〉3) +

∣∣Ψ+
〉pol

12

∣∣Φ−〉oam
12
⊗ |V 〉3 (β |1〉3 + α |−1〉3)

(3.53)

Here, both the polarization and the OAM states of the first two photons are written first, and the

state of the 3rd photon is written as a tensor product.

The states of the first two photons in (3.53) are precisely the states entangled in two degrees of

freedom |Θ〉 as defined earlier. So we finally have

|Ψ〉123 = |Θ1〉12 ⊗ |V 〉3 (−α |1〉3 + β |−1〉3)− |Θ2〉12 ⊗ |V 〉3 (α |1〉3 + β |−1〉3)

+ |Θ3〉12 ⊗ |V 〉3 (−β |1〉3 + α |−1〉3) + |Θ4〉12 ⊗ |V 〉3 (β |1〉3 + α |−1〉3)
(3.54)

Since a setup exists that can distinguish between the |Θ〉 states, we can now perform a measurement

onto one of the hyperentangled states |Θi〉, and perform an appropriate rotation to get back the

arbitrary state needed. However, the unitary U described in (3.51) is creating polarization entan-

glement, and it cannot be realized with certainty using linear optics. The maximum efficiency of

this transformation is 50%. For this reason, entanglement in two degrees of freedom is not a useful

resource for teleportation. However, it is a valuable resource for dense coding, and this is discussed

next.

3.4.2 Hyperentanglement for dense coding

Since hyperentanglement allows complete state discrimination, dense coding can be performed on hy-

perentangled photons such that information can be encoded in one degree of freedom (by performing

various unitary rotations on the photon in that Hilbert space), and the entangled state in the second

Hilbert space is used only to assist in the state discrimination process. Theoretically, this procedure

allows for perfect dense coding, with a channel capacity of two bits per photon. Hyperentanglement-

assisted dense coding was first described for polarization and OAM modes of photons by Barreiro et

al. [BWK08], and their apparatus is discussed here. In their protocol, information is encoded in the

polarization domain, and perfect discrimination of the states |Ψ±〉pol⊗|Ψ+〉oam and |Φ±〉pol⊗|Ψ+〉oam

is achieved.

The setup shown in figure 3.5 is for a single photon. The photon first passes through a computer-

generated hologram which converts the states |±1〉 into a gaussian (|0〉) mode in the first diffraction

order. Both the |±1〉 states are deflected in opposite directions by the hologram, and are combined at

a polarizing beam splitter @ 0°. Lastly, the photon passes through a set of polarizing beam splitters

@ 45°. The effect of the above apparatus is to completely separate the following four single photon
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states:

∣∣Ψ+
〉

=
|−1〉 |H〉+ |1〉 |V 〉√

2∣∣Ψ−〉 =
|−1〉 |H〉 − |1〉 |V 〉√

2∣∣Φ+
〉

=
|−1〉 |V 〉+ |1〉 |H〉√

2∣∣Φ−〉 =
|−1〉 |V 〉 − |1〉 |H〉√

2

(3.55)

These states are the same as (3.44), just in another notation. To justify that these four states

are completely separated out by the setup in figure 3.5, let us study the evolution of the states

in (3.55). When |−1〉 |H〉 passes through the hologram, the photon is converted into a Gaussian

Forked Hologram
|-1> → |0>

|+1> → |0>

PBS@45°

PBS@0°

Ψ - Ψ+

Φ+Φ-

Figure 3.5: Superdense coding with OAM and polarization hyperentanglement ([BWK08])

mode and deflected upwards (according to the diagram, the counterclockwise state is assumed to be

|+1〉). Then, it passes through the PBS @ 0°, where the photon gets transmitted upwards since it is

horizontally polarized. Similarly, the state |1〉 |V 〉 first is deflected downwards by the hologram but

again reflected upwards by the polarizing beam splitter since the photon is vertically polarized. So,

the evolution of the state |Ψ+〉 can be described as

∣∣Ψ+
〉

=
|−1〉 |H〉+ |1〉 |V 〉√

2

Hologram and PBS @ 0°−−−−−−−−−−−−−−−→ |0〉 ⊗ 1√
2

(|H〉+ |V 〉)up (3.56)

where the subscript ’up’ denotes that the photon is above the polarizing beam splitter. Since each of

the four hyperentangled Bell states is a unique combination of these single photon states, passing the

states through two identical setups (one for each photon) gives unambiguous outcomes for all states.

The same analysis can be performed for the other states to get:

∣∣Ψ+
〉

=
|−1〉 |H〉+ |1〉 |V 〉√

2

Hologram and PBS @ 0°−−−−−−−−−−−−−−−→ |0〉 ⊗ 1√
2

(|H〉+ |V 〉)up∣∣Ψ−〉 =
|−1〉 |H〉 − |1〉 |V 〉√

2

Hologram and PBS @ 0°−−−−−−−−−−−−−−−→ |0〉 ⊗ 1√
2

(|H〉 − |V 〉)up∣∣Φ+
〉

=
|−1〉 |V 〉+ |1〉 |H〉√

2

Hologram and PBS @ 0°−−−−−−−−−−−−−−−→ |0〉 ⊗ 1√
2

(|H〉+ |V 〉)down∣∣Φ−〉 =
|−1〉 |V 〉 − |1〉 |H〉√

2

Hologram and PBS @ 0°−−−−−−−−−−−−−−−→ |0〉 ⊗ 1√
2

(|H〉 − |V 〉)down

(3.57)
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It is obvious now that these four states can be completely separated out using a PBS @ 45°, as

indicated in figure 3.5. Therefore, we have shown that the setup does separate the single-photon

states in (3.55). Now, in the previous section, we said that the hyperentangled Bell states (3.45) can

be uniquely expressed as combinations of the single photon states. Indeed, this is true here as well:

∣∣Ψ±〉pol ⊗ ∣∣Ψ+
〉oam

=
1

2

(
|Φ1〉+ ⊗ |Ψ2〉∓ + |Φ1〉− ⊗ |Ψ2〉± + |Ψ1〉+ ⊗ |Φ2〉± + |Ψ1〉− ⊗ |Φ2〉∓

)
∣∣Φ±〉pol ⊗ ∣∣Ψ+

〉oam
=

1

2

(
|Φ1〉+ ⊗ |Φ2〉∓ + |Φ1〉− ⊗ |Φ2〉± + |Ψ1〉+ ⊗ |Ψ2〉± + |Ψ1〉− ⊗ |Ψ2〉∓

)
(3.58)

Therefore, two copies of the apparatus in figure 3.5 can be used to completely separate out the hyper-

entangled Bell states |Ψ±〉pol ⊗ |Ψ+〉oam and |Φ±〉pol ⊗ |Ψ+〉oam, and by encoding information in the

polarization degree of freedom, one can perform dense coding with the maximum possible channel

capacity.

Although theoretically the channel capacity can be 2, the authors of this work were able to achieve a

lower channel capacity of 1.630±0.006 due to errors in measurement, input state generation, losses in

the components, etc. However, this is still an improvement over the fundamental bound of 1.585 set

by linear optics and a single degree of freedom. This illustrates the benefit of BSMs using entangle-

ment in two degrees of freedom. Building on this work, Williams et al. were able to achieve a channel

capacity of 1.665±0.018 over optical fiber links [WSH17], using time-polarization hyperentanglement.

3.5 Summary

In this chapter, various resources that help enhance the efficiency of Bell measurements beyond 50%

were discussed. Gaussian squeezing leads to better discrimination for any non-zero value of the squeez-

ing parameter. However, the maximum success probability is only around 64.3% at the optimal value

of r = 0.6585. Ancillary entanglement is also a useful resource: The success probability increases

to 75% if one pair of ancillary entangled photons are used. Further, using 2N − 2 photons yields a

success rate of 1 − 1/2N , asymptotically approaching perfect discrimination as N → ∞. However,

this requires deterministically producing 4-photon entangled, 8-photon entangled states, and so on,

which is difficult using today’s technology.

Two resources that do enable complete Bell state measurements are non-linear optical methods and

entanglement in two degrees of freedom. Although the former can in principle, be used for determin-

istic teleportation, the efficiencies of today’s non-linear devices are too low to achieve this goal. The

latter resource cannot help with deterministic teleportation, however can lead to perfect superdense

coding (transmitting 2 bits using one photon). Experiments have been carried out to achieve this

bound, and current channel capacities lie around 1.63 - 1.66.
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Chapter 4

Non-Maximally Entangled (NME)

states

A linear optics setup with vacuum ancillae can only discriminate between two of the four bell states.

As discussed previously, one way to obtain this discrimination is to pass the states through a 50-50

beam splitter, where they transform as

∣∣Ψ+
〉
≡

[
h†1v
†
2 + v†1h

†
2

]
in
|0〉

√
2

→

[
h†1v
†
1 + h†2v

†
2

]
out
|0〉

√
2

∣∣Ψ−〉 ≡
[
h†1v
†
2 − v

†
1h
†
2

]
in
|0〉

√
2

→

[
h†1v
†
2 − v

†
1h
†
2

]
out
|0〉

√
2

∣∣Φ±〉 ≡
[
h†1h

†
2 ± v

†
1v
†
2

]
in
|0〉

√
2

→

[
h†21 + h†22 ± v

†2
1 ± v

†2
2

]
out
|0〉

2
√

2

(4.1)

The states |Ψ+〉 and |Ψ−〉 give different outcomes which are distinct from those shown by |Φ±〉.
However, |Φ+〉 cannot be distinguished from |Φ−〉 (the detectors cannot differentiate between the ±
coefficients for the states), leading to only a 50% success probability.

The problem we discuss in this chapter is distinguishing between the following orthogonal non-

maximally entangled states∣∣∣Ψ̃+
〉

=
[
a h†1v

†
2 + b v†1h

†
2

]
in
|0〉 ≡ a |HV 〉+ b |V H〉∣∣∣Ψ̃−〉 =

[
b h†1v

†
2 − a v

†
1h
†
2

]
in
|0〉 ≡ b |HV 〉 − a |V H〉∣∣∣Φ̃+

〉
=
[
c h†1h

†
2 + d v†1v

†
2

]
in
|0〉 ≡ c |HH〉+ d |V V 〉∣∣∣Φ̃−〉 =

[
d h†1h

†
2 − c v

†
1v
†
2

]
in
|0〉 ≡ d |HH〉 − c |V V 〉

(4.2)

where a, b, c, d ∈ C and satisfy

|a|2 + |b|2 = 1

|c|2 + |d|2 = 1
(4.3)
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Clearly, the states in (4.2) reduce to the Bell states when a = b = c = d = 1/
√

2. The entanglement

entropy of these states depends on the coefficients, and is given by:

S(
∣∣∣Ψ̃+

〉
) = S(

∣∣∣Ψ̃−〉) = −
[
|a|2 log2|a|2 + |b|2 log2|b|2

]
S(
∣∣∣Φ̃+

〉
) = S(

∣∣∣Φ̃−〉) = −
[
|c|2 log2|c|2 + |d|2 log2|d|2

] (4.4)

Non-maximally entangled states have found wide application in quantum information processes. Some

examples include implementing non-local gates [GR05], probabilistic quantum teleporation [AP02],

and key distribution [XLG01]. Moreover, in certain situations, partially entangled states might be a

more advantageous resource than the Bell states. For instance, in multiple consecutive teleportations

of an arbitrary state, non-maximally states have been shown to provide a larger success probabilty

of perfect teleportation [MG08]. These states also enable more feasible experimental tests of Bell

inequalities [Ebe93]. Lastly, partially entangled states can be distilled into Bell states [BBPS96] and

then utilized for protocols that require maximally entangled states.

Distinguishing between partially entangled states is important to study, as it is a necessary step

in some of the protocols listed above. Moreover, in practical scenarios, one might not be equipped

with Bell states, but might be provided with a ’weaker’ resource, namely partially entangled states.

So it is worth finding out how far we can get in discriminating between these states using linear optics.

Before we study the issue of state discrimination, we ask: how are partially entangled states pro-

duced? One method is to use postselection; maximally entangled states sent through an asymmetric

beam splitter and conditioned on coincidence at either side of the beam splitter lead to non-maximally

entangled states [TBMM95]. A simpler method that doesn’t rely on postselection was developed by

White et al. [WJEK99] (see figure 4.1). The setup comprises of two slabs of a birefringent crystal

whose optic axes are aligned perpendicularly. They are constructed according to type-I phase match-

ing, which means that a pump photon is converted to two photons, both with polarization orthogonal

to that of the pump photon. In the setup in 4.1, if the pump beam is horizontally polarized, only the

second crystal undergoes down conversion, resulting in two vertically polarized photons. Similarly, a

vertically polarized pump beam results in two horizontally polarized photons from the first crystal.

However, if the pump beam is set to 45°, down conversion is equally likely to occur from either

crystal, and a maximally entangled state 1√
2
(|HH〉 + |V V 〉) is produced. Further, tilting the pump

beam away from this angle generates a partially entangled state

|Ψ〉 =
1√

1 + ε2
[|HH〉+ ε |V V 〉] (4.5)

where ε = tanχ, χ being the angle the pump beam makes with the vertical. Let us now discuss

distinguishing between the states in (4.2). For the maximally entangled states, we saw that two

states give unambiguous outcomes after passing through a 50-50 beam splitter. A first guess might

be to treat the non-maximally entangled states similarily. When the
∣∣∣Φ̃±〉 states from (4.2) are input

to a 50-50 beam splitter, the states at the output become (recall (1.10))

∣∣∣Φ̃+
〉
→

[
c(h†21 + h†22 ) + d(v†21 + v†22 )

]
out
|0〉

2∣∣∣Φ̃−〉→
[
d(h†21 + h†22 )− c(v†21 + v†22 )

]
out
|0〉

2

(4.6)
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Figure 4.1: Experimental setup to generate partially entangled states (see [WJEK99])

Although the operators’ coefficients are different, the set of operators (and thus, detector outcomes)

are the same for both states. Therefore, these states cannot be distinguished from each other unless

either c or d was 0 (which would imply that our initial states were not entangled). Further, the
∣∣∣Ψ̃±〉

transform as ∣∣∣Ψ̃+
〉
→ 1

2

[
ih†1v

†
1(b+ a) + v†1h

†
2(b− a) + h†1v

†
2(a− b) + ih†2v

†
2(b+ a)

]
out
|0〉∣∣∣Ψ̃−〉→ 1

2

[
ih†1v

†
1(b− a)− v†1h

†
2(b+ a) + h†1v

†
2(b+ a) + ih†2v

†
2(b− a)

]
out
|0〉

(4.7)

Here too, we cannot distinguish between these states in general. The special case of Bell states is also

evident here. When b = a = 1√
2
, the terms that cancel for

∣∣∣Ψ̃+
〉

remain for
∣∣∣Ψ̃−〉 and vice versa.

As a result, perfect discrimination is possible, and the result is given in (4.1). If only a 50-50 beam

splitter was our setup, we could distinguish between the Bell states with 50% probability, but we

have no chance of distinguishing between non-maximally entangled states.

Motivated from the paper of Grice [Gri11], we can ask: Will using ancillary maximally entangled

states help us distinguish between the non-maximally entangled states?

4.1 Ancillary Bell states

To understand the effect of ancillary bell states, it’s important to notice that the expression for the

output state
∣∣∣Ψ̃−〉 can be obtained from that of

∣∣∣Ψ̃+
〉

by just replacing a with b, and b with −a.

Similarily, the output state for
∣∣∣Φ̃−〉 can be constructed from

∣∣∣Φ̃+
〉

by making the substitutions:

c→ d, d→ −c (This can be seen to be true from (4.6) and (4.7)). This occurs because of the initial

construction of the states, to make them orthogonal.

From here, it must be clear that any number of ancillary maximally entangled pairs will not help

in distinguishing between the states in (4.2). This is because the state of the ancillary photons does

not have any dependence on a or b. So, no matter how complicated the final state is, the state for∣∣∣Ψ̃−〉 (or
∣∣∣Φ̃−〉) can always be obtained from the state of

∣∣∣Ψ̃+
〉

(or
∣∣∣Φ̃+

〉
) by just replacing a with b

(c with d), and b with −a (d with −c). So, all the terms for these two states will be identical; only

the coefficients for some states will be different. Thus, the non-maximally entangled states cannot be

distinguished from each other even after using any number of ancillary maximally entangled pairs.
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4.2 Ancillary Non-maximally entangled states

Naturally, the next question to ask is what if we use additional non-maximally entangled states? If

the ancillary states also have a dependence on a, b, c, d, then the above argument does not hold, and

there is some chance of distinguishing between the states in (4.2).

In this section, we investigate this problem. Let us begin with an ancillary photon pair of the form

|γ̃1〉 =
(
e h†3h

†
4 + f v†3v

†
4

)
in
|0〉 (4.8)

where e and f are arbitrary complex numbers that satisfy the normalization condition

|e|2 + |f |2 = 1 (4.9)

So, our task is to distinguish between the states∣∣∣Ψ̃+
〉
|γ̃1〉 =

[
(a h†1v

†
2 + b v†1h

†
2)(e h†3h

†
4 + f v†3v

†
4)
]
in
|0〉∣∣∣Ψ̃−〉 |γ̃1〉 =

[
(b h†1v

†
2 − a v

†
1h
†
2)(e h†3h

†
4 + f v†3v

†
4)
]
in
|0〉

(4.10)

∣∣∣Φ̃+
〉
|γ̃1〉 =

[
(c h†1h

†
2 + d v†1v

†
2)(e h†3h

†
4 + f v†3v

†
4)
]
in
|0〉∣∣∣Φ̃−〉 |γ̃1〉 =

[
(d h†1h

†
2 − c v

†
1v
†
2)(e h†3h

†
4 + f v†3v

†
4)
]
in
|0〉

(4.11)

Further. we will investigate the evolution of the above states through a specific setup, the one

proposed by Grice [Gri11](pictured below). In this setup, the input and output creation operators

are related by 
a†1
a†2
a†3
a†4


in

→ 1

2


1 i i −1

i 1 −1 i

i −1 1 i

−1 i i 1



a†1
a†2
a†3
a†4


out

(a = {h, v}) (4.12)

We use this setup in order to compare our results with the case of Bell states, which has already

1in

1out

2out

2in 4in

4out

3out

3in

Figure 4.2: Ancillary photons are passed through the modes 3 and 4, and beam splitters are 50-50

been analyzed in section 3.2. Recall that this setup was used to obtain a 75% success probability in

distinguishing between the Bell states along with an ancillary maximally entangled state.

When the four photons in (4.10) and (4.11) are passed through this setup, the final states can
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be written in terms of the output operators using (4.12). This will lead to a large number of terms.

Before writing out these terms, we can make some general observations of the final states using the

structure of (4.10) and (4.11).

� Each term in (4.10) will have an odd number of h or v output operators, whereas the terms in

(4.11) always have an even number of h’s and v’s.

This tells us that based on the outcome at the photodetectors, we can always tell whether the state

belonged to {
∣∣∣Ψ̃+

〉
,
∣∣∣Ψ̃−〉} or {

∣∣∣Φ̃+
〉
,
∣∣∣Φ̃−〉}.

More importantly, we can also conclude the following:

� Both states in (4.10) will have identical terms (only different coefficients). They cannot be

distinguished even after introducing |γ̃1〉.

The above statement is not obvious at first glance. It can be proven by a subtle argument, described

below. If
∣∣∣Ψ̃+

〉
|γ̃1〉 has term that isn’t present in

∣∣∣Ψ̃−〉 |γ̃1〉, this must mean that a cancellation has

taken place in
∣∣∣Ψ̃−〉 |γ̃1〉 when expanding the state in terms of the output operators; one that did not

happen in the case of
∣∣∣Ψ̃+

〉
|γ̃1〉. It can be shown that no such cancellation can take place. Let’s con-

sider an example. Say the term
[
h†21 h

†
2v
†
3

]
out
|0〉 is not present in

∣∣∣Ψ̃+
〉

. Such a term can arise because

of two input terms, ae
[
h†1v
†
2h
†
3h
†
4

]
in
|0〉 and be

[
v†1h
†
2h
†
3h
†
4

]
in
|0〉. Clearly, the two

[
h†21 h

†
2v
†
3

]
out
|0〉 that

come out of these input terms cannot cancel irrespective of sign, since a 6= b. So, we have found that

any ancillary non-maximally entangled state of the form (4.8) does not help in distinguishing between

the
∣∣∣Ψ̃±〉 states.

We are only left to explore the effect of |γ̃1〉 on distinguishing between the remaining two states

(4.11). Note that the argument discussed above does not work for the
∣∣∣Φ̃±〉 states. For example,

let’s look at the term
[
v†21 h

†
3h
†
1

]
out
|0〉. In

∣∣∣Φ̃+
〉
|γ̃1〉, this term can arise out of de

[
v†1v
†
2h
†
3h
†
4

]
in
|0〉 or

cf
[
h†1h

†
2v
†
3h
†
4

]
in
|0〉. In

∣∣∣Φ̃−〉 |γ̃1〉, the possible terms are df
[
h†1h

†
2v
†
3v
†
4

]
in
|0〉 and ce

[
v†1v
†
2h
†
3h
†
4

]
in
|0〉.

For specific setups, and specific values of d, e, c, and f , there is a possibility that some terms cancel

out in the expansion of
∣∣∣Φ̃+

〉
|γ̃1〉 but remain in that of

∣∣∣Φ̃−〉 |γ̃1〉. This is indeed what happens, as

we will see.

Calculating the output states corresponding to (4.10) and (4.11) is quite difficult by hand. To pre-

vent errors, the setup was simulated on Mathematica, and the success probabilities were calculated

there too. For details of the code and calculation, please refer to the Appendix (A.1). In general,

for arbitrary values of d, e, c, and f , all terms in
∣∣∣Φ̃+

〉
|γ̃1〉 are also present in

∣∣∣Φ̃−〉 |γ̃1〉, only with

different numerical coefficients. So there is no unambiguous discrimation between the
∣∣∣Φ̃±〉 states,

unless additional constraints are imposed on the parameters. A non-zero probability of unambiguous

state discrimination is possible if one of four conditions are satisfied. These are: de = cf , de = −cf ,

ce = df or ce = −df . Note that only one of these conditions can be imposed, as the parameters

must satisfy normalization conditions as well. After placing one of these constraints, some terms

selectively cancel out in one of the states, giving a non-zero success probability. Specifically for the

setup in figure 4.2, it turns out that all of these four conditions are equivalent and give the same

success probability.

If for example, we impose the condition de = cf , the sum of the absolute squared of all the terms

43



present exclusively in either
∣∣∣Φ̃+

〉
|γ̃1〉 or

∣∣∣Φ̃−〉 |γ̃1〉 is given by

S =
1

2
|de+ cf |2 (4.13)

S is plotted against e in figure 4.3 for the specific case of c = 0.6, and d = 0.8. Clearly, the maxima of

the above function is 1
2 , when e = d and f = c. This tells us that using an ancillary state of the exact

same form as one of the non-maximally entangled pairs seems most useful in distinguishing be-

tween the states (see (4.11)). So, the maximum probability of unambiguous discrimination (assuming

Figure 4.3: Probability S as a function of e; d = 0.6, c = 0.8. Maxima is at e = d = 0.6.

equiprobable initial states) is given by

P =
1

4
×
[
0 + 0 +

1

2

]
=

1

8
≡ 12.5% (4.14)

To summarize, we used an ancillary non-maximally entangled state of the form (4.8). We discoved

that this kind of state does not help in distinguishing between the
∣∣∣Ψ̃±〉 |γ̃1〉 states irrespective of the

values of e, f . However, it is useful to distinguish between the states
∣∣∣Φ̃±〉 |γ̃1〉 if the parameters e, f

depend on c, d through any one of four relations: ce = df , ce = −df , de = cf , de = −cf . Irrespective

of which relation is imposed, the maximum probability of unambiguous discrimination is 12.5%.

Compared to the case of Bell states, we can see that here the success probability is much lower.

The reason this result leaps to 75% when a = b and c = d is two-fold. Firstly, the
∣∣∣Ψ̃±〉 states

that could not be distinguished earlier, become completely distinguishable now (recall the results of

section 3.2). Secondly, there are several additional terms that become unambiguous in the special

case of a = b = c = d = e = f . These terms cancel out in
∣∣∣Φ̃−〉 but remain in

∣∣∣Φ̃+
〉

and vice versa.

As a result, the probability of success when a = b and c = d changes to

P =
1

4
×
[
1 + 1 +

1

2
+

1

2

]
=

3

4
≡ 75% (4.15)

This result shows that distinguishing between non-maximally entangled states (a lesser resource than
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the Bell states) in some cases can actually be a harder task than distinguishing between Bell states.

Whether this is a general feature of all linear optical setups with ancillary entanglement is not known;

this result might also be a artifact of the particular setup used. Therefore, further studies are required

to generalize the claims made in this section.

4.3 Summary

This chapter addressed the question of distinguishing between Non-Maximally Entangled polarization

states of two photons. The properties, uses, and experimental generation of these states were out-

lined. Distinguishing between the states using symmetric beam splitters is not possible. It was shown

that using ancillary entanglement is only useful if the ancillary states are also partially entangled and

have coefficients that depend on the specific states to be separated.

The example of one ancillary entangled pair in a specific setup proposed by Grice [Gri11] was de-

scribed in detail. The most useful ancillary states were found to have exactly the same form as the

NME states to be distinguished, and the maximum probability of discrimination was found to be

12.5%, a result far lower than the success obtained for the analogous case of Bell states (75%). This

seems to suggest that distinguishing between partially entangled states using ancillary entanglement

could be a much more difficult task, but more setups must be analyzed to substantiate this claim.
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Chapter 5

GHZ states

In this chapter, we investigate the problem of distinguishing between the 3-qubit GHZ states in

polarization, given by

∣∣Ψ±1 〉 ≡ 1√
2

[
h†1h

†
2h
†
3 ± v

†
1v
†
2v
†
3

]
in
|0〉 =

1√
2

(|H,H,H〉 ± |V, V, V 〉)∣∣Ψ±2 〉 ≡ 1√
2

[
h†1h

†
2v
†
3 ± v

†
1v
†
2h
†
3

]
in
|0〉 =

1√
2

(|H,H, V 〉 ± |V, V,H〉)∣∣Ψ±3 〉 ≡ 1√
2

[
h†1v
†
2h
†
3 ± v

†
1h
†
2v
†
3

]
in
|0〉 =

1√
2

(|H,V,H〉 ± |V,H, V 〉)∣∣Ψ±4 〉 ≡ 1√
2

[
v†1h
†
2h
†
3 ± h

†
1v
†
2v
†
3

]
in
|0〉 =

1√
2

(|V,H,H〉 ± |H,V, V 〉)

(5.1)

These orthogonal states form a basis for the 8-dimensional Hilbert space describing the polariza-

tion of three photons and were first studied by Greenberger, Horne, and Zelinger [GHZ89]. These

form a class of entangled states for 3-qubits that is fundamentally different from another kind of states

(W-states), in the sense that they cannot be transformed into each other through local operations

and classical communication [DVC00]. The GHZ states have widely been used in several multipartite

quantum information processes. Some examples are teleportation [KB98], quantum communication

[GYW05], secret sharing [HBB99] [HHL11], and cryptography [CL04]. They have also been used to

describe tests of local realism [GHSZ90]. Integral to generalized protocols for teleportation and dense

coding is distinguishing between different GHZ states (GHZ-state analysis). Therefore, it is worth

investigating how to do this.

The first question that we must address is, how are these states produced? One way to create

GHZ entanglement is to use two Bell pairs and detect one photon in such a manner to collapse the

remaining three photons into a GHZ state. This method was first demonstrated by Bouwmeester et

al., [BPD+99], and is presented here. Their experimental scheme is shown in figure 5.1. Here, a BBO

crystal is pumped by an UV laser and produces entangled photons. For creating a GHZ state, we

require the crystal to produce two Bell pairs in quick succession, giving rise to four photons. These

photons travel through modes a and b, and then pass through a 50-50 beam splitter, two polarizing

beam splitters and a half wave plate, before being detected by four detectors, D1, D2, D3, and a

trigger detector T .

The main result of the paper is the following: If the two photon pairs are indistinguishable, and

all four detectors detect one photon each, then the state of the three photons reaching detectors
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D1, D2, D3 is a GHZ state. The idea behind this result is: if the experimental apparatus cannot

distinguish between the two successive photon pairs, then one cannot tell which pair the photon

reaching detector T belonged to. It turns out that erasing this information about the T photon leads

to the required GHZ correlation for the remaining three photons. Note that the desired four-fold

UV-Pulse

BBO

BS
PBS

HWP

PBS

a b

T

D1 D2

D3

Figure 5.1: Setup to detect GHZ entanglement [BPD+99]

coincidence will not occur all the time; it is certainly possible that two photons reach one detector.

However, such outcomes do not help in creating the GHZ state, as we will see. Let us study the

setup in detail now. If each detector sees one photon, then a horizontally polarized photon must have

reached T (because the PBS transmits |H〉 photons). This means that the other photon belonging to

this entangled pair (which we’ll call the companion photon) must be vertically polarized, and travels

through mode b. Now, as it passes through the 50-50 beam splitter, there are two possibilities. Either

it gets transmitted to detector D3, or it gets reflected towards the PBS, where it is reflected again

into D2. So, we have realized that the companion photon of the one detected at T can reach either

D2 or D3. Let us deal with the two cases one by one.

Consider the case where companion photon is detected at D3. This means that the second en-

tangled pair must have reached D1 and D2. We now study this second photon pair. The photon

in mode a could not have been horizontally polarized, since if it was the PBS would transmit it

towards T. So, the photon in mode a must be vertically polarized, and the photon in mode b must

be horizontally polarized. The photon in a then passes through a HWP, where it is transformed

into the state 1√
2
(|H〉 + |V 〉). This photon now is equally likely to be detected at D1 and D2. The

photon in mode b passes through the beam splitter towards D3 with a 50% chance, and is reflected

with a 50% chance towards the PBS, where it will get transmitted to D1. If we restrict our interest

to the case where each detector measures only one photon, we know that the b photon reaches D1

(since a photon from the first pair already reached D3), and thus the a photon must’ve reached D2.

This means that it must’ve been horizontally polarized. Therefore, we conclude that if the companion

photon of T reaches D3, then the state of the three photons at the D detectors must be |H〉1 |H〉2 |V 〉3.

Let us now consider the other scenario, where the vertically polarized companion photon of T reaches

D2. In this case, the photon in mode a, after passing through the HWP must reach D1. This means

that it must have been vertically polarized as well. Finally, the companion photon of the second pair,

which is horizontally polarized in mode b must be transmitted by the beam splitter into D3. Thus,
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the state of the 3 photons in the D detectors in this case is clearly |V 〉1 |V 〉2 |H〉3.

In principle, these two outcomes can be distinguishable if the time at which the detectors click can

be measured exactly. In the first scenario, the two detectors T and D3 would detect their photons

together, whereas the detectors D1 and D2 might detect their photons slightly later, or vice versa.

However, if the UV pulse is considerably shorter than the coherence time of the photons (as was in

the experiment), then we can’t distinguish between the above two scenarios. Therefore, the state of

the three photons must have been the superposition state

|Ψ〉 =
1√
2

(|H〉1 |H〉2 |V 〉3 ± |V 〉1 |V 〉2 |H〉3) (5.2)

This is how a GHZ state can be created. To figure out the exact sign in equation (5.2), an explicit

calculation can be done that tracks the evolution of the states. Consider the following four-photon

state, created as a result of two down-conversions.

|ψ〉 =
1

2
(|H〉a |V 〉b − |V 〉a |H〉b)

(
|H〉

′

a |V 〉
′

b − |V 〉
′

a |H〉
′

b

)
(5.3)

As discussed, individual terms |H〉a , |V 〉a , |H〉b , |H〉b evolve through the setup as (the same relations

hold for the primed states)

|H〉a → |H〉T

|H〉b →
1√
2

(|H〉1 + |H〉3)

|V 〉a →
1√
2

(|H〉2 + |V 〉1)

|V 〉b →
1√
2

(|V 〉2 + |V 〉3)

(5.4)

Using these relations in (5.11), we get

1

2
(|H〉a |V 〉b − |V 〉a |H〉b)

(
|H〉

′

a |V 〉
′

b − |V 〉
′

a |H〉
′

b

)
→

1

4

(
|H〉T

√
2 (|V 〉2 + |V 〉3)− (|H〉2 + |V 〉1)(|H〉1 + |H〉3)

)(
|H〉

′

T

1√
2

(|V 〉
′

2 + |V 〉
′

3)− 1

2
(|H〉

′

2 + |V 〉
′

1)(|H〉
′

1 + |H〉
′

3)

)
(5.5)

Collecting only those terms where one photon reaches the detector T, we get

− 1

4
√

2

(
|H〉T (|V 〉2 + |V 〉3)(|H〉

′

2 + |V 〉
′

1)(|H〉
′

1 + |H〉
′

3) + |H〉
′

T (|H〉2 + |V 〉1)(|H〉1 + |H〉3)(|V 〉
′

2 + |V 〉
′

3)
)

(5.6)

Further, we pick those terms where there is a single photon detection at all four detectors. This gives

us

− 1

4
√

2

(
|H〉T (|V 〉2 |V 〉

′

1 |H〉
′

3 + |V 〉3 |H〉
′

2 |H〉
′

1) + |H〉
′

T (|H〉2 |H〉1 |V 〉
′

3 + |V 〉1 |H〉3 |V 〉
′

2

)
(5.7)

Till now, we’ve assumed that the two photon pairs are distinguishable. If this assumption is removed,

then we must make no distinction between the primed and unprimed states. This gives us the final

(normalized) state

|ψ〉 =
1√
2
|HT 〉 (|H〉1 |H〉2 |V 〉3 + |V 〉1 |V 〉2 |H〉3) (5.8)

Thus, we have indeed produced a GHZ state. To summarize, a GHZ-type correlation is only detected

48



if the time delay between the production of both pairs is smaller than the coherence time of the

photons (i.e., both photon pairs are indistinguishable), and if a four-fold coincidence is observed in

the detectors D1, D2, D3, and T . This state can be converted into any of the other seven GHZ states

using local unitary operations on one of the photons.

Now that we have discussed a method for creating GHZ entanglement, we proceed to the main issue

addressed in this chapter: distinguishing between the eight GHZ states. Separating states across two

different sets is always possible by simply passing the above states through three polarizing beam

splitters. The crucial question to ask is whether we can distinguish within one set (say
∣∣Ψ±1 〉). Let’s

say we were to pass these states through a 3X3 symmetric beam splitter (known as the ’tritter’),

which performs the transformationa
†
1

a†2
a†3


in

→

1 1 1

1 ω ω2

1 ω2 ω


a
†
1

a†2
a†3


out

a ∈ {h, v} (5.9)

where ω is the cube root of unity; ω3 = 1.

The states
∣∣Ψ±1 〉 transform as

∣∣Ψ±1 〉→ 1

3
√

6

[
(h†31 + h†32 + h†33 − h

†
1h
†
2h
†
3)± (v†31 + v†32 + v†33 − 3v†1v

†
2v
†
3)
]
out
|0〉 (5.10)

Clearly, both states have the same terms and can’t be distinguished from each other. In fact, we

don’t have to calculate out the expressions to see this. Each of the four states in (5.1) contains two

terms (one on either side of the ± sign) which differ in the number of h and v operators in them.

This means that when we use (5.9) to write out the output states, there will be no cancellation across

the ± sign. Thus, |Ψ+〉 cannot be distinguished from |Ψ−〉 for all the four pairs of states in (5.1).

So, we have seen that passing the GHZ states through a symmetric 3X3 beam splitter does not

help with their unambiguous discrimination. In fact, the above statement holds in more general

situations, as discussed below.

Result: Mixing the spatial modes of creation operators alone without changing polarization (i.e., an

arbitrary configuration of beam splitters and phase shifters) cannot distinguish within a set of states

in (5.1).

The justification for this result is as follows: All the four sets of states above have different numbers

of h and v operators across the ± sign. Since the beam splitters do not change the polarization of

photons, no cancellation can arise that creates a difference between
∣∣Ψ+

i

〉
and

∣∣Ψ−i 〉. It must be noted

that for the Bell states, a symmetric beam splittler was able to distinguish between two of the four

states, |Ψ+〉 and |Ψ−〉 because both terms across the ± had only one h and v each.

The above reasoning seems to suggest that for distinguishing between the GHZ states, it might

be necessary to use setups that change polarization, making use of gadgets like half-wave plates, etc.

However, as a starting point, my analysis in this chapter only involves setups that don’t change po-

larization. A future direction is to extend the results obtained in this chapter to more general setups

that change polarization.
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5.1 Squeezing

Motivated from the paper of Zaidi and Loock [ZvL13], a natural question to ask would be if gaussian

squeezing operations can help with distinguishing between the GHZ states. Since a 3X3 beam splitter

does not help at all, I decided to investigate the following two scenarios separately:

1. Passing the states through 3 single-mode squeezers directly, without a beam splitter.

2. Passing the states through a beam splitter and then single-mode squeezers

Both these possibilities are discussed below.

5.1.1 Without a beam splitter

1

2

3

LEGEND
PBS @ 0°
Single mode squeezer

Detector

Figure 5.2: Passing the states through three polarizing beam splitters, and then single-mode squeezers

We assume that the polarizing beam splitters transmit horizontally polarized and reflect vertically

polarized photons. After this operation, what will the final states be? Let us take an example. If

we send in the state |H,H,H〉, then all the photons will be transmitted through the polarizing beam

splitter and will be detected at the 1st, 3rd, and the 5th detector. This resultant state will be

represented as |101010〉, where the ith number in the ket denotes the number of photons reaching the

ith detector. Similarly, the state |V, V, V 〉 will result in the opposite state after the PBS, |010101〉,
since all photons will be reflected.

In this manner, the evolution of all the 8 GHZ states can be calculated to be

∣∣Ψ±1 〉 =
1√
2

(|H,H,H〉 ± |V, V, V 〉)→ 1√
2

[|101010〉 ± |010101〉]∣∣Ψ±2 〉 =
1√
2

(|H,H, V 〉 ± |V, V,H〉)→ 1√
2

[|101001〉 ± |010110〉]∣∣Ψ±3 〉 =
1√
2

(|H,V,H〉 ± |V,H, V 〉)→ 1√
2

[|100110〉 ± |011001〉]∣∣Ψ±4 〉 =
1√
2

(|V,H,H〉 ± |H,V, V 〉)→ 1√
2

[|011010〉 ± |100101〉]

(5.11)
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At this point, we can distinguish between the states from different sets (
∣∣Ψ±i 〉), but not within a set.

Since squeezing adds photons in pairs, the terms in
∣∣Ψ±1 〉 after squeezing will all be of the form

|odd, even, odd, even, odd, even〉 or |even, odd, even, odd, even, odd〉. This signature does not ap-

pear in the other three states. It is obvious that each set of states has a distinct signature. Given

perfect photon number resolving detectors, we can thus always distinguish between different sets even

after squeezing.

Unfortunately, we cannot distinguish within a set. This is because each
∣∣Ψ±i 〉 is a combination

of two states with exactly opposite odd/even parity in each spatial mode (in this context, by parity, I

mean the odd/even structure of the photon numbers at the detectors. For example, the state |111110〉
has the same parity as the state |313332〉, as both have the structure |odd, odd, odd, odd, odd, even〉.
On the other hand, |111110〉 and |200203〉 have opposite parity). Now,

∣∣Ψ±3 〉 before squeezing has the

terms |100110〉 and |011001〉. After squeezing, both these states would give rise to infinite terms - but

their signature would always be |odd, even, even, odd, odd, even〉 and |even, odd, odd, even, even, odd〉
respectively. So, there can never be a cancellation across the ± sign, and thus

∣∣Ψ+
i

〉
can never be

told apart from
∣∣Ψ−i 〉 using squeezing.

5.1.2 With a beam splitter

1

2

3

LEGEND
PBS @ 0°
Single mode squeezer

Detector

X

Figure 5.3: General setup with single mode squeezers

Consider the setup in figure 5.3, where X is some arbitrary mixing of spatial modes. The question

we ask is: does gaussian squeezing after the unitary X help in discriminating between
∣∣Ψ+

i

〉
and

∣∣Ψ−i 〉?
Let us take the example of

∣∣Ψ±2 〉. After passing through any configuration of beam splitters, terms in

the state can only be of the form: h†ih
†
jv
†
k± v

†
l v
†
mh
†
n (indices can take same values). Before squeezing,

these terms can never cancel each other. The question is, can there be a cancellation after squeezing?

The answer is no, because both these terms will never have the same parity after the PBSs. For exam-

ple, if the state after X is h†21 v
†
3, then the state after the PBSs is |200001〉 (|even,even,even,even,even,odd〉).

Other 3-photon states with the same parity are: |020001〉, |002001〉, |000201〉, |000021〉 and |000003〉.
If any of these states were on the other side of the ±, then there is a possibility of cancellation

after squeezing. But a close look at these terms reveals the following: since the output state must
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have atleast one h† operator, |020001〉 (v†21 v
†
3), |000201〉 (v†22 v

†
3) and |000003〉 (v†33 ) can be ruled out.

The remaining two possibilities can arise only because of the term on the same side of the ± sign.

Therefore, terms on both sides of the ± sign can never cancel each other even after squeezing, leading

to the exact same terms for both
∣∣Ψ+

2

〉
and

∣∣Ψ−2 〉.
So, single-mode squeezing operations after any configuration of beam splitters (without ancillary

photons) retain distinguishability across sets but do not help in distinguishing within a set. The

basic reason why this is so can be traced down to the fact that GHZ states are built out of a tensor

product of an odd number of Hilbert spaces, whereas squeezing always adds photons in even numbers.

This is why gaussian squeezing was useful in Bell state analysis (two-qubit states) but fails to help here.

Note: The above conclusions might not generalize to setups that do change polarization; squeez-

ing might be a useful resource in such situations.

5.2 Maximum possible success using linear optics (and no

additional resources)

As discussed above, purely spatial mixing of the creation operators is not sufficient to distinguish

between the GHZ states. An upper bound on the success probability of GHZ-analysis using purely

linear optical elements was set by Jian-wei Pan and Anton Zelinger in their 1998 paper [PZ98].

They showed that only two of the eight states can be completely separated, also providing a simple

experimental setup that implemented this 25% efficient GHZ-state analyzer.

A

B C

PBS1 PBS2

PBSAB PBSBC

HWP HWP

mode 1 mode 2

mode 3

HWP

PBS3

DH1

DV1

DH2

DV2

DV3

DH3

Figure 5.4: Linear optics GHZ state analysis [PZ98]

The three photons of the GHZ state pass are incident onto two polarizing beam splitters through

modes A,B, and C. The PBSs transmit horizontally polarized photons. So, if the state |HA〉 |HB〉 |VC〉
is incident onto PBSs, the photon from B passes straight through to mode 1. Further, the photon

in mode A gets transmitted twice into mode 3. However, the vertically polarized photon from mode

C gets reflected by PBSBC into mode 3, leading to the final state |H1〉 |H3〉 |V3〉. Calculating the
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evolution of all states in (5.1) through the PBSs in a similar fashion, we get:

∣∣Ψ±1 〉 ≡ 1√
2

(|HA〉 |HB〉 |HC〉 ± |VA〉 |VB〉 |VC〉)→
1√
2

(|H1〉 |H2〉 |H3〉 ± |V1〉 |V2〉 |V3〉)∣∣Ψ±2 〉 ≡ 1√
2

(|HA〉 |HB〉 |VC〉 ± |VA〉 |VB〉 |HC〉)→
1√
2

(|H1〉 |H3〉 |V3〉 ± |V1〉 |H2〉 |V2〉)∣∣Ψ±3 〉 ≡ 1√
2

(|HA〉 |VB〉 |HC〉 ± |VA〉 |HB〉 |VC〉)→
1√
2

(|H2〉 |V2〉 |H3〉 ± |H1〉 |V1〉 |V3〉)∣∣Ψ±4 〉 ≡ 1√
2

(|VA〉 |HB〉 |HC〉 ± |VA〉 |VB〉 |HC〉)→
1√
2

(|H1〉 |V1〉 |H2〉 ± |V2〉 |H3〉 |V3〉)

(5.12)

Notice that only the states
∣∣Ψ±1 〉 have a photon in each of the modes 1,2, and 3 after the PBSs. So,

only these two states can set off detectors D1, D2, D3 simultaneously. Thus, we can already tell this

pair of states apart from the other six states. But how can we distinguish within these two states?

The Half Wave Plates (HWP) enable us to further separate
∣∣Ψ+

1

〉
from

∣∣Ψ−1 〉. The action of these

HWPs is given by:

|Hi〉 →
1√
2

(|Hi〉+ |Vi〉)

|Vi〉 →
1√
2

(|Hi〉 − |Vi〉)
(5.13)

where i = {1, 2, 3}. The evolution of
∣∣Ψ±1 〉 through the HWPs is then

∣∣Ψ±1 〉 HWPs−−−−→ 1

4
√

2
[(|H1〉+ |V1〉) (|H2〉+ |V2〉) (|H3〉+ |V3〉)± (|H1〉 − |V1〉) (|H2〉 − |V2〉) (|H3〉 − |V3〉)]

(5.14)

Simplifying the above expression, we get for the two states

∣∣Ψ+
1

〉
→ 1

2
(|H1〉 |H2〉 |H3〉+ |H1〉 |V2〉 |V3〉+ |V1〉 |H2〉 |V3〉+ |V1〉 |V2〉 |H3〉)∣∣Ψ−1 〉→ 1

2
(|V1〉 |V2〉 |V3〉+ |H1〉 |H2〉 |V3〉+ |V1〉 |H2〉 |H3〉+ |H1〉 |V2〉 |H3〉)

(5.15)

Clearly, the terms in both states don’t have any overlap. So, the second set of polarizing beam split-

ters ensure that the detector outcomes are completely different for the states
∣∣Ψ+

1

〉
and

∣∣Ψ−1 〉. Thus,

this linear optics setup can deterministically separate out 2 out of the 8 GHZ states. Teleportation

with the above apparatus for state discrimination will succeed with a probability of 25%. Moreover,

this setup can also be used to create GHZ entanglement. For example, if three particles, each inde-

pendently belonging to a Bell pair are sent into the setup and collapsed into a GHZ state, the three

remaining particles would also be described by a GHZ state.

As discussed before, we would like to enhance this probability using other resources. In the fol-

lowing sections, I discuss some literature and original results along this direction.

5.3 Ancillary Entanglement

In this section, we explore the possibility of distinguishing between the GHZ states using additional

entanglement as a resource. Our analysis is restricted to polarization-preserving setups; those that

don’t contain wave-plates. More general setups will be investigated in the future. We first consider

using only ancillary Bell states and then move on to exploring other kinds of states.
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5.3.1 Ancillary Bell pairs

Let us assume that we’re provided with an ancillary Bell state of the form

∣∣Φ+
Bell

〉
≡ 1√

2

[
h†4h

†
5 + v†4v

†
5

]
in
|0〉 =

1√
2

(|H,H〉+ |V, V 〉) (5.16)

Our task is to distinguish between the states

∣∣Ψ±1 〉 ∣∣Φ+
Bell

〉
≡ 1

2

[(
h†1h

†
2h
†
3 ± v

†
1v
†
2v
†
3

)(
h†4h

†
5 + v†4v

†
5

)]
in
|0〉 (5.17)

The output state depends on the particular unitary mapping connecting the input to output modes.

Without discussing a specific experimental setup, we will first try to make general statements about

discriminating between the above states.

It is useful to classify the four input terms in (5.17) according to the number of h and v opera-

tors they contain. The term with 3 h† operators and 2 v† operators will be represented as [3, 2], and

so on. This ’bracket representation’ is useful for two reasons:

� For any setup that does not change the polarization of the photons, the above classification

will remain the same for all the output terms that result out of an input term. For instance,

we can be sure that a [5, 0] input term will give rise to output terms all of which will be [5, 0]

(i.e, contain only horizontally polarized photons) as well.

� Two terms with different bracket representations do not interact with each other and can never

cancel. Therefore, this gives us a convenient way to compare the final output terms.

For the terms in (5.17), we have four possible brackets: [3, 2], [2, 3], [5, 0], [0, 5]. Since each input term

has a unique bracket, there can never be cancellations between two input terms. Essentially, the four

input terms don’t interact with each other even when the state is expanded in terms of the output

operators. The state
∣∣Ψ+

1

〉 ∣∣Φ+
Bell

〉
cannot have unique terms that are absent in

∣∣Ψ−1 〉 ∣∣Φ+
Bell

〉
and vice

versa.

Therefore, using the ancillary Bell state
∣∣Φ+
Bell

〉
does not help in distinguishing between

∣∣Ψ±1 〉. What

about the states
∣∣Ψ±2 〉 , ∣∣Ψ±3 〉 , ∣∣Ψ±4 〉? Can

∣∣Φ+
Bell

〉
help distinguish between these states? Firstly,

notice that these states are identical in their bracket representations:

∣∣Ψ±2 〉 =
1√
2

[
h†1h

†
2v
†
3 ± v

†
1v
†
2h
†
3

]
in
|0〉 ≡ 1√

2
([2, 1]± [1, 2]) |0〉∣∣Ψ±3 〉 =

1√
2

[
h†1v
†
2h
†
3 ± v

†
1h
†
2v
†
3

]
in
|0〉 ≡ 1√

2
([2, 1]± [1, 2]) |0〉∣∣Ψ±4 〉 =

1√
2

[
v†1h
†
2h
†
3 ± h

†
1v
†
2v
†
3

]
in
|0〉 ≡ 1√

2
([2, 1]± [1, 2]) |0〉

(5.18)

For this reason, the states
∣∣Ψ±2 〉 , ∣∣Ψ±3 〉 , ∣∣Ψ±4 〉 will be collectively referred to as |Ψi〉, i = 2, 3, 4.

∣∣Ψ±i 〉 ∣∣Φ+
Bell

〉
≡ 1

2
[([2, 1]± [1, 2]) ([2, 0] + [0, 2])]in |0〉

≡ 1

2
[([4, 1] + [2, 3])± ([3, 2] + [1, 4])]in |0〉

(5.19)

When two brackets [a, b] and [c, d] multiply, the result is simply [a + c, b + d], since the number of

h† and v† operators just add up. In the above equation, all the four terms have different bracket

54



representations. Clearly then, they don’t interact with each other, and
∣∣Φ+
Bell

〉
does not help in dis-

tinguishing between the states |Ψi〉 as well. Had there been a [2,3] term on both sides of the ± sign,

then there would be a chance of discrimination because when the state is expanded in terms of the

output operators, some cancellations can happen differently for
∣∣Ψ+

i

〉
and

∣∣Ψ−i 〉
Therefore, using a Bell state of the form

∣∣Φ+
Bell

〉
in a polarization-preserving setting does not help in

discriminating between the GHZ states. Further, it turns out that none of the four Bell states help

us as ancillaries to distinguish between the GHZ states. The case for the ancillary state
∣∣Ψ+

Bell

〉
is

shown below - clearly, no cancellation can take place.

∣∣Ψ±1 〉 ∣∣Ψ+
Bell

〉
≡ 1

2
[([3, 0]± [0, 3]) ([1, 1] + [1, 1])]in |0〉

≡ 1

2
[([4, 1])± ([1, 4])]in |0〉

(5.20)

∣∣Ψ±i 〉 ∣∣Ψ+
Bell

〉
≡ 1

2
[([2, 1]± [1, 2]) ([1, 1] + [1, 1])]in |0〉

≡ 1

2
[([3, 2])± ([2, 3])]in |0〉

(5.21)

So, it seems like using one Bell pair is not useful. The next question one could ask is: what if we use

more Bell states? Consider discriminating between

∣∣Ψ±1 〉 ∣∣Φ+
Bell

〉 ∣∣Φ+
Bell

〉
=

1

2
√

2

[(
h†1h

†
2h
†
3 ± v

†
1v
†
2v
†
3

)(
h†4h

†
5 + v†4v

†
5

)(
h†6h

†
7 + v†6v

†
7

)]
in
|0〉

≡ 1

2
√

2
[([3, 0]± [0, 3]) ([2, 0] + [0, 2]) ([2, 0] + [0, 2])] |0〉

≡ 1

2
√

2
[([3, 0]± [0, 3]) ([4, 0] + 2[2, 2] + [0, 4])] |0〉

≡ 1

2
√

2
[([7, 0] + 2[5, 2] + [3, 4])± ([4, 3] + 2[2, 5] + [0, 7])] |0〉

(5.22)

Clearly, the output states will yield identical detector outcomes, and we cannot separate one state

from another.

Unsurprisingly, the above result can be extended to any number of ancillary Bell states. Suppose we

possess the following (unnormalized) ancillary state

|β〉 =
∣∣Φ+
Bell

〉⊗k ∣∣Φ−Bell〉⊗l ∣∣Ψ+
Bell

〉⊗m ∣∣Ψ−Bell〉⊗n
≡
[
([2, 0] + [0, 2])

k
([2, 0]− [0, 2])

l
([1, 1] + [1, 1])

m
([1, 1]− [1, 1])

n
]
in
|0〉

(5.23)

Consider the evolution of this state through a general setup. Once expanded in terms of the output

operators, there are only two possibilities. Either all terms are [odd,odd], or all terms are [even,even].

This feature of Bell ancillaries renders them useless to discriminate between GHZ states. Since GHZ

states are three-photon states, the number of creation operators must be odd. Therefore, a GHZ

state always has terms of the form [even, odd] or [odd, even]. For instance, consider the states

∣∣Ψ±1 〉 |β〉 → [(
h†1h

†
2h
†
3 ± v

†
1v
†
2v
†
3

)
in
|0〉
]
⊗ |β〉

≡ [([3, 0]± [0, 3]) ([even,even] or [odd,odd])] |0〉
(5.24)
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[3, 0][odd,odd]→ [even,odd]

[0, 3][odd,odd]→ [odd,even]
(5.25)

Clearly, no term from [3,0] [even,even] (or [3,0] [odd,odd]) can match with [0,3] [even,even] (or [0,3]

[odd,odd]). Therefore, the ancillary state |β〉 does not help in distinguishing between the states
∣∣Ψ±1 〉.

For the same reason, we can’t hope to separate the states
∣∣Ψ±i 〉 as well.

Therefore, any number of ancillary Bell pairs in a polarization-preserving linear optical setup do

not help with distinguishing between the GHZ states.

5.3.2 One ancillary GHZ state

In this section, we investigate using ancillary 3-photon states of the same form as the GHZ states

itself. We assume that the particular ancillary state used (called |γ1〉) is just the
∣∣Ψ+

1

〉
state in (4.1).

Therefore, the goal is now to distinguish between the states

∣∣Ψ±1 〉 |γ1〉 ≡
1

2

[
(h†1h

†
2h
†
3 ± v

†
1v
†
2v
†
3)(h†4h

†
5h
†
6 + v†4v

†
5v
†
6)
]
in
|0〉∣∣Ψ±2 〉 |γ1〉 ≡

1

2

[
(h†1h

†
2v
†
3 ± v

†
1v
†
2h
†
3)(h†4h

†
5h
†
6 + v†4v

†
5v
†
6)
]
in
|0〉∣∣Ψ±3 〉 |γ1〉 ≡

1

2

[
(h†1v

†
2h
†
3 ± v

†
1h
†
2v
†
3)(h†4h

†
5h
†
6 + v†4v

†
5v
†
6)
]
in
|0〉∣∣Ψ±4 〉 |γ1〉 ≡

1

2

[
(v†1h

†
2h
†
3 ± h

†
1v
†
2v
†
3)(h†4h

†
5h
†
6 + v†4v

†
5v
†
6)
]
in
|0〉

(5.26)

The choice of this ancillary state makes it impossible to distinguish within the sets
∣∣Ψ±2 〉 |γ1〉 ,

∣∣Ψ±3 〉 |γ1〉 ,
∣∣Ψ±4 〉 |γ1〉

(i.e,
∣∣Ψ±i 〉 |γ1〉). To see why, let’s consider the example of

∣∣Ψ±2 〉 |γ1〉.∣∣Ψ±2 〉 |γ1〉 ≡
1

2
[([2, 1]± [1, 2]) ([3, 0] + [0, 3])] |0〉

≡ 1

2
[([5, 1] + [2, 4])± ([1, 5] + [4, 2])] |0〉

(5.27)

Once this state is expanded in terms of the output operators, terms on either side of the ± sign

have different bracket representations and can never cancel each other. Therefore,
∣∣Ψ+

2

〉
|γ1〉 and∣∣Ψ−2 〉 |γ1〉 will always have the same terms (modulo sign).

To investigate whether we can distinguish between
∣∣Ψ±1 〉, we must look at the evolution of the states

∣∣Ψ+
1

〉
|γ1〉 ≡

1

2

[
(h†1h

†
2h
†
3 + v†1v

†
2v
†
3)(h†4h

†
5h
†
6 + v†4v

†
5v
†
6)
]
in
|0〉∣∣Ψ−1 〉 |γ1〉 ≡

1

2

[
(h†1h

†
2h
†
3 − v

†
1v
†
2v
†
3)(h†4h

†
5h
†
6 + v†4v

†
5v
†
6)
]
in
|0〉

(5.28)

Note that the bracket argument no longer rules out unambiguous discrimination here. In (5.28), the

four terms have the brackets [6,0], [0,6], [3,3] and [3,3]. There are two [3,3] terms, which are added

in
∣∣Ψ+

1

〉
and subtracted in

∣∣Ψ−1 〉. Therefore, unique cancellations may take place in one of the states

and not the other. The amount of this unambiguous discrimination will certainly depend on the

particular setup used.

Similarily, using another type of ancillary state |γi〉 (denoting an ancillary of the form |Ψ2〉 , |Ψ3〉 , or
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|Ψ4〉) can potentially help us separate the states |Ψi〉 but not |Ψ1〉, as shown below.

∣∣Ψ±1 〉 |γi〉 ≡ 1

2
[([3, 0] + [0, 3]) ([2, 1]± [1, 2])] |0〉

≡ 1

2
[([5, 1] + [4, 2])± ([1, 5] + [2, 4])] |0〉

(5.29)

∣∣Ψ±i 〉 |γi〉 ≡ 1

2
[([2, 1] + [1, 2]) ([2, 1]± [1, 2])] |0〉

≡ 1

2
[([4, 2] + [3,3])± ([3,3] + [2, 4])] |0〉

(5.30)

Our next task is to analyze some setups and try to calculate the amount of unambiguous discrimina-

tion of the GHZ states through these setups. A natural way to combine the six photons might be the

setup illustrated in figure 5.5. The beam ’tritters’ need not be symmetric, X1 and X2 denote some

arbitrary unitary mixing of the spatial modes {1,2,4} and {3,5,6}. Let us analyze the states in (5.28).

We only study the evolution of the terms h†1h
†
2h
†
3v
†
4v
†
5v
†
6 and v†1v

†
2v
†
3h
†
4h
†
5h
†
6, as the other two terms

([6,0],[0,6]) are common (with sign) to both states anyway. The question we ask is: can there be a can-

cellation between these terms in either
∣∣Ψ+

1

〉
or
∣∣Ψ−1 〉 when expanded in terms of the output operators?

Consider for the moment only the v† operators. Because of the way the modes are mixed, we can say

that v†1v
†
2v
†
3 when evolved into the output state will contain two v operators in modes {1,2,4}. Simi-

larily, the output corresponding to the term v†4v
†
5v
†
6 will have two v operators in modes {3,5,6}. Since

these two sets have no overlap, we directly see that the output terms corresponding to h†1h
†
2h
†
3v
†
4v
†
5v
†
6

and v†1v
†
2v
†
3h
†
4h
†
5h
†
6 can never cancel with each other.

X₁

X₂

1

2

3

4

5

6

1

2

4

3

5

6

GHZ

AEP

Figure 5.5: A particular setup with Ancillary Entangled Photons (AEP)

Thus, we can conclude that the setup used does not help us distinguish between the states in

(5.28). An identical argument can be used to show that the setup in figure 5.6 also is of no use. In

fact, The above analysis carries forward to the [3,3] terms in (5.30) as well. Terms on both sides of

the ± sign never have the same set of h (or v) operators, and can never cancel. Thus, the setups in

figures 5.5 and 5.6 are not useful for separating these states too.

Since using 3 × 3 unitaries does not seem to help us, we next consider a setup (figure 5.7) made

up of 50-50 beam splitters only. The transformation of creation operators through this setup is given
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Figure 5.6: A similar setup with Ancillary Entangled Photons (AEP)
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GHZ
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Figure 5.7: A particular setup with Ancillary Entangled Photons (AEP) (beam splitters are 50-50)

by: 

a†1
a†2
.

.

.

a†6


in

→ 1√
2



1 0 0 i 0 0

0 1 0 0 i 0

0 0 1 0 0 i

i 0 0 1 0 0

0 i 0 0 1 0

0 0 i 0 0 1





a†1
a†2
.

.

.

a†6


out

(5.31)

This transformation matrix reflects that fact that our setup is essentially just three beam splitters.

After passing through the setup, the states in (5.28) are given in figures 5.8 and 5.9.

Clearly, some unambiguous discrimination is possible, as many terms that are present in
∣∣Ψ+

1

〉
|γ1〉

are not present in
∣∣Ψ−1 〉 |γ1〉 and vice versa. In fact, there are eights sets of four terms that are

completely different in each state. Thus, there are a total of 32 × 2 = 64 distinct terms that can

unambiguously identify one state from the other. The coefficient of each of these terms is either 1
8 i

(for
∣∣Ψ+

1

〉
|γ1〉) or 1

8 (for
∣∣Ψ−1 〉 |γ1〉). Since the ancillary |γ1〉 cannot help with separating the states∣∣Ψ±i 〉, the total success probability is

P =
1

8

[
0 + 0 + 0 + 32× |i/8|2 + 32× |1/8|2

]
=

1

8
(5.32)

Therefore, ancillary entangled photons do help in distinguishing within a set of the GHZ states.

For the setup in figure 5.7, using the ancillary state |γ1〉 gives unambiguous outputs for the states∣∣Ψ±1 〉 |γ1〉 50% of the time, resulting in an overall success probability of 1
8 ≡ 12.5%. However, the

success probability obtained is very low, even lesser than the highest we can achieve without any

ancillaries. Two questions that naturally arise after the above result are:
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Figure 5.9:
∣∣Ψ−1 〉 |γ1〉 after passing through the setup

� Are there other setups with six photons that give a better success probability? What is the

maximum achievable success probability with one ancillary 3-photon state?

� Since one ancillary pair leads to a non-zero probability of discrimination, we can expect that

using more number of ancillary pairs will yield better success. Can we quantify this? Which

ancillary states are most useful?

The next few sections will address these questions. It turns out that in this setup, using any of the

|γi〉′ s as ancillaries also yields a probability of 12.5%. However, note that in general, |γi〉 might be a
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more favorable ancillary.

|ψ1〉 ≡
1√
2

([3, 0] + [0, 3]) ≡ 1√
2

(h†h†h† + v†v†v†) |0〉

|ψ2〉 →
1√
2

([2, 1] + [1, 2]) ≡ 1√
2

(h†h†v† + v†v†h†) |0〉

|ψ3〉 →
1√
2

([2, 1] + [1, 2]) ≡ 1√
2

(h†v†h† + v†h†v†) |0〉

|ψ4〉 →
1√
2

([2, 1] + [1, 2]) ≡ 1√
2

(v†h†h† + h†v†v†) |0〉

(5.33)

Using |γ1〉 can only help us separate the states
∣∣Ψ±1 〉, but |γi〉 might help create differences between

three sets of states:
∣∣Ψ±2 〉, ∣∣Ψ±3 〉, and

∣∣Ψ±4 〉. Indeed, the above probability of 12.5% can be surpassed

by using |γi〉 in other setups. For example, consider the setup in figure 5.10 with general beam

splitters characterized by parameters θ1, θ2 and θ3. The unitary transformation corresponding to this

1

2

3

5
4

6

BS(θ1) 

BS(θ2) 

BS(θ3) 

Figure 5.10: GHZ photons are sent through modes 1,2, and 3, and ancillary photons through modes
4,5,6

setup is

a†1
a†2
.

.

.

a†6


in

→ 1√
2



sin θ1 0 i cos θ1 0 0 0

0 sin θ2 0 0 i cos θ2 0

i cos θ1 0 sin θ1 0 0 0

0 0 0 sin θ3 0 i cos θ3

0 i cos θ2 0 0 sin θ2 0

0 0 0 i cos θ3 0 sin θ3





a†1
a†2
.

.

.

a†6


out

(5.34)

This setup was simulated on Mathematica. Collecting the coefficients of all the unambiguous outcomes

and adding their absolute squares yields the success probability Using an ancillary of the form |γ2〉
can help distinguish between the states

∣∣ψ±2 〉 |γ2〉 and
∣∣ψ±4 〉 |γ2〉, and the success probability turns out

to be (for details, see A.2)

P (θ1, θ2, θ3) =
1

8
|sin(2θ1) sin(2θ2) sin(2θ3)|2 +

1

8
|sin(2θ1) sin(2θ2) sin(2θ3)|2

=
1

4
|sin(2θ1) sin(2θ2) sin(2θ3)|2 ≤ 1

4

(5.35)
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In this setup, it is clear from (5.35) that symmetric beam splitters are most efficient to distinguish

between the states; setting θ1 = θ2 = θ3 = π/4 yields the maximum success probability is 25%.

Many other setups were investigated, but none surpassed the 25% threshold. This seems to sug-

gest that using an ancillary GHZ state in a polarization-preserving setup is no better than using

polarization-changing setups and no additional resources.

5.3.3 Bound on success probability for identical ancillary |γ1〉 states

Before we analyze general ancillary states, we can place certain bounds on the success rate if only the

state |γ1〉 is used as an ancillary. This is briefly discussed here. The states we analyzed before are

∣∣Ψ+
1

〉
|γ1〉 ≡

1

2

[
(h†1h

†
2h
†
3h
†
4h
†
5h
†
6 + h†1h

†
2h
†
3v
†
4v
†
5v
†
6 + v†1v

†
2v
†
3h
†
4h
†
5h
†
6 + v†1v

†
2v
†
3v
†
4v
†
5v
†
6)
]
in
|0〉∣∣Ψ−1 〉 |γ1〉 ≡

1

2

[
(h†1h

†
2h
†
3h
†
4h
†
5h
†
6 + h†1h

†
2h
†
3v
†
4v
†
5v
†
6 − v

†
1v
†
2v
†
3h
†
4h
†
5h
†
6 − v

†
1v
†
2v
†
3v
†
4v
†
5v
†
6)
]
in
|0〉

(5.36)

Each of the four terms in both states have a norm of 1/4. Once expanded through the output oper-

ators, each term will give rise to many more terms. However, since our transformations are unitary,

they will not change the norm of the states. Thus, the sum of the norms of all the terms that arise

out of (h†1h
†
2h
†
3h
†
4h
†
5h
†
6) |0〉 will still be 1/4. This crucial fact helps us place a bound on the success

probability without talking about a specific unitary mapping.

In (5.36), the [6,0] and [0,6] terms don’t help in unambiguous discrimination. The two [3,3] terms

however are combined differently in both states. Let us consider the extreme case (which will yield

the highest probability) where the output states of h†1h
†
2h
†
3v
†
4v
†
5v
†
6 +v†1v

†
2v
†
3h
†
4h
†
5h
†
6 and h†1h

†
2h
†
3v
†
4v
†
5v
†
6−

v†1v
†
2v
†
3h
†
4h
†
5h
†
6 have no overlap. This means that the output states corresponding to these terms are

orthogonal and have completely different detector outcomes. What does this imply for the success

probability?

The [3,3] terms make up 50% of all terms in both states. This implies that if the initial state was∣∣Ψ+
1

〉
or
∣∣Ψ−1 〉, then 50% of the time, the outcome at the detectors can unambiguously identify the

GHZ state. If the initial state was any other GHZ state |Ψi〉, then |γ1〉 does not help in distinguishing

between
∣∣Ψ±i 〉. Therefore, the maximum possible success probability (for equiprobable initial GHZ

states) is

P1 =
1

8

[
2

4
+

2

4

]
=

1

8
≡ 12.5% (5.37)

Thus, the maximum possible success probability is itself 12.5%! This was attained in the setup dis-

cussed earlier. Therefore, we can be sure that using |γ1〉 as ancillary, a higher success probability

cannot be achieved, and our earlier setup is an optimal one.

This result can be generalized to any number of identical ancillary |γ1〉 states. If for example, we
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have two ancillary GHZ states of the form |γ1〉, then we have to distinguish between the states

∣∣Ψ±1 〉 |γ1〉 |γ1〉 ≡
1

2
√

2

[
(h†1h

†
2h
†
3 ± v

†
1v
†
2v
†
3)(h†4h

†
5h
†
6 + v†4v

†
5v
†
6)(h†7h

†
8h
†
9 + v†7v

†
8v
†
9)
]
in
|0〉

≡ 1

2
√

2
[([3, 0]± [0, 3])([3, 0] + [0, 3])([3, 0] + [0, 3])]in |0〉

≡ 1

2
√

2
[([3, 0]± [0, 3])([6, 0] + 2[3, 3] + [0, 6])]in |0〉

≡ 1

2
√

2
[([9, 0] + 2[6, 3] + [3, 6])± ([0, 9] + 2[3, 6] + [6, 3])]in |0〉

(5.38)

Of the eight terms above, three are [6,3], three are [3,6], and there are one each of [9,0] and [0,9]. If

we suppose that the [3,6] and the [6,3] terms combine to form orthogonal states at the outputs, then

6 out of the 8 terms will yield unambiguous outcomes at the detectors. A similar calculation like

above yields a success probability of

P2 =
1

8

[
6

8
+

6

8

]
=

3

16
≡ 18.75% (5.39)

Extending this calculation to N ancillary 3-photon states, we obtain the following result.

PN =
1

8

[
2×

(
2N+1 − 2

2N+1

)]
=

1

4

[
2N − 1

2N

]
=

1

4

[
1− 2−N

]
(5.40)

Therefore, the success probability exponentially approaches the value 1
4 . This result is expected,

because we know that ancillaries of the form |γ1〉 cannot help in distinguishing within the sets∣∣Ψ±2 〉,∣∣Ψ±3 〉, and
∣∣Ψ±4 〉. So, the most we can hope for is perfect discrimination between the states∣∣Ψ+

1

〉
and

∣∣Ψ−1 〉, and this is what we observe as N →∞.

It must be noted that these are ’hard’ bounds. They certainly cannot be surpassed, but it is unclear

whether they can be reached either. We haven’t found setups that saturate this bound even for

N = 2. In the next section, we will generalize the above discussion to include other types of ancillary

states.

5.3.4 Bounds on success probability for general ancillary states

If we confine ourselves to a total of 6 photons, our best bet is to use the ancillary |γi〉. As discussed

in (5.29) and (5.30), this does not help us with separating
∣∣Ψ±1 〉, but it does help with

∣∣Ψ±i 〉:
∣∣Ψ±i 〉 |γi〉 ≡ 1

2
[([2, 1]± [1, 2]) ([2, 1] + [1, 2])] |0〉

≡ 1

2
[([4, 2] + [3,3])± ([3,3] + [2, 4])] |0〉

(5.41)

The maximum possible success would be achieved if a setup can perfectly separate the [3,3] terms in∣∣Ψ+
i

〉
and

∣∣Ψ−i 〉 for each of i = 2,3,4. In this extreme case, two of the four terms in
∣∣Ψ+

i

〉
and

∣∣Ψ−i 〉
are orthogonal with completely different outcomes. Thus, this places a bound on success probability

if we’re restricted to 6 photons:

P =
1

8
[0 + 3× (2/4 + 2/4)] =

3

8
≡ 37.5% (5.42)

Therefore, for six photon setups (that don’t change the polarization of photons), one can never achieve

a success probability of beyond 37.5%.
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A similar calculation can be performed if additional ancillary states are used. By analyzing the

terms with the same bracket representation and assuming (in the extreme case) that they completely

cancel in both the states, we can obtain the highest possible success probability of discrimination for

a given number of ancillary used. This calculation was performed on Mathematica (see A.2), and

the results are listed in the table below. Only ancillary states built out of Bell and GHZ states were

investigated, as these are relatively easier to produce than four-photon entangled states and above.

The first column lists the total number of photons used (GHZ photons and the ancillaries). For a

given number of photons, all possible ancillary states which are a product of Bell and GHZ states were

analyzed, and the state listed in column two is the one which yields the highest bound on the success

probability. The states |φ+〉 and |γi〉 seem to serve best as ancillaries. The maximum probability

Number of photons Best Ancillary Success Probability

6 |γi〉 37.5%
8 |γi〉 |φ+〉 62.5%
9 |γi〉 |γi〉 56.5%
10 |γi〉 |φ+〉 |φ+〉 78.125%
12 |γi〉 |φ+〉 |φ+〉 |φ+〉 87.5%
13 |γ1〉 |γi〉 |φ+〉 |φ+〉 89.0625%
14 |γi〉 |φ+〉 |φ+〉 |φ+〉 |φ+〉 92.969%

Table 5.1: Maximum success probability of GHZ state discrimination for polarization-preserving
setups as a function of (total) photon number

increases with photon number, approaching 100% for large values. This result is intuitive, and in line

with Grice’s result for the Bell states [Gri11]. However, it must be noted that it is unclear whether

these bounds are attainable. Specfiic experimental setups that yield these success probabilities have

also not been discovered; this is a work in progress.

5.4 Hyperentanglement

In section 3.4, we saw that the Bell states can be completely distinguished in a linear optical setting

if they are also entangled in a second degree of freedom. We could ask an analogous question for the

GHZ states as well. It so happens that the GHZ states can also be perfectly separated out if they

are entangled in two degrees of freedom. An experimental setup for achieving this was first proposed

in 2013 by Song et al. [SSL13], and is discussed below. Consider the GHZ states,

∣∣Ψ±1 〉 ≡ 1√
2

(|H〉 |H〉 |H〉 ± |V 〉 |V 〉 |V 〉)∣∣Ψ±2 〉 ≡ 1√
2

(|V 〉 |H〉 |H〉 ± |H〉 |V 〉 |V 〉)∣∣Ψ±3 〉 ≡ 1√
2

(|H〉 |V 〉 |H〉 ± |V 〉 |H〉 |V 〉)∣∣Ψ±4 〉 ≡ 1√
2

(|H〉 |H〉 |V 〉 ± |V 〉 |V 〉 |H〉)

(5.43)

which are also entangled in path/momentum degrees of freedom in GHZ-like states as follows:
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∣∣Ψ±1 〉m ≡ 1√
2

(|L1〉 |L2〉 |L3〉 ± |R1〉 |R2〉 |R3〉)∣∣Ψ±2 〉m ≡ 1√
2

(|R1〉 |L2〉 |L3〉 ± |L1〉 |R2〉 |R3〉)∣∣Ψ±3 〉m ≡ 1√
2

(|L1〉 |R2〉 |L3〉 ± |R1〉 |L2〉 |R3〉)∣∣Ψ±4 〉m ≡ 1√
2

(|L1〉 |L2〉 |R3〉 ± |R1〉 |R2〉 |L3〉)

(5.44)

|L〉 and |R〉 denote two different paths for a photon, see figure 5.11. Each ’L’-shaped arm indepen-

dently operates on one photon, and consists of two polarizing beam splitters, two half-wave plates

(these devices are central to distinguishing between GHZ states, as we shall see), and four detectors.

The paper demostrates how to distinguish between the eight states (a fixed entangled state in the

momentum degree of freedom) of the form:

|Ψ〉 = |Ψ〉p ⊗
∣∣Ψ+

1

〉
m

(5.45)

where |Ψ〉p denotes one of the polarization entangled states in (5.43). Since there are a total of 12

L1

R1

HWP

PBS
L1

R1
L2

L3

L2

L3

R2

R2

R3

R3

A1+

A1-

A2+

A2-

A3+

A3-

B1+

B2+

B3+

B1-

B3-

B2-

Figure 5.11: Hyperentangled GHZ state analysis [SSL13]. PBS: polarizing beam splitter, HWP: Half
wave plate

detectors, the number of possible outcomes at the detectors is
(

12
3

)
= 220. Each of the states in (5.45)

leads to 8 distinct outcomes at the detectors after passing through the setup, and thus we have a total

of 64 coincidence outcomes, a number far lesser than the total number of possibilities. The evolution
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State Detector signatures

|Ψ+〉1 ⊗
∣∣Ψ+

1

〉
m

A+
1 A

+
2 A

+
3 , B+

1 B
+
2 B

+
3 , A+

1 A
−
2 A
−
3 , B+

1 B
−
2 B
−
3 ,

A−1 A
−
2 A

+
3 , B−1 B

−
2 B

+
3 , A−1 A

+
2 A
−
3 , B−1 B

+
2 B
−
3

|Ψ−〉1 ⊗
∣∣Ψ+

1

〉
m

A−1 A
−
2 A
−
3 , B−1 B

−
2 B
−
3 , A−1 A

+
2 A

+
3 , B−1 B

+
2 B

+
3 ,

A+
1 A
−
2 A

+
3 , B+

1 B
−
2 B

+
3 , A+

1 A
+
2 A
−
3 , B+

1 B
+
2 B
−
3

|Ψ+〉2 ⊗
∣∣Ψ+

1

〉
m

B+
1 A

+
2 A

+
3 , A+

1 B
+
2 B

+
3 , B+

1 A
−
2 A
−
3 , A+

1 B
−
2 B
−
3 ,

B−1 A
+
2 A
−
3 , A−1 B

+
2 B
−
3 , B−1 A

−
2 A

+
3 , A−1 B

−
2 B

+
3

|Ψ−〉2 ⊗
∣∣Ψ+

1

〉
m

B−1 A
−
2 A
−
3 , A−1 B

−
2 B
−
3 , B−1 A

+
2 A

+
3 , A−1 B

+
2 B

+
3 ,

B+
1 A
−
2 A

+
3 , A+

1 B
−
2 B

+
3 , B+

1 A
+
2 A
−
3 , A+

1 B
+
2 B
−
3

|Ψ+〉3 ⊗
∣∣Ψ+

1

〉
m

A+
1 B

+
2 A

+
3 , B+

1 A
+
2 B

+
3 , A+

1 B
−
2 A
−
3 , B+

1 A
−
2 B
−
3 ,

A−1 B
+
2 A
−
3 , B−1 A

+
2 B
−
3 , A−1 B

−
2 A

+
3 , B−1 A

−
2 B

+
3

|Ψ−〉3 ⊗
∣∣Ψ+

1

〉
m

A−1 B
−
2 A
−
3 , B−1 A

−
2 B
−
3 , A−1 B

+
2 A

+
3 , B−1 A

+
2 B

+
3 ,

A+
1 B
−
2 A

+
3 , B+

1 A
−
2 B

+
3 , A+

1 B
+
2 A
−
3 , B+

1 A
+
2 B
−
3

|Ψ+〉4 ⊗
∣∣Ψ+

1

〉
m

A+
1 A

+
2 B

+
3 , B+

1 B
+
2 A

+
3 , A+

1 A
−
2 B
−
3 , B+

1 B
−
2 A
−
3 ,

A−1 A
−
2 B

+
3 , B−1 B

−
2 A

+
3 , A−1 A

+
2 B
−
3 , B−1 B

+
2 A
−
3

|Ψ−〉4 ⊗
∣∣Ψ+

1

〉
m

A−1 A
−
2 B
−
3 , B−1 B

−
2 A
−
3 , A−1 A

+
2 B

+
3 , B−1 B

+
2 A

+
3 ,

A+
1 A
−
2 B

+
3 , B+

1 B
−
2 A

+
3 , A+

1 A
+
2 B
−
3 , B+

1 B
+
2 A
−
3

Table 5.2: Possible detector signatures for each of the eight hyperentangled GHZ states

of |Ψ+〉1 ⊗
∣∣Ψ+

1

〉
m

is worked out below, as an example.

|Ψ〉 =
∣∣Ψ+

〉
1
⊗
∣∣Ψ+

1

〉
m

=
1

2
(|HHH〉+ |V V V 〉) (|L1L2L3〉+ |R1R2R3〉)

PBS−−−→ |HHH〉 (|L1L2L3〉+ |R1R2R3〉) + |V V V 〉 (|R1R2R3〉+ |L1L2L3〉)

HWP−−−−→
(
|H〉+ |V 〉√

2

)⊗3

(|L1L2L3〉+ |R1R2R3〉) +

(
|H〉 − |V 〉√

2

)⊗3

(|R1R2R3〉+ |L1L2L3〉)

=
1

2
√

2
[(|HHH〉+ |HV V 〉+ |V V H〉+ |V HV 〉) |L1L2L3〉

+ (|HHH〉+ |HV V 〉+ |V V H〉+ |V HV 〉)] |R1R2R3〉

In accordance with the above output state, the detectors that can fire are: A+
1 A

+
2 A

+
3 , B+

1 B
+
2 B

+
3 ,

A+
1 A
−
2 A
−
3 , B+

1 B
−
2 B
−
3 , A−1 A

−
2 A

+
3 , B−1 B

−
2 B

+
3 , A−1 A

+
2 A
−
3 , B−1 B

+
2 B
−
3 . This set of outcomes occurs only

for the state |Ψ+〉1⊗
∣∣Ψ+

1

〉
m

, and can be used to uniquely identify this state. Similarily, all other states

also have mutually exclusive outcomes, and are tabulated in table 5.2 (taken from [SSL13]). Thus,

the eight hyperentangled GHZ states can be completely distinguished using this setup. The authors

were also able to provide a natural extention of this setup to distinguish between N-photon GHZ-like

entangled states. The setup simply requires N identical ’L-shaped’ arms, and a total of 4N detectors.

Each arm is built exactly like in figure 5.11. Complementary to this example, one can also use polar-

ization entanglement to distinguish between momentum-entangled states. These results possibly can

be used for multipartite generalizations of quantum information protocols like superdense coding, etc.

As discussed previously, a crucial reason why these states become completely separated once we

involve two degrees of freedom is simply the number of choices available at the detectors. If we’re
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restricted to a single degree of freedom, there aren’t sufficient number of outcomes at the detectors

that render all the states unambiguous. In the current scenario, the total number of outcomes at the

detectors (
(

4N
N

)
) always exceeds the number required (O(2N )).

5.5 Summary

This chapter began by describing the GHZ states, their production and applications. The bound for

success probability of GHZ state measurements using linear optics is 25%. Unlike in the case of BSM,

it was shown that gaussian squeezing operations in general are not useful to separate the GHZ states.

Since squeezing adds photons in pairs, this turns out to be incompatible with the GHZ states, which

are made out of three (an odd number of) photons.

A large portion of the chapter dealt with ancillary entanglement as a resource in polarization preserv-

ing setups. It was shown that using only Bell states as ancillaries is not sufficient, they must be used

along with GHZ states as well. For a single ancillary state, various 6 photon setups were discussed.

Although the maximum possible success was shown to be 37.5%, no setups achieving success beyond

25% could be found. This suggests that polarization changing devices (like wave plates) may be

crucial to better success, as a single GHZ state an ancillary does not seem to give any advantage over

polarization changing setups without ancillary photons.

Moreover, it was shown that if N ancillaries of the form |Ψ1〉 are used, the success probability cannot

exceed 1
4

[
1− 2−N

]
. When different kinds of ancillaries are used, a closed-form expression for the

bound on success probability could not be obtained. However, bounds were numerically calculated

up to N = 14, and the success probability in general increases with photon number and approaches

unity. At N = 14, the bound was found to be around 93%. Whether these bounds can be saturated

for any N is uncertain but is believed to be unlikely. Moreover, the states of the form |Ψi〉 and |Φ±〉
were found to be most useful as ancillaries.

Like in the case of Bell states, hyperentangled GHZ states can be completely distinguished using

linear optics. This result is useful for generalizations of dense coding for multipartite systems.
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Chapter 6

Conclusion and Future Directions

Linear Optics Quantum Computing (LOQC) is a promising route for the implementation of a prac-

tical quantum computer. Most quantum information protocols contain a step where one party must

perform a measurement of two or more particles onto a basis of orthogonal entangled states (for

example, a Bell measurement, or a GHZ measurement, etc.). This thesis addressed the problem of

distinguishing between orthogonal entangled states of photons using linear optical setups. We ex-

plored three kinds of states: Bell states and Non-Maximally Entangled (NME) states of two-photons,

and the three-photon GHZ states.

Chapters 2 and 3 discussed existing literature regarding Bell State Measurements. We saw that

a perfect Bell state analyzer cannot be implemented using linear optics [LCS99], and the best one can

do without ancillary photons is to distinguish between two of the four Bell states [CL01]. Applying

gaussian squeezing operations on the Bell states allows us to surpass this 50% bound, but not by

much, as the maximum success probability is around 64.3% [ZvL13]. Further, ancillary entangled

photons can be used to better distinguish the Bell states. Using 2N − 2 ancillary photons yields a

success probability of 1− 1/2N [Gri11]. Although non-linear optical gadgets allow for a perfect Bell

state measurement [KKS01], these are quite inefficient as per today’s technology. Another important

resource for Bell state analysis is hyperentanglement, or entanglement in multiple degrees of freedom

of the photon. Bell states entangled in two degrees of freedom can be perfectly distinguished using

linear optics. Several setups have been proposed to distinguish between various kinds of hyperentan-

gled photons [KW98] [SHKW06] [BVMDM07] [KLL+19] [BWK08], and some of these setups were

discussed in the text. Hyperentangled Bell states can can help achieve perfect superdense coding, but

are not a useful resource for teleportation.

In this thesis, we attempted to extend some of the above ideas to the case of distinguishing between

the NME and the GHZ states. We showed that Bell states in general are not useful as ancillaries for

distinguishing between the NME states; one must only use partially entangled states. Further, the

form of the ancillaries must depend on the particular NME states to be distinguished. We took a

particular example of setup with one ancillary entangled pair and illustrated that the maximum suc-

cess probability achievable (12.5%) is much lower than the analogous scenario for Bell states, which

yielded a success of 75%. Coming to the GHZ states, only two of the eight states can be distinguished

using linear optics [PZ98]. We focused on ancillary entanglement as a resource to enhance this prob-

ability in polarization preserving setups. We were able to place bounds on the success achievable as a

function of number of photons used. We observed that |Ψi〉 and |Φ±〉 were the most useful ancillaries,

and the maximum success probability steadily increases with photon number, approaching 93% for
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N = 14.

These results further the understanding of multi-photon state discrimination, and could be applied to

quantum information protocols that involve GHZ or partially entangled states. However, this work

is only in its preliminary stages. Quite a number of questions are open and need more study. Some

directions yet to be explored are given below.

In our discussion of non-maximally entangled states, we observed that additional ancillaries must

be non-maximally entangled in order to be of help in distinguishing between the states. We plan

on generalizing this result to n pairs of ancillary photons and compare this with the corresponding

scenario for Bell states. Another important question to study might be distinguishing between these

states using entanglement in two degrees of freedom. What resources might be required for a com-

plete discrimination of a set of orthogonal non-maximally entangled states? It is also worth exploring

how useful squeezing operations are for this purpose, and study any possible relation between the

squeezing parameter and the states to be distinguished.

With regard to GHZ states, we would like to derive better bounds on the success probability as

a function of number of photons. Moreover, all the setups analyzed were polarization-preserving. We

are currently studying more general setups free from this restriction. The aim is to place bounds on

the success probability for such setups, and compare these bounds to that placed by Grice for Bell

states. We also wish to study the other class of three-qubit entangled states, the W states, and see

if a similar scenario holds for distinguishing between them using linear optics. More importantly, we

would like to gain some intuition for how to design a setup for distinguishing between a set of states.

Deveoping a general method that describes how to separate a given set of states using linear optics

could be a useful result with many applications.

In a broader sense, we would like to understand in more detail the restrictions LOQC places on

quantum information protocols, and the challenges of practical implementations of LOQC. We also

wish to contrast the results obtained in this thesis to linear optics for continuous variables. Lastly,

we are also exploring Boson sampling and measurement-based quantum computing in LOQC.
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Appendix A

Mathematica Simulations

In this appendix, I will describe the code I used (in Mathematica) to obtain some of the results given

in chapters 4 and 5, regarding state discrimination using ancillary entanglement. The first section will

discuss distinguishing between non-maximally entangled states, and the second section will discuss

results regarding the GHZ states.

A.1 Non-maximally entangled states

Recall that the task in section 4.2 was to distinguish between the states∣∣∣Φ̃+
〉
|γ̃1〉 =

[
(c h†1h

†
2 + d v†1v

†
2)(e h†3h

†
4 + f v†3v

†
4)
]
in
|0〉∣∣∣Φ̃−〉 |γ̃1〉 =

[
(d h†1h

†
2 − c v

†
1v
†
2)(e h†3h

†
4 + f v†3v

†
4)
]
in
|0〉

(A.1)

In the simulation, the input creation operators are represented by lowercase letters, and the output

creation operators with uppercase letters. The block below relates the two sets of operators through

the unitary U.

1 vars= {h1, h2, h3, h4, v1 , v2 , v3 , v4};

2 Vec1 = {{h1}, {h2}, {h3}, {h4}}; Vec2 = {{v1}, {v2}, {v3}, {v4}};

3 U = 1/2*{{1 ,I,I,-1},{I,1,-1,I},{I,-1,1,I},{-1,I,I,1}};

4 Vec3 = U . Vec1; Vec4 = U . Vec2;

5 H1 = Vec3 [[1]][[1]]; H2 = Vec3 [[2]][[1]]; H3 = Vec3 [[3]][[1]]; H4 =

Vec3 [[4]][[1]];

6 V1 = Vec4 [[1]][[1]]; V2 = Vec4 [[2]][[1]]; V3 = Vec4 [[3]][[1]]; V4 =

Vec4 [[4]][[1]];

To find the final states after evolving through the setup, one can simply use the commands

1 phiplus = ExpandAll [(c H1 H2 + d V1 V2) ( e H3 H4 + f V3 V4 )];

2 phiminus = ExpandAll [(d H1 H2 - c V1 V2) ( e H3 H4 + f V3 V4 )];

The figures A.1 and A.2 display the outputs of the above commands: the states
∣∣∣Φ̃+

〉
|γ̃1〉 and∣∣∣Φ̃−〉 |γ̃1〉 after passing through the setup. Note that all operators in the images that follow are

creation operators, the daggers on top of the operators are not shown.

We would like to compare these two large expressions. Firstly, we can list out the different terms
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Figure A.1:
∣∣∣Φ̃+

〉
|γ̃1〉 after passing through the setup

separately without their coefficients, to know what detector outcomes are possible. To do this, one

uses

1 v = List@@Expand[Collect[phiplus , vars , 1 &]]

This command collects only the parts of the state which contain elements from the list vars. The

result of this outcome is shown in figure A.3). The same list is obtained for both states, confirming

that all terms in
∣∣∣Φ̃+

〉
|γ̃1〉 are also present in

∣∣∣Φ̃−〉 |γ̃1〉, only with different coefficients (so there is

no unambiguous discrimation between the
∣∣∣Φ̃±〉 states at the moment).

1 In [1]:= List@@Expand[Collect[phiplus ,vars ,1 &]] = = List@@Expand[

Collect[phiminus ,vars ,1 &]];

2 Out [1]= True

In figure A.3, note that the number of h and v operators is always even, as we would expect from

(4.11). To check if some discrimination is possible, we must look at the coefficients of these outcomes.

Since we will be calculating probabilities, it is more useful to list down the absolute squared of the

coefficients. However, note that this is not enough! We must take into account the relation

a†n |0〉 =
√
n! |n〉

=⇒ 〈0| ana†n |0〉 = n!
(A.2)

So, we must include this factor of n! while calculating probabilities of outcomes. The block of code

below takes this into account, and creates a list normlist1 containing the probabilites of all the

outcomes in figure A.3, in order.
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Figure A.2:
∣∣∣Φ̃−〉 |γ̃1〉 at the end of the setup
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Figure A.3: List of various outcomes for
∣∣∣Φ̃±〉 |γ̃1〉

1 list1 = Which[Length[v]==0,0, Length[v]!=0,Abs[( Coefficient[phiplus

,#]&/@v)]^2]; i=1;

2 While[i<= Length[v],{check= Cases[v[[i]], _?NumericQ , -1];list1 [[i]]=

Which[Length[check ]==1, list1 [[i]]* Factorial[check [[1]]] , Length[

check ]==2, list1 [[i]]*4, Length[check ]==0, list1 [[i]]];i++;}]

3 normlist1=list1;

Identical commands can be written for phiminus. This list for both the states is given in figures A.4

and A.5. The numbers in both these figures add to one (as expected) if the normalization conditions,

|c|2 + |d|2 = 1 and |e|2 + |f |2 = 1 are valid. To check this, one can use the FullSimplify command:

1 In [1]:= FullSimplify[Total[normlist1],{c*Conjugate[c]+d*Conjugate[d]

== 1, f*Conjugate[f]+e*Conjugate[e] = = 1}]

2 Out [1]= 1

Had we not accounted for (A.2), the above total would not have added to 1. To reiterate, figure

A.3 shows the possible outcomes at the detectors, and figures A.4 and A.5 show the probabilities of
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Figure A.4:
∣∣∣Φ̃+

〉
|γ̃1〉: Probabilities of various outcomes
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Figure A.5:
∣∣∣Φ̃−〉 |γ̃1〉: Probabilities of various outcomes

obtaining these corresponding outcomes for
∣∣∣Φ̃+

〉
|γ̃1〉 and

∣∣∣Φ̃−〉 |γ̃1〉 respectively.

From figure A.4, it is clear that some of the coefficients can be put to 0 by satisfying either de = cf

or de = −cf . Making these coefficients vanish removes the corresponding terms (in figure A.3) in

the expansion of the state
∣∣∣Φ̃+

〉
|γ̃1〉. However, the corresponding terms in

∣∣∣Φ̃−〉 |γ̃1〉 do not vanish

and still remain. Thus, we have achieved partial unambiguous discrimination of the states
∣∣∣Φ̃±〉 |γ̃1〉.

Likewise, certain terms in
∣∣∣Φ̃−〉 |γ̃1〉 can be set to zero using the conditions ce = df or ce = −df ,

without removing the terms in
∣∣∣Φ̃+

〉
|γ̃1〉. These would also lead to some partial discrimination of

the two states.

In this particular setup, all the above four constraints are equivalent. So, without loss of gener-
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ality, we will impose ce = df . The zeroes in the figure A.6 denote the absence of terms in the state

 3

32
Absd e2, 1

16
Absd e2, 3

32
Absd e2, 1

16
Absd e2, 1

16
Absd e2, 3

32
Absd e2, 1

4
Absd e2,

1

16
Absd e2, 1

16
Absd e2, 1

16
Absd e2, 3

32
Absd e2, 0, 0,

1

8
Absd f2, 0,

1

8
Absd f2, 0,

3

32
Absc f2, 0, 0,

1

8
Absd f2, 0,

1

8
Absd f2, 0,

1

16
Absc f2, 3

32
Absc f2, 1

8
Absd f2,

1

8
Absd f2, 0,

1

8
Absd f2, 0,

1

8
Absd f2, 0, 0,

1

8
Absd f2, 0,

1

8
Absd f2, 0,

1

16
Absc f2,

1

16
Absc f2, 3

32
Absc f2, 1

8
Absd f2, 1

8
Absd f2, 0,

1

8
Absd f2, 0,

1

8
Absd f2, 1

4
Absc f2,

0, 0,
1

8
Absd f2, 0,

1

8
Absd f2, 0,

1

16
Absc f2, 1

16
Absc f2, 1

16
Absc f2, 3

32
Absc f2

Figure A.6:
∣∣∣Φ̃−〉 |γ̃1〉: Probabilities after imposing ce = df

∣∣∣Φ̃−〉 |γ̃1〉. In order to calculate the success probability of discrimination, one simply has to calculate

the probability of obtaining these relevant outcomes for the state
∣∣∣Φ̃+

〉
|γ̃1〉. That is, we must add

the numbers in figure A.4 for
∣∣∣Φ̃+

〉
|γ̃1〉 that are present precisely in the positions where

∣∣∣Φ̃−〉 |γ̃1〉
has a 0. The code below achieves this, by first using the Position command to make a list of all

the locations where normlist2 has a zero. Then, the quantity dd is constructed by just adding the

relevant terms needed from normlist1.

1 In [1]:=

2 i=1; While[i<= Length[normlist1 ],{normlist1 [[i]] = normlist1 [[i]]/.c e

-> d f;i++}]

3 i=1; While[i<= Length[normlist2 ],{normlist2 [[i]] = normlist2 [[i]]/.c e

-> d f;i++}]

4 cc=Position[normlist2 ,0] ;

5 i=1;dd=0;

6 While[i<= Length[cc], {dd = dd +normlist1 [[cc[[i]][[1]]]];i++ }]

7 FullSimplify[dd ,{Abs[c]^2+ Abs[d]^2 == 1,Abs[f]^2+ Abs[e]^2 == 1}]

8

9 Out [1]= 1/2 Abs [d e + c f]^2

Upon simplifying the final result subject to the normalization conditions, we get

S =
1

2
|de+ cf |2 (A.3)

This was precisely the result quoted in (4.13). Had we used any of the other constraints, we would

have gotten the results

(ce→ −df) =⇒ S =
1

2
|de− cf |2

(de→ cf) =⇒ S =
1

2
|ce+ df |2

(de→ −cf) =⇒ S =
1

2
|ce− df |2

(A.4)

Clearly using any of the four constraints would give us the same maximum probability of discrimina-

tion, 12.5%.
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A.2 GHZ states

In this section, I will describe the two types of codes. The first code discusses GHZ state discrimina-

tion using ancillary entanglement in a particular setup, and the second will discuss bounds on the

success probability of discrimination for general polarization-preserving setups. The codes for the

former were used to obtain the results in (5.32) and (5.35), and the latter were used to derive the

table 5.1.

This approach outlined below can be adapted and used to calculate success probabilities of discrimi-

nation between any set of states, through a specified setup. To begin with, the unitary corresponding

to the setup must be defined. Instead of typing out the whole matrix, one can define a function that

outputs a beam splitter matrix of the required dimension, as shown below.

1 setupdimension = 6; beg = IdentityMatrix[setupdimension ];

2 beamsplitter[a_ , b_ ,theta_] := { beg1 = beg;

3 beg1[[a, a]] = Sin[theta ]; beg1[[b, b]] = Sin[theta];

4 beg1[[a, b]] = I*Cos[theta ]; beg1[[b, a]] =I*Cos[theta];

5 beg1}

This function is useful to create unitaries corresponding to setups containing multiple beam splitters.

The function Wholeunitary defined below takes in a list of modes to be connected by the beam

splitters and generates the corresponding unitary by matrix multiplication.

1 Wholeunitary[locations_ , numberofbs_] := { A = beg;

2 For[i = 1, i <= numberofbs , i++, A = A . Flatten[beamsplitter[

locations [[i]][[1]] , locations [[i]][[2]] , locations [[i]][[3]]] ,

1]]; A}

3 bsarray ={{1,4,Pi/4}, {2,5, Pi/4}, {3,6,Pi /4}};

4 U = Flatten[Wholeunitary[bsarray , Length[bsarray ]] ,1];

5 (* bsarray1 ={{1 ,3 ,\[ Theta]1}, {2,5, \[ Theta]2}, {4,6, \[ Theta ]3}}; U

= Flatten[Wholeunitary[bsarray1 , Length[bsarray1 ]] ,1]; *)

The setups shown in figure 5.7 and 5.10 are correspond to bsarray and bsarray1. The input and

output operators can be related in the same way as discussed in the previous section. Let us first

discuss the result of (5.32), where the ancillary |γ1〉 was used to distinguish between the states |Ψ±〉.
The final states after evolving through the setup are

1 ghz1plus = ExpandAll [1/2 (H1 H2 H3 + V1 V2 V3) (H4 H5 H6 + V4 V5 V6)

];

2 ghz1minus = ExpandAll [1/2 (H1 H2 H3 - V1 V2 V3)(H4 H5 H6 + V4 V5 V6)

];

The procedure to calculate success probabilities is similar to A.1, with a simpler code, as there are

no parameters to optimize. If we want to quantify how useful the ancillary |γ1〉 is to distinguish

between the states |Ψ±〉, we must identify those terms that are uniquely present in either ghz1plus

or ghz1minus. This is done using a combination of the Complement and the Intersection command,

applied to both expressions. Once this is done, we simply calculate the absolute squared sum of the

relevant coefficients.

1 In[]:=

2 uniqueterms = Complement[Union[ghz1plus , ghz1minus], Intersection[

ghz1plus , ghz1minus ]];
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3 v = List@@Expand[Collect[uniqueterms , vars , 1 &]];

4 sum = Which[Length[v]==0,0, Length[v]!=0,Abs[Coefficient[uniqueterms

,#]&/@v ]^2];

5 Simplify[Total[sum]]

6

7 Out[] = 1

To check if |γ1〉 helps distinguish between the other sets of GHZ states, the same block above can

be used. In those cases, the v list turns out to be empty. Therefore, the total success probability of

discrimination is thus 1
8 [0 + 0 + 0 + 1] ≡ 12.5%.

We now discuss the result in (5.35). Here, we used the ancillary |γ2〉, and studied the evolution

of the states
∣∣Ψ±2 〉 |γ2〉,

∣∣Ψ±3 〉 |γ2〉, and
∣∣Ψ±4 〉 |γ2〉 through the setup 5.10. A small caveat at this stage:

if we want to confirm if the setup is unitary, the usual UnitaryMatrixQ command does not work. We

must impose constraints on the θ parameters, like shown below:

1 In[]:= Simplify[U . ConjugateTranspose[U], {Element [\[ Theta]1,Reals],

Element [\[ Theta]2,Reals],Element [\[ Theta]3,Reals ]}] ==

IdentityMatrix [6]

2

3 Out[] = True

The final states can be expanded as:

1 ghz2plus = ExpandAll [1/2 (H1 H2 V3 + V1 V2 H3) (H4 H5 V6 + V4 V5 H6)

];

2 ghz2minus = ExpandAll [1/2 (H1 H2 V3 - V1 V2 H3)(H4 H5 V6 + V4 V5 H6)

];

3

4 ghz3plus = ExpandAll [1/2 (H1 V2 H3 + V1 H2 V3) (H4 H5 V6 + V4 V5 H6)

];

5 ghz3minus = ExpandAll [1/2 (H1 V2 H3 - V1 H2 V3)(H4 H5 V6 + V4 V5 H6)

];

6

7 ghz4plus = ExpandAll [1/2 (V1 H2 H3 + H1 V2 V3) (H4 H5 V6 + V4 V5 H6)

];

8 ghz4minus = ExpandAll [1/2 (V1 H2 H3 - H1 V2 V3)(H4 H5 V6 + V4 V5 H6)

];

We calculate the success probability using exactly the same block of code discussed earlier. It turns

out that the sum calculated for
∣∣Ψ±3 〉 |γ2〉 is zero, but both

∣∣Ψ±2 〉 |γ2〉 and
∣∣Ψ±4 〉 |γ2〉 give the same sum

of 1
8 |sin(2θ1) sin(2θ2) sin(2θ3)|2 (taking into account equiprobable initial GHZ states). Therefore, the

total probability of discrimination is

Ps = 2× 1

8
|sin(2θ1) sin(2θ2) sin(2θ3)|2 =

1

4
|sin(2θ1) sin(2θ2) sin(2θ3)|2 ≤ 1

4
(A.5)

We next discuss how to place upper bounds on the success probability of discrimination without con-

sidering a specific setup. Let us say we want to distinguish between two states |Ψ+〉, and |Ψ−〉, using

an ancillary |β〉. The idea, as discussed in the main text, is to classify terms in the total state |Ψ±〉 |β〉
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based on the number of h† and v† operators they have, and then assume that two equivalent terms

on either side of the± sign combine to produce two mutually exclusive sets of outcomes for both states.

In our analysis, we use two types of ancillaries: Bell states (|Ψ〉 and |Φ〉) and the GHZ states (|γ1〉
and |γi〉). We first define them as sets just containing their bracket representations i.e. the number

of h† and v† operators.

1 gamma1 = {{3, 0}, {0, 3}}; gammai = {{2, 1}, {1, 2}};

2 phiplus = {{2, 0}, {0, 2}}; psiplus = {{1, 1}, {1, 1}};

In order to combine different terms, we define the functions join and fullmultiply.

1 join[A_, B_] := {A[[1]] + B[[1]], A[[2]] + B[[2]]};

2 fullmultiply[A_ , B_] := {abcd = List [];

3 For[i = 1, i <= Length[A], i++, For[j = 1, j <= Length[B], j++,

4 AppendTo[abcd , join[A[[i]], B[[j]]]]]]; Sequence @@ abcd}

Join simply simulates multiplying two brackets, by creating a third bracket with element-wise sum

of the two initial brackets. The fullmultiply function simulates multiplying two terms, each having

multiple brackets, by constructing a set with all possible bracket multiplications.

Let us take the example of distinguishing between the GHZ states, using an ancillary state |β〉 =

|γi〉 |Φ〉 |Φ〉 (product state of a GHZ state of the type [2, 1] ± [1, 2] with two Bell states of type

[2, 0]± [0, 2]). We first define and expand out this ancillary.

1 In[]:=

2 A2 ={gammai ,phiplus ,phiplus }; n = Length[A2];

3 While[Length[A2] > 1, c = fullmultiply[A2[[1]] , A2 [[2]]];

4 A2 = Drop[A2, 1]; A2 [[1]] = c;]

5 A1 = Flatten[A2 , 1]

6

7 Out[]= {{6 ,1} ,{4 ,3} ,{4 ,3} ,{2 ,5} ,{5 ,2} ,{3 ,4} ,{3 ,4} ,{1 ,6}}

Next, we locate terms which are common in
∣∣Ψ+

1

〉
|β〉 and

∣∣Ψ−1 〉 |β〉. To do this, we calculate the

Intersection between a [3,0] term multiplied with |β〉 and a [0,3] term multiplied with |β〉. A similar

procedure is carried out for
∣∣Ψ+

i

〉
|β〉 and

∣∣Ψ−i 〉 |β〉.
1 In[]:=

2 XX = Intersection[fullmultiply [{{0, 3}}, A1], fullmultiply [{{3, 0}},

A1]]

3 YY = Intersection[fullmultiply [{{2, 1}}, A1], fullmultiply [{{1, 2}},

A1]]

4

5 Out[]=

6 {{4 ,6} ,{5 ,5} ,{6 ,4}}

7 {{3 ,7} ,{4 ,6} ,{5 ,5} ,{6 ,4} ,{7 ,3}}

Once we have these lists, we simply must count how many times each of the elements of these lists are

present in the products [3, 0] |β〉 and [0, 3] |β〉, and [2, 1] |β〉 and [1, 2] |β〉. If for example, the element

[4,6] is present only once in [3, 0] |β〉 and [0, 3] |β〉, then assuming perfect cancellation (for an upper

bound on the success probability), the [4,6] terms on both sides of the ± sign must combine to give

two completely different terms for both states, leading to a contribution of (4/2n+1) to the success
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probability (excluding the 1/8 overall factor). Here, n is the number of ancillary states; the 2n+1

factor in the denominator comes as a result of their normalization.

Similarily, we can calculate the success probability of distinguishing between the
∣∣Ψ±i 〉 states us-

ing |β〉. The complete code is given below:

1 In[]:=

2 aa = Which [Length[XX] > 1,

3 Total[Table [(2/

4 2^(n + 1)) *( Count[fullmultiply [{{0, 3}}, A1], XX[[b]]] +

5 Count[fullmultiply [{{3, 0}}, A1], XX[[b]]]), {b, Length[XX

]}]],

6 Length[XX] ==

7 1, (2/2^(n + 1)) *( Count[fullmultiply [{{0, 3}}, A1], XX [[1]]] +

8 Count[fullmultiply [{{3, 0}}, A1], XX [[1]]]) , Length[XX] == 0,

0];

9

10 bb = Which [Length[YY] > 1,

11 Total[Table [(6/

12 2^(n + 1)) *( Count[fullmultiply [{{2, 1}}, A1], YY[[a]]] +

13 Count[fullmultiply [{{1, 2}}, A1], YY[[a]]]), {a, Length[YY

]}]],

14 Length[YY] ==

15 1, (6/2^(n + 1)) *( Count[fullmultiply [{{2, 1}}, A1], YY [[1]]] +

16 Count[fullmultiply [{{1, 2}}, A1], YY [[1]]]) , Length[YY] == 0,

0];

17 success = 12.5*( aa + bb)

18

19 Out[]= 78.125

As reported in the table, the upper bound on the success probability using the ancillary state

|γi〉 |Φ〉 |Φ〉 turns out to be 78.125%.
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